xref: /dragonfly/sys/vfs/ufs/ffs_softdep.c (revision 77b0c609)
1 /*
2  * Copyright 1998, 2000 Marshall Kirk McKusick. All Rights Reserved.
3  *
4  * The soft updates code is derived from the appendix of a University
5  * of Michigan technical report (Gregory R. Ganger and Yale N. Patt,
6  * "Soft Updates: A Solution to the Metadata Update Problem in File
7  * Systems", CSE-TR-254-95, August 1995).
8  *
9  * Further information about soft updates can be obtained from:
10  *
11  *	Marshall Kirk McKusick		http://www.mckusick.com/softdep/
12  *	1614 Oxford Street		mckusick@mckusick.com
13  *	Berkeley, CA 94709-1608		+1-510-843-9542
14  *	USA
15  *
16  * Redistribution and use in source and binary forms, with or without
17  * modification, are permitted provided that the following conditions
18  * are met:
19  *
20  * 1. Redistributions of source code must retain the above copyright
21  *    notice, this list of conditions and the following disclaimer.
22  * 2. Redistributions in binary form must reproduce the above copyright
23  *    notice, this list of conditions and the following disclaimer in the
24  *    documentation and/or other materials provided with the distribution.
25  *
26  * THIS SOFTWARE IS PROVIDED BY MARSHALL KIRK MCKUSICK ``AS IS'' AND ANY
27  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
28  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
29  * DISCLAIMED.  IN NO EVENT SHALL MARSHALL KIRK MCKUSICK BE LIABLE FOR
30  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	from: @(#)ffs_softdep.c	9.59 (McKusick) 6/21/00
39  * $FreeBSD: src/sys/ufs/ffs/ffs_softdep.c,v 1.57.2.11 2002/02/05 18:46:53 dillon Exp $
40  */
41 
42 /*
43  * For now we want the safety net that the DIAGNOSTIC and DEBUG flags provide.
44  */
45 #ifndef DIAGNOSTIC
46 #define DIAGNOSTIC
47 #endif
48 #ifndef DEBUG
49 #define DEBUG
50 #endif
51 
52 #include <sys/param.h>
53 #include <sys/kernel.h>
54 #include <sys/systm.h>
55 #include <sys/buf.h>
56 #include <sys/malloc.h>
57 #include <sys/mount.h>
58 #include <sys/proc.h>
59 #include <sys/syslog.h>
60 #include <sys/vnode.h>
61 #include <sys/conf.h>
62 #include <machine/inttypes.h>
63 #include "dir.h"
64 #include "quota.h"
65 #include "inode.h"
66 #include "ufsmount.h"
67 #include "fs.h"
68 #include "softdep.h"
69 #include "ffs_extern.h"
70 #include "ufs_extern.h"
71 
72 #include <sys/buf2.h>
73 #include <sys/thread2.h>
74 #include <sys/lock.h>
75 
76 /*
77  * These definitions need to be adapted to the system to which
78  * this file is being ported.
79  */
80 /*
81  * malloc types defined for the softdep system.
82  */
83 MALLOC_DEFINE(M_PAGEDEP, "pagedep","File page dependencies");
84 MALLOC_DEFINE(M_INODEDEP, "inodedep","Inode dependencies");
85 MALLOC_DEFINE(M_NEWBLK, "newblk","New block allocation");
86 MALLOC_DEFINE(M_BMSAFEMAP, "bmsafemap","Block or frag allocated from cyl group map");
87 MALLOC_DEFINE(M_ALLOCDIRECT, "allocdirect","Block or frag dependency for an inode");
88 MALLOC_DEFINE(M_INDIRDEP, "indirdep","Indirect block dependencies");
89 MALLOC_DEFINE(M_ALLOCINDIR, "allocindir","Block dependency for an indirect block");
90 MALLOC_DEFINE(M_FREEFRAG, "freefrag","Previously used frag for an inode");
91 MALLOC_DEFINE(M_FREEBLKS, "freeblks","Blocks freed from an inode");
92 MALLOC_DEFINE(M_FREEFILE, "freefile","Inode deallocated");
93 MALLOC_DEFINE(M_DIRADD, "diradd","New directory entry");
94 MALLOC_DEFINE(M_MKDIR, "mkdir","New directory");
95 MALLOC_DEFINE(M_DIRREM, "dirrem","Directory entry deleted");
96 
97 #define M_SOFTDEP_FLAGS		(M_WAITOK | M_USE_RESERVE)
98 
99 #define	D_PAGEDEP	0
100 #define	D_INODEDEP	1
101 #define	D_NEWBLK	2
102 #define	D_BMSAFEMAP	3
103 #define	D_ALLOCDIRECT	4
104 #define	D_INDIRDEP	5
105 #define	D_ALLOCINDIR	6
106 #define	D_FREEFRAG	7
107 #define	D_FREEBLKS	8
108 #define	D_FREEFILE	9
109 #define	D_DIRADD	10
110 #define	D_MKDIR		11
111 #define	D_DIRREM	12
112 #define D_LAST		D_DIRREM
113 
114 /*
115  * translate from workitem type to memory type
116  * MUST match the defines above, such that memtype[D_XXX] == M_XXX
117  */
118 static struct malloc_type *memtype[] = {
119 	M_PAGEDEP,
120 	M_INODEDEP,
121 	M_NEWBLK,
122 	M_BMSAFEMAP,
123 	M_ALLOCDIRECT,
124 	M_INDIRDEP,
125 	M_ALLOCINDIR,
126 	M_FREEFRAG,
127 	M_FREEBLKS,
128 	M_FREEFILE,
129 	M_DIRADD,
130 	M_MKDIR,
131 	M_DIRREM
132 };
133 
134 #define DtoM(type) (memtype[type])
135 
136 /*
137  * Names of malloc types.
138  */
139 #define TYPENAME(type)  \
140 	((unsigned)(type) < D_LAST ? memtype[type]->ks_shortdesc : "???")
141 /*
142  * End system adaptaion definitions.
143  */
144 
145 /*
146  * Internal function prototypes.
147  */
148 static	void softdep_error(char *, int);
149 static	void drain_output(struct vnode *, int);
150 static	int getdirtybuf(struct buf **, int);
151 static	void clear_remove(struct thread *);
152 static	void clear_inodedeps(struct thread *);
153 static	int flush_pagedep_deps(struct vnode *, struct mount *,
154 	    struct diraddhd *);
155 static	int flush_inodedep_deps(struct fs *, ino_t);
156 static	int handle_written_filepage(struct pagedep *, struct buf *);
157 static  void diradd_inode_written(struct diradd *, struct inodedep *);
158 static	int handle_written_inodeblock(struct inodedep *, struct buf *);
159 static	void handle_allocdirect_partdone(struct allocdirect *);
160 static	void handle_allocindir_partdone(struct allocindir *);
161 static	void initiate_write_filepage(struct pagedep *, struct buf *);
162 static	void handle_written_mkdir(struct mkdir *, int);
163 static	void initiate_write_inodeblock(struct inodedep *, struct buf *);
164 static	void handle_workitem_freefile(struct freefile *);
165 static	void handle_workitem_remove(struct dirrem *);
166 static	struct dirrem *newdirrem(struct buf *, struct inode *,
167 	    struct inode *, int, struct dirrem **);
168 static	void free_diradd(struct diradd *);
169 static	void free_allocindir(struct allocindir *, struct inodedep *);
170 static	int indir_trunc (struct inode *, off_t, int, ufs_lbn_t, long *);
171 static	void deallocate_dependencies(struct buf *, struct inodedep *);
172 static	void free_allocdirect(struct allocdirectlst *,
173 	    struct allocdirect *, int);
174 static	int check_inode_unwritten(struct inodedep *);
175 static	int free_inodedep(struct inodedep *);
176 static	void handle_workitem_freeblocks(struct freeblks *);
177 static	void merge_inode_lists(struct inodedep *);
178 static	void setup_allocindir_phase2(struct buf *, struct inode *,
179 	    struct allocindir *);
180 static	struct allocindir *newallocindir(struct inode *, int, ufs_daddr_t,
181 	    ufs_daddr_t);
182 static	void handle_workitem_freefrag(struct freefrag *);
183 static	struct freefrag *newfreefrag(struct inode *, ufs_daddr_t, long);
184 static	void allocdirect_merge(struct allocdirectlst *,
185 	    struct allocdirect *, struct allocdirect *);
186 static	struct bmsafemap *bmsafemap_lookup(struct buf *);
187 static	int newblk_lookup(struct fs *, ufs_daddr_t, int,
188 	    struct newblk **);
189 static	int inodedep_lookup(struct fs *, ino_t, int, struct inodedep **);
190 static	int pagedep_lookup(struct inode *, ufs_lbn_t, int,
191 	    struct pagedep **);
192 static	int request_cleanup(int, int);
193 static	int process_worklist_item(struct mount *, int);
194 static	void add_to_worklist(struct worklist *);
195 
196 /*
197  * Exported softdep operations.
198  */
199 static	void softdep_disk_io_initiation(struct buf *);
200 static	void softdep_disk_write_complete(struct buf *);
201 static	void softdep_deallocate_dependencies(struct buf *);
202 static	int softdep_fsync(struct vnode *);
203 static	int softdep_process_worklist(struct mount *);
204 static	void softdep_move_dependencies(struct buf *, struct buf *);
205 static	int softdep_count_dependencies(struct buf *bp, int);
206 static  int softdep_checkread(struct buf *bp);
207 static  int softdep_checkwrite(struct buf *bp);
208 
209 static struct bio_ops softdep_bioops = {
210 	.io_start = softdep_disk_io_initiation,
211 	.io_complete = softdep_disk_write_complete,
212 	.io_deallocate = softdep_deallocate_dependencies,
213 	.io_fsync = softdep_fsync,
214 	.io_sync = softdep_process_worklist,
215 	.io_movedeps = softdep_move_dependencies,
216 	.io_countdeps = softdep_count_dependencies,
217 	.io_checkread = softdep_checkread,
218 	.io_checkwrite = softdep_checkwrite
219 };
220 
221 /*
222  * Locking primitives.
223  */
224 static	void acquire_lock(struct lock *);
225 static	void free_lock(struct lock *);
226 #ifdef INVARIANTS
227 static	int lock_held(struct lock *);
228 #endif
229 
230 static struct lock lk;
231 
232 #define ACQUIRE_LOCK(lkp)		acquire_lock(lkp)
233 #define FREE_LOCK(lkp)			free_lock(lkp)
234 
235 static void
236 acquire_lock(struct lock *lkp)
237 {
238 	lockmgr(lkp, LK_EXCLUSIVE);
239 }
240 
241 static void
242 free_lock(struct lock *lkp)
243 {
244 	lockmgr(lkp, LK_RELEASE);
245 }
246 
247 #ifdef INVARIANTS
248 static int
249 lock_held(struct lock *lkp)
250 {
251 	return lockcountnb(lkp);
252 }
253 #endif
254 
255 /*
256  * Place holder for real semaphores.
257  */
258 struct sema {
259 	int	value;
260 	thread_t holder;
261 	char	*name;
262 	int	timo;
263 	struct spinlock spin;
264 };
265 static	void sema_init(struct sema *, char *, int);
266 static	int sema_get(struct sema *, struct lock *);
267 static	void sema_release(struct sema *, struct lock *);
268 
269 #define NOHOLDER	((struct thread *) -1)
270 
271 static void
272 sema_init(struct sema *semap, char *name, int timo)
273 {
274 	semap->holder = NOHOLDER;
275 	semap->value = 0;
276 	semap->name = name;
277 	semap->timo = timo;
278 	spin_init(&semap->spin);
279 }
280 
281 /*
282  * Obtain exclusive access, semaphore is protected by the interlock.
283  * If interlock is NULL we must protect the semaphore ourselves.
284  */
285 static int
286 sema_get(struct sema *semap, struct lock *interlock)
287 {
288 	int rv;
289 
290 	if (interlock) {
291 		if (semap->value > 0) {
292 			++semap->value;		/* serves as wakeup flag */
293 			lksleep(semap, interlock, 0,
294 				semap->name, semap->timo);
295 			rv = 0;
296 		} else {
297 			semap->value = 1;	/* serves as owned flag */
298 			semap->holder = curthread;
299 			rv = 1;
300 		}
301 	} else {
302 		spin_lock(&semap->spin);
303 		if (semap->value > 0) {
304 			++semap->value;		/* serves as wakeup flag */
305 			ssleep(semap, &semap->spin, 0,
306 				semap->name, semap->timo);
307 			spin_unlock(&semap->spin);
308 			rv = 0;
309 		} else {
310 			semap->value = 1;	/* serves as owned flag */
311 			semap->holder = curthread;
312 			spin_unlock(&semap->spin);
313 			rv = 1;
314 		}
315 	}
316 	return (rv);
317 }
318 
319 static void
320 sema_release(struct sema *semap, struct lock *lk)
321 {
322 	if (semap->value <= 0 || semap->holder != curthread)
323 		panic("sema_release: not held");
324 	if (lk) {
325 		semap->holder = NOHOLDER;
326 		if (--semap->value > 0) {
327 			semap->value = 0;
328 			wakeup(semap);
329 		}
330 	} else {
331 		spin_lock(&semap->spin);
332 		semap->holder = NOHOLDER;
333 		if (--semap->value > 0) {
334 			semap->value = 0;
335 			spin_unlock(&semap->spin);
336 			wakeup(semap);
337 		} else {
338 			spin_unlock(&semap->spin);
339 		}
340 	}
341 }
342 
343 /*
344  * Worklist queue management.
345  * These routines require that the lock be held.
346  */
347 static	void worklist_insert(struct workhead *, struct worklist *);
348 static	void worklist_remove(struct worklist *);
349 static	void workitem_free(struct worklist *, int);
350 
351 #define WORKLIST_INSERT_BP(bp, item) do {	\
352 	(bp)->b_ops = &softdep_bioops;		\
353 	worklist_insert(&(bp)->b_dep, item);	\
354 } while (0)
355 
356 #define WORKLIST_INSERT(head, item) worklist_insert(head, item)
357 #define WORKLIST_REMOVE(item) worklist_remove(item)
358 #define WORKITEM_FREE(item, type) workitem_free((struct worklist *)item, type)
359 
360 static void
361 worklist_insert(struct workhead *head, struct worklist *item)
362 {
363 	KKASSERT(lock_held(&lk) > 0);
364 
365 	if (item->wk_state & ONWORKLIST) {
366 		panic("worklist_insert: already on list");
367 	}
368 	item->wk_state |= ONWORKLIST;
369 	LIST_INSERT_HEAD(head, item, wk_list);
370 }
371 
372 static void
373 worklist_remove(struct worklist *item)
374 {
375 
376 	KKASSERT(lock_held(&lk));
377 	if ((item->wk_state & ONWORKLIST) == 0)
378 		panic("worklist_remove: not on list");
379 
380 	item->wk_state &= ~ONWORKLIST;
381 	LIST_REMOVE(item, wk_list);
382 }
383 
384 static void
385 workitem_free(struct worklist *item, int type)
386 {
387 
388 	if (item->wk_state & ONWORKLIST)
389 		panic("workitem_free: still on list");
390 	if (item->wk_type != type)
391 		panic("workitem_free: type mismatch");
392 
393 	kfree(item, DtoM(type));
394 }
395 
396 /*
397  * Workitem queue management
398  */
399 static struct workhead softdep_workitem_pending;
400 static int num_on_worklist;	/* number of worklist items to be processed */
401 static int softdep_worklist_busy; /* 1 => trying to do unmount */
402 static int softdep_worklist_req; /* serialized waiters */
403 static int max_softdeps;	/* maximum number of structs before slowdown */
404 static int tickdelay = 2;	/* number of ticks to pause during slowdown */
405 static int *stat_countp;	/* statistic to count in proc_waiting timeout */
406 static int proc_waiting;	/* tracks whether we have a timeout posted */
407 static struct thread *filesys_syncer; /* proc of filesystem syncer process */
408 static int req_clear_inodedeps;	/* syncer process flush some inodedeps */
409 #define FLUSH_INODES	1
410 static int req_clear_remove;	/* syncer process flush some freeblks */
411 #define FLUSH_REMOVE	2
412 /*
413  * runtime statistics
414  */
415 static int stat_worklist_push;	/* number of worklist cleanups */
416 static int stat_blk_limit_push;	/* number of times block limit neared */
417 static int stat_ino_limit_push;	/* number of times inode limit neared */
418 static int stat_blk_limit_hit;	/* number of times block slowdown imposed */
419 static int stat_ino_limit_hit;	/* number of times inode slowdown imposed */
420 static int stat_sync_limit_hit;	/* number of synchronous slowdowns imposed */
421 static int stat_indir_blk_ptrs;	/* bufs redirtied as indir ptrs not written */
422 static int stat_inode_bitmap;	/* bufs redirtied as inode bitmap not written */
423 static int stat_direct_blk_ptrs;/* bufs redirtied as direct ptrs not written */
424 static int stat_dir_entry;	/* bufs redirtied as dir entry cannot write */
425 #ifdef DEBUG
426 #include <vm/vm.h>
427 #include <sys/sysctl.h>
428 SYSCTL_INT(_debug, OID_AUTO, max_softdeps, CTLFLAG_RW, &max_softdeps, 0,
429     "Maximum soft dependencies before slowdown occurs");
430 SYSCTL_INT(_debug, OID_AUTO, tickdelay, CTLFLAG_RW, &tickdelay, 0,
431     "Ticks to delay before allocating during slowdown");
432 SYSCTL_INT(_debug, OID_AUTO, worklist_push, CTLFLAG_RW, &stat_worklist_push, 0,
433     "Number of worklist cleanups");
434 SYSCTL_INT(_debug, OID_AUTO, blk_limit_push, CTLFLAG_RW, &stat_blk_limit_push, 0,
435     "Number of times block limit neared");
436 SYSCTL_INT(_debug, OID_AUTO, ino_limit_push, CTLFLAG_RW, &stat_ino_limit_push, 0,
437     "Number of times inode limit neared");
438 SYSCTL_INT(_debug, OID_AUTO, blk_limit_hit, CTLFLAG_RW, &stat_blk_limit_hit, 0,
439     "Number of times block slowdown imposed");
440 SYSCTL_INT(_debug, OID_AUTO, ino_limit_hit, CTLFLAG_RW, &stat_ino_limit_hit, 0,
441     "Number of times inode slowdown imposed ");
442 SYSCTL_INT(_debug, OID_AUTO, sync_limit_hit, CTLFLAG_RW, &stat_sync_limit_hit, 0,
443     "Number of synchronous slowdowns imposed");
444 SYSCTL_INT(_debug, OID_AUTO, indir_blk_ptrs, CTLFLAG_RW, &stat_indir_blk_ptrs, 0,
445     "Bufs redirtied as indir ptrs not written");
446 SYSCTL_INT(_debug, OID_AUTO, inode_bitmap, CTLFLAG_RW, &stat_inode_bitmap, 0,
447     "Bufs redirtied as inode bitmap not written");
448 SYSCTL_INT(_debug, OID_AUTO, direct_blk_ptrs, CTLFLAG_RW, &stat_direct_blk_ptrs, 0,
449     "Bufs redirtied as direct ptrs not written");
450 SYSCTL_INT(_debug, OID_AUTO, dir_entry, CTLFLAG_RW, &stat_dir_entry, 0,
451     "Bufs redirtied as dir entry cannot write");
452 #endif /* DEBUG */
453 
454 /*
455  * Add an item to the end of the work queue.
456  * This routine requires that the lock be held.
457  * This is the only routine that adds items to the list.
458  * The following routine is the only one that removes items
459  * and does so in order from first to last.
460  */
461 static void
462 add_to_worklist(struct worklist *wk)
463 {
464 	static struct worklist *worklist_tail;
465 
466 	if (wk->wk_state & ONWORKLIST) {
467 		panic("add_to_worklist: already on list");
468 	}
469 	wk->wk_state |= ONWORKLIST;
470 	if (LIST_FIRST(&softdep_workitem_pending) == NULL)
471 		LIST_INSERT_HEAD(&softdep_workitem_pending, wk, wk_list);
472 	else
473 		LIST_INSERT_AFTER(worklist_tail, wk, wk_list);
474 	worklist_tail = wk;
475 	num_on_worklist += 1;
476 }
477 
478 /*
479  * Process that runs once per second to handle items in the background queue.
480  *
481  * Note that we ensure that everything is done in the order in which they
482  * appear in the queue. The code below depends on this property to ensure
483  * that blocks of a file are freed before the inode itself is freed. This
484  * ordering ensures that no new <vfsid, inum, lbn> triples will be generated
485  * until all the old ones have been purged from the dependency lists.
486  *
487  * bioops callback - hold io_token
488  */
489 static int
490 softdep_process_worklist(struct mount *matchmnt)
491 {
492 	thread_t td = curthread;
493 	int matchcnt, loopcount;
494 	long starttime;
495 
496 	ACQUIRE_LOCK(&lk);
497 
498 	/*
499 	 * Record the process identifier of our caller so that we can give
500 	 * this process preferential treatment in request_cleanup below.
501 	 */
502 	filesys_syncer = td;
503 	matchcnt = 0;
504 
505 	/*
506 	 * There is no danger of having multiple processes run this
507 	 * code, but we have to single-thread it when softdep_flushfiles()
508 	 * is in operation to get an accurate count of the number of items
509 	 * related to its mount point that are in the list.
510 	 */
511 	if (matchmnt == NULL) {
512 		if (softdep_worklist_busy < 0) {
513 			matchcnt = -1;
514 			goto done;
515 		}
516 		softdep_worklist_busy += 1;
517 	}
518 
519 	/*
520 	 * If requested, try removing inode or removal dependencies.
521 	 */
522 	if (req_clear_inodedeps) {
523 		clear_inodedeps(td);
524 		req_clear_inodedeps -= 1;
525 		wakeup_one(&proc_waiting);
526 	}
527 	if (req_clear_remove) {
528 		clear_remove(td);
529 		req_clear_remove -= 1;
530 		wakeup_one(&proc_waiting);
531 	}
532 	loopcount = 1;
533 	starttime = time_second;
534 	while (num_on_worklist > 0) {
535 		matchcnt += process_worklist_item(matchmnt, 0);
536 
537 		/*
538 		 * If a umount operation wants to run the worklist
539 		 * accurately, abort.
540 		 */
541 		if (softdep_worklist_req && matchmnt == NULL) {
542 			matchcnt = -1;
543 			break;
544 		}
545 
546 		/*
547 		 * If requested, try removing inode or removal dependencies.
548 		 */
549 		if (req_clear_inodedeps) {
550 			clear_inodedeps(td);
551 			req_clear_inodedeps -= 1;
552 			wakeup_one(&proc_waiting);
553 		}
554 		if (req_clear_remove) {
555 			clear_remove(td);
556 			req_clear_remove -= 1;
557 			wakeup_one(&proc_waiting);
558 		}
559 		/*
560 		 * We do not generally want to stop for buffer space, but if
561 		 * we are really being a buffer hog, we will stop and wait.
562 		 */
563 		if (loopcount++ % 128 == 0) {
564 			FREE_LOCK(&lk);
565 			bwillinode(1);
566 			ACQUIRE_LOCK(&lk);
567 		}
568 
569 		/*
570 		 * Never allow processing to run for more than one
571 		 * second. Otherwise the other syncer tasks may get
572 		 * excessively backlogged.
573 		 */
574 		if (starttime != time_second && matchmnt == NULL) {
575 			matchcnt = -1;
576 			break;
577 		}
578 	}
579 	if (matchmnt == NULL) {
580 		--softdep_worklist_busy;
581 		if (softdep_worklist_req && softdep_worklist_busy == 0)
582 			wakeup(&softdep_worklist_req);
583 	}
584 done:
585 	FREE_LOCK(&lk);
586 	return (matchcnt);
587 }
588 
589 /*
590  * Process one item on the worklist.
591  */
592 static int
593 process_worklist_item(struct mount *matchmnt, int flags)
594 {
595 	struct worklist *wk;
596 	struct dirrem *dirrem;
597 	struct fs *matchfs;
598 	struct vnode *vp;
599 	int matchcnt = 0;
600 
601 	matchfs = NULL;
602 	if (matchmnt != NULL)
603 		matchfs = VFSTOUFS(matchmnt)->um_fs;
604 
605 	/*
606 	 * Normally we just process each item on the worklist in order.
607 	 * However, if we are in a situation where we cannot lock any
608 	 * inodes, we have to skip over any dirrem requests whose
609 	 * vnodes are resident and locked.
610 	 */
611 	LIST_FOREACH(wk, &softdep_workitem_pending, wk_list) {
612 		if ((flags & LK_NOWAIT) == 0 || wk->wk_type != D_DIRREM)
613 			break;
614 		dirrem = WK_DIRREM(wk);
615 		vp = ufs_ihashlookup(VFSTOUFS(dirrem->dm_mnt)->um_dev,
616 		    dirrem->dm_oldinum);
617 		if (vp == NULL || !vn_islocked(vp))
618 			break;
619 	}
620 	if (wk == NULL) {
621 		return (0);
622 	}
623 	WORKLIST_REMOVE(wk);
624 	num_on_worklist -= 1;
625 	FREE_LOCK(&lk);
626 	switch (wk->wk_type) {
627 	case D_DIRREM:
628 		/* removal of a directory entry */
629 		if (WK_DIRREM(wk)->dm_mnt == matchmnt)
630 			matchcnt += 1;
631 		handle_workitem_remove(WK_DIRREM(wk));
632 		break;
633 
634 	case D_FREEBLKS:
635 		/* releasing blocks and/or fragments from a file */
636 		if (WK_FREEBLKS(wk)->fb_fs == matchfs)
637 			matchcnt += 1;
638 		handle_workitem_freeblocks(WK_FREEBLKS(wk));
639 		break;
640 
641 	case D_FREEFRAG:
642 		/* releasing a fragment when replaced as a file grows */
643 		if (WK_FREEFRAG(wk)->ff_fs == matchfs)
644 			matchcnt += 1;
645 		handle_workitem_freefrag(WK_FREEFRAG(wk));
646 		break;
647 
648 	case D_FREEFILE:
649 		/* releasing an inode when its link count drops to 0 */
650 		if (WK_FREEFILE(wk)->fx_fs == matchfs)
651 			matchcnt += 1;
652 		handle_workitem_freefile(WK_FREEFILE(wk));
653 		break;
654 
655 	default:
656 		panic("%s_process_worklist: Unknown type %s",
657 		    "softdep", TYPENAME(wk->wk_type));
658 		/* NOTREACHED */
659 	}
660 	ACQUIRE_LOCK(&lk);
661 	return (matchcnt);
662 }
663 
664 /*
665  * Move dependencies from one buffer to another.
