xref: /dragonfly/sys/vfs/ufs/ffs_softdep.c (revision 32c20b8b)
1 /*
2  * Copyright 1998, 2000 Marshall Kirk McKusick. All Rights Reserved.
3  *
4  * The soft updates code is derived from the appendix of a University
5  * of Michigan technical report (Gregory R. Ganger and Yale N. Patt,
6  * "Soft Updates: A Solution to the Metadata Update Problem in File
7  * Systems", CSE-TR-254-95, August 1995).
8  *
9  * Further information about soft updates can be obtained from:
10  *
11  *	Marshall Kirk McKusick		http://www.mckusick.com/softdep/
12  *	1614 Oxford Street		mckusick@mckusick.com
13  *	Berkeley, CA 94709-1608		+1-510-843-9542
14  *	USA
15  *
16  * Redistribution and use in source and binary forms, with or without
17  * modification, are permitted provided that the following conditions
18  * are met:
19  *
20  * 1. Redistributions of source code must retain the above copyright
21  *    notice, this list of conditions and the following disclaimer.
22  * 2. Redistributions in binary form must reproduce the above copyright
23  *    notice, this list of conditions and the following disclaimer in the
24  *    documentation and/or other materials provided with the distribution.
25  *
26  * THIS SOFTWARE IS PROVIDED BY MARSHALL KIRK MCKUSICK ``AS IS'' AND ANY
27  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
28  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
29  * DISCLAIMED.  IN NO EVENT SHALL MARSHALL KIRK MCKUSICK BE LIABLE FOR
30  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	from: @(#)ffs_softdep.c	9.59 (McKusick) 6/21/00
39  * $FreeBSD: src/sys/ufs/ffs/ffs_softdep.c,v 1.57.2.11 2002/02/05 18:46:53 dillon Exp $
40  * $DragonFly: src/sys/vfs/ufs/ffs_softdep.c,v 1.57 2008/06/28 17:59:51 dillon Exp $
41  */
42 
43 /*
44  * For now we want the safety net that the DIAGNOSTIC and DEBUG flags provide.
45  */
46 #ifndef DIAGNOSTIC
47 #define DIAGNOSTIC
48 #endif
49 #ifndef DEBUG
50 #define DEBUG
51 #endif
52 
53 #include <sys/param.h>
54 #include <sys/kernel.h>
55 #include <sys/systm.h>
56 #include <sys/buf.h>
57 #include <sys/malloc.h>
58 #include <sys/mount.h>
59 #include <sys/proc.h>
60 #include <sys/syslog.h>
61 #include <sys/vnode.h>
62 #include <sys/conf.h>
63 #include <sys/buf2.h>
64 #include <machine/inttypes.h>
65 #include "dir.h"
66 #include "quota.h"
67 #include "inode.h"
68 #include "ufsmount.h"
69 #include "fs.h"
70 #include "softdep.h"
71 #include "ffs_extern.h"
72 #include "ufs_extern.h"
73 
74 #include <sys/thread2.h>
75 
76 /*
77  * These definitions need to be adapted to the system to which
78  * this file is being ported.
79  */
80 /*
81  * malloc types defined for the softdep system.
82  */
83 MALLOC_DEFINE(M_PAGEDEP, "pagedep","File page dependencies");
84 MALLOC_DEFINE(M_INODEDEP, "inodedep","Inode dependencies");
85 MALLOC_DEFINE(M_NEWBLK, "newblk","New block allocation");
86 MALLOC_DEFINE(M_BMSAFEMAP, "bmsafemap","Block or frag allocated from cyl group map");
87 MALLOC_DEFINE(M_ALLOCDIRECT, "allocdirect","Block or frag dependency for an inode");
88 MALLOC_DEFINE(M_INDIRDEP, "indirdep","Indirect block dependencies");
89 MALLOC_DEFINE(M_ALLOCINDIR, "allocindir","Block dependency for an indirect block");
90 MALLOC_DEFINE(M_FREEFRAG, "freefrag","Previously used frag for an inode");
91 MALLOC_DEFINE(M_FREEBLKS, "freeblks","Blocks freed from an inode");
92 MALLOC_DEFINE(M_FREEFILE, "freefile","Inode deallocated");
93 MALLOC_DEFINE(M_DIRADD, "diradd","New directory entry");
94 MALLOC_DEFINE(M_MKDIR, "mkdir","New directory");
95 MALLOC_DEFINE(M_DIRREM, "dirrem","Directory entry deleted");
96 
97 #define M_SOFTDEP_FLAGS		(M_WAITOK | M_USE_RESERVE)
98 
99 #define	D_PAGEDEP	0
100 #define	D_INODEDEP	1
101 #define	D_NEWBLK	2
102 #define	D_BMSAFEMAP	3
103 #define	D_ALLOCDIRECT	4
104 #define	D_INDIRDEP	5
105 #define	D_ALLOCINDIR	6
106 #define	D_FREEFRAG	7
107 #define	D_FREEBLKS	8
108 #define	D_FREEFILE	9
109 #define	D_DIRADD	10
110 #define	D_MKDIR		11
111 #define	D_DIRREM	12
112 #define D_LAST		D_DIRREM
113 
114 /*
115  * translate from workitem type to memory type
116  * MUST match the defines above, such that memtype[D_XXX] == M_XXX
117  */
118 static struct malloc_type *memtype[] = {
119 	M_PAGEDEP,
120 	M_INODEDEP,
121 	M_NEWBLK,
122 	M_BMSAFEMAP,
123 	M_ALLOCDIRECT,
124 	M_INDIRDEP,
125 	M_ALLOCINDIR,
126 	M_FREEFRAG,
127 	M_FREEBLKS,
128 	M_FREEFILE,
129 	M_DIRADD,
130 	M_MKDIR,
131 	M_DIRREM
132 };
133 
134 #define DtoM(type) (memtype[type])
135 
136 /*
137  * Names of malloc types.
138  */
139 #define TYPENAME(type)  \
140 	((unsigned)(type) < D_LAST ? memtype[type]->ks_shortdesc : "???")
141 /*
142  * End system adaptaion definitions.
143  */
144 
145 /*
146  * Internal function prototypes.
147  */
148 static	void softdep_error(char *, int);
149 static	void drain_output(struct vnode *, int);
150 static	int getdirtybuf(struct buf **, int);
151 static	void clear_remove(struct thread *);
152 static	void clear_inodedeps(struct thread *);
153 static	int flush_pagedep_deps(struct vnode *, struct mount *,
154 	    struct diraddhd *);
155 static	int flush_inodedep_deps(struct fs *, ino_t);
156 static	int handle_written_filepage(struct pagedep *, struct buf *);
157 static  void diradd_inode_written(struct diradd *, struct inodedep *);
158 static	int handle_written_inodeblock(struct inodedep *, struct buf *);
159 static	void handle_allocdirect_partdone(struct allocdirect *);
160 static	void handle_allocindir_partdone(struct allocindir *);
161 static	void initiate_write_filepage(struct pagedep *, struct buf *);
162 static	void handle_written_mkdir(struct mkdir *, int);
163 static	void initiate_write_inodeblock(struct inodedep *, struct buf *);
164 static	void handle_workitem_freefile(struct freefile *);
165 static	void handle_workitem_remove(struct dirrem *);
166 static	struct dirrem *newdirrem(struct buf *, struct inode *,
167 	    struct inode *, int, struct dirrem **);
168 static	void free_diradd(struct diradd *);
169 static	void free_allocindir(struct allocindir *, struct inodedep *);
170 static	int indir_trunc (struct inode *, off_t, int, ufs_lbn_t, long *);
171 static	void deallocate_dependencies(struct buf *, struct inodedep *);
172 static	void free_allocdirect(struct allocdirectlst *,
173 	    struct allocdirect *, int);
174 static	int check_inode_unwritten(struct inodedep *);
175 static	int free_inodedep(struct inodedep *);
176 static	void handle_workitem_freeblocks(struct freeblks *);
177 static	void merge_inode_lists(struct inodedep *);
178 static	void setup_allocindir_phase2(struct buf *, struct inode *,
179 	    struct allocindir *);
180 static	struct allocindir *newallocindir(struct inode *, int, ufs_daddr_t,
181 	    ufs_daddr_t);
182 static	void handle_workitem_freefrag(struct freefrag *);
183 static	struct freefrag *newfreefrag(struct inode *, ufs_daddr_t, long);
184 static	void allocdirect_merge(struct allocdirectlst *,
185 	    struct allocdirect *, struct allocdirect *);
186 static	struct bmsafemap *bmsafemap_lookup(struct buf *);
187 static	int newblk_lookup(struct fs *, ufs_daddr_t, int,
188 	    struct newblk **);
189 static	int inodedep_lookup(struct fs *, ino_t, int, struct inodedep **);
190 static	int pagedep_lookup(struct inode *, ufs_lbn_t, int,
191 	    struct pagedep **);
192 static	void pause_timer(void *);
193 static	int request_cleanup(int, int);
194 static	int process_worklist_item(struct mount *, int);
195 static	void add_to_worklist(struct worklist *);
196 
197 /*
198  * Exported softdep operations.
199  */
200 static	void softdep_disk_io_initiation(struct buf *);
201 static	void softdep_disk_write_complete(struct buf *);
202 static	void softdep_deallocate_dependencies(struct buf *);
203 static	int softdep_fsync(struct vnode *);
204 static	int softdep_process_worklist(struct mount *);
205 static	void softdep_move_dependencies(struct buf *, struct buf *);
206 static	int softdep_count_dependencies(struct buf *bp, int);
207 static  int softdep_checkread(struct buf *bp);
208 static  int softdep_checkwrite(struct buf *bp);
209 
210 static struct bio_ops softdep_bioops = {
211 	.io_start = softdep_disk_io_initiation,
212 	.io_complete = softdep_disk_write_complete,
213 	.io_deallocate = softdep_deallocate_dependencies,
214 	.io_fsync = softdep_fsync,
215 	.io_sync = softdep_process_worklist,
216 	.io_movedeps = softdep_move_dependencies,
217 	.io_countdeps = softdep_count_dependencies,
218 	.io_checkread = softdep_checkread,
219 	.io_checkwrite = softdep_checkwrite
220 };
221 
222 /*
223  * Locking primitives.
224  *
225  * For a uniprocessor, all we need to do is protect against disk
226  * interrupts. For a multiprocessor, this lock would have to be
227  * a mutex. A single mutex is used throughout this file, though
228  * finer grain locking could be used if contention warranted it.
229  *
230  * For a multiprocessor, the sleep call would accept a lock and
231  * release it after the sleep processing was complete. In a uniprocessor
232  * implementation there is no such interlock, so we simple mark
233  * the places where it needs to be done with the `interlocked' form
234  * of the lock calls. Since the uniprocessor sleep already interlocks
235  * the spl, there is nothing that really needs to be done.
236  */
237 #ifndef /* NOT */ DEBUG
238 static struct lockit {
239 } lk = { 0 };
240 #define ACQUIRE_LOCK(lk)		crit_enter_id("softupdates");
241 #define FREE_LOCK(lk)			crit_exit_id("softupdates");
242 
243 #else /* DEBUG */
244 #define NOHOLDER	((struct thread *)-1)
245 #define SPECIAL_FLAG	((struct thread *)-2)
246 static struct lockit {
247 	int	lkt_spl;
248 	struct thread *lkt_held;
249 } lk = { 0, NOHOLDER };
250 static int lockcnt;
251 
252 static	void acquire_lock(struct lockit *);
253 static	void free_lock(struct lockit *);
254 void	softdep_panic(char *);
255 
256 #define ACQUIRE_LOCK(lk)		acquire_lock(lk)
257 #define FREE_LOCK(lk)			free_lock(lk)
258 
259 static void
260 acquire_lock(struct lockit *lk)
261 {
262 	thread_t holder;
263 
264 	if (lk->lkt_held != NOHOLDER) {
265 		holder = lk->lkt_held;
266 		FREE_LOCK(lk);
267 		if (holder == curthread)
268 			panic("softdep_lock: locking against myself");
269 		else
270 			panic("softdep_lock: lock held by %p", holder);
271 	}
272 	crit_enter_id("softupdates");
273 	lk->lkt_held = curthread;
274 	lockcnt++;
275 }
276 
277 static void
278 free_lock(struct lockit *lk)
279 {
280 
281 	if (lk->lkt_held == NOHOLDER)
282 		panic("softdep_unlock: lock not held");
283 	lk->lkt_held = NOHOLDER;
284 	crit_exit_id("softupdates");
285 }
286 
287 /*
288  * Function to release soft updates lock and panic.
289  */
290 void
291 softdep_panic(char *msg)
292 {
293 
294 	if (lk.lkt_held != NOHOLDER)
295 		FREE_LOCK(&lk);
296 	panic(msg);
297 }
298 #endif /* DEBUG */
299 
300 static	int interlocked_sleep(struct lockit *, int, void *, int,
301 	    const char *, int);
302 
303 /*
304  * When going to sleep, we must save our SPL so that it does
305  * not get lost if some other process uses the lock while we
306  * are sleeping. We restore it after we have slept. This routine
307  * wraps the interlocking with functions that sleep. The list
308  * below enumerates the available set of operations.
309  */
310 #define	UNKNOWN		0
311 #define	SLEEP		1
312 #define	LOCKBUF		2
313 
314 static int
315 interlocked_sleep(struct lockit *lk, int op, void *ident, int flags,
316 		  const char *wmesg, int timo)
317 {
318 	thread_t holder;
319 	int s, retval;
320 
321 	s = lk->lkt_spl;
322 #	ifdef DEBUG
323 	if (lk->lkt_held == NOHOLDER)
324 		panic("interlocked_sleep: lock not held");
325 	lk->lkt_held = NOHOLDER;
326 #	endif /* DEBUG */
327 	switch (op) {
328 	case SLEEP:
329 		retval = tsleep(ident, flags, wmesg, timo);
330 		break;
331 	case LOCKBUF:
332 		retval = BUF_LOCK((struct buf *)ident, flags);
333 		break;
334 	default:
335 		panic("interlocked_sleep: unknown operation");
336 	}
337 #	ifdef DEBUG
338 	if (lk->lkt_held != NOHOLDER) {
339 		holder = lk->lkt_held;
340 		FREE_LOCK(lk);
341 		if (holder == curthread)
342 			panic("interlocked_sleep: locking against self");
343 		else
344 			panic("interlocked_sleep: lock held by %p", holder);
345 	}
346 	lk->lkt_held = curthread;
347 	lockcnt++;
348 #	endif /* DEBUG */
349 	lk->lkt_spl = s;
350 	return (retval);
351 }
352 
353 /*
354  * Place holder for real semaphores.
355  */
356 struct sema {
357 	int	value;
358 	thread_t holder;
359 	char	*name;
360 	int	prio;
361 	int	timo;
362 };
363 static	void sema_init(struct sema *, char *, int, int);
364 static	int sema_get(struct sema *, struct lockit *);
365 static	void sema_release(struct sema *);
366 
367 static void
368 sema_init(struct sema *semap, char *name, int prio, int timo)
369 {
370 
371 	semap->holder = NOHOLDER;
372 	semap->value = 0;
373 	semap->name = name;
374 	semap->prio = prio;
375 	semap->timo = timo;
376 }
377 
378 static int
379 sema_get(struct sema *semap, struct lockit *interlock)
380 {
381 
382 	if (semap->value++ > 0) {
383 		if (interlock != NULL) {
384 			interlocked_sleep(interlock, SLEEP, (caddr_t)semap,
385 			    semap->prio, semap->name, semap->timo);
386 			FREE_LOCK(interlock);
387 		} else {
388 			tsleep((caddr_t)semap, semap->prio, semap->name,
389 			    semap->timo);
390 		}
391 		return (0);
392 	}
393 	semap->holder = curthread;
394 	if (interlock != NULL)
395 		FREE_LOCK(interlock);
396 	return (1);
397 }
398 
399 static void
400 sema_release(struct sema *semap)
401 {
402 
403 	if (semap->value <= 0 || semap->holder != curthread) {
404 		if (lk.lkt_held != NOHOLDER)
405 			FREE_LOCK(&lk);
406 		panic("sema_release: not held");
407 	}
408 	if (--semap->value > 0) {
409 		semap->value = 0;
410 		wakeup(semap);
411 	}
412 	semap->holder = NOHOLDER;
413 }
414 
415 /*
416  * Worklist queue management.
417  * These routines require that the lock be held.
418  */
419 #ifndef /* NOT */ DEBUG
420 #define WORKLIST_INSERT(head, item) do {	\
421 	(item)->wk_state |= ONWORKLIST;		\
422 	LIST_INSERT_HEAD(head, item, wk_list);	\
423 } while (0)
424 
425 #define WORKLIST_INSERT_BP(bp, item) do {	\
426 	(item)->wk_state |= ONWORKLIST;		\
427 	(bp)->b_ops = &softdep_bioops;		\
428 	LIST_INSERT_HEAD(&(bp)->b_dep, item, wk_list);	\
429 } while (0)
430 
431 #define WORKLIST_REMOVE(item) do {		\
432 	(item)->wk_state &= ~ONWORKLIST;	\
433 	LIST_REMOVE(item, wk_list);		\
434 } while (0)
435 
436 #define WORKITEM_FREE(item, type) FREE(item, DtoM(type))
437 
438 #else /* DEBUG */
439 static	void worklist_insert(struct workhead *, struct worklist *);
440 static	void worklist_remove(struct worklist *);
441 static	void workitem_free(struct worklist *, int);
442 
443 #define WORKLIST_INSERT_BP(bp, item) do {	\
444 	(bp)->b_ops = &softdep_bioops;		\
445 	worklist_insert(&(bp)->b_dep, item);	\
446 } while (0)
447 
448 #define WORKLIST_INSERT(head, item) worklist_insert(head, item)
449 #define WORKLIST_REMOVE(item) worklist_remove(item)
450 #define WORKITEM_FREE(item, type) workitem_free((struct worklist *)item, type)
451 
452 static void
453 worklist_insert(struct workhead *head, struct worklist *item)
454 {
455 
456 	if (lk.lkt_held == NOHOLDER)
457 		panic("worklist_insert: lock not held");
458 	if (item->wk_state & ONWORKLIST) {
459 		FREE_LOCK(&lk);
460 		panic("worklist_insert: already on list");
461 	}
462 	item->wk_state |= ONWORKLIST;
463 	LIST_INSERT_HEAD(head, item, wk_list);
464 }
465 
466 static void
467 worklist_remove(struct worklist *item)
468 {
469 
470 	if (lk.lkt_held == NOHOLDER)
471 		panic("worklist_remove: lock not held");
472 	if ((item->wk_state & ONWORKLIST) == 0) {
473 		FREE_LOCK(&lk);
474 		panic("worklist_remove: not on list");
475 	}
476 	item->wk_state &= ~ONWORKLIST;
477 	LIST_REMOVE(item, wk_list);
478 }
479 
480 static void
481 workitem_free(struct worklist *item, int type)
482 {
483 
484 	if (item->wk_state & ONWORKLIST) {
485 		if (lk.lkt_held != NOHOLDER)
486 			FREE_LOCK(&lk);
487 		panic("workitem_free: still on list");
488 	}
489 	if (item->wk_type != type) {
490 		if (lk.lkt_held != NOHOLDER)
491 			FREE_LOCK(&lk);
492 		panic("workitem_free: type mismatch");
493 	}
494 	FREE(item, DtoM(type));
495 }
496 #endif /* DEBUG */
497 
498 /*
499  * Workitem queue management
500  */
501 static struct workhead softdep_workitem_pending;
502 static int num_on_worklist;	/* number of worklist items to be processed */
503 static int softdep_worklist_busy; /* 1 => trying to do unmount */
504 static int softdep_worklist_req; /* serialized waiters */
505 static int max_softdeps;	/* maximum number of structs before slowdown */
506 static int tickdelay = 2;	/* number of ticks to pause during slowdown */
507 static int *stat_countp;	/* statistic to count in proc_waiting timeout */
508 static int proc_waiting;	/* tracks whether we have a timeout posted */
509 static struct callout handle; /* handle on posted proc_waiting timeout */
510 static struct thread *filesys_syncer; /* proc of filesystem syncer process */
511 static int req_clear_inodedeps;	/* syncer process flush some inodedeps */
512 #define FLUSH_INODES	1
513 static int req_clear_remove;	/* syncer process flush some freeblks */
514 #define FLUSH_REMOVE	2
515 /*
516  * runtime statistics
517  */
518 static int stat_worklist_push;	/* number of worklist cleanups */
519 static int stat_blk_limit_push;	/* number of times block limit neared */
520 static int stat_ino_limit_push;	/* number of times inode limit neared */
521 static int stat_blk_limit_hit;	/* number of times block slowdown imposed */
522 static int stat_ino_limit_hit;	/* number of times inode slowdown imposed */
523 static int stat_sync_limit_hit;	/* number of synchronous slowdowns imposed */
524 static int stat_indir_blk_ptrs;	/* bufs redirtied as indir ptrs not written */
525 static int stat_inode_bitmap;	/* bufs redirtied as inode bitmap not written */
526 static int stat_direct_blk_ptrs;/* bufs redirtied as direct ptrs not written */
527 static int stat_dir_entry;	/* bufs redirtied as dir entry cannot write */
528 #ifdef DEBUG
529 #include <vm/vm.h>
530 #include <sys/sysctl.h>
531 SYSCTL_INT(_debug, OID_AUTO, max_softdeps, CTLFLAG_RW, &max_softdeps, 0, "");
532 SYSCTL_INT(_debug, OID_AUTO, tickdelay, CTLFLAG_RW, &tickdelay, 0, "");
533 SYSCTL_INT(_debug, OID_AUTO, worklist_push, CTLFLAG_RW, &stat_worklist_push, 0,"");
534 SYSCTL_INT(_debug, OID_AUTO, blk_limit_push, CTLFLAG_RW, &stat_blk_limit_push, 0,"");
535 SYSCTL_INT(_debug, OID_AUTO, ino_limit_push, CTLFLAG_RW, &stat_ino_limit_push, 0,"");
536 SYSCTL_INT(_debug, OID_AUTO, blk_limit_hit, CTLFLAG_RW, &stat_blk_limit_hit, 0, "");
537 SYSCTL_INT(_debug, OID_AUTO, ino_limit_hit, CTLFLAG_RW, &stat_ino_limit_hit, 0, "");
538 SYSCTL_INT(_debug, OID_AUTO, sync_limit_hit, CTLFLAG_RW, &stat_sync_limit_hit, 0, "");
539 SYSCTL_INT(_debug, OID_AUTO, indir_blk_ptrs, CTLFLAG_RW, &stat_indir_blk_ptrs, 0, "");
540 SYSCTL_INT(_debug, OID_AUTO, inode_bitmap, CTLFLAG_RW, &stat_inode_bitmap, 0, "");
541 SYSCTL_INT(_debug, OID_AUTO, direct_blk_ptrs, CTLFLAG_RW, &stat_direct_blk_ptrs, 0, "");
542 SYSCTL_INT(_debug, OID_AUTO, dir_entry, CTLFLAG_RW, &stat_dir_entry, 0, "");
543 #endif /* DEBUG */
544 
545 /*
546  * Add an item to the end of the work queue.
547  * This routine requires that the lock be held.
548  * This is the only routine that adds items to the list.
549  * The following routine is the only one that removes items
550  * and does so in order from first to last.
551  */
552 static void
553 add_to_worklist(struct worklist *wk)
554 {
555 	static struct worklist *worklist_tail;
556 
557 	if (wk->wk_state & ONWORKLIST) {
558 		if (lk.lkt_held != NOHOLDER)
559 			FREE_LOCK(&lk);
560 		panic("add_to_worklist: already on list");
561 	}
562 	wk->wk_state |= ONWORKLIST;
563 	if (LIST_FIRST(&softdep_workitem_pending) == NULL)
564 		LIST_INSERT_HEAD(&softdep_workitem_pending, wk, wk_list);
565 	else
566 		LIST_INSERT_AFTER(worklist_tail, wk, wk_list);
567 	worklist_tail = wk;
568 	num_on_worklist += 1;
569 }
570 
571 /*
572  * Process that runs once per second to handle items in the background queue.
573  *
574  * Note that we ensure that everything is done in the order in which they
575  * appear in the queue. The code below depends on this property to ensure
576  * that blocks of a file are freed before the inode itself is freed. This
577  * ordering ensures that no new <vfsid, inum, lbn> triples will be generated
578  * until all the old ones have been purged from the dependency lists.
579  */
580 static int
581 softdep_process_worklist(struct mount *matchmnt)
582 {
583 	thread_t td = curthread;
584 	int matchcnt, loopcount;
585 	long starttime;
586 
587 	/*
588 	 * Record the process identifier of our caller so that we can give
589 	 * this process preferential treatment in request_cleanup below.
590 	 */
591 	filesys_syncer = td;
592 	matchcnt = 0;
593 
594 	/*
595 	 * There is no danger of having multiple processes run this
596 	 * code, but we have to single-thread it when softdep_flushfiles()
597 	 * is in operation to get an accurate count of the number of items
598 	 * related to its mount point that are in the list.
599 	 */
600 	if (matchmnt == NULL) {
601 		if (softdep_worklist_busy < 0)
602 			return(-1);
603 		softdep_worklist_busy += 1;
604 	}
605 
606 	/*
607 	 * If requested, try removing inode or removal dependencies.
608 	 */
609 	if (req_clear_inodedeps) {
610 		clear_inodedeps(td);
611 		req_clear_inodedeps -= 1;
612 		wakeup_one(&proc_waiting);
613 	}
614 	if (req_clear_remove) {
615 		clear_remove(td);
616 		req_clear_remove -= 1;
617 		wakeup_one(&proc_waiting);
618 	}
619 	loopcount = 1;
620 	starttime = time_second;
621 	while (num_on_worklist > 0) {
622 		matchcnt += process_worklist_item(matchmnt, 0);
623 
624 		/*
625 		 * If a umount operation wants to run the worklist
626 		 * accurately, abort.
627 		 */
628 		if (softdep_worklist_req && matchmnt == NULL) {
629 			matchcnt = -1;
630 			break;
631 		}
632 
633 		/*
634 		 * If requested, try removing inode or removal dependencies.
635 		 */
636 		if (req_clear_inodedeps) {
637 			clear_inodedeps(td);
638 			req_clear_inodedeps -= 1;
639 			wakeup_one(&proc_waiting);
640 		}
641 		if (req_clear_remove) {
642 			clear_remove(td);
643 			req_clear_remove -= 1;
644 			wakeup_one(&proc_waiting);
645 		}
646 		/*
647 		 * We do not generally want to stop for buffer space, but if
648 		 * we are really being a buffer hog, we will stop and wait.
649 		 */
650 		if (loopcount++ % 128 == 0)
651 			bwillinode(1);
652 		/*
653 		 * Never allow processing to run for more than one
654 		 * second. Otherwise the other syncer tasks may get
655 		 * excessively backlogged.
656 		 */
657 		if (starttime != time_second && matchmnt == NULL) {
658 			matchcnt = -1;
659 			break;
660 		}
661 	}
662 	if (matchmnt == NULL) {
663 		--softdep_worklist_busy;
664 		if (softdep_worklist_req && softdep_worklist_busy == 0)
665 			wakeup(&softdep_worklist_req);
666 	}
667 	return (matchcnt);
668 }
669 
670 /*
671  * Process one item on the worklist.
