xref: /dragonfly/sys/vfs/ufs/ffs_softdep.c (revision ad9f8794)
1 /*
2  * Copyright 1998, 2000 Marshall Kirk McKusick. All Rights Reserved.
3  *
4  * The soft updates code is derived from the appendix of a University
5  * of Michigan technical report (Gregory R. Ganger and Yale N. Patt,
6  * "Soft Updates: A Solution to the Metadata Update Problem in File
7  * Systems", CSE-TR-254-95, August 1995).
8  *
9  * Further information about soft updates can be obtained from:
10  *
11  *	Marshall Kirk McKusick		http://www.mckusick.com/softdep/
12  *	1614 Oxford Street		mckusick@mckusick.com
13  *	Berkeley, CA 94709-1608		+1-510-843-9542
14  *	USA
15  *
16  * Redistribution and use in source and binary forms, with or without
17  * modification, are permitted provided that the following conditions
18  * are met:
19  *
20  * 1. Redistributions of source code must retain the above copyright
21  *    notice, this list of conditions and the following disclaimer.
22  * 2. Redistributions in binary form must reproduce the above copyright
23  *    notice, this list of conditions and the following disclaimer in the
24  *    documentation and/or other materials provided with the distribution.
25  *
26  * THIS SOFTWARE IS PROVIDED BY MARSHALL KIRK MCKUSICK ``AS IS'' AND ANY
27  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
28  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
29  * DISCLAIMED.  IN NO EVENT SHALL MARSHALL KIRK MCKUSICK BE LIABLE FOR
30  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	from: @(#)ffs_softdep.c	9.59 (McKusick) 6/21/00
39  * $FreeBSD: src/sys/ufs/ffs/ffs_softdep.c,v 1.57.2.11 2002/02/05 18:46:53 dillon Exp $
40  * $DragonFly: src/sys/vfs/ufs/ffs_softdep.c,v 1.57 2008/06/28 17:59:51 dillon Exp $
41  */
42 
43 /*
44  * For now we want the safety net that the DIAGNOSTIC and DEBUG flags provide.
45  */
46 #ifndef DIAGNOSTIC
47 #define DIAGNOSTIC
48 #endif
49 #ifndef DEBUG
50 #define DEBUG
51 #endif
52 
53 #include <sys/param.h>
54 #include <sys/kernel.h>
55 #include <sys/systm.h>
56 #include <sys/buf.h>
57 #include <sys/malloc.h>
58 #include <sys/mount.h>
59 #include <sys/proc.h>
60 #include <sys/syslog.h>
61 #include <sys/vnode.h>
62 #include <sys/conf.h>
63 #include <machine/inttypes.h>
64 #include "dir.h"
65 #include "quota.h"
66 #include "inode.h"
67 #include "ufsmount.h"
68 #include "fs.h"
69 #include "softdep.h"
70 #include "ffs_extern.h"
71 #include "ufs_extern.h"
72 
73 #include <sys/buf2.h>
74 #include <sys/mplock2.h>
75 #include <sys/thread2.h>
76 
77 /*
78  * These definitions need to be adapted to the system to which
79  * this file is being ported.
80  */
81 /*
82  * malloc types defined for the softdep system.
83  */
84 MALLOC_DEFINE(M_PAGEDEP, "pagedep","File page dependencies");
85 MALLOC_DEFINE(M_INODEDEP, "inodedep","Inode dependencies");
86 MALLOC_DEFINE(M_NEWBLK, "newblk","New block allocation");
87 MALLOC_DEFINE(M_BMSAFEMAP, "bmsafemap","Block or frag allocated from cyl group map");
88 MALLOC_DEFINE(M_ALLOCDIRECT, "allocdirect","Block or frag dependency for an inode");
89 MALLOC_DEFINE(M_INDIRDEP, "indirdep","Indirect block dependencies");
90 MALLOC_DEFINE(M_ALLOCINDIR, "allocindir","Block dependency for an indirect block");
91 MALLOC_DEFINE(M_FREEFRAG, "freefrag","Previously used frag for an inode");
92 MALLOC_DEFINE(M_FREEBLKS, "freeblks","Blocks freed from an inode");
93 MALLOC_DEFINE(M_FREEFILE, "freefile","Inode deallocated");
94 MALLOC_DEFINE(M_DIRADD, "diradd","New directory entry");
95 MALLOC_DEFINE(M_MKDIR, "mkdir","New directory");
96 MALLOC_DEFINE(M_DIRREM, "dirrem","Directory entry deleted");
97 
98 #define M_SOFTDEP_FLAGS		(M_WAITOK | M_USE_RESERVE)
99 
100 #define	D_PAGEDEP	0
101 #define	D_INODEDEP	1
102 #define	D_NEWBLK	2
103 #define	D_BMSAFEMAP	3
104 #define	D_ALLOCDIRECT	4
105 #define	D_INDIRDEP	5
106 #define	D_ALLOCINDIR	6
107 #define	D_FREEFRAG	7
108 #define	D_FREEBLKS	8
109 #define	D_FREEFILE	9
110 #define	D_DIRADD	10
111 #define	D_MKDIR		11
112 #define	D_DIRREM	12
113 #define D_LAST		D_DIRREM
114 
115 /*
116  * translate from workitem type to memory type
117  * MUST match the defines above, such that memtype[D_XXX] == M_XXX
118  */
119 static struct malloc_type *memtype[] = {
120 	M_PAGEDEP,
121 	M_INODEDEP,
122 	M_NEWBLK,
123 	M_BMSAFEMAP,
124 	M_ALLOCDIRECT,
125 	M_INDIRDEP,
126 	M_ALLOCINDIR,
127 	M_FREEFRAG,
128 	M_FREEBLKS,
129 	M_FREEFILE,
130 	M_DIRADD,
131 	M_MKDIR,
132 	M_DIRREM
133 };
134 
135 #define DtoM(type) (memtype[type])
136 
137 /*
138  * Names of malloc types.
139  */
140 #define TYPENAME(type)  \
141 	((unsigned)(type) < D_LAST ? memtype[type]->ks_shortdesc : "???")
142 /*
143  * End system adaptaion definitions.
144  */
145 
146 /*
147  * Internal function prototypes.
148  */
149 static	void softdep_error(char *, int);
150 static	void drain_output(struct vnode *, int);
151 static	int getdirtybuf(struct buf **, int);
152 static	void clear_remove(struct thread *);
153 static	void clear_inodedeps(struct thread *);
154 static	int flush_pagedep_deps(struct vnode *, struct mount *,
155 	    struct diraddhd *);
156 static	int flush_inodedep_deps(struct fs *, ino_t);
157 static	int handle_written_filepage(struct pagedep *, struct buf *);
158 static  void diradd_inode_written(struct diradd *, struct inodedep *);
159 static	int handle_written_inodeblock(struct inodedep *, struct buf *);
160 static	void handle_allocdirect_partdone(struct allocdirect *);
161 static	void handle_allocindir_partdone(struct allocindir *);
162 static	void initiate_write_filepage(struct pagedep *, struct buf *);
163 static	void handle_written_mkdir(struct mkdir *, int);
164 static	void initiate_write_inodeblock(struct inodedep *, struct buf *);
165 static	void handle_workitem_freefile(struct freefile *);
166 static	void handle_workitem_remove(struct dirrem *);
167 static	struct dirrem *newdirrem(struct buf *, struct inode *,
168 	    struct inode *, int, struct dirrem **);
169 static	void free_diradd(struct diradd *);
170 static	void free_allocindir(struct allocindir *, struct inodedep *);
171 static	int indir_trunc (struct inode *, off_t, int, ufs_lbn_t, long *);
172 static	void deallocate_dependencies(struct buf *, struct inodedep *);
173 static	void free_allocdirect(struct allocdirectlst *,
174 	    struct allocdirect *, int);
175 static	int check_inode_unwritten(struct inodedep *);
176 static	int free_inodedep(struct inodedep *);
177 static	void handle_workitem_freeblocks(struct freeblks *);
178 static	void merge_inode_lists(struct inodedep *);
179 static	void setup_allocindir_phase2(struct buf *, struct inode *,
180 	    struct allocindir *);
181 static	struct allocindir *newallocindir(struct inode *, int, ufs_daddr_t,
182 	    ufs_daddr_t);
183 static	void handle_workitem_freefrag(struct freefrag *);
184 static	struct freefrag *newfreefrag(struct inode *, ufs_daddr_t, long);
185 static	void allocdirect_merge(struct allocdirectlst *,
186 	    struct allocdirect *, struct allocdirect *);
187 static	struct bmsafemap *bmsafemap_lookup(struct buf *);
188 static	int newblk_lookup(struct fs *, ufs_daddr_t, int,
189 	    struct newblk **);
190 static	int inodedep_lookup(struct fs *, ino_t, int, struct inodedep **);
191 static	int pagedep_lookup(struct inode *, ufs_lbn_t, int,
192 	    struct pagedep **);
193 static	void pause_timer(void *);
194 static	int request_cleanup(int, int);
195 static	int process_worklist_item(struct mount *, int);
196 static	void add_to_worklist(struct worklist *);
197 
198 /*
199  * Exported softdep operations.
200  */
201 static	void softdep_disk_io_initiation(struct buf *);
202 static	void softdep_disk_write_complete(struct buf *);
203 static	void softdep_deallocate_dependencies(struct buf *);
204 static	int softdep_fsync(struct vnode *);
205 static	int softdep_process_worklist(struct mount *);
206 static	void softdep_move_dependencies(struct buf *, struct buf *);
207 static	int softdep_count_dependencies(struct buf *bp, int);
208 static  int softdep_checkread(struct buf *bp);
209 static  int softdep_checkwrite(struct buf *bp);
210 
211 static struct bio_ops softdep_bioops = {
212 	.io_start = softdep_disk_io_initiation,
213 	.io_complete = softdep_disk_write_complete,
214 	.io_deallocate = softdep_deallocate_dependencies,
215 	.io_fsync = softdep_fsync,
216 	.io_sync = softdep_process_worklist,
217 	.io_movedeps = softdep_move_dependencies,
218 	.io_countdeps = softdep_count_dependencies,
219 	.io_checkread = softdep_checkread,
220 	.io_checkwrite = softdep_checkwrite
221 };
222 
223 /*
224  * Locking primitives.
225  *
226  * For a uniprocessor, all we need to do is protect against disk
227  * interrupts. For a multiprocessor, this lock would have to be
228  * a mutex. A single mutex is used throughout this file, though
229  * finer grain locking could be used if contention warranted it.
230  *
231  * For a multiprocessor, the sleep call would accept a lock and
232  * release it after the sleep processing was complete. In a uniprocessor
233  * implementation there is no such interlock, so we simple mark
234  * the places where it needs to be done with the `interlocked' form
235  * of the lock calls. Since the uniprocessor sleep already interlocks
236  * the spl, there is nothing that really needs to be done.
237  */
238 #ifndef /* NOT */ DEBUG
239 static struct lockit {
240 } lk = { 0 };
241 #define ACQUIRE_LOCK(lk)		crit_enter_id("softupdates");
242 #define FREE_LOCK(lk)			crit_exit_id("softupdates");
243 
244 #else /* DEBUG */
245 #define NOHOLDER	((struct thread *)-1)
246 #define SPECIAL_FLAG	((struct thread *)-2)
247 static struct lockit {
248 	int	lkt_spl;
249 	struct thread *lkt_held;
250 } lk = { 0, NOHOLDER };
251 static int lockcnt;
252 
253 static	void acquire_lock(struct lockit *);
254 static	void free_lock(struct lockit *);
255 void	softdep_panic(char *);
256 
257 #define ACQUIRE_LOCK(lk)		acquire_lock(lk)
258 #define FREE_LOCK(lk)			free_lock(lk)
259 
260 static void
261 acquire_lock(struct lockit *lk)
262 {
263 	thread_t holder;
264 
265 	if (lk->lkt_held != NOHOLDER) {
266 		holder = lk->lkt_held;
267 		FREE_LOCK(lk);
268 		if (holder == curthread)
269 			panic("softdep_lock: locking against myself");
270 		else
271 			panic("softdep_lock: lock held by %p", holder);
272 	}
273 	crit_enter_id("softupdates");
274 	lk->lkt_held = curthread;
275 	lockcnt++;
276 }
277 
278 static void
279 free_lock(struct lockit *lk)
280 {
281 
282 	if (lk->lkt_held == NOHOLDER)
283 		panic("softdep_unlock: lock not held");
284 	lk->lkt_held = NOHOLDER;
285 	crit_exit_id("softupdates");
286 }
287 
288 /*
289  * Function to release soft updates lock and panic.
290  */
291 void
292 softdep_panic(char *msg)
293 {
294 
295 	if (lk.lkt_held != NOHOLDER)
296 		FREE_LOCK(&lk);
297 	panic(msg);
298 }
299 #endif /* DEBUG */
300 
301 static	int interlocked_sleep(struct lockit *, int, void *, int,
302 	    const char *, int);
303 
304 /*
305  * When going to sleep, we must save our SPL so that it does
306  * not get lost if some other process uses the lock while we
307  * are sleeping. We restore it after we have slept. This routine
308  * wraps the interlocking with functions that sleep. The list
309  * below enumerates the available set of operations.
310  */
311 #define	UNKNOWN		0
312 #define	SLEEP		1
313 #define	LOCKBUF		2
314 
315 static int
316 interlocked_sleep(struct lockit *lk, int op, void *ident, int flags,
317 		  const char *wmesg, int timo)
318 {
319 	thread_t holder;
320 	int s, retval;
321 
322 	s = lk->lkt_spl;
323 #	ifdef DEBUG
324 	if (lk->lkt_held == NOHOLDER)
325 		panic("interlocked_sleep: lock not held");
326 	lk->lkt_held = NOHOLDER;
327 #	endif /* DEBUG */
328 	switch (op) {
329 	case SLEEP:
330 		retval = tsleep(ident, flags, wmesg, timo);
331 		break;
332 	case LOCKBUF:
333 		retval = BUF_LOCK((struct buf *)ident, flags);
334 		break;
335 	default:
336 		panic("interlocked_sleep: unknown operation");
337 	}
338 #	ifdef DEBUG
339 	if (lk->lkt_held != NOHOLDER) {
340 		holder = lk->lkt_held;
341 		FREE_LOCK(lk);
342 		if (holder == curthread)
343 			panic("interlocked_sleep: locking against self");
344 		else
345 			panic("interlocked_sleep: lock held by %p", holder);
346 	}
347 	lk->lkt_held = curthread;
348 	lockcnt++;
349 #	endif /* DEBUG */
350 	lk->lkt_spl = s;
351 	return (retval);
352 }
353 
354 /*
355  * Place holder for real semaphores.