666  *
667  * bioops callback - hold io_token
668  */
669 static void
670 softdep_move_dependencies(struct buf *oldbp, struct buf *newbp)
671 {
672 	struct worklist *wk, *wktail;
673 
674 	if (LIST_FIRST(&newbp->b_dep) != NULL)
675 		panic("softdep_move_dependencies: need merge code");
676 	wktail = NULL;
677 	ACQUIRE_LOCK(&lk);
678 	while ((wk = LIST_FIRST(&oldbp->b_dep)) != NULL) {
679 		LIST_REMOVE(wk, wk_list);
680 		if (wktail == NULL)
681 			LIST_INSERT_HEAD(&newbp->b_dep, wk, wk_list);
682 		else
683 			LIST_INSERT_AFTER(wktail, wk, wk_list);
684 		wktail = wk;
685 		newbp->b_ops = &softdep_bioops;
686 	}
687 	FREE_LOCK(&lk);
688 }
689 
690 /*
691  * Purge the work list of all items associated with a particular mount point.
692  */
693 int
694 softdep_flushfiles(struct mount *oldmnt, int flags)
695 {
696 	struct vnode *devvp;
697 	int error, loopcnt;
698 
699 	/*
700 	 * Await our turn to clear out the queue, then serialize access.
701 	 */
702 	ACQUIRE_LOCK(&lk);
703 	while (softdep_worklist_busy != 0) {
704 		softdep_worklist_req += 1;
705 		lksleep(&softdep_worklist_req, &lk, 0, "softflush", 0);
706 		softdep_worklist_req -= 1;
707 	}
708 	softdep_worklist_busy = -1;
709 	FREE_LOCK(&lk);
710 
711 	if ((error = ffs_flushfiles(oldmnt, flags)) != 0) {
712 		softdep_worklist_busy = 0;
713 		if (softdep_worklist_req)
714 			wakeup(&softdep_worklist_req);
715 		return (error);
716 	}
717 	/*
718 	 * Alternately flush the block device associated with the mount
719 	 * point and process any dependencies that the flushing
720 	 * creates. In theory, this loop can happen at most twice,
721 	 * but we give it a few extra just to be sure.
722 	 */
723 	devvp = VFSTOUFS(oldmnt)->um_devvp;
724 	for (loopcnt = 10; loopcnt > 0; ) {
725 		if (softdep_process_worklist(oldmnt) == 0) {
726 			loopcnt--;
727 			/*
728 			 * Do another flush in case any vnodes were brought in
729 			 * as part of the cleanup operations.
730 			 */
731 			if ((error = ffs_flushfiles(oldmnt, flags)) != 0)
732 				break;
733 			/*
734 			 * If we still found nothing to do, we are really done.
735 			 */
736 			if (softdep_process_worklist(oldmnt) == 0)
737 				break;
738 		}
739 		vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
740 		error = VOP_FSYNC(devvp, MNT_WAIT, 0);
741 		vn_unlock(devvp);
742 		if (error)
743 			break;
744 	}
745 	ACQUIRE_LOCK(&lk);
746 	softdep_worklist_busy = 0;
747 	if (softdep_worklist_req)
748 		wakeup(&softdep_worklist_req);
749 	FREE_LOCK(&lk);
750 
751 	/*
752 	 * If we are unmounting then it is an error to fail. If we
753 	 * are simply trying to downgrade to read-only, then filesystem
754 	 * activity can keep us busy forever, so we just fail with EBUSY.
755 	 */
756 	if (loopcnt == 0) {
757 		if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT)
758 			panic("softdep_flushfiles: looping");
759 		error = EBUSY;
760 	}
761 	return (error);
762 }
763 
764 /*
765  * Structure hashing.
766  *
767  * There are three types of structures that can be looked up:
768  *	1) pagedep structures identified by mount point, inode number,
769  *	   and logical block.
770  *	2) inodedep structures identified by mount point and inode number.
771  *	3) newblk structures identified by mount point and
772  *	   physical block number.
773  *
774  * The "pagedep" and "inodedep" dependency structures are hashed
775  * separately from the file blocks and inodes to which they correspond.
776  * This separation helps when the in-memory copy of an inode or
777  * file block must be replaced. It also obviates the need to access
778  * an inode or file page when simply updating (or de-allocating)
779  * dependency structures. Lookup of newblk structures is needed to
780  * find newly allocated blocks when trying to associate them with
781  * their allocdirect or allocindir structure.
782  *
783  * The lookup routines optionally create and hash a new instance when
784  * an existing entry is not found.
785  */
786 #define DEPALLOC	0x0001	/* allocate structure if lookup fails */
787 #define NODELAY		0x0002	/* cannot do background work */
788 
789 /*
790  * Structures and routines associated with pagedep caching.
791  */
792 LIST_HEAD(pagedep_hashhead, pagedep) *pagedep_hashtbl;
793 u_long	pagedep_hash;		/* size of hash table - 1 */
794 #define	PAGEDEP_HASH(mp, inum, lbn) \
795 	(&pagedep_hashtbl[((((register_t)(mp)) >> 13) + (inum) + (lbn)) & \
796 	    pagedep_hash])
797 static struct sema pagedep_in_progress;
798 
799 /*
800  * Helper routine for pagedep_lookup()
801  */
802 static __inline
803 struct pagedep *
804 pagedep_find(struct pagedep_hashhead *pagedephd, ino_t ino, ufs_lbn_t lbn,
805 	     struct mount *mp)
806 {
807 	struct pagedep *pagedep;
808 
809 	LIST_FOREACH(pagedep, pagedephd, pd_hash) {
810 		if (ino == pagedep->pd_ino &&
811 		    lbn == pagedep->pd_lbn &&
812 		    mp == pagedep->pd_mnt) {
813 			return (pagedep);
814 		}
815 	}
816 	return(NULL);
817 }
818 
819 /*
820  * Look up a pagedep. Return 1 if found, 0 if not found.
821  * If not found, allocate if DEPALLOC flag is passed.
822  * Found or allocated entry is returned in pagedeppp.
823  * This routine must be called with splbio interrupts blocked.
824  */
825 static int
826 pagedep_lookup(struct inode *ip, ufs_lbn_t lbn, int flags,
827 	       struct pagedep **pagedeppp)
828 {
829 	struct pagedep *pagedep;
830 	struct pagedep_hashhead *pagedephd;
831 	struct mount *mp;
832 	int i;
833 
834 	KKASSERT(lock_held(&lk) > 0);
835 
836 	mp = ITOV(ip)->v_mount;
837 	pagedephd = PAGEDEP_HASH(mp, ip->i_number, lbn);
838 top:
839 	*pagedeppp = pagedep_find(pagedephd, ip->i_number, lbn, mp);
840 	if (*pagedeppp)
841 		return(1);
842 	if ((flags & DEPALLOC) == 0)
843 		return (0);
844 	if (sema_get(&pagedep_in_progress, &lk) == 0)
845 		goto top;
846 
847 	FREE_LOCK(&lk);
848 	pagedep = kmalloc(sizeof(struct pagedep), M_PAGEDEP,
849 			  M_SOFTDEP_FLAGS | M_ZERO);
850 	ACQUIRE_LOCK(&lk);
851 	if (pagedep_find(pagedephd, ip->i_number, lbn, mp)) {
852 		kprintf("pagedep_lookup: blocking race avoided\n");
853 		sema_release(&pagedep_in_progress, &lk);
854 		kfree(pagedep, M_PAGEDEP);
855 		goto top;
856 	}
857 
858 	pagedep->pd_list.wk_type = D_PAGEDEP;
859 	pagedep->pd_mnt = mp;
860 	pagedep->pd_ino = ip->i_number;
861 	pagedep->pd_lbn = lbn;
862 	LIST_INIT(&pagedep->pd_dirremhd);
863 	LIST_INIT(&pagedep->pd_pendinghd);
864 	for (i = 0; i < DAHASHSZ; i++)
865 		LIST_INIT(&pagedep->pd_diraddhd[i]);
866 	LIST_INSERT_HEAD(pagedephd, pagedep, pd_hash);
867 	sema_release(&pagedep_in_progress, &lk);
868 	*pagedeppp = pagedep;
869 	return (0);
870 }
871 
872 /*
873  * Structures and routines associated with inodedep caching.
874  */
875 LIST_HEAD(inodedep_hashhead, inodedep) *inodedep_hashtbl;
876 static u_long	inodedep_hash;	/* size of hash table - 1 */
877 static long	num_inodedep;	/* number of inodedep allocated */
878 #define	INODEDEP_HASH(fs, inum) \
879       (&inodedep_hashtbl[((((register_t)(fs)) >> 13) + (inum)) & inodedep_hash])
880 static struct sema inodedep_in_progress;
881 
882 /*
883  * Helper routine for inodedep_lookup()
884  */
885 static __inline
886 struct inodedep *
887 inodedep_find(struct inodedep_hashhead *inodedephd, struct fs *fs, ino_t inum)
888 {
889 	struct inodedep *inodedep;
890 
891 	LIST_FOREACH(inodedep, inodedephd, id_hash) {
892 		if (inum == inodedep->id_ino && fs == inodedep->id_fs)
893 			return(inodedep);
894 	}
895 	return (NULL);
896 }
897 
898 /*
899  * Look up a inodedep. Return 1 if found, 0 if not found.
900  * If not found, allocate if DEPALLOC flag is passed.
901  * Found or allocated entry is returned in inodedeppp.
902  * This routine must be called with splbio interrupts blocked.
903  */
904 static int
905 inodedep_lookup(struct fs *fs, ino_t inum, int flags,
906 	        struct inodedep **inodedeppp)
907 {
908 	struct inodedep *inodedep;
909 	struct inodedep_hashhead *inodedephd;
910 	int firsttry;
911 
912 	KKASSERT(lock_held(&lk) > 0);
913 
914 	firsttry = 1;
915 	inodedephd = INODEDEP_HASH(fs, inum);
916 top:
917 	*inodedeppp = inodedep_find(inodedephd, fs, inum);
918 	if (*inodedeppp)
919 		return (1);
920 	if ((flags & DEPALLOC) == 0)
921 		return (0);
922 	/*
923 	 * If we are over our limit, try to improve the situation.
924 	 */
925 	if (num_inodedep > max_softdeps && firsttry &&
926 	    speedup_syncer() == 0 && (flags & NODELAY) == 0 &&
927 	    request_cleanup(FLUSH_INODES, 1)) {
928 		firsttry = 0;
929 		goto top;
930 	}
931 	if (sema_get(&inodedep_in_progress, &lk) == 0)
932 		goto top;
933 
934 	FREE_LOCK(&lk);
935 	inodedep = kmalloc(sizeof(struct inodedep), M_INODEDEP,
936 			   M_SOFTDEP_FLAGS | M_ZERO);
937 	ACQUIRE_LOCK(&lk);
938 	if (inodedep_find(inodedephd, fs, inum)) {
939 		kprintf("inodedep_lookup: blocking race avoided\n");
940 		sema_release(&inodedep_in_progress, &lk);
941 		kfree(inodedep, M_INODEDEP);
942 		goto top;
943 	}
944 	inodedep->id_list.wk_type = D_INODEDEP;
945 	inodedep->id_fs = fs;
946 	inodedep->id_ino = inum;
947 	inodedep->id_state = ALLCOMPLETE;
948 	inodedep->id_nlinkdelta = 0;
949 	inodedep->id_savedino = NULL;
950 	inodedep->id_savedsize = -1;
951 	inodedep->id_buf = NULL;
952 	LIST_INIT(&inodedep->id_pendinghd);
953 	LIST_INIT(&inodedep->id_inowait);
954 	LIST_INIT(&inodedep->id_bufwait);
955 	TAILQ_INIT(&inodedep->id_inoupdt);
956 	TAILQ_INIT(&inodedep->id_newinoupdt);
957 	num_inodedep += 1;
958 	LIST_INSERT_HEAD(inodedephd, inodedep, id_hash);
959 	sema_release(&inodedep_in_progress, &lk);
960 	*inodedeppp = inodedep;
961 	return (0);
962 }
963 
964 /*
965  * Structures and routines associated with newblk caching.
966  */
967 LIST_HEAD(newblk_hashhead, newblk) *newblk_hashtbl;
968 u_long	newblk_hash;		/* size of hash table - 1 */
969 #define	NEWBLK_HASH(fs, inum) \
970 	(&newblk_hashtbl[((((register_t)(fs)) >> 13) + (inum)) & newblk_hash])
971 static struct sema newblk_in_progress;
972 
973 /*
974  * Helper routine for newblk_lookup()
975  */
976 static __inline
977 struct newblk *
978 newblk_find(struct newblk_hashhead *newblkhd, struct fs *fs,
979 	    ufs_daddr_t newblkno)
980 {
981 	struct newblk *newblk;
982 
983 	LIST_FOREACH(newblk, newblkhd, nb_hash) {
984 		if (newblkno == newblk->nb_newblkno && fs == newblk->nb_fs)
985 			return (newblk);
986 	}
987 	return(NULL);
988 }
989 
990 /*
991  * Look up a newblk. Return 1 if found, 0 if not found.
992  * If not found, allocate if DEPALLOC flag is passed.
993  * Found or allocated entry is returned in newblkpp.
994  */
995 static int
996 newblk_lookup(struct fs *fs, ufs_daddr_t newblkno, int flags,
997 	      struct newblk **newblkpp)
998 {
999 	struct newblk *newblk;
1000 	struct newblk_hashhead *newblkhd;
1001 
1002 	newblkhd = NEWBLK_HASH(fs, newblkno);
1003 top:
1004 	*newblkpp = newblk_find(newblkhd, fs, newblkno);
1005 	if (*newblkpp)
1006 		return(1);
1007 	if ((flags & DEPALLOC) == 0)
1008 		return (0);
1009 	if (sema_get(&newblk_in_progress, NULL) == 0)
1010 		goto top;
1011 
1012 	newblk = kmalloc(sizeof(struct newblk), M_NEWBLK,
1013 			 M_SOFTDEP_FLAGS | M_ZERO);
1014 
1015 	if (newblk_find(newblkhd, fs, newblkno)) {
1016 		kprintf("newblk_lookup: blocking race avoided\n");
1017 		sema_release(&pagedep_in_progress, NULL);
1018 		kfree(newblk, M_NEWBLK);
1019 		goto top;
1020 	}
1021 	newblk->nb_state = 0;
1022 	newblk->nb_fs = fs;
1023 	newblk->nb_newblkno = newblkno;
1024 	LIST_INSERT_HEAD(newblkhd, newblk, nb_hash);
1025 	sema_release(&newblk_in_progress, NULL);
1026 	*newblkpp = newblk;
1027 	return (0);
1028 }
1029 
1030 /*
1031  * Executed during filesystem system initialization before
1032  * mounting any filesystems.
1033  */
1034 void
1035 softdep_initialize(void)
1036 {
1037 	LIST_INIT(&mkdirlisthd);
1038 	LIST_INIT(&softdep_workitem_pending);
1039 	max_softdeps = min(desiredvnodes * 8,
1040 		M_INODEDEP->ks_limit / (2 * sizeof(struct inodedep)));
1041 	pagedep_hashtbl = hashinit(desiredvnodes / 5, M_PAGEDEP,
1042 	    &pagedep_hash);
1043 	lockinit(&lk, "ffs_softdep", 0, LK_CANRECURSE);
1044 	sema_init(&pagedep_in_progress, "pagedep", 0);
1045 	inodedep_hashtbl = hashinit(desiredvnodes, M_INODEDEP, &inodedep_hash);
1046 	sema_init(&inodedep_in_progress, "inodedep", 0);
1047 	newblk_hashtbl = hashinit(64, M_NEWBLK, &newblk_hash);
1048 	sema_init(&newblk_in_progress, "newblk", 0);
1049 	add_bio_ops(&softdep_bioops);
1050 }
1051 
1052 /*
1053  * Called at mount time to notify the dependency code that a
1054  * filesystem wishes to use it.
1055  */
1056 int
1057 softdep_mount(struct vnode *devvp, struct mount *mp, struct fs *fs)
1058 {
1059 	struct csum cstotal;
1060 	struct cg *cgp;
1061 	struct buf *bp;
1062 	int error, cyl;
1063 
1064 	mp->mnt_flag &= ~MNT_ASYNC;
1065 	mp->mnt_flag |= MNT_SOFTDEP;
1066 	mp->mnt_bioops = &softdep_bioops;
1067 	/*
1068 	 * When doing soft updates, the counters in the
1069 	 * superblock may have gotten out of sync, so we have
1070 	 * to scan the cylinder groups and recalculate them.
1071 	 */
1072 	if (fs->fs_clean != 0)
1073 		return (0);
1074 	bzero(&cstotal, sizeof cstotal);
1075 	for (cyl = 0; cyl < fs->fs_ncg; cyl++) {
1076 		if ((error = bread(devvp, fsbtodoff(fs, cgtod(fs, cyl)),
1077 				   fs->fs_cgsize, &bp)) != 0) {
1078 			brelse(bp);
1079 			return (error);
1080 		}
1081 		cgp = (struct cg *)bp->b_data;
1082 		cstotal.cs_nffree += cgp->cg_cs.cs_nffree;
1083 		cstotal.cs_nbfree += cgp->cg_cs.cs_nbfree;
1084 		cstotal.cs_nifree += cgp->cg_cs.cs_nifree;
1085 		cstotal.cs_ndir += cgp->cg_cs.cs_ndir;
1086 		fs->fs_cs(fs, cyl) = cgp->cg_cs;
1087 		brelse(bp);
1088 	}
1089 #ifdef DEBUG
1090 	if (bcmp(&cstotal, &fs->fs_cstotal, sizeof cstotal))
1091 		kprintf("ffs_mountfs: superblock updated for soft updates\n");
1092 #endif
1093 	bcopy(&cstotal, &fs->fs_cstotal, sizeof cstotal);
1094 	return (0);
1095 }
1096 
1097 /*
1098  * Protecting the freemaps (or bitmaps).
1099  *
1100  * To eliminate the need to execute fsck before mounting a filesystem
1101  * after a power failure, one must (conservatively) guarantee that the
1102  * on-disk copy of the bitmaps never indicate that a live inode or block is
1103  * free.  So, when a block or inode is allocated, the bitmap should be
1104  * updated (on disk) before any new pointers.  When a block or inode is
1105  * freed, the bitmap should not be updated until all pointers have been
1106  * reset.  The latter dependency is handled by the delayed de-allocation
1107  * approach described below for block and inode de-allocation.  The former
1108  * dependency is handled by calling the following procedure when a block or
1109  * inode is allocated. When an inode is allocated an "inodedep" is created
1110  * with its DEPCOMPLETE flag cleared until its bitmap is written to disk.
1111  * Each "inodedep" is also inserted into the hash indexing structure so
1112  * that any additional link additions can be made dependent on the inode
1113  * allocation.
1114  *
1115  * The ufs filesystem maintains a number of free block counts (e.g., per
1116  * cylinder group, per cylinder and per <cylinder, rotational position> pair)
1117  * in addition to the bitmaps.  These counts are used to improve efficiency
1118  * during allocation and therefore must be consistent with the bitmaps.
1119  * There is no convenient way to guarantee post-crash consistency of these
1120  * counts with simple update ordering, for two main reasons: (1) The counts
1121  * and bitmaps for a single cylinder group block are not in the same disk
1122  * sector.  If a disk write is interrupted (e.g., by power failure), one may
1123  * be written and the other not.  (2) Some of the counts are located in the
1124  * superblock rather than the cylinder group block. So, we focus our soft
1125  * updates implementation on protecting the bitmaps. When mounting a
1126  * filesystem, we recompute the auxiliary counts from the bitmaps.
1127  */
1128 
1129 /*
1130  * Called just after updating the cylinder group block to allocate an inode.
1131  *
1132  * Parameters:
1133  *	bp:		buffer for cylgroup block with inode map
1134  *	ip:		inode related to allocation
1135  *	newinum:	new inode number being allocated
1136  */
1137 void
1138 softdep_setup_inomapdep(struct buf *bp, struct inode *ip, ino_t newinum)
1139 {
1140 	struct inodedep *inodedep;
1141 	struct bmsafemap *bmsafemap;
1142 
1143 	/*
1144 	 * Create a dependency for the newly allocated inode.
1145 	 * Panic if it already exists as something is seriously wrong.
1146 	 * Otherwise add it to the dependency list for the buffer holding
1147 	 * the cylinder group map from which it was allocated.
1148 	 */
1149 	ACQUIRE_LOCK(&lk);
1150 	if ((inodedep_lookup(ip->i_fs, newinum, DEPALLOC|NODELAY, &inodedep))) {
1151 		panic("softdep_setup_inomapdep: found inode");
1152 	}
1153 	inodedep->id_buf = bp;
1154 	inodedep->id_state &= ~DEPCOMPLETE;
1155 	bmsafemap = bmsafemap_lookup(bp);
1156 	LIST_INSERT_HEAD(&bmsafemap->sm_inodedephd, inodedep, id_deps);
1157 	FREE_LOCK(&lk);
1158 }
1159 
1160 /*
1161  * Called just after updating the cylinder group block to
1162  * allocate block or fragment.
1163  *
1164  * Parameters:
1165  *	bp:		buffer for cylgroup block with block map
1166  *	fs:		filesystem doing allocation
1167  *	newblkno:	number of newly allocated block
1168  */
1169 void
1170 softdep_setup_blkmapdep(struct buf *bp, struct fs *fs,
1171 			ufs_daddr_t newblkno)
1172 {
1173 	struct newblk *newblk;
1174 	struct bmsafemap *bmsafemap;
1175 
1176 	/*
1177 	 * Create a dependency for the newly allocated block.
1178 	 * Add it to the dependency list for the buffer holding
1179 	 * the cylinder group map from which it was allocated.
1180 	 */
1181 	if (newblk_lookup(fs, newblkno, DEPALLOC, &newblk) != 0)
1182 		panic("softdep_setup_blkmapdep: found block");
1183 	ACQUIRE_LOCK(&lk);
1184 	newblk->nb_bmsafemap = bmsafemap = bmsafemap_lookup(bp);
1185 	LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, nb_deps);
1186 	FREE_LOCK(&lk);
1187 }
1188 
1189 /*
1190  * Find the bmsafemap associated with a cylinder group buffer.
1191  * If none exists, create one. The buffer must be locked when
1192  * this routine is called and this routine must be called with
1193  * splbio interrupts blocked.
1194  */
1195 static struct bmsafemap *
1196 bmsafemap_lookup(struct buf *bp)
1197 {
1198 	struct bmsafemap *bmsafemap;
1199 	struct worklist *wk;
1200 
1201 	KKASSERT(lock_held(&lk) > 0);
1202 
1203 	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
1204 		if (wk->wk_type == D_BMSAFEMAP)
1205 			return (WK_BMSAFEMAP(wk));
1206 	}
1207 	FREE_LOCK(&lk);
1208 	bmsafemap = kmalloc(sizeof(struct bmsafemap), M_BMSAFEMAP,
1209 			    M_SOFTDEP_FLAGS);
1210 	bmsafemap->sm_list.wk_type = D_BMSAFEMAP;
1211 	bmsafemap->sm_list.wk_state = 0;
1212 	bmsafemap->sm_buf = bp;
1213 	LIST_INIT(&bmsafemap->sm_allocdirecthd);
1214 	LIST_INIT(&bmsafemap->sm_allocindirhd);
1215 	LIST_INIT(&bmsafemap->sm_inodedephd);
1216 	LIST_INIT(&bmsafemap->sm_newblkhd);
1217 	ACQUIRE_LOCK(&lk);
1218 	WORKLIST_INSERT_BP(bp, &bmsafemap->sm_list);
1219 	return (bmsafemap);
1220 }
1221 
1222 /*
1223  * Direct block allocation dependencies.
1224  *
1225  * When a new block is allocated, the corresponding disk locations must be
1226  * initialized (with zeros or new data) before the on-disk inode points to
1227  * them.  Also, the freemap from which the block was allocated must be
1228  * updated (on disk) before the inode's pointer. These two dependencies are
1229  * independent of each other and are needed for all file blocks and indirect
1230  * blocks that are pointed to directly by the inode.  Just before the
1231  * "in-core" version of the inode is updated with a newly allocated block
1232  * number, a procedure (below) is called to setup allocation dependency
1233  * structures.  These structures are removed when the corresponding
1234  * dependencies are satisfied or when the block allocation becomes obsolete
1235  * (i.e., the file is deleted, the block is de-allocated, or the block is a
1236  * fragment that gets upgraded).  All of these cases are handled in
1237  * procedures described later.
1238  *
1239  * When a file extension causes a fragment to be upgraded, either to a larger
1240  * fragment or to a full block, the on-disk location may change (if the
1241  * previous fragment could not simply be extended). In this case, the old
1242  * fragment must be de-allocated, but not until after the inode's pointer has
1243  * been updated. In most cases, this is handled by later procedures, which
1244  * will construct a "freefrag" structure to be added to the workitem queue
1245  * when the inode update is complete (or obsolete).  The main exception to
1246  * this is when an allocation occurs while a pending allocation dependency
1247  * (for the same block pointer) remains.  This case is handled in the main
1248  * allocation dependency setup procedure by immediately freeing the
1249  * unreferenced fragments.