672  */
673 static int
674 process_worklist_item(struct mount *matchmnt, int flags)
675 {
676 	struct worklist *wk;
677 	struct dirrem *dirrem;
678 	struct fs *matchfs;
679 	struct vnode *vp;
680 	int matchcnt = 0;
681 
682 	matchfs = NULL;
683 	if (matchmnt != NULL)
684 		matchfs = VFSTOUFS(matchmnt)->um_fs;
685 	ACQUIRE_LOCK(&lk);
686 	/*
687 	 * Normally we just process each item on the worklist in order.
688 	 * However, if we are in a situation where we cannot lock any
689 	 * inodes, we have to skip over any dirrem requests whose
690 	 * vnodes are resident and locked.
691 	 */
692 	LIST_FOREACH(wk, &softdep_workitem_pending, wk_list) {
693 		if ((flags & LK_NOWAIT) == 0 || wk->wk_type != D_DIRREM)
694 			break;
695 		dirrem = WK_DIRREM(wk);
696 		vp = ufs_ihashlookup(VFSTOUFS(dirrem->dm_mnt)->um_dev,
697 		    dirrem->dm_oldinum);
698 		if (vp == NULL || !vn_islocked(vp))
699 			break;
700 	}
701 	if (wk == 0) {
702 		FREE_LOCK(&lk);
703 		return (0);
704 	}
705 	WORKLIST_REMOVE(wk);
706 	num_on_worklist -= 1;
707 	FREE_LOCK(&lk);
708 	switch (wk->wk_type) {
709 
710 	case D_DIRREM:
711 		/* removal of a directory entry */
712 		if (WK_DIRREM(wk)->dm_mnt == matchmnt)
713 			matchcnt += 1;
714 		handle_workitem_remove(WK_DIRREM(wk));
715 		break;
716 
717 	case D_FREEBLKS:
718 		/* releasing blocks and/or fragments from a file */
719 		if (WK_FREEBLKS(wk)->fb_fs == matchfs)
720 			matchcnt += 1;
721 		handle_workitem_freeblocks(WK_FREEBLKS(wk));
722 		break;
723 
724 	case D_FREEFRAG:
725 		/* releasing a fragment when replaced as a file grows */
726 		if (WK_FREEFRAG(wk)->ff_fs == matchfs)
727 			matchcnt += 1;
728 		handle_workitem_freefrag(WK_FREEFRAG(wk));
729 		break;
730 
731 	case D_FREEFILE:
732 		/* releasing an inode when its link count drops to 0 */
733 		if (WK_FREEFILE(wk)->fx_fs == matchfs)
734 			matchcnt += 1;
735 		handle_workitem_freefile(WK_FREEFILE(wk));
736 		break;
737 
738 	default:
739 		panic("%s_process_worklist: Unknown type %s",
740 		    "softdep", TYPENAME(wk->wk_type));
741 		/* NOTREACHED */
742 	}
743 	return (matchcnt);
744 }
745 
746 /*
747  * Move dependencies from one buffer to another.
748  */
749 static void
750 softdep_move_dependencies(struct buf *oldbp, struct buf *newbp)
751 {
752 	struct worklist *wk, *wktail;
753 
754 	if (LIST_FIRST(&newbp->b_dep) != NULL)
755 		panic("softdep_move_dependencies: need merge code");
756 	wktail = NULL;
757 	ACQUIRE_LOCK(&lk);
758 	while ((wk = LIST_FIRST(&oldbp->b_dep)) != NULL) {
759 		LIST_REMOVE(wk, wk_list);
760 		if (wktail == NULL)
761 			LIST_INSERT_HEAD(&newbp->b_dep, wk, wk_list);
762 		else
763 			LIST_INSERT_AFTER(wktail, wk, wk_list);
764 		wktail = wk;
765 		newbp->b_ops = &softdep_bioops;
766 	}
767 	FREE_LOCK(&lk);
768 }
769 
770 /*
771  * Purge the work list of all items associated with a particular mount point.
772  */
773 int
774 softdep_flushfiles(struct mount *oldmnt, int flags)
775 {
776 	struct vnode *devvp;
777 	int error, loopcnt;
778 
779 	/*
780 	 * Await our turn to clear out the queue, then serialize access.
781 	 */
782 	while (softdep_worklist_busy != 0) {
783 		softdep_worklist_req += 1;
784 		tsleep(&softdep_worklist_req, 0, "softflush", 0);
785 		softdep_worklist_req -= 1;
786 	}
787 	softdep_worklist_busy = -1;
788 
789 	if ((error = ffs_flushfiles(oldmnt, flags)) != 0) {
790 		softdep_worklist_busy = 0;
791 		if (softdep_worklist_req)
792 			wakeup(&softdep_worklist_req);
793 		return (error);
794 	}
795 	/*
796 	 * Alternately flush the block device associated with the mount
797 	 * point and process any dependencies that the flushing
798 	 * creates. In theory, this loop can happen at most twice,
799 	 * but we give it a few extra just to be sure.
800 	 */
801 	devvp = VFSTOUFS(oldmnt)->um_devvp;
802 	for (loopcnt = 10; loopcnt > 0; ) {
803 		if (softdep_process_worklist(oldmnt) == 0) {
804 			loopcnt--;
805 			/*
806 			 * Do another flush in case any vnodes were brought in
807 			 * as part of the cleanup operations.
808 			 */
809 			if ((error = ffs_flushfiles(oldmnt, flags)) != 0)
810 				break;
811 			/*
812 			 * If we still found nothing to do, we are really done.
813 			 */
814 			if (softdep_process_worklist(oldmnt) == 0)
815 				break;
816 		}
817 		vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
818 		error = VOP_FSYNC(devvp, MNT_WAIT);
819 		vn_unlock(devvp);
820 		if (error)
821 			break;
822 	}
823 	softdep_worklist_busy = 0;
824 	if (softdep_worklist_req)
825 		wakeup(&softdep_worklist_req);
826 
827 	/*
828 	 * If we are unmounting then it is an error to fail. If we
829 	 * are simply trying to downgrade to read-only, then filesystem
830 	 * activity can keep us busy forever, so we just fail with EBUSY.
831 	 */
832 	if (loopcnt == 0) {
833 		if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT)
834 			panic("softdep_flushfiles: looping");
835 		error = EBUSY;
836 	}
837 	return (error);
838 }
839 
840 /*
841  * Structure hashing.
842  *
843  * There are three types of structures that can be looked up:
844  *	1) pagedep structures identified by mount point, inode number,
845  *	   and logical block.
846  *	2) inodedep structures identified by mount point and inode number.
847  *	3) newblk structures identified by mount point and
848  *	   physical block number.
849  *
850  * The "pagedep" and "inodedep" dependency structures are hashed
851  * separately from the file blocks and inodes to which they correspond.
852  * This separation helps when the in-memory copy of an inode or
853  * file block must be replaced. It also obviates the need to access
854  * an inode or file page when simply updating (or de-allocating)
855  * dependency structures. Lookup of newblk structures is needed to
856  * find newly allocated blocks when trying to associate them with
857  * their allocdirect or allocindir structure.
858  *
859  * The lookup routines optionally create and hash a new instance when
860  * an existing entry is not found.
861  */
862 #define DEPALLOC	0x0001	/* allocate structure if lookup fails */
863 #define NODELAY		0x0002	/* cannot do background work */
864 
865 /*
866  * Structures and routines associated with pagedep caching.
867  */
868 LIST_HEAD(pagedep_hashhead, pagedep) *pagedep_hashtbl;
869 u_long	pagedep_hash;		/* size of hash table - 1 */
870 #define	PAGEDEP_HASH(mp, inum, lbn) \
871 	(&pagedep_hashtbl[((((register_t)(mp)) >> 13) + (inum) + (lbn)) & \
872 	    pagedep_hash])
873 static struct sema pagedep_in_progress;
874 
875 /*
876  * Helper routine for pagedep_lookup()
877  */
878 static __inline
879 struct pagedep *
880 pagedep_find(struct pagedep_hashhead *pagedephd, ino_t ino, ufs_lbn_t lbn,
881 	     struct mount *mp)
882 {
883 	struct pagedep *pagedep;
884 
885 	LIST_FOREACH(pagedep, pagedephd, pd_hash) {
886 		if (ino == pagedep->pd_ino &&
887 		    lbn == pagedep->pd_lbn &&
888 		    mp == pagedep->pd_mnt) {
889 			return (pagedep);
890 		}
891 	}
892 	return(NULL);
893 }
894 
895 /*
896  * Look up a pagedep. Return 1 if found, 0 if not found.
897  * If not found, allocate if DEPALLOC flag is passed.
898  * Found or allocated entry is returned in pagedeppp.
899  * This routine must be called with splbio interrupts blocked.
900  */
901 static int
902 pagedep_lookup(struct inode *ip, ufs_lbn_t lbn, int flags,
903 	       struct pagedep **pagedeppp)
904 {
905 	struct pagedep *pagedep;
906 	struct pagedep_hashhead *pagedephd;
907 	struct mount *mp;
908 	int i;
909 
910 #ifdef DEBUG
911 	if (lk.lkt_held == NOHOLDER)
912 		panic("pagedep_lookup: lock not held");
913 #endif
914 	mp = ITOV(ip)->v_mount;
915 	pagedephd = PAGEDEP_HASH(mp, ip->i_number, lbn);
916 top:
917 	*pagedeppp = pagedep_find(pagedephd, ip->i_number, lbn, mp);
918 	if (*pagedeppp)
919 		return(1);
920 	if ((flags & DEPALLOC) == 0)
921 		return (0);
922 	if (sema_get(&pagedep_in_progress, &lk) == 0) {
923 		ACQUIRE_LOCK(&lk);
924 		goto top;
925 	}
926 	MALLOC(pagedep, struct pagedep *, sizeof(struct pagedep), M_PAGEDEP,
927 		M_SOFTDEP_FLAGS | M_ZERO);
928 
929 	if (pagedep_find(pagedephd, ip->i_number, lbn, mp)) {
930 		kprintf("pagedep_lookup: blocking race avoided\n");
931 		ACQUIRE_LOCK(&lk);
932 		sema_release(&pagedep_in_progress);
933 		kfree(pagedep, M_PAGEDEP);
934 		goto top;
935 	}
936 
937 	pagedep->pd_list.wk_type = D_PAGEDEP;
938 	pagedep->pd_mnt = mp;
939 	pagedep->pd_ino = ip->i_number;
940 	pagedep->pd_lbn = lbn;
941 	LIST_INIT(&pagedep->pd_dirremhd);
942 	LIST_INIT(&pagedep->pd_pendinghd);
943 	for (i = 0; i < DAHASHSZ; i++)
944 		LIST_INIT(&pagedep->pd_diraddhd[i]);
945 	ACQUIRE_LOCK(&lk);
946 	LIST_INSERT_HEAD(pagedephd, pagedep, pd_hash);
947 	sema_release(&pagedep_in_progress);
948 	*pagedeppp = pagedep;
949 	return (0);
950 }
951 
952 /*
953  * Structures and routines associated with inodedep caching.
954  */
955 LIST_HEAD(inodedep_hashhead, inodedep) *inodedep_hashtbl;
956 static u_long	inodedep_hash;	/* size of hash table - 1 */
957 static long	num_inodedep;	/* number of inodedep allocated */
958 #define	INODEDEP_HASH(fs, inum) \
959       (&inodedep_hashtbl[((((register_t)(fs)) >> 13) + (inum)) & inodedep_hash])
960 static struct sema inodedep_in_progress;
961 
962 /*
963  * Helper routine for inodedep_lookup()
964  */
965 static __inline
966 struct inodedep *
967 inodedep_find(struct inodedep_hashhead *inodedephd, struct fs *fs, ino_t inum)
968 {
969 	struct inodedep *inodedep;
970 
971 	LIST_FOREACH(inodedep, inodedephd, id_hash) {
972 		if (inum == inodedep->id_ino && fs == inodedep->id_fs)
973 			return(inodedep);
974 	}
975 	return (NULL);
976 }
977 
978 /*
979  * Look up a inodedep. Return 1 if found, 0 if not found.
980  * If not found, allocate if DEPALLOC flag is passed.
981  * Found or allocated entry is returned in inodedeppp.
982  * This routine must be called with splbio interrupts blocked.
983  */
984 static int
985 inodedep_lookup(struct fs *fs, ino_t inum, int flags,
986 	        struct inodedep **inodedeppp)
987 {
988 	struct inodedep *inodedep;
989 	struct inodedep_hashhead *inodedephd;
990 	int firsttry;
991 
992 #ifdef DEBUG
993 	if (lk.lkt_held == NOHOLDER)
994 		panic("inodedep_lookup: lock not held");
995 #endif
996 	firsttry = 1;
997 	inodedephd = INODEDEP_HASH(fs, inum);
998 top:
999 	*inodedeppp = inodedep_find(inodedephd, fs, inum);
1000 	if (*inodedeppp)
1001 		return (1);
1002 	if ((flags & DEPALLOC) == 0)
1003 		return (0);
1004 	/*
1005 	 * If we are over our limit, try to improve the situation.
1006 	 */
1007 	if (num_inodedep > max_softdeps && firsttry &&
1008 	    speedup_syncer() == 0 && (flags & NODELAY) == 0 &&
1009 	    request_cleanup(FLUSH_INODES, 1)) {
1010 		firsttry = 0;
1011 		goto top;
1012 	}
1013 	if (sema_get(&inodedep_in_progress, &lk) == 0) {
1014 		ACQUIRE_LOCK(&lk);
1015 		goto top;
1016 	}
1017 	MALLOC(inodedep, struct inodedep *, sizeof(struct inodedep),
1018 		M_INODEDEP, M_SOFTDEP_FLAGS | M_ZERO);
1019 	if (inodedep_find(inodedephd, fs, inum)) {
1020 		kprintf("inodedep_lookup: blocking race avoided\n");
1021 		ACQUIRE_LOCK(&lk);
1022 		sema_release(&inodedep_in_progress);
1023 		kfree(inodedep, M_INODEDEP);
1024 		goto top;
1025 	}
1026 	inodedep->id_list.wk_type = D_INODEDEP;
1027 	inodedep->id_fs = fs;
1028 	inodedep->id_ino = inum;
1029 	inodedep->id_state = ALLCOMPLETE;
1030 	inodedep->id_nlinkdelta = 0;
1031 	inodedep->id_savedino = NULL;
1032 	inodedep->id_savedsize = -1;
1033 	inodedep->id_buf = NULL;
1034 	LIST_INIT(&inodedep->id_pendinghd);
1035 	LIST_INIT(&inodedep->id_inowait);
1036 	LIST_INIT(&inodedep->id_bufwait);
1037 	TAILQ_INIT(&inodedep->id_inoupdt);
1038 	TAILQ_INIT(&inodedep->id_newinoupdt);
1039 	ACQUIRE_LOCK(&lk);
1040 	num_inodedep += 1;
1041 	LIST_INSERT_HEAD(inodedephd, inodedep, id_hash);
1042 	sema_release(&inodedep_in_progress);
1043 	*inodedeppp = inodedep;
1044 	return (0);
1045 }
1046 
1047 /*
1048  * Structures and routines associated with newblk caching.
1049  */
1050 LIST_HEAD(newblk_hashhead, newblk) *newblk_hashtbl;
1051 u_long	newblk_hash;		/* size of hash table - 1 */
1052 #define	NEWBLK_HASH(fs, inum) \
1053 	(&newblk_hashtbl[((((register_t)(fs)) >> 13) + (inum)) & newblk_hash])
1054 static struct sema newblk_in_progress;
1055 
1056 /*
1057  * Helper routine for newblk_lookup()
1058  */
1059 static __inline
1060 struct newblk *
1061 newblk_find(struct newblk_hashhead *newblkhd, struct fs *fs,
1062 	    ufs_daddr_t newblkno)
1063 {
1064 	struct newblk *newblk;
1065 
1066 	LIST_FOREACH(newblk, newblkhd, nb_hash) {
1067 		if (newblkno == newblk->nb_newblkno && fs == newblk->nb_fs)
1068 			return (newblk);
1069 	}
1070 	return(NULL);
1071 }
1072 
1073 /*
1074  * Look up a newblk. Return 1 if found, 0 if not found.
1075  * If not found, allocate if DEPALLOC flag is passed.
1076  * Found or allocated entry is returned in newblkpp.
1077  */
1078 static int
1079 newblk_lookup(struct fs *fs, ufs_daddr_t newblkno, int flags,
1080 	      struct newblk **newblkpp)
1081 {
1082 	struct newblk *newblk;
1083 	struct newblk_hashhead *newblkhd;
1084 
1085 	newblkhd = NEWBLK_HASH(fs, newblkno);
1086 top:
1087 	*newblkpp = newblk_find(newblkhd, fs, newblkno);
1088 	if (*newblkpp)
1089 		return(1);
1090 	if ((flags & DEPALLOC) == 0)
1091 		return (0);
1092 	if (sema_get(&newblk_in_progress, 0) == 0)
1093 		goto top;
1094 	MALLOC(newblk, struct newblk *, sizeof(struct newblk),
1095 		M_NEWBLK, M_SOFTDEP_FLAGS | M_ZERO);
1096 
1097 	if (newblk_find(newblkhd, fs, newblkno)) {
1098 		kprintf("newblk_lookup: blocking race avoided\n");
1099 		sema_release(&pagedep_in_progress);
1100 		kfree(newblk, M_NEWBLK);
1101 		goto top;
1102 	}
1103 	newblk->nb_state = 0;
1104 	newblk->nb_fs = fs;
1105 	newblk->nb_newblkno = newblkno;
1106 	LIST_INSERT_HEAD(newblkhd, newblk, nb_hash);
1107 	sema_release(&newblk_in_progress);
1108 	*newblkpp = newblk;
1109 	return (0);
1110 }
1111 
1112 /*
1113  * Executed during filesystem system initialization before
1114  * mounting any filesystems.
1115  */
1116 void
1117 softdep_initialize(void)
1118 {
1119 	callout_init(&handle);
1120 
1121 	LIST_INIT(&mkdirlisthd);
1122 	LIST_INIT(&softdep_workitem_pending);
1123 	max_softdeps = min(desiredvnodes * 8,
1124 		M_INODEDEP->ks_limit / (2 * sizeof(struct inodedep)));
1125 	pagedep_hashtbl = hashinit(desiredvnodes / 5, M_PAGEDEP,
1126 	    &pagedep_hash);
1127 	sema_init(&pagedep_in_progress, "pagedep", 0, 0);
1128 	inodedep_hashtbl = hashinit(desiredvnodes, M_INODEDEP, &inodedep_hash);
1129 	sema_init(&inodedep_in_progress, "inodedep", 0, 0);
1130 	newblk_hashtbl = hashinit(64, M_NEWBLK, &newblk_hash);
1131 	sema_init(&newblk_in_progress, "newblk", 0, 0);
1132 	add_bio_ops(&softdep_bioops);
1133 }
1134 
1135 /*
1136  * Called at mount time to notify the dependency code that a
1137  * filesystem wishes to use it.
1138  */
1139 int
1140 softdep_mount(struct vnode *devvp, struct mount *mp, struct fs *fs)
1141 {
1142 	struct csum cstotal;
1143 	struct cg *cgp;
1144 	struct buf *bp;
1145 	int error, cyl;
1146 
1147 	mp->mnt_flag &= ~MNT_ASYNC;
1148 	mp->mnt_flag |= MNT_SOFTDEP;
1149 	mp->mnt_bioops = &softdep_bioops;
1150 	/*
1151 	 * When doing soft updates, the counters in the
1152 	 * superblock may have gotten out of sync, so we have
1153 	 * to scan the cylinder groups and recalculate them.
1154 	 */
1155 	if (fs->fs_clean != 0)
1156 		return (0);
1157 	bzero(&cstotal, sizeof cstotal);
1158 	for (cyl = 0; cyl < fs->fs_ncg; cyl++) {
1159 		if ((error = bread(devvp, fsbtodoff(fs, cgtod(fs, cyl)),
1160 				   fs->fs_cgsize, &bp)) != 0) {
1161 			brelse(bp);
1162 			return (error);
1163 		}
1164 		cgp = (struct cg *)bp->b_data;
1165 		cstotal.cs_nffree += cgp->cg_cs.cs_nffree;
1166 		cstotal.cs_nbfree += cgp->cg_cs.cs_nbfree;
1167 		cstotal.cs_nifree += cgp->cg_cs.cs_nifree;
1168 		cstotal.cs_ndir += cgp->cg_cs.cs_ndir;
1169 		fs->fs_cs(fs, cyl) = cgp->cg_cs;
1170 		brelse(bp);
1171 	}
1172 #ifdef DEBUG
1173 	if (bcmp(&cstotal, &fs->fs_cstotal, sizeof cstotal))
1174 		kprintf("ffs_mountfs: superblock updated for soft updates\n");
1175 #endif
1176 	bcopy(&cstotal, &fs->fs_cstotal, sizeof cstotal);
1177 	return (0);
1178 }
1179 
1180 /*
1181  * Protecting the freemaps (or bitmaps).
1182  *
1183  * To eliminate the need to execute fsck before mounting a filesystem
1184  * after a power failure, one must (conservatively) guarantee that the
1185  * on-disk copy of the bitmaps never indicate that a live inode or block is
1186  * free.  So, when a block or inode is allocated, the bitmap should be
1187  * updated (on disk) before any new pointers.  When a block or inode is
1188  * freed, the bitmap should not be updated until all pointers have been
1189  * reset.  The latter dependency is handled by the delayed de-allocation
1190  * approach described below for block and inode de-allocation.  The former
1191  * dependency is handled by calling the following procedure when a block or
1192  * inode is allocated. When an inode is allocated an "inodedep" is created
1193  * with its DEPCOMPLETE flag cleared until its bitmap is written to disk.
1194  * Each "inodedep" is also inserted into the hash indexing structure so
1195  * that any additional link additions can be made dependent on the inode
1196  * allocation.
1197  *
1198  * The ufs filesystem maintains a number of free block counts (e.g., per
1199  * cylinder group, per cylinder and per <cylinder, rotational position> pair)
1200  * in addition to the bitmaps.  These counts are used to improve efficiency
1201  * during allocation and therefore must be consistent with the bitmaps.
1202  * There is no convenient way to guarantee post-crash consistency of these
1203  * counts with simple update ordering, for two main reasons: (1) The counts
1204  * and bitmaps for a single cylinder group block are not in the same disk
1205  * sector.  If a disk write is interrupted (e.g., by power failure), one may
1206  * be written and the other not.  (2) Some of the counts are located in the
1207  * superblock rather than the cylinder group block. So, we focus our soft
1208  * updates implementation on protecting the bitmaps. When mounting a
1209  * filesystem, we recompute the auxiliary counts from the bitmaps.
1210  */
1211 
1212 /*
1213  * Called just after updating the cylinder group block to allocate an inode.
1214  *
1215  * Parameters:
1216  *	bp:		buffer for cylgroup block with inode map
1217  *	ip:		inode related to allocation
1218  *	newinum:	new inode number being allocated
1219  */
1220 void
1221 softdep_setup_inomapdep(struct buf *bp, struct inode *ip, ino_t newinum)
1222 {
1223 	struct inodedep *inodedep;
1224 	struct bmsafemap *bmsafemap;
1225 
1226 	/*
1227 	 * Create a dependency for the newly allocated inode.
1228 	 * Panic if it already exists as something is seriously wrong.
1229 	 * Otherwise add it to the dependency list for the buffer holding
1230 	 * the cylinder group map from which it was allocated.
1231 	 */
1232 	ACQUIRE_LOCK(&lk);
1233 	if ((inodedep_lookup(ip->i_fs, newinum, DEPALLOC|NODELAY, &inodedep))) {
1234 		FREE_LOCK(&lk);
1235 		panic("softdep_setup_inomapdep: found inode");
1236 	}
1237 	inodedep->id_buf = bp;
1238 	inodedep->id_state &= ~DEPCOMPLETE;
1239 	bmsafemap = bmsafemap_lookup(bp);
1240 	LIST_INSERT_HEAD(&bmsafemap->sm_inodedephd, inodedep, id_deps);
1241 	FREE_LOCK(&lk);
1242 }
1243 
1244 /*
1245  * Called just after updating the cylinder group block to
1246  * allocate block or fragment.
1247  *
1248  * Parameters:
1249  *	bp:		buffer for cylgroup block with block map
1250  *	fs:		filesystem doing allocation
1251  *	newblkno:	number of newly allocated block
1252  */
1253 void
1254 softdep_setup_blkmapdep(struct buf *bp, struct fs *fs,
1255 			ufs_daddr_t newblkno)
1256 {
1257 	struct newblk *newblk;
1258 	struct bmsafemap *bmsafemap;
1259 
1260 	/*
1261 	 * Create a dependency for the newly allocated block.
1262 	 * Add it to the dependency list for the buffer holding
1263 	 * the cylinder group map from which it was allocated.
1264 	 */
1265 	if (newblk_lookup(fs, newblkno, DEPALLOC, &newblk) != 0)
1266 		panic("softdep_setup_blkmapdep: found block");
1267 	ACQUIRE_LOCK(&lk);
1268 	newblk->nb_bmsafemap = bmsafemap = bmsafemap_lookup(bp);
1269 	LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, nb_deps);
1270 	FREE_LOCK(&lk);
1271 }
1272 
1273 /*
1274  * Find the bmsafemap associated with a cylinder group buffer.
1275  * If none exists, create one. The buffer must be locked when
1276  * this routine is called and this routine must be called with
1277  * splbio interrupts blocked.
1278  */
1279 static struct bmsafemap *
1280 bmsafemap_lookup(struct buf *bp)
1281 {
1282 	struct bmsafemap *bmsafemap;
1283 	struct worklist *wk;
1284 
1285 #ifdef DEBUG
1286 	if (lk.lkt_held == NOHOLDER)
1287 		panic("bmsafemap_lookup: lock not held");
1288 #endif
1289 	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
1290 		if (wk->wk_type == D_BMSAFEMAP)
1291 			return (WK_BMSAFEMAP(wk));
1292 	}
1293 	FREE_LOCK(&lk);
1294 	MALLOC(bmsafemap, struct bmsafemap *, sizeof(struct bmsafemap),
1295 		M_BMSAFEMAP, M_SOFTDEP_FLAGS);
1296 	bmsafemap->sm_list.wk_type = D_BMSAFEMAP;
1297 	bmsafemap->sm_list.wk_state = 0;
1298 	bmsafemap->sm_buf = bp;
1299 	LIST_INIT(&bmsafemap->sm_allocdirecthd);
1300 	LIST_INIT(&bmsafemap->sm_allocindirhd);
1301 	LIST_INIT(&bmsafemap->sm_inodedephd);
1302 	LIST_INIT(&bmsafemap->sm_newblkhd);
1303 	ACQUIRE_LOCK(&lk);
1304 	WORKLIST_INSERT_BP(bp, &bmsafemap->sm_list);
1305 	return (bmsafemap);
1306 }
1307 
1308 /*
1309  * Direct block allocation dependencies.