356  */
357 struct sema {
358 	int	value;
359 	thread_t holder;
360 	char	*name;
361 	int	prio;
362 	int	timo;
363 };
364 static	void sema_init(struct sema *, char *, int, int);
365 static	int sema_get(struct sema *, struct lockit *);
366 static	void sema_release(struct sema *);
367 
368 static void
369 sema_init(struct sema *semap, char *name, int prio, int timo)
370 {
371 
372 	semap->holder = NOHOLDER;
373 	semap->value = 0;
374 	semap->name = name;
375 	semap->prio = prio;
376 	semap->timo = timo;
377 }
378 
379 static int
380 sema_get(struct sema *semap, struct lockit *interlock)
381 {
382 
383 	if (semap->value++ > 0) {
384 		if (interlock != NULL) {
385 			interlocked_sleep(interlock, SLEEP, (caddr_t)semap,
386 			    semap->prio, semap->name, semap->timo);
387 			FREE_LOCK(interlock);
388 		} else {
389 			tsleep((caddr_t)semap, semap->prio, semap->name,
390 			    semap->timo);
391 		}
392 		return (0);
393 	}
394 	semap->holder = curthread;
395 	if (interlock != NULL)
396 		FREE_LOCK(interlock);
397 	return (1);
398 }
399 
400 static void
401 sema_release(struct sema *semap)
402 {
403 
404 	if (semap->value <= 0 || semap->holder != curthread) {
405 		if (lk.lkt_held != NOHOLDER)
406 			FREE_LOCK(&lk);
407 		panic("sema_release: not held");
408 	}
409 	if (--semap->value > 0) {
410 		semap->value = 0;
411 		wakeup(semap);
412 	}
413 	semap->holder = NOHOLDER;
414 }
415 
416 /*
417  * Worklist queue management.
418  * These routines require that the lock be held.
419  */
420 #ifndef /* NOT */ DEBUG
421 #define WORKLIST_INSERT(head, item) do {	\
422 	(item)->wk_state |= ONWORKLIST;		\
423 	LIST_INSERT_HEAD(head, item, wk_list);	\
424 } while (0)
425 
426 #define WORKLIST_INSERT_BP(bp, item) do {	\
427 	(item)->wk_state |= ONWORKLIST;		\
428 	(bp)->b_ops = &softdep_bioops;		\
429 	LIST_INSERT_HEAD(&(bp)->b_dep, item, wk_list);	\
430 } while (0)
431 
432 #define WORKLIST_REMOVE(item) do {		\
433 	(item)->wk_state &= ~ONWORKLIST;	\
434 	LIST_REMOVE(item, wk_list);		\
435 } while (0)
436 
437 #define WORKITEM_FREE(item, type) FREE(item, DtoM(type))
438 
439 #else /* DEBUG */
440 static	void worklist_insert(struct workhead *, struct worklist *);
441 static	void worklist_remove(struct worklist *);
442 static	void workitem_free(struct worklist *, int);
443 
444 #define WORKLIST_INSERT_BP(bp, item) do {	\
445 	(bp)->b_ops = &softdep_bioops;		\
446 	worklist_insert(&(bp)->b_dep, item);	\
447 } while (0)
448 
449 #define WORKLIST_INSERT(head, item) worklist_insert(head, item)
450 #define WORKLIST_REMOVE(item) worklist_remove(item)
451 #define WORKITEM_FREE(item, type) workitem_free((struct worklist *)item, type)
452 
453 static void
454 worklist_insert(struct workhead *head, struct worklist *item)
455 {
456 
457 	if (lk.lkt_held == NOHOLDER)
458 		panic("worklist_insert: lock not held");
459 	if (item->wk_state & ONWORKLIST) {
460 		FREE_LOCK(&lk);
461 		panic("worklist_insert: already on list");
462 	}
463 	item->wk_state |= ONWORKLIST;
464 	LIST_INSERT_HEAD(head, item, wk_list);
465 }
466 
467 static void
468 worklist_remove(struct worklist *item)
469 {
470 
471 	if (lk.lkt_held == NOHOLDER)
472 		panic("worklist_remove: lock not held");
473 	if ((item->wk_state & ONWORKLIST) == 0) {
474 		FREE_LOCK(&lk);
475 		panic("worklist_remove: not on list");
476 	}
477 	item->wk_state &= ~ONWORKLIST;
478 	LIST_REMOVE(item, wk_list);
479 }
480 
481 static void
482 workitem_free(struct worklist *item, int type)
483 {
484 
485 	if (item->wk_state & ONWORKLIST) {
486 		if (lk.lkt_held != NOHOLDER)
487 			FREE_LOCK(&lk);
488 		panic("workitem_free: still on list");
489 	}
490 	if (item->wk_type != type) {
491 		if (lk.lkt_held != NOHOLDER)
492 			FREE_LOCK(&lk);
493 		panic("workitem_free: type mismatch");
494 	}
495 	FREE(item, DtoM(type));
496 }
497 #endif /* DEBUG */
498 
499 /*
500  * Workitem queue management
501  */
502 static struct workhead softdep_workitem_pending;
503 static int num_on_worklist;	/* number of worklist items to be processed */
504 static int softdep_worklist_busy; /* 1 => trying to do unmount */
505 static int softdep_worklist_req; /* serialized waiters */
506 static int max_softdeps;	/* maximum number of structs before slowdown */
507 static int tickdelay = 2;	/* number of ticks to pause during slowdown */
508 static int *stat_countp;	/* statistic to count in proc_waiting timeout */
509 static int proc_waiting;	/* tracks whether we have a timeout posted */
510 static struct callout handle; /* handle on posted proc_waiting timeout */
511 static struct thread *filesys_syncer; /* proc of filesystem syncer process */
512 static int req_clear_inodedeps;	/* syncer process flush some inodedeps */
513 #define FLUSH_INODES	1
514 static int req_clear_remove;	/* syncer process flush some freeblks */
515 #define FLUSH_REMOVE	2
516 /*
517  * runtime statistics
518  */
519 static int stat_worklist_push;	/* number of worklist cleanups */
520 static int stat_blk_limit_push;	/* number of times block limit neared */
521 static int stat_ino_limit_push;	/* number of times inode limit neared */
522 static int stat_blk_limit_hit;	/* number of times block slowdown imposed */
523 static int stat_ino_limit_hit;	/* number of times inode slowdown imposed */
524 static int stat_sync_limit_hit;	/* number of synchronous slowdowns imposed */
525 static int stat_indir_blk_ptrs;	/* bufs redirtied as indir ptrs not written */
526 static int stat_inode_bitmap;	/* bufs redirtied as inode bitmap not written */
527 static int stat_direct_blk_ptrs;/* bufs redirtied as direct ptrs not written */
528 static int stat_dir_entry;	/* bufs redirtied as dir entry cannot write */
529 #ifdef DEBUG
530 #include <vm/vm.h>
531 #include <sys/sysctl.h>
532 SYSCTL_INT(_debug, OID_AUTO, max_softdeps, CTLFLAG_RW, &max_softdeps, 0,
533     "Maximum soft dependencies before slowdown occurs");
534 SYSCTL_INT(_debug, OID_AUTO, tickdelay, CTLFLAG_RW, &tickdelay, 0,
535     "Ticks to delay before allocating during slowdown");
536 SYSCTL_INT(_debug, OID_AUTO, worklist_push, CTLFLAG_RW, &stat_worklist_push, 0,
537     "Number of worklist cleanups");
538 SYSCTL_INT(_debug, OID_AUTO, blk_limit_push, CTLFLAG_RW, &stat_blk_limit_push, 0,
539     "Number of times block limit neared");
540 SYSCTL_INT(_debug, OID_AUTO, ino_limit_push, CTLFLAG_RW, &stat_ino_limit_push, 0,
541     "Number of times inode limit neared");
542 SYSCTL_INT(_debug, OID_AUTO, blk_limit_hit, CTLFLAG_RW, &stat_blk_limit_hit, 0,
543     "Number of times block slowdown imposed");
544 SYSCTL_INT(_debug, OID_AUTO, ino_limit_hit, CTLFLAG_RW, &stat_ino_limit_hit, 0,
545     "Number of times inode slowdown imposed ");
546 SYSCTL_INT(_debug, OID_AUTO, sync_limit_hit, CTLFLAG_RW, &stat_sync_limit_hit, 0,
547     "Number of synchronous slowdowns imposed");
548 SYSCTL_INT(_debug, OID_AUTO, indir_blk_ptrs, CTLFLAG_RW, &stat_indir_blk_ptrs, 0,
549     "Bufs redirtied as indir ptrs not written");
550 SYSCTL_INT(_debug, OID_AUTO, inode_bitmap, CTLFLAG_RW, &stat_inode_bitmap, 0,
551     "Bufs redirtied as inode bitmap not written");
552 SYSCTL_INT(_debug, OID_AUTO, direct_blk_ptrs, CTLFLAG_RW, &stat_direct_blk_ptrs, 0,
553     "Bufs redirtied as direct ptrs not written");
554 SYSCTL_INT(_debug, OID_AUTO, dir_entry, CTLFLAG_RW, &stat_dir_entry, 0,
555     "Bufs redirtied as dir entry cannot write");
556 #endif /* DEBUG */
557 
558 /*
559  * Add an item to the end of the work queue.
560  * This routine requires that the lock be held.
561  * This is the only routine that adds items to the list.
562  * The following routine is the only one that removes items
563  * and does so in order from first to last.
564  */
565 static void
566 add_to_worklist(struct worklist *wk)
567 {
568 	static struct worklist *worklist_tail;
569 
570 	if (wk->wk_state & ONWORKLIST) {
571 		if (lk.lkt_held != NOHOLDER)
572 			FREE_LOCK(&lk);
573 		panic("add_to_worklist: already on list");
574 	}
575 	wk->wk_state |= ONWORKLIST;
576 	if (LIST_FIRST(&softdep_workitem_pending) == NULL)
577 		LIST_INSERT_HEAD(&softdep_workitem_pending, wk, wk_list);
578 	else
579 		LIST_INSERT_AFTER(worklist_tail, wk, wk_list);
580 	worklist_tail = wk;
581 	num_on_worklist += 1;
582 }
583 
584 /*
585  * Process that runs once per second to handle items in the background queue.
586  *
587  * Note that we ensure that everything is done in the order in which they
588  * appear in the queue. The code below depends on this property to ensure
589  * that blocks of a file are freed before the inode itself is freed. This
590  * ordering ensures that no new <vfsid, inum, lbn> triples will be generated
591  * until all the old ones have been purged from the dependency lists.
592  *
593  * bioops callback - hold io_token
594  */
595 static int
596 softdep_process_worklist(struct mount *matchmnt)
597 {
598 	thread_t td = curthread;
599 	int matchcnt, loopcount;
600 	long starttime;
601 
602 	get_mplock();
603 
604 	/*
605 	 * Record the process identifier of our caller so that we can give
606 	 * this process preferential treatment in request_cleanup below.
607 	 */
608 	filesys_syncer = td;
609 	matchcnt = 0;
610 
611 	/*
612 	 * There is no danger of having multiple processes run this
613 	 * code, but we have to single-thread it when softdep_flushfiles()
614 	 * is in operation to get an accurate count of the number of items
615 	 * related to its mount point that are in the list.
616 	 */
617 	if (matchmnt == NULL) {
618 		if (softdep_worklist_busy < 0) {
619 			matchcnt = -1;
620 			goto done;
621 		}
622 		softdep_worklist_busy += 1;
623 	}
624 
625 	/*
626 	 * If requested, try removing inode or removal dependencies.
627 	 */
628 	if (req_clear_inodedeps) {
629 		clear_inodedeps(td);
630 		req_clear_inodedeps -= 1;
631 		wakeup_one(&proc_waiting);
632 	}
633 	if (req_clear_remove) {
634 		clear_remove(td);
635 		req_clear_remove -= 1;
636 		wakeup_one(&proc_waiting);
637 	}
638 	loopcount = 1;
639 	starttime = time_second;
640 	while (num_on_worklist > 0) {
641 		matchcnt += process_worklist_item(matchmnt, 0);
642 
643 		/*
644 		 * If a umount operation wants to run the worklist
645 		 * accurately, abort.
646 		 */
647 		if (softdep_worklist_req && matchmnt == NULL) {
648 			matchcnt = -1;
649 			break;
650 		}
651 
652 		/*
653 		 * If requested, try removing inode or removal dependencies.
654 		 */
655 		if (req_clear_inodedeps) {
656 			clear_inodedeps(td);
657 			req_clear_inodedeps -= 1;
658 			wakeup_one(&proc_waiting);
659 		}
660 		if (req_clear_remove) {
661 			clear_remove(td);
662 			req_clear_remove -= 1;
663 			wakeup_one(&proc_waiting);
664 		}
665 		/*
666 		 * We do not generally want to stop for buffer space, but if
667 		 * we are really being a buffer hog, we will stop and wait.
668 		 */
669 		if (loopcount++ % 128 == 0)
670 			bwillinode(1);
671 		/*
672 		 * Never allow processing to run for more than one
673 		 * second. Otherwise the other syncer tasks may get
674 		 * excessively backlogged.
675 		 */
676 		if (starttime != time_second && matchmnt == NULL) {
677 			matchcnt = -1;
678 			break;
679 		}
680 	}
681 	if (matchmnt == NULL) {
682 		--softdep_worklist_busy;
683 		if (softdep_worklist_req && softdep_worklist_busy == 0)
684 			wakeup(&softdep_worklist_req);
685 	}
686 done:
687 	rel_mplock();
688 	return (matchcnt);
689 }
690 
691 /*
692  * Process one item on the worklist.
693  */
694 static int
695 process_worklist_item(struct mount *matchmnt, int flags)
696 {
697 	struct worklist *wk;
698 	struct dirrem *dirrem;
699 	struct fs *matchfs;
700 	struct vnode *vp;
701 	int matchcnt = 0;
702 
703 	matchfs = NULL;
704 	if (matchmnt != NULL)
705 		matchfs = VFSTOUFS(matchmnt)->um_fs;
706 	ACQUIRE_LOCK(&lk);
707 	/*
708 	 * Normally we just process each item on the worklist in order.
709 	 * However, if we are in a situation where we cannot lock any
710 	 * inodes, we have to skip over any dirrem requests whose
711 	 * vnodes are resident and locked.
712 	 */
713 	LIST_FOREACH(wk, &softdep_workitem_pending, wk_list) {
714 		if ((flags & LK_NOWAIT) == 0 || wk->wk_type != D_DIRREM)
715 			break;
716 		dirrem = WK_DIRREM(wk);
717 		vp = ufs_ihashlookup(VFSTOUFS(dirrem->dm_mnt)->um_dev,
718 		    dirrem->dm_oldinum);
719 		if (vp == NULL || !vn_islocked(vp))
720 			break;
721 	}
722 	if (wk == 0) {
723 		FREE_LOCK(&lk);
724 		return (0);
725 	}
726 	WORKLIST_REMOVE(wk);
727 	num_on_worklist -= 1;
728 	FREE_LOCK(&lk);
729 	switch (wk->wk_type) {
730 
731 	case D_DIRREM:
732 		/* removal of a directory entry */
733 		if (WK_DIRREM(wk)->dm_mnt == matchmnt)
734 			matchcnt += 1;
735 		handle_workitem_remove(WK_DIRREM(wk));
736 		break;
737 
738 	case D_FREEBLKS:
739 		/* releasing blocks and/or fragments from a file */
740 		if (WK_FREEBLKS(wk)->fb_fs == matchfs)
741 			matchcnt += 1;
742 		handle_workitem_freeblocks(WK_FREEBLKS(wk));
743 		break;
744 
745 	case D_FREEFRAG:
746 		/* releasing a fragment when replaced as a file grows */
747 		if (WK_FREEFRAG(wk)->ff_fs == matchfs)
748 			matchcnt += 1;
749 		handle_workitem_freefrag(WK_FREEFRAG(wk));
750 		break;
751 
752 	case D_FREEFILE:
753 		/* releasing an inode when its link count drops to 0 */
754 		if (WK_FREEFILE(wk)->fx_fs == matchfs)
755 			matchcnt += 1;
756 		handle_workitem_freefile(WK_FREEFILE(wk));
757 		break;
758 
759 	default:
760 		panic("%s_process_worklist: Unknown type %s",
761 		    "softdep", TYPENAME(wk->wk_type));
762 		/* NOTREACHED */
763 	}
764 	return (matchcnt);
765 }
766 
767 /*
768  * Move dependencies from one buffer to another.