1250  *
1251  * Parameters:
1252  *	ip:		inode to which block is being added
1253  *	lbn:		block pointer within inode
1254  *	newblkno:	disk block number being added
1255  *	oldblkno:	previous block number, 0 unless frag
1256  *	newsize:	size of new block
1257  *	oldsize:	size of new block
1258  *	bp:		bp for allocated block
1259  */
1260 void
1261 softdep_setup_allocdirect(struct inode *ip, ufs_lbn_t lbn, ufs_daddr_t newblkno,
1262 			  ufs_daddr_t oldblkno, long newsize, long oldsize,
1263 			  struct buf *bp)
1264 {
1265 	struct allocdirect *adp, *oldadp;
1266 	struct allocdirectlst *adphead;
1267 	struct bmsafemap *bmsafemap;
1268 	struct inodedep *inodedep;
1269 	struct pagedep *pagedep;
1270 	struct newblk *newblk;
1271 
1272 	adp = kmalloc(sizeof(struct allocdirect), M_ALLOCDIRECT,
1273 		      M_SOFTDEP_FLAGS | M_ZERO);
1274 	adp->ad_list.wk_type = D_ALLOCDIRECT;
1275 	adp->ad_lbn = lbn;
1276 	adp->ad_newblkno = newblkno;
1277 	adp->ad_oldblkno = oldblkno;
1278 	adp->ad_newsize = newsize;
1279 	adp->ad_oldsize = oldsize;
1280 	adp->ad_state = ATTACHED;
1281 	if (newblkno == oldblkno)
1282 		adp->ad_freefrag = NULL;
1283 	else
1284 		adp->ad_freefrag = newfreefrag(ip, oldblkno, oldsize);
1285 
1286 	if (newblk_lookup(ip->i_fs, newblkno, 0, &newblk) == 0)
1287 		panic("softdep_setup_allocdirect: lost block");
1288 
1289 	ACQUIRE_LOCK(&lk);
1290 	inodedep_lookup(ip->i_fs, ip->i_number, DEPALLOC | NODELAY, &inodedep);
1291 	adp->ad_inodedep = inodedep;
1292 
1293 	if (newblk->nb_state == DEPCOMPLETE) {
1294 		adp->ad_state |= DEPCOMPLETE;
1295 		adp->ad_buf = NULL;
1296 	} else {
1297 		bmsafemap = newblk->nb_bmsafemap;
1298 		adp->ad_buf = bmsafemap->sm_buf;
1299 		LIST_REMOVE(newblk, nb_deps);
1300 		LIST_INSERT_HEAD(&bmsafemap->sm_allocdirecthd, adp, ad_deps);
1301 	}
1302 	LIST_REMOVE(newblk, nb_hash);
1303 	kfree(newblk, M_NEWBLK);
1304 
1305 	WORKLIST_INSERT_BP(bp, &adp->ad_list);
1306 	if (lbn >= NDADDR) {
1307 		/* allocating an indirect block */
1308 		if (oldblkno != 0) {
1309 			panic("softdep_setup_allocdirect: non-zero indir");
1310 		}
1311 	} else {
1312 		/*
1313 		 * Allocating a direct block.
1314 		 *
1315 		 * If we are allocating a directory block, then we must
1316 		 * allocate an associated pagedep to track additions and
1317 		 * deletions.
1318 		 */
1319 		if ((ip->i_mode & IFMT) == IFDIR &&
1320 		    pagedep_lookup(ip, lbn, DEPALLOC, &pagedep) == 0) {
1321 			WORKLIST_INSERT_BP(bp, &pagedep->pd_list);
1322 		}
1323 	}
1324 	/*
1325 	 * The list of allocdirects must be kept in sorted and ascending
1326 	 * order so that the rollback routines can quickly determine the
1327 	 * first uncommitted block (the size of the file stored on disk
1328 	 * ends at the end of the lowest committed fragment, or if there
1329 	 * are no fragments, at the end of the highest committed block).
1330 	 * Since files generally grow, the typical case is that the new
1331 	 * block is to be added at the end of the list. We speed this
1332 	 * special case by checking against the last allocdirect in the
1333 	 * list before laboriously traversing the list looking for the
1334 	 * insertion point.
1335 	 */
1336 	adphead = &inodedep->id_newinoupdt;
1337 	oldadp = TAILQ_LAST(adphead, allocdirectlst);
1338 	if (oldadp == NULL || oldadp->ad_lbn <= lbn) {
1339 		/* insert at end of list */
1340 		TAILQ_INSERT_TAIL(adphead, adp, ad_next);
1341 		if (oldadp != NULL && oldadp->ad_lbn == lbn)
1342 			allocdirect_merge(adphead, adp, oldadp);
1343 		FREE_LOCK(&lk);
1344 		return;
1345 	}
1346 	TAILQ_FOREACH(oldadp, adphead, ad_next) {
1347 		if (oldadp->ad_lbn >= lbn)
1348 			break;
1349 	}
1350 	if (oldadp == NULL) {
1351 		panic("softdep_setup_allocdirect: lost entry");
1352 	}
1353 	/* insert in middle of list */
1354 	TAILQ_INSERT_BEFORE(oldadp, adp, ad_next);
1355 	if (oldadp->ad_lbn == lbn)
1356 		allocdirect_merge(adphead, adp, oldadp);
1357 	FREE_LOCK(&lk);
1358 }
1359 
1360 /*
1361  * Replace an old allocdirect dependency with a newer one.
1362  * This routine must be called with splbio interrupts blocked.
1363  *
1364  * Parameters:
1365  *	adphead:	head of list holding allocdirects
1366  *	newadp:		allocdirect being added
1367  *	oldadp:		existing allocdirect being checked
1368  */
1369 static void
1370 allocdirect_merge(struct allocdirectlst *adphead,
1371 		  struct allocdirect *newadp,
1372 		  struct allocdirect *oldadp)
1373 {
1374 	struct freefrag *freefrag;
1375 
1376 	KKASSERT(lock_held(&lk) > 0);
1377 
1378 	if (newadp->ad_oldblkno != oldadp->ad_newblkno ||
1379 	    newadp->ad_oldsize != oldadp->ad_newsize ||
1380 	    newadp->ad_lbn >= NDADDR) {
1381 		panic("allocdirect_check: old %d != new %d || lbn %ld >= %d",
1382 		    newadp->ad_oldblkno, oldadp->ad_newblkno, newadp->ad_lbn,
1383 		    NDADDR);
1384 	}
1385 	newadp->ad_oldblkno = oldadp->ad_oldblkno;
1386 	newadp->ad_oldsize = oldadp->ad_oldsize;
1387 	/*
1388 	 * If the old dependency had a fragment to free or had never
1389 	 * previously had a block allocated, then the new dependency
1390 	 * can immediately post its freefrag and adopt the old freefrag.
1391 	 * This action is done by swapping the freefrag dependencies.
1392 	 * The new dependency gains the old one's freefrag, and the
1393 	 * old one gets the new one and then immediately puts it on
1394 	 * the worklist when it is freed by free_allocdirect. It is
1395 	 * not possible to do this swap when the old dependency had a
1396 	 * non-zero size but no previous fragment to free. This condition
1397 	 * arises when the new block is an extension of the old block.
1398 	 * Here, the first part of the fragment allocated to the new
1399 	 * dependency is part of the block currently claimed on disk by
1400 	 * the old dependency, so cannot legitimately be freed until the
1401 	 * conditions for the new dependency are fulfilled.
1402 	 */
1403 	if (oldadp->ad_freefrag != NULL || oldadp->ad_oldblkno == 0) {
1404 		freefrag = newadp->ad_freefrag;
1405 		newadp->ad_freefrag = oldadp->ad_freefrag;
1406 		oldadp->ad_freefrag = freefrag;
1407 	}
1408 	free_allocdirect(adphead, oldadp, 0);
1409 }
1410 
1411 /*
1412  * Allocate a new freefrag structure if needed.
1413  */
1414 static struct freefrag *
1415 newfreefrag(struct inode *ip, ufs_daddr_t blkno, long size)
1416 {
1417 	struct freefrag *freefrag;
1418 	struct fs *fs;
1419 
1420 	if (blkno == 0)
1421 		return (NULL);
1422 	fs = ip->i_fs;
1423 	if (fragnum(fs, blkno) + numfrags(fs, size) > fs->fs_frag)
1424 		panic("newfreefrag: frag size");
1425 	freefrag = kmalloc(sizeof(struct freefrag), M_FREEFRAG,
1426 			   M_SOFTDEP_FLAGS);
1427 	freefrag->ff_list.wk_type = D_FREEFRAG;
1428 	freefrag->ff_state = ip->i_uid & ~ONWORKLIST;	/* XXX - used below */
1429 	freefrag->ff_inum = ip->i_number;
1430 	freefrag->ff_fs = fs;
1431 	freefrag->ff_devvp = ip->i_devvp;
1432 	freefrag->ff_blkno = blkno;
1433 	freefrag->ff_fragsize = size;
1434 	return (freefrag);
1435 }
1436 
1437 /*
1438  * This workitem de-allocates fragments that were replaced during
1439  * file block allocation.
1440  */
1441 static void
1442 handle_workitem_freefrag(struct freefrag *freefrag)
1443 {
1444 	struct inode tip;
1445 
1446 	tip.i_fs = freefrag->ff_fs;
1447 	tip.i_devvp = freefrag->ff_devvp;
1448 	tip.i_dev = freefrag->ff_devvp->v_rdev;
1449 	tip.i_number = freefrag->ff_inum;
1450 	tip.i_uid = freefrag->ff_state & ~ONWORKLIST;	/* XXX - set above */
1451 	ffs_blkfree(&tip, freefrag->ff_blkno, freefrag->ff_fragsize);
1452 	kfree(freefrag, M_FREEFRAG);
1453 }
1454 
1455 /*
1456  * Indirect block allocation dependencies.
1457  *
1458  * The same dependencies that exist for a direct block also exist when
1459  * a new block is allocated and pointed to by an entry in a block of
1460  * indirect pointers. The undo/redo states described above are also
1461  * used here. Because an indirect block contains many pointers that
1462  * may have dependencies, a second copy of the entire in-memory indirect
1463  * block is kept. The buffer cache copy is always completely up-to-date.
1464  * The second copy, which is used only as a source for disk writes,
1465  * contains only the safe pointers (i.e., those that have no remaining
1466  * update dependencies). The second copy is freed when all pointers
1467  * are safe. The cache is not allowed to replace indirect blocks with
1468  * pending update dependencies. If a buffer containing an indirect
1469  * block with dependencies is written, these routines will mark it
1470  * dirty again. It can only be successfully written once all the
1471  * dependencies are removed. The ffs_fsync routine in conjunction with
1472  * softdep_sync_metadata work together to get all the dependencies
1473  * removed so that a file can be successfully written to disk. Three
1474  * procedures are used when setting up indirect block pointer
1475  * dependencies. The division is necessary because of the organization
1476  * of the "balloc" routine and because of the distinction between file
1477  * pages and file metadata blocks.
1478  */
1479 
1480 /*
1481  * Allocate a new allocindir structure.
1482  *
1483  * Parameters:
1484  *	ip:		inode for file being extended
1485  *	ptrno:		offset of pointer in indirect block
1486  *	newblkno:	disk block number being added
1487  *	oldblkno:	previous block number, 0 if none
1488  */
1489 static struct allocindir *
1490 newallocindir(struct inode *ip, int ptrno, ufs_daddr_t newblkno,
1491 	      ufs_daddr_t oldblkno)
1492 {
1493 	struct allocindir *aip;
1494 
1495 	aip = kmalloc(sizeof(struct allocindir), M_ALLOCINDIR,
1496 		      M_SOFTDEP_FLAGS | M_ZERO);
1497 	aip->ai_list.wk_type = D_ALLOCINDIR;
1498 	aip->ai_state = ATTACHED;
1499 	aip->ai_offset = ptrno;
1500 	aip->ai_newblkno = newblkno;
1501 	aip->ai_oldblkno = oldblkno;
1502 	aip->ai_freefrag = newfreefrag(ip, oldblkno, ip->i_fs->fs_bsize);
1503 	return (aip);
1504 }
1505 
1506 /*
1507  * Called just before setting an indirect block pointer
1508  * to a newly allocated file page.
1509  *
1510  * Parameters:
1511  *	ip:		inode for file being extended
1512  *	lbn:		allocated block number within file
1513  *	bp:		buffer with indirect blk referencing page
1514  *	ptrno:		offset of pointer in indirect block
1515  *	newblkno:	disk block number being added
1516  *	oldblkno:	previous block number, 0 if none
1517  *	nbp:		buffer holding allocated page
1518  */
1519 void
1520 softdep_setup_allocindir_page(struct inode *ip, ufs_lbn_t lbn,
1521 			      struct buf *bp, int ptrno,
1522 			      ufs_daddr_t newblkno, ufs_daddr_t oldblkno,
1523 			      struct buf *nbp)
1524 {
1525 	struct allocindir *aip;
1526 	struct pagedep *pagedep;
1527 
1528 	aip = newallocindir(ip, ptrno, newblkno, oldblkno);
1529 	ACQUIRE_LOCK(&lk);
1530 	/*
1531 	 * If we are allocating a directory page, then we must
1532 	 * allocate an associated pagedep to track additions and
1533 	 * deletions.
1534 	 */
1535 	if ((ip->i_mode & IFMT) == IFDIR &&
1536 	    pagedep_lookup(ip, lbn, DEPALLOC, &pagedep) == 0)
1537 		WORKLIST_INSERT_BP(nbp, &pagedep->pd_list);
1538 	WORKLIST_INSERT_BP(nbp, &aip->ai_list);
1539 	FREE_LOCK(&lk);
1540 	setup_allocindir_phase2(bp, ip, aip);
1541 }
1542 
1543 /*
1544  * Called just before setting an indirect block pointer to a
1545  * newly allocated indirect block.
1546  * Parameters:
1547  *	nbp:		newly allocated indirect block
1548  *	ip:		inode for file being extended
1549  *	bp:		indirect block referencing allocated block
1550  *	ptrno:		offset of pointer in indirect block
1551  *	newblkno:	disk block number being added
1552  */
1553 void
1554 softdep_setup_allocindir_meta(struct buf *nbp, struct inode *ip,
1555 			      struct buf *bp, int ptrno,
1556 			      ufs_daddr_t newblkno)
1557 {
1558 	struct allocindir *aip;
1559 
1560 	aip = newallocindir(ip, ptrno, newblkno, 0);
1561 	ACQUIRE_LOCK(&lk);
1562 	WORKLIST_INSERT_BP(nbp, &aip->ai_list);
1563 	FREE_LOCK(&lk);
1564 	setup_allocindir_phase2(bp, ip, aip);
1565 }
1566 
1567 /*
1568  * Called to finish the allocation of the "aip" allocated
1569  * by one of the two routines above.
1570  *
1571  * Parameters:
1572  *	bp:	in-memory copy of the indirect block
1573  *	ip:	inode for file being extended
1574  *	aip:	allocindir allocated by the above routines
1575  */
1576 static void
1577 setup_allocindir_phase2(struct buf *bp, struct inode *ip,
1578 			struct allocindir *aip)
1579 {
1580 	struct worklist *wk;
1581 	struct indirdep *indirdep, *newindirdep;
1582 	struct bmsafemap *bmsafemap;
1583 	struct allocindir *oldaip;
1584 	struct freefrag *freefrag;
1585 	struct newblk *newblk;
1586 
1587 	if (bp->b_loffset >= 0)
1588 		panic("setup_allocindir_phase2: not indir blk");
1589 	for (indirdep = NULL, newindirdep = NULL; ; ) {
1590 		ACQUIRE_LOCK(&lk);
1591 		LIST_FOREACH(wk, &bp->b_dep, wk_list) {
1592 			if (wk->wk_type != D_INDIRDEP)
1593 				continue;
1594 			indirdep = WK_INDIRDEP(wk);
1595 			break;
1596 		}
1597 		if (indirdep == NULL && newindirdep) {
1598 			indirdep = newindirdep;
1599 			WORKLIST_INSERT_BP(bp, &indirdep->ir_list);
1600 			newindirdep = NULL;
1601 		}
1602 		FREE_LOCK(&lk);
1603 		if (indirdep) {
1604 			if (newblk_lookup(ip->i_fs, aip->ai_newblkno, 0,
1605 			    &newblk) == 0)
1606 				panic("setup_allocindir: lost block");
1607 			ACQUIRE_LOCK(&lk);
1608 			if (newblk->nb_state == DEPCOMPLETE) {
1609 				aip->ai_state |= DEPCOMPLETE;
1610 				aip->ai_buf = NULL;
1611 			} else {
1612 				bmsafemap = newblk->nb_bmsafemap;
1613 				aip->ai_buf = bmsafemap->sm_buf;
1614 				LIST_REMOVE(newblk, nb_deps);
1615 				LIST_INSERT_HEAD(&bmsafemap->sm_allocindirhd,
1616 				    aip, ai_deps);
1617 			}
1618 			LIST_REMOVE(newblk, nb_hash);
1619 			kfree(newblk, M_NEWBLK);
1620 			aip->ai_indirdep = indirdep;
1621 			/*
1622 			 * Check to see if there is an existing dependency
1623 			 * for this block. If there is, merge the old
1624 			 * dependency into the new one.
1625 			 */
1626 			if (aip->ai_oldblkno == 0)
1627 				oldaip = NULL;
1628 			else
1629 
1630 				LIST_FOREACH(oldaip, &indirdep->ir_deplisthd, ai_next)
1631 					if (oldaip->ai_offset == aip->ai_offset)
1632 						break;
1633 			if (oldaip != NULL) {
1634 				if (oldaip->ai_newblkno != aip->ai_oldblkno) {
1635 					panic("setup_allocindir_phase2: blkno");
1636 				}
1637 				aip->ai_oldblkno = oldaip->ai_oldblkno;
1638 				freefrag = oldaip->ai_freefrag;
1639 				oldaip->ai_freefrag = aip->ai_freefrag;
1640 				aip->ai_freefrag = freefrag;
1641 				free_allocindir(oldaip, NULL);
1642 			}
1643 			LIST_INSERT_HEAD(&indirdep->ir_deplisthd, aip, ai_next);
1644 			((ufs_daddr_t *)indirdep->ir_savebp->b_data)
1645 			    [aip->ai_offset] = aip->ai_oldblkno;
1646 			FREE_LOCK(&lk);
1647 		}
1648 		if (newindirdep) {
1649 			/*
1650 			 * Avoid any possibility of data corruption by
1651 			 * ensuring that our old version is thrown away.
1652 			 */
1653 			newindirdep->ir_savebp->b_flags |= B_INVAL | B_NOCACHE;
1654 			brelse(newindirdep->ir_savebp);
1655 			WORKITEM_FREE((caddr_t)newindirdep, D_INDIRDEP);
1656 		}
1657 		if (indirdep)
1658 			break;
1659 		newindirdep = kmalloc(sizeof(struct indirdep), M_INDIRDEP,
1660 				      M_SOFTDEP_FLAGS);
1661 		newindirdep->ir_list.wk_type = D_INDIRDEP;
1662 		newindirdep->ir_state = ATTACHED;
1663 		LIST_INIT(&newindirdep->ir_deplisthd);
1664 		LIST_INIT(&newindirdep->ir_donehd);
1665 		if (bp->b_bio2.bio_offset == NOOFFSET) {
1666 			VOP_BMAP(bp->b_vp, bp->b_bio1.bio_offset,
1667 				 &bp->b_bio2.bio_offset, NULL, NULL,
1668 				 BUF_CMD_WRITE);
1669 		}
1670 		KKASSERT(bp->b_bio2.bio_offset != NOOFFSET);
1671 		newindirdep->ir_savebp = getblk(ip->i_devvp,
1672 						bp->b_bio2.bio_offset,
1673 					        bp->b_bcount, 0, 0);
1674 		BUF_KERNPROC(newindirdep->ir_savebp);
1675 		bcopy(bp->b_data, newindirdep->ir_savebp->b_data, bp->b_bcount);
1676 	}
1677 }
1678 
1679 /*
1680  * Block de-allocation dependencies.
1681  *
1682  * When blocks are de-allocated, the on-disk pointers must be nullified before
1683  * the blocks are made available for use by other files.  (The true
1684  * requirement is that old pointers must be nullified before new on-disk
1685  * pointers are set.  We chose this slightly more stringent requirement to
1686  * reduce complexity.) Our implementation handles this dependency by updating
1687  * the inode (or indirect block) appropriately but delaying the actual block
1688  * de-allocation (i.e., freemap and free space count manipulation) until
1689  * after the updated versions reach stable storage.  After the disk is
1690  * updated, the blocks can be safely de-allocated whenever it is convenient.
1691  * This implementation handles only the common case of reducing a file's
1692  * length to zero. Other cases are handled by the conventional synchronous
1693  * write approach.
1694  *
1695  * The ffs implementation with which we worked double-checks
1696  * the state of the block pointers and file size as it reduces
1697  * a file's length.  Some of this code is replicated here in our
1698  * soft updates implementation.  The freeblks->fb_chkcnt field is
1699  * used to transfer a part of this information to the procedure
1700  * that eventually de-allocates the blocks.
1701  *
1702  * This routine should be called from the routine that shortens
1703  * a file's length, before the inode's size or block pointers
1704  * are modified. It will save the block pointer information for
1705  * later release and zero the inode so that the calling routine
1706  * can release it.
1707  */
1708 struct softdep_setup_freeblocks_info {
1709 	struct fs *fs;
1710 	struct inode *ip;
1711 };
1712 
1713 static int softdep_setup_freeblocks_bp(struct buf *bp, void *data);
1714 
1715 /*
1716  * Parameters:
1717  *	ip:	The inode whose length is to be reduced
1718  *	length:	The new length for the file
1719  */
1720 void
1721 softdep_setup_freeblocks(struct inode *ip, off_t length)
1722 {
1723 	struct softdep_setup_freeblocks_info info;
1724 	struct freeblks *freeblks;
1725 	struct inodedep *inodedep;
1726 	struct allocdirect *adp;
1727 	struct vnode *vp;
1728 	struct buf *bp;
1729 	struct fs *fs;
1730 	int i, error, delay;
1731 	int count;
1732 
1733 	fs = ip->i_fs;
1734 	if (length != 0)
1735 		panic("softde_setup_freeblocks: non-zero length");
1736 	freeblks = kmalloc(sizeof(struct freeblks), M_FREEBLKS,
1737 			   M_SOFTDEP_FLAGS | M_ZERO);
1738 	freeblks->fb_list.wk_type = D_FREEBLKS;
1739 	freeblks->fb_state = ATTACHED;
1740 	freeblks->fb_uid = ip->i_uid;
1741 	freeblks->fb_previousinum = ip->i_number;
1742 	freeblks->fb_devvp = ip->i_devvp;
1743 	freeblks->fb_fs = fs;
1744 	freeblks->fb_oldsize = ip->i_size;
1745 	freeblks->fb_newsize = length;
1746 	freeblks->fb_chkcnt = ip->i_blocks;
1747 	for (i = 0; i < NDADDR; i++) {
1748 		freeblks->fb_dblks[i] = ip->i_db[i];
1749 		ip->i_db[i] = 0;
1750 	}
1751 	for (i = 0; i < NIADDR; i++) {
1752 		freeblks->fb_iblks[i] = ip->i_ib[i];
1753 		ip->i_ib[i] = 0;
1754 	}
1755 	ip->i_blocks = 0;
1756 	ip->i_size = 0;
1757 	/*
1758 	 * Push the zero'ed inode to to its disk buffer so that we are free
1759 	 * to delete its dependencies below. Once the dependencies are gone
1760 	 * the buffer can be safely released.
1761 	 */
1762 	if ((error = bread(ip->i_devvp,
1763 			    fsbtodoff(fs, ino_to_fsba(fs, ip->i_number)),
1764 	    (int)fs->fs_bsize, &bp)) != 0)
1765 		softdep_error("softdep_setup_freeblocks", error);
1766 	*((struct ufs1_dinode *)bp->b_data + ino_to_fsbo(fs, ip->i_number)) =
1767 	    ip->i_din;
1768 	/*
1769 	 * Find and eliminate any inode dependencies.
1770 	 */
1771 	ACQUIRE_LOCK(&lk);
1772 	(void) inodedep_lookup(fs, ip->i_number, DEPALLOC, &inodedep);
1773 	if ((inodedep->id_state & IOSTARTED) != 0) {
1774 		panic("softdep_setup_freeblocks: inode busy");
1775 	}
1776 	/*
1777 	 * Add the freeblks structure to the list of operations that
1778 	 * must await the zero'ed inode being written to disk. If we
1779 	 * still have a bitmap dependency (delay == 0), then the inode
1780 	 * has never been written to disk, so we can process the
1781 	 * freeblks below once we have deleted the dependencies.
1782 	 */
1783 	delay = (inodedep->id_state & DEPCOMPLETE);
1784 	if (delay)
1785 		WORKLIST_INSERT(&inodedep->id_bufwait, &freeblks->fb_list);
1786 	/*
1787 	 * Because the file length has been truncated to zero, any
1788 	 * pending block allocation dependency structures associated
1789 	 * with this inode are obsolete and can simply be de-allocated.
1790 	 * We must first merge the two dependency lists to get rid of
1791 	 * any duplicate freefrag structures, then purge the merged list.
1792 	 */
1793 	merge_inode_lists(inodedep);
1794 	while ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL)
1795 		free_allocdirect(&inodedep->id_inoupdt, adp, 1);
1796 	FREE_LOCK(&lk);
1797 	bdwrite(bp);
1798 	/*
1799 	 * We must wait for any I/O in progress to finish so that
1800 	 * all potential buffers on the dirty list will be visible.
1801 	 * Once they are all there, walk the list and get rid of
1802 	 * any dependencies.
1803 	 */
1804 	vp = ITOV(ip);
1805 	ACQUIRE_LOCK(&lk);
1806 	drain_output(vp, 1);
1807 
1808 	info.fs = fs;
1809 	info.ip = ip;
1810 	lwkt_gettoken(&vp->v_token);
1811 	do {
1812 		count = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
1813 				softdep_setup_freeblocks_bp, &info);
1814 	} while (count != 0);
1815 	lwkt_reltoken(&vp->v_token);
1816 
1817 	if (inodedep_lookup(fs, ip->i_number, 0, &inodedep) != 0)
1818 		(void)free_inodedep(inodedep);
1819 
1820 	if (delay) {
1821 		freeblks->fb_state |= DEPCOMPLETE;
1822 		/*
1823 		 * If the inode with zeroed block pointers is now on disk
1824 		 * we can start freeing blocks. Add freeblks to the worklist
1825 		 * instead of calling  handle_workitem_freeblocks directly as
1826 		 * it is more likely that additional IO is needed to complete
1827 		 * the request here than in the !delay case.
1828 		 */
1829 		if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE)
1830 			add_to_worklist(&freeblks->fb_list);
1831 	}
1832 
1833 	FREE_LOCK(&lk);
1834 	/*
1835 	 * If the inode has never been written to disk (delay == 0),
1836 	 * then we can process the freeblks now that we have deleted
1837 	 * the dependencies.