1310  *
1311  * When a new block is allocated, the corresponding disk locations must be
1312  * initialized (with zeros or new data) before the on-disk inode points to
1313  * them.  Also, the freemap from which the block was allocated must be
1314  * updated (on disk) before the inode's pointer. These two dependencies are
1315  * independent of each other and are needed for all file blocks and indirect
1316  * blocks that are pointed to directly by the inode.  Just before the
1317  * "in-core" version of the inode is updated with a newly allocated block
1318  * number, a procedure (below) is called to setup allocation dependency
1319  * structures.  These structures are removed when the corresponding
1320  * dependencies are satisfied or when the block allocation becomes obsolete
1321  * (i.e., the file is deleted, the block is de-allocated, or the block is a
1322  * fragment that gets upgraded).  All of these cases are handled in
1323  * procedures described later.
1324  *
1325  * When a file extension causes a fragment to be upgraded, either to a larger
1326  * fragment or to a full block, the on-disk location may change (if the
1327  * previous fragment could not simply be extended). In this case, the old
1328  * fragment must be de-allocated, but not until after the inode's pointer has
1329  * been updated. In most cases, this is handled by later procedures, which
1330  * will construct a "freefrag" structure to be added to the workitem queue
1331  * when the inode update is complete (or obsolete).  The main exception to
1332  * this is when an allocation occurs while a pending allocation dependency
1333  * (for the same block pointer) remains.  This case is handled in the main
1334  * allocation dependency setup procedure by immediately freeing the
1335  * unreferenced fragments.
1336  *
1337  * Parameters:
1338  *	ip:		inode to which block is being added
1339  *	lbn:		block pointer within inode
1340  *	newblkno:	disk block number being added
1341  *	oldblkno:	previous block number, 0 unless frag
1342  *	newsize:	size of new block
1343  *	oldsize:	size of new block
1344  *	bp:		bp for allocated block
1345  */
1346 void
1347 softdep_setup_allocdirect(struct inode *ip, ufs_lbn_t lbn, ufs_daddr_t newblkno,
1348 			  ufs_daddr_t oldblkno, long newsize, long oldsize,
1349 			  struct buf *bp)
1350 {
1351 	struct allocdirect *adp, *oldadp;
1352 	struct allocdirectlst *adphead;
1353 	struct bmsafemap *bmsafemap;
1354 	struct inodedep *inodedep;
1355 	struct pagedep *pagedep;
1356 	struct newblk *newblk;
1357 
1358 	MALLOC(adp, struct allocdirect *, sizeof(struct allocdirect),
1359 		M_ALLOCDIRECT, M_SOFTDEP_FLAGS | M_ZERO);
1360 	adp->ad_list.wk_type = D_ALLOCDIRECT;
1361 	adp->ad_lbn = lbn;
1362 	adp->ad_newblkno = newblkno;
1363 	adp->ad_oldblkno = oldblkno;
1364 	adp->ad_newsize = newsize;
1365 	adp->ad_oldsize = oldsize;
1366 	adp->ad_state = ATTACHED;
1367 	if (newblkno == oldblkno)
1368 		adp->ad_freefrag = NULL;
1369 	else
1370 		adp->ad_freefrag = newfreefrag(ip, oldblkno, oldsize);
1371 
1372 	if (newblk_lookup(ip->i_fs, newblkno, 0, &newblk) == 0)
1373 		panic("softdep_setup_allocdirect: lost block");
1374 
1375 	ACQUIRE_LOCK(&lk);
1376 	inodedep_lookup(ip->i_fs, ip->i_number, DEPALLOC | NODELAY, &inodedep);
1377 	adp->ad_inodedep = inodedep;
1378 
1379 	if (newblk->nb_state == DEPCOMPLETE) {
1380 		adp->ad_state |= DEPCOMPLETE;
1381 		adp->ad_buf = NULL;
1382 	} else {
1383 		bmsafemap = newblk->nb_bmsafemap;
1384 		adp->ad_buf = bmsafemap->sm_buf;
1385 		LIST_REMOVE(newblk, nb_deps);
1386 		LIST_INSERT_HEAD(&bmsafemap->sm_allocdirecthd, adp, ad_deps);
1387 	}
1388 	LIST_REMOVE(newblk, nb_hash);
1389 	FREE(newblk, M_NEWBLK);
1390 
1391 	WORKLIST_INSERT_BP(bp, &adp->ad_list);
1392 	if (lbn >= NDADDR) {
1393 		/* allocating an indirect block */
1394 		if (oldblkno != 0) {
1395 			FREE_LOCK(&lk);
1396 			panic("softdep_setup_allocdirect: non-zero indir");
1397 		}
1398 	} else {
1399 		/*
1400 		 * Allocating a direct block.
1401 		 *
1402 		 * If we are allocating a directory block, then we must
1403 		 * allocate an associated pagedep to track additions and
1404 		 * deletions.
1405 		 */
1406 		if ((ip->i_mode & IFMT) == IFDIR &&
1407 		    pagedep_lookup(ip, lbn, DEPALLOC, &pagedep) == 0) {
1408 			WORKLIST_INSERT_BP(bp, &pagedep->pd_list);
1409 		}
1410 	}
1411 	/*
1412 	 * The list of allocdirects must be kept in sorted and ascending
1413 	 * order so that the rollback routines can quickly determine the
1414 	 * first uncommitted block (the size of the file stored on disk
1415 	 * ends at the end of the lowest committed fragment, or if there
1416 	 * are no fragments, at the end of the highest committed block).
1417 	 * Since files generally grow, the typical case is that the new
1418 	 * block is to be added at the end of the list. We speed this
1419 	 * special case by checking against the last allocdirect in the
1420 	 * list before laboriously traversing the list looking for the
1421 	 * insertion point.
1422 	 */
1423 	adphead = &inodedep->id_newinoupdt;
1424 	oldadp = TAILQ_LAST(adphead, allocdirectlst);
1425 	if (oldadp == NULL || oldadp->ad_lbn <= lbn) {
1426 		/* insert at end of list */
1427 		TAILQ_INSERT_TAIL(adphead, adp, ad_next);
1428 		if (oldadp != NULL && oldadp->ad_lbn == lbn)
1429 			allocdirect_merge(adphead, adp, oldadp);
1430 		FREE_LOCK(&lk);
1431 		return;
1432 	}
1433 	TAILQ_FOREACH(oldadp, adphead, ad_next) {
1434 		if (oldadp->ad_lbn >= lbn)
1435 			break;
1436 	}
1437 	if (oldadp == NULL) {
1438 		FREE_LOCK(&lk);
1439 		panic("softdep_setup_allocdirect: lost entry");
1440 	}
1441 	/* insert in middle of list */
1442 	TAILQ_INSERT_BEFORE(oldadp, adp, ad_next);
1443 	if (oldadp->ad_lbn == lbn)
1444 		allocdirect_merge(adphead, adp, oldadp);
1445 	FREE_LOCK(&lk);
1446 }
1447 
1448 /*
1449  * Replace an old allocdirect dependency with a newer one.
1450  * This routine must be called with splbio interrupts blocked.
1451  *
1452  * Parameters:
1453  *	adphead:	head of list holding allocdirects
1454  *	newadp:		allocdirect being added
1455  *	oldadp:		existing allocdirect being checked
1456  */
1457 static void
1458 allocdirect_merge(struct allocdirectlst *adphead,
1459 		  struct allocdirect *newadp,
1460 		  struct allocdirect *oldadp)
1461 {
1462 	struct freefrag *freefrag;
1463 
1464 #ifdef DEBUG
1465 	if (lk.lkt_held == NOHOLDER)
1466 		panic("allocdirect_merge: lock not held");
1467 #endif
1468 	if (newadp->ad_oldblkno != oldadp->ad_newblkno ||
1469 	    newadp->ad_oldsize != oldadp->ad_newsize ||
1470 	    newadp->ad_lbn >= NDADDR) {
1471 		FREE_LOCK(&lk);
1472 		panic("allocdirect_check: old %d != new %d || lbn %ld >= %d",
1473 		    newadp->ad_oldblkno, oldadp->ad_newblkno, newadp->ad_lbn,
1474 		    NDADDR);
1475 	}
1476 	newadp->ad_oldblkno = oldadp->ad_oldblkno;
1477 	newadp->ad_oldsize = oldadp->ad_oldsize;
1478 	/*
1479 	 * If the old dependency had a fragment to free or had never
1480 	 * previously had a block allocated, then the new dependency
1481 	 * can immediately post its freefrag and adopt the old freefrag.
1482 	 * This action is done by swapping the freefrag dependencies.
1483 	 * The new dependency gains the old one's freefrag, and the
1484 	 * old one gets the new one and then immediately puts it on
1485 	 * the worklist when it is freed by free_allocdirect. It is
1486 	 * not possible to do this swap when the old dependency had a
1487 	 * non-zero size but no previous fragment to free. This condition
1488 	 * arises when the new block is an extension of the old block.
1489 	 * Here, the first part of the fragment allocated to the new
1490 	 * dependency is part of the block currently claimed on disk by
1491 	 * the old dependency, so cannot legitimately be freed until the
1492 	 * conditions for the new dependency are fulfilled.
1493 	 */
1494 	if (oldadp->ad_freefrag != NULL || oldadp->ad_oldblkno == 0) {
1495 		freefrag = newadp->ad_freefrag;
1496 		newadp->ad_freefrag = oldadp->ad_freefrag;
1497 		oldadp->ad_freefrag = freefrag;
1498 	}
1499 	free_allocdirect(adphead, oldadp, 0);
1500 }
1501 
1502 /*
1503  * Allocate a new freefrag structure if needed.
1504  */
1505 static struct freefrag *
1506 newfreefrag(struct inode *ip, ufs_daddr_t blkno, long size)
1507 {
1508 	struct freefrag *freefrag;
1509 	struct fs *fs;
1510 
1511 	if (blkno == 0)
1512 		return (NULL);
1513 	fs = ip->i_fs;
1514 	if (fragnum(fs, blkno) + numfrags(fs, size) > fs->fs_frag)
1515 		panic("newfreefrag: frag size");
1516 	MALLOC(freefrag, struct freefrag *, sizeof(struct freefrag),
1517 		M_FREEFRAG, M_SOFTDEP_FLAGS);
1518 	freefrag->ff_list.wk_type = D_FREEFRAG;
1519 	freefrag->ff_state = ip->i_uid & ~ONWORKLIST;	/* XXX - used below */
1520 	freefrag->ff_inum = ip->i_number;
1521 	freefrag->ff_fs = fs;
1522 	freefrag->ff_devvp = ip->i_devvp;
1523 	freefrag->ff_blkno = blkno;
1524 	freefrag->ff_fragsize = size;
1525 	return (freefrag);
1526 }
1527 
1528 /*
1529  * This workitem de-allocates fragments that were replaced during
1530  * file block allocation.
1531  */
1532 static void
1533 handle_workitem_freefrag(struct freefrag *freefrag)
1534 {
1535 	struct inode tip;
1536 
1537 	tip.i_fs = freefrag->ff_fs;
1538 	tip.i_devvp = freefrag->ff_devvp;
1539 	tip.i_dev = freefrag->ff_devvp->v_rdev;
1540 	tip.i_number = freefrag->ff_inum;
1541 	tip.i_uid = freefrag->ff_state & ~ONWORKLIST;	/* XXX - set above */
1542 	ffs_blkfree(&tip, freefrag->ff_blkno, freefrag->ff_fragsize);
1543 	FREE(freefrag, M_FREEFRAG);
1544 }
1545 
1546 /*
1547  * Indirect block allocation dependencies.
1548  *
1549  * The same dependencies that exist for a direct block also exist when
1550  * a new block is allocated and pointed to by an entry in a block of
1551  * indirect pointers. The undo/redo states described above are also
1552  * used here. Because an indirect block contains many pointers that
1553  * may have dependencies, a second copy of the entire in-memory indirect
1554  * block is kept. The buffer cache copy is always completely up-to-date.
1555  * The second copy, which is used only as a source for disk writes,
1556  * contains only the safe pointers (i.e., those that have no remaining
1557  * update dependencies). The second copy is freed when all pointers
1558  * are safe. The cache is not allowed to replace indirect blocks with
1559  * pending update dependencies. If a buffer containing an indirect
1560  * block with dependencies is written, these routines will mark it
1561  * dirty again. It can only be successfully written once all the
1562  * dependencies are removed. The ffs_fsync routine in conjunction with
1563  * softdep_sync_metadata work together to get all the dependencies
1564  * removed so that a file can be successfully written to disk. Three
1565  * procedures are used when setting up indirect block pointer
1566  * dependencies. The division is necessary because of the organization
1567  * of the "balloc" routine and because of the distinction between file
1568  * pages and file metadata blocks.
1569  */
1570 
1571 /*
1572  * Allocate a new allocindir structure.
1573  *
1574  * Parameters:
1575  *	ip:		inode for file being extended
1576  *	ptrno:		offset of pointer in indirect block
1577  *	newblkno:	disk block number being added
1578  *	oldblkno:	previous block number, 0 if none
1579  */
1580 static struct allocindir *
1581 newallocindir(struct inode *ip, int ptrno, ufs_daddr_t newblkno,
1582 	      ufs_daddr_t oldblkno)
1583 {
1584 	struct allocindir *aip;
1585 
1586 	MALLOC(aip, struct allocindir *, sizeof(struct allocindir),
1587 		M_ALLOCINDIR, M_SOFTDEP_FLAGS | M_ZERO);
1588 	aip->ai_list.wk_type = D_ALLOCINDIR;
1589 	aip->ai_state = ATTACHED;
1590 	aip->ai_offset = ptrno;
1591 	aip->ai_newblkno = newblkno;
1592 	aip->ai_oldblkno = oldblkno;
1593 	aip->ai_freefrag = newfreefrag(ip, oldblkno, ip->i_fs->fs_bsize);
1594 	return (aip);
1595 }
1596 
1597 /*
1598  * Called just before setting an indirect block pointer
1599  * to a newly allocated file page.
1600  *
1601  * Parameters:
1602  *	ip:		inode for file being extended
1603  *	lbn:		allocated block number within file
1604  *	bp:		buffer with indirect blk referencing page
1605  *	ptrno:		offset of pointer in indirect block
1606  *	newblkno:	disk block number being added
1607  *	oldblkno:	previous block number, 0 if none
1608  *	nbp:		buffer holding allocated page
1609  */
1610 void
1611 softdep_setup_allocindir_page(struct inode *ip, ufs_lbn_t lbn,
1612 			      struct buf *bp, int ptrno,
1613 			      ufs_daddr_t newblkno, ufs_daddr_t oldblkno,
1614 			      struct buf *nbp)
1615 {
1616 	struct allocindir *aip;
1617 	struct pagedep *pagedep;
1618 
1619 	aip = newallocindir(ip, ptrno, newblkno, oldblkno);
1620 	ACQUIRE_LOCK(&lk);
1621 	/*
1622 	 * If we are allocating a directory page, then we must
1623 	 * allocate an associated pagedep to track additions and
1624 	 * deletions.
1625 	 */
1626 	if ((ip->i_mode & IFMT) == IFDIR &&
1627 	    pagedep_lookup(ip, lbn, DEPALLOC, &pagedep) == 0)
1628 		WORKLIST_INSERT_BP(nbp, &pagedep->pd_list);
1629 	WORKLIST_INSERT_BP(nbp, &aip->ai_list);
1630 	FREE_LOCK(&lk);
1631 	setup_allocindir_phase2(bp, ip, aip);
1632 }
1633 
1634 /*
1635  * Called just before setting an indirect block pointer to a
1636  * newly allocated indirect block.
1637  * Parameters:
1638  *	nbp:		newly allocated indirect block
1639  *	ip:		inode for file being extended
1640  *	bp:		indirect block referencing allocated block
1641  *	ptrno:		offset of pointer in indirect block
1642  *	newblkno:	disk block number being added
1643  */
1644 void
1645 softdep_setup_allocindir_meta(struct buf *nbp, struct inode *ip,
1646 			      struct buf *bp, int ptrno,
1647 			      ufs_daddr_t newblkno)
1648 {
1649 	struct allocindir *aip;
1650 
1651 	aip = newallocindir(ip, ptrno, newblkno, 0);
1652 	ACQUIRE_LOCK(&lk);
1653 	WORKLIST_INSERT_BP(nbp, &aip->ai_list);
1654 	FREE_LOCK(&lk);
1655 	setup_allocindir_phase2(bp, ip, aip);
1656 }
1657 
1658 /*
1659  * Called to finish the allocation of the "aip" allocated
1660  * by one of the two routines above.
1661  *
1662  * Parameters:
1663  *	bp:	in-memory copy of the indirect block
1664  *	ip:	inode for file being extended
1665  *	aip:	allocindir allocated by the above routines
1666  */
1667 static void
1668 setup_allocindir_phase2(struct buf *bp, struct inode *ip,
1669 			struct allocindir *aip)
1670 {
1671 	struct worklist *wk;
1672 	struct indirdep *indirdep, *newindirdep;
1673 	struct bmsafemap *bmsafemap;
1674 	struct allocindir *oldaip;
1675 	struct freefrag *freefrag;
1676 	struct newblk *newblk;
1677 
1678 	if (bp->b_loffset >= 0)
1679 		panic("setup_allocindir_phase2: not indir blk");
1680 	for (indirdep = NULL, newindirdep = NULL; ; ) {
1681 		ACQUIRE_LOCK(&lk);
1682 		LIST_FOREACH(wk, &bp->b_dep, wk_list) {
1683 			if (wk->wk_type != D_INDIRDEP)
1684 				continue;
1685 			indirdep = WK_INDIRDEP(wk);
1686 			break;
1687 		}
1688 		if (indirdep == NULL && newindirdep) {
1689 			indirdep = newindirdep;
1690 			WORKLIST_INSERT_BP(bp, &indirdep->ir_list);
1691 			newindirdep = NULL;
1692 		}
1693 		FREE_LOCK(&lk);
1694 		if (indirdep) {
1695 			if (newblk_lookup(ip->i_fs, aip->ai_newblkno, 0,
1696 			    &newblk) == 0)
1697 				panic("setup_allocindir: lost block");
1698 			ACQUIRE_LOCK(&lk);
1699 			if (newblk->nb_state == DEPCOMPLETE) {
1700 				aip->ai_state |= DEPCOMPLETE;
1701 				aip->ai_buf = NULL;
1702 			} else {
1703 				bmsafemap = newblk->nb_bmsafemap;
1704 				aip->ai_buf = bmsafemap->sm_buf;
1705 				LIST_REMOVE(newblk, nb_deps);
1706 				LIST_INSERT_HEAD(&bmsafemap->sm_allocindirhd,
1707 				    aip, ai_deps);
1708 			}
1709 			LIST_REMOVE(newblk, nb_hash);
1710 			FREE(newblk, M_NEWBLK);
1711 			aip->ai_indirdep = indirdep;
1712 			/*
1713 			 * Check to see if there is an existing dependency
1714 			 * for this block. If there is, merge the old
1715 			 * dependency into the new one.
1716 			 */
1717 			if (aip->ai_oldblkno == 0)
1718 				oldaip = NULL;
1719 			else
1720 
1721 				LIST_FOREACH(oldaip, &indirdep->ir_deplisthd, ai_next)
1722 					if (oldaip->ai_offset == aip->ai_offset)
1723 						break;
1724 			if (oldaip != NULL) {
1725 				if (oldaip->ai_newblkno != aip->ai_oldblkno) {
1726 					FREE_LOCK(&lk);
1727 					panic("setup_allocindir_phase2: blkno");
1728 				}
1729 				aip->ai_oldblkno = oldaip->ai_oldblkno;
1730 				freefrag = oldaip->ai_freefrag;
1731 				oldaip->ai_freefrag = aip->ai_freefrag;
1732 				aip->ai_freefrag = freefrag;
1733 				free_allocindir(oldaip, NULL);
1734 			}
1735 			LIST_INSERT_HEAD(&indirdep->ir_deplisthd, aip, ai_next);
1736 			((ufs_daddr_t *)indirdep->ir_savebp->b_data)
1737 			    [aip->ai_offset] = aip->ai_oldblkno;
1738 			FREE_LOCK(&lk);
1739 		}
1740 		if (newindirdep) {
1741 			/*
1742 			 * Avoid any possibility of data corruption by
1743 			 * ensuring that our old version is thrown away.
1744 			 */
1745 			newindirdep->ir_savebp->b_flags |= B_INVAL | B_NOCACHE;
1746 			brelse(newindirdep->ir_savebp);
1747 			WORKITEM_FREE((caddr_t)newindirdep, D_INDIRDEP);
1748 		}
1749 		if (indirdep)
1750 			break;
1751 		MALLOC(newindirdep, struct indirdep *, sizeof(struct indirdep),
1752 			M_INDIRDEP, M_SOFTDEP_FLAGS);
1753 		newindirdep->ir_list.wk_type = D_INDIRDEP;
1754 		newindirdep->ir_state = ATTACHED;
1755 		LIST_INIT(&newindirdep->ir_deplisthd);
1756 		LIST_INIT(&newindirdep->ir_donehd);
1757 		if (bp->b_bio2.bio_offset == NOOFFSET) {
1758 			VOP_BMAP(bp->b_vp, bp->b_bio1.bio_offset,
1759 				 &bp->b_bio2.bio_offset, NULL, NULL,
1760 				 BUF_CMD_WRITE);
1761 		}
1762 		KKASSERT(bp->b_bio2.bio_offset != NOOFFSET);
1763 		newindirdep->ir_savebp = getblk(ip->i_devvp,
1764 						bp->b_bio2.bio_offset,
1765 					        bp->b_bcount, 0, 0);
1766 		BUF_KERNPROC(newindirdep->ir_savebp);
1767 		bcopy(bp->b_data, newindirdep->ir_savebp->b_data, bp->b_bcount);
1768 	}
1769 }
1770 
1771 /*
1772  * Block de-allocation dependencies.
1773  *
1774  * When blocks are de-allocated, the on-disk pointers must be nullified before
1775  * the blocks are made available for use by other files.  (The true
1776  * requirement is that old pointers must be nullified before new on-disk
1777  * pointers are set.  We chose this slightly more stringent requirement to
1778  * reduce complexity.) Our implementation handles this dependency by updating
1779  * the inode (or indirect block) appropriately but delaying the actual block
1780  * de-allocation (i.e., freemap and free space count manipulation) until
1781  * after the updated versions reach stable storage.  After the disk is
1782  * updated, the blocks can be safely de-allocated whenever it is convenient.
1783  * This implementation handles only the common case of reducing a file's
1784  * length to zero. Other cases are handled by the conventional synchronous
1785  * write approach.
1786  *
1787  * The ffs implementation with which we worked double-checks
1788  * the state of the block pointers and file size as it reduces
1789  * a file's length.  Some of this code is replicated here in our
1790  * soft updates implementation.  The freeblks->fb_chkcnt field is
1791  * used to transfer a part of this information to the procedure
1792  * that eventually de-allocates the blocks.
1793  *
1794  * This routine should be called from the routine that shortens
1795  * a file's length, before the inode's size or block pointers
1796  * are modified. It will save the block pointer information for
1797  * later release and zero the inode so that the calling routine
1798  * can release it.
1799  */
1800 struct softdep_setup_freeblocks_info {
1801 	struct fs *fs;
1802 	struct inode *ip;
1803 };
1804 
1805 static int softdep_setup_freeblocks_bp(struct buf *bp, void *data);
1806 
1807 /*
1808  * Parameters:
1809  *	ip:	The inode whose length is to be reduced
1810  *	length:	The new length for the file
1811  */
1812 void
1813 softdep_setup_freeblocks(struct inode *ip, off_t length)
1814 {
1815 	struct softdep_setup_freeblocks_info info;
1816 	struct freeblks *freeblks;
1817 	struct inodedep *inodedep;
1818 	struct allocdirect *adp;
1819 	lwkt_tokref vlock;
1820 	struct vnode *vp;
1821 	struct buf *bp;
1822 	struct fs *fs;
1823 	int i, error, delay;
1824 	int count;
1825 
1826 	fs = ip->i_fs;
1827 	if (length != 0)
1828 		panic("softde_setup_freeblocks: non-zero length");
1829 	MALLOC(freeblks, struct freeblks *, sizeof(struct freeblks),
1830 		M_FREEBLKS, M_SOFTDEP_FLAGS | M_ZERO);
1831 	freeblks->fb_list.wk_type = D_FREEBLKS;
1832 	freeblks->fb_state = ATTACHED;
1833 	freeblks->fb_uid = ip->i_uid;
1834 	freeblks->fb_previousinum = ip->i_number;
1835 	freeblks->fb_devvp = ip->i_devvp;
1836 	freeblks->fb_fs = fs;
1837 	freeblks->fb_oldsize = ip->i_size;
1838 	freeblks->fb_newsize = length;
1839 	freeblks->fb_chkcnt = ip->i_blocks;
1840 	for (i = 0; i < NDADDR; i++) {
1841 		freeblks->fb_dblks[i] = ip->i_db[i];
1842 		ip->i_db[i] = 0;
1843 	}
1844 	for (i = 0; i < NIADDR; i++) {
1845 		freeblks->fb_iblks[i] = ip->i_ib[i];
1846 		ip->i_ib[i] = 0;
1847 	}
1848 	ip->i_blocks = 0;
1849 	ip->i_size = 0;
1850 	/*
1851 	 * Push the zero'ed inode to to its disk buffer so that we are free
1852 	 * to delete its dependencies below. Once the dependencies are gone
1853 	 * the buffer can be safely released.
1854 	 */
1855 	if ((error = bread(ip->i_devvp,
1856 			    fsbtodoff(fs, ino_to_fsba(fs, ip->i_number)),
1857 	    (int)fs->fs_bsize, &bp)) != 0)
1858 		softdep_error("softdep_setup_freeblocks", error);
1859 	*((struct ufs1_dinode *)bp->b_data + ino_to_fsbo(fs, ip->i_number)) =
1860 	    ip->i_din;
1861 	/*
1862 	 * Find and eliminate any inode dependencies.
1863 	 */
1864 	ACQUIRE_LOCK(&lk);
1865 	(void) inodedep_lookup(fs, ip->i_number, DEPALLOC, &inodedep);
1866 	if ((inodedep->id_state & IOSTARTED) != 0) {
1867 		FREE_LOCK(&lk);
1868 		panic("softdep_setup_freeblocks: inode busy");
1869 	}
1870 	/*
1871 	 * Add the freeblks structure to the list of operations that
1872 	 * must await the zero'ed inode being written to disk. If we
1873 	 * still have a bitmap dependency (delay == 0), then the inode
1874 	 * has never been written to disk, so we can process the
1875 	 * freeblks below once we have deleted the dependencies.
1876 	 */
1877 	delay = (inodedep->id_state & DEPCOMPLETE);
1878 	if (delay)
1879 		WORKLIST_INSERT(&inodedep->id_bufwait, &freeblks->fb_list);
1880 	/*
1881 	 * Because the file length has been truncated to zero, any
1882 	 * pending block allocation dependency structures associated
1883 	 * with this inode are obsolete and can simply be de-allocated.