769  *
770  * bioops callback - hold io_token
771  */
772 static void
773 softdep_move_dependencies(struct buf *oldbp, struct buf *newbp)
774 {
775 	struct worklist *wk, *wktail;
776 
777 	get_mplock();
778 	if (LIST_FIRST(&newbp->b_dep) != NULL)
779 		panic("softdep_move_dependencies: need merge code");
780 	wktail = NULL;
781 	ACQUIRE_LOCK(&lk);
782 	while ((wk = LIST_FIRST(&oldbp->b_dep)) != NULL) {
783 		LIST_REMOVE(wk, wk_list);
784 		if (wktail == NULL)
785 			LIST_INSERT_HEAD(&newbp->b_dep, wk, wk_list);
786 		else
787 			LIST_INSERT_AFTER(wktail, wk, wk_list);
788 		wktail = wk;
789 		newbp->b_ops = &softdep_bioops;
790 	}
791 	FREE_LOCK(&lk);
792 	rel_mplock();
793 }
794 
795 /*
796  * Purge the work list of all items associated with a particular mount point.
797  */
798 int
799 softdep_flushfiles(struct mount *oldmnt, int flags)
800 {
801 	struct vnode *devvp;
802 	int error, loopcnt;
803 
804 	/*
805 	 * Await our turn to clear out the queue, then serialize access.
806 	 */
807 	while (softdep_worklist_busy != 0) {
808 		softdep_worklist_req += 1;
809 		tsleep(&softdep_worklist_req, 0, "softflush", 0);
810 		softdep_worklist_req -= 1;
811 	}
812 	softdep_worklist_busy = -1;
813 
814 	if ((error = ffs_flushfiles(oldmnt, flags)) != 0) {
815 		softdep_worklist_busy = 0;
816 		if (softdep_worklist_req)
817 			wakeup(&softdep_worklist_req);
818 		return (error);
819 	}
820 	/*
821 	 * Alternately flush the block device associated with the mount
822 	 * point and process any dependencies that the flushing
823 	 * creates. In theory, this loop can happen at most twice,
824 	 * but we give it a few extra just to be sure.
825 	 */
826 	devvp = VFSTOUFS(oldmnt)->um_devvp;
827 	for (loopcnt = 10; loopcnt > 0; ) {
828 		if (softdep_process_worklist(oldmnt) == 0) {
829 			loopcnt--;
830 			/*
831 			 * Do another flush in case any vnodes were brought in
832 			 * as part of the cleanup operations.
833 			 */
834 			if ((error = ffs_flushfiles(oldmnt, flags)) != 0)
835 				break;
836 			/*
837 			 * If we still found nothing to do, we are really done.
838 			 */
839 			if (softdep_process_worklist(oldmnt) == 0)
840 				break;
841 		}
842 		vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
843 		error = VOP_FSYNC(devvp, MNT_WAIT, 0);
844 		vn_unlock(devvp);
845 		if (error)
846 			break;
847 	}
848 	softdep_worklist_busy = 0;
849 	if (softdep_worklist_req)
850 		wakeup(&softdep_worklist_req);
851 
852 	/*
853 	 * If we are unmounting then it is an error to fail. If we
854 	 * are simply trying to downgrade to read-only, then filesystem
855 	 * activity can keep us busy forever, so we just fail with EBUSY.
856 	 */
857 	if (loopcnt == 0) {
858 		if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT)
859 			panic("softdep_flushfiles: looping");
860 		error = EBUSY;
861 	}
862 	return (error);
863 }
864 
865 /*
866  * Structure hashing.
867  *
868  * There are three types of structures that can be looked up:
869  *	1) pagedep structures identified by mount point, inode number,
870  *	   and logical block.
871  *	2) inodedep structures identified by mount point and inode number.
872  *	3) newblk structures identified by mount point and
873  *	   physical block number.
874  *
875  * The "pagedep" and "inodedep" dependency structures are hashed
876  * separately from the file blocks and inodes to which they correspond.
877  * This separation helps when the in-memory copy of an inode or
878  * file block must be replaced. It also obviates the need to access
879  * an inode or file page when simply updating (or de-allocating)
880  * dependency structures. Lookup of newblk structures is needed to
881  * find newly allocated blocks when trying to associate them with
882  * their allocdirect or allocindir structure.
883  *
884  * The lookup routines optionally create and hash a new instance when
885  * an existing entry is not found.
886  */
887 #define DEPALLOC	0x0001	/* allocate structure if lookup fails */
888 #define NODELAY		0x0002	/* cannot do background work */
889 
890 /*
891  * Structures and routines associated with pagedep caching.
892  */
893 LIST_HEAD(pagedep_hashhead, pagedep) *pagedep_hashtbl;
894 u_long	pagedep_hash;		/* size of hash table - 1 */
895 #define	PAGEDEP_HASH(mp, inum, lbn) \
896 	(&pagedep_hashtbl[((((register_t)(mp)) >> 13) + (inum) + (lbn)) & \
897 	    pagedep_hash])
898 static struct sema pagedep_in_progress;
899 
900 /*
901  * Helper routine for pagedep_lookup()
902  */
903 static __inline
904 struct pagedep *
905 pagedep_find(struct pagedep_hashhead *pagedephd, ino_t ino, ufs_lbn_t lbn,
906 	     struct mount *mp)
907 {
908 	struct pagedep *pagedep;
909 
910 	LIST_FOREACH(pagedep, pagedephd, pd_hash) {
911 		if (ino == pagedep->pd_ino &&
912 		    lbn == pagedep->pd_lbn &&
913 		    mp == pagedep->pd_mnt) {
914 			return (pagedep);
915 		}
916 	}
917 	return(NULL);
918 }
919 
920 /*
921  * Look up a pagedep. Return 1 if found, 0 if not found.
922  * If not found, allocate if DEPALLOC flag is passed.
923  * Found or allocated entry is returned in pagedeppp.
924  * This routine must be called with splbio interrupts blocked.
925  */
926 static int
927 pagedep_lookup(struct inode *ip, ufs_lbn_t lbn, int flags,
928 	       struct pagedep **pagedeppp)
929 {
930 	struct pagedep *pagedep;
931 	struct pagedep_hashhead *pagedephd;
932 	struct mount *mp;
933 	int i;
934 
935 #ifdef DEBUG
936 	if (lk.lkt_held == NOHOLDER)
937 		panic("pagedep_lookup: lock not held");
938 #endif
939 	mp = ITOV(ip)->v_mount;
940 	pagedephd = PAGEDEP_HASH(mp, ip->i_number, lbn);
941 top:
942 	*pagedeppp = pagedep_find(pagedephd, ip->i_number, lbn, mp);
943 	if (*pagedeppp)
944 		return(1);
945 	if ((flags & DEPALLOC) == 0)
946 		return (0);
947 	if (sema_get(&pagedep_in_progress, &lk) == 0) {
948 		ACQUIRE_LOCK(&lk);
949 		goto top;
950 	}
951 	MALLOC(pagedep, struct pagedep *, sizeof(struct pagedep), M_PAGEDEP,
952 		M_SOFTDEP_FLAGS | M_ZERO);
953 
954 	if (pagedep_find(pagedephd, ip->i_number, lbn, mp)) {
955 		kprintf("pagedep_lookup: blocking race avoided\n");
956 		ACQUIRE_LOCK(&lk);
957 		sema_release(&pagedep_in_progress);
958 		kfree(pagedep, M_PAGEDEP);
959 		goto top;
960 	}
961 
962 	pagedep->pd_list.wk_type = D_PAGEDEP;
963 	pagedep->pd_mnt = mp;
964 	pagedep->pd_ino = ip->i_number;
965 	pagedep->pd_lbn = lbn;
966 	LIST_INIT(&pagedep->pd_dirremhd);
967 	LIST_INIT(&pagedep->pd_pendinghd);
968 	for (i = 0; i < DAHASHSZ; i++)
969 		LIST_INIT(&pagedep->pd_diraddhd[i]);
970 	ACQUIRE_LOCK(&lk);
971 	LIST_INSERT_HEAD(pagedephd, pagedep, pd_hash);
972 	sema_release(&pagedep_in_progress);
973 	*pagedeppp = pagedep;
974 	return (0);
975 }
976 
977 /*
978  * Structures and routines associated with inodedep caching.
979  */
980 LIST_HEAD(inodedep_hashhead, inodedep) *inodedep_hashtbl;
981 static u_long	inodedep_hash;	/* size of hash table - 1 */
982 static long	num_inodedep;	/* number of inodedep allocated */
983 #define	INODEDEP_HASH(fs, inum) \
984       (&inodedep_hashtbl[((((register_t)(fs)) >> 13) + (inum)) & inodedep_hash])
985 static struct sema inodedep_in_progress;
986 
987 /*
988  * Helper routine for inodedep_lookup()
989  */
990 static __inline
991 struct inodedep *
992 inodedep_find(struct inodedep_hashhead *inodedephd, struct fs *fs, ino_t inum)
993 {
994 	struct inodedep *inodedep;
995 
996 	LIST_FOREACH(inodedep, inodedephd, id_hash) {
997 		if (inum == inodedep->id_ino && fs == inodedep->id_fs)
998 			return(inodedep);
999 	}
1000 	return (NULL);
1001 }
1002 
1003 /*
1004  * Look up a inodedep. Return 1 if found, 0 if not found.
1005  * If not found, allocate if DEPALLOC flag is passed.
1006  * Found or allocated entry is returned in inodedeppp.
1007  * This routine must be called with splbio interrupts blocked.
1008  */
1009 static int
1010 inodedep_lookup(struct fs *fs, ino_t inum, int flags,
1011 	        struct inodedep **inodedeppp)
1012 {
1013 	struct inodedep *inodedep;
1014 	struct inodedep_hashhead *inodedephd;
1015 	int firsttry;
1016 
1017 #ifdef DEBUG
1018 	if (lk.lkt_held == NOHOLDER)
1019 		panic("inodedep_lookup: lock not held");
1020 #endif
1021 	firsttry = 1;
1022 	inodedephd = INODEDEP_HASH(fs, inum);
1023 top:
1024 	*inodedeppp = inodedep_find(inodedephd, fs, inum);
1025 	if (*inodedeppp)
1026 		return (1);
1027 	if ((flags & DEPALLOC) == 0)
1028 		return (0);
1029 	/*
1030 	 * If we are over our limit, try to improve the situation.
1031 	 */
1032 	if (num_inodedep > max_softdeps && firsttry &&
1033 	    speedup_syncer() == 0 && (flags & NODELAY) == 0 &&
1034 	    request_cleanup(FLUSH_INODES, 1)) {
1035 		firsttry = 0;
1036 		goto top;
1037 	}
1038 	if (sema_get(&inodedep_in_progress, &lk) == 0) {
1039 		ACQUIRE_LOCK(&lk);
1040 		goto top;
1041 	}
1042 	MALLOC(inodedep, struct inodedep *, sizeof(struct inodedep),
1043 		M_INODEDEP, M_SOFTDEP_FLAGS | M_ZERO);
1044 	if (inodedep_find(inodedephd, fs, inum)) {
1045 		kprintf("inodedep_lookup: blocking race avoided\n");
1046 		ACQUIRE_LOCK(&lk);
1047 		sema_release(&inodedep_in_progress);
1048 		kfree(inodedep, M_INODEDEP);
1049 		goto top;
1050 	}
1051 	inodedep->id_list.wk_type = D_INODEDEP;
1052 	inodedep->id_fs = fs;
1053 	inodedep->id_ino = inum;
1054 	inodedep->id_state = ALLCOMPLETE;
1055 	inodedep->id_nlinkdelta = 0;
1056 	inodedep->id_savedino = NULL;
1057 	inodedep->id_savedsize = -1;
1058 	inodedep->id_buf = NULL;
1059 	LIST_INIT(&inodedep->id_pendinghd);
1060 	LIST_INIT(&inodedep->id_inowait);
1061 	LIST_INIT(&inodedep->id_bufwait);
1062 	TAILQ_INIT(&inodedep->id_inoupdt);
1063 	TAILQ_INIT(&inodedep->id_newinoupdt);
1064 	ACQUIRE_LOCK(&lk);
1065 	num_inodedep += 1;
1066 	LIST_INSERT_HEAD(inodedephd, inodedep, id_hash);
1067 	sema_release(&inodedep_in_progress);
1068 	*inodedeppp = inodedep;
1069 	return (0);
1070 }
1071 
1072 /*
1073  * Structures and routines associated with newblk caching.
1074  */
1075 LIST_HEAD(newblk_hashhead, newblk) *newblk_hashtbl;
1076 u_long	newblk_hash;		/* size of hash table - 1 */
1077 #define	NEWBLK_HASH(fs, inum) \
1078 	(&newblk_hashtbl[((((register_t)(fs)) >> 13) + (inum)) & newblk_hash])
1079 static struct sema newblk_in_progress;
1080 
1081 /*
1082  * Helper routine for newblk_lookup()
1083  */
1084 static __inline
1085 struct newblk *
1086 newblk_find(struct newblk_hashhead *newblkhd, struct fs *fs,
1087 	    ufs_daddr_t newblkno)
1088 {
1089 	struct newblk *newblk;
1090 
1091 	LIST_FOREACH(newblk, newblkhd, nb_hash) {
1092 		if (newblkno == newblk->nb_newblkno && fs == newblk->nb_fs)
1093 			return (newblk);
1094 	}
1095 	return(NULL);
1096 }
1097 
1098 /*
1099  * Look up a newblk. Return 1 if found, 0 if not found.
1100  * If not found, allocate if DEPALLOC flag is passed.
1101  * Found or allocated entry is returned in newblkpp.
1102  */
1103 static int
1104 newblk_lookup(struct fs *fs, ufs_daddr_t newblkno, int flags,
1105 	      struct newblk **newblkpp)
1106 {
1107 	struct newblk *newblk;
1108 	struct newblk_hashhead *newblkhd;
1109 
1110 	newblkhd = NEWBLK_HASH(fs, newblkno);
1111 top:
1112 	*newblkpp = newblk_find(newblkhd, fs, newblkno);
1113 	if (*newblkpp)
1114 		return(1);
1115 	if ((flags & DEPALLOC) == 0)
1116 		return (0);
1117 	if (sema_get(&newblk_in_progress, 0) == 0)
1118 		goto top;
1119 	MALLOC(newblk, struct newblk *, sizeof(struct newblk),
1120 		M_NEWBLK, M_SOFTDEP_FLAGS | M_ZERO);
1121 
1122 	if (newblk_find(newblkhd, fs, newblkno)) {
1123 		kprintf("newblk_lookup: blocking race avoided\n");
1124 		sema_release(&pagedep_in_progress);
1125 		kfree(newblk, M_NEWBLK);
1126 		goto top;
1127 	}
1128 	newblk->nb_state = 0;
1129 	newblk->nb_fs = fs;
1130 	newblk->nb_newblkno = newblkno;
1131 	LIST_INSERT_HEAD(newblkhd, newblk, nb_hash);
1132 	sema_release(&newblk_in_progress);
1133 	*newblkpp = newblk;
1134 	return (0);
1135 }
1136 
1137 /*
1138  * Executed during filesystem system initialization before
1139  * mounting any filesystems.