1838 	 */
1839 	if (!delay)
1840 		handle_workitem_freeblocks(freeblks);
1841 }
1842 
1843 static int
1844 softdep_setup_freeblocks_bp(struct buf *bp, void *data)
1845 {
1846 	struct softdep_setup_freeblocks_info *info = data;
1847 	struct inodedep *inodedep;
1848 
1849 	if (getdirtybuf(&bp, MNT_WAIT) == 0) {
1850 		kprintf("softdep_setup_freeblocks_bp(1): caught bp %p going away\n", bp);
1851 		return(-1);
1852 	}
1853 	if (bp->b_vp != ITOV(info->ip) || (bp->b_flags & B_DELWRI) == 0) {
1854 		kprintf("softdep_setup_freeblocks_bp(2): caught bp %p going away\n", bp);
1855 		BUF_UNLOCK(bp);
1856 		return(-1);
1857 	}
1858 	(void) inodedep_lookup(info->fs, info->ip->i_number, 0, &inodedep);
1859 	deallocate_dependencies(bp, inodedep);
1860 	bp->b_flags |= B_INVAL | B_NOCACHE;
1861 	FREE_LOCK(&lk);
1862 	brelse(bp);
1863 	ACQUIRE_LOCK(&lk);
1864 	return(1);
1865 }
1866 
1867 /*
1868  * Reclaim any dependency structures from a buffer that is about to
1869  * be reallocated to a new vnode. The buffer must be locked, thus,
1870  * no I/O completion operations can occur while we are manipulating
1871  * its associated dependencies. The mutex is held so that other I/O's
1872  * associated with related dependencies do not occur.
1873  */
1874 static void
1875 deallocate_dependencies(struct buf *bp, struct inodedep *inodedep)
1876 {
1877 	struct worklist *wk;
1878 	struct indirdep *indirdep;
1879 	struct allocindir *aip;
1880 	struct pagedep *pagedep;
1881 	struct dirrem *dirrem;
1882 	struct diradd *dap;
1883 	int i;
1884 
1885 	while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) {
1886 		switch (wk->wk_type) {
1887 
1888 		case D_INDIRDEP:
1889 			indirdep = WK_INDIRDEP(wk);
1890 			/*
1891 			 * None of the indirect pointers will ever be visible,
1892 			 * so they can simply be tossed. GOINGAWAY ensures
1893 			 * that allocated pointers will be saved in the buffer
1894 			 * cache until they are freed. Note that they will
1895 			 * only be able to be found by their physical address
1896 			 * since the inode mapping the logical address will
1897 			 * be gone. The save buffer used for the safe copy
1898 			 * was allocated in setup_allocindir_phase2 using
1899 			 * the physical address so it could be used for this
1900 			 * purpose. Hence we swap the safe copy with the real
1901 			 * copy, allowing the safe copy to be freed and holding
1902 			 * on to the real copy for later use in indir_trunc.
1903 			 *
1904 			 * NOTE: ir_savebp is relative to the block device
1905 			 * so b_bio1 contains the device block number.
1906 			 */
1907 			if (indirdep->ir_state & GOINGAWAY) {
1908 				panic("deallocate_dependencies: already gone");
1909 			}
1910 			indirdep->ir_state |= GOINGAWAY;
1911 			while ((aip = LIST_FIRST(&indirdep->ir_deplisthd)) != NULL)
1912 				free_allocindir(aip, inodedep);
1913 			if (bp->b_bio1.bio_offset >= 0 ||
1914 			    bp->b_bio2.bio_offset != indirdep->ir_savebp->b_bio1.bio_offset) {
1915 				panic("deallocate_dependencies: not indir");
1916 			}
1917 			bcopy(bp->b_data, indirdep->ir_savebp->b_data,
1918 			    bp->b_bcount);
1919 			WORKLIST_REMOVE(wk);
1920 			WORKLIST_INSERT_BP(indirdep->ir_savebp, wk);
1921 			continue;
1922 
1923 		case D_PAGEDEP:
1924 			pagedep = WK_PAGEDEP(wk);
1925 			/*
1926 			 * None of the directory additions will ever be
1927 			 * visible, so they can simply be tossed.
1928 			 */
1929 			for (i = 0; i < DAHASHSZ; i++)
1930 				while ((dap =
1931 				    LIST_FIRST(&pagedep->pd_diraddhd[i])))
1932 					free_diradd(dap);
1933 			while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
1934 				free_diradd(dap);
1935 			/*
1936 			 * Copy any directory remove dependencies to the list
1937 			 * to be processed after the zero'ed inode is written.
1938 			 * If the inode has already been written, then they
1939 			 * can be dumped directly onto the work list.
1940 			 */
1941 			LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) {
1942 				LIST_REMOVE(dirrem, dm_next);
1943 				dirrem->dm_dirinum = pagedep->pd_ino;
1944 				if (inodedep == NULL ||
1945 				    (inodedep->id_state & ALLCOMPLETE) ==
1946 				     ALLCOMPLETE)
1947 					add_to_worklist(&dirrem->dm_list);
1948 				else
1949 					WORKLIST_INSERT(&inodedep->id_bufwait,
1950 					    &dirrem->dm_list);
1951 			}
1952 			WORKLIST_REMOVE(&pagedep->pd_list);
1953 			LIST_REMOVE(pagedep, pd_hash);
1954 			WORKITEM_FREE(pagedep, D_PAGEDEP);
1955 			continue;
1956 
1957 		case D_ALLOCINDIR:
1958 			free_allocindir(WK_ALLOCINDIR(wk), inodedep);
1959 			continue;
1960 
1961 		case D_ALLOCDIRECT:
1962 		case D_INODEDEP:
1963 			panic("deallocate_dependencies: Unexpected type %s",
1964 			    TYPENAME(wk->wk_type));
1965 			/* NOTREACHED */
1966 
1967 		default:
1968 			panic("deallocate_dependencies: Unknown type %s",
1969 			    TYPENAME(wk->wk_type));
1970 			/* NOTREACHED */
1971 		}
1972 	}
1973 }
1974 
1975 /*
1976  * Free an allocdirect. Generate a new freefrag work request if appropriate.
1977  * This routine must be called with splbio interrupts blocked.
1978  */
1979 static void
1980 free_allocdirect(struct allocdirectlst *adphead,
1981 		 struct allocdirect *adp, int delay)
1982 {
1983 	KKASSERT(lock_held(&lk) > 0);
1984 
1985 	if ((adp->ad_state & DEPCOMPLETE) == 0)
1986 		LIST_REMOVE(adp, ad_deps);
1987 	TAILQ_REMOVE(adphead, adp, ad_next);
1988 	if ((adp->ad_state & COMPLETE) == 0)
1989 		WORKLIST_REMOVE(&adp->ad_list);
1990 	if (adp->ad_freefrag != NULL) {
1991 		if (delay)
1992 			WORKLIST_INSERT(&adp->ad_inodedep->id_bufwait,
1993 			    &adp->ad_freefrag->ff_list);
1994 		else
1995 			add_to_worklist(&adp->ad_freefrag->ff_list);
1996 	}
1997 	WORKITEM_FREE(adp, D_ALLOCDIRECT);
1998 }
1999 
2000 /*
2001  * Prepare an inode to be freed. The actual free operation is not
2002  * done until the zero'ed inode has been written to disk.
2003  */
2004 void
2005 softdep_freefile(struct vnode *pvp, ino_t ino, int mode)
2006 {
2007 	struct inode *ip = VTOI(pvp);
2008 	struct inodedep *inodedep;
2009 	struct freefile *freefile;
2010 
2011 	/*
2012 	 * This sets up the inode de-allocation dependency.
2013 	 */
2014 	freefile = kmalloc(sizeof(struct freefile), M_FREEFILE,
2015 			   M_SOFTDEP_FLAGS);
2016 	freefile->fx_list.wk_type = D_FREEFILE;
2017 	freefile->fx_list.wk_state = 0;
2018 	freefile->fx_mode = mode;
2019 	freefile->fx_oldinum = ino;
2020 	freefile->fx_devvp = ip->i_devvp;
2021 	freefile->fx_fs = ip->i_fs;
2022 
2023 	/*
2024 	 * If the inodedep does not exist, then the zero'ed inode has
2025 	 * been written to disk. If the allocated inode has never been
2026 	 * written to disk, then the on-disk inode is zero'ed. In either
2027 	 * case we can free the file immediately.
2028 	 */
2029 	ACQUIRE_LOCK(&lk);
2030 	if (inodedep_lookup(ip->i_fs, ino, 0, &inodedep) == 0 ||
2031 	    check_inode_unwritten(inodedep)) {
2032 		FREE_LOCK(&lk);
2033 		handle_workitem_freefile(freefile);
2034 		return;
2035 	}
2036 	WORKLIST_INSERT(&inodedep->id_inowait, &freefile->fx_list);
2037 	FREE_LOCK(&lk);
2038 }
2039 
2040 /*
2041  * Check to see if an inode has never been written to disk. If
2042  * so free the inodedep and return success, otherwise return failure.
2043  * This routine must be called with splbio interrupts blocked.
2044  *
2045  * If we still have a bitmap dependency, then the inode has never
2046  * been written to disk. Drop the dependency as it is no longer
2047  * necessary since the inode is being deallocated. We set the
2048  * ALLCOMPLETE flags since the bitmap now properly shows that the
2049  * inode is not allocated. Even if the inode is actively being
2050  * written, it has been rolled back to its zero'ed state, so we
2051  * are ensured that a zero inode is what is on the disk. For short
2052  * lived files, this change will usually result in removing all the
2053  * dependencies from the inode so that it can be freed immediately.
2054  */
2055 static int
2056 check_inode_unwritten(struct inodedep *inodedep)
2057 {
2058 
2059 	if ((inodedep->id_state & DEPCOMPLETE) != 0 ||
2060 	    LIST_FIRST(&inodedep->id_pendinghd) != NULL ||
2061 	    LIST_FIRST(&inodedep->id_bufwait) != NULL ||
2062 	    LIST_FIRST(&inodedep->id_inowait) != NULL ||
2063 	    TAILQ_FIRST(&inodedep->id_inoupdt) != NULL ||
2064 	    TAILQ_FIRST(&inodedep->id_newinoupdt) != NULL ||
2065 	    inodedep->id_nlinkdelta != 0)
2066 		return (0);
2067 
2068 	/*
2069 	 * Another process might be in initiate_write_inodeblock
2070 	 * trying to allocate memory without holding "Softdep Lock".
2071 	 */
2072 	if ((inodedep->id_state & IOSTARTED) != 0 &&
2073 	    inodedep->id_savedino == NULL)
2074 		return(0);
2075 
2076 	inodedep->id_state |= ALLCOMPLETE;
2077 	LIST_REMOVE(inodedep, id_deps);
2078 	inodedep->id_buf = NULL;
2079 	if (inodedep->id_state & ONWORKLIST)
2080 		WORKLIST_REMOVE(&inodedep->id_list);
2081 	if (inodedep->id_savedino != NULL) {
2082 		kfree(inodedep->id_savedino, M_INODEDEP);
2083 		inodedep->id_savedino = NULL;
2084 	}
2085 	if (free_inodedep(inodedep) == 0) {
2086 		panic("check_inode_unwritten: busy inode");
2087 	}
2088 	return (1);
2089 }
2090 
2091 /*
2092  * Try to free an inodedep structure. Return 1 if it could be freed.
2093  */
2094 static int
2095 free_inodedep(struct inodedep *inodedep)
2096 {
2097 
2098 	if ((inodedep->id_state & ONWORKLIST) != 0 ||
2099 	    (inodedep->id_state & ALLCOMPLETE) != ALLCOMPLETE ||
2100 	    LIST_FIRST(&inodedep->id_pendinghd) != NULL ||
2101 	    LIST_FIRST(&inodedep->id_bufwait) != NULL ||
2102 	    LIST_FIRST(&inodedep->id_inowait) != NULL ||
2103 	    TAILQ_FIRST(&inodedep->id_inoupdt) != NULL ||
2104 	    TAILQ_FIRST(&inodedep->id_newinoupdt) != NULL ||
2105 	    inodedep->id_nlinkdelta != 0 || inodedep->id_savedino != NULL)
2106 		return (0);
2107 	LIST_REMOVE(inodedep, id_hash);
2108 	WORKITEM_FREE(inodedep, D_INODEDEP);
2109 	num_inodedep -= 1;
2110 	return (1);
2111 }
2112 
2113 /*
2114  * This workitem routine performs the block de-allocation.
2115  * The workitem is added to the pending list after the updated
2116  * inode block has been written to disk.  As mentioned above,
2117  * checks regarding the number of blocks de-allocated (compared
2118  * to the number of blocks allocated for the file) are also
2119  * performed in this function.
2120  */
2121 static void
2122 handle_workitem_freeblocks(struct freeblks *freeblks)
2123 {
2124 	struct inode tip;
2125 	ufs_daddr_t bn;
2126 	struct fs *fs;
2127 	int i, level, bsize;
2128 	long nblocks, blocksreleased = 0;
2129 	int error, allerror = 0;
2130 	ufs_lbn_t baselbns[NIADDR], tmpval;
2131 
2132 	tip.i_number = freeblks->fb_previousinum;
2133 	tip.i_devvp = freeblks->fb_devvp;
2134 	tip.i_dev = freeblks->fb_devvp->v_rdev;
2135 	tip.i_fs = freeblks->fb_fs;
2136 	tip.i_size = freeblks->fb_oldsize;
2137 	tip.i_uid = freeblks->fb_uid;
2138 	fs = freeblks->fb_fs;
2139 	tmpval = 1;
2140 	baselbns[0] = NDADDR;
2141 	for (i = 1; i < NIADDR; i++) {
2142 		tmpval *= NINDIR(fs);
2143 		baselbns[i] = baselbns[i - 1] + tmpval;
2144 	}
2145 	nblocks = btodb(fs->fs_bsize);
2146 	blocksreleased = 0;
2147 	/*
2148 	 * Indirect blocks first.
2149 	 */
2150 	for (level = (NIADDR - 1); level >= 0; level--) {
2151 		if ((bn = freeblks->fb_iblks[level]) == 0)
2152 			continue;
2153 		if ((error = indir_trunc(&tip, fsbtodoff(fs, bn), level,
2154 		    baselbns[level], &blocksreleased)) == 0)
2155 			allerror = error;
2156 		ffs_blkfree(&tip, bn, fs->fs_bsize);
2157 		blocksreleased += nblocks;
2158 	}
2159 	/*
2160 	 * All direct blocks or frags.
2161 	 */
2162 	for (i = (NDADDR - 1); i >= 0; i--) {
2163 		if ((bn = freeblks->fb_dblks[i]) == 0)
2164 			continue;
2165 		bsize = blksize(fs, &tip, i);
2166 		ffs_blkfree(&tip, bn, bsize);
2167 		blocksreleased += btodb(bsize);
2168 	}
2169 
2170 #ifdef DIAGNOSTIC
2171 	if (freeblks->fb_chkcnt != blocksreleased)
2172 		kprintf("handle_workitem_freeblocks: block count\n");
2173 	if (allerror)
2174 		softdep_error("handle_workitem_freeblks", allerror);
2175 #endif /* DIAGNOSTIC */
2176 	WORKITEM_FREE(freeblks, D_FREEBLKS);
2177 }
2178 
2179 /*
2180  * Release blocks associated with the inode ip and stored in the indirect
2181  * block at doffset. If level is greater than SINGLE, the block is an
2182  * indirect block and recursive calls to indirtrunc must be used to
2183  * cleanse other indirect blocks.
2184  */
2185 static int
2186 indir_trunc(struct inode *ip, off_t doffset, int level, ufs_lbn_t lbn,
2187 	    long *countp)
2188 {
2189 	struct buf *bp;
2190 	ufs_daddr_t *bap;
2191 	ufs_daddr_t nb;
2192 	struct fs *fs;
2193 	struct worklist *wk;
2194 	struct indirdep *indirdep;
2195 	int i, lbnadd, nblocks;
2196 	int error, allerror = 0;
2197 
2198 	fs = ip->i_fs;
2199 	lbnadd = 1;
2200 	for (i = level; i > 0; i--)
2201 		lbnadd *= NINDIR(fs);
2202 	/*
2203 	 * Get buffer of block pointers to be freed. This routine is not
2204 	 * called until the zero'ed inode has been written, so it is safe
2205 	 * to free blocks as they are encountered. Because the inode has
2206 	 * been zero'ed, calls to bmap on these blocks will fail. So, we
2207 	 * have to use the on-disk address and the block device for the
2208 	 * filesystem to look them up. If the file was deleted before its
2209 	 * indirect blocks were all written to disk, the routine that set
2210 	 * us up (deallocate_dependencies) will have arranged to leave
2211 	 * a complete copy of the indirect block in memory for our use.
2212 	 * Otherwise we have to read the blocks in from the disk.
2213 	 */
2214 	ACQUIRE_LOCK(&lk);
2215 	if ((bp = findblk(ip->i_devvp, doffset, FINDBLK_TEST)) != NULL &&
2216 	    (wk = LIST_FIRST(&bp->b_dep)) != NULL) {
2217 		/*
2218 		 * bp must be ir_savebp, which is held locked for our use.
2219 		 */
2220 		if (wk->wk_type != D_INDIRDEP ||
2221 		    (indirdep = WK_INDIRDEP(wk))->ir_savebp != bp ||
2222 		    (indirdep->ir_state & GOINGAWAY) == 0) {
2223 			panic("indir_trunc: lost indirdep");
2224 		}
2225 		WORKLIST_REMOVE(wk);
2226 		WORKITEM_FREE(indirdep, D_INDIRDEP);
2227 		if (LIST_FIRST(&bp->b_dep) != NULL) {
2228 			panic("indir_trunc: dangling dep");
2229 		}
2230 		FREE_LOCK(&lk);
2231 	} else {
2232 		FREE_LOCK(&lk);
2233 		error = bread(ip->i_devvp, doffset, (int)fs->fs_bsize, &bp);
2234 		if (error)
2235 			return (error);
2236 	}
2237 	/*
2238 	 * Recursively free indirect blocks.
2239 	 */
2240 	bap = (ufs_daddr_t *)bp->b_data;
2241 	nblocks = btodb(fs->fs_bsize);
2242 	for (i = NINDIR(fs) - 1; i >= 0; i--) {
2243 		if ((nb = bap[i]) == 0)
2244 			continue;
2245 		if (level != 0) {
2246 			if ((error = indir_trunc(ip, fsbtodoff(fs, nb),
2247 			     level - 1, lbn + (i * lbnadd), countp)) != 0)
2248 				allerror = error;
2249 		}
2250 		ffs_blkfree(ip, nb, fs->fs_bsize);
2251 		*countp += nblocks;
2252 	}
2253 	bp->b_flags |= B_INVAL | B_NOCACHE;
2254 	brelse(bp);
2255 	return (allerror);
2256 }
2257 
2258 /*
2259  * Free an allocindir.
2260  * This routine must be called with splbio interrupts blocked.
2261  */
2262 static void
2263 free_allocindir(struct allocindir *aip, struct inodedep *inodedep)
2264 {
2265 	struct freefrag *freefrag;
2266 
2267 	KKASSERT(lock_held(&lk) > 0);
2268 
2269 	if ((aip->ai_state & DEPCOMPLETE) == 0)
2270 		LIST_REMOVE(aip, ai_deps);
2271 	if (aip->ai_state & ONWORKLIST)
2272 		WORKLIST_REMOVE(&aip->ai_list);
2273 	LIST_REMOVE(aip, ai_next);
2274 	if ((freefrag = aip->ai_freefrag) != NULL) {
2275 		if (inodedep == NULL)
2276 			add_to_worklist(&freefrag->ff_list);
2277 		else
2278 			WORKLIST_INSERT(&inodedep->id_bufwait,
2279 			    &freefrag->ff_list);
2280 	}
2281 	WORKITEM_FREE(aip, D_ALLOCINDIR);
2282 }
2283 
2284 /*
2285  * Directory entry addition dependencies.
2286  *
2287  * When adding a new directory entry, the inode (with its incremented link
2288  * count) must be written to disk before the directory entry's pointer to it.
2289  * Also, if the inode is newly allocated, the corresponding freemap must be
2290  * updated (on disk) before the directory entry's pointer. These requirements
2291  * are met via undo/redo on the directory entry's pointer, which consists
2292  * simply of the inode number.
2293  *
2294  * As directory entries are added and deleted, the free space within a
2295  * directory block can become fragmented.  The ufs filesystem will compact
2296  * a fragmented directory block to make space for a new entry. When this
2297  * occurs, the offsets of previously added entries change. Any "diradd"
2298  * dependency structures corresponding to these entries must be updated with
2299  * the new offsets.
2300  */
2301 
2302 /*
2303  * This routine is called after the in-memory inode's link
2304  * count has been incremented, but before the directory entry's
2305  * pointer to the inode has been set.
2306  *
2307  * Parameters:
2308  *	bp:		buffer containing directory block
2309  *	dp:		inode for directory
2310  *	diroffset:	offset of new entry in directory
2311  *	newinum:	inode referenced by new directory entry
2312  *	newdirbp:	non-NULL => contents of new mkdir
2313  */
2314 void
2315 softdep_setup_directory_add(struct buf *bp, struct inode *dp, off_t diroffset,
2316 			    ino_t newinum, struct buf *newdirbp)
2317 {
2318 	int offset;		/* offset of new entry within directory block */
2319 	ufs_lbn_t lbn;		/* block in directory containing new entry */
2320 	struct fs *fs;
2321 	struct diradd *dap;
2322 	struct pagedep *pagedep;
2323 	struct inodedep *inodedep;
2324 	struct mkdir *mkdir1, *mkdir2;
2325 
2326 	/*
2327 	 * Whiteouts have no dependencies.
2328 	 */
2329 	if (newinum == WINO) {
2330 		if (newdirbp != NULL)
2331 			bdwrite(newdirbp);
2332 		return;
2333 	}
2334 
2335 	fs = dp->i_fs;
2336 	lbn = lblkno(fs, diroffset);
2337 	offset = blkoff(fs, diroffset);
2338 	dap = kmalloc(sizeof(struct diradd), M_DIRADD,
2339 		      M_SOFTDEP_FLAGS | M_ZERO);
2340 	dap->da_list.wk_type = D_DIRADD;
2341 	dap->da_offset = offset;
2342 	dap->da_newinum = newinum;
2343 	dap->da_state = ATTACHED;
2344 	if (newdirbp == NULL) {
2345 		dap->da_state |= DEPCOMPLETE;
2346 		ACQUIRE_LOCK(&lk);
2347 	} else {
2348 		dap->da_state |= MKDIR_BODY | MKDIR_PARENT;
2349 		mkdir1 = kmalloc(sizeof(struct mkdir), M_MKDIR,
2350 				 M_SOFTDEP_FLAGS);
2351 		mkdir1->md_list.wk_type = D_MKDIR;
2352 		mkdir1->md_state = MKDIR_BODY;
2353 		mkdir1->md_diradd = dap;
2354 		mkdir2 = kmalloc(sizeof(struct mkdir), M_MKDIR,
2355 				 M_SOFTDEP_FLAGS);
2356 		mkdir2->md_list.wk_type = D_MKDIR;
2357 		mkdir2->md_state = MKDIR_PARENT;
2358 		mkdir2->md_diradd = dap;
2359 		/*
2360 		 * Dependency on "." and ".." being written to disk.
2361 		 */
2362 		mkdir1->md_buf = newdirbp;
2363 		ACQUIRE_LOCK(&lk);
2364 		LIST_INSERT_HEAD(&mkdirlisthd, mkdir1, md_mkdirs);
2365 		WORKLIST_INSERT_BP(newdirbp, &mkdir1->md_list);
2366 		FREE_LOCK(&lk);
2367 		bdwrite(newdirbp);
2368 		/*
2369 		 * Dependency on link count increase for parent directory
2370 		 */
2371 		ACQUIRE_LOCK(&lk);
2372 		if (inodedep_lookup(dp->i_fs, dp->i_number, 0, &inodedep) == 0
2373 		    || (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
2374 			dap->da_state &= ~MKDIR_PARENT;
2375 			WORKITEM_FREE(mkdir2, D_MKDIR);
2376 		} else {
2377 			LIST_INSERT_HEAD(&mkdirlisthd, mkdir2, md_mkdirs);
2378 			WORKLIST_INSERT(&inodedep->id_bufwait,&mkdir2->md_list);
2379 		}
2380 	}
2381 	/*
2382 	 * Link into parent directory pagedep to await its being written.
2383 	 */
2384 	if (pagedep_lookup(dp, lbn, DEPALLOC, &pagedep) == 0)
2385 		WORKLIST_INSERT_BP(bp, &pagedep->pd_list);
2386 	dap->da_pagedep = pagedep;
2387 	LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], dap,
2388 	    da_pdlist);
2389 	/*
2390 	 * Link into its inodedep. Put it on the id_bufwait list if the inode
2391 	 * is not yet written. If it is written, do the post-inode write
2392 	 * processing to put it on the id_pendinghd list.
2393 	 */
2394 	(void) inodedep_lookup(fs, newinum, DEPALLOC, &inodedep);
2395 	if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE)
2396 		diradd_inode_written(dap, inodedep);
2397 	else
2398 		WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
2399 	FREE_LOCK(&lk);
2400 }
2401 
2402 /*
2403  * This procedure is called to change the offset of a directory
2404  * entry when compacting a directory block which must be owned
2405  * exclusively by the caller. Note that the actual entry movement
2406  * must be done in this procedure to ensure that no I/O completions
2407  * occur while the move is in progress.