1884 	 * We must first merge the two dependency lists to get rid of
1885 	 * any duplicate freefrag structures, then purge the merged list.
1886 	 */
1887 	merge_inode_lists(inodedep);
1888 	while ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != 0)
1889 		free_allocdirect(&inodedep->id_inoupdt, adp, 1);
1890 	FREE_LOCK(&lk);
1891 	bdwrite(bp);
1892 	/*
1893 	 * We must wait for any I/O in progress to finish so that
1894 	 * all potential buffers on the dirty list will be visible.
1895 	 * Once they are all there, walk the list and get rid of
1896 	 * any dependencies.
1897 	 */
1898 	vp = ITOV(ip);
1899 	ACQUIRE_LOCK(&lk);
1900 	drain_output(vp, 1);
1901 
1902 	info.fs = fs;
1903 	info.ip = ip;
1904 	lwkt_gettoken(&vlock, &vp->v_token);
1905 	do {
1906 		count = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
1907 				softdep_setup_freeblocks_bp, &info);
1908 	} while (count != 0);
1909 	lwkt_reltoken(&vlock);
1910 
1911 	if (inodedep_lookup(fs, ip->i_number, 0, &inodedep) != 0)
1912 		(void)free_inodedep(inodedep);
1913 
1914 	if (delay) {
1915 		freeblks->fb_state |= DEPCOMPLETE;
1916 		/*
1917 		 * If the inode with zeroed block pointers is now on disk
1918 		 * we can start freeing blocks. Add freeblks to the worklist
1919 		 * instead of calling  handle_workitem_freeblocks directly as
1920 		 * it is more likely that additional IO is needed to complete
1921 		 * the request here than in the !delay case.
1922 		 */
1923 		if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE)
1924 			add_to_worklist(&freeblks->fb_list);
1925 	}
1926 
1927 	FREE_LOCK(&lk);
1928 	/*
1929 	 * If the inode has never been written to disk (delay == 0),
1930 	 * then we can process the freeblks now that we have deleted
1931 	 * the dependencies.
1932 	 */
1933 	if (!delay)
1934 		handle_workitem_freeblocks(freeblks);
1935 }
1936 
1937 static int
1938 softdep_setup_freeblocks_bp(struct buf *bp, void *data)
1939 {
1940 	struct softdep_setup_freeblocks_info *info = data;
1941 	struct inodedep *inodedep;
1942 
1943 	if (getdirtybuf(&bp, MNT_WAIT) == 0) {
1944 		kprintf("softdep_setup_freeblocks_bp(1): caught bp %p going away\n", bp);
1945 		return(-1);
1946 	}
1947 	if (bp->b_vp != ITOV(info->ip) || (bp->b_flags & B_DELWRI) == 0) {
1948 		kprintf("softdep_setup_freeblocks_bp(2): caught bp %p going away\n", bp);
1949 		BUF_UNLOCK(bp);
1950 		return(-1);
1951 	}
1952 	(void) inodedep_lookup(info->fs, info->ip->i_number, 0, &inodedep);
1953 	deallocate_dependencies(bp, inodedep);
1954 	bp->b_flags |= B_INVAL | B_NOCACHE;
1955 	FREE_LOCK(&lk);
1956 	brelse(bp);
1957 	ACQUIRE_LOCK(&lk);
1958 	return(1);
1959 }
1960 
1961 /*
1962  * Reclaim any dependency structures from a buffer that is about to
1963  * be reallocated to a new vnode. The buffer must be locked, thus,
1964  * no I/O completion operations can occur while we are manipulating
1965  * its associated dependencies. The mutex is held so that other I/O's
1966  * associated with related dependencies do not occur.
1967  */
1968 static void
1969 deallocate_dependencies(struct buf *bp, struct inodedep *inodedep)
1970 {
1971 	struct worklist *wk;
1972 	struct indirdep *indirdep;
1973 	struct allocindir *aip;
1974 	struct pagedep *pagedep;
1975 	struct dirrem *dirrem;
1976 	struct diradd *dap;
1977 	int i;
1978 
1979 	while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) {
1980 		switch (wk->wk_type) {
1981 
1982 		case D_INDIRDEP:
1983 			indirdep = WK_INDIRDEP(wk);
1984 			/*
1985 			 * None of the indirect pointers will ever be visible,
1986 			 * so they can simply be tossed. GOINGAWAY ensures
1987 			 * that allocated pointers will be saved in the buffer
1988 			 * cache until they are freed. Note that they will
1989 			 * only be able to be found by their physical address
1990 			 * since the inode mapping the logical address will
1991 			 * be gone. The save buffer used for the safe copy
1992 			 * was allocated in setup_allocindir_phase2 using
1993 			 * the physical address so it could be used for this
1994 			 * purpose. Hence we swap the safe copy with the real
1995 			 * copy, allowing the safe copy to be freed and holding
1996 			 * on to the real copy for later use in indir_trunc.
1997 			 *
1998 			 * NOTE: ir_savebp is relative to the block device
1999 			 * so b_bio1 contains the device block number.
2000 			 */
2001 			if (indirdep->ir_state & GOINGAWAY) {
2002 				FREE_LOCK(&lk);
2003 				panic("deallocate_dependencies: already gone");
2004 			}
2005 			indirdep->ir_state |= GOINGAWAY;
2006 			while ((aip = LIST_FIRST(&indirdep->ir_deplisthd)) != 0)
2007 				free_allocindir(aip, inodedep);
2008 			if (bp->b_bio1.bio_offset >= 0 ||
2009 			    bp->b_bio2.bio_offset != indirdep->ir_savebp->b_bio1.bio_offset) {
2010 				FREE_LOCK(&lk);
2011 				panic("deallocate_dependencies: not indir");
2012 			}
2013 			bcopy(bp->b_data, indirdep->ir_savebp->b_data,
2014 			    bp->b_bcount);
2015 			WORKLIST_REMOVE(wk);
2016 			WORKLIST_INSERT_BP(indirdep->ir_savebp, wk);
2017 			continue;
2018 
2019 		case D_PAGEDEP:
2020 			pagedep = WK_PAGEDEP(wk);
2021 			/*
2022 			 * None of the directory additions will ever be
2023 			 * visible, so they can simply be tossed.
2024 			 */
2025 			for (i = 0; i < DAHASHSZ; i++)
2026 				while ((dap =
2027 				    LIST_FIRST(&pagedep->pd_diraddhd[i])))
2028 					free_diradd(dap);
2029 			while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != 0)
2030 				free_diradd(dap);
2031 			/*
2032 			 * Copy any directory remove dependencies to the list
2033 			 * to be processed after the zero'ed inode is written.
2034 			 * If the inode has already been written, then they
2035 			 * can be dumped directly onto the work list.
2036 			 */
2037 			LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) {
2038 				LIST_REMOVE(dirrem, dm_next);
2039 				dirrem->dm_dirinum = pagedep->pd_ino;
2040 				if (inodedep == NULL ||
2041 				    (inodedep->id_state & ALLCOMPLETE) ==
2042 				     ALLCOMPLETE)
2043 					add_to_worklist(&dirrem->dm_list);
2044 				else
2045 					WORKLIST_INSERT(&inodedep->id_bufwait,
2046 					    &dirrem->dm_list);
2047 			}
2048 			WORKLIST_REMOVE(&pagedep->pd_list);
2049 			LIST_REMOVE(pagedep, pd_hash);
2050 			WORKITEM_FREE(pagedep, D_PAGEDEP);
2051 			continue;
2052 
2053 		case D_ALLOCINDIR:
2054 			free_allocindir(WK_ALLOCINDIR(wk), inodedep);
2055 			continue;
2056 
2057 		case D_ALLOCDIRECT:
2058 		case D_INODEDEP:
2059 			FREE_LOCK(&lk);
2060 			panic("deallocate_dependencies: Unexpected type %s",
2061 			    TYPENAME(wk->wk_type));
2062 			/* NOTREACHED */
2063 
2064 		default:
2065 			FREE_LOCK(&lk);
2066 			panic("deallocate_dependencies: Unknown type %s",
2067 			    TYPENAME(wk->wk_type));
2068 			/* NOTREACHED */
2069 		}
2070 	}
2071 }
2072 
2073 /*
2074  * Free an allocdirect. Generate a new freefrag work request if appropriate.
2075  * This routine must be called with splbio interrupts blocked.
2076  */
2077 static void
2078 free_allocdirect(struct allocdirectlst *adphead,
2079 		 struct allocdirect *adp, int delay)
2080 {
2081 
2082 #ifdef DEBUG
2083 	if (lk.lkt_held == NOHOLDER)
2084 		panic("free_allocdirect: lock not held");
2085 #endif
2086 	if ((adp->ad_state & DEPCOMPLETE) == 0)
2087 		LIST_REMOVE(adp, ad_deps);
2088 	TAILQ_REMOVE(adphead, adp, ad_next);
2089 	if ((adp->ad_state & COMPLETE) == 0)
2090 		WORKLIST_REMOVE(&adp->ad_list);
2091 	if (adp->ad_freefrag != NULL) {
2092 		if (delay)
2093 			WORKLIST_INSERT(&adp->ad_inodedep->id_bufwait,
2094 			    &adp->ad_freefrag->ff_list);
2095 		else
2096 			add_to_worklist(&adp->ad_freefrag->ff_list);
2097 	}
2098 	WORKITEM_FREE(adp, D_ALLOCDIRECT);
2099 }
2100 
2101 /*
2102  * Prepare an inode to be freed. The actual free operation is not
2103  * done until the zero'ed inode has been written to disk.
2104  */
2105 void
2106 softdep_freefile(struct vnode *pvp, ino_t ino, int mode)
2107 {
2108 	struct inode *ip = VTOI(pvp);
2109 	struct inodedep *inodedep;
2110 	struct freefile *freefile;
2111 
2112 	/*
2113 	 * This sets up the inode de-allocation dependency.
2114 	 */
2115 	MALLOC(freefile, struct freefile *, sizeof(struct freefile),
2116 		M_FREEFILE, M_SOFTDEP_FLAGS);
2117 	freefile->fx_list.wk_type = D_FREEFILE;
2118 	freefile->fx_list.wk_state = 0;
2119 	freefile->fx_mode = mode;
2120 	freefile->fx_oldinum = ino;
2121 	freefile->fx_devvp = ip->i_devvp;
2122 	freefile->fx_fs = ip->i_fs;
2123 
2124 	/*
2125 	 * If the inodedep does not exist, then the zero'ed inode has
2126 	 * been written to disk. If the allocated inode has never been
2127 	 * written to disk, then the on-disk inode is zero'ed. In either
2128 	 * case we can free the file immediately.
2129 	 */
2130 	ACQUIRE_LOCK(&lk);
2131 	if (inodedep_lookup(ip->i_fs, ino, 0, &inodedep) == 0 ||
2132 	    check_inode_unwritten(inodedep)) {
2133 		FREE_LOCK(&lk);
2134 		handle_workitem_freefile(freefile);
2135 		return;
2136 	}
2137 	WORKLIST_INSERT(&inodedep->id_inowait, &freefile->fx_list);
2138 	FREE_LOCK(&lk);
2139 }
2140 
2141 /*
2142  * Check to see if an inode has never been written to disk. If
2143  * so free the inodedep and return success, otherwise return failure.
2144  * This routine must be called with splbio interrupts blocked.
2145  *
2146  * If we still have a bitmap dependency, then the inode has never
2147  * been written to disk. Drop the dependency as it is no longer
2148  * necessary since the inode is being deallocated. We set the
2149  * ALLCOMPLETE flags since the bitmap now properly shows that the
2150  * inode is not allocated. Even if the inode is actively being
2151  * written, it has been rolled back to its zero'ed state, so we
2152  * are ensured that a zero inode is what is on the disk. For short
2153  * lived files, this change will usually result in removing all the
2154  * dependencies from the inode so that it can be freed immediately.
2155  */
2156 static int
2157 check_inode_unwritten(struct inodedep *inodedep)
2158 {
2159 
2160 	if ((inodedep->id_state & DEPCOMPLETE) != 0 ||
2161 	    LIST_FIRST(&inodedep->id_pendinghd) != NULL ||
2162 	    LIST_FIRST(&inodedep->id_bufwait) != NULL ||
2163 	    LIST_FIRST(&inodedep->id_inowait) != NULL ||
2164 	    TAILQ_FIRST(&inodedep->id_inoupdt) != NULL ||
2165 	    TAILQ_FIRST(&inodedep->id_newinoupdt) != NULL ||
2166 	    inodedep->id_nlinkdelta != 0)
2167 		return (0);
2168 
2169 	/*
2170 	 * Another process might be in initiate_write_inodeblock
2171 	 * trying to allocate memory without holding "Softdep Lock".
2172 	 */
2173 	if ((inodedep->id_state & IOSTARTED) != 0 &&
2174 	    inodedep->id_savedino == NULL)
2175 		return(0);
2176 
2177 	inodedep->id_state |= ALLCOMPLETE;
2178 	LIST_REMOVE(inodedep, id_deps);
2179 	inodedep->id_buf = NULL;
2180 	if (inodedep->id_state & ONWORKLIST)
2181 		WORKLIST_REMOVE(&inodedep->id_list);
2182 	if (inodedep->id_savedino != NULL) {
2183 		FREE(inodedep->id_savedino, M_INODEDEP);
2184 		inodedep->id_savedino = NULL;
2185 	}
2186 	if (free_inodedep(inodedep) == 0) {
2187 		FREE_LOCK(&lk);
2188 		panic("check_inode_unwritten: busy inode");
2189 	}
2190 	return (1);
2191 }
2192 
2193 /*
2194  * Try to free an inodedep structure. Return 1 if it could be freed.
2195  */
2196 static int
2197 free_inodedep(struct inodedep *inodedep)
2198 {
2199 
2200 	if ((inodedep->id_state & ONWORKLIST) != 0 ||
2201 	    (inodedep->id_state & ALLCOMPLETE) != ALLCOMPLETE ||
2202 	    LIST_FIRST(&inodedep->id_pendinghd) != NULL ||
2203 	    LIST_FIRST(&inodedep->id_bufwait) != NULL ||
2204 	    LIST_FIRST(&inodedep->id_inowait) != NULL ||
2205 	    TAILQ_FIRST(&inodedep->id_inoupdt) != NULL ||
2206 	    TAILQ_FIRST(&inodedep->id_newinoupdt) != NULL ||
2207 	    inodedep->id_nlinkdelta != 0 || inodedep->id_savedino != NULL)
2208 		return (0);
2209 	LIST_REMOVE(inodedep, id_hash);
2210 	WORKITEM_FREE(inodedep, D_INODEDEP);
2211 	num_inodedep -= 1;
2212 	return (1);
2213 }
2214 
2215 /*
2216  * This workitem routine performs the block de-allocation.
2217  * The workitem is added to the pending list after the updated
2218  * inode block has been written to disk.  As mentioned above,
2219  * checks regarding the number of blocks de-allocated (compared
2220  * to the number of blocks allocated for the file) are also
2221  * performed in this function.
2222  */
2223 static void
2224 handle_workitem_freeblocks(struct freeblks *freeblks)
2225 {
2226 	struct inode tip;
2227 	ufs_daddr_t bn;
2228 	struct fs *fs;
2229 	int i, level, bsize;
2230 	long nblocks, blocksreleased = 0;
2231 	int error, allerror = 0;
2232 	ufs_lbn_t baselbns[NIADDR], tmpval;
2233 
2234 	tip.i_number = freeblks->fb_previousinum;
2235 	tip.i_devvp = freeblks->fb_devvp;
2236 	tip.i_dev = freeblks->fb_devvp->v_rdev;
2237 	tip.i_fs = freeblks->fb_fs;
2238 	tip.i_size = freeblks->fb_oldsize;
2239 	tip.i_uid = freeblks->fb_uid;
2240 	fs = freeblks->fb_fs;
2241 	tmpval = 1;
2242 	baselbns[0] = NDADDR;
2243 	for (i = 1; i < NIADDR; i++) {
2244 		tmpval *= NINDIR(fs);
2245 		baselbns[i] = baselbns[i - 1] + tmpval;
2246 	}
2247 	nblocks = btodb(fs->fs_bsize);
2248 	blocksreleased = 0;
2249 	/*
2250 	 * Indirect blocks first.
2251 	 */
2252 	for (level = (NIADDR - 1); level >= 0; level--) {
2253 		if ((bn = freeblks->fb_iblks[level]) == 0)
2254 			continue;
2255 		if ((error = indir_trunc(&tip, fsbtodoff(fs, bn), level,
2256 		    baselbns[level], &blocksreleased)) == 0)
2257 			allerror = error;
2258 		ffs_blkfree(&tip, bn, fs->fs_bsize);
2259 		blocksreleased += nblocks;
2260 	}
2261 	/*
2262 	 * All direct blocks or frags.
2263 	 */
2264 	for (i = (NDADDR - 1); i >= 0; i--) {
2265 		if ((bn = freeblks->fb_dblks[i]) == 0)
2266 			continue;
2267 		bsize = blksize(fs, &tip, i);
2268 		ffs_blkfree(&tip, bn, bsize);
2269 		blocksreleased += btodb(bsize);
2270 	}
2271 
2272 #ifdef DIAGNOSTIC
2273 	if (freeblks->fb_chkcnt != blocksreleased)
2274 		kprintf("handle_workitem_freeblocks: block count\n");
2275 	if (allerror)
2276 		softdep_error("handle_workitem_freeblks", allerror);
2277 #endif /* DIAGNOSTIC */
2278 	WORKITEM_FREE(freeblks, D_FREEBLKS);
2279 }
2280 
2281 /*
2282  * Release blocks associated with the inode ip and stored in the indirect
2283  * block at doffset. If level is greater than SINGLE, the block is an
2284  * indirect block and recursive calls to indirtrunc must be used to
2285  * cleanse other indirect blocks.
2286  */
2287 static int
2288 indir_trunc(struct inode *ip, off_t doffset, int level, ufs_lbn_t lbn,
2289 	    long *countp)
2290 {
2291 	struct buf *bp;
2292 	ufs_daddr_t *bap;
2293 	ufs_daddr_t nb;
2294 	struct fs *fs;
2295 	struct worklist *wk;
2296 	struct indirdep *indirdep;
2297 	int i, lbnadd, nblocks;
2298 	int error, allerror = 0;
2299 
2300 	fs = ip->i_fs;
2301 	lbnadd = 1;
2302 	for (i = level; i > 0; i--)
2303 		lbnadd *= NINDIR(fs);
2304 	/*
2305 	 * Get buffer of block pointers to be freed. This routine is not
2306 	 * called until the zero'ed inode has been written, so it is safe
2307 	 * to free blocks as they are encountered. Because the inode has
2308 	 * been zero'ed, calls to bmap on these blocks will fail. So, we
2309 	 * have to use the on-disk address and the block device for the
2310 	 * filesystem to look them up. If the file was deleted before its
2311 	 * indirect blocks were all written to disk, the routine that set
2312 	 * us up (deallocate_dependencies) will have arranged to leave
2313 	 * a complete copy of the indirect block in memory for our use.
2314 	 * Otherwise we have to read the blocks in from the disk.
2315 	 */
2316 	ACQUIRE_LOCK(&lk);
2317 	if ((bp = findblk(ip->i_devvp, doffset, FINDBLK_TEST)) != NULL &&
2318 	    (wk = LIST_FIRST(&bp->b_dep)) != NULL) {
2319 		/*
2320 		 * bp must be ir_savebp, which is held locked for our use.
2321 		 */
2322 		if (wk->wk_type != D_INDIRDEP ||
2323 		    (indirdep = WK_INDIRDEP(wk))->ir_savebp != bp ||
2324 		    (indirdep->ir_state & GOINGAWAY) == 0) {
2325 			FREE_LOCK(&lk);
2326 			panic("indir_trunc: lost indirdep");
2327 		}
2328 		WORKLIST_REMOVE(wk);
2329 		WORKITEM_FREE(indirdep, D_INDIRDEP);
2330 		if (LIST_FIRST(&bp->b_dep) != NULL) {
2331 			FREE_LOCK(&lk);
2332 			panic("indir_trunc: dangling dep");
2333 		}
2334 		FREE_LOCK(&lk);
2335 	} else {
2336 		FREE_LOCK(&lk);
2337 		error = bread(ip->i_devvp, doffset, (int)fs->fs_bsize, &bp);
2338 		if (error)
2339 			return (error);
2340 	}
2341 	/*
2342 	 * Recursively free indirect blocks.
2343 	 */
2344 	bap = (ufs_daddr_t *)bp->b_data;
2345 	nblocks = btodb(fs->fs_bsize);
2346 	for (i = NINDIR(fs) - 1; i >= 0; i--) {
2347 		if ((nb = bap[i]) == 0)
2348 			continue;
2349 		if (level != 0) {
2350 			if ((error = indir_trunc(ip, fsbtodoff(fs, nb),
2351 			     level - 1, lbn + (i * lbnadd), countp)) != 0)
2352 				allerror = error;
2353 		}
2354 		ffs_blkfree(ip, nb, fs->fs_bsize);
2355 		*countp += nblocks;
2356 	}
2357 	bp->b_flags |= B_INVAL | B_NOCACHE;
2358 	brelse(bp);
2359 	return (allerror);
2360 }
2361 
2362 /*
2363  * Free an allocindir.
2364  * This routine must be called with splbio interrupts blocked.
2365  */
2366 static void
2367 free_allocindir(struct allocindir *aip, struct inodedep *inodedep)
2368 {
2369 	struct freefrag *freefrag;
2370 
2371 #ifdef DEBUG
2372 	if (lk.lkt_held == NOHOLDER)
2373 		panic("free_allocindir: lock not held");
2374 #endif
2375 	if ((aip->ai_state & DEPCOMPLETE) == 0)
2376 		LIST_REMOVE(aip, ai_deps);
2377 	if (aip->ai_state & ONWORKLIST)
2378 		WORKLIST_REMOVE(&aip->ai_list);
2379 	LIST_REMOVE(aip, ai_next);
2380 	if ((freefrag = aip->ai_freefrag) != NULL) {
2381 		if (inodedep == NULL)
2382 			add_to_worklist(&freefrag->ff_list);
2383 		else
2384 			WORKLIST_INSERT(&inodedep->id_bufwait,
2385 			    &freefrag->ff_list);
2386 	}
2387 	WORKITEM_FREE(aip, D_ALLOCINDIR);
2388 }
2389 
2390 /*
2391  * Directory entry addition dependencies.
2392  *
2393  * When adding a new directory entry, the inode (with its incremented link
2394  * count) must be written to disk before the directory entry's pointer to it.
2395  * Also, if the inode is newly allocated, the corresponding freemap must be
2396  * updated (on disk) before the directory entry's pointer. These requirements
2397  * are met via undo/redo on the directory entry's pointer, which consists
2398  * simply of the inode number.
2399  *
2400  * As directory entries are added and deleted, the free space within a
2401  * directory block can become fragmented.  The ufs filesystem will compact
2402  * a fragmented directory block to make space for a new entry. When this
2403  * occurs, the offsets of previously added entries change. Any "diradd"
2404  * dependency structures corresponding to these entries must be updated with
2405  * the new offsets.
2406  */
2407 
2408 /*
2409  * This routine is called after the in-memory inode's link
2410  * count has been incremented, but before the directory entry's
2411  * pointer to the inode has been set.
2412  *
2413  * Parameters:
2414  *	bp:		buffer containing directory block
2415  *	dp:		inode for directory
2416  *	diroffset:	offset of new entry in directory
2417  *	newinum:	inode referenced by new directory entry
2418  *	newdirbp:	non-NULL => contents of new mkdir
2419  */
2420 void
2421 softdep_setup_directory_add(struct buf *bp, struct inode *dp, off_t diroffset,
2422 			    ino_t newinum, struct buf *newdirbp)
2423 {
2424 	int offset;		/* offset of new entry within directory block */
2425 	ufs_lbn_t lbn;		/* block in directory containing new entry */
2426 	struct fs *fs;
2427 	struct diradd *dap;
2428 	struct pagedep *pagedep;
2429 	struct inodedep *inodedep;
2430 	struct mkdir *mkdir1, *mkdir2;
2431 
2432 	/*
2433 	 * Whiteouts have no dependencies.
2434 	 */
2435 	if (newinum == WINO) {
2436 		if (newdirbp != NULL)
2437 			bdwrite(newdirbp);
2438 		return;
2439 	}
2440 
2441 	fs = dp->i_fs;
2442 	lbn = lblkno(fs, diroffset);
2443 	offset = blkoff(fs, diroffset);
2444 	MALLOC(dap, struct diradd *, sizeof(struct diradd), M_DIRADD,
2445 	    M_SOFTDEP_FLAGS | M_ZERO);
2446 	dap->da_list.wk_type = D_DIRADD;
2447 	dap->da_offset = offset;
2448 	dap->da_newinum = newinum;
2449 	dap->da_state = ATTACHED;
2450 	if (newdirbp == NULL) {
2451 		dap->da_state |= DEPCOMPLETE;
2452 		ACQUIRE_LOCK(&lk);
2453 	} else {
2454 		dap->da_state |= MKDIR_BODY | MKDIR_PARENT;
2455 		MALLOC(mkdir1, struct mkdir *, sizeof(struct mkdir), M_MKDIR,
2456 		    M_SOFTDEP_FLAGS);
2457 		mkdir1->md_list.wk_type = D_MKDIR;
2458 		mkdir1->md_state = MKDIR_BODY;
2459 		mkdir1->md_diradd = dap;
2460 		MALLOC(mkdir2, struct mkdir *, sizeof(struct mkdir), M_MKDIR,
2461 		    M_SOFTDEP_FLAGS);
2462 		mkdir2->md_list.wk_type = D_MKDIR;
2463 		mkdir2->md_state = MKDIR_PARENT;
2464 		mkdir2->md_diradd = dap;
2465 		/*
2466 		 * Dependency on "." and ".." being written to disk.
2467 		 */
2468 		mkdir1->md_buf = newdirbp;
2469 		ACQUIRE_LOCK(&lk);
2470 		LIST_INSERT_HEAD(&mkdirlisthd, mkdir1, md_mkdirs);
2471 		WORKLIST_INSERT_BP(newdirbp, &mkdir1->md_list);
2472 		FREE_LOCK(&lk);
2473 		bdwrite(newdirbp);
2474 		/*
2475 		 * Dependency on link count increase for parent directory
2476 		 */
2477 		ACQUIRE_LOCK(&lk);
2478 		if (inodedep_lookup(dp->i_fs, dp->i_number, 0, &inodedep) == 0
2479 		    || (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
2480 			dap->da_state &= ~MKDIR_PARENT;
2481 			WORKITEM_FREE(mkdir2, D_MKDIR);
2482 		} else {
2483 			LIST_INSERT_HEAD(&mkdirlisthd, mkdir2, md_mkdirs);
2484 			WORKLIST_INSERT(&inodedep->id_bufwait,&mkdir2->md_list);
2485 		}
2486 	}
2487 	/*
2488 	 * Link into parent directory pagedep to await its being written.