1140  */
1141 void
1142 softdep_initialize(void)
1143 {
1144 	callout_init(&handle);
1145 
1146 	LIST_INIT(&mkdirlisthd);
1147 	LIST_INIT(&softdep_workitem_pending);
1148 	max_softdeps = min(desiredvnodes * 8,
1149 		M_INODEDEP->ks_limit / (2 * sizeof(struct inodedep)));
1150 	pagedep_hashtbl = hashinit(desiredvnodes / 5, M_PAGEDEP,
1151 	    &pagedep_hash);
1152 	sema_init(&pagedep_in_progress, "pagedep", 0, 0);
1153 	inodedep_hashtbl = hashinit(desiredvnodes, M_INODEDEP, &inodedep_hash);
1154 	sema_init(&inodedep_in_progress, "inodedep", 0, 0);
1155 	newblk_hashtbl = hashinit(64, M_NEWBLK, &newblk_hash);
1156 	sema_init(&newblk_in_progress, "newblk", 0, 0);
1157 	add_bio_ops(&softdep_bioops);
1158 }
1159 
1160 /*
1161  * Called at mount time to notify the dependency code that a
1162  * filesystem wishes to use it.
1163  */
1164 int
1165 softdep_mount(struct vnode *devvp, struct mount *mp, struct fs *fs)
1166 {
1167 	struct csum cstotal;
1168 	struct cg *cgp;
1169 	struct buf *bp;
1170 	int error, cyl;
1171 
1172 	mp->mnt_flag &= ~MNT_ASYNC;
1173 	mp->mnt_flag |= MNT_SOFTDEP;
1174 	mp->mnt_bioops = &softdep_bioops;
1175 	/*
1176 	 * When doing soft updates, the counters in the
1177 	 * superblock may have gotten out of sync, so we have
1178 	 * to scan the cylinder groups and recalculate them.
1179 	 */
1180 	if (fs->fs_clean != 0)
1181 		return (0);
1182 	bzero(&cstotal, sizeof cstotal);
1183 	for (cyl = 0; cyl < fs->fs_ncg; cyl++) {
1184 		if ((error = bread(devvp, fsbtodoff(fs, cgtod(fs, cyl)),
1185 				   fs->fs_cgsize, &bp)) != 0) {
1186 			brelse(bp);
1187 			return (error);
1188 		}
1189 		cgp = (struct cg *)bp->b_data;
1190 		cstotal.cs_nffree += cgp->cg_cs.cs_nffree;
1191 		cstotal.cs_nbfree += cgp->cg_cs.cs_nbfree;
1192 		cstotal.cs_nifree += cgp->cg_cs.cs_nifree;
1193 		cstotal.cs_ndir += cgp->cg_cs.cs_ndir;
1194 		fs->fs_cs(fs, cyl) = cgp->cg_cs;
1195 		brelse(bp);
1196 	}
1197 #ifdef DEBUG
1198 	if (bcmp(&cstotal, &fs->fs_cstotal, sizeof cstotal))
1199 		kprintf("ffs_mountfs: superblock updated for soft updates\n");
1200 #endif
1201 	bcopy(&cstotal, &fs->fs_cstotal, sizeof cstotal);
1202 	return (0);
1203 }
1204 
1205 /*
1206  * Protecting the freemaps (or bitmaps).
1207  *
1208  * To eliminate the need to execute fsck before mounting a filesystem
1209  * after a power failure, one must (conservatively) guarantee that the
1210  * on-disk copy of the bitmaps never indicate that a live inode or block is
1211  * free.  So, when a block or inode is allocated, the bitmap should be
1212  * updated (on disk) before any new pointers.  When a block or inode is
1213  * freed, the bitmap should not be updated until all pointers have been
1214  * reset.  The latter dependency is handled by the delayed de-allocation
1215  * approach described below for block and inode de-allocation.  The former
1216  * dependency is handled by calling the following procedure when a block or
1217  * inode is allocated. When an inode is allocated an "inodedep" is created
1218  * with its DEPCOMPLETE flag cleared until its bitmap is written to disk.
1219  * Each "inodedep" is also inserted into the hash indexing structure so
1220  * that any additional link additions can be made dependent on the inode
1221  * allocation.
1222  *
1223  * The ufs filesystem maintains a number of free block counts (e.g., per
1224  * cylinder group, per cylinder and per <cylinder, rotational position> pair)
1225  * in addition to the bitmaps.  These counts are used to improve efficiency
1226  * during allocation and therefore must be consistent with the bitmaps.
1227  * There is no convenient way to guarantee post-crash consistency of these
1228  * counts with simple update ordering, for two main reasons: (1) The counts
1229  * and bitmaps for a single cylinder group block are not in the same disk
1230  * sector.  If a disk write is interrupted (e.g., by power failure), one may
1231  * be written and the other not.  (2) Some of the counts are located in the
1232  * superblock rather than the cylinder group block. So, we focus our soft
1233  * updates implementation on protecting the bitmaps. When mounting a
1234  * filesystem, we recompute the auxiliary counts from the bitmaps.
1235  */
1236 
1237 /*
1238  * Called just after updating the cylinder group block to allocate an inode.
1239  *
1240  * Parameters:
1241  *	bp:		buffer for cylgroup block with inode map
1242  *	ip:		inode related to allocation
1243  *	newinum:	new inode number being allocated
1244  */
1245 void
1246 softdep_setup_inomapdep(struct buf *bp, struct inode *ip, ino_t newinum)
1247 {
1248 	struct inodedep *inodedep;
1249 	struct bmsafemap *bmsafemap;
1250 
1251 	/*
1252 	 * Create a dependency for the newly allocated inode.
1253 	 * Panic if it already exists as something is seriously wrong.
1254 	 * Otherwise add it to the dependency list for the buffer holding
1255 	 * the cylinder group map from which it was allocated.
1256 	 */
1257 	ACQUIRE_LOCK(&lk);
1258 	if ((inodedep_lookup(ip->i_fs, newinum, DEPALLOC|NODELAY, &inodedep))) {
1259 		FREE_LOCK(&lk);
1260 		panic("softdep_setup_inomapdep: found inode");
1261 	}
1262 	inodedep->id_buf = bp;
1263 	inodedep->id_state &= ~DEPCOMPLETE;
1264 	bmsafemap = bmsafemap_lookup(bp);
1265 	LIST_INSERT_HEAD(&bmsafemap->sm_inodedephd, inodedep, id_deps);
1266 	FREE_LOCK(&lk);
1267 }
1268 
1269 /*
1270  * Called just after updating the cylinder group block to
1271  * allocate block or fragment.
1272  *
1273  * Parameters:
1274  *	bp:		buffer for cylgroup block with block map
1275  *	fs:		filesystem doing allocation
1276  *	newblkno:	number of newly allocated block
1277  */
1278 void
1279 softdep_setup_blkmapdep(struct buf *bp, struct fs *fs,
1280 			ufs_daddr_t newblkno)
1281 {
1282 	struct newblk *newblk;
1283 	struct bmsafemap *bmsafemap;
1284 
1285 	/*
1286 	 * Create a dependency for the newly allocated block.
1287 	 * Add it to the dependency list for the buffer holding
1288 	 * the cylinder group map from which it was allocated.
1289 	 */
1290 	if (newblk_lookup(fs, newblkno, DEPALLOC, &newblk) != 0)
1291 		panic("softdep_setup_blkmapdep: found block");
1292 	ACQUIRE_LOCK(&lk);
1293 	newblk->nb_bmsafemap = bmsafemap = bmsafemap_lookup(bp);
1294 	LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, nb_deps);
1295 	FREE_LOCK(&lk);
1296 }
1297 
1298 /*
1299  * Find the bmsafemap associated with a cylinder group buffer.
1300  * If none exists, create one. The buffer must be locked when
1301  * this routine is called and this routine must be called with
1302  * splbio interrupts blocked.
1303  */
1304 static struct bmsafemap *
1305 bmsafemap_lookup(struct buf *bp)
1306 {
1307 	struct bmsafemap *bmsafemap;
1308 	struct worklist *wk;
1309 
1310 #ifdef DEBUG
1311 	if (lk.lkt_held == NOHOLDER)
1312 		panic("bmsafemap_lookup: lock not held");
1313 #endif
1314 	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
1315 		if (wk->wk_type == D_BMSAFEMAP)
1316 			return (WK_BMSAFEMAP(wk));
1317 	}
1318 	FREE_LOCK(&lk);
1319 	MALLOC(bmsafemap, struct bmsafemap *, sizeof(struct bmsafemap),
1320 		M_BMSAFEMAP, M_SOFTDEP_FLAGS);
1321 	bmsafemap->sm_list.wk_type = D_BMSAFEMAP;
1322 	bmsafemap->sm_list.wk_state = 0;
1323 	bmsafemap->sm_buf = bp;
1324 	LIST_INIT(&bmsafemap->sm_allocdirecthd);
1325 	LIST_INIT(&bmsafemap->sm_allocindirhd);
1326 	LIST_INIT(&bmsafemap->sm_inodedephd);
1327 	LIST_INIT(&bmsafemap->sm_newblkhd);
1328 	ACQUIRE_LOCK(&lk);
1329 	WORKLIST_INSERT_BP(bp, &bmsafemap->sm_list);
1330 	return (bmsafemap);
1331 }
1332 
1333 /*
1334  * Direct block allocation dependencies.
1335  *
1336  * When a new block is allocated, the corresponding disk locations must be
1337  * initialized (with zeros or new data) before the on-disk inode points to
1338  * them.  Also, the freemap from which the block was allocated must be
1339  * updated (on disk) before the inode's pointer. These two dependencies are
1340  * independent of each other and are needed for all file blocks and indirect
1341  * blocks that are pointed to directly by the inode.  Just before the
1342  * "in-core" version of the inode is updated with a newly allocated block
1343  * number, a procedure (below) is called to setup allocation dependency
1344  * structures.  These structures are removed when the corresponding
1345  * dependencies are satisfied or when the block allocation becomes obsolete
1346  * (i.e., the file is deleted, the block is de-allocated, or the block is a
1347  * fragment that gets upgraded).  All of these cases are handled in
1348  * procedures described later.
1349  *
1350  * When a file extension causes a fragment to be upgraded, either to a larger
1351  * fragment or to a full block, the on-disk location may change (if the
1352  * previous fragment could not simply be extended). In this case, the old
1353  * fragment must be de-allocated, but not until after the inode's pointer has
1354  * been updated. In most cases, this is handled by later procedures, which
1355  * will construct a "freefrag" structure to be added to the workitem queue
1356  * when the inode update is complete (or obsolete).  The main exception to
1357  * this is when an allocation occurs while a pending allocation dependency
1358  * (for the same block pointer) remains.  This case is handled in the main
1359  * allocation dependency setup procedure by immediately freeing the
1360  * unreferenced fragments.
1361  *
1362  * Parameters:
1363  *	ip:		inode to which block is being added
1364  *	lbn:		block pointer within inode
1365  *	newblkno:	disk block number being added
1366  *	oldblkno:	previous block number, 0 unless frag
1367  *	newsize:	size of new block
1368  *	oldsize:	size of new block
1369  *	bp:		bp for allocated block
1370  */
1371 void
1372 softdep_setup_allocdirect(struct inode *ip, ufs_lbn_t lbn, ufs_daddr_t newblkno,
1373 			  ufs_daddr_t oldblkno, long newsize, long oldsize,
1374 			  struct buf *bp)
1375 {
1376 	struct allocdirect *adp, *oldadp;
1377 	struct allocdirectlst *adphead;
1378 	struct bmsafemap *bmsafemap;
1379 	struct inodedep *inodedep;
1380 	struct pagedep *pagedep;
1381 	struct newblk *newblk;
1382 
1383 	MALLOC(adp, struct allocdirect *, sizeof(struct allocdirect),
1384 		M_ALLOCDIRECT, M_SOFTDEP_FLAGS | M_ZERO);
1385 	adp->ad_list.wk_type = D_ALLOCDIRECT;
1386 	adp->ad_lbn = lbn;
1387 	adp->ad_newblkno = newblkno;
1388 	adp->ad_oldblkno = oldblkno;
1389 	adp->ad_newsize = newsize;
1390 	adp->ad_oldsize = oldsize;
1391 	adp->ad_state = ATTACHED;
1392 	if (newblkno == oldblkno)
1393 		adp->ad_freefrag = NULL;
1394 	else
1395 		adp->ad_freefrag = newfreefrag(ip, oldblkno, oldsize);
1396 
1397 	if (newblk_lookup(ip->i_fs, newblkno, 0, &newblk) == 0)
1398 		panic("softdep_setup_allocdirect: lost block");
1399 
1400 	ACQUIRE_LOCK(&lk);
1401 	inodedep_lookup(ip->i_fs, ip->i_number, DEPALLOC | NODELAY, &inodedep);
1402 	adp->ad_inodedep = inodedep;
1403 
1404 	if (newblk->nb_state == DEPCOMPLETE) {
1405 		adp->ad_state |= DEPCOMPLETE;
1406 		adp->ad_buf = NULL;
1407 	} else {
1408 		bmsafemap = newblk->nb_bmsafemap;
1409 		adp->ad_buf = bmsafemap->sm_buf;
1410 		LIST_REMOVE(newblk, nb_deps);
1411 		LIST_INSERT_HEAD(&bmsafemap->sm_allocdirecthd, adp, ad_deps);
1412 	}
1413 	LIST_REMOVE(newblk, nb_hash);
1414 	FREE(newblk, M_NEWBLK);
1415 
1416 	WORKLIST_INSERT_BP(bp, &adp->ad_list);
1417 	if (lbn >= NDADDR) {
1418 		/* allocating an indirect block */
1419 		if (oldblkno != 0) {
1420 			FREE_LOCK(&lk);
1421 			panic("softdep_setup_allocdirect: non-zero indir");
1422 		}
1423 	} else {
1424 		/*
1425 		 * Allocating a direct block.
1426 		 *
1427 		 * If we are allocating a directory block, then we must
1428 		 * allocate an associated pagedep to track additions and
1429 		 * deletions.
1430 		 */
1431 		if ((ip->i_mode & IFMT) == IFDIR &&
1432 		    pagedep_lookup(ip, lbn, DEPALLOC, &pagedep) == 0) {
1433 			WORKLIST_INSERT_BP(bp, &pagedep->pd_list);
1434 		}
1435 	}
1436 	/*
1437 	 * The list of allocdirects must be kept in sorted and ascending
1438 	 * order so that the rollback routines can quickly determine the
1439 	 * first uncommitted block (the size of the file stored on disk
1440 	 * ends at the end of the lowest committed fragment, or if there
1441 	 * are no fragments, at the end of the highest committed block).