2408  *
2409  * Parameters:
2410  *	dp:	inode for directory
2411  *	base:		address of dp->i_offset
2412  *	oldloc:		address of old directory location
2413  *	newloc:		address of new directory location
2414  *	entrysize:	size of directory entry
2415  */
2416 void
2417 softdep_change_directoryentry_offset(struct inode *dp, caddr_t base,
2418 				     caddr_t oldloc, caddr_t newloc,
2419 				     int entrysize)
2420 {
2421 	int offset, oldoffset, newoffset;
2422 	struct pagedep *pagedep;
2423 	struct diradd *dap;
2424 	ufs_lbn_t lbn;
2425 
2426 	ACQUIRE_LOCK(&lk);
2427 	lbn = lblkno(dp->i_fs, dp->i_offset);
2428 	offset = blkoff(dp->i_fs, dp->i_offset);
2429 	if (pagedep_lookup(dp, lbn, 0, &pagedep) == 0)
2430 		goto done;
2431 	oldoffset = offset + (oldloc - base);
2432 	newoffset = offset + (newloc - base);
2433 
2434 	LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(oldoffset)], da_pdlist) {
2435 		if (dap->da_offset != oldoffset)
2436 			continue;
2437 		dap->da_offset = newoffset;
2438 		if (DIRADDHASH(newoffset) == DIRADDHASH(oldoffset))
2439 			break;
2440 		LIST_REMOVE(dap, da_pdlist);
2441 		LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(newoffset)],
2442 		    dap, da_pdlist);
2443 		break;
2444 	}
2445 	if (dap == NULL) {
2446 
2447 		LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist) {
2448 			if (dap->da_offset == oldoffset) {
2449 				dap->da_offset = newoffset;
2450 				break;
2451 			}
2452 		}
2453 	}
2454 done:
2455 	bcopy(oldloc, newloc, entrysize);
2456 	FREE_LOCK(&lk);
2457 }
2458 
2459 /*
2460  * Free a diradd dependency structure. This routine must be called
2461  * with splbio interrupts blocked.
2462  */
2463 static void
2464 free_diradd(struct diradd *dap)
2465 {
2466 	struct dirrem *dirrem;
2467 	struct pagedep *pagedep;
2468 	struct inodedep *inodedep;
2469 	struct mkdir *mkdir, *nextmd;
2470 
2471 	KKASSERT(lock_held(&lk) > 0);
2472 
2473 	WORKLIST_REMOVE(&dap->da_list);
2474 	LIST_REMOVE(dap, da_pdlist);
2475 	if ((dap->da_state & DIRCHG) == 0) {
2476 		pagedep = dap->da_pagedep;
2477 	} else {
2478 		dirrem = dap->da_previous;
2479 		pagedep = dirrem->dm_pagedep;
2480 		dirrem->dm_dirinum = pagedep->pd_ino;
2481 		add_to_worklist(&dirrem->dm_list);
2482 	}
2483 	if (inodedep_lookup(VFSTOUFS(pagedep->pd_mnt)->um_fs, dap->da_newinum,
2484 	    0, &inodedep) != 0)
2485 		(void) free_inodedep(inodedep);
2486 	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
2487 		for (mkdir = LIST_FIRST(&mkdirlisthd); mkdir; mkdir = nextmd) {
2488 			nextmd = LIST_NEXT(mkdir, md_mkdirs);
2489 			if (mkdir->md_diradd != dap)
2490 				continue;
2491 			dap->da_state &= ~mkdir->md_state;
2492 			WORKLIST_REMOVE(&mkdir->md_list);
2493 			LIST_REMOVE(mkdir, md_mkdirs);
2494 			WORKITEM_FREE(mkdir, D_MKDIR);
2495 		}
2496 		if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
2497 			panic("free_diradd: unfound ref");
2498 		}
2499 	}
2500 	WORKITEM_FREE(dap, D_DIRADD);
2501 }
2502 
2503 /*
2504  * Directory entry removal dependencies.
2505  *
2506  * When removing a directory entry, the entry's inode pointer must be
2507  * zero'ed on disk before the corresponding inode's link count is decremented
2508  * (possibly freeing the inode for re-use). This dependency is handled by
2509  * updating the directory entry but delaying the inode count reduction until
2510  * after the directory block has been written to disk. After this point, the
2511  * inode count can be decremented whenever it is convenient.
2512  */
2513 
2514 /*
2515  * This routine should be called immediately after removing
2516  * a directory entry.  The inode's link count should not be
2517  * decremented by the calling procedure -- the soft updates
2518  * code will do this task when it is safe.
2519  *
2520  * Parameters:
2521  *	bp:		buffer containing directory block
2522  *	dp:		inode for the directory being modified
2523  *	ip:		inode for directory entry being removed
2524  *	isrmdir:	indicates if doing RMDIR
2525  */
2526 void
2527 softdep_setup_remove(struct buf *bp, struct inode *dp, struct inode *ip,
2528 		     int isrmdir)
2529 {
2530 	struct dirrem *dirrem, *prevdirrem;
2531 
2532 	/*
2533 	 * Allocate a new dirrem if appropriate and ACQUIRE_LOCK.
2534 	 */
2535 	dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
2536 
2537 	/*
2538 	 * If the COMPLETE flag is clear, then there were no active
2539 	 * entries and we want to roll back to a zeroed entry until
2540 	 * the new inode is committed to disk. If the COMPLETE flag is
2541 	 * set then we have deleted an entry that never made it to
2542 	 * disk. If the entry we deleted resulted from a name change,
2543 	 * then the old name still resides on disk. We cannot delete
2544 	 * its inode (returned to us in prevdirrem) until the zeroed
2545 	 * directory entry gets to disk. The new inode has never been
2546 	 * referenced on the disk, so can be deleted immediately.
2547 	 */
2548 	if ((dirrem->dm_state & COMPLETE) == 0) {
2549 		LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, dirrem,
2550 		    dm_next);
2551 		FREE_LOCK(&lk);
2552 	} else {
2553 		if (prevdirrem != NULL)
2554 			LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd,
2555 			    prevdirrem, dm_next);
2556 		dirrem->dm_dirinum = dirrem->dm_pagedep->pd_ino;
2557 		FREE_LOCK(&lk);
2558 		handle_workitem_remove(dirrem);
2559 	}
2560 }
2561 
2562 /*
2563  * Allocate a new dirrem if appropriate and return it along with
2564  * its associated pagedep. Called without a lock, returns with lock.
2565  */
2566 static long num_dirrem;		/* number of dirrem allocated */
2567 
2568 /*
2569  * Parameters:
2570  *	bp:		buffer containing directory block
2571  *	dp:		inode for the directory being modified
2572  *	ip:		inode for directory entry being removed
2573  *	isrmdir:	indicates if doing RMDIR
2574  *	prevdirremp:	previously referenced inode, if any
2575  */
2576 static struct dirrem *
2577 newdirrem(struct buf *bp, struct inode *dp, struct inode *ip,
2578 	  int isrmdir, struct dirrem **prevdirremp)
2579 {
2580 	int offset;
2581 	ufs_lbn_t lbn;
2582 	struct diradd *dap;
2583 	struct dirrem *dirrem;
2584 	struct pagedep *pagedep;
2585 
2586 	/*
2587 	 * Whiteouts have no deletion dependencies.
2588 	 */
2589 	if (ip == NULL)
2590 		panic("newdirrem: whiteout");
2591 	/*
2592 	 * If we are over our limit, try to improve the situation.
2593 	 * Limiting the number of dirrem structures will also limit
2594 	 * the number of freefile and freeblks structures.
2595 	 */
2596 	if (num_dirrem > max_softdeps / 2 && speedup_syncer() == 0)
2597 		(void) request_cleanup(FLUSH_REMOVE, 0);
2598 	num_dirrem += 1;
2599 	dirrem = kmalloc(sizeof(struct dirrem), M_DIRREM,
2600 			 M_SOFTDEP_FLAGS | M_ZERO);
2601 	dirrem->dm_list.wk_type = D_DIRREM;
2602 	dirrem->dm_state = isrmdir ? RMDIR : 0;
2603 	dirrem->dm_mnt = ITOV(ip)->v_mount;
2604 	dirrem->dm_oldinum = ip->i_number;
2605 	*prevdirremp = NULL;
2606 
2607 	ACQUIRE_LOCK(&lk);
2608 	lbn = lblkno(dp->i_fs, dp->i_offset);
2609 	offset = blkoff(dp->i_fs, dp->i_offset);
2610 	if (pagedep_lookup(dp, lbn, DEPALLOC, &pagedep) == 0)
2611 		WORKLIST_INSERT_BP(bp, &pagedep->pd_list);
2612 	dirrem->dm_pagedep = pagedep;
2613 	/*
2614 	 * Check for a diradd dependency for the same directory entry.
2615 	 * If present, then both dependencies become obsolete and can
2616 	 * be de-allocated. Check for an entry on both the pd_dirraddhd
2617 	 * list and the pd_pendinghd list.
2618 	 */
2619 
2620 	LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(offset)], da_pdlist)
2621 		if (dap->da_offset == offset)
2622 			break;
2623 	if (dap == NULL) {
2624 
2625 		LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist)
2626 			if (dap->da_offset == offset)
2627 				break;
2628 		if (dap == NULL)
2629 			return (dirrem);
2630 	}
2631 	/*
2632 	 * Must be ATTACHED at this point.
2633 	 */
2634 	if ((dap->da_state & ATTACHED) == 0) {
2635 		panic("newdirrem: not ATTACHED");
2636 	}
2637 	if (dap->da_newinum != ip->i_number) {
2638 		panic("newdirrem: inum %"PRId64" should be %"PRId64,
2639 		    ip->i_number, dap->da_newinum);
2640 	}
2641 	/*
2642 	 * If we are deleting a changed name that never made it to disk,
2643 	 * then return the dirrem describing the previous inode (which
2644 	 * represents the inode currently referenced from this entry on disk).
2645 	 */
2646 	if ((dap->da_state & DIRCHG) != 0) {
2647 		*prevdirremp = dap->da_previous;
2648 		dap->da_state &= ~DIRCHG;
2649 		dap->da_pagedep = pagedep;
2650 	}
2651 	/*
2652 	 * We are deleting an entry that never made it to disk.
2653 	 * Mark it COMPLETE so we can delete its inode immediately.
2654 	 */
2655 	dirrem->dm_state |= COMPLETE;
2656 	free_diradd(dap);
2657 	return (dirrem);
2658 }
2659 
2660 /*
2661  * Directory entry change dependencies.
2662  *
2663  * Changing an existing directory entry requires that an add operation
2664  * be completed first followed by a deletion. The semantics for the addition
2665  * are identical to the description of adding a new entry above except
2666  * that the rollback is to the old inode number rather than zero. Once
2667  * the addition dependency is completed, the removal is done as described
2668  * in the removal routine above.
2669  */
2670 
2671 /*
2672  * This routine should be called immediately after changing
2673  * a directory entry.  The inode's link count should not be
2674  * decremented by the calling procedure -- the soft updates
2675  * code will perform this task when it is safe.
2676  *
2677  * Parameters:
2678  *	bp:		buffer containing directory block
2679  *	dp:		inode for the directory being modified
2680  *	ip:		inode for directory entry being removed
2681  *	newinum:	new inode number for changed entry
2682  *	isrmdir:	indicates if doing RMDIR
2683  */
2684 void
2685 softdep_setup_directory_change(struct buf *bp, struct inode *dp,
2686 			       struct inode *ip, ino_t newinum,
2687 			       int isrmdir)
2688 {
2689 	int offset;
2690 	struct diradd *dap = NULL;
2691 	struct dirrem *dirrem, *prevdirrem;
2692 	struct pagedep *pagedep;
2693 	struct inodedep *inodedep;
2694 
2695 	offset = blkoff(dp->i_fs, dp->i_offset);
2696 
2697 	/*
2698 	 * Whiteouts do not need diradd dependencies.
2699 	 */
2700 	if (newinum != WINO) {
2701 		dap = kmalloc(sizeof(struct diradd), M_DIRADD,
2702 			      M_SOFTDEP_FLAGS | M_ZERO);
2703 		dap->da_list.wk_type = D_DIRADD;
2704 		dap->da_state = DIRCHG | ATTACHED | DEPCOMPLETE;
2705 		dap->da_offset = offset;
2706 		dap->da_newinum = newinum;
2707 	}
2708 
2709 	/*
2710 	 * Allocate a new dirrem and ACQUIRE_LOCK.
2711 	 */
2712 	dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
2713 	pagedep = dirrem->dm_pagedep;
2714 	/*
2715 	 * The possible values for isrmdir:
2716 	 *	0 - non-directory file rename
2717 	 *	1 - directory rename within same directory
2718 	 *   inum - directory rename to new directory of given inode number
2719 	 * When renaming to a new directory, we are both deleting and
2720 	 * creating a new directory entry, so the link count on the new
2721 	 * directory should not change. Thus we do not need the followup
2722 	 * dirrem which is usually done in handle_workitem_remove. We set
2723 	 * the DIRCHG flag to tell handle_workitem_remove to skip the
2724 	 * followup dirrem.
2725 	 */
2726 	if (isrmdir > 1)
2727 		dirrem->dm_state |= DIRCHG;
2728 
2729 	/*
2730 	 * Whiteouts have no additional dependencies,
2731 	 * so just put the dirrem on the correct list.
2732 	 */
2733 	if (newinum == WINO) {
2734 		if ((dirrem->dm_state & COMPLETE) == 0) {
2735 			LIST_INSERT_HEAD(&pagedep->pd_dirremhd, dirrem,
2736 			    dm_next);
2737 		} else {
2738 			dirrem->dm_dirinum = pagedep->pd_ino;
2739 			add_to_worklist(&dirrem->dm_list);
2740 		}
2741 		FREE_LOCK(&lk);
2742 		return;
2743 	}
2744 
2745 	/*
2746 	 * If the COMPLETE flag is clear, then there were no active
2747 	 * entries and we want to roll back to the previous inode until
2748 	 * the new inode is committed to disk. If the COMPLETE flag is
2749 	 * set, then we have deleted an entry that never made it to disk.
2750 	 * If the entry we deleted resulted from a name change, then the old
2751 	 * inode reference still resides on disk. Any rollback that we do
2752 	 * needs to be to that old inode (returned to us in prevdirrem). If
2753 	 * the entry we deleted resulted from a create, then there is
2754 	 * no entry on the disk, so we want to roll back to zero rather
2755 	 * than the uncommitted inode. In either of the COMPLETE cases we
2756 	 * want to immediately free the unwritten and unreferenced inode.
2757 	 */
2758 	if ((dirrem->dm_state & COMPLETE) == 0) {
2759 		dap->da_previous = dirrem;
2760 	} else {
2761 		if (prevdirrem != NULL) {
2762 			dap->da_previous = prevdirrem;
2763 		} else {
2764 			dap->da_state &= ~DIRCHG;
2765 			dap->da_pagedep = pagedep;
2766 		}
2767 		dirrem->dm_dirinum = pagedep->pd_ino;
2768 		add_to_worklist(&dirrem->dm_list);
2769 	}
2770 	/*
2771 	 * Link into its inodedep. Put it on the id_bufwait list if the inode
2772 	 * is not yet written. If it is written, do the post-inode write
2773 	 * processing to put it on the id_pendinghd list.
2774 	 */
2775 	if (inodedep_lookup(dp->i_fs, newinum, DEPALLOC, &inodedep) == 0 ||
2776 	    (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
2777 		dap->da_state |= COMPLETE;
2778 		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
2779 		WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
2780 	} else {
2781 		LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)],
2782 		    dap, da_pdlist);
2783 		WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
2784 	}
2785 	FREE_LOCK(&lk);
2786 }
2787 
2788 /*
2789  * Called whenever the link count on an inode is changed.
2790  * It creates an inode dependency so that the new reference(s)
2791  * to the inode cannot be committed to disk until the updated
2792  * inode has been written.
2793  *
2794  * Parameters:
2795  *	ip:	the inode with the increased link count
2796  */
2797 void
2798 softdep_change_linkcnt(struct inode *ip)
2799 {
2800 	struct inodedep *inodedep;
2801 
2802 	ACQUIRE_LOCK(&lk);
2803 	(void) inodedep_lookup(ip->i_fs, ip->i_number, DEPALLOC, &inodedep);
2804 	if (ip->i_nlink < ip->i_effnlink) {
2805 		panic("softdep_change_linkcnt: bad delta");
2806 	}
2807 	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
2808 	FREE_LOCK(&lk);
2809 }
2810 
2811 /*
2812  * This workitem decrements the inode's link count.
2813  * If the link count reaches zero, the file is removed.
2814  */
2815 static void
2816 handle_workitem_remove(struct dirrem *dirrem)
2817 {
2818 	struct inodedep *inodedep;
2819 	struct vnode *vp;
2820 	struct inode *ip;
2821 	ino_t oldinum;
2822 	int error;
2823 
2824 	error = VFS_VGET(dirrem->dm_mnt, NULL, dirrem->dm_oldinum, &vp);
2825 	if (error) {
2826 		softdep_error("handle_workitem_remove: vget", error);
2827 		return;
2828 	}
2829 	ip = VTOI(vp);
2830 	ACQUIRE_LOCK(&lk);
2831 	if ((inodedep_lookup(ip->i_fs, dirrem->dm_oldinum, 0, &inodedep)) == 0){
2832 		panic("handle_workitem_remove: lost inodedep");
2833 	}
2834 	/*
2835 	 * Normal file deletion.
2836 	 */
2837 	if ((dirrem->dm_state & RMDIR) == 0) {
2838 		ip->i_nlink--;
2839 		ip->i_flag |= IN_CHANGE;
2840 		if (ip->i_nlink < ip->i_effnlink) {
2841 			panic("handle_workitem_remove: bad file delta");
2842 		}
2843 		inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
2844 		FREE_LOCK(&lk);
2845 		vput(vp);
2846 		num_dirrem -= 1;
2847 		WORKITEM_FREE(dirrem, D_DIRREM);
2848 		return;
2849 	}
2850 	/*
2851 	 * Directory deletion. Decrement reference count for both the
2852 	 * just deleted parent directory entry and the reference for ".".
2853 	 * Next truncate the directory to length zero. When the
2854 	 * truncation completes, arrange to have the reference count on
2855 	 * the parent decremented to account for the loss of "..".
2856 	 */
2857 	ip->i_nlink -= 2;
2858 	ip->i_flag |= IN_CHANGE;
2859 	if (ip->i_nlink < ip->i_effnlink) {
2860 		panic("handle_workitem_remove: bad dir delta");
2861 	}
2862 	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
2863 	FREE_LOCK(&lk);
2864 	if ((error = ffs_truncate(vp, (off_t)0, 0, proc0.p_ucred)) != 0)
2865 		softdep_error("handle_workitem_remove: truncate", error);
2866 	/*
2867 	 * Rename a directory to a new parent. Since, we are both deleting
2868 	 * and creating a new directory entry, the link count on the new
2869 	 * directory should not change. Thus we skip the followup dirrem.
2870 	 */
2871 	if (dirrem->dm_state & DIRCHG) {
2872 		vput(vp);
2873 		num_dirrem -= 1;
2874 		WORKITEM_FREE(dirrem, D_DIRREM);
2875 		return;
2876 	}
2877 	/*
2878 	 * If the inodedep does not exist, then the zero'ed inode has
2879 	 * been written to disk. If the allocated inode has never been
2880 	 * written to disk, then the on-disk inode is zero'ed. In either
2881 	 * case we can remove the file immediately.
2882 	 */
2883 	ACQUIRE_LOCK(&lk);
2884 	dirrem->dm_state = 0;
2885 	oldinum = dirrem->dm_oldinum;
2886 	dirrem->dm_oldinum = dirrem->dm_dirinum;
2887 	if (inodedep_lookup(ip->i_fs, oldinum, 0, &inodedep) == 0 ||
2888 	    check_inode_unwritten(inodedep)) {
2889 		FREE_LOCK(&lk);
2890 		vput(vp);
2891 		handle_workitem_remove(dirrem);
2892 		return;
2893 	}
2894 	WORKLIST_INSERT(&inodedep->id_inowait, &dirrem->dm_list);
2895 	FREE_LOCK(&lk);
2896 	ip->i_flag |= IN_CHANGE;
2897 	ffs_update(vp, 0);
2898 	vput(vp);
2899 }
2900 
2901 /*
2902  * Inode de-allocation dependencies.
2903  *
2904  * When an inode's link count is reduced to zero, it can be de-allocated. We
2905  * found it convenient to postpone de-allocation until after the inode is
2906  * written to disk with its new link count (zero).  At this point, all of the
2907  * on-disk inode's block pointers are nullified and, with careful dependency
2908  * list ordering, all dependencies related to the inode will be satisfied and
2909  * the corresponding dependency structures de-allocated.  So, if/when the
2910  * inode is reused, there will be no mixing of old dependencies with new
2911  * ones.  This artificial dependency is set up by the block de-allocation
2912  * procedure above (softdep_setup_freeblocks) and completed by the
2913  * following procedure.
2914  */
2915 static void
2916 handle_workitem_freefile(struct freefile *freefile)
2917 {
2918 	struct vnode vp;
2919 	struct inode tip;
2920 	struct inodedep *idp;
2921 	int error;
2922 
2923 #ifdef DEBUG
2924 	ACQUIRE_LOCK(&lk);
2925 	error = inodedep_lookup(freefile->fx_fs, freefile->fx_oldinum, 0, &idp);
2926 	FREE_LOCK(&lk);
2927 	if (error)
2928 		panic("handle_workitem_freefile: inodedep survived");
2929 #endif
2930 	tip.i_devvp = freefile->fx_devvp;
2931 	tip.i_dev = freefile->fx_devvp->v_rdev;
2932 	tip.i_fs = freefile->fx_fs;
2933 	vp.v_data = &tip;
2934 	if ((error = ffs_freefile(&vp, freefile->fx_oldinum, freefile->fx_mode)) != 0)
2935 		softdep_error("handle_workitem_freefile", error);
2936 	WORKITEM_FREE(freefile, D_FREEFILE);
2937 }
2938 
2939 /*
2940  * Helper function which unlinks marker element from work list and returns
2941  * the next element on the list.
2942  */
2943 static __inline struct worklist *
2944 markernext(struct worklist *marker)
2945 {
2946 	struct worklist *next;
2947 
2948 	next = LIST_NEXT(marker, wk_list);
2949 	LIST_REMOVE(marker, wk_list);
2950 	return next;
2951 }
2952 
2953 /*
2954  * checkread, checkwrite
2955  *
2956  * bioops callback - hold io_token
2957  */
2958 static  int
2959 softdep_checkread(struct buf *bp)
2960 {
2961 	/* nothing to do, mp lock not needed */
2962 	return(0);
2963 }
2964 
2965 /*
2966  * bioops callback - hold io_token
2967  */
2968 static  int
2969 softdep_checkwrite(struct buf *bp)
2970 {
2971 	/* nothing to do, mp lock not needed */
2972 	return(0);
2973 }
2974 
2975 /*
2976  * Disk writes.
2977  *
2978  * The dependency structures constructed above are most actively used when file
2979  * system blocks are written to disk.  No constraints are placed on when a
2980  * block can be written, but unsatisfied update dependencies are made safe by
2981  * modifying (or replacing) the source memory for the duration of the disk
2982  * write.  When the disk write completes, the memory block is again brought
2983  * up-to-date.
2984  *
2985  * In-core inode structure reclamation.
2986  *
2987  * Because there are a finite number of "in-core" inode structures, they are
2988  * reused regularly.  By transferring all inode-related dependencies to the
2989  * in-memory inode block and indexing them separately (via "inodedep"s), we
2990  * can allow "in-core" inode structures to be reused at any time and avoid
2991  * any increase in contention.
2992  *
2993  * Called just before entering the device driver to initiate a new disk I/O.
2994  * The buffer must be locked, thus, no I/O completion operations can occur
2995  * while we are manipulating its associated dependencies.
2996  *
2997  * bioops callback - hold io_token
2998  *
2999  * Parameters:
3000  *	bp:	structure describing disk write to occur
3001  */
3002 static void
3003 softdep_disk_io_initiation(struct buf *bp)
3004 {
3005 	struct worklist *wk;
3006 	struct worklist marker;
3007 	struct indirdep *indirdep;
3008 
3009 	/*
3010 	 * We only care about write operations. There should never
3011 	 * be dependencies for reads.
3012 	 */
3013 	if (bp->b_cmd == BUF_CMD_READ)
3014 		panic("softdep_disk_io_initiation: read");
3015 
3016 	ACQUIRE_LOCK(&lk);
3017 	marker.wk_type = D_LAST + 1;	/* Not a normal workitem */
3018 
3019 	/*
3020 	 * Do any necessary pre-I/O processing.
3021 	 */
3022 	for (wk = LIST_FIRST(&bp->b_dep); wk; wk = markernext(&marker)) {
3023 		LIST_INSERT_AFTER(wk, &marker, wk_list);
3024 
3025 		switch (wk->wk_type) {
3026 		case D_PAGEDEP:
3027 			initiate_write_filepage(WK_PAGEDEP(wk), bp);
3028 			continue;
3029 
3030 		case D_INODEDEP:
3031 			initiate_write_inodeblock(WK_INODEDEP(wk), bp);
3032 			continue;
3033 
3034 		case D_INDIRDEP:
3035 			indirdep = WK_INDIRDEP(wk);
3036 			if (indirdep->ir_state & GOINGAWAY)
3037 				panic("disk_io_initiation: indirdep gone");
3038 			/*
3039 			 * If there are no remaining dependencies, this
3040 			 * will be writing the real pointers, so the
3041 			 * dependency can be freed.
3042 			 */
3043 			if (LIST_FIRST(&indirdep->ir_deplisthd) == NULL) {
3044 				indirdep->ir_savebp->b_flags |= B_INVAL | B_NOCACHE;
3045 				brelse(indirdep->ir_savebp);
3046 				/* inline expand WORKLIST_REMOVE(wk); */
3047 				wk->wk_state &= ~ONWORKLIST;
3048 				LIST_REMOVE(wk, wk_list);
3049 				WORKITEM_FREE(indirdep, D_INDIRDEP);
3050 				continue;
3051 			}
3052 			/*
3053 			 * Replace up-to-date version with safe version.
3054 			 */
3055 			indirdep->ir_saveddata = kmalloc(bp->b_bcount,
3056 							 M_INDIRDEP,
3057 							 M_SOFTDEP_FLAGS);
3058 			ACQUIRE_LOCK(&lk);
3059 			indirdep->ir_state &= ~ATTACHED;
3060 			indirdep->ir_state |= UNDONE;
3061 			bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount);
3062 			bcopy(indirdep->ir_savebp->b_data, bp->b_data,
3063 			    bp->b_bcount);
3064 			FREE_LOCK(&lk);
3065 			continue;
3066 
3067 		case D_MKDIR:
3068 		case D_BMSAFEMAP:
3069 		case D_ALLOCDIRECT:
3070 		case D_ALLOCINDIR:
3071 			continue;
3072 
3073 		default:
3074 			panic("handle_disk_io_initiation: Unexpected type %s",
3075 			    TYPENAME(wk->wk_type));
3076 			/* NOTREACHED */
3077 		}
3078 	}
3079 	FREE_LOCK(&lk);
3080 }
3081 
3082 /*
3083  * Called from within the procedure above to deal with unsatisfied
3084  * allocation dependencies in a directory. The buffer must be locked,
3085  * thus, no I/O completion operations can occur while we are
3086  * manipulating its associated dependencies.