2489 	 */
2490 	if (pagedep_lookup(dp, lbn, DEPALLOC, &pagedep) == 0)
2491 		WORKLIST_INSERT_BP(bp, &pagedep->pd_list);
2492 	dap->da_pagedep = pagedep;
2493 	LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], dap,
2494 	    da_pdlist);
2495 	/*
2496 	 * Link into its inodedep. Put it on the id_bufwait list if the inode
2497 	 * is not yet written. If it is written, do the post-inode write
2498 	 * processing to put it on the id_pendinghd list.
2499 	 */
2500 	(void) inodedep_lookup(fs, newinum, DEPALLOC, &inodedep);
2501 	if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE)
2502 		diradd_inode_written(dap, inodedep);
2503 	else
2504 		WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
2505 	FREE_LOCK(&lk);
2506 }
2507 
2508 /*
2509  * This procedure is called to change the offset of a directory
2510  * entry when compacting a directory block which must be owned
2511  * exclusively by the caller. Note that the actual entry movement
2512  * must be done in this procedure to ensure that no I/O completions
2513  * occur while the move is in progress.
2514  *
2515  * Parameters:
2516  *	dp:	inode for directory
2517  *	base:		address of dp->i_offset
2518  *	oldloc:		address of old directory location
2519  *	newloc:		address of new directory location
2520  *	entrysize:	size of directory entry
2521  */
2522 void
2523 softdep_change_directoryentry_offset(struct inode *dp, caddr_t base,
2524 				     caddr_t oldloc, caddr_t newloc,
2525 				     int entrysize)
2526 {
2527 	int offset, oldoffset, newoffset;
2528 	struct pagedep *pagedep;
2529 	struct diradd *dap;
2530 	ufs_lbn_t lbn;
2531 
2532 	ACQUIRE_LOCK(&lk);
2533 	lbn = lblkno(dp->i_fs, dp->i_offset);
2534 	offset = blkoff(dp->i_fs, dp->i_offset);
2535 	if (pagedep_lookup(dp, lbn, 0, &pagedep) == 0)
2536 		goto done;
2537 	oldoffset = offset + (oldloc - base);
2538 	newoffset = offset + (newloc - base);
2539 
2540 	LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(oldoffset)], da_pdlist) {
2541 		if (dap->da_offset != oldoffset)
2542 			continue;
2543 		dap->da_offset = newoffset;
2544 		if (DIRADDHASH(newoffset) == DIRADDHASH(oldoffset))
2545 			break;
2546 		LIST_REMOVE(dap, da_pdlist);
2547 		LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(newoffset)],
2548 		    dap, da_pdlist);
2549 		break;
2550 	}
2551 	if (dap == NULL) {
2552 
2553 		LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist) {
2554 			if (dap->da_offset == oldoffset) {
2555 				dap->da_offset = newoffset;
2556 				break;
2557 			}
2558 		}
2559 	}
2560 done:
2561 	bcopy(oldloc, newloc, entrysize);
2562 	FREE_LOCK(&lk);
2563 }
2564 
2565 /*
2566  * Free a diradd dependency structure. This routine must be called
2567  * with splbio interrupts blocked.
2568  */
2569 static void
2570 free_diradd(struct diradd *dap)
2571 {
2572 	struct dirrem *dirrem;
2573 	struct pagedep *pagedep;
2574 	struct inodedep *inodedep;
2575 	struct mkdir *mkdir, *nextmd;
2576 
2577 #ifdef DEBUG
2578 	if (lk.lkt_held == NOHOLDER)
2579 		panic("free_diradd: lock not held");
2580 #endif
2581 	WORKLIST_REMOVE(&dap->da_list);
2582 	LIST_REMOVE(dap, da_pdlist);
2583 	if ((dap->da_state & DIRCHG) == 0) {
2584 		pagedep = dap->da_pagedep;
2585 	} else {
2586 		dirrem = dap->da_previous;
2587 		pagedep = dirrem->dm_pagedep;
2588 		dirrem->dm_dirinum = pagedep->pd_ino;
2589 		add_to_worklist(&dirrem->dm_list);
2590 	}
2591 	if (inodedep_lookup(VFSTOUFS(pagedep->pd_mnt)->um_fs, dap->da_newinum,
2592 	    0, &inodedep) != 0)
2593 		(void) free_inodedep(inodedep);
2594 	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
2595 		for (mkdir = LIST_FIRST(&mkdirlisthd); mkdir; mkdir = nextmd) {
2596 			nextmd = LIST_NEXT(mkdir, md_mkdirs);
2597 			if (mkdir->md_diradd != dap)
2598 				continue;
2599 			dap->da_state &= ~mkdir->md_state;
2600 			WORKLIST_REMOVE(&mkdir->md_list);
2601 			LIST_REMOVE(mkdir, md_mkdirs);
2602 			WORKITEM_FREE(mkdir, D_MKDIR);
2603 		}
2604 		if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
2605 			FREE_LOCK(&lk);
2606 			panic("free_diradd: unfound ref");
2607 		}
2608 	}
2609 	WORKITEM_FREE(dap, D_DIRADD);
2610 }
2611 
2612 /*
2613  * Directory entry removal dependencies.
2614  *
2615  * When removing a directory entry, the entry's inode pointer must be
2616  * zero'ed on disk before the corresponding inode's link count is decremented
2617  * (possibly freeing the inode for re-use). This dependency is handled by
2618  * updating the directory entry but delaying the inode count reduction until
2619  * after the directory block has been written to disk. After this point, the
2620  * inode count can be decremented whenever it is convenient.
2621  */
2622 
2623 /*
2624  * This routine should be called immediately after removing
2625  * a directory entry.  The inode's link count should not be
2626  * decremented by the calling procedure -- the soft updates
2627  * code will do this task when it is safe.
2628  *
2629  * Parameters:
2630  *	bp:		buffer containing directory block
2631  *	dp:		inode for the directory being modified
2632  *	ip:		inode for directory entry being removed
2633  *	isrmdir:	indicates if doing RMDIR
2634  */
2635 void
2636 softdep_setup_remove(struct buf *bp, struct inode *dp, struct inode *ip,
2637 		     int isrmdir)
2638 {
2639 	struct dirrem *dirrem, *prevdirrem;
2640 
2641 	/*
2642 	 * Allocate a new dirrem if appropriate and ACQUIRE_LOCK.
2643 	 */
2644 	dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
2645 
2646 	/*
2647 	 * If the COMPLETE flag is clear, then there were no active
2648 	 * entries and we want to roll back to a zeroed entry until
2649 	 * the new inode is committed to disk. If the COMPLETE flag is
2650 	 * set then we have deleted an entry that never made it to
2651 	 * disk. If the entry we deleted resulted from a name change,
2652 	 * then the old name still resides on disk. We cannot delete
2653 	 * its inode (returned to us in prevdirrem) until the zeroed
2654 	 * directory entry gets to disk. The new inode has never been
2655 	 * referenced on the disk, so can be deleted immediately.
2656 	 */
2657 	if ((dirrem->dm_state & COMPLETE) == 0) {
2658 		LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, dirrem,
2659 		    dm_next);
2660 		FREE_LOCK(&lk);
2661 	} else {
2662 		if (prevdirrem != NULL)
2663 			LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd,
2664 			    prevdirrem, dm_next);
2665 		dirrem->dm_dirinum = dirrem->dm_pagedep->pd_ino;
2666 		FREE_LOCK(&lk);
2667 		handle_workitem_remove(dirrem);
2668 	}
2669 }
2670 
2671 /*
2672  * Allocate a new dirrem if appropriate and return it along with
2673  * its associated pagedep. Called without a lock, returns with lock.
2674  */
2675 static long num_dirrem;		/* number of dirrem allocated */
2676 
2677 /*
2678  * Parameters:
2679  *	bp:		buffer containing directory block
2680  *	dp:		inode for the directory being modified
2681  *	ip:		inode for directory entry being removed
2682  *	isrmdir:	indicates if doing RMDIR
2683  *	prevdirremp:	previously referenced inode, if any
2684  */
2685 static struct dirrem *
2686 newdirrem(struct buf *bp, struct inode *dp, struct inode *ip,
2687 	  int isrmdir, struct dirrem **prevdirremp)
2688 {
2689 	int offset;
2690 	ufs_lbn_t lbn;
2691 	struct diradd *dap;
2692 	struct dirrem *dirrem;
2693 	struct pagedep *pagedep;
2694 
2695 	/*
2696 	 * Whiteouts have no deletion dependencies.
2697 	 */
2698 	if (ip == NULL)
2699 		panic("newdirrem: whiteout");
2700 	/*
2701 	 * If we are over our limit, try to improve the situation.
2702 	 * Limiting the number of dirrem structures will also limit
2703 	 * the number of freefile and freeblks structures.
2704 	 */
2705 	if (num_dirrem > max_softdeps / 2 && speedup_syncer() == 0)
2706 		(void) request_cleanup(FLUSH_REMOVE, 0);
2707 	num_dirrem += 1;
2708 	MALLOC(dirrem, struct dirrem *, sizeof(struct dirrem),
2709 		M_DIRREM, M_SOFTDEP_FLAGS | M_ZERO);
2710 	dirrem->dm_list.wk_type = D_DIRREM;
2711 	dirrem->dm_state = isrmdir ? RMDIR : 0;
2712 	dirrem->dm_mnt = ITOV(ip)->v_mount;
2713 	dirrem->dm_oldinum = ip->i_number;
2714 	*prevdirremp = NULL;
2715 
2716 	ACQUIRE_LOCK(&lk);
2717 	lbn = lblkno(dp->i_fs, dp->i_offset);
2718 	offset = blkoff(dp->i_fs, dp->i_offset);
2719 	if (pagedep_lookup(dp, lbn, DEPALLOC, &pagedep) == 0)
2720 		WORKLIST_INSERT_BP(bp, &pagedep->pd_list);
2721 	dirrem->dm_pagedep = pagedep;
2722 	/*
2723 	 * Check for a diradd dependency for the same directory entry.
2724 	 * If present, then both dependencies become obsolete and can
2725 	 * be de-allocated. Check for an entry on both the pd_dirraddhd
2726 	 * list and the pd_pendinghd list.
2727 	 */
2728 
2729 	LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(offset)], da_pdlist)
2730 		if (dap->da_offset == offset)
2731 			break;
2732 	if (dap == NULL) {
2733 
2734 		LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist)
2735 			if (dap->da_offset == offset)
2736 				break;
2737 		if (dap == NULL)
2738 			return (dirrem);
2739 	}
2740 	/*
2741 	 * Must be ATTACHED at this point.
2742 	 */
2743 	if ((dap->da_state & ATTACHED) == 0) {
2744 		FREE_LOCK(&lk);
2745 		panic("newdirrem: not ATTACHED");
2746 	}
2747 	if (dap->da_newinum != ip->i_number) {
2748 		FREE_LOCK(&lk);
2749 		panic("newdirrem: inum %"PRId64" should be %"PRId64,
2750 		    ip->i_number, dap->da_newinum);
2751 	}
2752 	/*
2753 	 * If we are deleting a changed name that never made it to disk,
2754 	 * then return the dirrem describing the previous inode (which
2755 	 * represents the inode currently referenced from this entry on disk).
2756 	 */
2757 	if ((dap->da_state & DIRCHG) != 0) {
2758 		*prevdirremp = dap->da_previous;
2759 		dap->da_state &= ~DIRCHG;
2760 		dap->da_pagedep = pagedep;
2761 	}
2762 	/*
2763 	 * We are deleting an entry that never made it to disk.
2764 	 * Mark it COMPLETE so we can delete its inode immediately.
2765 	 */
2766 	dirrem->dm_state |= COMPLETE;
2767 	free_diradd(dap);
2768 	return (dirrem);
2769 }
2770 
2771 /*
2772  * Directory entry change dependencies.
2773  *
2774  * Changing an existing directory entry requires that an add operation
2775  * be completed first followed by a deletion. The semantics for the addition
2776  * are identical to the description of adding a new entry above except
2777  * that the rollback is to the old inode number rather than zero. Once
2778  * the addition dependency is completed, the removal is done as described
2779  * in the removal routine above.
2780  */
2781 
2782 /*
2783  * This routine should be called immediately after changing
2784  * a directory entry.  The inode's link count should not be
2785  * decremented by the calling procedure -- the soft updates
2786  * code will perform this task when it is safe.
2787  *
2788  * Parameters:
2789  *	bp:		buffer containing directory block
2790  *	dp:		inode for the directory being modified
2791  *	ip:		inode for directory entry being removed
2792  *	newinum:	new inode number for changed entry
2793  *	isrmdir:	indicates if doing RMDIR
2794  */
2795 void
2796 softdep_setup_directory_change(struct buf *bp, struct inode *dp,
2797 			       struct inode *ip, ino_t newinum,
2798 			       int isrmdir)
2799 {
2800 	int offset;
2801 	struct diradd *dap = NULL;
2802 	struct dirrem *dirrem, *prevdirrem;
2803 	struct pagedep *pagedep;
2804 	struct inodedep *inodedep;
2805 
2806 	offset = blkoff(dp->i_fs, dp->i_offset);
2807 
2808 	/*
2809 	 * Whiteouts do not need diradd dependencies.
2810 	 */
2811 	if (newinum != WINO) {
2812 		MALLOC(dap, struct diradd *, sizeof(struct diradd),
2813 		    M_DIRADD, M_SOFTDEP_FLAGS | M_ZERO);
2814 		dap->da_list.wk_type = D_DIRADD;
2815 		dap->da_state = DIRCHG | ATTACHED | DEPCOMPLETE;
2816 		dap->da_offset = offset;
2817 		dap->da_newinum = newinum;
2818 	}
2819 
2820 	/*
2821 	 * Allocate a new dirrem and ACQUIRE_LOCK.
2822 	 */
2823 	dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
2824 	pagedep = dirrem->dm_pagedep;
2825 	/*
2826 	 * The possible values for isrmdir:
2827 	 *	0 - non-directory file rename
2828 	 *	1 - directory rename within same directory
2829 	 *   inum - directory rename to new directory of given inode number
2830 	 * When renaming to a new directory, we are both deleting and
2831 	 * creating a new directory entry, so the link count on the new
2832 	 * directory should not change. Thus we do not need the followup
2833 	 * dirrem which is usually done in handle_workitem_remove. We set
2834 	 * the DIRCHG flag to tell handle_workitem_remove to skip the
2835 	 * followup dirrem.
2836 	 */
2837 	if (isrmdir > 1)
2838 		dirrem->dm_state |= DIRCHG;
2839 
2840 	/*
2841 	 * Whiteouts have no additional dependencies,
2842 	 * so just put the dirrem on the correct list.
2843 	 */
2844 	if (newinum == WINO) {
2845 		if ((dirrem->dm_state & COMPLETE) == 0) {
2846 			LIST_INSERT_HEAD(&pagedep->pd_dirremhd, dirrem,
2847 			    dm_next);
2848 		} else {
2849 			dirrem->dm_dirinum = pagedep->pd_ino;
2850 			add_to_worklist(&dirrem->dm_list);
2851 		}
2852 		FREE_LOCK(&lk);
2853 		return;
2854 	}
2855 
2856 	/*
2857 	 * If the COMPLETE flag is clear, then there were no active
2858 	 * entries and we want to roll back to the previous inode until
2859 	 * the new inode is committed to disk. If the COMPLETE flag is
2860 	 * set, then we have deleted an entry that never made it to disk.
2861 	 * If the entry we deleted resulted from a name change, then the old
2862 	 * inode reference still resides on disk. Any rollback that we do
2863 	 * needs to be to that old inode (returned to us in prevdirrem). If
2864 	 * the entry we deleted resulted from a create, then there is
2865 	 * no entry on the disk, so we want to roll back to zero rather
2866 	 * than the uncommitted inode. In either of the COMPLETE cases we
2867 	 * want to immediately free the unwritten and unreferenced inode.
2868 	 */
2869 	if ((dirrem->dm_state & COMPLETE) == 0) {
2870 		dap->da_previous = dirrem;
2871 	} else {
2872 		if (prevdirrem != NULL) {
2873 			dap->da_previous = prevdirrem;
2874 		} else {
2875 			dap->da_state &= ~DIRCHG;
2876 			dap->da_pagedep = pagedep;
2877 		}
2878 		dirrem->dm_dirinum = pagedep->pd_ino;
2879 		add_to_worklist(&dirrem->dm_list);
2880 	}
2881 	/*
2882 	 * Link into its inodedep. Put it on the id_bufwait list if the inode
2883 	 * is not yet written. If it is written, do the post-inode write
2884 	 * processing to put it on the id_pendinghd list.
2885 	 */
2886 	if (inodedep_lookup(dp->i_fs, newinum, DEPALLOC, &inodedep) == 0 ||
2887 	    (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
2888 		dap->da_state |= COMPLETE;
2889 		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
2890 		WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
2891 	} else {
2892 		LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)],
2893 		    dap, da_pdlist);
2894 		WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
2895 	}
2896 	FREE_LOCK(&lk);
2897 }
2898 
2899 /*
2900  * Called whenever the link count on an inode is changed.
2901  * It creates an inode dependency so that the new reference(s)
2902  * to the inode cannot be committed to disk until the updated
2903  * inode has been written.
2904  *
2905  * Parameters:
2906  *	ip:	the inode with the increased link count
2907  */
2908 void
2909 softdep_change_linkcnt(struct inode *ip)
2910 {
2911 	struct inodedep *inodedep;
2912 
2913 	ACQUIRE_LOCK(&lk);
2914 	(void) inodedep_lookup(ip->i_fs, ip->i_number, DEPALLOC, &inodedep);
2915 	if (ip->i_nlink < ip->i_effnlink) {
2916 		FREE_LOCK(&lk);
2917 		panic("softdep_change_linkcnt: bad delta");
2918 	}
2919 	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
2920 	FREE_LOCK(&lk);
2921 }
2922 
2923 /*
2924  * This workitem decrements the inode's link count.
2925  * If the link count reaches zero, the file is removed.
2926  */
2927 static void
2928 handle_workitem_remove(struct dirrem *dirrem)
2929 {
2930 	struct inodedep *inodedep;
2931 	struct vnode *vp;
2932 	struct inode *ip;
2933 	ino_t oldinum;
2934 	int error;
2935 
2936 	error = VFS_VGET(dirrem->dm_mnt, NULL, dirrem->dm_oldinum, &vp);
2937 	if (error) {
2938 		softdep_error("handle_workitem_remove: vget", error);
2939 		return;
2940 	}
2941 	ip = VTOI(vp);
2942 	ACQUIRE_LOCK(&lk);
2943 	if ((inodedep_lookup(ip->i_fs, dirrem->dm_oldinum, 0, &inodedep)) == 0){
2944 		FREE_LOCK(&lk);
2945 		panic("handle_workitem_remove: lost inodedep");
2946 	}
2947 	/*
2948 	 * Normal file deletion.
2949 	 */
2950 	if ((dirrem->dm_state & RMDIR) == 0) {
2951 		ip->i_nlink--;
2952 		ip->i_flag |= IN_CHANGE;
2953 		if (ip->i_nlink < ip->i_effnlink) {
2954 			FREE_LOCK(&lk);
2955 			panic("handle_workitem_remove: bad file delta");
2956 		}
2957 		inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
2958 		FREE_LOCK(&lk);
2959 		vput(vp);
2960 		num_dirrem -= 1;
2961 		WORKITEM_FREE(dirrem, D_DIRREM);
2962 		return;
2963 	}
2964 	/*
2965 	 * Directory deletion. Decrement reference count for both the
2966 	 * just deleted parent directory entry and the reference for ".".
2967 	 * Next truncate the directory to length zero. When the
2968 	 * truncation completes, arrange to have the reference count on
2969 	 * the parent decremented to account for the loss of "..".
2970 	 */
2971 	ip->i_nlink -= 2;
2972 	ip->i_flag |= IN_CHANGE;
2973 	if (ip->i_nlink < ip->i_effnlink) {
2974 		FREE_LOCK(&lk);
2975 		panic("handle_workitem_remove: bad dir delta");
2976 	}
2977 	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
2978 	FREE_LOCK(&lk);
2979 	if ((error = ffs_truncate(vp, (off_t)0, 0, proc0.p_ucred)) != 0)
2980 		softdep_error("handle_workitem_remove: truncate", error);
2981 	/*
2982 	 * Rename a directory to a new parent. Since, we are both deleting
2983 	 * and creating a new directory entry, the link count on the new
2984 	 * directory should not change. Thus we skip the followup dirrem.
2985 	 */
2986 	if (dirrem->dm_state & DIRCHG) {
2987 		vput(vp);
2988 		num_dirrem -= 1;
2989 		WORKITEM_FREE(dirrem, D_DIRREM);
2990 		return;
2991 	}
2992 	/*
2993 	 * If the inodedep does not exist, then the zero'ed inode has
2994 	 * been written to disk. If the allocated inode has never been
2995 	 * written to disk, then the on-disk inode is zero'ed. In either
2996 	 * case we can remove the file immediately.
2997 	 */
2998 	ACQUIRE_LOCK(&lk);
2999 	dirrem->dm_state = 0;
3000 	oldinum = dirrem->dm_oldinum;
3001 	dirrem->dm_oldinum = dirrem->dm_dirinum;
3002 	if (inodedep_lookup(ip->i_fs, oldinum, 0, &inodedep) == 0 ||
3003 	    check_inode_unwritten(inodedep)) {
3004 		FREE_LOCK(&lk);
3005 		vput(vp);
3006 		handle_workitem_remove(dirrem);
3007 		return;
3008 	}
3009 	WORKLIST_INSERT(&inodedep->id_inowait, &dirrem->dm_list);
3010 	FREE_LOCK(&lk);
3011 	ip->i_flag |= IN_CHANGE;
3012 	ffs_update(vp, 0);
3013 	vput(vp);
3014 }
3015 
3016 /*
3017  * Inode de-allocation dependencies.
3018  *
3019  * When an inode's link count is reduced to zero, it can be de-allocated. We
3020  * found it convenient to postpone de-allocation until after the inode is
3021  * written to disk with its new link count (zero).  At this point, all of the
3022  * on-disk inode's block pointers are nullified and, with careful dependency
3023  * list ordering, all dependencies related to the inode will be satisfied and
3024  * the corresponding dependency structures de-allocated.  So, if/when the
3025  * inode is reused, there will be no mixing of old dependencies with new
3026  * ones.  This artificial dependency is set up by the block de-allocation
3027  * procedure above (softdep_setup_freeblocks) and completed by the
3028  * following procedure.
3029  */
3030 static void
3031 handle_workitem_freefile(struct freefile *freefile)
3032 {
3033 	struct vnode vp;
3034 	struct inode tip;
3035 	struct inodedep *idp;
3036 	int error;
3037 
3038 #ifdef DEBUG
3039 	ACQUIRE_LOCK(&lk);
3040 	error = inodedep_lookup(freefile->fx_fs, freefile->fx_oldinum, 0, &idp);
3041 	FREE_LOCK(&lk);
3042 	if (error)
3043 		panic("handle_workitem_freefile: inodedep survived");
3044 #endif
3045 	tip.i_devvp = freefile->fx_devvp;
3046 	tip.i_dev = freefile->fx_devvp->v_rdev;
3047 	tip.i_fs = freefile->fx_fs;
3048 	vp.v_data = &tip;
3049 	if ((error = ffs_freefile(&vp, freefile->fx_oldinum, freefile->fx_mode)) != 0)
3050 		softdep_error("handle_workitem_freefile", error);
3051 	WORKITEM_FREE(freefile, D_FREEFILE);
3052 }
3053 
3054 /*
3055  * Helper function which unlinks marker element from work list and returns
3056  * the next element on the list.
3057  */
3058 static __inline struct worklist *
3059 markernext(struct worklist *marker)
3060 {
3061 	struct worklist *next;
3062 
3063 	next = LIST_NEXT(marker, wk_list);
3064 	LIST_REMOVE(marker, wk_list);
3065 	return next;
3066 }
3067 
3068 /*
3069  * checkread, checkwrite
3070  *
3071  */
3072 static  int
3073 softdep_checkread(struct buf *bp)
3074 {
3075 	return(0);
3076 }
3077 
3078 static  int
3079 softdep_checkwrite(struct buf *bp)
3080 {
3081 	return(0);
3082 }
3083 
3084 /*
3085  * Disk writes.
3086  *
3087  * The dependency structures constructed above are most actively used when file
3088  * system blocks are written to disk.  No constraints are placed on when a
3089  * block can be written, but unsatisfied update dependencies are made safe by
3090  * modifying (or replacing) the source memory for the duration of the disk
3091  * write.  When the disk write completes, the memory block is again brought
3092  * up-to-date.
3093  *
3094  * In-core inode structure reclamation.
3095  *
3096  * Because there are a finite number of "in-core" inode structures, they are
3097  * reused regularly.  By transferring all inode-related dependencies to the
3098  * in-memory inode block and indexing them separately (via "inodedep"s), we
3099  * can allow "in-core" inode structures to be reused at any time and avoid
3100  * any increase in contention.
3101  *
3102  * Called just before entering the device driver to initiate a new disk I/O.
3103  * The buffer must be locked, thus, no I/O completion operations can occur
3104  * while we are manipulating its associated dependencies.
3105  *
3106  * Parameters:
3107  *	bp:	structure describing disk write to occur
3108  */
3109 static void
3110 softdep_disk_io_initiation(struct buf *bp)
3111 {
3112 	struct worklist *wk;
3113 	struct worklist marker;
3114 	struct indirdep *indirdep;
3115 
3116 	/*
3117 	 * We only care about write operations. There should never
3118 	 * be dependencies for reads.
3119 	 */
3120 	if (bp->b_cmd == BUF_CMD_READ)
3121 		panic("softdep_disk_io_initiation: read");
3122 
3123 	marker.wk_type = D_LAST + 1;	/* Not a normal workitem */
3124 
3125 	/*
3126 	 * Do any necessary pre-I/O processing.
3127 	 */
3128 	for (wk = LIST_FIRST(&bp->b_dep); wk; wk = markernext(&marker)) {
3129 		LIST_INSERT_AFTER(wk, &marker, wk_list);
3130 
3131 		switch (wk->wk_type) {
3132 
3133 		case D_PAGEDEP:
3134 			initiate_write_filepage(WK_PAGEDEP(wk), bp);
3135 			continue;
3136 
3137 		case D_INODEDEP:
3138 			initiate_write_inodeblock(WK_INODEDEP(wk), bp);
3139 			continue;
3140 
3141 		case D_INDIRDEP:
3142 			indirdep = WK_INDIRDEP(wk);
3143 			if (indirdep->ir_state & GOINGAWAY)
3144 				panic("disk_io_initiation: indirdep gone");
3145 			/*
3146 			 * If there are no remaining dependencies, this
3147 			 * will be writing the real pointers, so the
3148 			 * dependency can be freed.
3149 			 */
3150 			if (LIST_FIRST(&indirdep->ir_deplisthd) == NULL) {
3151 				indirdep->ir_savebp->b_flags |= B_INVAL | B_NOCACHE;
3152 				brelse(indirdep->ir_savebp);
3153 				/* inline expand WORKLIST_REMOVE(wk); */
3154 				wk->wk_state &= ~ONWORKLIST;
3155 				LIST_REMOVE(wk, wk_list);
3156 				WORKITEM_FREE(indirdep, D_INDIRDEP);
3157 				continue;
3158 			}
3159 			/*
3160 			 * Replace up-to-date version with safe version.