1442 	 * Since files generally grow, the typical case is that the new
1443 	 * block is to be added at the end of the list. We speed this
1444 	 * special case by checking against the last allocdirect in the
1445 	 * list before laboriously traversing the list looking for the
1446 	 * insertion point.
1447 	 */
1448 	adphead = &inodedep->id_newinoupdt;
1449 	oldadp = TAILQ_LAST(adphead, allocdirectlst);
1450 	if (oldadp == NULL || oldadp->ad_lbn <= lbn) {
1451 		/* insert at end of list */
1452 		TAILQ_INSERT_TAIL(adphead, adp, ad_next);
1453 		if (oldadp != NULL && oldadp->ad_lbn == lbn)
1454 			allocdirect_merge(adphead, adp, oldadp);
1455 		FREE_LOCK(&lk);
1456 		return;
1457 	}
1458 	TAILQ_FOREACH(oldadp, adphead, ad_next) {
1459 		if (oldadp->ad_lbn >= lbn)
1460 			break;
1461 	}
1462 	if (oldadp == NULL) {
1463 		FREE_LOCK(&lk);
1464 		panic("softdep_setup_allocdirect: lost entry");
1465 	}
1466 	/* insert in middle of list */
1467 	TAILQ_INSERT_BEFORE(oldadp, adp, ad_next);
1468 	if (oldadp->ad_lbn == lbn)
1469 		allocdirect_merge(adphead, adp, oldadp);
1470 	FREE_LOCK(&lk);
1471 }
1472 
1473 /*
1474  * Replace an old allocdirect dependency with a newer one.
1475  * This routine must be called with splbio interrupts blocked.
1476  *
1477  * Parameters:
1478  *	adphead:	head of list holding allocdirects
1479  *	newadp:		allocdirect being added
1480  *	oldadp:		existing allocdirect being checked
1481  */
1482 static void
1483 allocdirect_merge(struct allocdirectlst *adphead,
1484 		  struct allocdirect *newadp,
1485 		  struct allocdirect *oldadp)
1486 {
1487 	struct freefrag *freefrag;
1488 
1489 #ifdef DEBUG
1490 	if (lk.lkt_held == NOHOLDER)
1491 		panic("allocdirect_merge: lock not held");
1492 #endif
1493 	if (newadp->ad_oldblkno != oldadp->ad_newblkno ||
1494 	    newadp->ad_oldsize != oldadp->ad_newsize ||
1495 	    newadp->ad_lbn >= NDADDR) {
1496 		FREE_LOCK(&lk);
1497 		panic("allocdirect_check: old %d != new %d || lbn %ld >= %d",
1498 		    newadp->ad_oldblkno, oldadp->ad_newblkno, newadp->ad_lbn,
1499 		    NDADDR);
1500 	}
1501 	newadp->ad_oldblkno = oldadp->ad_oldblkno;
1502 	newadp->ad_oldsize = oldadp->ad_oldsize;
1503 	/*
1504 	 * If the old dependency had a fragment to free or had never
1505 	 * previously had a block allocated, then the new dependency
1506 	 * can immediately post its freefrag and adopt the old freefrag.
1507 	 * This action is done by swapping the freefrag dependencies.
1508 	 * The new dependency gains the old one's freefrag, and the
1509 	 * old one gets the new one and then immediately puts it on
1510 	 * the worklist when it is freed by free_allocdirect. It is
1511 	 * not possible to do this swap when the old dependency had a
1512 	 * non-zero size but no previous fragment to free. This condition
1513 	 * arises when the new block is an extension of the old block.
1514 	 * Here, the first part of the fragment allocated to the new
1515 	 * dependency is part of the block currently claimed on disk by
1516 	 * the old dependency, so cannot legitimately be freed until the
1517 	 * conditions for the new dependency are fulfilled.
1518 	 */
1519 	if (oldadp->ad_freefrag != NULL || oldadp->ad_oldblkno == 0) {
1520 		freefrag = newadp->ad_freefrag;
1521 		newadp->ad_freefrag = oldadp->ad_freefrag;
1522 		oldadp->ad_freefrag = freefrag;
1523 	}
1524 	free_allocdirect(adphead, oldadp, 0);
1525 }
1526 
1527 /*
1528  * Allocate a new freefrag structure if needed.
1529  */
1530 static struct freefrag *
1531 newfreefrag(struct inode *ip, ufs_daddr_t blkno, long size)
1532 {
1533 	struct freefrag *freefrag;
1534 	struct fs *fs;
1535 
1536 	if (blkno == 0)
1537 		return (NULL);
1538 	fs = ip->i_fs;
1539 	if (fragnum(fs, blkno) + numfrags(fs, size) > fs->fs_frag)
1540 		panic("newfreefrag: frag size");
1541 	MALLOC(freefrag, struct freefrag *, sizeof(struct freefrag),
1542 		M_FREEFRAG, M_SOFTDEP_FLAGS);
1543 	freefrag->ff_list.wk_type = D_FREEFRAG;
1544 	freefrag->ff_state = ip->i_uid & ~ONWORKLIST;	/* XXX - used below */
1545 	freefrag->ff_inum = ip->i_number;
1546 	freefrag->ff_fs = fs;
1547 	freefrag->ff_devvp = ip->i_devvp;
1548 	freefrag->ff_blkno = blkno;
1549 	freefrag->ff_fragsize = size;
1550 	return (freefrag);
1551 }
1552 
1553 /*
1554  * This workitem de-allocates fragments that were replaced during
1555  * file block allocation.
1556  */
1557 static void
1558 handle_workitem_freefrag(struct freefrag *freefrag)
1559 {
1560 	struct inode tip;
1561 
1562 	tip.i_fs = freefrag->ff_fs;
1563 	tip.i_devvp = freefrag->ff_devvp;
1564 	tip.i_dev = freefrag->ff_devvp->v_rdev;
1565 	tip.i_number = freefrag->ff_inum;
1566 	tip.i_uid = freefrag->ff_state & ~ONWORKLIST;	/* XXX - set above */
1567 	ffs_blkfree(&tip, freefrag->ff_blkno, freefrag->ff_fragsize);
1568 	FREE(freefrag, M_FREEFRAG);
1569 }
1570 
1571 /*
1572  * Indirect block allocation dependencies.
1573  *
1574  * The same dependencies that exist for a direct block also exist when
1575  * a new block is allocated and pointed to by an entry in a block of
1576  * indirect pointers. The undo/redo states described above are also
1577  * used here. Because an indirect block contains many pointers that
1578  * may have dependencies, a second copy of the entire in-memory indirect
1579  * block is kept. The buffer cache copy is always completely up-to-date.
1580  * The second copy, which is used only as a source for disk writes,
1581  * contains only the safe pointers (i.e., those that have no remaining
1582  * update dependencies). The second copy is freed when all pointers
1583  * are safe. The cache is not allowed to replace indirect blocks with
1584  * pending update dependencies. If a buffer containing an indirect
1585  * block with dependencies is written, these routines will mark it
1586  * dirty again. It can only be successfully written once all the
1587  * dependencies are removed. The ffs_fsync routine in conjunction with
1588  * softdep_sync_metadata work together to get all the dependencies
1589  * removed so that a file can be successfully written to disk. Three
1590  * procedures are used when setting up indirect block pointer
1591  * dependencies. The division is necessary because of the organization
1592  * of the "balloc" routine and because of the distinction between file
1593  * pages and file metadata blocks.
1594  */
1595 
1596 /*
1597  * Allocate a new allocindir structure.
1598  *
1599  * Parameters:
1600  *	ip:		inode for file being extended
1601  *	ptrno:		offset of pointer in indirect block
1602  *	newblkno:	disk block number being added
1603  *	oldblkno:	previous block number, 0 if none
1604  */
1605 static struct allocindir *
1606 newallocindir(struct inode *ip, int ptrno, ufs_daddr_t newblkno,
1607 	      ufs_daddr_t oldblkno)
1608 {
1609 	struct allocindir *aip;
1610 
1611 	MALLOC(aip, struct allocindir *, sizeof(struct allocindir),
1612 		M_ALLOCINDIR, M_SOFTDEP_FLAGS | M_ZERO);
1613 	aip->ai_list.wk_type = D_ALLOCINDIR;
1614 	aip->ai_state = ATTACHED;
1615 	aip->ai_offset = ptrno;
1616 	aip->ai_newblkno = newblkno;
1617 	aip->ai_oldblkno = oldblkno;
1618 	aip->ai_freefrag = newfreefrag(ip, oldblkno, ip->i_fs->fs_bsize);
1619 	return (aip);
1620 }
1621 
1622 /*
1623  * Called just before setting an indirect block pointer
1624  * to a newly allocated file page.
1625  *
1626  * Parameters:
1627  *	ip:		inode for file being extended
1628  *	lbn:		allocated block number within file
1629  *	bp:		buffer with indirect blk referencing page
1630  *	ptrno:		offset of pointer in indirect block
1631  *	newblkno:	disk block number being added
1632  *	oldblkno:	previous block number, 0 if none
1633  *	nbp:		buffer holding allocated page
1634  */
1635 void
1636 softdep_setup_allocindir_page(struct inode *ip, ufs_lbn_t lbn,
1637 			      struct buf *bp, int ptrno,
1638 			      ufs_daddr_t newblkno, ufs_daddr_t oldblkno,
1639 			      struct buf *nbp)
1640 {
1641 	struct allocindir *aip;
1642 	struct pagedep *pagedep;
1643 
1644 	aip = newallocindir(ip, ptrno, newblkno, oldblkno);
1645 	ACQUIRE_LOCK(&lk);
1646 	/*
1647 	 * If we are allocating a directory page, then we must
1648 	 * allocate an associated pagedep to track additions and
1649 	 * deletions.
1650 	 */
1651 	if ((ip->i_mode & IFMT) == IFDIR &&
1652 	    pagedep_lookup(ip, lbn, DEPALLOC, &pagedep) == 0)
1653 		WORKLIST_INSERT_BP(nbp, &pagedep->pd_list);
1654 	WORKLIST_INSERT_BP(nbp, &aip->ai_list);
1655 	FREE_LOCK(&lk);
1656 	setup_allocindir_phase2(bp, ip, aip);
1657 }
1658 
1659 /*
1660  * Called just before setting an indirect block pointer to a
1661  * newly allocated indirect block.
1662  * Parameters:
1663  *	nbp:		newly allocated indirect block
1664  *	ip:		inode for file being extended
1665  *	bp:		indirect block referencing allocated block
1666  *	ptrno:		offset of pointer in indirect block
1667  *	newblkno:	disk block number being added
1668  */
1669 void
1670 softdep_setup_allocindir_meta(struct buf *nbp, struct inode *ip,
1671 			      struct buf *bp, int ptrno,
1672 			      ufs_daddr_t newblkno)
1673 {
1674 	struct allocindir *aip;
1675 
1676 	aip = newallocindir(ip, ptrno, newblkno, 0);
1677 	ACQUIRE_LOCK(&lk);
1678 	WORKLIST_INSERT_BP(nbp, &aip->ai_list);
1679 	FREE_LOCK(&lk);
1680 	setup_allocindir_phase2(bp, ip, aip);
1681 }
1682 
1683 /*
1684  * Called to finish the allocation of the "aip" allocated
1685  * by one of the two routines above.
1686  *
1687  * Parameters:
1688  *	bp:	in-memory copy of the indirect block
1689  *	ip:	inode for file being extended
1690  *	aip:	allocindir allocated by the above routines
1691  */
1692 static void
1693 setup_allocindir_phase2(struct buf *bp, struct inode *ip,
1694 			struct allocindir *aip)
1695 {
1696 	struct worklist *wk;
1697 	struct indirdep *indirdep, *newindirdep;
1698 	struct bmsafemap *bmsafemap;
1699 	struct allocindir *oldaip;
1700 	struct freefrag *freefrag;
1701 	struct newblk *newblk;
1702 
1703 	if (bp->b_loffset >= 0)
1704 		panic("setup_allocindir_phase2: not indir blk");
1705 	for (indirdep = NULL, newindirdep = NULL; ; ) {
1706 		ACQUIRE_LOCK(&lk);
1707 		LIST_FOREACH(wk, &bp->b_dep, wk_list) {
1708 			if (wk->wk_type != D_INDIRDEP)
1709 				continue;
1710 			indirdep = WK_INDIRDEP(wk);
1711 			break;
1712 		}
1713 		if (indirdep == NULL && newindirdep) {
1714 			indirdep = newindirdep;
1715 			WORKLIST_INSERT_BP(bp, &indirdep->ir_list);
1716 			newindirdep = NULL;
1717 		}
1718 		FREE_LOCK(&lk);
1719 		if (indirdep) {
1720 			if (newblk_lookup(ip->i_fs, aip->ai_newblkno, 0,
1721 			    &newblk) == 0)
1722 				panic("setup_allocindir: lost block");
1723 			ACQUIRE_LOCK(&lk);
1724 			if (newblk->nb_state == DEPCOMPLETE) {
1725 				aip->ai_state |= DEPCOMPLETE;
1726 				aip->ai_buf = NULL;
1727 			} else {
1728 				bmsafemap = newblk->nb_bmsafemap;
1729 				aip->ai_buf = bmsafemap->sm_buf;
1730 				LIST_REMOVE(newblk, nb_deps);
1731 				LIST_INSERT_HEAD(&bmsafemap->sm_allocindirhd,
1732 				    aip, ai_deps);
1733 			}
1734 			LIST_REMOVE(newblk, nb_hash);
1735 			FREE(newblk, M_NEWBLK);
1736 			aip->ai_indirdep = indirdep;
1737 			/*
1738 			 * Check to see if there is an existing dependency
1739 			 * for this block. If there is, merge the old
1740 			 * dependency into the new one.
1741 			 */
1742 			if (aip->ai_oldblkno == 0)
1743 				oldaip = NULL;
1744 			else
1745 
1746 				LIST_FOREACH(oldaip, &indirdep->ir_deplisthd, ai_next)
1747 					if (oldaip->ai_offset == aip->ai_offset)
1748 						break;
1749 			if (oldaip != NULL) {
1750 				if (oldaip->ai_newblkno != aip->ai_oldblkno) {
1751 					FREE_LOCK(&lk);
1752 					panic("setup_allocindir_phase2: blkno");
1753 				}
1754 				aip->ai_oldblkno = oldaip->ai_oldblkno;
1755 				freefrag = oldaip->ai_freefrag;
1756 				oldaip->ai_freefrag = aip->ai_freefrag;
1757 				aip->ai_freefrag = freefrag;
1758 				free_allocindir(oldaip, NULL);
1759 			}
1760 			LIST_INSERT_HEAD(&indirdep->ir_deplisthd, aip, ai_next);
1761 			((ufs_daddr_t *)indirdep->ir_savebp->b_data)
1762 			    [aip->ai_offset] = aip->ai_oldblkno;
1763 			FREE_LOCK(&lk);
1764 		}
1765 		if (newindirdep) {
1766 			/*
1767 			 * Avoid any possibility of data corruption by
1768 			 * ensuring that our old version is thrown away.