3087  */
3088 static void
3089 initiate_write_filepage(struct pagedep *pagedep, struct buf *bp)
3090 {
3091 	struct diradd *dap;
3092 	struct direct *ep;
3093 	int i;
3094 
3095 	if (pagedep->pd_state & IOSTARTED) {
3096 		/*
3097 		 * This can only happen if there is a driver that does not
3098 		 * understand chaining. Here biodone will reissue the call
3099 		 * to strategy for the incomplete buffers.
3100 		 */
3101 		kprintf("initiate_write_filepage: already started\n");
3102 		return;
3103 	}
3104 	pagedep->pd_state |= IOSTARTED;
3105 	ACQUIRE_LOCK(&lk);
3106 	for (i = 0; i < DAHASHSZ; i++) {
3107 		LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
3108 			ep = (struct direct *)
3109 			    ((char *)bp->b_data + dap->da_offset);
3110 			if (ep->d_ino != dap->da_newinum) {
3111 				panic("%s: dir inum %d != new %"PRId64,
3112 				    "initiate_write_filepage",
3113 				    ep->d_ino, dap->da_newinum);
3114 			}
3115 			if (dap->da_state & DIRCHG)
3116 				ep->d_ino = dap->da_previous->dm_oldinum;
3117 			else
3118 				ep->d_ino = 0;
3119 			dap->da_state &= ~ATTACHED;
3120 			dap->da_state |= UNDONE;
3121 		}
3122 	}
3123 	FREE_LOCK(&lk);
3124 }
3125 
3126 /*
3127  * Called from within the procedure above to deal with unsatisfied
3128  * allocation dependencies in an inodeblock. The buffer must be
3129  * locked, thus, no I/O completion operations can occur while we
3130  * are manipulating its associated dependencies.
3131  *
3132  * Parameters:
3133  *	bp:	The inode block
3134  */
3135 static void
3136 initiate_write_inodeblock(struct inodedep *inodedep, struct buf *bp)
3137 {
3138 	struct allocdirect *adp, *lastadp;
3139 	struct ufs1_dinode *dp;
3140 	struct ufs1_dinode *sip;
3141 	struct fs *fs;
3142 	ufs_lbn_t prevlbn = 0;
3143 	int i, deplist;
3144 
3145 	if (inodedep->id_state & IOSTARTED)
3146 		panic("initiate_write_inodeblock: already started");
3147 	inodedep->id_state |= IOSTARTED;
3148 	fs = inodedep->id_fs;
3149 	dp = (struct ufs1_dinode *)bp->b_data +
3150 	    ino_to_fsbo(fs, inodedep->id_ino);
3151 	/*
3152 	 * If the bitmap is not yet written, then the allocated
3153 	 * inode cannot be written to disk.
3154 	 */
3155 	if ((inodedep->id_state & DEPCOMPLETE) == 0) {
3156 		if (inodedep->id_savedino != NULL)
3157 			panic("initiate_write_inodeblock: already doing I/O");
3158 		sip = kmalloc(sizeof(struct ufs1_dinode), M_INODEDEP,
3159 			      M_SOFTDEP_FLAGS);
3160 		inodedep->id_savedino = sip;
3161 		*inodedep->id_savedino = *dp;
3162 		bzero((caddr_t)dp, sizeof(struct ufs1_dinode));
3163 		dp->di_gen = inodedep->id_savedino->di_gen;
3164 		return;
3165 	}
3166 	/*
3167 	 * If no dependencies, then there is nothing to roll back.
3168 	 */
3169 	inodedep->id_savedsize = dp->di_size;
3170 	if (TAILQ_FIRST(&inodedep->id_inoupdt) == NULL)
3171 		return;
3172 	/*
3173 	 * Set the dependencies to busy.
3174 	 */
3175 	ACQUIRE_LOCK(&lk);
3176 	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
3177 	     adp = TAILQ_NEXT(adp, ad_next)) {
3178 #ifdef DIAGNOSTIC
3179 		if (deplist != 0 && prevlbn >= adp->ad_lbn) {
3180 			panic("softdep_write_inodeblock: lbn order");
3181 		}
3182 		prevlbn = adp->ad_lbn;
3183 		if (adp->ad_lbn < NDADDR &&
3184 		    dp->di_db[adp->ad_lbn] != adp->ad_newblkno) {
3185 			panic("%s: direct pointer #%ld mismatch %d != %d",
3186 			    "softdep_write_inodeblock", adp->ad_lbn,
3187 			    dp->di_db[adp->ad_lbn], adp->ad_newblkno);
3188 		}
3189 		if (adp->ad_lbn >= NDADDR &&
3190 		    dp->di_ib[adp->ad_lbn - NDADDR] != adp->ad_newblkno) {
3191 			panic("%s: indirect pointer #%ld mismatch %d != %d",
3192 			    "softdep_write_inodeblock", adp->ad_lbn - NDADDR,
3193 			    dp->di_ib[adp->ad_lbn - NDADDR], adp->ad_newblkno);
3194 		}
3195 		deplist |= 1 << adp->ad_lbn;
3196 		if ((adp->ad_state & ATTACHED) == 0) {
3197 			panic("softdep_write_inodeblock: Unknown state 0x%x",
3198 			    adp->ad_state);
3199 		}
3200 #endif /* DIAGNOSTIC */
3201 		adp->ad_state &= ~ATTACHED;
3202 		adp->ad_state |= UNDONE;
3203 	}
3204 	/*
3205 	 * The on-disk inode cannot claim to be any larger than the last
3206 	 * fragment that has been written. Otherwise, the on-disk inode
3207 	 * might have fragments that were not the last block in the file
3208 	 * which would corrupt the filesystem.
3209 	 */
3210 	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
3211 	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
3212 		if (adp->ad_lbn >= NDADDR)
3213 			break;
3214 		dp->di_db[adp->ad_lbn] = adp->ad_oldblkno;
3215 		/* keep going until hitting a rollback to a frag */
3216 		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
3217 			continue;
3218 		dp->di_size = fs->fs_bsize * adp->ad_lbn + adp->ad_oldsize;
3219 		for (i = adp->ad_lbn + 1; i < NDADDR; i++) {
3220 #ifdef DIAGNOSTIC
3221 			if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0) {
3222 				panic("softdep_write_inodeblock: lost dep1");
3223 			}
3224 #endif /* DIAGNOSTIC */
3225 			dp->di_db[i] = 0;
3226 		}
3227 		for (i = 0; i < NIADDR; i++) {
3228 #ifdef DIAGNOSTIC
3229 			if (dp->di_ib[i] != 0 &&
3230 			    (deplist & ((1 << NDADDR) << i)) == 0) {
3231 				panic("softdep_write_inodeblock: lost dep2");
3232 			}
3233 #endif /* DIAGNOSTIC */
3234 			dp->di_ib[i] = 0;
3235 		}
3236 		FREE_LOCK(&lk);
3237 		return;
3238 	}
3239 	/*
3240 	 * If we have zero'ed out the last allocated block of the file,
3241 	 * roll back the size to the last currently allocated block.
3242 	 * We know that this last allocated block is a full-sized as
3243 	 * we already checked for fragments in the loop above.
3244 	 */
3245 	if (lastadp != NULL &&
3246 	    dp->di_size <= (lastadp->ad_lbn + 1) * fs->fs_bsize) {
3247 		for (i = lastadp->ad_lbn; i >= 0; i--)
3248 			if (dp->di_db[i] != 0)
3249 				break;
3250 		dp->di_size = (i + 1) * fs->fs_bsize;
3251 	}
3252 	/*
3253 	 * The only dependencies are for indirect blocks.
3254 	 *
3255 	 * The file size for indirect block additions is not guaranteed.
3256 	 * Such a guarantee would be non-trivial to achieve. The conventional
3257 	 * synchronous write implementation also does not make this guarantee.
3258 	 * Fsck should catch and fix discrepancies. Arguably, the file size
3259 	 * can be over-estimated without destroying integrity when the file
3260 	 * moves into the indirect blocks (i.e., is large). If we want to
3261 	 * postpone fsck, we are stuck with this argument.
3262 	 */
3263 	for (; adp; adp = TAILQ_NEXT(adp, ad_next))
3264 		dp->di_ib[adp->ad_lbn - NDADDR] = 0;
3265 	FREE_LOCK(&lk);
3266 }
3267 
3268 /*
3269  * This routine is called during the completion interrupt
3270  * service routine for a disk write (from the procedure called
3271  * by the device driver to inform the filesystem caches of
3272  * a request completion).  It should be called early in this
3273  * procedure, before the block is made available to other
3274  * processes or other routines are called.
3275  *
3276  * bioops callback - hold io_token
3277  *
3278  * Parameters:
3279  *	bp:	describes the completed disk write
3280  */
3281 static void
3282 softdep_disk_write_complete(struct buf *bp)
3283 {
3284 	struct worklist *wk;
3285 	struct workhead reattach;
3286 	struct newblk *newblk;
3287 	struct allocindir *aip;
3288 	struct allocdirect *adp;
3289 	struct indirdep *indirdep;
3290 	struct inodedep *inodedep;
3291 	struct bmsafemap *bmsafemap;
3292 
3293 	ACQUIRE_LOCK(&lk);
3294 
3295 	LIST_INIT(&reattach);
3296 	while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) {
3297 		WORKLIST_REMOVE(wk);
3298 		switch (wk->wk_type) {
3299 
3300 		case D_PAGEDEP:
3301 			if (handle_written_filepage(WK_PAGEDEP(wk), bp))
3302 				WORKLIST_INSERT(&reattach, wk);
3303 			continue;
3304 
3305 		case D_INODEDEP:
3306 			if (handle_written_inodeblock(WK_INODEDEP(wk), bp))
3307 				WORKLIST_INSERT(&reattach, wk);
3308 			continue;
3309 
3310 		case D_BMSAFEMAP:
3311 			bmsafemap = WK_BMSAFEMAP(wk);
3312 			while ((newblk = LIST_FIRST(&bmsafemap->sm_newblkhd))) {
3313 				newblk->nb_state |= DEPCOMPLETE;
3314 				newblk->nb_bmsafemap = NULL;
3315 				LIST_REMOVE(newblk, nb_deps);
3316 			}
3317 			while ((adp =
3318 			   LIST_FIRST(&bmsafemap->sm_allocdirecthd))) {
3319 				adp->ad_state |= DEPCOMPLETE;
3320 				adp->ad_buf = NULL;
3321 				LIST_REMOVE(adp, ad_deps);
3322 				handle_allocdirect_partdone(adp);
3323 			}
3324 			while ((aip =
3325 			    LIST_FIRST(&bmsafemap->sm_allocindirhd))) {
3326 				aip->ai_state |= DEPCOMPLETE;
3327 				aip->ai_buf = NULL;
3328 				LIST_REMOVE(aip, ai_deps);
3329 				handle_allocindir_partdone(aip);
3330 			}
3331 			while ((inodedep =
3332 			     LIST_FIRST(&bmsafemap->sm_inodedephd)) != NULL) {
3333 				inodedep->id_state |= DEPCOMPLETE;
3334 				LIST_REMOVE(inodedep, id_deps);
3335 				inodedep->id_buf = NULL;
3336 			}
3337 			WORKITEM_FREE(bmsafemap, D_BMSAFEMAP);
3338 			continue;
3339 
3340 		case D_MKDIR:
3341 			handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY);
3342 			continue;
3343 
3344 		case D_ALLOCDIRECT:
3345 			adp = WK_ALLOCDIRECT(wk);
3346 			adp->ad_state |= COMPLETE;
3347 			handle_allocdirect_partdone(adp);
3348 			continue;
3349 
3350 		case D_ALLOCINDIR:
3351 			aip = WK_ALLOCINDIR(wk);
3352 			aip->ai_state |= COMPLETE;
3353 			handle_allocindir_partdone(aip);
3354 			continue;
3355 
3356 		case D_INDIRDEP:
3357 			indirdep = WK_INDIRDEP(wk);
3358 			if (indirdep->ir_state & GOINGAWAY) {
3359 				panic("disk_write_complete: indirdep gone");
3360 			}
3361 			bcopy(indirdep->ir_saveddata, bp->b_data, bp->b_bcount);
3362 			kfree(indirdep->ir_saveddata, M_INDIRDEP);
3363 			indirdep->ir_saveddata = NULL;
3364 			indirdep->ir_state &= ~UNDONE;
3365 			indirdep->ir_state |= ATTACHED;
3366 			while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != NULL) {
3367 				handle_allocindir_partdone(aip);
3368 				if (aip == LIST_FIRST(&indirdep->ir_donehd)) {
3369 					panic("disk_write_complete: not gone");
3370 				}
3371 			}
3372 			WORKLIST_INSERT(&reattach, wk);
3373 			if ((bp->b_flags & B_DELWRI) == 0)
3374 				stat_indir_blk_ptrs++;
3375 			bdirty(bp);
3376 			continue;
3377 
3378 		default:
3379 			panic("handle_disk_write_complete: Unknown type %s",
3380 			    TYPENAME(wk->wk_type));
3381 			/* NOTREACHED */
3382 		}
3383 	}
3384 	/*
3385 	 * Reattach any requests that must be redone.
3386 	 */
3387 	while ((wk = LIST_FIRST(&reattach)) != NULL) {
3388 		WORKLIST_REMOVE(wk);
3389 		WORKLIST_INSERT_BP(bp, wk);
3390 	}
3391 
3392 	FREE_LOCK(&lk);
3393 }
3394 
3395 /*
3396  * Called from within softdep_disk_write_complete above. Note that
3397  * this routine is always called from interrupt level with further
3398  * splbio interrupts blocked.
3399  *
3400  * Parameters:
3401  *	adp:	the completed allocdirect
3402  */
3403 static void
3404 handle_allocdirect_partdone(struct allocdirect *adp)
3405 {
3406 	struct allocdirect *listadp;
3407 	struct inodedep *inodedep;
3408 	long bsize;
3409 
3410 	if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
3411 		return;
3412 	if (adp->ad_buf != NULL)
3413 		panic("handle_allocdirect_partdone: dangling dep");
3414 
3415 	/*
3416 	 * The on-disk inode cannot claim to be any larger than the last
3417 	 * fragment that has been written. Otherwise, the on-disk inode
3418 	 * might have fragments that were not the last block in the file
3419 	 * which would corrupt the filesystem. Thus, we cannot free any
3420 	 * allocdirects after one whose ad_oldblkno claims a fragment as
3421 	 * these blocks must be rolled back to zero before writing the inode.
3422 	 * We check the currently active set of allocdirects in id_inoupdt.
3423 	 */
3424 	inodedep = adp->ad_inodedep;
3425 	bsize = inodedep->id_fs->fs_bsize;
3426 	TAILQ_FOREACH(listadp, &inodedep->id_inoupdt, ad_next) {
3427 		/* found our block */
3428 		if (listadp == adp)
3429 			break;
3430 		/* continue if ad_oldlbn is not a fragment */
3431 		if (listadp->ad_oldsize == 0 ||
3432 		    listadp->ad_oldsize == bsize)
3433 			continue;
3434 		/* hit a fragment */
3435 		return;
3436 	}
3437 	/*
3438 	 * If we have reached the end of the current list without
3439 	 * finding the just finished dependency, then it must be
3440 	 * on the future dependency list. Future dependencies cannot
3441 	 * be freed until they are moved to the current list.
3442 	 */
3443 	if (listadp == NULL) {
3444 #ifdef DEBUG
3445 		TAILQ_FOREACH(listadp, &inodedep->id_newinoupdt, ad_next)
3446 			/* found our block */
3447 			if (listadp == adp)
3448 				break;
3449 		if (listadp == NULL)
3450 			panic("handle_allocdirect_partdone: lost dep");
3451 #endif /* DEBUG */
3452 		return;
3453 	}
3454 	/*
3455 	 * If we have found the just finished dependency, then free
3456 	 * it along with anything that follows it that is complete.
3457 	 */
3458 	for (; adp; adp = listadp) {
3459 		listadp = TAILQ_NEXT(adp, ad_next);
3460 		if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
3461 			return;
3462 		free_allocdirect(&inodedep->id_inoupdt, adp, 1);
3463 	}
3464 }
3465 
3466 /*
3467  * Called from within softdep_disk_write_complete above. Note that
3468  * this routine is always called from interrupt level with further
3469  * splbio interrupts blocked.
3470  *
3471  * Parameters:
3472  *	aip:	the completed allocindir
3473  */
3474 static void
3475 handle_allocindir_partdone(struct allocindir *aip)
3476 {
3477 	struct indirdep *indirdep;
3478 
3479 	if ((aip->ai_state & ALLCOMPLETE) != ALLCOMPLETE)
3480 		return;
3481 	if (aip->ai_buf != NULL)
3482 		panic("handle_allocindir_partdone: dangling dependency");
3483 
3484 	indirdep = aip->ai_indirdep;
3485 	if (indirdep->ir_state & UNDONE) {
3486 		LIST_REMOVE(aip, ai_next);
3487 		LIST_INSERT_HEAD(&indirdep->ir_donehd, aip, ai_next);
3488 		return;
3489 	}
3490 	((ufs_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] =
3491 	    aip->ai_newblkno;
3492 	LIST_REMOVE(aip, ai_next);
3493 	if (aip->ai_freefrag != NULL)
3494 		add_to_worklist(&aip->ai_freefrag->ff_list);
3495 	WORKITEM_FREE(aip, D_ALLOCINDIR);
3496 }
3497 
3498 /*
3499  * Called from within softdep_disk_write_complete above to restore
3500  * in-memory inode block contents to their most up-to-date state. Note
3501  * that this routine is always called from interrupt level with further
3502  * splbio interrupts blocked.
3503  *
3504  * Parameters:
3505  *	bp:	buffer containing the inode block
3506  */
3507 static int
3508 handle_written_inodeblock(struct inodedep *inodedep, struct buf *bp)
3509 {
3510 	struct worklist *wk, *filefree;
3511 	struct allocdirect *adp, *nextadp;
3512 	struct ufs1_dinode *dp;
3513 	int hadchanges;
3514 
3515 	if ((inodedep->id_state & IOSTARTED) == 0)
3516 		panic("handle_written_inodeblock: not started");
3517 
3518 	inodedep->id_state &= ~IOSTARTED;
3519 	dp = (struct ufs1_dinode *)bp->b_data +
3520 	    ino_to_fsbo(inodedep->id_fs, inodedep->id_ino);
3521 	/*
3522 	 * If we had to rollback the inode allocation because of
3523 	 * bitmaps being incomplete, then simply restore it.
3524 	 * Keep the block dirty so that it will not be reclaimed until
3525 	 * all associated dependencies have been cleared and the
3526 	 * corresponding updates written to disk.
3527 	 */
3528 	if (inodedep->id_savedino != NULL) {
3529 		*dp = *inodedep->id_savedino;
3530 		kfree(inodedep->id_savedino, M_INODEDEP);
3531 		inodedep->id_savedino = NULL;
3532 		if ((bp->b_flags & B_DELWRI) == 0)
3533 			stat_inode_bitmap++;
3534 		bdirty(bp);
3535 		return (1);
3536 	}
3537 	inodedep->id_state |= COMPLETE;
3538 	/*
3539 	 * Roll forward anything that had to be rolled back before
3540 	 * the inode could be updated.
3541 	 */
3542 	hadchanges = 0;
3543 	for (adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; adp = nextadp) {
3544 		nextadp = TAILQ_NEXT(adp, ad_next);
3545 		if (adp->ad_state & ATTACHED)
3546 			panic("handle_written_inodeblock: new entry");
3547 
3548 		if (adp->ad_lbn < NDADDR) {
3549 			if (dp->di_db[adp->ad_lbn] != adp->ad_oldblkno) {
3550 				panic("%s: %s #%ld mismatch %d != %d",
3551 				    "handle_written_inodeblock",
3552 				    "direct pointer", adp->ad_lbn,
3553 				    dp->di_db[adp->ad_lbn], adp->ad_oldblkno);
3554 			}
3555 			dp->di_db[adp->ad_lbn] = adp->ad_newblkno;
3556 		} else {
3557 			if (dp->di_ib[adp->ad_lbn - NDADDR] != 0) {
3558 				panic("%s: %s #%ld allocated as %d",
3559 				    "handle_written_inodeblock",
3560 				    "indirect pointer", adp->ad_lbn - NDADDR,
3561 				    dp->di_ib[adp->ad_lbn - NDADDR]);
3562 			}
3563 			dp->di_ib[adp->ad_lbn - NDADDR] = adp->ad_newblkno;
3564 		}
3565 		adp->ad_state &= ~UNDONE;
3566 		adp->ad_state |= ATTACHED;
3567 		hadchanges = 1;
3568 	}
3569 	if (hadchanges && (bp->b_flags & B_DELWRI) == 0)
3570 		stat_direct_blk_ptrs++;
3571 	/*
3572 	 * Reset the file size to its most up-to-date value.
3573 	 */
3574 	if (inodedep->id_savedsize == -1) {
3575 		panic("handle_written_inodeblock: bad size");
3576 	}
3577 	if (dp->di_size != inodedep->id_savedsize) {
3578 		dp->di_size = inodedep->id_savedsize;
3579 		hadchanges = 1;
3580 	}
3581 	inodedep->id_savedsize = -1;
3582 	/*
3583 	 * If there were any rollbacks in the inode block, then it must be
3584 	 * marked dirty so that its will eventually get written back in
3585 	 * its correct form.
3586 	 */
3587 	if (hadchanges)
3588 		bdirty(bp);
3589 	/*
3590 	 * Process any allocdirects that completed during the update.
3591 	 */
3592 	if ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL)
3593 		handle_allocdirect_partdone(adp);
3594 	/*
3595 	 * Process deallocations that were held pending until the
3596 	 * inode had been written to disk. Freeing of the inode
3597 	 * is delayed until after all blocks have been freed to
3598 	 * avoid creation of new <vfsid, inum, lbn> triples
3599 	 * before the old ones have been deleted.
3600 	 */
3601 	filefree = NULL;
3602 	while ((wk = LIST_FIRST(&inodedep->id_bufwait)) != NULL) {
3603 		WORKLIST_REMOVE(wk);
3604 		switch (wk->wk_type) {
3605 
3606 		case D_FREEFILE:
3607 			/*
3608 			 * We defer adding filefree to the worklist until
3609 			 * all other additions have been made to ensure
3610 			 * that it will be done after all the old blocks
3611 			 * have been freed.
3612 			 */
3613 			if (filefree != NULL) {
3614 				panic("handle_written_inodeblock: filefree");
3615 			}
3616 			filefree = wk;
3617 			continue;
3618 
3619 		case D_MKDIR:
3620 			handle_written_mkdir(WK_MKDIR(wk), MKDIR_PARENT);
3621 			continue;
3622 
3623 		case D_DIRADD:
3624 			diradd_inode_written(WK_DIRADD(wk), inodedep);
3625 			continue;
3626 
3627 		case D_FREEBLKS:
3628 			wk->wk_state |= COMPLETE;
3629 			if ((wk->wk_state  & ALLCOMPLETE) != ALLCOMPLETE)
3630 				continue;
3631 			/* -- fall through -- */
3632 		case D_FREEFRAG:
3633 		case D_DIRREM:
3634 			add_to_worklist(wk);
3635 			continue;
3636 
3637 		default:
3638 			panic("handle_written_inodeblock: Unknown type %s",
3639 			    TYPENAME(wk->wk_type));
3640 			/* NOTREACHED */
3641 		}
3642 	}
3643 	if (filefree != NULL) {
3644 		if (free_inodedep(inodedep) == 0) {
3645 			panic("handle_written_inodeblock: live inodedep");
3646 		}
3647 		add_to_worklist(filefree);
3648 		return (0);
3649 	}
3650 
3651 	/*
3652 	 * If no outstanding dependencies, free it.
3653 	 */
3654 	if (free_inodedep(inodedep) || TAILQ_FIRST(&inodedep->id_inoupdt) == NULL)
3655 		return (0);
3656 	return (hadchanges);
3657 }
3658 
3659 /*
3660  * Process a diradd entry after its dependent inode has been written.
3661  * This routine must be called with splbio interrupts blocked.
3662  */
3663 static void
3664 diradd_inode_written(struct diradd *dap, struct inodedep *inodedep)
3665 {
3666 	struct pagedep *pagedep;
3667 
3668 	dap->da_state |= COMPLETE;
3669 	if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
3670 		if (dap->da_state & DIRCHG)
3671 			pagedep = dap->da_previous->dm_pagedep;
3672 		else
3673 			pagedep = dap->da_pagedep;
3674 		LIST_REMOVE(dap, da_pdlist);
3675 		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
3676 	}
3677 	WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
3678 }
3679 
3680 /*
3681  * Handle the completion of a mkdir dependency.
3682  */
3683 static void
3684 handle_written_mkdir(struct mkdir *mkdir, int type)
3685 {
3686 	struct diradd *dap;
3687 	struct pagedep *pagedep;
3688 
3689 	if (mkdir->md_state != type) {
3690 		panic("handle_written_mkdir: bad type");
3691 	}
3692 	dap = mkdir->md_diradd;
3693 	dap->da_state &= ~type;
3694 	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0)
3695 		dap->da_state |= DEPCOMPLETE;
3696 	if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
3697 		if (dap->da_state & DIRCHG)
3698 			pagedep = dap->da_previous->dm_pagedep;
3699 		else
3700 			pagedep = dap->da_pagedep;
3701 		LIST_REMOVE(dap, da_pdlist);
3702 		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
3703 	}
3704 	LIST_REMOVE(mkdir, md_mkdirs);
3705 	WORKITEM_FREE(mkdir, D_MKDIR);
3706 }
3707 
3708 /*
3709  * Called from within softdep_disk_write_complete above.
3710  * A write operation was just completed. Removed inodes can
3711  * now be freed and associated block pointers may be committed.
3712  * Note that this routine is always called from interrupt level
3713  * with further splbio interrupts blocked.