3161 			 */
3162 			MALLOC(indirdep->ir_saveddata, caddr_t, bp->b_bcount,
3163 			    M_INDIRDEP, M_SOFTDEP_FLAGS);
3164 			ACQUIRE_LOCK(&lk);
3165 			indirdep->ir_state &= ~ATTACHED;
3166 			indirdep->ir_state |= UNDONE;
3167 			bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount);
3168 			bcopy(indirdep->ir_savebp->b_data, bp->b_data,
3169 			    bp->b_bcount);
3170 			FREE_LOCK(&lk);
3171 			continue;
3172 
3173 		case D_MKDIR:
3174 		case D_BMSAFEMAP:
3175 		case D_ALLOCDIRECT:
3176 		case D_ALLOCINDIR:
3177 			continue;
3178 
3179 		default:
3180 			panic("handle_disk_io_initiation: Unexpected type %s",
3181 			    TYPENAME(wk->wk_type));
3182 			/* NOTREACHED */
3183 		}
3184 	}
3185 }
3186 
3187 /*
3188  * Called from within the procedure above to deal with unsatisfied
3189  * allocation dependencies in a directory. The buffer must be locked,
3190  * thus, no I/O completion operations can occur while we are
3191  * manipulating its associated dependencies.
3192  */
3193 static void
3194 initiate_write_filepage(struct pagedep *pagedep, struct buf *bp)
3195 {
3196 	struct diradd *dap;
3197 	struct direct *ep;
3198 	int i;
3199 
3200 	if (pagedep->pd_state & IOSTARTED) {
3201 		/*
3202 		 * This can only happen if there is a driver that does not
3203 		 * understand chaining. Here biodone will reissue the call
3204 		 * to strategy for the incomplete buffers.
3205 		 */
3206 		kprintf("initiate_write_filepage: already started\n");
3207 		return;
3208 	}
3209 	pagedep->pd_state |= IOSTARTED;
3210 	ACQUIRE_LOCK(&lk);
3211 	for (i = 0; i < DAHASHSZ; i++) {
3212 		LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
3213 			ep = (struct direct *)
3214 			    ((char *)bp->b_data + dap->da_offset);
3215 			if (ep->d_ino != dap->da_newinum) {
3216 				FREE_LOCK(&lk);
3217 				panic("%s: dir inum %d != new %"PRId64,
3218 				    "initiate_write_filepage",
3219 				    ep->d_ino, dap->da_newinum);
3220 			}
3221 			if (dap->da_state & DIRCHG)
3222 				ep->d_ino = dap->da_previous->dm_oldinum;
3223 			else
3224 				ep->d_ino = 0;
3225 			dap->da_state &= ~ATTACHED;
3226 			dap->da_state |= UNDONE;
3227 		}
3228 	}
3229 	FREE_LOCK(&lk);
3230 }
3231 
3232 /*
3233  * Called from within the procedure above to deal with unsatisfied
3234  * allocation dependencies in an inodeblock. The buffer must be
3235  * locked, thus, no I/O completion operations can occur while we
3236  * are manipulating its associated dependencies.
3237  *
3238  * Parameters:
3239  *	bp:	The inode block
3240  */
3241 static void
3242 initiate_write_inodeblock(struct inodedep *inodedep, struct buf *bp)
3243 {
3244 	struct allocdirect *adp, *lastadp;
3245 	struct ufs1_dinode *dp;
3246 	struct ufs1_dinode *sip;
3247 	struct fs *fs;
3248 	ufs_lbn_t prevlbn = 0;
3249 	int i, deplist;
3250 
3251 	if (inodedep->id_state & IOSTARTED)
3252 		panic("initiate_write_inodeblock: already started");
3253 	inodedep->id_state |= IOSTARTED;
3254 	fs = inodedep->id_fs;
3255 	dp = (struct ufs1_dinode *)bp->b_data +
3256 	    ino_to_fsbo(fs, inodedep->id_ino);
3257 	/*
3258 	 * If the bitmap is not yet written, then the allocated
3259 	 * inode cannot be written to disk.
3260 	 */
3261 	if ((inodedep->id_state & DEPCOMPLETE) == 0) {
3262 		if (inodedep->id_savedino != NULL)
3263 			panic("initiate_write_inodeblock: already doing I/O");
3264 		MALLOC(sip, struct ufs1_dinode *,
3265 		    sizeof(struct ufs1_dinode), M_INODEDEP, M_SOFTDEP_FLAGS);
3266 		inodedep->id_savedino = sip;
3267 		*inodedep->id_savedino = *dp;
3268 		bzero((caddr_t)dp, sizeof(struct ufs1_dinode));
3269 		dp->di_gen = inodedep->id_savedino->di_gen;
3270 		return;
3271 	}
3272 	/*
3273 	 * If no dependencies, then there is nothing to roll back.
3274 	 */
3275 	inodedep->id_savedsize = dp->di_size;
3276 	if (TAILQ_FIRST(&inodedep->id_inoupdt) == NULL)
3277 		return;
3278 	/*
3279 	 * Set the dependencies to busy.
3280 	 */
3281 	ACQUIRE_LOCK(&lk);
3282 	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
3283 	     adp = TAILQ_NEXT(adp, ad_next)) {
3284 #ifdef DIAGNOSTIC
3285 		if (deplist != 0 && prevlbn >= adp->ad_lbn) {
3286 			FREE_LOCK(&lk);
3287 			panic("softdep_write_inodeblock: lbn order");
3288 		}
3289 		prevlbn = adp->ad_lbn;
3290 		if (adp->ad_lbn < NDADDR &&
3291 		    dp->di_db[adp->ad_lbn] != adp->ad_newblkno) {
3292 			FREE_LOCK(&lk);
3293 			panic("%s: direct pointer #%ld mismatch %d != %d",
3294 			    "softdep_write_inodeblock", adp->ad_lbn,
3295 			    dp->di_db[adp->ad_lbn], adp->ad_newblkno);
3296 		}
3297 		if (adp->ad_lbn >= NDADDR &&
3298 		    dp->di_ib[adp->ad_lbn - NDADDR] != adp->ad_newblkno) {
3299 			FREE_LOCK(&lk);
3300 			panic("%s: indirect pointer #%ld mismatch %d != %d",
3301 			    "softdep_write_inodeblock", adp->ad_lbn - NDADDR,
3302 			    dp->di_ib[adp->ad_lbn - NDADDR], adp->ad_newblkno);
3303 		}
3304 		deplist |= 1 << adp->ad_lbn;
3305 		if ((adp->ad_state & ATTACHED) == 0) {
3306 			FREE_LOCK(&lk);
3307 			panic("softdep_write_inodeblock: Unknown state 0x%x",
3308 			    adp->ad_state);
3309 		}
3310 #endif /* DIAGNOSTIC */
3311 		adp->ad_state &= ~ATTACHED;
3312 		adp->ad_state |= UNDONE;
3313 	}
3314 	/*
3315 	 * The on-disk inode cannot claim to be any larger than the last
3316 	 * fragment that has been written. Otherwise, the on-disk inode
3317 	 * might have fragments that were not the last block in the file
3318 	 * which would corrupt the filesystem.
3319 	 */
3320 	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
3321 	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
3322 		if (adp->ad_lbn >= NDADDR)
3323 			break;
3324 		dp->di_db[adp->ad_lbn] = adp->ad_oldblkno;
3325 		/* keep going until hitting a rollback to a frag */
3326 		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
3327 			continue;
3328 		dp->di_size = fs->fs_bsize * adp->ad_lbn + adp->ad_oldsize;
3329 		for (i = adp->ad_lbn + 1; i < NDADDR; i++) {
3330 #ifdef DIAGNOSTIC
3331 			if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0) {
3332 				FREE_LOCK(&lk);
3333 				panic("softdep_write_inodeblock: lost dep1");
3334 			}
3335 #endif /* DIAGNOSTIC */
3336 			dp->di_db[i] = 0;
3337 		}
3338 		for (i = 0; i < NIADDR; i++) {
3339 #ifdef DIAGNOSTIC
3340 			if (dp->di_ib[i] != 0 &&
3341 			    (deplist & ((1 << NDADDR) << i)) == 0) {
3342 				FREE_LOCK(&lk);
3343 				panic("softdep_write_inodeblock: lost dep2");
3344 			}
3345 #endif /* DIAGNOSTIC */
3346 			dp->di_ib[i] = 0;
3347 		}
3348 		FREE_LOCK(&lk);
3349 		return;
3350 	}
3351 	/*
3352 	 * If we have zero'ed out the last allocated block of the file,
3353 	 * roll back the size to the last currently allocated block.
3354 	 * We know that this last allocated block is a full-sized as
3355 	 * we already checked for fragments in the loop above.
3356 	 */
3357 	if (lastadp != NULL &&
3358 	    dp->di_size <= (lastadp->ad_lbn + 1) * fs->fs_bsize) {
3359 		for (i = lastadp->ad_lbn; i >= 0; i--)
3360 			if (dp->di_db[i] != 0)
3361 				break;
3362 		dp->di_size = (i + 1) * fs->fs_bsize;
3363 	}
3364 	/*
3365 	 * The only dependencies are for indirect blocks.
3366 	 *
3367 	 * The file size for indirect block additions is not guaranteed.
3368 	 * Such a guarantee would be non-trivial to achieve. The conventional
3369 	 * synchronous write implementation also does not make this guarantee.
3370 	 * Fsck should catch and fix discrepancies. Arguably, the file size
3371 	 * can be over-estimated without destroying integrity when the file
3372 	 * moves into the indirect blocks (i.e., is large). If we want to
3373 	 * postpone fsck, we are stuck with this argument.
3374 	 */
3375 	for (; adp; adp = TAILQ_NEXT(adp, ad_next))
3376 		dp->di_ib[adp->ad_lbn - NDADDR] = 0;
3377 	FREE_LOCK(&lk);
3378 }
3379 
3380 /*
3381  * This routine is called during the completion interrupt
3382  * service routine for a disk write (from the procedure called
3383  * by the device driver to inform the filesystem caches of
3384  * a request completion).  It should be called early in this
3385  * procedure, before the block is made available to other
3386  * processes or other routines are called.
3387  *
3388  * Parameters:
3389  *	bp:	describes the completed disk write
3390  */
3391 static void
3392 softdep_disk_write_complete(struct buf *bp)
3393 {
3394 	struct worklist *wk;
3395 	struct workhead reattach;
3396 	struct newblk *newblk;
3397 	struct allocindir *aip;
3398 	struct allocdirect *adp;
3399 	struct indirdep *indirdep;
3400 	struct inodedep *inodedep;
3401 	struct bmsafemap *bmsafemap;
3402 
3403 #ifdef DEBUG
3404 	if (lk.lkt_held != NOHOLDER)
3405 		panic("softdep_disk_write_complete: lock is held");
3406 	lk.lkt_held = SPECIAL_FLAG;
3407 #endif
3408 	LIST_INIT(&reattach);
3409 	while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) {
3410 		WORKLIST_REMOVE(wk);
3411 		switch (wk->wk_type) {
3412 
3413 		case D_PAGEDEP:
3414 			if (handle_written_filepage(WK_PAGEDEP(wk), bp))
3415 				WORKLIST_INSERT(&reattach, wk);
3416 			continue;
3417 
3418 		case D_INODEDEP:
3419 			if (handle_written_inodeblock(WK_INODEDEP(wk), bp))
3420 				WORKLIST_INSERT(&reattach, wk);
3421 			continue;
3422 
3423 		case D_BMSAFEMAP:
3424 			bmsafemap = WK_BMSAFEMAP(wk);
3425 			while ((newblk = LIST_FIRST(&bmsafemap->sm_newblkhd))) {
3426 				newblk->nb_state |= DEPCOMPLETE;
3427 				newblk->nb_bmsafemap = NULL;
3428 				LIST_REMOVE(newblk, nb_deps);
3429 			}
3430 			while ((adp =
3431 			   LIST_FIRST(&bmsafemap->sm_allocdirecthd))) {
3432 				adp->ad_state |= DEPCOMPLETE;
3433 				adp->ad_buf = NULL;
3434 				LIST_REMOVE(adp, ad_deps);
3435 				handle_allocdirect_partdone(adp);
3436 			}
3437 			while ((aip =
3438 			    LIST_FIRST(&bmsafemap->sm_allocindirhd))) {
3439 				aip->ai_state |= DEPCOMPLETE;
3440 				aip->ai_buf = NULL;
3441 				LIST_REMOVE(aip, ai_deps);
3442 				handle_allocindir_partdone(aip);
3443 			}
3444 			while ((inodedep =
3445 			     LIST_FIRST(&bmsafemap->sm_inodedephd)) != NULL) {
3446 				inodedep->id_state |= DEPCOMPLETE;
3447 				LIST_REMOVE(inodedep, id_deps);
3448 				inodedep->id_buf = NULL;
3449 			}
3450 			WORKITEM_FREE(bmsafemap, D_BMSAFEMAP);
3451 			continue;
3452 
3453 		case D_MKDIR:
3454 			handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY);
3455 			continue;
3456 
3457 		case D_ALLOCDIRECT:
3458 			adp = WK_ALLOCDIRECT(wk);
3459 			adp->ad_state |= COMPLETE;
3460 			handle_allocdirect_partdone(adp);
3461 			continue;
3462 
3463 		case D_ALLOCINDIR:
3464 			aip = WK_ALLOCINDIR(wk);
3465 			aip->ai_state |= COMPLETE;
3466 			handle_allocindir_partdone(aip);
3467 			continue;
3468 
3469 		case D_INDIRDEP:
3470 			indirdep = WK_INDIRDEP(wk);
3471 			if (indirdep->ir_state & GOINGAWAY) {
3472 				lk.lkt_held = NOHOLDER;
3473 				panic("disk_write_complete: indirdep gone");
3474 			}
3475 			bcopy(indirdep->ir_saveddata, bp->b_data, bp->b_bcount);
3476 			FREE(indirdep->ir_saveddata, M_INDIRDEP);
3477 			indirdep->ir_saveddata = 0;
3478 			indirdep->ir_state &= ~UNDONE;
3479 			indirdep->ir_state |= ATTACHED;
3480 			while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != 0) {
3481 				handle_allocindir_partdone(aip);
3482 				if (aip == LIST_FIRST(&indirdep->ir_donehd)) {
3483 					lk.lkt_held = NOHOLDER;
3484 					panic("disk_write_complete: not gone");
3485 				}
3486 			}
3487 			WORKLIST_INSERT(&reattach, wk);
3488 			if ((bp->b_flags & B_DELWRI) == 0)
3489 				stat_indir_blk_ptrs++;
3490 			bdirty(bp);
3491 			continue;
3492 
3493 		default:
3494 			lk.lkt_held = NOHOLDER;
3495 			panic("handle_disk_write_complete: Unknown type %s",
3496 			    TYPENAME(wk->wk_type));
3497 			/* NOTREACHED */
3498 		}
3499 	}
3500 	/*
3501 	 * Reattach any requests that must be redone.
3502 	 */
3503 	while ((wk = LIST_FIRST(&reattach)) != NULL) {
3504 		WORKLIST_REMOVE(wk);
3505 		WORKLIST_INSERT_BP(bp, wk);
3506 	}
3507 #ifdef DEBUG
3508 	if (lk.lkt_held != SPECIAL_FLAG)
3509 		panic("softdep_disk_write_complete: lock lost");
3510 	lk.lkt_held = NOHOLDER;
3511 #endif
3512 }
3513 
3514 /*
3515  * Called from within softdep_disk_write_complete above. Note that
3516  * this routine is always called from interrupt level with further
3517  * splbio interrupts blocked.
3518  *
3519  * Parameters:
3520  *	adp:	the completed allocdirect
3521  */
3522 static void
3523 handle_allocdirect_partdone(struct allocdirect *adp)
3524 {
3525 	struct allocdirect *listadp;
3526 	struct inodedep *inodedep;
3527 	long bsize;
3528 
3529 	if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
3530 		return;
3531 	if (adp->ad_buf != NULL) {
3532 		lk.lkt_held = NOHOLDER;
3533 		panic("handle_allocdirect_partdone: dangling dep");
3534 	}
3535 	/*
3536 	 * The on-disk inode cannot claim to be any larger than the last
3537 	 * fragment that has been written. Otherwise, the on-disk inode
3538 	 * might have fragments that were not the last block in the file
3539 	 * which would corrupt the filesystem. Thus, we cannot free any
3540 	 * allocdirects after one whose ad_oldblkno claims a fragment as
3541 	 * these blocks must be rolled back to zero before writing the inode.
3542 	 * We check the currently active set of allocdirects in id_inoupdt.
3543 	 */
3544 	inodedep = adp->ad_inodedep;
3545 	bsize = inodedep->id_fs->fs_bsize;
3546 	TAILQ_FOREACH(listadp, &inodedep->id_inoupdt, ad_next) {
3547 		/* found our block */
3548 		if (listadp == adp)
3549 			break;
3550 		/* continue if ad_oldlbn is not a fragment */
3551 		if (listadp->ad_oldsize == 0 ||
3552 		    listadp->ad_oldsize == bsize)
3553 			continue;
3554 		/* hit a fragment */
3555 		return;
3556 	}
3557 	/*
3558 	 * If we have reached the end of the current list without
3559 	 * finding the just finished dependency, then it must be
3560 	 * on the future dependency list. Future dependencies cannot
3561 	 * be freed until they are moved to the current list.
3562 	 */
3563 	if (listadp == NULL) {
3564 #ifdef DEBUG
3565 		TAILQ_FOREACH(listadp, &inodedep->id_newinoupdt, ad_next)
3566 			/* found our block */
3567 			if (listadp == adp)
3568 				break;
3569 		if (listadp == NULL) {
3570 			lk.lkt_held = NOHOLDER;
3571 			panic("handle_allocdirect_partdone: lost dep");
3572 		}
3573 #endif /* DEBUG */
3574 		return;
3575 	}
3576 	/*
3577 	 * If we have found the just finished dependency, then free
3578 	 * it along with anything that follows it that is complete.
3579 	 */
3580 	for (; adp; adp = listadp) {
3581 		listadp = TAILQ_NEXT(adp, ad_next);
3582 		if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
3583 			return;
3584 		free_allocdirect(&inodedep->id_inoupdt, adp, 1);
3585 	}
3586 }
3587 
3588 /*
3589  * Called from within softdep_disk_write_complete above. Note that
3590  * this routine is always called from interrupt level with further
3591  * splbio interrupts blocked.
3592  *
3593  * Parameters:
3594  *	aip:	the completed allocindir
3595  */
3596 static void
3597 handle_allocindir_partdone(struct allocindir *aip)
3598 {
3599 	struct indirdep *indirdep;
3600 
3601 	if ((aip->ai_state & ALLCOMPLETE) != ALLCOMPLETE)
3602 		return;
3603 	if (aip->ai_buf != NULL) {
3604 		lk.lkt_held = NOHOLDER;
3605 		panic("handle_allocindir_partdone: dangling dependency");
3606 	}
3607 	indirdep = aip->ai_indirdep;
3608 	if (indirdep->ir_state & UNDONE) {
3609 		LIST_REMOVE(aip, ai_next);
3610 		LIST_INSERT_HEAD(&indirdep->ir_donehd, aip, ai_next);
3611 		return;
3612 	}
3613 	((ufs_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] =
3614 	    aip->ai_newblkno;
3615 	LIST_REMOVE(aip, ai_next);
3616 	if (aip->ai_freefrag != NULL)
3617 		add_to_worklist(&aip->ai_freefrag->ff_list);
3618 	WORKITEM_FREE(aip, D_ALLOCINDIR);
3619 }
3620 
3621 /*
3622  * Called from within softdep_disk_write_complete above to restore
3623  * in-memory inode block contents to their most up-to-date state. Note
3624  * that this routine is always called from interrupt level with further
3625  * splbio interrupts blocked.
3626  *
3627  * Parameters:
3628  *	bp:	buffer containing the inode block
3629  */
3630 static int
3631 handle_written_inodeblock(struct inodedep *inodedep, struct buf *bp)
3632 {
3633 	struct worklist *wk, *filefree;
3634 	struct allocdirect *adp, *nextadp;
3635 	struct ufs1_dinode *dp;
3636 	int hadchanges;
3637 
3638 	if ((inodedep->id_state & IOSTARTED) == 0) {
3639 		lk.lkt_held = NOHOLDER;
3640 		panic("handle_written_inodeblock: not started");
3641 	}
3642 	inodedep->id_state &= ~IOSTARTED;
3643 	dp = (struct ufs1_dinode *)bp->b_data +
3644 	    ino_to_fsbo(inodedep->id_fs, inodedep->id_ino);
3645 	/*
3646 	 * If we had to rollback the inode allocation because of
3647 	 * bitmaps being incomplete, then simply restore it.
3648 	 * Keep the block dirty so that it will not be reclaimed until
3649 	 * all associated dependencies have been cleared and the
3650 	 * corresponding updates written to disk.
3651 	 */
3652 	if (inodedep->id_savedino != NULL) {
3653 		*dp = *inodedep->id_savedino;
3654 		FREE(inodedep->id_savedino, M_INODEDEP);
3655 		inodedep->id_savedino = NULL;
3656 		if ((bp->b_flags & B_DELWRI) == 0)
3657 			stat_inode_bitmap++;
3658 		bdirty(bp);
3659 		return (1);
3660 	}
3661 	inodedep->id_state |= COMPLETE;
3662 	/*
3663 	 * Roll forward anything that had to be rolled back before
3664 	 * the inode could be updated.
3665 	 */
3666 	hadchanges = 0;
3667 	for (adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; adp = nextadp) {
3668 		nextadp = TAILQ_NEXT(adp, ad_next);
3669 		if (adp->ad_state & ATTACHED) {
3670 			lk.lkt_held = NOHOLDER;
3671 			panic("handle_written_inodeblock: new entry");
3672 		}
3673 		if (adp->ad_lbn < NDADDR) {
3674 			if (dp->di_db[adp->ad_lbn] != adp->ad_oldblkno) {
3675 				lk.lkt_held = NOHOLDER;
3676 				panic("%s: %s #%ld mismatch %d != %d",
3677 				    "handle_written_inodeblock",
3678 				    "direct pointer", adp->ad_lbn,
3679 				    dp->di_db[adp->ad_lbn], adp->ad_oldblkno);
3680 			}
3681 			dp->di_db[adp->ad_lbn] = adp->ad_newblkno;
3682 		} else {
3683 			if (dp->di_ib[adp->ad_lbn - NDADDR] != 0) {
3684 				lk.lkt_held = NOHOLDER;
3685 				panic("%s: %s #%ld allocated as %d",
3686 				    "handle_written_inodeblock",
3687 				    "indirect pointer", adp->ad_lbn - NDADDR,
3688 				    dp->di_ib[adp->ad_lbn - NDADDR]);
3689 			}
3690 			dp->di_ib[adp->ad_lbn - NDADDR] = adp->ad_newblkno;
3691 		}
3692 		adp->ad_state &= ~UNDONE;
3693 		adp->ad_state |= ATTACHED;
3694 		hadchanges = 1;
3695 	}
3696 	if (hadchanges && (bp->b_flags & B_DELWRI) == 0)
3697 		stat_direct_blk_ptrs++;
3698 	/*
3699 	 * Reset the file size to its most up-to-date value.
3700 	 */
3701 	if (inodedep->id_savedsize == -1) {
3702 		lk.lkt_held = NOHOLDER;
3703 		panic("handle_written_inodeblock: bad size");
3704 	}
3705 	if (dp->di_size != inodedep->id_savedsize) {
3706 		dp->di_size = inodedep->id_savedsize;
3707 		hadchanges = 1;
3708 	}
3709 	inodedep->id_savedsize = -1;
3710 	/*
3711 	 * If there were any rollbacks in the inode block, then it must be
3712 	 * marked dirty so that its will eventually get written back in
3713 	 * its correct form.
3714 	 */
3715 	if (hadchanges)
3716 		bdirty(bp);
3717 	/*
3718 	 * Process any allocdirects that completed during the update.
3719 	 */
3720 	if ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL)
3721 		handle_allocdirect_partdone(adp);
3722 	/*
3723 	 * Process deallocations that were held pending until the
3724 	 * inode had been written to disk. Freeing of the inode
3725 	 * is delayed until after all blocks have been freed to
3726 	 * avoid creation of new <vfsid, inum, lbn> triples
3727 	 * before the old ones have been deleted.
3728 	 */
3729 	filefree = NULL;
3730 	while ((wk = LIST_FIRST(&inodedep->id_bufwait)) != NULL) {
3731 		WORKLIST_REMOVE(wk);
3732 		switch (wk->wk_type) {
3733 
3734 		case D_FREEFILE:
3735 			/*
3736 			 * We defer adding filefree to the worklist until
3737 			 * all other additions have been made to ensure
3738 			 * that it will be done after all the old blocks
3739 			 * have been freed.
3740 			 */
3741 			if (filefree != NULL) {
3742 				lk.lkt_held = NOHOLDER;
3743 				panic("handle_written_inodeblock: filefree");
3744 			}
3745 			filefree = wk;
3746 			continue;
3747 
3748 		case D_MKDIR:
3749 			handle_written_mkdir(WK_MKDIR(wk), MKDIR_PARENT);
3750 			continue;
3751 
3752 		case D_DIRADD:
3753 			diradd_inode_written(WK_DIRADD(wk), inodedep);
3754 			continue;
3755 
3756 		case D_FREEBLKS:
3757 			wk->wk_state |= COMPLETE;
3758 			if ((wk->wk_state  & ALLCOMPLETE) != ALLCOMPLETE)
3759 				continue;
3760 			/* -- fall through -- */
3761 		case D_FREEFRAG:
3762 		case D_DIRREM:
3763 			add_to_worklist(wk);
3764 			continue;
3765 
3766 		default:
3767 			lk.lkt_held = NOHOLDER;
3768 			panic("handle_written_inodeblock: Unknown type %s",
3769 			    TYPENAME(wk->wk_type));
3770 			/* NOTREACHED */
3771 		}
3772 	}
3773 	if (filefree != NULL) {
3774 		if (free_inodedep(inodedep) == 0) {
3775 			lk.lkt_held = NOHOLDER;
3776 			panic("handle_written_inodeblock: live inodedep");
3777 		}
3778 		add_to_worklist(filefree);
3779 		return (0);
3780 	}
3781 
3782 	/*
3783 	 * If no outstanding dependencies, free it.
3784 	 */
3785 	if (free_inodedep(inodedep) || TAILQ_FIRST(&inodedep->id_inoupdt) == 0)
3786 		return (0);
3787 	return (hadchanges);
3788 }
3789 
3790 /*
3791  * Process a diradd entry after its dependent inode has been written.
3792  * This routine must be called with splbio interrupts blocked.