1769 			 */
1770 			newindirdep->ir_savebp->b_flags |= B_INVAL | B_NOCACHE;
1771 			brelse(newindirdep->ir_savebp);
1772 			WORKITEM_FREE((caddr_t)newindirdep, D_INDIRDEP);
1773 		}
1774 		if (indirdep)
1775 			break;
1776 		MALLOC(newindirdep, struct indirdep *, sizeof(struct indirdep),
1777 			M_INDIRDEP, M_SOFTDEP_FLAGS);
1778 		newindirdep->ir_list.wk_type = D_INDIRDEP;
1779 		newindirdep->ir_state = ATTACHED;
1780 		LIST_INIT(&newindirdep->ir_deplisthd);
1781 		LIST_INIT(&newindirdep->ir_donehd);
1782 		if (bp->b_bio2.bio_offset == NOOFFSET) {
1783 			VOP_BMAP(bp->b_vp, bp->b_bio1.bio_offset,
1784 				 &bp->b_bio2.bio_offset, NULL, NULL,
1785 				 BUF_CMD_WRITE);
1786 		}
1787 		KKASSERT(bp->b_bio2.bio_offset != NOOFFSET);
1788 		newindirdep->ir_savebp = getblk(ip->i_devvp,
1789 						bp->b_bio2.bio_offset,
1790 					        bp->b_bcount, 0, 0);
1791 		BUF_KERNPROC(newindirdep->ir_savebp);
1792 		bcopy(bp->b_data, newindirdep->ir_savebp->b_data, bp->b_bcount);
1793 	}
1794 }
1795 
1796 /*
1797  * Block de-allocation dependencies.
1798  *
1799  * When blocks are de-allocated, the on-disk pointers must be nullified before
1800  * the blocks are made available for use by other files.  (The true
1801  * requirement is that old pointers must be nullified before new on-disk
1802  * pointers are set.  We chose this slightly more stringent requirement to
1803  * reduce complexity.) Our implementation handles this dependency by updating
1804  * the inode (or indirect block) appropriately but delaying the actual block
1805  * de-allocation (i.e., freemap and free space count manipulation) until
1806  * after the updated versions reach stable storage.  After the disk is
1807  * updated, the blocks can be safely de-allocated whenever it is convenient.
1808  * This implementation handles only the common case of reducing a file's
1809  * length to zero. Other cases are handled by the conventional synchronous
1810  * write approach.
1811  *
1812  * The ffs implementation with which we worked double-checks
1813  * the state of the block pointers and file size as it reduces
1814  * a file's length.  Some of this code is replicated here in our
1815  * soft updates implementation.  The freeblks->fb_chkcnt field is
1816  * used to transfer a part of this information to the procedure
1817  * that eventually de-allocates the blocks.
1818  *
1819  * This routine should be called from the routine that shortens
1820  * a file's length, before the inode's size or block pointers
1821  * are modified. It will save the block pointer information for
1822  * later release and zero the inode so that the calling routine
1823  * can release it.
1824  */
1825 struct softdep_setup_freeblocks_info {
1826 	struct fs *fs;
1827 	struct inode *ip;
1828 };
1829 
1830 static int softdep_setup_freeblocks_bp(struct buf *bp, void *data);
1831 
1832 /*
1833  * Parameters:
1834  *	ip:	The inode whose length is to be reduced
1835  *	length:	The new length for the file
1836  */
1837 void
1838 softdep_setup_freeblocks(struct inode *ip, off_t length)
1839 {
1840 	struct softdep_setup_freeblocks_info info;
1841 	struct freeblks *freeblks;
1842 	struct inodedep *inodedep;
1843 	struct allocdirect *adp;
1844 	struct vnode *vp;
1845 	struct buf *bp;
1846 	struct fs *fs;
1847 	int i, error, delay;
1848 	int count;
1849 
1850 	fs = ip->i_fs;
1851 	if (length != 0)
1852 		panic("softde_setup_freeblocks: non-zero length");
1853 	MALLOC(freeblks, struct freeblks *, sizeof(struct freeblks),
1854 		M_FREEBLKS, M_SOFTDEP_FLAGS | M_ZERO);
1855 	freeblks->fb_list.wk_type = D_FREEBLKS;
1856 	freeblks->fb_state = ATTACHED;
1857 	freeblks->fb_uid = ip->i_uid;
1858 	freeblks->fb_previousinum = ip->i_number;
1859 	freeblks->fb_devvp = ip->i_devvp;
1860 	freeblks->fb_fs = fs;
1861 	freeblks->fb_oldsize = ip->i_size;
1862 	freeblks->fb_newsize = length;
1863 	freeblks->fb_chkcnt = ip->i_blocks;
1864 	for (i = 0; i < NDADDR; i++) {
1865 		freeblks->fb_dblks[i] = ip->i_db[i];
1866 		ip->i_db[i] = 0;
1867 	}
1868 	for (i = 0; i < NIADDR; i++) {
1869 		freeblks->fb_iblks[i] = ip->i_ib[i];
1870 		ip->i_ib[i] = 0;
1871 	}
1872 	ip->i_blocks = 0;
1873 	ip->i_size = 0;
1874 	/*
1875 	 * Push the zero'ed inode to to its disk buffer so that we are free
1876 	 * to delete its dependencies below. Once the dependencies are gone
1877 	 * the buffer can be safely released.
1878 	 */
1879 	if ((error = bread(ip->i_devvp,
1880 			    fsbtodoff(fs, ino_to_fsba(fs, ip->i_number)),
1881 	    (int)fs->fs_bsize, &bp)) != 0)
1882 		softdep_error("softdep_setup_freeblocks", error);
1883 	*((struct ufs1_dinode *)bp->b_data + ino_to_fsbo(fs, ip->i_number)) =
1884 	    ip->i_din;
1885 	/*
1886 	 * Find and eliminate any inode dependencies.
1887 	 */
1888 	ACQUIRE_LOCK(&lk);
1889 	(void) inodedep_lookup(fs, ip->i_number, DEPALLOC, &inodedep);
1890 	if ((inodedep->id_state & IOSTARTED) != 0) {
1891 		FREE_LOCK(&lk);
1892 		panic("softdep_setup_freeblocks: inode busy");
1893 	}
1894 	/*
1895 	 * Add the freeblks structure to the list of operations that
1896 	 * must await the zero'ed inode being written to disk. If we
1897 	 * still have a bitmap dependency (delay == 0), then the inode
1898 	 * has never been written to disk, so we can process the
1899 	 * freeblks below once we have deleted the dependencies.
1900 	 */
1901 	delay = (inodedep->id_state & DEPCOMPLETE);
1902 	if (delay)
1903 		WORKLIST_INSERT(&inodedep->id_bufwait, &freeblks->fb_list);
1904 	/*
1905 	 * Because the file length has been truncated to zero, any
1906 	 * pending block allocation dependency structures associated
1907 	 * with this inode are obsolete and can simply be de-allocated.
1908 	 * We must first merge the two dependency lists to get rid of
1909 	 * any duplicate freefrag structures, then purge the merged list.
1910 	 */
1911 	merge_inode_lists(inodedep);
1912 	while ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != 0)
1913 		free_allocdirect(&inodedep->id_inoupdt, adp, 1);
1914 	FREE_LOCK(&lk);
1915 	bdwrite(bp);
1916 	/*
1917 	 * We must wait for any I/O in progress to finish so that
1918 	 * all potential buffers on the dirty list will be visible.
1919 	 * Once they are all there, walk the list and get rid of
1920 	 * any dependencies.
1921 	 */
1922 	vp = ITOV(ip);
1923 	ACQUIRE_LOCK(&lk);
1924 	drain_output(vp, 1);
1925 
1926 	info.fs = fs;
1927 	info.ip = ip;
1928 	lwkt_gettoken(&vp->v_token);
1929 	do {
1930 		count = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
1931 				softdep_setup_freeblocks_bp, &info);
1932 	} while (count != 0);
1933 	lwkt_reltoken(&vp->v_token);
1934 
1935 	if (inodedep_lookup(fs, ip->i_number, 0, &inodedep) != 0)
1936 		(void)free_inodedep(inodedep);
1937 
1938 	if (delay) {
1939 		freeblks->fb_state |= DEPCOMPLETE;
1940 		/*
1941 		 * If the inode with zeroed block pointers is now on disk
1942 		 * we can start freeing blocks. Add freeblks to the worklist
1943 		 * instead of calling  handle_workitem_freeblocks directly as
1944 		 * it is more likely that additional IO is needed to complete
1945 		 * the request here than in the !delay case.
1946 		 */
1947 		if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE)
1948 			add_to_worklist(&freeblks->fb_list);
1949 	}
1950 
1951 	FREE_LOCK(&lk);
1952 	/*
1953 	 * If the inode has never been written to disk (delay == 0),
1954 	 * then we can process the freeblks now that we have deleted
1955 	 * the dependencies.
1956 	 */
1957 	if (!delay)
1958 		handle_workitem_freeblocks(freeblks);
1959 }
1960 
1961 static int
1962 softdep_setup_freeblocks_bp(struct buf *bp, void *data)
1963 {
1964 	struct softdep_setup_freeblocks_info *info = data;
1965 	struct inodedep *inodedep;
1966 
1967 	if (getdirtybuf(&bp, MNT_WAIT) == 0) {
1968 		kprintf("softdep_setup_freeblocks_bp(1): caught bp %p going away\n", bp);
1969 		return(-1);
1970 	}
1971 	if (bp->b_vp != ITOV(info->ip) || (bp->b_flags & B_DELWRI) == 0) {
1972 		kprintf("softdep_setup_freeblocks_bp(2): caught bp %p going away\n", bp);
1973 		BUF_UNLOCK(bp);
1974 		return(-1);
1975 	}
1976 	(void) inodedep_lookup(info->fs, info->ip->i_number, 0, &inodedep);
1977 	deallocate_dependencies(bp, inodedep);
1978 	bp->b_flags |= B_INVAL | B_NOCACHE;
1979 	FREE_LOCK(&lk);
1980 	brelse(bp);
1981 	ACQUIRE_LOCK(&lk);
1982 	return(1);
1983 }
1984 
1985 /*
1986  * Reclaim any dependency structures from a buffer that is about to
1987  * be reallocated to a new vnode. The buffer must be locked, thus,
1988  * no I/O completion operations can occur while we are manipulating
1989  * its associated dependencies. The mutex is held so that other I/O's
1990  * associated with related dependencies do not occur.
1991  */
1992 static void
1993 deallocate_dependencies(struct buf *bp, struct inodedep *inodedep)
1994 {
1995 	struct worklist *wk;
1996 	struct indirdep *indirdep;
1997 	struct allocindir *aip;
1998 	struct pagedep *pagedep;
1999 	struct dirrem *dirrem;
2000 	struct diradd *dap;
2001 	int i;
2002 
2003 	while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) {
2004 		switch (wk->wk_type) {
2005 
2006 		case D_INDIRDEP:
2007 			indirdep = WK_INDIRDEP(wk);
2008 			/*
2009 			 * None of the indirect pointers will ever be visible,
2010 			 * so they can simply be tossed. GOINGAWAY ensures
2011 			 * that allocated pointers will be saved in the buffer
2012 			 * cache until they are freed. Note that they will
2013 			 * only be able to be found by their physical address
2014 			 * since the inode mapping the logical address will
2015 			 * be gone. The save buffer used for the safe copy
2016 			 * was allocated in setup_allocindir_phase2 using
2017 			 * the physical address so it could be used for this
2018 			 * purpose. Hence we swap the safe copy with the real
2019 			 * copy, allowing the safe copy to be freed and holding
2020 			 * on to the real copy for later use in indir_trunc.
2021 			 *
2022 			 * NOTE: ir_savebp is relative to the block device
2023 			 * so b_bio1 contains the device block number.
2024 			 */
2025 			if (indirdep->ir_state & GOINGAWAY) {
2026 				FREE_LOCK(&lk);
2027 				panic("deallocate_dependencies: already gone");
2028 			}
2029 			indirdep->ir_state |= GOINGAWAY;
2030 			while ((aip = LIST_FIRST(&indirdep->ir_deplisthd)) != 0)
2031 				free_allocindir(aip, inodedep);
2032 			if (bp->b_bio1.bio_offset >= 0 ||
2033 			    bp->b_bio2.bio_offset != indirdep->ir_savebp->b_bio1.bio_offset) {
2034 				FREE_LOCK(&lk);
2035 				panic("deallocate_dependencies: not indir");
2036 			}
2037 			bcopy(bp->b_data, indirdep->ir_savebp->b_data,
2038 			    bp->b_bcount);
2039 			WORKLIST_REMOVE(wk);
2040 			WORKLIST_INSERT_BP(indirdep->ir_savebp, wk);
2041 			continue;
2042 
2043 		case D_PAGEDEP:
2044 			pagedep = WK_PAGEDEP(wk);
2045 			/*
2046 			 * None of the directory additions will ever be
2047 			 * visible, so they can simply be tossed.
2048 			 */
2049 			for (i = 0; i < DAHASHSZ; i++)
2050 				while ((dap =
2051 				    LIST_FIRST(&pagedep->pd_diraddhd[i])))
2052 					free_diradd(dap);
2053 			while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != 0)
2054 				free_diradd(dap);
2055 			/*
2056 			 * Copy any directory remove dependencies to the list
2057 			 * to be processed after the zero'ed inode is written.
2058 			 * If the inode has already been written, then they
2059 			 * can be dumped directly onto the work list.
2060 			 */
2061 			LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) {
2062 				LIST_REMOVE(dirrem, dm_next);
2063 				dirrem->dm_dirinum = pagedep->pd_ino;
2064 				if (inodedep == NULL ||
2065 				    (inodedep->id_state & ALLCOMPLETE) ==
2066 				     ALLCOMPLETE)
2067 					add_to_worklist(&dirrem->dm_list);
2068 				else
2069 					WORKLIST_INSERT(&inodedep->id_bufwait,
2070 					    &dirrem->dm_list);
2071 			}
2072 			WORKLIST_REMOVE(&pagedep->pd_list);
2073 			LIST_REMOVE(pagedep, pd_hash);
2074 			WORKITEM_FREE(pagedep, D_PAGEDEP);
2075 			continue;
2076 
2077 		case D_ALLOCINDIR:
2078 			free_allocindir(WK_ALLOCINDIR(wk), inodedep);
2079 			continue;
2080 
2081 		case D_ALLOCDIRECT:
2082 		case D_INODEDEP:
2083 			FREE_LOCK(&lk);
2084 			panic("deallocate_dependencies: Unexpected type %s",
2085 			    TYPENAME(wk->wk_type));
2086 			/* NOTREACHED */
2087 
2088 		default:
2089 			FREE_LOCK(&lk);
2090 			panic("deallocate_dependencies: Unknown type %s",
2091 			    TYPENAME(wk->wk_type));
2092 			/* NOTREACHED */
2093 		}
2094 	}
2095 }
2096 
2097 /*
2098  * Free an allocdirect. Generate a new freefrag work request if appropriate.
2099  * This routine must be called with splbio interrupts blocked.