3714  *
3715  * Parameters:
3716  *	bp:	buffer containing the written page
3717  */
3718 static int
3719 handle_written_filepage(struct pagedep *pagedep, struct buf *bp)
3720 {
3721 	struct dirrem *dirrem;
3722 	struct diradd *dap, *nextdap;
3723 	struct direct *ep;
3724 	int i, chgs;
3725 
3726 	if ((pagedep->pd_state & IOSTARTED) == 0) {
3727 		panic("handle_written_filepage: not started");
3728 	}
3729 	pagedep->pd_state &= ~IOSTARTED;
3730 	/*
3731 	 * Process any directory removals that have been committed.
3732 	 */
3733 	while ((dirrem = LIST_FIRST(&pagedep->pd_dirremhd)) != NULL) {
3734 		LIST_REMOVE(dirrem, dm_next);
3735 		dirrem->dm_dirinum = pagedep->pd_ino;
3736 		add_to_worklist(&dirrem->dm_list);
3737 	}
3738 	/*
3739 	 * Free any directory additions that have been committed.
3740 	 */
3741 	while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
3742 		free_diradd(dap);
3743 	/*
3744 	 * Uncommitted directory entries must be restored.
3745 	 */
3746 	for (chgs = 0, i = 0; i < DAHASHSZ; i++) {
3747 		for (dap = LIST_FIRST(&pagedep->pd_diraddhd[i]); dap;
3748 		     dap = nextdap) {
3749 			nextdap = LIST_NEXT(dap, da_pdlist);
3750 			if (dap->da_state & ATTACHED) {
3751 				panic("handle_written_filepage: attached");
3752 			}
3753 			ep = (struct direct *)
3754 			    ((char *)bp->b_data + dap->da_offset);
3755 			ep->d_ino = dap->da_newinum;
3756 			dap->da_state &= ~UNDONE;
3757 			dap->da_state |= ATTACHED;
3758 			chgs = 1;
3759 			/*
3760 			 * If the inode referenced by the directory has
3761 			 * been written out, then the dependency can be
3762 			 * moved to the pending list.
3763 			 */
3764 			if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
3765 				LIST_REMOVE(dap, da_pdlist);
3766 				LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap,
3767 				    da_pdlist);
3768 			}
3769 		}
3770 	}
3771 	/*
3772 	 * If there were any rollbacks in the directory, then it must be
3773 	 * marked dirty so that its will eventually get written back in
3774 	 * its correct form.
3775 	 */
3776 	if (chgs) {
3777 		if ((bp->b_flags & B_DELWRI) == 0)
3778 			stat_dir_entry++;
3779 		bdirty(bp);
3780 	}
3781 	/*
3782 	 * If no dependencies remain, the pagedep will be freed.
3783 	 * Otherwise it will remain to update the page before it
3784 	 * is written back to disk.
3785 	 */
3786 	if (LIST_FIRST(&pagedep->pd_pendinghd) == NULL) {
3787 		for (i = 0; i < DAHASHSZ; i++)
3788 			if (LIST_FIRST(&pagedep->pd_diraddhd[i]) != NULL)
3789 				break;
3790 		if (i == DAHASHSZ) {
3791 			LIST_REMOVE(pagedep, pd_hash);
3792 			WORKITEM_FREE(pagedep, D_PAGEDEP);
3793 			return (0);
3794 		}
3795 	}
3796 	return (1);
3797 }
3798 
3799 /*
3800  * Writing back in-core inode structures.
3801  *
3802  * The filesystem only accesses an inode's contents when it occupies an
3803  * "in-core" inode structure.  These "in-core" structures are separate from
3804  * the page frames used to cache inode blocks.  Only the latter are
3805  * transferred to/from the disk.  So, when the updated contents of the
3806  * "in-core" inode structure are copied to the corresponding in-memory inode
3807  * block, the dependencies are also transferred.  The following procedure is
3808  * called when copying a dirty "in-core" inode to a cached inode block.
3809  */
3810 
3811 /*
3812  * Called when an inode is loaded from disk. If the effective link count
3813  * differed from the actual link count when it was last flushed, then we
3814  * need to ensure that the correct effective link count is put back.
3815  *
3816  * Parameters:
3817  *	ip:	the "in_core" copy of the inode
3818  */
3819 void
3820 softdep_load_inodeblock(struct inode *ip)
3821 {
3822 	struct inodedep *inodedep;
3823 
3824 	/*
3825 	 * Check for alternate nlink count.
3826 	 */
3827 	ip->i_effnlink = ip->i_nlink;
3828 	ACQUIRE_LOCK(&lk);
3829 	if (inodedep_lookup(ip->i_fs, ip->i_number, 0, &inodedep) == 0) {
3830 		FREE_LOCK(&lk);
3831 		return;
3832 	}
3833 	ip->i_effnlink -= inodedep->id_nlinkdelta;
3834 	FREE_LOCK(&lk);
3835 }
3836 
3837 /*
3838  * This routine is called just before the "in-core" inode
3839  * information is to be copied to the in-memory inode block.
3840  * Recall that an inode block contains several inodes. If
3841  * the force flag is set, then the dependencies will be
3842  * cleared so that the update can always be made. Note that
3843  * the buffer is locked when this routine is called, so we
3844  * will never be in the middle of writing the inode block
3845  * to disk.
3846  *
3847  * Parameters:
3848  *	ip:		the "in_core" copy of the inode
3849  *	bp:		the buffer containing the inode block
3850  *	waitfor:	nonzero => update must be allowed
3851  */
3852 void
3853 softdep_update_inodeblock(struct inode *ip, struct buf *bp,
3854 			  int waitfor)
3855 {
3856 	struct inodedep *inodedep;
3857 	struct worklist *wk;
3858 	struct buf *ibp;
3859 	int error, gotit;
3860 
3861 	/*
3862 	 * If the effective link count is not equal to the actual link
3863 	 * count, then we must track the difference in an inodedep while
3864 	 * the inode is (potentially) tossed out of the cache. Otherwise,
3865 	 * if there is no existing inodedep, then there are no dependencies
3866 	 * to track.
3867 	 */
3868 	ACQUIRE_LOCK(&lk);
3869 	if (inodedep_lookup(ip->i_fs, ip->i_number, 0, &inodedep) == 0) {
3870 		FREE_LOCK(&lk);
3871 		if (ip->i_effnlink != ip->i_nlink)
3872 			panic("softdep_update_inodeblock: bad link count");
3873 		return;
3874 	}
3875 	if (inodedep->id_nlinkdelta != ip->i_nlink - ip->i_effnlink) {
3876 		panic("softdep_update_inodeblock: bad delta");
3877 	}
3878 	/*
3879 	 * Changes have been initiated. Anything depending on these
3880 	 * changes cannot occur until this inode has been written.
3881 	 */
3882 	inodedep->id_state &= ~COMPLETE;
3883 	if ((inodedep->id_state & ONWORKLIST) == 0)
3884 		WORKLIST_INSERT_BP(bp, &inodedep->id_list);
3885 	/*
3886 	 * Any new dependencies associated with the incore inode must
3887 	 * now be moved to the list associated with the buffer holding
3888 	 * the in-memory copy of the inode. Once merged process any
3889 	 * allocdirects that are completed by the merger.
3890 	 */
3891 	merge_inode_lists(inodedep);
3892 	if (TAILQ_FIRST(&inodedep->id_inoupdt) != NULL)
3893 		handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_inoupdt));
3894 	/*
3895 	 * Now that the inode has been pushed into the buffer, the
3896 	 * operations dependent on the inode being written to disk
3897 	 * can be moved to the id_bufwait so that they will be
3898 	 * processed when the buffer I/O completes.
3899 	 */
3900 	while ((wk = LIST_FIRST(&inodedep->id_inowait)) != NULL) {
3901 		WORKLIST_REMOVE(wk);
3902 		WORKLIST_INSERT(&inodedep->id_bufwait, wk);
3903 	}
3904 	/*
3905 	 * Newly allocated inodes cannot be written until the bitmap
3906 	 * that allocates them have been written (indicated by
3907 	 * DEPCOMPLETE being set in id_state). If we are doing a
3908 	 * forced sync (e.g., an fsync on a file), we force the bitmap
3909 	 * to be written so that the update can be done.
3910 	 */
3911 	if (waitfor == 0) {
3912 		FREE_LOCK(&lk);
3913 		return;
3914 	}
3915 retry:
3916 	if ((inodedep->id_state & DEPCOMPLETE) != 0) {
3917 		FREE_LOCK(&lk);
3918 		return;
3919 	}
3920 	gotit = getdirtybuf(&inodedep->id_buf, MNT_WAIT);
3921 	if (gotit == 0) {
3922 		if (inodedep_lookup(ip->i_fs, ip->i_number, 0, &inodedep) != 0)
3923 			goto retry;
3924 		FREE_LOCK(&lk);
3925 		return;
3926 	}
3927 	ibp = inodedep->id_buf;
3928 	FREE_LOCK(&lk);
3929 	if ((error = bwrite(ibp)) != 0)
3930 		softdep_error("softdep_update_inodeblock: bwrite", error);
3931 }
3932 
3933 /*
3934  * Merge the new inode dependency list (id_newinoupdt) into the old
3935  * inode dependency list (id_inoupdt). This routine must be called
3936  * with splbio interrupts blocked.
3937  */
3938 static void
3939 merge_inode_lists(struct inodedep *inodedep)
3940 {
3941 	struct allocdirect *listadp, *newadp;
3942 
3943 	newadp = TAILQ_FIRST(&inodedep->id_newinoupdt);
3944 	for (listadp = TAILQ_FIRST(&inodedep->id_inoupdt); listadp && newadp;) {
3945 		if (listadp->ad_lbn < newadp->ad_lbn) {
3946 			listadp = TAILQ_NEXT(listadp, ad_next);
3947 			continue;
3948 		}
3949 		TAILQ_REMOVE(&inodedep->id_newinoupdt, newadp, ad_next);
3950 		TAILQ_INSERT_BEFORE(listadp, newadp, ad_next);
3951 		if (listadp->ad_lbn == newadp->ad_lbn) {
3952 			allocdirect_merge(&inodedep->id_inoupdt, newadp,
3953 			    listadp);
3954 			listadp = newadp;
3955 		}
3956 		newadp = TAILQ_FIRST(&inodedep->id_newinoupdt);
3957 	}
3958 	while ((newadp = TAILQ_FIRST(&inodedep->id_newinoupdt)) != NULL) {
3959 		TAILQ_REMOVE(&inodedep->id_newinoupdt, newadp, ad_next);
3960 		TAILQ_INSERT_TAIL(&inodedep->id_inoupdt, newadp, ad_next);
3961 	}
3962 }
3963 
3964 /*
3965  * If we are doing an fsync, then we must ensure that any directory
3966  * entries for the inode have been written after the inode gets to disk.
3967  *
3968  * bioops callback - hold io_token
3969  *
3970  * Parameters:
3971  *	vp:	the "in_core" copy of the inode
3972  */
3973 static int
3974 softdep_fsync(struct vnode *vp)
3975 {
3976 	struct inodedep *inodedep;
3977 	struct pagedep *pagedep;
3978 	struct worklist *wk;
3979 	struct diradd *dap;
3980 	struct mount *mnt;
3981 	struct vnode *pvp;
3982 	struct inode *ip;
3983 	struct buf *bp;
3984 	struct fs *fs;
3985 	int error, flushparent;
3986 	ino_t parentino;
3987 	ufs_lbn_t lbn;
3988 
3989 	/*
3990 	 * Move check from original kernel code, possibly not needed any
3991 	 * more with the per-mount bioops.
3992 	 */
3993 	if ((vp->v_mount->mnt_flag & MNT_SOFTDEP) == 0)
3994 		return (0);
3995 
3996 	ip = VTOI(vp);
3997 	fs = ip->i_fs;
3998 	ACQUIRE_LOCK(&lk);
3999 	if (inodedep_lookup(fs, ip->i_number, 0, &inodedep) == 0) {
4000 		FREE_LOCK(&lk);
4001 		return (0);
4002 	}
4003 	if (LIST_FIRST(&inodedep->id_inowait) != NULL ||
4004 	    LIST_FIRST(&inodedep->id_bufwait) != NULL ||
4005 	    TAILQ_FIRST(&inodedep->id_inoupdt) != NULL ||
4006 	    TAILQ_FIRST(&inodedep->id_newinoupdt) != NULL) {
4007 		panic("softdep_fsync: pending ops");
4008 	}
4009 	for (error = 0, flushparent = 0; ; ) {
4010 		if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) == NULL)
4011 			break;
4012 		if (wk->wk_type != D_DIRADD) {
4013 			panic("softdep_fsync: Unexpected type %s",
4014 			    TYPENAME(wk->wk_type));
4015 		}
4016 		dap = WK_DIRADD(wk);
4017 		/*
4018 		 * Flush our parent if this directory entry
4019 		 * has a MKDIR_PARENT dependency.
4020 		 */
4021 		if (dap->da_state & DIRCHG)
4022 			pagedep = dap->da_previous->dm_pagedep;
4023 		else
4024 			pagedep = dap->da_pagedep;
4025 		mnt = pagedep->pd_mnt;
4026 		parentino = pagedep->pd_ino;
4027 		lbn = pagedep->pd_lbn;
4028 		if ((dap->da_state & (MKDIR_BODY | COMPLETE)) != COMPLETE) {
4029 			panic("softdep_fsync: dirty");
4030 		}
4031 		flushparent = dap->da_state & MKDIR_PARENT;
4032 		/*
4033 		 * If we are being fsync'ed as part of vgone'ing this vnode,
4034 		 * then we will not be able to release and recover the
4035 		 * vnode below, so we just have to give up on writing its
4036 		 * directory entry out. It will eventually be written, just
4037 		 * not now, but then the user was not asking to have it
4038 		 * written, so we are not breaking any promises.
4039 		 */
4040 		if (vp->v_flag & VRECLAIMED)
4041 			break;
4042 		/*
4043 		 * We prevent deadlock by always fetching inodes from the
4044 		 * root, moving down the directory tree. Thus, when fetching
4045 		 * our parent directory, we must unlock ourselves before
4046 		 * requesting the lock on our parent. See the comment in
4047 		 * ufs_lookup for details on possible races.
4048 		 */
4049 		FREE_LOCK(&lk);
4050 		vn_unlock(vp);
4051 		error = VFS_VGET(mnt, NULL, parentino, &pvp);
4052 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
4053 		if (error != 0) {
4054 			return (error);
4055 		}
4056 		if (flushparent) {
4057 			if ((error = ffs_update(pvp, 1)) != 0) {
4058 				vput(pvp);
4059 				return (error);
4060 			}
4061 		}
4062 		/*
4063 		 * Flush directory page containing the inode's name.
4064 		 */
4065 		error = bread(pvp, lblktodoff(fs, lbn), blksize(fs, VTOI(pvp), lbn), &bp);
4066 		if (error == 0)
4067 			error = bwrite(bp);
4068 		vput(pvp);
4069 		if (error != 0) {
4070 			return (error);
4071 		}
4072 		ACQUIRE_LOCK(&lk);
4073 		if (inodedep_lookup(fs, ip->i_number, 0, &inodedep) == 0)
4074 			break;
4075 	}
4076 	FREE_LOCK(&lk);
4077 	return (0);
4078 }
4079 
4080 /*
4081  * Flush all the dirty bitmaps associated with the block device
4082  * before flushing the rest of the dirty blocks so as to reduce
4083  * the number of dependencies that will have to be rolled back.
4084  */
4085 static int softdep_fsync_mountdev_bp(struct buf *bp, void *data);
4086 
4087 void
4088 softdep_fsync_mountdev(struct vnode *vp)
4089 {
4090 	if (!vn_isdisk(vp, NULL))
4091 		panic("softdep_fsync_mountdev: vnode not a disk");
4092 	ACQUIRE_LOCK(&lk);
4093 	lwkt_gettoken(&vp->v_token);
4094 	RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
4095 		softdep_fsync_mountdev_bp, vp);
4096 	lwkt_reltoken(&vp->v_token);
4097 	drain_output(vp, 1);
4098 	FREE_LOCK(&lk);
4099 }
4100 
4101 static int
4102 softdep_fsync_mountdev_bp(struct buf *bp, void *data)
4103 {
4104 	struct worklist *wk;
4105 	struct vnode *vp = data;
4106 
4107 	/*
4108 	 * If it is already scheduled, skip to the next buffer.
4109 	 */
4110 	if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT))
4111 		return(0);
4112 	if (bp->b_vp != vp || (bp->b_flags & B_DELWRI) == 0) {
4113 		BUF_UNLOCK(bp);
4114 		kprintf("softdep_fsync_mountdev_bp: warning, buffer %p ripped out from under vnode %p\n", bp, vp);
4115 		return(0);
4116 	}
4117 	/*
4118 	 * We are only interested in bitmaps with outstanding
4119 	 * dependencies.
4120 	 */
4121 	if ((wk = LIST_FIRST(&bp->b_dep)) == NULL ||
4122 	    wk->wk_type != D_BMSAFEMAP) {
4123 		BUF_UNLOCK(bp);
4124 		return(0);
4125 	}
4126 	bremfree(bp);
4127 	FREE_LOCK(&lk);
4128 	(void) bawrite(bp);
4129 	ACQUIRE_LOCK(&lk);
4130 	return(0);
4131 }
4132 
4133 /*
4134  * This routine is called when we are trying to synchronously flush a
4135  * file. This routine must eliminate any filesystem metadata dependencies
4136  * so that the syncing routine can succeed by pushing the dirty blocks
4137  * associated with the file. If any I/O errors occur, they are returned.
4138  */
4139 struct softdep_sync_metadata_info {
4140 	struct vnode *vp;
4141 	int waitfor;
4142 };
4143 
4144 static int softdep_sync_metadata_bp(struct buf *bp, void *data);
4145 
4146 int
4147 softdep_sync_metadata(struct vnode *vp, struct thread *td)
4148 {
4149 	struct softdep_sync_metadata_info info;
4150 	int error, waitfor;
4151 
4152 	/*
4153 	 * Check whether this vnode is involved in a filesystem
4154 	 * that is doing soft dependency processing.
4155 	 */
4156 	if (!vn_isdisk(vp, NULL)) {
4157 		if (!DOINGSOFTDEP(vp))
4158 			return (0);
4159 	} else
4160 		if (vp->v_rdev->si_mountpoint == NULL ||
4161 		    (vp->v_rdev->si_mountpoint->mnt_flag & MNT_SOFTDEP) == 0)
4162 			return (0);
4163 	/*
4164 	 * Ensure that any direct block dependencies have been cleared.
4165 	 */
4166 	ACQUIRE_LOCK(&lk);
4167 	if ((error = flush_inodedep_deps(VTOI(vp)->i_fs, VTOI(vp)->i_number))) {
4168 		FREE_LOCK(&lk);
4169 		return (error);
4170 	}
4171 	/*
4172 	 * For most files, the only metadata dependencies are the
4173 	 * cylinder group maps that allocate their inode or blocks.
4174 	 * The block allocation dependencies can be found by traversing
4175 	 * the dependency lists for any buffers that remain on their
4176 	 * dirty buffer list. The inode allocation dependency will
4177 	 * be resolved when the inode is updated with MNT_WAIT.
4178 	 * This work is done in two passes. The first pass grabs most
4179 	 * of the buffers and begins asynchronously writing them. The
4180 	 * only way to wait for these asynchronous writes is to sleep
4181 	 * on the filesystem vnode which may stay busy for a long time
4182 	 * if the filesystem is active. So, instead, we make a second
4183 	 * pass over the dependencies blocking on each write. In the
4184 	 * usual case we will be blocking against a write that we
4185 	 * initiated, so when it is done the dependency will have been
4186 	 * resolved. Thus the second pass is expected to end quickly.
4187 	 */
4188 	waitfor = MNT_NOWAIT;
4189 top:
4190 	/*
4191 	 * We must wait for any I/O in progress to finish so that
4192 	 * all potential buffers on the dirty list will be visible.
4193 	 */
4194 	drain_output(vp, 1);
4195 
4196 	info.vp = vp;
4197 	info.waitfor = waitfor;
4198 	lwkt_gettoken(&vp->v_token);
4199 	error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
4200 			softdep_sync_metadata_bp, &info);
4201 	lwkt_reltoken(&vp->v_token);
4202 	if (error < 0) {
4203 		FREE_LOCK(&lk);
4204 		return(-error);	/* error code */
4205 	}
4206 
4207 	/*
4208 	 * The brief unlock is to allow any pent up dependency
4209 	 * processing to be done.  Then proceed with the second pass.
4210 	 */
4211 	if (waitfor & MNT_NOWAIT) {
4212 		waitfor = MNT_WAIT;
4213 		FREE_LOCK(&lk);
4214 		ACQUIRE_LOCK(&lk);
4215 		goto top;
4216 	}
4217 
4218 	/*
4219 	 * If we have managed to get rid of all the dirty buffers,
4220 	 * then we are done. For certain directories and block
4221 	 * devices, we may need to do further work.
4222 	 *
4223 	 * We must wait for any I/O in progress to finish so that
4224 	 * all potential buffers on the dirty list will be visible.
4225 	 */
4226 	drain_output(vp, 1);
4227 	if (RB_EMPTY(&vp->v_rbdirty_tree)) {
4228 		FREE_LOCK(&lk);
4229 		return (0);
4230 	}
4231 
4232 	FREE_LOCK(&lk);
4233 	/*
4234 	 * If we are trying to sync a block device, some of its buffers may
4235 	 * contain metadata that cannot be written until the contents of some
4236 	 * partially written files have been written to disk. The only easy
4237 	 * way to accomplish this is to sync the entire filesystem (luckily
4238 	 * this happens rarely).
4239 	 */
4240 	if (vn_isdisk(vp, NULL) &&
4241 	    vp->v_rdev &&
4242 	    vp->v_rdev->si_mountpoint && !vn_islocked(vp) &&
4243 	    (error = VFS_SYNC(vp->v_rdev->si_mountpoint, MNT_WAIT)) != 0)
4244 		return (error);
4245 	return (0);
4246 }
4247 
4248 static int
4249 softdep_sync_metadata_bp(struct buf *bp, void *data)
4250 {
4251 	struct softdep_sync_metadata_info *info = data;
4252 	struct pagedep *pagedep;
4253 	struct allocdirect *adp;
4254 	struct allocindir *aip;
4255 	struct worklist *wk;
4256 	struct buf *nbp;
4257 	int error;
4258 	int i;
4259 
4260 	if (getdirtybuf(&bp, MNT_WAIT) == 0) {
4261 		kprintf("softdep_sync_metadata_bp(1): caught buf %p going away\n", bp);
4262 		return (1);
4263 	}
4264 	if (bp->b_vp != info->vp || (bp->b_flags & B_DELWRI) == 0) {
4265 		kprintf("softdep_sync_metadata_bp(2): caught buf %p going away vp %p\n", bp, info->vp);
4266 		BUF_UNLOCK(bp);
4267 		return(1);
4268 	}
4269 
4270 	/*
4271 	 * As we hold the buffer locked, none of its dependencies
4272 	 * will disappear.
4273 	 */
4274 	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
4275 		switch (wk->wk_type) {
4276 
4277 		case D_ALLOCDIRECT:
4278 			adp = WK_ALLOCDIRECT(wk);
4279 			if (adp->ad_state & DEPCOMPLETE)
4280 				break;
4281 			nbp = adp->ad_buf;
4282 			if (getdirtybuf(&nbp, info->waitfor) == 0)
4283 				break;
4284 			FREE_LOCK(&lk);
4285 			if (info->waitfor & MNT_NOWAIT) {
4286 				bawrite(nbp);
4287 			} else if ((error = bwrite(nbp)) != 0) {
4288 				bawrite(bp);
4289 				ACQUIRE_LOCK(&lk);
4290 				return (-error);
4291 			}
4292 			ACQUIRE_LOCK(&lk);
4293 			break;
4294 
4295 		case D_ALLOCINDIR:
4296 			aip = WK_ALLOCINDIR(wk);
4297 			if (aip->ai_state & DEPCOMPLETE)
4298 				break;
4299 			nbp = aip->ai_buf;
4300 			if (getdirtybuf(&nbp, info->waitfor) == 0)
4301 				break;
4302 			FREE_LOCK(&lk);
4303 			if (info->waitfor & MNT_NOWAIT) {
4304 				bawrite(nbp);
4305 			} else if ((error = bwrite(nbp)) != 0) {
4306 				bawrite(bp);
4307 				ACQUIRE_LOCK(&lk);
4308 				return (-error);
4309 			}
4310 			ACQUIRE_LOCK(&lk);
4311 			break;
4312 
4313 		case D_INDIRDEP:
4314 		restart:
4315 
4316 			LIST_FOREACH(aip, &WK_INDIRDEP(wk)->ir_deplisthd, ai_next) {
4317 				if (aip->ai_state & DEPCOMPLETE)
4318 					continue;
4319 				nbp = aip->ai_buf;
4320 				if (getdirtybuf(&nbp, MNT_WAIT) == 0)
4321 					goto restart;
4322 				FREE_LOCK(&lk);
4323 				if ((error = bwrite(nbp)) != 0) {
4324 					bawrite(bp);
4325 					ACQUIRE_LOCK(&lk);
4326 					return (-error);
4327 				}
4328 				ACQUIRE_LOCK(&lk);
4329 				goto restart;
4330 			}
4331 			break;
4332 
4333 		case D_INODEDEP:
4334 			if ((error = flush_inodedep_deps(WK_INODEDEP(wk)->id_fs,
4335 			    WK_INODEDEP(wk)->id_ino)) != 0) {
4336 				FREE_LOCK(&lk);
4337 				bawrite(bp);
4338 				ACQUIRE_LOCK(&lk);
4339 				return (-error);
4340 			}
4341 			break;
4342 
4343 		case D_PAGEDEP:
4344 			/*
4345 			 * We are trying to sync a directory that may
4346 			 * have dependencies on both its own metadata
4347 			 * and/or dependencies on the inodes of any
4348 			 * recently allocated files. We walk its diradd
4349 			 * lists pushing out the associated inode.
4350 			 */
4351 			pagedep = WK_PAGEDEP(wk);
4352 			for (i = 0; i < DAHASHSZ; i++) {
4353 				if (LIST_FIRST(&pagedep->pd_diraddhd[i]) == NULL)
4354 					continue;
4355 				if ((error =
4356 				    flush_pagedep_deps(info->vp,
4357 						pagedep->pd_mnt,
4358 						&pagedep->pd_diraddhd[i]))) {
4359 					FREE_LOCK(&lk);
4360 					bawrite(bp);
4361 					ACQUIRE_LOCK(&lk);
4362 					return (-error);
4363 				}
4364 			}
4365 			break;
4366 
4367 		case D_MKDIR:
4368 			/*
4369 			 * This case should never happen if the vnode has
4370 			 * been properly sync'ed. However, if this function
4371 			 * is used at a place where the vnode has not yet
4372 			 * been sync'ed, this dependency can show up. So,
4373 			 * rather than panic, just flush it.