3793  */
3794 static void
3795 diradd_inode_written(struct diradd *dap, struct inodedep *inodedep)
3796 {
3797 	struct pagedep *pagedep;
3798 
3799 	dap->da_state |= COMPLETE;
3800 	if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
3801 		if (dap->da_state & DIRCHG)
3802 			pagedep = dap->da_previous->dm_pagedep;
3803 		else
3804 			pagedep = dap->da_pagedep;
3805 		LIST_REMOVE(dap, da_pdlist);
3806 		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
3807 	}
3808 	WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
3809 }
3810 
3811 /*
3812  * Handle the completion of a mkdir dependency.
3813  */
3814 static void
3815 handle_written_mkdir(struct mkdir *mkdir, int type)
3816 {
3817 	struct diradd *dap;
3818 	struct pagedep *pagedep;
3819 
3820 	if (mkdir->md_state != type) {
3821 		lk.lkt_held = NOHOLDER;
3822 		panic("handle_written_mkdir: bad type");
3823 	}
3824 	dap = mkdir->md_diradd;
3825 	dap->da_state &= ~type;
3826 	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0)
3827 		dap->da_state |= DEPCOMPLETE;
3828 	if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
3829 		if (dap->da_state & DIRCHG)
3830 			pagedep = dap->da_previous->dm_pagedep;
3831 		else
3832 			pagedep = dap->da_pagedep;
3833 		LIST_REMOVE(dap, da_pdlist);
3834 		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
3835 	}
3836 	LIST_REMOVE(mkdir, md_mkdirs);
3837 	WORKITEM_FREE(mkdir, D_MKDIR);
3838 }
3839 
3840 /*
3841  * Called from within softdep_disk_write_complete above.
3842  * A write operation was just completed. Removed inodes can
3843  * now be freed and associated block pointers may be committed.
3844  * Note that this routine is always called from interrupt level
3845  * with further splbio interrupts blocked.
3846  *
3847  * Parameters:
3848  *	bp:	buffer containing the written page
3849  */
3850 static int
3851 handle_written_filepage(struct pagedep *pagedep, struct buf *bp)
3852 {
3853 	struct dirrem *dirrem;
3854 	struct diradd *dap, *nextdap;
3855 	struct direct *ep;
3856 	int i, chgs;
3857 
3858 	if ((pagedep->pd_state & IOSTARTED) == 0) {
3859 		lk.lkt_held = NOHOLDER;
3860 		panic("handle_written_filepage: not started");
3861 	}
3862 	pagedep->pd_state &= ~IOSTARTED;
3863 	/*
3864 	 * Process any directory removals that have been committed.
3865 	 */
3866 	while ((dirrem = LIST_FIRST(&pagedep->pd_dirremhd)) != NULL) {
3867 		LIST_REMOVE(dirrem, dm_next);
3868 		dirrem->dm_dirinum = pagedep->pd_ino;
3869 		add_to_worklist(&dirrem->dm_list);
3870 	}
3871 	/*
3872 	 * Free any directory additions that have been committed.
3873 	 */
3874 	while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
3875 		free_diradd(dap);
3876 	/*
3877 	 * Uncommitted directory entries must be restored.
3878 	 */
3879 	for (chgs = 0, i = 0; i < DAHASHSZ; i++) {
3880 		for (dap = LIST_FIRST(&pagedep->pd_diraddhd[i]); dap;
3881 		     dap = nextdap) {
3882 			nextdap = LIST_NEXT(dap, da_pdlist);
3883 			if (dap->da_state & ATTACHED) {
3884 				lk.lkt_held = NOHOLDER;
3885 				panic("handle_written_filepage: attached");
3886 			}
3887 			ep = (struct direct *)
3888 			    ((char *)bp->b_data + dap->da_offset);
3889 			ep->d_ino = dap->da_newinum;
3890 			dap->da_state &= ~UNDONE;
3891 			dap->da_state |= ATTACHED;
3892 			chgs = 1;
3893 			/*
3894 			 * If the inode referenced by the directory has
3895 			 * been written out, then the dependency can be
3896 			 * moved to the pending list.
3897 			 */
3898 			if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
3899 				LIST_REMOVE(dap, da_pdlist);
3900 				LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap,
3901 				    da_pdlist);
3902 			}
3903 		}
3904 	}
3905 	/*
3906 	 * If there were any rollbacks in the directory, then it must be
3907 	 * marked dirty so that its will eventually get written back in
3908 	 * its correct form.
3909 	 */
3910 	if (chgs) {
3911 		if ((bp->b_flags & B_DELWRI) == 0)
3912 			stat_dir_entry++;
3913 		bdirty(bp);
3914 	}
3915 	/*
3916 	 * If no dependencies remain, the pagedep will be freed.
3917 	 * Otherwise it will remain to update the page before it
3918 	 * is written back to disk.
3919 	 */
3920 	if (LIST_FIRST(&pagedep->pd_pendinghd) == 0) {
3921 		for (i = 0; i < DAHASHSZ; i++)
3922 			if (LIST_FIRST(&pagedep->pd_diraddhd[i]) != NULL)
3923 				break;
3924 		if (i == DAHASHSZ) {
3925 			LIST_REMOVE(pagedep, pd_hash);
3926 			WORKITEM_FREE(pagedep, D_PAGEDEP);
3927 			return (0);
3928 		}
3929 	}
3930 	return (1);
3931 }
3932 
3933 /*
3934  * Writing back in-core inode structures.
3935  *
3936  * The filesystem only accesses an inode's contents when it occupies an
3937  * "in-core" inode structure.  These "in-core" structures are separate from
3938  * the page frames used to cache inode blocks.  Only the latter are
3939  * transferred to/from the disk.  So, when the updated contents of the
3940  * "in-core" inode structure are copied to the corresponding in-memory inode
3941  * block, the dependencies are also transferred.  The following procedure is
3942  * called when copying a dirty "in-core" inode to a cached inode block.
3943  */
3944 
3945 /*
3946  * Called when an inode is loaded from disk. If the effective link count
3947  * differed from the actual link count when it was last flushed, then we
3948  * need to ensure that the correct effective link count is put back.
3949  *
3950  * Parameters:
3951  *	ip:	the "in_core" copy of the inode
3952  */
3953 void
3954 softdep_load_inodeblock(struct inode *ip)
3955 {
3956 	struct inodedep *inodedep;
3957 
3958 	/*
3959 	 * Check for alternate nlink count.
3960 	 */
3961 	ip->i_effnlink = ip->i_nlink;
3962 	ACQUIRE_LOCK(&lk);
3963 	if (inodedep_lookup(ip->i_fs, ip->i_number, 0, &inodedep) == 0) {
3964 		FREE_LOCK(&lk);
3965 		return;
3966 	}
3967 	ip->i_effnlink -= inodedep->id_nlinkdelta;
3968 	FREE_LOCK(&lk);
3969 }
3970 
3971 /*
3972  * This routine is called just before the "in-core" inode
3973  * information is to be copied to the in-memory inode block.
3974  * Recall that an inode block contains several inodes. If
3975  * the force flag is set, then the dependencies will be
3976  * cleared so that the update can always be made. Note that
3977  * the buffer is locked when this routine is called, so we
3978  * will never be in the middle of writing the inode block
3979  * to disk.
3980  *
3981  * Parameters:
3982  *	ip:		the "in_core" copy of the inode
3983  *	bp:		the buffer containing the inode block
3984  *	waitfor:	nonzero => update must be allowed
3985  */
3986 void
3987 softdep_update_inodeblock(struct inode *ip, struct buf *bp,
3988 			  int waitfor)
3989 {
3990 	struct inodedep *inodedep;
3991 	struct worklist *wk;
3992 	int error, gotit;
3993 
3994 	/*
3995 	 * If the effective link count is not equal to the actual link
3996 	 * count, then we must track the difference in an inodedep while
3997 	 * the inode is (potentially) tossed out of the cache. Otherwise,
3998 	 * if there is no existing inodedep, then there are no dependencies
3999 	 * to track.
4000 	 */
4001 	ACQUIRE_LOCK(&lk);
4002 	if (inodedep_lookup(ip->i_fs, ip->i_number, 0, &inodedep) == 0) {
4003 		FREE_LOCK(&lk);
4004 		if (ip->i_effnlink != ip->i_nlink)
4005 			panic("softdep_update_inodeblock: bad link count");
4006 		return;
4007 	}
4008 	if (inodedep->id_nlinkdelta != ip->i_nlink - ip->i_effnlink) {
4009 		FREE_LOCK(&lk);
4010 		panic("softdep_update_inodeblock: bad delta");
4011 	}
4012 	/*
4013 	 * Changes have been initiated. Anything depending on these
4014 	 * changes cannot occur until this inode has been written.
4015 	 */
4016 	inodedep->id_state &= ~COMPLETE;
4017 	if ((inodedep->id_state & ONWORKLIST) == 0)
4018 		WORKLIST_INSERT_BP(bp, &inodedep->id_list);
4019 	/*
4020 	 * Any new dependencies associated with the incore inode must
4021 	 * now be moved to the list associated with the buffer holding
4022 	 * the in-memory copy of the inode. Once merged process any
4023 	 * allocdirects that are completed by the merger.
4024 	 */
4025 	merge_inode_lists(inodedep);
4026 	if (TAILQ_FIRST(&inodedep->id_inoupdt) != NULL)
4027 		handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_inoupdt));
4028 	/*
4029 	 * Now that the inode has been pushed into the buffer, the
4030 	 * operations dependent on the inode being written to disk
4031 	 * can be moved to the id_bufwait so that they will be
4032 	 * processed when the buffer I/O completes.
4033 	 */
4034 	while ((wk = LIST_FIRST(&inodedep->id_inowait)) != NULL) {
4035 		WORKLIST_REMOVE(wk);
4036 		WORKLIST_INSERT(&inodedep->id_bufwait, wk);
4037 	}
4038 	/*
4039 	 * Newly allocated inodes cannot be written until the bitmap
4040 	 * that allocates them have been written (indicated by
4041 	 * DEPCOMPLETE being set in id_state). If we are doing a
4042 	 * forced sync (e.g., an fsync on a file), we force the bitmap
4043 	 * to be written so that the update can be done.
4044 	 */
4045 	if ((inodedep->id_state & DEPCOMPLETE) != 0 || waitfor == 0) {
4046 		FREE_LOCK(&lk);
4047 		return;
4048 	}
4049 	gotit = getdirtybuf(&inodedep->id_buf, MNT_WAIT);
4050 	FREE_LOCK(&lk);
4051 	if (gotit &&
4052 	    (error = bwrite(inodedep->id_buf)) != 0)
4053 		softdep_error("softdep_update_inodeblock: bwrite", error);
4054 }
4055 
4056 /*
4057  * Merge the new inode dependency list (id_newinoupdt) into the old
4058  * inode dependency list (id_inoupdt). This routine must be called
4059  * with splbio interrupts blocked.
4060  */
4061 static void
4062 merge_inode_lists(struct inodedep *inodedep)
4063 {
4064 	struct allocdirect *listadp, *newadp;
4065 
4066 	newadp = TAILQ_FIRST(&inodedep->id_newinoupdt);
4067 	for (listadp = TAILQ_FIRST(&inodedep->id_inoupdt); listadp && newadp;) {
4068 		if (listadp->ad_lbn < newadp->ad_lbn) {
4069 			listadp = TAILQ_NEXT(listadp, ad_next);
4070 			continue;
4071 		}
4072 		TAILQ_REMOVE(&inodedep->id_newinoupdt, newadp, ad_next);
4073 		TAILQ_INSERT_BEFORE(listadp, newadp, ad_next);
4074 		if (listadp->ad_lbn == newadp->ad_lbn) {
4075 			allocdirect_merge(&inodedep->id_inoupdt, newadp,
4076 			    listadp);
4077 			listadp = newadp;
4078 		}
4079 		newadp = TAILQ_FIRST(&inodedep->id_newinoupdt);
4080 	}
4081 	while ((newadp = TAILQ_FIRST(&inodedep->id_newinoupdt)) != NULL) {
4082 		TAILQ_REMOVE(&inodedep->id_newinoupdt, newadp, ad_next);
4083 		TAILQ_INSERT_TAIL(&inodedep->id_inoupdt, newadp, ad_next);
4084 	}
4085 }
4086 
4087 /*
4088  * If we are doing an fsync, then we must ensure that any directory
4089  * entries for the inode have been written after the inode gets to disk.
4090  *
4091  * Parameters:
4092  *	vp:	the "in_core" copy of the inode
4093  */
4094 static int
4095 softdep_fsync(struct vnode *vp)
4096 {
4097 	struct inodedep *inodedep;
4098 	struct pagedep *pagedep;
4099 	struct worklist *wk;
4100 	struct diradd *dap;
4101 	struct mount *mnt;
4102 	struct vnode *pvp;
4103 	struct inode *ip;
4104 	struct buf *bp;
4105 	struct fs *fs;
4106 	int error, flushparent;
4107 	ino_t parentino;
4108 	ufs_lbn_t lbn;
4109 
4110 	/*
4111 	 * Move check from original kernel code, possibly not needed any
4112 	 * more with the per-mount bioops.
4113 	 */
4114 	if ((vp->v_mount->mnt_flag & MNT_SOFTDEP) == 0)
4115 		return (0);
4116 
4117 	ip = VTOI(vp);
4118 	fs = ip->i_fs;
4119 	ACQUIRE_LOCK(&lk);
4120 	if (inodedep_lookup(fs, ip->i_number, 0, &inodedep) == 0) {
4121 		FREE_LOCK(&lk);
4122 		return (0);
4123 	}
4124 	if (LIST_FIRST(&inodedep->id_inowait) != NULL ||
4125 	    LIST_FIRST(&inodedep->id_bufwait) != NULL ||
4126 	    TAILQ_FIRST(&inodedep->id_inoupdt) != NULL ||
4127 	    TAILQ_FIRST(&inodedep->id_newinoupdt) != NULL) {
4128 		FREE_LOCK(&lk);
4129 		panic("softdep_fsync: pending ops");
4130 	}
4131 	for (error = 0, flushparent = 0; ; ) {
4132 		if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) == NULL)
4133 			break;
4134 		if (wk->wk_type != D_DIRADD) {
4135 			FREE_LOCK(&lk);
4136 			panic("softdep_fsync: Unexpected type %s",
4137 			    TYPENAME(wk->wk_type));
4138 		}
4139 		dap = WK_DIRADD(wk);
4140 		/*
4141 		 * Flush our parent if this directory entry
4142 		 * has a MKDIR_PARENT dependency.
4143 		 */
4144 		if (dap->da_state & DIRCHG)
4145 			pagedep = dap->da_previous->dm_pagedep;
4146 		else
4147 			pagedep = dap->da_pagedep;
4148 		mnt = pagedep->pd_mnt;
4149 		parentino = pagedep->pd_ino;
4150 		lbn = pagedep->pd_lbn;
4151 		if ((dap->da_state & (MKDIR_BODY | COMPLETE)) != COMPLETE) {
4152 			FREE_LOCK(&lk);
4153 			panic("softdep_fsync: dirty");
4154 		}
4155 		flushparent = dap->da_state & MKDIR_PARENT;
4156 		/*
4157 		 * If we are being fsync'ed as part of vgone'ing this vnode,
4158 		 * then we will not be able to release and recover the
4159 		 * vnode below, so we just have to give up on writing its
4160 		 * directory entry out. It will eventually be written, just
4161 		 * not now, but then the user was not asking to have it
4162 		 * written, so we are not breaking any promises.
4163 		 */
4164 		if (vp->v_flag & VRECLAIMED)
4165 			break;
4166 		/*
4167 		 * We prevent deadlock by always fetching inodes from the
4168 		 * root, moving down the directory tree. Thus, when fetching
4169 		 * our parent directory, we must unlock ourselves before
4170 		 * requesting the lock on our parent. See the comment in
4171 		 * ufs_lookup for details on possible races.
4172 		 */
4173 		FREE_LOCK(&lk);
4174 		vn_unlock(vp);
4175 		error = VFS_VGET(mnt, NULL, parentino, &pvp);
4176 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
4177 		if (error != 0)
4178 			return (error);
4179 		if (flushparent) {
4180 			if ((error = ffs_update(pvp, 1)) != 0) {
4181 				vput(pvp);
4182 				return (error);
4183 			}
4184 		}
4185 		/*
4186 		 * Flush directory page containing the inode's name.
4187 		 */
4188 		error = bread(pvp, lblktodoff(fs, lbn), blksize(fs, VTOI(pvp), lbn), &bp);
4189 		if (error == 0)
4190 			error = bwrite(bp);
4191 		vput(pvp);
4192 		if (error != 0)
4193 			return (error);
4194 		ACQUIRE_LOCK(&lk);
4195 		if (inodedep_lookup(fs, ip->i_number, 0, &inodedep) == 0)
4196 			break;
4197 	}
4198 	FREE_LOCK(&lk);
4199 	return (0);
4200 }
4201 
4202 /*
4203  * Flush all the dirty bitmaps associated with the block device
4204  * before flushing the rest of the dirty blocks so as to reduce
4205  * the number of dependencies that will have to be rolled back.
4206  */
4207 static int softdep_fsync_mountdev_bp(struct buf *bp, void *data);
4208 
4209 void
4210 softdep_fsync_mountdev(struct vnode *vp)
4211 {
4212 	lwkt_tokref vlock;
4213 
4214 	if (!vn_isdisk(vp, NULL))
4215 		panic("softdep_fsync_mountdev: vnode not a disk");
4216 	ACQUIRE_LOCK(&lk);
4217 	lwkt_gettoken(&vlock, &vp->v_token);
4218 	RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
4219 		softdep_fsync_mountdev_bp, vp);
4220 	lwkt_reltoken(&vlock);
4221 	drain_output(vp, 1);
4222 	FREE_LOCK(&lk);
4223 }
4224 
4225 static int
4226 softdep_fsync_mountdev_bp(struct buf *bp, void *data)
4227 {
4228 	struct worklist *wk;
4229 	struct vnode *vp = data;
4230 
4231 	/*
4232 	 * If it is already scheduled, skip to the next buffer.
4233 	 */
4234 	if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT))
4235 		return(0);
4236 	if (bp->b_vp != vp || (bp->b_flags & B_DELWRI) == 0) {
4237 		BUF_UNLOCK(bp);
4238 		kprintf("softdep_fsync_mountdev_bp: warning, buffer %p ripped out from under vnode %p\n", bp, vp);
4239 		return(0);
4240 	}
4241 	/*
4242 	 * We are only interested in bitmaps with outstanding
4243 	 * dependencies.
4244 	 */
4245 	if ((wk = LIST_FIRST(&bp->b_dep)) == NULL ||
4246 	    wk->wk_type != D_BMSAFEMAP) {
4247 		BUF_UNLOCK(bp);
4248 		return(0);
4249 	}
4250 	bremfree(bp);
4251 	FREE_LOCK(&lk);
4252 	(void) bawrite(bp);
4253 	ACQUIRE_LOCK(&lk);
4254 	return(0);
4255 }
4256 
4257 /*
4258  * This routine is called when we are trying to synchronously flush a
4259  * file. This routine must eliminate any filesystem metadata dependencies
4260  * so that the syncing routine can succeed by pushing the dirty blocks
4261  * associated with the file. If any I/O errors occur, they are returned.
4262  */
4263 struct softdep_sync_metadata_info {
4264 	struct vnode *vp;
4265 	int waitfor;
4266 };
4267 
4268 static int softdep_sync_metadata_bp(struct buf *bp, void *data);
4269 
4270 int
4271 softdep_sync_metadata(struct vnode *vp, struct thread *td)
4272 {
4273 	struct softdep_sync_metadata_info info;
4274 	lwkt_tokref vlock;
4275 	int error, waitfor;
4276 
4277 	/*
4278 	 * Check whether this vnode is involved in a filesystem
4279 	 * that is doing soft dependency processing.
4280 	 */
4281 	if (!vn_isdisk(vp, NULL)) {
4282 		if (!DOINGSOFTDEP(vp))
4283 			return (0);
4284 	} else
4285 		if (vp->v_rdev->si_mountpoint == NULL ||
4286 		    (vp->v_rdev->si_mountpoint->mnt_flag & MNT_SOFTDEP) == 0)
4287 			return (0);
4288 	/*
4289 	 * Ensure that any direct block dependencies have been cleared.
4290 	 */
4291 	ACQUIRE_LOCK(&lk);
4292 	if ((error = flush_inodedep_deps(VTOI(vp)->i_fs, VTOI(vp)->i_number))) {
4293 		FREE_LOCK(&lk);
4294 		return (error);
4295 	}
4296 	/*
4297 	 * For most files, the only metadata dependencies are the
4298 	 * cylinder group maps that allocate their inode or blocks.
4299 	 * The block allocation dependencies can be found by traversing
4300 	 * the dependency lists for any buffers that remain on their
4301 	 * dirty buffer list. The inode allocation dependency will
4302 	 * be resolved when the inode is updated with MNT_WAIT.
4303 	 * This work is done in two passes. The first pass grabs most
4304 	 * of the buffers and begins asynchronously writing them. The
4305 	 * only way to wait for these asynchronous writes is to sleep
4306 	 * on the filesystem vnode which may stay busy for a long time
4307 	 * if the filesystem is active. So, instead, we make a second
4308 	 * pass over the dependencies blocking on each write. In the
4309 	 * usual case we will be blocking against a write that we
4310 	 * initiated, so when it is done the dependency will have been
4311 	 * resolved. Thus the second pass is expected to end quickly.
4312 	 */
4313 	waitfor = MNT_NOWAIT;
4314 top:
4315 	/*
4316 	 * We must wait for any I/O in progress to finish so that
4317 	 * all potential buffers on the dirty list will be visible.
4318 	 */
4319 	drain_output(vp, 1);
4320 
4321 	info.vp = vp;
4322 	info.waitfor = waitfor;
4323 	lwkt_gettoken(&vlock, &vp->v_token);
4324 	error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
4325 			softdep_sync_metadata_bp, &info);
4326 	lwkt_reltoken(&vlock);
4327 	if (error < 0) {
4328 		FREE_LOCK(&lk);
4329 		return(-error);	/* error code */
4330 	}
4331 
4332 	/*
4333 	 * The brief unlock is to allow any pent up dependency
4334 	 * processing to be done.  Then proceed with the second pass.
4335 	 */
4336 	if (waitfor == MNT_NOWAIT) {
4337 		waitfor = MNT_WAIT;
4338 		FREE_LOCK(&lk);
4339 		ACQUIRE_LOCK(&lk);
4340 		goto top;
4341 	}
4342 
4343 	/*
4344 	 * If we have managed to get rid of all the dirty buffers,
4345 	 * then we are done. For certain directories and block
4346 	 * devices, we may need to do further work.
4347 	 *
4348 	 * We must wait for any I/O in progress to finish so that
4349 	 * all potential buffers on the dirty list will be visible.
4350 	 */
4351 	drain_output(vp, 1);
4352 	if (RB_EMPTY(&vp->v_rbdirty_tree)) {
4353 		FREE_LOCK(&lk);
4354 		return (0);
4355 	}
4356 
4357 	FREE_LOCK(&lk);
4358 	/*
4359 	 * If we are trying to sync a block device, some of its buffers may
4360 	 * contain metadata that cannot be written until the contents of some
4361 	 * partially written files have been written to disk. The only easy
4362 	 * way to accomplish this is to sync the entire filesystem (luckily
4363 	 * this happens rarely).
4364 	 */
4365 	if (vn_isdisk(vp, NULL) &&
4366 	    vp->v_rdev &&
4367 	    vp->v_rdev->si_mountpoint && !vn_islocked(vp) &&
4368 	    (error = VFS_SYNC(vp->v_rdev->si_mountpoint, MNT_WAIT)) != 0)
4369 		return (error);
4370 	return (0);
4371 }
4372 
4373 static int
4374 softdep_sync_metadata_bp(struct buf *bp, void *data)
4375 {
4376 	struct softdep_sync_metadata_info *info = data;
4377 	struct pagedep *pagedep;
4378 	struct allocdirect *adp;
4379 	struct allocindir *aip;
4380 	struct worklist *wk;
4381 	struct buf *nbp;
4382 	int error;
4383 	int i;
4384 
4385 	if (getdirtybuf(&bp, MNT_WAIT) == 0) {
4386 		kprintf("softdep_sync_metadata_bp(1): caught buf %p going away\n", bp);
4387 		return (1);
4388 	}
4389 	if (bp->b_vp != info->vp || (bp->b_flags & B_DELWRI) == 0) {
4390 		kprintf("softdep_sync_metadata_bp(2): caught buf %p going away vp %p\n", bp, info->vp);
4391 		BUF_UNLOCK(bp);
4392 		return(1);
4393 	}
4394 
4395 	/*
4396 	 * As we hold the buffer locked, none of its dependencies
4397 	 * will disappear.
4398 	 */
4399 	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
4400 		switch (wk->wk_type) {
4401 
4402 		case D_ALLOCDIRECT:
4403 			adp = WK_ALLOCDIRECT(wk);
4404 			if (adp->ad_state & DEPCOMPLETE)
4405 				break;
4406 			nbp = adp->ad_buf;
4407 			if (getdirtybuf(&nbp, info->waitfor) == 0)
4408 				break;
4409 			FREE_LOCK(&lk);
4410 			if (info->waitfor == MNT_NOWAIT) {
4411 				bawrite(nbp);
4412 			} else if ((error = bwrite(nbp)) != 0) {
4413 				bawrite(bp);
4414 				ACQUIRE_LOCK(&lk);
4415 				return (-error);
4416 			}
4417 			ACQUIRE_LOCK(&lk);
4418 			break;
4419 
4420 		case D_ALLOCINDIR:
4421 			aip = WK_ALLOCINDIR(wk);
4422 			if (aip->ai_state & DEPCOMPLETE)
4423 				break;
4424 			nbp = aip->ai_buf;
4425 			if (getdirtybuf(&nbp, info->waitfor) == 0)
4426 				break;
4427 			FREE_LOCK(&lk);
4428 			if (info->waitfor == MNT_NOWAIT) {
4429 				bawrite(nbp);
4430 			} else if ((error = bwrite(nbp)) != 0) {
4431 				bawrite(bp);
4432 				ACQUIRE_LOCK(&lk);
4433 				return (-error);
4434 			}
4435 			ACQUIRE_LOCK(&lk);
4436 			break;
4437 
4438 		case D_INDIRDEP:
4439 		restart:
4440 
4441 			LIST_FOREACH(aip, &WK_INDIRDEP(wk)->ir_deplisthd, ai_next) {
4442 				if (aip->ai_state & DEPCOMPLETE)
4443 					continue;
4444 				nbp = aip->ai_buf;
4445 				if (getdirtybuf(&nbp, MNT_WAIT) == 0)
4446 					goto restart;
4447 				FREE_LOCK(&lk);
4448 				if ((error = bwrite(nbp)) != 0) {
4449 					bawrite(bp);
4450 					ACQUIRE_LOCK(&lk);
4451 					return (-error);
4452 				}
4453 				ACQUIRE_LOCK(&lk);
4454 				goto restart;
4455 			}
4456 			break;
4457 
4458 		case D_INODEDEP:
4459 			if ((error = flush_inodedep_deps(WK_INODEDEP(wk)->id_fs,
4460 			    WK_INODEDEP(wk)->id_ino)) != 0) {
4461 				FREE_LOCK(&lk);
4462 				bawrite(bp);
4463 				ACQUIRE_LOCK(&lk);
4464 				return (-error);
4465 			}
4466 			break;
4467 
4468 		case D_PAGEDEP:
4469 			/*
4470 			 * We are trying to sync a directory that may
4471 			 * have dependencies on both its own metadata
4472 			 * and/or dependencies on the inodes of any
4473 			 * recently allocated files. We walk its diradd
4474 			 * lists pushing out the associated inode.