2100  */
2101 static void
2102 free_allocdirect(struct allocdirectlst *adphead,
2103 		 struct allocdirect *adp, int delay)
2104 {
2105 
2106 #ifdef DEBUG
2107 	if (lk.lkt_held == NOHOLDER)
2108 		panic("free_allocdirect: lock not held");
2109 #endif
2110 	if ((adp->ad_state & DEPCOMPLETE) == 0)
2111 		LIST_REMOVE(adp, ad_deps);
2112 	TAILQ_REMOVE(adphead, adp, ad_next);
2113 	if ((adp->ad_state & COMPLETE) == 0)
2114 		WORKLIST_REMOVE(&adp->ad_list);
2115 	if (adp->ad_freefrag != NULL) {
2116 		if (delay)
2117 			WORKLIST_INSERT(&adp->ad_inodedep->id_bufwait,
2118 			    &adp->ad_freefrag->ff_list);
2119 		else
2120 			add_to_worklist(&adp->ad_freefrag->ff_list);
2121 	}
2122 	WORKITEM_FREE(adp, D_ALLOCDIRECT);
2123 }
2124 
2125 /*
2126  * Prepare an inode to be freed. The actual free operation is not
2127  * done until the zero'ed inode has been written to disk.
2128  */
2129 void
2130 softdep_freefile(struct vnode *pvp, ino_t ino, int mode)
2131 {
2132 	struct inode *ip = VTOI(pvp);
2133 	struct inodedep *inodedep;
2134 	struct freefile *freefile;
2135 
2136 	/*
2137 	 * This sets up the inode de-allocation dependency.
2138 	 */
2139 	MALLOC(freefile, struct freefile *, sizeof(struct freefile),
2140 		M_FREEFILE, M_SOFTDEP_FLAGS);
2141 	freefile->fx_list.wk_type = D_FREEFILE;
2142 	freefile->fx_list.wk_state = 0;
2143 	freefile->fx_mode = mode;
2144 	freefile->fx_oldinum = ino;
2145 	freefile->fx_devvp = ip->i_devvp;
2146 	freefile->fx_fs = ip->i_fs;
2147 
2148 	/*
2149 	 * If the inodedep does not exist, then the zero'ed inode has
2150 	 * been written to disk. If the allocated inode has never been
2151 	 * written to disk, then the on-disk inode is zero'ed. In either
2152 	 * case we can free the file immediately.
2153 	 */
2154 	ACQUIRE_LOCK(&lk);
2155 	if (inodedep_lookup(ip->i_fs, ino, 0, &inodedep) == 0 ||
2156 	    check_inode_unwritten(inodedep)) {
2157 		FREE_LOCK(&lk);
2158 		handle_workitem_freefile(freefile);
2159 		return;
2160 	}
2161 	WORKLIST_INSERT(&inodedep->id_inowait, &freefile->fx_list);
2162 	FREE_LOCK(&lk);
2163 }
2164 
2165 /*
2166  * Check to see if an inode has never been written to disk. If
2167  * so free the inodedep and return success, otherwise return failure.
2168  * This routine must be called with splbio interrupts blocked.
2169  *
2170  * If we still have a bitmap dependency, then the inode has never
2171  * been written to disk. Drop the dependency as it is no longer
2172  * necessary since the inode is being deallocated. We set the
2173  * ALLCOMPLETE flags since the bitmap now properly shows that the
2174  * inode is not allocated. Even if the inode is actively being
2175  * written, it has been rolled back to its zero'ed state, so we
2176  * are ensured that a zero inode is what is on the disk. For short
2177  * lived files, this change will usually result in removing all the
2178  * dependencies from the inode so that it can be freed immediately.
2179  */
2180 static int
2181 check_inode_unwritten(struct inodedep *inodedep)
2182 {
2183 
2184 	if ((inodedep->id_state & DEPCOMPLETE) != 0 ||
2185 	    LIST_FIRST(&inodedep->id_pendinghd) != NULL ||
2186 	    LIST_FIRST(&inodedep->id_bufwait) != NULL ||
2187 	    LIST_FIRST(&inodedep->id_inowait) != NULL ||
2188 	    TAILQ_FIRST(&inodedep->id_inoupdt) != NULL ||
2189 	    TAILQ_FIRST(&inodedep->id_newinoupdt) != NULL ||
2190 	    inodedep->id_nlinkdelta != 0)
2191 		return (0);
2192 
2193 	/*
2194 	 * Another process might be in initiate_write_inodeblock
2195 	 * trying to allocate memory without holding "Softdep Lock".
2196 	 */
2197 	if ((inodedep->id_state & IOSTARTED) != 0 &&
2198 	    inodedep->id_savedino == NULL)
2199 		return(0);
2200 
2201 	inodedep->id_state |= ALLCOMPLETE;
2202 	LIST_REMOVE(inodedep, id_deps);
2203 	inodedep->id_buf = NULL;
2204 	if (inodedep->id_state & ONWORKLIST)
2205 		WORKLIST_REMOVE(&inodedep->id_list);
2206 	if (inodedep->id_savedino != NULL) {
2207 		FREE(inodedep->id_savedino, M_INODEDEP);
2208 		inodedep->id_savedino = NULL;
2209 	}
2210 	if (free_inodedep(inodedep) == 0) {
2211 		FREE_LOCK(&lk);
2212 		panic("check_inode_unwritten: busy inode");
2213 	}
2214 	return (1);
2215 }
2216 
2217 /*
2218  * Try to free an inodedep structure. Return 1 if it could be freed.
2219  */
2220 static int
2221 free_inodedep(struct inodedep *inodedep)
2222 {
2223 
2224 	if ((inodedep->id_state & ONWORKLIST) != 0 ||
2225 	    (inodedep->id_state & ALLCOMPLETE) != ALLCOMPLETE ||
2226 	    LIST_FIRST(&inodedep->id_pendinghd) != NULL ||
2227 	    LIST_FIRST(&inodedep->id_bufwait) != NULL ||
2228 	    LIST_FIRST(&inodedep->id_inowait) != NULL ||
2229 	    TAILQ_FIRST(&inodedep->id_inoupdt) != NULL ||
2230 	    TAILQ_FIRST(&inodedep->id_newinoupdt) != NULL ||
2231 	    inodedep->id_nlinkdelta != 0 || inodedep->id_savedino != NULL)
2232 		return (0);
2233 	LIST_REMOVE(inodedep, id_hash);
2234 	WORKITEM_FREE(inodedep, D_INODEDEP);
2235 	num_inodedep -= 1;
2236 	return (1);
2237 }
2238 
2239 /*
2240  * This workitem routine performs the block de-allocation.
2241  * The workitem is added to the pending list after the updated
2242  * inode block has been written to disk.  As mentioned above,
2243  * checks regarding the number of blocks de-allocated (compared
2244  * to the number of blocks allocated for the file) are also
2245  * performed in this function.
2246  */
2247 static void
2248 handle_workitem_freeblocks(struct freeblks *freeblks)
2249 {
2250 	struct inode tip;
2251 	ufs_daddr_t bn;
2252 	struct fs *fs;
2253 	int i, level, bsize;
2254 	long nblocks, blocksreleased = 0;
2255 	int error, allerror = 0;
2256 	ufs_lbn_t baselbns[NIADDR], tmpval;
2257 
2258 	tip.i_number = freeblks->fb_previousinum;
2259 	tip.i_devvp = freeblks->fb_devvp;
2260 	tip.i_dev = freeblks->fb_devvp->v_rdev;
2261 	tip.i_fs = freeblks->fb_fs;
2262 	tip.i_size = freeblks->fb_oldsize;
2263 	tip.i_uid = freeblks->fb_uid;
2264 	fs = freeblks->fb_fs;
2265 	tmpval = 1;
2266 	baselbns[0] = NDADDR;
2267 	for (i = 1; i < NIADDR; i++) {
2268 		tmpval *= NINDIR(fs);
2269 		baselbns[i] = baselbns[i - 1] + tmpval;
2270 	}
2271 	nblocks = btodb(fs->fs_bsize);
2272 	blocksreleased = 0;
2273 	/*
2274 	 * Indirect blocks first.
2275 	 */
2276 	for (level = (NIADDR - 1); level >= 0; level--) {
2277 		if ((bn = freeblks->fb_iblks[level]) == 0)
2278 			continue;
2279 		if ((error = indir_trunc(&tip, fsbtodoff(fs, bn), level,
2280 		    baselbns[level], &blocksreleased)) == 0)
2281 			allerror = error;
2282 		ffs_blkfree(&tip, bn, fs->fs_bsize);
2283 		blocksreleased += nblocks;
2284 	}
2285 	/*
2286 	 * All direct blocks or frags.
2287 	 */
2288 	for (i = (NDADDR - 1); i >= 0; i--) {
2289 		if ((bn = freeblks->fb_dblks[i]) == 0)
2290 			continue;
2291 		bsize = blksize(fs, &tip, i);
2292 		ffs_blkfree(&tip, bn, bsize);
2293 		blocksreleased += btodb(bsize);
2294 	}
2295 
2296 #ifdef DIAGNOSTIC
2297 	if (freeblks->fb_chkcnt != blocksreleased)
2298 		kprintf("handle_workitem_freeblocks: block count\n");
2299 	if (allerror)
2300 		softdep_error("handle_workitem_freeblks", allerror);
2301 #endif /* DIAGNOSTIC */
2302 	WORKITEM_FREE(freeblks, D_FREEBLKS);
2303 }
2304 
2305 /*
2306  * Release blocks associated with the inode ip and stored in the indirect
2307  * block at doffset. If level is greater than SINGLE, the block is an
2308  * indirect block and recursive calls to indirtrunc must be used to
2309  * cleanse other indirect blocks.
2310  */
2311 static int
2312 indir_trunc(struct inode *ip, off_t doffset, int level, ufs_lbn_t lbn,
2313 	    long *countp)
2314 {
2315 	struct buf *bp;
2316 	ufs_daddr_t *bap;
2317 	ufs_daddr_t nb;
2318 	struct fs *fs;
2319 	struct worklist *wk;
2320 	struct indirdep *indirdep;
2321 	int i, lbnadd, nblocks;
2322 	int error, allerror = 0;
2323 
2324 	fs = ip->i_fs;
2325 	lbnadd = 1;
2326 	for (i = level; i > 0; i--)
2327 		lbnadd *= NINDIR(fs);
2328 	/*
2329 	 * Get buffer of block pointers to be freed. This routine is not
2330 	 * called until the zero'ed inode has been written, so it is safe
2331 	 * to free blocks as they are encountered. Because the inode has
2332 	 * been zero'ed, calls to bmap on these blocks will fail. So, we
2333 	 * have to use the on-disk address and the block device for the
2334 	 * filesystem to look them up. If the file was deleted before its
2335 	 * indirect blocks were all written to disk, the routine that set
2336 	 * us up (deallocate_dependencies) will have arranged to leave
2337 	 * a complete copy of the indirect block in memory for our use.
2338 	 * Otherwise we have to read the blocks in from the disk.
2339 	 */
2340 	ACQUIRE_LOCK(&lk);
2341 	if ((bp = findblk(ip->i_devvp, doffset, FINDBLK_TEST)) != NULL &&
2342 	    (wk = LIST_FIRST(&bp->b_dep)) != NULL) {
2343 		/*
2344 		 * bp must be ir_savebp, which is held locked for our use.
2345 		 */
2346 		if (wk->wk_type != D_INDIRDEP ||
2347 		    (indirdep = WK_INDIRDEP(wk))->ir_savebp != bp ||
2348 		    (indirdep->ir_state & GOINGAWAY) == 0) {
2349 			FREE_LOCK(&lk);
2350 			panic("indir_trunc: lost indirdep");
2351 		}
2352 		WORKLIST_REMOVE(wk);
2353 		WORKITEM_FREE(indirdep, D_INDIRDEP);
2354 		if (LIST_FIRST(&bp->b_dep) != NULL) {
2355 			FREE_LOCK(&lk);
2356 			panic("indir_trunc: dangling dep");
2357 		}
2358 		FREE_LOCK(&lk);
2359 	} else {
2360 		FREE_LOCK(&lk);
2361 		error = bread(ip->i_devvp, doffset, (int)fs->fs_bsize, &bp);
2362 		if (error)
2363 			return (error);
2364 	}
2365 	/*
2366 	 * Recursively free indirect blocks.
2367 	 */
2368 	bap = (ufs_daddr_t *)bp->b_data;
2369 	nblocks = btodb(fs->fs_bsize);
2370 	for (i = NINDIR(fs) - 1; i >= 0; i--) {
2371 		if ((nb = bap[i]) == 0)
2372 			continue;
2373 		if (level != 0) {
2374 			if ((error = indir_trunc(ip, fsbtodoff(fs, nb),
2375 			     level - 1, lbn + (i * lbnadd), countp)) != 0)
2376 				allerror = error;
2377 		}
2378 		ffs_blkfree(ip, nb, fs->fs_bsize);
2379 		*countp += nblocks;
2380 	}
2381 	bp->b_flags |= B_INVAL | B_NOCACHE;
2382 	brelse(bp);
2383 	return (allerror);
2384 }
2385 
2386 /*
2387  * Free an allocindir.
2388  * This routine must be called with splbio interrupts blocked.
2389  */
2390 static void
2391 free_allocindir(struct allocindir *aip, struct inodedep *inodedep)
2392 {
2393 	struct freefrag *freefrag;
2394 
2395 #ifdef DEBUG
2396 	if (lk.lkt_held == NOHOLDER)
2397 		panic("free_allocindir: lock not held");
2398 #endif
2399 	if ((aip->ai_state & DEPCOMPLETE) == 0)
2400 		LIST_REMOVE(aip, ai_deps);
2401 	if (aip->ai_state & ONWORKLIST)
2402 		WORKLIST_REMOVE(&aip->ai_list);
2403 	LIST_REMOVE(aip, ai_next);
2404 	if ((freefrag = aip->ai_freefrag) != NULL) {
2405 		if (inodedep == NULL)
2406 			add_to_worklist(&freefrag->ff_list);
2407 		else
2408 			WORKLIST_INSERT(&inodedep->id_bufwait,
2409 			    &freefrag->ff_list);
2410 	}
2411 	WORKITEM_FREE(aip, D_ALLOCINDIR);
2412 }
2413 
2414 /*
2415  * Directory entry addition dependencies.
2416  *
2417  * When adding a new directory entry, the inode (with its incremented link
2418  * count) must be written to disk before the directory entry's pointer to it.
2419  * Also, if the inode is newly allocated, the corresponding freemap must be
2420  * updated (on disk) before the directory entry's pointer. These requirements
2421  * are met via undo/redo on the directory entry's pointer, which consists
2422  * simply of the inode number.
2423  *
2424  * As directory entries are added and deleted, the free space within a
2425  * directory block can become fragmented.  The ufs filesystem will compact
2426  * a fragmented directory block to make space for a new entry. When this
2427  * occurs, the offsets of previously added entries change. Any "diradd"
2428  * dependency structures corresponding to these entries must be updated with
2429  * the new offsets.
2430  */
2431 
2432 /*
2433  * This routine is called after the in-memory inode's link
2434  * count has been incremented, but before the directory entry's
2435  * pointer to the inode has been set.