4374 			 */
4375 			nbp = WK_MKDIR(wk)->md_buf;
4376 			if (getdirtybuf(&nbp, info->waitfor) == 0)
4377 				break;
4378 			FREE_LOCK(&lk);
4379 			if (info->waitfor & MNT_NOWAIT) {
4380 				bawrite(nbp);
4381 			} else if ((error = bwrite(nbp)) != 0) {
4382 				bawrite(bp);
4383 				ACQUIRE_LOCK(&lk);
4384 				return (-error);
4385 			}
4386 			ACQUIRE_LOCK(&lk);
4387 			break;
4388 
4389 		case D_BMSAFEMAP:
4390 			/*
4391 			 * This case should never happen if the vnode has
4392 			 * been properly sync'ed. However, if this function
4393 			 * is used at a place where the vnode has not yet
4394 			 * been sync'ed, this dependency can show up. So,
4395 			 * rather than panic, just flush it.
4396 			 *
4397 			 * nbp can wind up == bp if a device node for the
4398 			 * same filesystem is being fsynced at the same time,
4399 			 * leading to a panic if we don't catch the case.
4400 			 */
4401 			nbp = WK_BMSAFEMAP(wk)->sm_buf;
4402 			if (nbp == bp)
4403 				break;
4404 			if (getdirtybuf(&nbp, info->waitfor) == 0)
4405 				break;
4406 			FREE_LOCK(&lk);
4407 			if (info->waitfor & MNT_NOWAIT) {
4408 				bawrite(nbp);
4409 			} else if ((error = bwrite(nbp)) != 0) {
4410 				bawrite(bp);
4411 				ACQUIRE_LOCK(&lk);
4412 				return (-error);
4413 			}
4414 			ACQUIRE_LOCK(&lk);
4415 			break;
4416 
4417 		default:
4418 			panic("softdep_sync_metadata: Unknown type %s",
4419 			    TYPENAME(wk->wk_type));
4420 			/* NOTREACHED */
4421 		}
4422 	}
4423 	FREE_LOCK(&lk);
4424 	bawrite(bp);
4425 	ACQUIRE_LOCK(&lk);
4426 	return(0);
4427 }
4428 
4429 /*
4430  * Flush the dependencies associated with an inodedep.
4431  * Called with splbio blocked.
4432  */
4433 static int
4434 flush_inodedep_deps(struct fs *fs, ino_t ino)
4435 {
4436 	struct inodedep *inodedep;
4437 	struct allocdirect *adp;
4438 	int error, waitfor;
4439 	struct buf *bp;
4440 
4441 	/*
4442 	 * This work is done in two passes. The first pass grabs most
4443 	 * of the buffers and begins asynchronously writing them. The
4444 	 * only way to wait for these asynchronous writes is to sleep
4445 	 * on the filesystem vnode which may stay busy for a long time
4446 	 * if the filesystem is active. So, instead, we make a second
4447 	 * pass over the dependencies blocking on each write. In the
4448 	 * usual case we will be blocking against a write that we
4449 	 * initiated, so when it is done the dependency will have been
4450 	 * resolved. Thus the second pass is expected to end quickly.
4451 	 * We give a brief window at the top of the loop to allow
4452 	 * any pending I/O to complete.
4453 	 */
4454 	for (waitfor = MNT_NOWAIT; ; ) {
4455 		FREE_LOCK(&lk);
4456 		ACQUIRE_LOCK(&lk);
4457 		if (inodedep_lookup(fs, ino, 0, &inodedep) == 0)
4458 			return (0);
4459 		TAILQ_FOREACH(adp, &inodedep->id_inoupdt, ad_next) {
4460 			if (adp->ad_state & DEPCOMPLETE)
4461 				continue;
4462 			bp = adp->ad_buf;
4463 			if (getdirtybuf(&bp, waitfor) == 0) {
4464 				if (waitfor & MNT_NOWAIT)
4465 					continue;
4466 				break;
4467 			}
4468 			FREE_LOCK(&lk);
4469 			if (waitfor & MNT_NOWAIT) {
4470 				bawrite(bp);
4471 			} else if ((error = bwrite(bp)) != 0) {
4472 				ACQUIRE_LOCK(&lk);
4473 				return (error);
4474 			}
4475 			ACQUIRE_LOCK(&lk);
4476 			break;
4477 		}
4478 		if (adp != NULL)
4479 			continue;
4480 		TAILQ_FOREACH(adp, &inodedep->id_newinoupdt, ad_next) {
4481 			if (adp->ad_state & DEPCOMPLETE)
4482 				continue;
4483 			bp = adp->ad_buf;
4484 			if (getdirtybuf(&bp, waitfor) == 0) {
4485 				if (waitfor & MNT_NOWAIT)
4486 					continue;
4487 				break;
4488 			}
4489 			FREE_LOCK(&lk);
4490 			if (waitfor & MNT_NOWAIT) {
4491 				bawrite(bp);
4492 			} else if ((error = bwrite(bp)) != 0) {
4493 				ACQUIRE_LOCK(&lk);
4494 				return (error);
4495 			}
4496 			ACQUIRE_LOCK(&lk);
4497 			break;
4498 		}
4499 		if (adp != NULL)
4500 			continue;
4501 		/*
4502 		 * If pass2, we are done, otherwise do pass 2.
4503 		 */
4504 		if (waitfor == MNT_WAIT)
4505 			break;
4506 		waitfor = MNT_WAIT;
4507 	}
4508 	/*
4509 	 * Try freeing inodedep in case all dependencies have been removed.
4510 	 */
4511 	if (inodedep_lookup(fs, ino, 0, &inodedep) != 0)
4512 		(void) free_inodedep(inodedep);
4513 	return (0);
4514 }
4515 
4516 /*
4517  * Eliminate a pagedep dependency by flushing out all its diradd dependencies.
4518  * Called with splbio blocked.
4519  */
4520 static int
4521 flush_pagedep_deps(struct vnode *pvp, struct mount *mp,
4522 		   struct diraddhd *diraddhdp)
4523 {
4524 	struct inodedep *inodedep;
4525 	struct ufsmount *ump;
4526 	struct diradd *dap;
4527 	struct vnode *vp;
4528 	int gotit, error = 0;
4529 	struct buf *bp;
4530 	ino_t inum;
4531 
4532 	ump = VFSTOUFS(mp);
4533 	while ((dap = LIST_FIRST(diraddhdp)) != NULL) {
4534 		/*
4535 		 * Flush ourselves if this directory entry
4536 		 * has a MKDIR_PARENT dependency.
4537 		 */
4538 		if (dap->da_state & MKDIR_PARENT) {
4539 			FREE_LOCK(&lk);
4540 			if ((error = ffs_update(pvp, 1)) != 0)
4541 				break;
4542 			ACQUIRE_LOCK(&lk);
4543 			/*
4544 			 * If that cleared dependencies, go on to next.
4545 			 */
4546 			if (dap != LIST_FIRST(diraddhdp))
4547 				continue;
4548 			if (dap->da_state & MKDIR_PARENT) {
4549 				panic("flush_pagedep_deps: MKDIR_PARENT");
4550 			}
4551 		}
4552 		/*
4553 		 * A newly allocated directory must have its "." and
4554 		 * ".." entries written out before its name can be
4555 		 * committed in its parent. We do not want or need
4556 		 * the full semantics of a synchronous VOP_FSYNC as
4557 		 * that may end up here again, once for each directory
4558 		 * level in the filesystem. Instead, we push the blocks
4559 		 * and wait for them to clear. We have to fsync twice
4560 		 * because the first call may choose to defer blocks
4561 		 * that still have dependencies, but deferral will
4562 		 * happen at most once.
4563 		 */
4564 		inum = dap->da_newinum;
4565 		if (dap->da_state & MKDIR_BODY) {
4566 			FREE_LOCK(&lk);
4567 			if ((error = VFS_VGET(mp, NULL, inum, &vp)) != 0)
4568 				break;
4569 			if ((error=VOP_FSYNC(vp, MNT_NOWAIT, 0)) ||
4570 			    (error=VOP_FSYNC(vp, MNT_NOWAIT, 0))) {
4571 				vput(vp);
4572 				break;
4573 			}
4574 			drain_output(vp, 0);
4575 			vput(vp);
4576 			ACQUIRE_LOCK(&lk);
4577 			/*
4578 			 * If that cleared dependencies, go on to next.
4579 			 */
4580 			if (dap != LIST_FIRST(diraddhdp))
4581 				continue;
4582 			if (dap->da_state & MKDIR_BODY) {
4583 				panic("flush_pagedep_deps: MKDIR_BODY");
4584 			}
4585 		}
4586 		/*
4587 		 * Flush the inode on which the directory entry depends.
4588 		 * Having accounted for MKDIR_PARENT and MKDIR_BODY above,
4589 		 * the only remaining dependency is that the updated inode
4590 		 * count must get pushed to disk. The inode has already
4591 		 * been pushed into its inode buffer (via VOP_UPDATE) at
4592 		 * the time of the reference count change. So we need only
4593 		 * locate that buffer, ensure that there will be no rollback
4594 		 * caused by a bitmap dependency, then write the inode buffer.
4595 		 */
4596 		if (inodedep_lookup(ump->um_fs, inum, 0, &inodedep) == 0) {
4597 			panic("flush_pagedep_deps: lost inode");
4598 		}
4599 		/*
4600 		 * If the inode still has bitmap dependencies,
4601 		 * push them to disk.
4602 		 */
4603 		if ((inodedep->id_state & DEPCOMPLETE) == 0) {
4604 			gotit = getdirtybuf(&inodedep->id_buf, MNT_WAIT);
4605 			FREE_LOCK(&lk);
4606 			if (gotit && (error = bwrite(inodedep->id_buf)) != 0)
4607 				break;
4608 			ACQUIRE_LOCK(&lk);
4609 			if (dap != LIST_FIRST(diraddhdp))
4610 				continue;
4611 		}
4612 		/*
4613 		 * If the inode is still sitting in a buffer waiting
4614 		 * to be written, push it to disk.
4615 		 */
4616 		FREE_LOCK(&lk);
4617 		if ((error = bread(ump->um_devvp,
4618 			fsbtodoff(ump->um_fs, ino_to_fsba(ump->um_fs, inum)),
4619 		    (int)ump->um_fs->fs_bsize, &bp)) != 0)
4620 			break;
4621 		if ((error = bwrite(bp)) != 0)
4622 			break;
4623 		ACQUIRE_LOCK(&lk);
4624 		/*
4625 		 * If we have failed to get rid of all the dependencies
4626 		 * then something is seriously wrong.
4627 		 */
4628 		if (dap == LIST_FIRST(diraddhdp)) {
4629 			panic("flush_pagedep_deps: flush failed");
4630 		}
4631 	}
4632 	if (error)
4633 		ACQUIRE_LOCK(&lk);
4634 	return (error);
4635 }
4636 
4637 /*
4638  * A large burst of file addition or deletion activity can drive the
4639  * memory load excessively high. First attempt to slow things down
4640  * using the techniques below. If that fails, this routine requests
4641  * the offending operations to fall back to running synchronously
4642  * until the memory load returns to a reasonable level.
4643  */
4644 int
4645 softdep_slowdown(struct vnode *vp)
4646 {
4647 	int max_softdeps_hard;
4648 
4649 	max_softdeps_hard = max_softdeps * 11 / 10;
4650 	if (num_dirrem < max_softdeps_hard / 2 &&
4651 	    num_inodedep < max_softdeps_hard)
4652 		return (0);
4653 	stat_sync_limit_hit += 1;
4654 	return (1);
4655 }
4656 
4657 /*
4658  * If memory utilization has gotten too high, deliberately slow things
4659  * down and speed up the I/O processing.
4660  */
4661 static int
4662 request_cleanup(int resource, int islocked)
4663 {
4664 	struct thread *td = curthread;		/* XXX */
4665 
4666 	/*
4667 	 * We never hold up the filesystem syncer process.
4668 	 */
4669 	if (td == filesys_syncer)
4670 		return (0);
4671 	/*
4672 	 * First check to see if the work list has gotten backlogged.
4673 	 * If it has, co-opt this process to help clean up two entries.
4674 	 * Because this process may hold inodes locked, we cannot
4675 	 * handle any remove requests that might block on a locked
4676 	 * inode as that could lead to deadlock.
4677 	 */
4678 	if (num_on_worklist > max_softdeps / 10) {
4679 		process_worklist_item(NULL, LK_NOWAIT);
4680 		process_worklist_item(NULL, LK_NOWAIT);
4681 		stat_worklist_push += 2;
4682 		return(1);
4683 	}
4684 
4685 	/*
4686 	 * If we are resource constrained on inode dependencies, try
4687 	 * flushing some dirty inodes. Otherwise, we are constrained
4688 	 * by file deletions, so try accelerating flushes of directories
4689 	 * with removal dependencies. We would like to do the cleanup
4690 	 * here, but we probably hold an inode locked at this point and
4691 	 * that might deadlock against one that we try to clean. So,
4692 	 * the best that we can do is request the syncer daemon to do
4693 	 * the cleanup for us.
4694 	 */
4695 	switch (resource) {
4696 
4697 	case FLUSH_INODES:
4698 		stat_ino_limit_push += 1;
4699 		req_clear_inodedeps += 1;
4700 		stat_countp = &stat_ino_limit_hit;
4701 		break;
4702 
4703 	case FLUSH_REMOVE:
4704 		stat_blk_limit_push += 1;
4705 		req_clear_remove += 1;
4706 		stat_countp = &stat_blk_limit_hit;
4707 		break;
4708 
4709 	default:
4710 		panic("request_cleanup: unknown type");
4711 	}
4712 	/*
4713 	 * Hopefully the syncer daemon will catch up and awaken us.
4714 	 * We wait at most tickdelay before proceeding in any case.
4715 	 */
4716 	if (islocked == 0)
4717 		ACQUIRE_LOCK(&lk);
4718 	lksleep(&proc_waiting, &lk, 0, "softupdate",
4719 		tickdelay > 2 ? tickdelay : 2);
4720 	if (islocked == 0)
4721 		FREE_LOCK(&lk);
4722 	return (1);
4723 }
4724 
4725 /*
4726  * Flush out a directory with at least one removal dependency in an effort to
4727  * reduce the number of dirrem, freefile, and freeblks dependency structures.
4728  */
4729 static void
4730 clear_remove(struct thread *td)
4731 {
4732 	struct pagedep_hashhead *pagedephd;
4733 	struct pagedep *pagedep;
4734 	static int next = 0;
4735 	struct mount *mp;
4736 	struct vnode *vp;
4737 	int error, cnt;
4738 	ino_t ino;
4739 
4740 	ACQUIRE_LOCK(&lk);
4741 	for (cnt = 0; cnt < pagedep_hash; cnt++) {
4742 		pagedephd = &pagedep_hashtbl[next++];
4743 		if (next >= pagedep_hash)
4744 			next = 0;
4745 		LIST_FOREACH(pagedep, pagedephd, pd_hash) {
4746 			if (LIST_FIRST(&pagedep->pd_dirremhd) == NULL)
4747 				continue;
4748 			mp = pagedep->pd_mnt;
4749 			ino = pagedep->pd_ino;
4750 			FREE_LOCK(&lk);
4751 			if ((error = VFS_VGET(mp, NULL, ino, &vp)) != 0) {
4752 				softdep_error("clear_remove: vget", error);
4753 				return;
4754 			}
4755 			if ((error = VOP_FSYNC(vp, MNT_NOWAIT, 0)))
4756 				softdep_error("clear_remove: fsync", error);
4757 			drain_output(vp, 0);
4758 			vput(vp);
4759 			return;
4760 		}
4761 	}
4762 	FREE_LOCK(&lk);
4763 }
4764 
4765 /*
4766  * Clear out a block of dirty inodes in an effort to reduce
4767  * the number of inodedep dependency structures.
4768  */
4769 struct clear_inodedeps_info {
4770 	struct fs *fs;
4771 	struct mount *mp;
4772 };
4773 
4774 static int
4775 clear_inodedeps_mountlist_callback(struct mount *mp, void *data)
4776 {
4777 	struct clear_inodedeps_info *info = data;
4778 
4779 	if ((mp->mnt_flag & MNT_SOFTDEP) && info->fs == VFSTOUFS(mp)->um_fs) {
4780 		info->mp = mp;
4781 		return(-1);
4782 	}
4783 	return(0);
4784 }
4785 
4786 static void
4787 clear_inodedeps(struct thread *td)
4788 {
4789 	struct clear_inodedeps_info info;
4790 	struct inodedep_hashhead *inodedephd;
4791 	struct inodedep *inodedep;
4792 	static int next = 0;
4793 	struct vnode *vp;
4794 	struct fs *fs;
4795 	int error, cnt;
4796 	ino_t firstino, lastino, ino;
4797 
4798 	ACQUIRE_LOCK(&lk);
4799 	/*
4800 	 * Pick a random inode dependency to be cleared.
4801 	 * We will then gather up all the inodes in its block
4802 	 * that have dependencies and flush them out.
4803 	 */
4804 	for (cnt = 0; cnt < inodedep_hash; cnt++) {
4805 		inodedephd = &inodedep_hashtbl[next++];
4806 		if (next >= inodedep_hash)
4807 			next = 0;
4808 		if ((inodedep = LIST_FIRST(inodedephd)) != NULL)
4809 			break;
4810 	}
4811 	if (inodedep == NULL) {
4812 		FREE_LOCK(&lk);
4813 		return;
4814 	}
4815 	/*
4816 	 * Ugly code to find mount point given pointer to superblock.
4817 	 */
4818 	fs = inodedep->id_fs;
4819 	info.mp = NULL;
4820 	info.fs = fs;
4821 	mountlist_scan(clear_inodedeps_mountlist_callback,
4822 			&info, MNTSCAN_FORWARD|MNTSCAN_NOBUSY);
4823 	/*
4824 	 * Find the last inode in the block with dependencies.
4825 	 */
4826 	firstino = inodedep->id_ino & ~(INOPB(fs) - 1);
4827 	for (lastino = firstino + INOPB(fs) - 1; lastino > firstino; lastino--)
4828 		if (inodedep_lookup(fs, lastino, 0, &inodedep) != 0)
4829 			break;
4830 	/*
4831 	 * Asynchronously push all but the last inode with dependencies.
4832 	 * Synchronously push the last inode with dependencies to ensure
4833 	 * that the inode block gets written to free up the inodedeps.
4834 	 */
4835 	for (ino = firstino; ino <= lastino; ino++) {
4836 		if (inodedep_lookup(fs, ino, 0, &inodedep) == 0)
4837 			continue;
4838 		FREE_LOCK(&lk);
4839 		if ((error = VFS_VGET(info.mp, NULL, ino, &vp)) != 0) {
4840 			softdep_error("clear_inodedeps: vget", error);
4841 			return;
4842 		}
4843 		if (ino == lastino) {
4844 			if ((error = VOP_FSYNC(vp, MNT_WAIT, 0)))
4845 				softdep_error("clear_inodedeps: fsync1", error);
4846 		} else {
4847 			if ((error = VOP_FSYNC(vp, MNT_NOWAIT, 0)))
4848 				softdep_error("clear_inodedeps: fsync2", error);
4849 			drain_output(vp, 0);
4850 		}
4851 		vput(vp);
4852 		ACQUIRE_LOCK(&lk);
4853 	}
4854 	FREE_LOCK(&lk);
4855 }
4856 
4857 /*
4858  * Function to determine if the buffer has outstanding dependencies
4859  * that will cause a roll-back if the buffer is written. If wantcount
4860  * is set, return number of dependencies, otherwise just yes or no.
4861  *
4862  * bioops callback - hold io_token
4863  */
4864 static int
4865 softdep_count_dependencies(struct buf *bp, int wantcount)
4866 {
4867 	struct worklist *wk;
4868 	struct inodedep *inodedep;
4869 	struct indirdep *indirdep;
4870 	struct allocindir *aip;
4871 	struct pagedep *pagedep;
4872 	struct diradd *dap;
4873 	int i, retval;
4874 
4875 	retval = 0;
4876 	ACQUIRE_LOCK(&lk);
4877 
4878 	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
4879 		switch (wk->wk_type) {
4880 
4881 		case D_INODEDEP:
4882 			inodedep = WK_INODEDEP(wk);
4883 			if ((inodedep->id_state & DEPCOMPLETE) == 0) {
4884 				/* bitmap allocation dependency */
4885 				retval += 1;
4886 				if (!wantcount)
4887 					goto out;
4888 			}
4889 			if (TAILQ_FIRST(&inodedep->id_inoupdt)) {
4890 				/* direct block pointer dependency */
4891 				retval += 1;
4892 				if (!wantcount)
4893 					goto out;
4894 			}
4895 			continue;
4896 
4897 		case D_INDIRDEP:
4898 			indirdep = WK_INDIRDEP(wk);
4899 
4900 			LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) {
4901 				/* indirect block pointer dependency */
4902 				retval += 1;
4903 				if (!wantcount)
4904 					goto out;
4905 			}
4906 			continue;
4907 
4908 		case D_PAGEDEP:
4909 			pagedep = WK_PAGEDEP(wk);
4910 			for (i = 0; i < DAHASHSZ; i++) {
4911 
4912 				LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
4913 					/* directory entry dependency */
4914 					retval += 1;
4915 					if (!wantcount)
4916 						goto out;
4917 				}
4918 			}
4919 			continue;
4920 
4921 		case D_BMSAFEMAP:
4922 		case D_ALLOCDIRECT:
4923 		case D_ALLOCINDIR:
4924 		case D_MKDIR:
4925 			/* never a dependency on these blocks */
4926 			continue;
4927 
4928 		default:
4929 			panic("softdep_check_for_rollback: Unexpected type %s",
4930 			    TYPENAME(wk->wk_type));
4931 			/* NOTREACHED */
4932 		}
4933 	}
4934 out:
4935 	FREE_LOCK(&lk);
4936 
4937 	return retval;
4938 }
4939 
4940 /*
4941  * Acquire exclusive access to a buffer. Requires softdep lock
4942  * to be held on entry. If waitfor is MNT_WAIT, may release/reacquire
4943  * softdep lock.
4944  *
4945  * Returns 1 if the buffer was locked, 0 if it was not locked or
4946  * if we had to block.
4947  *
4948  * NOTE!  In order to return 1 we must acquire the buffer lock prior
4949  *	  to any release of &lk.  Once we release &lk it's all over.
4950  *	  We may still have to block on the (type-stable) bp in that
4951  *	  case, but we must then unlock it and return 0.
4952  */
4953 static int
4954 getdirtybuf(struct buf **bpp, int waitfor)
4955 {
4956 	struct buf *bp;
4957 	int error;
4958 
4959 	/*
4960 	 * If the contents of *bpp is NULL the caller presumably lost a race.
4961 	 */
4962 	bp = *bpp;
4963 	if (bp == NULL)
4964 		return (0);
4965 
4966 	/*
4967 	 * Try to obtain the buffer lock without deadlocking on &lk.
4968 	 */
4969 	KKASSERT(lock_held(&lk) > 0);
4970 	error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT);
4971 	if (error == 0) {
4972 		/*
4973 		 * If the buffer is no longer dirty the OS already wrote it
4974 		 * out, return failure.
4975 		 */
4976 		if ((bp->b_flags & B_DELWRI) == 0) {
4977 			BUF_UNLOCK(bp);
4978 			return (0);
4979 		}
4980 
4981 		/*
4982 		 * Finish nominal buffer locking sequence return success.
4983 		 */
4984 		bremfree(bp);
4985 		return (1);
4986 	}
4987 
4988 	/*
4989 	 * Failure case.
4990 	 *
4991 	 * If we are not being asked to wait, return 0 immediately.
4992 	 */
4993 	if (waitfor != MNT_WAIT)
4994 		return (0);
4995 
4996 	/*
4997 	 * Once we release the softdep lock we can never return success,
4998 	 * but we still have to block on the type-stable buf for the caller
4999 	 * to be able to retry without livelocking the system.
5000 	 *
5001 	 * The caller will normally retry in this case.
5002 	 */
5003 	FREE_LOCK(&lk);
5004 	error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL);
5005 	ACQUIRE_LOCK(&lk);
5006 	if (error == 0)
5007 		BUF_UNLOCK(bp);
5008 	return (0);
5009 }
5010 
5011 /*
5012  * Wait for pending output on a vnode to complete.
5013  * Must be called with vnode locked.
5014  */
5015 static void
5016 drain_output(struct vnode *vp, int islocked)
5017 {
5018 
5019 	if (!islocked)
5020 		ACQUIRE_LOCK(&lk);
5021 	while (bio_track_active(&vp->v_track_write)) {
5022 		FREE_LOCK(&lk);
5023 		bio_track_wait(&vp->v_track_write, 0, 0);
5024 		ACQUIRE_LOCK(&lk);
5025 	}
5026 	if (!islocked)
5027 		FREE_LOCK(&lk);
5028 }
5029 
5030 /*
5031  * Called whenever a buffer that is being invalidated or reallocated
5032  * contains dependencies. This should only happen if an I/O error has
5033  * occurred. The routine is called with the buffer locked.
5034  *
5035  * bioops callback - hold io_token
5036  */
5037 static void
5038 softdep_deallocate_dependencies(struct buf *bp)
5039 {
5040 	/* nothing to do, mp lock not needed */
5041 	if ((bp->b_flags & B_ERROR) == 0)
5042 		panic("softdep_deallocate_dependencies: dangling deps");
5043 	softdep_error(bp->b_vp->v_mount->mnt_stat.f_mntfromname, bp->b_error);
5044 	panic("softdep_deallocate_dependencies: unrecovered I/O error");
5045 }
5046 
5047 /*
5048  * Function to handle asynchronous write errors in the filesystem.
5049  */
5050 void
5051 softdep_error(char *func, int error)
5052 {
5053 	/* XXX should do something better! */
5054 	kprintf("%s: got error %d while accessing filesystem\n", func, error);
5055 }
5056