4475 			 */
4476 			pagedep = WK_PAGEDEP(wk);
4477 			for (i = 0; i < DAHASHSZ; i++) {
4478 				if (LIST_FIRST(&pagedep->pd_diraddhd[i]) == 0)
4479 					continue;
4480 				if ((error =
4481 				    flush_pagedep_deps(info->vp,
4482 						pagedep->pd_mnt,
4483 						&pagedep->pd_diraddhd[i]))) {
4484 					FREE_LOCK(&lk);
4485 					bawrite(bp);
4486 					ACQUIRE_LOCK(&lk);
4487 					return (-error);
4488 				}
4489 			}
4490 			break;
4491 
4492 		case D_MKDIR:
4493 			/*
4494 			 * This case should never happen if the vnode has
4495 			 * been properly sync'ed. However, if this function
4496 			 * is used at a place where the vnode has not yet
4497 			 * been sync'ed, this dependency can show up. So,
4498 			 * rather than panic, just flush it.
4499 			 */
4500 			nbp = WK_MKDIR(wk)->md_buf;
4501 			if (getdirtybuf(&nbp, info->waitfor) == 0)
4502 				break;
4503 			FREE_LOCK(&lk);
4504 			if (info->waitfor == MNT_NOWAIT) {
4505 				bawrite(nbp);
4506 			} else if ((error = bwrite(nbp)) != 0) {
4507 				bawrite(bp);
4508 				ACQUIRE_LOCK(&lk);
4509 				return (-error);
4510 			}
4511 			ACQUIRE_LOCK(&lk);
4512 			break;
4513 
4514 		case D_BMSAFEMAP:
4515 			/*
4516 			 * This case should never happen if the vnode has
4517 			 * been properly sync'ed. However, if this function
4518 			 * is used at a place where the vnode has not yet
4519 			 * been sync'ed, this dependency can show up. So,
4520 			 * rather than panic, just flush it.
4521 			 *
4522 			 * nbp can wind up == bp if a device node for the
4523 			 * same filesystem is being fsynced at the same time,
4524 			 * leading to a panic if we don't catch the case.
4525 			 */
4526 			nbp = WK_BMSAFEMAP(wk)->sm_buf;
4527 			if (nbp == bp)
4528 				break;
4529 			if (getdirtybuf(&nbp, info->waitfor) == 0)
4530 				break;
4531 			FREE_LOCK(&lk);
4532 			if (info->waitfor == MNT_NOWAIT) {
4533 				bawrite(nbp);
4534 			} else if ((error = bwrite(nbp)) != 0) {
4535 				bawrite(bp);
4536 				ACQUIRE_LOCK(&lk);
4537 				return (-error);
4538 			}
4539 			ACQUIRE_LOCK(&lk);
4540 			break;
4541 
4542 		default:
4543 			FREE_LOCK(&lk);
4544 			panic("softdep_sync_metadata: Unknown type %s",
4545 			    TYPENAME(wk->wk_type));
4546 			/* NOTREACHED */
4547 		}
4548 	}
4549 	FREE_LOCK(&lk);
4550 	bawrite(bp);
4551 	ACQUIRE_LOCK(&lk);
4552 	return(0);
4553 }
4554 
4555 /*
4556  * Flush the dependencies associated with an inodedep.
4557  * Called with splbio blocked.
4558  */
4559 static int
4560 flush_inodedep_deps(struct fs *fs, ino_t ino)
4561 {
4562 	struct inodedep *inodedep;
4563 	struct allocdirect *adp;
4564 	int error, waitfor;
4565 	struct buf *bp;
4566 
4567 	/*
4568 	 * This work is done in two passes. The first pass grabs most
4569 	 * of the buffers and begins asynchronously writing them. The
4570 	 * only way to wait for these asynchronous writes is to sleep
4571 	 * on the filesystem vnode which may stay busy for a long time
4572 	 * if the filesystem is active. So, instead, we make a second
4573 	 * pass over the dependencies blocking on each write. In the
4574 	 * usual case we will be blocking against a write that we
4575 	 * initiated, so when it is done the dependency will have been
4576 	 * resolved. Thus the second pass is expected to end quickly.
4577 	 * We give a brief window at the top of the loop to allow
4578 	 * any pending I/O to complete.
4579 	 */
4580 	for (waitfor = MNT_NOWAIT; ; ) {
4581 		FREE_LOCK(&lk);
4582 		ACQUIRE_LOCK(&lk);
4583 		if (inodedep_lookup(fs, ino, 0, &inodedep) == 0)
4584 			return (0);
4585 		TAILQ_FOREACH(adp, &inodedep->id_inoupdt, ad_next) {
4586 			if (adp->ad_state & DEPCOMPLETE)
4587 				continue;
4588 			bp = adp->ad_buf;
4589 			if (getdirtybuf(&bp, waitfor) == 0) {
4590 				if (waitfor == MNT_NOWAIT)
4591 					continue;
4592 				break;
4593 			}
4594 			FREE_LOCK(&lk);
4595 			if (waitfor == MNT_NOWAIT) {
4596 				bawrite(bp);
4597 			} else if ((error = bwrite(bp)) != 0) {
4598 				ACQUIRE_LOCK(&lk);
4599 				return (error);
4600 			}
4601 			ACQUIRE_LOCK(&lk);
4602 			break;
4603 		}
4604 		if (adp != NULL)
4605 			continue;
4606 		TAILQ_FOREACH(adp, &inodedep->id_newinoupdt, ad_next) {
4607 			if (adp->ad_state & DEPCOMPLETE)
4608 				continue;
4609 			bp = adp->ad_buf;
4610 			if (getdirtybuf(&bp, waitfor) == 0) {
4611 				if (waitfor == MNT_NOWAIT)
4612 					continue;
4613 				break;
4614 			}
4615 			FREE_LOCK(&lk);
4616 			if (waitfor == MNT_NOWAIT) {
4617 				bawrite(bp);
4618 			} else if ((error = bwrite(bp)) != 0) {
4619 				ACQUIRE_LOCK(&lk);
4620 				return (error);
4621 			}
4622 			ACQUIRE_LOCK(&lk);
4623 			break;
4624 		}
4625 		if (adp != NULL)
4626 			continue;
4627 		/*
4628 		 * If pass2, we are done, otherwise do pass 2.
4629 		 */
4630 		if (waitfor == MNT_WAIT)
4631 			break;
4632 		waitfor = MNT_WAIT;
4633 	}
4634 	/*
4635 	 * Try freeing inodedep in case all dependencies have been removed.
4636 	 */
4637 	if (inodedep_lookup(fs, ino, 0, &inodedep) != 0)
4638 		(void) free_inodedep(inodedep);
4639 	return (0);
4640 }
4641 
4642 /*
4643  * Eliminate a pagedep dependency by flushing out all its diradd dependencies.
4644  * Called with splbio blocked.
4645  */
4646 static int
4647 flush_pagedep_deps(struct vnode *pvp, struct mount *mp,
4648 		   struct diraddhd *diraddhdp)
4649 {
4650 	struct inodedep *inodedep;
4651 	struct ufsmount *ump;
4652 	struct diradd *dap;
4653 	struct vnode *vp;
4654 	int gotit, error = 0;
4655 	struct buf *bp;
4656 	ino_t inum;
4657 
4658 	ump = VFSTOUFS(mp);
4659 	while ((dap = LIST_FIRST(diraddhdp)) != NULL) {
4660 		/*
4661 		 * Flush ourselves if this directory entry
4662 		 * has a MKDIR_PARENT dependency.
4663 		 */
4664 		if (dap->da_state & MKDIR_PARENT) {
4665 			FREE_LOCK(&lk);
4666 			if ((error = ffs_update(pvp, 1)) != 0)
4667 				break;
4668 			ACQUIRE_LOCK(&lk);
4669 			/*
4670 			 * If that cleared dependencies, go on to next.
4671 			 */
4672 			if (dap != LIST_FIRST(diraddhdp))
4673 				continue;
4674 			if (dap->da_state & MKDIR_PARENT) {
4675 				FREE_LOCK(&lk);
4676 				panic("flush_pagedep_deps: MKDIR_PARENT");
4677 			}
4678 		}
4679 		/*
4680 		 * A newly allocated directory must have its "." and
4681 		 * ".." entries written out before its name can be
4682 		 * committed in its parent. We do not want or need
4683 		 * the full semantics of a synchronous VOP_FSYNC as
4684 		 * that may end up here again, once for each directory
4685 		 * level in the filesystem. Instead, we push the blocks
4686 		 * and wait for them to clear. We have to fsync twice
4687 		 * because the first call may choose to defer blocks
4688 		 * that still have dependencies, but deferral will
4689 		 * happen at most once.
4690 		 */
4691 		inum = dap->da_newinum;
4692 		if (dap->da_state & MKDIR_BODY) {
4693 			FREE_LOCK(&lk);
4694 			if ((error = VFS_VGET(mp, NULL, inum, &vp)) != 0)
4695 				break;
4696 			if ((error=VOP_FSYNC(vp, MNT_NOWAIT)) ||
4697 			    (error=VOP_FSYNC(vp, MNT_NOWAIT))) {
4698 				vput(vp);
4699 				break;
4700 			}
4701 			drain_output(vp, 0);
4702 			vput(vp);
4703 			ACQUIRE_LOCK(&lk);
4704 			/*
4705 			 * If that cleared dependencies, go on to next.
4706 			 */
4707 			if (dap != LIST_FIRST(diraddhdp))
4708 				continue;
4709 			if (dap->da_state & MKDIR_BODY) {
4710 				FREE_LOCK(&lk);
4711 				panic("flush_pagedep_deps: MKDIR_BODY");
4712 			}
4713 		}
4714 		/*
4715 		 * Flush the inode on which the directory entry depends.
4716 		 * Having accounted for MKDIR_PARENT and MKDIR_BODY above,
4717 		 * the only remaining dependency is that the updated inode
4718 		 * count must get pushed to disk. The inode has already
4719 		 * been pushed into its inode buffer (via VOP_UPDATE) at
4720 		 * the time of the reference count change. So we need only
4721 		 * locate that buffer, ensure that there will be no rollback
4722 		 * caused by a bitmap dependency, then write the inode buffer.
4723 		 */
4724 		if (inodedep_lookup(ump->um_fs, inum, 0, &inodedep) == 0) {
4725 			FREE_LOCK(&lk);
4726 			panic("flush_pagedep_deps: lost inode");
4727 		}
4728 		/*
4729 		 * If the inode still has bitmap dependencies,
4730 		 * push them to disk.
4731 		 */
4732 		if ((inodedep->id_state & DEPCOMPLETE) == 0) {
4733 			gotit = getdirtybuf(&inodedep->id_buf, MNT_WAIT);
4734 			FREE_LOCK(&lk);
4735 			if (gotit && (error = bwrite(inodedep->id_buf)) != 0)
4736 				break;
4737 			ACQUIRE_LOCK(&lk);
4738 			if (dap != LIST_FIRST(diraddhdp))
4739 				continue;
4740 		}
4741 		/*
4742 		 * If the inode is still sitting in a buffer waiting
4743 		 * to be written, push it to disk.
4744 		 */
4745 		FREE_LOCK(&lk);
4746 		if ((error = bread(ump->um_devvp,
4747 			fsbtodoff(ump->um_fs, ino_to_fsba(ump->um_fs, inum)),
4748 		    (int)ump->um_fs->fs_bsize, &bp)) != 0)
4749 			break;
4750 		if ((error = bwrite(bp)) != 0)
4751 			break;
4752 		ACQUIRE_LOCK(&lk);
4753 		/*
4754 		 * If we have failed to get rid of all the dependencies
4755 		 * then something is seriously wrong.
4756 		 */
4757 		if (dap == LIST_FIRST(diraddhdp)) {
4758 			FREE_LOCK(&lk);
4759 			panic("flush_pagedep_deps: flush failed");
4760 		}
4761 	}
4762 	if (error)
4763 		ACQUIRE_LOCK(&lk);
4764 	return (error);
4765 }
4766 
4767 /*
4768  * A large burst of file addition or deletion activity can drive the
4769  * memory load excessively high. First attempt to slow things down
4770  * using the techniques below. If that fails, this routine requests
4771  * the offending operations to fall back to running synchronously
4772  * until the memory load returns to a reasonable level.
4773  */
4774 int
4775 softdep_slowdown(struct vnode *vp)
4776 {
4777 	int max_softdeps_hard;
4778 
4779 	max_softdeps_hard = max_softdeps * 11 / 10;
4780 	if (num_dirrem < max_softdeps_hard / 2 &&
4781 	    num_inodedep < max_softdeps_hard)
4782 		return (0);
4783 	stat_sync_limit_hit += 1;
4784 	return (1);
4785 }
4786 
4787 /*
4788  * If memory utilization has gotten too high, deliberately slow things
4789  * down and speed up the I/O processing.
4790  */
4791 static int
4792 request_cleanup(int resource, int islocked)
4793 {
4794 	struct thread *td = curthread;		/* XXX */
4795 
4796 	/*
4797 	 * We never hold up the filesystem syncer process.
4798 	 */
4799 	if (td == filesys_syncer)
4800 		return (0);
4801 	/*
4802 	 * First check to see if the work list has gotten backlogged.
4803 	 * If it has, co-opt this process to help clean up two entries.
4804 	 * Because this process may hold inodes locked, we cannot
4805 	 * handle any remove requests that might block on a locked
4806 	 * inode as that could lead to deadlock.
4807 	 */
4808 	if (num_on_worklist > max_softdeps / 10) {
4809 		if (islocked)
4810 			FREE_LOCK(&lk);
4811 		process_worklist_item(NULL, LK_NOWAIT);
4812 		process_worklist_item(NULL, LK_NOWAIT);
4813 		stat_worklist_push += 2;
4814 		if (islocked)
4815 			ACQUIRE_LOCK(&lk);
4816 		return(1);
4817 	}
4818 
4819 	/*
4820 	 * If we are resource constrained on inode dependencies, try
4821 	 * flushing some dirty inodes. Otherwise, we are constrained
4822 	 * by file deletions, so try accelerating flushes of directories
4823 	 * with removal dependencies. We would like to do the cleanup
4824 	 * here, but we probably hold an inode locked at this point and
4825 	 * that might deadlock against one that we try to clean. So,
4826 	 * the best that we can do is request the syncer daemon to do
4827 	 * the cleanup for us.
4828 	 */
4829 	switch (resource) {
4830 
4831 	case FLUSH_INODES:
4832 		stat_ino_limit_push += 1;
4833 		req_clear_inodedeps += 1;
4834 		stat_countp = &stat_ino_limit_hit;
4835 		break;
4836 
4837 	case FLUSH_REMOVE:
4838 		stat_blk_limit_push += 1;
4839 		req_clear_remove += 1;
4840 		stat_countp = &stat_blk_limit_hit;
4841 		break;
4842 
4843 	default:
4844 		if (islocked)
4845 			FREE_LOCK(&lk);
4846 		panic("request_cleanup: unknown type");
4847 	}
4848 	/*
4849 	 * Hopefully the syncer daemon will catch up and awaken us.
4850 	 * We wait at most tickdelay before proceeding in any case.
4851 	 */
4852 	if (islocked == 0)
4853 		ACQUIRE_LOCK(&lk);
4854 	proc_waiting += 1;
4855 	if (!callout_active(&handle))
4856 		callout_reset(&handle, tickdelay > 2 ? tickdelay : 2,
4857 			      pause_timer, NULL);
4858 	interlocked_sleep(&lk, SLEEP, (caddr_t)&proc_waiting, 0,
4859 	    "softupdate", 0);
4860 	proc_waiting -= 1;
4861 	if (islocked == 0)
4862 		FREE_LOCK(&lk);
4863 	return (1);
4864 }
4865 
4866 /*
4867  * Awaken processes pausing in request_cleanup and clear proc_waiting
4868  * to indicate that there is no longer a timer running.
4869  */
4870 void
4871 pause_timer(void *arg)
4872 {
4873 	*stat_countp += 1;
4874 	wakeup_one(&proc_waiting);
4875 	if (proc_waiting > 0)
4876 		callout_reset(&handle, tickdelay > 2 ? tickdelay : 2,
4877 			      pause_timer, NULL);
4878 	else
4879 		callout_deactivate(&handle);
4880 }
4881 
4882 /*
4883  * Flush out a directory with at least one removal dependency in an effort to
4884  * reduce the number of dirrem, freefile, and freeblks dependency structures.
4885  */
4886 static void
4887 clear_remove(struct thread *td)
4888 {
4889 	struct pagedep_hashhead *pagedephd;
4890 	struct pagedep *pagedep;
4891 	static int next = 0;
4892 	struct mount *mp;
4893 	struct vnode *vp;
4894 	int error, cnt;
4895 	ino_t ino;
4896 
4897 	ACQUIRE_LOCK(&lk);
4898 	for (cnt = 0; cnt < pagedep_hash; cnt++) {
4899 		pagedephd = &pagedep_hashtbl[next++];
4900 		if (next >= pagedep_hash)
4901 			next = 0;
4902 		LIST_FOREACH(pagedep, pagedephd, pd_hash) {
4903 			if (LIST_FIRST(&pagedep->pd_dirremhd) == NULL)
4904 				continue;
4905 			mp = pagedep->pd_mnt;
4906 			ino = pagedep->pd_ino;
4907 			FREE_LOCK(&lk);
4908 			if ((error = VFS_VGET(mp, NULL, ino, &vp)) != 0) {
4909 				softdep_error("clear_remove: vget", error);
4910 				return;
4911 			}
4912 			if ((error = VOP_FSYNC(vp, MNT_NOWAIT)))
4913 				softdep_error("clear_remove: fsync", error);
4914 			drain_output(vp, 0);
4915 			vput(vp);
4916 			return;
4917 		}
4918 	}
4919 	FREE_LOCK(&lk);
4920 }
4921 
4922 /*
4923  * Clear out a block of dirty inodes in an effort to reduce
4924  * the number of inodedep dependency structures.
4925  */
4926 struct clear_inodedeps_info {
4927 	struct fs *fs;
4928 	struct mount *mp;
4929 };
4930 
4931 static int
4932 clear_inodedeps_mountlist_callback(struct mount *mp, void *data)
4933 {
4934 	struct clear_inodedeps_info *info = data;
4935 
4936 	if ((mp->mnt_flag & MNT_SOFTDEP) && info->fs == VFSTOUFS(mp)->um_fs) {
4937 		info->mp = mp;
4938 		return(-1);
4939 	}
4940 	return(0);
4941 }
4942 
4943 static void
4944 clear_inodedeps(struct thread *td)
4945 {
4946 	struct clear_inodedeps_info info;
4947 	struct inodedep_hashhead *inodedephd;
4948 	struct inodedep *inodedep;
4949 	static int next = 0;
4950 	struct vnode *vp;
4951 	struct fs *fs;
4952 	int error, cnt;
4953 	ino_t firstino, lastino, ino;
4954 
4955 	ACQUIRE_LOCK(&lk);
4956 	/*
4957 	 * Pick a random inode dependency to be cleared.
4958 	 * We will then gather up all the inodes in its block
4959 	 * that have dependencies and flush them out.
4960 	 */
4961 	for (cnt = 0; cnt < inodedep_hash; cnt++) {
4962 		inodedephd = &inodedep_hashtbl[next++];
4963 		if (next >= inodedep_hash)
4964 			next = 0;
4965 		if ((inodedep = LIST_FIRST(inodedephd)) != NULL)
4966 			break;
4967 	}
4968 	if (inodedep == NULL) {
4969 		FREE_LOCK(&lk);
4970 		return;
4971 	}
4972 	/*
4973 	 * Ugly code to find mount point given pointer to superblock.
4974 	 */
4975 	fs = inodedep->id_fs;
4976 	info.mp = NULL;
4977 	info.fs = fs;
4978 	mountlist_scan(clear_inodedeps_mountlist_callback,
4979 			&info, MNTSCAN_FORWARD|MNTSCAN_NOBUSY);
4980 	/*
4981 	 * Find the last inode in the block with dependencies.
4982 	 */
4983 	firstino = inodedep->id_ino & ~(INOPB(fs) - 1);
4984 	for (lastino = firstino + INOPB(fs) - 1; lastino > firstino; lastino--)
4985 		if (inodedep_lookup(fs, lastino, 0, &inodedep) != 0)
4986 			break;
4987 	/*
4988 	 * Asynchronously push all but the last inode with dependencies.
4989 	 * Synchronously push the last inode with dependencies to ensure
4990 	 * that the inode block gets written to free up the inodedeps.
4991 	 */
4992 	for (ino = firstino; ino <= lastino; ino++) {
4993 		if (inodedep_lookup(fs, ino, 0, &inodedep) == 0)
4994 			continue;
4995 		FREE_LOCK(&lk);
4996 		if ((error = VFS_VGET(info.mp, NULL, ino, &vp)) != 0) {
4997 			softdep_error("clear_inodedeps: vget", error);
4998 			return;
4999 		}
5000 		if (ino == lastino) {
5001 			if ((error = VOP_FSYNC(vp, MNT_WAIT)))
5002 				softdep_error("clear_inodedeps: fsync1", error);
5003 		} else {
5004 			if ((error = VOP_FSYNC(vp, MNT_NOWAIT)))
5005 				softdep_error("clear_inodedeps: fsync2", error);
5006 			drain_output(vp, 0);
5007 		}
5008 		vput(vp);
5009 		ACQUIRE_LOCK(&lk);
5010 	}
5011 	FREE_LOCK(&lk);
5012 }
5013 
5014 /*
5015  * Function to determine if the buffer has outstanding dependencies
5016  * that will cause a roll-back if the buffer is written. If wantcount
5017  * is set, return number of dependencies, otherwise just yes or no.
5018  */
5019 static int
5020 softdep_count_dependencies(struct buf *bp, int wantcount)
5021 {
5022 	struct worklist *wk;
5023 	struct inodedep *inodedep;
5024 	struct indirdep *indirdep;
5025 	struct allocindir *aip;
5026 	struct pagedep *pagedep;
5027 	struct diradd *dap;
5028 	int i, retval;
5029 
5030 	retval = 0;
5031 	ACQUIRE_LOCK(&lk);
5032 	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
5033 		switch (wk->wk_type) {
5034 
5035 		case D_INODEDEP:
5036 			inodedep = WK_INODEDEP(wk);
5037 			if ((inodedep->id_state & DEPCOMPLETE) == 0) {
5038 				/* bitmap allocation dependency */
5039 				retval += 1;
5040 				if (!wantcount)
5041 					goto out;
5042 			}
5043 			if (TAILQ_FIRST(&inodedep->id_inoupdt)) {
5044 				/* direct block pointer dependency */
5045 				retval += 1;
5046 				if (!wantcount)
5047 					goto out;
5048 			}
5049 			continue;
5050 
5051 		case D_INDIRDEP:
5052 			indirdep = WK_INDIRDEP(wk);
5053 
5054 			LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) {
5055 				/* indirect block pointer dependency */
5056 				retval += 1;
5057 				if (!wantcount)
5058 					goto out;
5059 			}
5060 			continue;
5061 
5062 		case D_PAGEDEP:
5063 			pagedep = WK_PAGEDEP(wk);
5064 			for (i = 0; i < DAHASHSZ; i++) {
5065 
5066 				LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
5067 					/* directory entry dependency */
5068 					retval += 1;
5069 					if (!wantcount)
5070 						goto out;
5071 				}
5072 			}
5073 			continue;
5074 
5075 		case D_BMSAFEMAP:
5076 		case D_ALLOCDIRECT:
5077 		case D_ALLOCINDIR:
5078 		case D_MKDIR:
5079 			/* never a dependency on these blocks */
5080 			continue;
5081 
5082 		default:
5083 			FREE_LOCK(&lk);
5084 			panic("softdep_check_for_rollback: Unexpected type %s",
5085 			    TYPENAME(wk->wk_type));
5086 			/* NOTREACHED */
5087 		}
5088 	}
5089 out:
5090 	FREE_LOCK(&lk);
5091 	return retval;
5092 }
5093 
5094 /*
5095  * Acquire exclusive access to a buffer.
5096  * Must be called with splbio blocked.
5097  * Return 1 if buffer was acquired.
5098  */
5099 static int
5100 getdirtybuf(struct buf **bpp, int waitfor)
5101 {
5102 	struct buf *bp;
5103 	int error;
5104 
5105 	for (;;) {
5106 		if ((bp = *bpp) == NULL)
5107 			return (0);
5108 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) == 0)
5109 			break;
5110 		if (waitfor != MNT_WAIT)
5111 			return (0);
5112 		error = interlocked_sleep(&lk, LOCKBUF, bp,
5113 		    LK_EXCLUSIVE | LK_SLEEPFAIL, 0, 0);
5114 		if (error != ENOLCK) {
5115 			FREE_LOCK(&lk);
5116 			panic("getdirtybuf: inconsistent lock");
5117 		}
5118 	}
5119 	if ((bp->b_flags & B_DELWRI) == 0) {
5120 		BUF_UNLOCK(bp);
5121 		return (0);
5122 	}
5123 	bremfree(bp);
5124 	return (1);
5125 }
5126 
5127 /*
5128  * Wait for pending output on a vnode to complete.
5129  * Must be called with vnode locked.
5130  */
5131 static void
5132 drain_output(struct vnode *vp, int islocked)
5133 {
5134 
5135 	if (!islocked)
5136 		ACQUIRE_LOCK(&lk);
5137 	while (bio_track_active(&vp->v_track_write)) {
5138 		FREE_LOCK(&lk);
5139 		bio_track_wait(&vp->v_track_write, 0, 0);
5140 		ACQUIRE_LOCK(&lk);
5141 	}
5142 	if (!islocked)
5143 		FREE_LOCK(&lk);
5144 }
5145 
5146 /*
5147  * Called whenever a buffer that is being invalidated or reallocated
5148  * contains dependencies. This should only happen if an I/O error has
5149  * occurred. The routine is called with the buffer locked.
5150  */
5151 static void
5152 softdep_deallocate_dependencies(struct buf *bp)
5153 {
5154 	if ((bp->b_flags & B_ERROR) == 0)
5155 		panic("softdep_deallocate_dependencies: dangling deps");
5156 	softdep_error(bp->b_vp->v_mount->mnt_stat.f_mntfromname, bp->b_error);
5157 	panic("softdep_deallocate_dependencies: unrecovered I/O error");
5158 }
5159 
5160 /*
5161  * Function to handle asynchronous write errors in the filesystem.
5162  */
5163 void
5164 softdep_error(char *func, int error)
5165 {
5166 
5167 	/* XXX should do something better! */
5168 	kprintf("%s: got error %d while accessing filesystem\n", func, error);
5169 }
5170