2436  *
2437  * Parameters:
2438  *	bp:		buffer containing directory block
2439  *	dp:		inode for directory
2440  *	diroffset:	offset of new entry in directory
2441  *	newinum:	inode referenced by new directory entry
2442  *	newdirbp:	non-NULL => contents of new mkdir
2443  */
2444 void
2445 softdep_setup_directory_add(struct buf *bp, struct inode *dp, off_t diroffset,
2446 			    ino_t newinum, struct buf *newdirbp)
2447 {
2448 	int offset;		/* offset of new entry within directory block */
2449 	ufs_lbn_t lbn;		/* block in directory containing new entry */
2450 	struct fs *fs;
2451 	struct diradd *dap;
2452 	struct pagedep *pagedep;
2453 	struct inodedep *inodedep;
2454 	struct mkdir *mkdir1, *mkdir2;
2455 
2456 	/*
2457 	 * Whiteouts have no dependencies.
2458 	 */
2459 	if (newinum == WINO) {
2460 		if (newdirbp != NULL)
2461 			bdwrite(newdirbp);
2462 		return;
2463 	}
2464 
2465 	fs = dp->i_fs;
2466 	lbn = lblkno(fs, diroffset);
2467 	offset = blkoff(fs, diroffset);
2468 	MALLOC(dap, struct diradd *, sizeof(struct diradd), M_DIRADD,
2469 	    M_SOFTDEP_FLAGS | M_ZERO);
2470 	dap->da_list.wk_type = D_DIRADD;
2471 	dap->da_offset = offset;
2472 	dap->da_newinum = newinum;
2473 	dap->da_state = ATTACHED;
2474 	if (newdirbp == NULL) {
2475 		dap->da_state |= DEPCOMPLETE;
2476 		ACQUIRE_LOCK(&lk);
2477 	} else {
2478 		dap->da_state |= MKDIR_BODY | MKDIR_PARENT;
2479 		MALLOC(mkdir1, struct mkdir *, sizeof(struct mkdir), M_MKDIR,
2480 		    M_SOFTDEP_FLAGS);
2481 		mkdir1->md_list.wk_type = D_MKDIR;
2482 		mkdir1->md_state = MKDIR_BODY;
2483 		mkdir1->md_diradd = dap;
2484 		MALLOC(mkdir2, struct mkdir *, sizeof(struct mkdir), M_MKDIR,
2485 		    M_SOFTDEP_FLAGS);
2486 		mkdir2->md_list.wk_type = D_MKDIR;
2487 		mkdir2->md_state = MKDIR_PARENT;
2488 		mkdir2->md_diradd = dap;
2489 		/*
2490 		 * Dependency on "." and ".." being written to disk.
2491 		 */
2492 		mkdir1->md_buf = newdirbp;
2493 		ACQUIRE_LOCK(&lk);
2494 		LIST_INSERT_HEAD(&mkdirlisthd, mkdir1, md_mkdirs);
2495 		WORKLIST_INSERT_BP(newdirbp, &mkdir1->md_list);
2496 		FREE_LOCK(&lk);
2497 		bdwrite(newdirbp);
2498 		/*
2499 		 * Dependency on link count increase for parent directory
2500 		 */
2501 		ACQUIRE_LOCK(&lk);
2502 		if (inodedep_lookup(dp->i_fs, dp->i_number, 0, &inodedep) == 0
2503 		    || (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
2504 			dap->da_state &= ~MKDIR_PARENT;
2505 			WORKITEM_FREE(mkdir2, D_MKDIR);
2506 		} else {
2507 			LIST_INSERT_HEAD(&mkdirlisthd, mkdir2, md_mkdirs);
2508 			WORKLIST_INSERT(&inodedep->id_bufwait,&mkdir2->md_list);
2509 		}
2510 	}
2511 	/*
2512 	 * Link into parent directory pagedep to await its being written.
2513 	 */
2514 	if (pagedep_lookup(dp, lbn, DEPALLOC, &pagedep) == 0)
2515 		WORKLIST_INSERT_BP(bp, &pagedep->pd_list);
2516 	dap->da_pagedep = pagedep;
2517 	LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], dap,
2518 	    da_pdlist);
2519 	/*
2520 	 * Link into its inodedep. Put it on the id_bufwait list if the inode
2521 	 * is not yet written. If it is written, do the post-inode write
2522 	 * processing to put it on the id_pendinghd list.
2523 	 */
2524 	(void) inodedep_lookup(fs, newinum, DEPALLOC, &inodedep);
2525 	if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE)
2526 		diradd_inode_written(dap, inodedep);
2527 	else
2528 		WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
2529 	FREE_LOCK(&lk);
2530 }
2531 
2532 /*
2533  * This procedure is called to change the offset of a directory
2534  * entry when compacting a directory block which must be owned
2535  * exclusively by the caller. Note that the actual entry movement
2536  * must be done in this procedure to ensure that no I/O completions
2537  * occur while the move is in progress.
2538  *
2539  * Parameters:
2540  *	dp:	inode for directory
2541  *	base:		address of dp->i_offset
2542  *	oldloc:		address of old directory location
2543  *	newloc:		address of new directory location
2544  *	entrysize:	size of directory entry
2545  */
2546 void
2547 softdep_change_directoryentry_offset(struct inode *dp, caddr_t base,
2548 				     caddr_t oldloc, caddr_t newloc,
2549 				     int entrysize)
2550 {
2551 	int offset, oldoffset, newoffset;
2552 	struct pagedep *pagedep;
2553 	struct diradd *dap;
2554 	ufs_lbn_t lbn;
2555 
2556 	ACQUIRE_LOCK(&lk);
2557 	lbn = lblkno(dp->i_fs, dp->i_offset);
2558 	offset = blkoff(dp->i_fs, dp->i_offset);
2559 	if (pagedep_lookup(dp, lbn, 0, &pagedep) == 0)
2560 		goto done;
2561 	oldoffset = offset + (oldloc - base);
2562 	newoffset = offset + (newloc - base);
2563 
2564 	LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(oldoffset)], da_pdlist) {
2565 		if (dap->da_offset != oldoffset)
2566 			continue;
2567 		dap->da_offset = newoffset;
2568 		if (DIRADDHASH(newoffset) == DIRADDHASH(oldoffset))
2569 			break;
2570 		LIST_REMOVE(dap, da_pdlist);
2571 		LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(newoffset)],
2572 		    dap, da_pdlist);
2573 		break;
2574 	}
2575 	if (dap == NULL) {
2576 
2577 		LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist) {
2578 			if (dap->da_offset == oldoffset) {
2579 				dap->da_offset = newoffset;
2580 				break;
2581 			}
2582 		}
2583 	}
2584 done:
2585 	bcopy(oldloc, newloc, entrysize);
2586 	FREE_LOCK(&lk);
2587 }
2588 
2589 /*
2590  * Free a diradd dependency structure. This routine must be called
2591  * with splbio interrupts blocked.
2592  */
2593 static void
2594 free_diradd(struct diradd *dap)
2595 {
2596 	struct dirrem *dirrem;
2597 	struct pagedep *pagedep;
2598 	struct inodedep *inodedep;
2599 	struct mkdir *mkdir, *nextmd;
2600 
2601 #ifdef DEBUG
2602 	if (lk.lkt_held == NOHOLDER)
2603 		panic("free_diradd: lock not held");
2604 #endif
2605 	WORKLIST_REMOVE(&dap->da_list);
2606 	LIST_REMOVE(dap, da_pdlist);
2607 	if ((dap->da_state & DIRCHG) == 0) {
2608 		pagedep = dap->da_pagedep;
2609 	} else {
2610 		dirrem = dap->da_previous;
2611 		pagedep = dirrem->dm_pagedep;
2612 		dirrem->dm_dirinum = pagedep->pd_ino;
2613 		add_to_worklist(&dirrem->dm_list);
2614 	}
2615 	if (inodedep_lookup(VFSTOUFS(pagedep->pd_mnt)->um_fs, dap->da_newinum,
2616 	    0, &inodedep) != 0)
2617 		(void) free_inodedep(inodedep);
2618 	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
2619 		for (mkdir = LIST_FIRST(&mkdirlisthd); mkdir; mkdir = nextmd) {
2620 			nextmd = LIST_NEXT(mkdir, md_mkdirs);
2621 			if (mkdir->md_diradd != dap)
2622 				continue;
2623 			dap->da_state &= ~mkdir->md_state;
2624 			WORKLIST_REMOVE(&mkdir->md_list);
2625 			LIST_REMOVE(mkdir, md_mkdirs);
2626 			WORKITEM_FREE(mkdir, D_MKDIR);
2627 		}
2628 		if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
2629 			FREE_LOCK(&lk);
2630 			panic("free_diradd: unfound ref");
2631 		}
2632 	}
2633 	WORKITEM_FREE(dap, D_DIRADD);
2634 }
2635 
2636 /*
2637  * Directory entry removal dependencies.
2638  *
2639  * When removing a directory entry, the entry's inode pointer must be
2640  * zero'ed on disk before the corresponding inode's link count is decremented
2641  * (possibly freeing the inode for re-use). This dependency is handled by
2642  * updating the directory entry but delaying the inode count reduction until
2643  * after the directory block has been written to disk. After this point, the
2644  * inode count can be decremented whenever it is convenient.
2645  */
2646 
2647 /*
2648  * This routine should be called immediately after removing
2649  * a directory entry.  The inode's link count should not be
2650  * decremented by the calling procedure -- the soft updates
2651  * code will do this task when it is safe.
2652  *
2653  * Parameters:
2654  *	bp:		buffer containing directory block
2655  *	dp:		inode for the directory being modified
2656  *	ip:		inode for directory entry being removed
2657  *	isrmdir:	indicates if doing RMDIR
2658  */
2659 void
2660 softdep_setup_remove(struct buf *bp, struct inode *dp, struct inode *ip,
2661 		     int isrmdir)
2662 {
2663 	struct dirrem *dirrem, *prevdirrem;
2664 
2665 	/*
2666 	 * Allocate a new dirrem if appropriate and ACQUIRE_LOCK.
2667 	 */
2668 	dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
2669 
2670 	/*
2671 	 * If the COMPLETE flag is clear, then there were no active
2672 	 * entries and we want to roll back to a zeroed entry until
2673 	 * the new inode is committed to disk. If the COMPLETE flag is
2674 	 * set then we have deleted an entry that never made it to
2675 	 * disk. If the entry we deleted resulted from a name change,
2676 	 * then the old name still resides on disk. We cannot delete
2677 	 * its inode (returned to us in prevdirrem) until the zeroed
2678 	 * directory entry gets to disk. The new inode has never been
2679 	 * referenced on the disk, so can be deleted immediately.
2680 	 */
2681 	if ((dirrem->dm_state & COMPLETE) == 0) {
2682 		LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, dirrem,
2683 		    dm_next);
2684 		FREE_LOCK(&lk);
2685 	} else {
2686 		if (prevdirrem != NULL)
2687 			LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd,
2688 			    prevdirrem, dm_next);
2689 		dirrem->dm_dirinum = dirrem->dm_pagedep->pd_ino;
2690 		FREE_LOCK(&lk);
2691 		handle_workitem_remove(dirrem);
2692 	}
2693 }
2694 
2695 /*
2696  * Allocate a new dirrem if appropriate and return it along with
2697  * its associated pagedep. Called without a lock, returns with lock.
2698  */
2699 static long num_dirrem;		/* number of dirrem allocated */
2700 
2701 /*
2702  * Parameters:
2703  *	bp:		buffer containing directory block
2704  *	dp:		inode for the directory being modified
2705  *	ip:		inode for directory entry being removed
2706  *	isrmdir:	indicates if doing RMDIR
2707  *	prevdirremp:	previously referenced inode, if any
2708  */
2709 static struct dirrem *
2710 newdirrem(struct buf *bp, struct inode *dp, struct inode *ip,
2711 	  int isrmdir, struct dirrem **prevdirremp)
2712 {
2713 	int offset;
2714 	ufs_lbn_t lbn;
2715 	struct diradd *dap;
2716 	struct dirrem *dirrem;
2717 	struct pagedep *pagedep;
2718 
2719 	/*
2720 	 * Whiteouts have no deletion dependencies.
2721 	 */
2722 	if (ip == NULL)
2723 		panic("newdirrem: whiteout");
2724 	/*
2725 	 * If we are over our limit, try to improve the situation.
2726 	 * Limiting the number of dirrem structures will also limit
2727 	 * the number of freefile and freeblks structures.
2728 	 */
2729 	if (num_dirrem > max_softdeps / 2 && speedup_syncer() == 0)
2730 		(void) request_cleanup(FLUSH_REMOVE, 0);
2731 	num_dirrem += 1;
2732 	MALLOC(dirrem, struct dirrem *, sizeof(struct dirrem),
2733 		M_DIRREM, M_SOFTDEP_FLAGS | M_ZERO);
2734 	dirrem->dm_list.wk_type = D_DIRREM;
2735 	dirrem->dm_state = isrmdir ? RMDIR : 0;
2736 	dirrem->dm_mnt = ITOV(ip)->v_mount;
2737 	dirrem->dm_oldinum = ip->i_number;
2738 	*prevdirremp = NULL;
2739 
2740 	ACQUIRE_LOCK(&lk);
2741 	lbn = lblkno(dp->i_fs, dp->i_offset);
2742 	offset = blkoff(dp->i_fs, dp->i_offset);
2743 	if (pagedep_lookup(dp, lbn, DEPALLOC, &pagedep) == 0)
2744 		WORKLIST_INSERT_BP(bp, &pagedep->pd_list);
2745 	dirrem->dm_pagedep = pagedep;
2746 	/*
2747 	 * Check for a diradd dependency for the same directory entry.
2748 	 * If present, then both dependencies become obsolete and can
2749 	 * be de-allocated. Check for an entry on both the pd_dirraddhd
2750 	 * list and the pd_pendinghd list.
2751 	 */
2752 
2753 	LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(offset)], da_pdlist)
2754 		if (dap->da_offset == offset)
2755 			break;
2756 	if (dap == NULL) {
2757 
2758 		LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist)
2759 			if (dap->da_offset == offset)
2760 				break;
2761 		if (dap == NULL)
2762 			return (dirrem);
2763 	}
2764 	/*
2765 	 * Must be ATTACHED at this point.
2766 	 */
2767 	if ((dap->da_state & ATTACHED) == 0) {
2768 		FREE_LOCK(&lk);
2769 		panic("newdirrem: not ATTACHED");
2770 	}
2771 	if (dap->da_newinum != ip->i_number) {
2772 		FREE_LOCK(&lk);
2773 		panic("newdirrem: inum %"PRId64" should be %"PRId64,
2774 		    ip->i_number, dap->da_newinum);
2775 	}
2776 	/*
2777 	 * If we are deleting a changed name that never made it to disk,
2778 	 * then return the dirrem describing the previous inode (which
2779 	 * represents the inode currently referenced from this entry on disk).
2780 	 */
2781 	if ((dap->da_state & DIRCHG) != 0) {
2782 		*prevdirremp = dap->da_previous;
2783 		dap->da_state &= ~DIRCHG;
2784 		dap->da_pagedep = pagedep;
2785 	}
2786 	/*
2787 	 * We are deleting an entry that never made it to disk.
2788 	 * Mark it COMPLETE so we can delete its inode immediately.
2789 	 */
2790 	dirrem->dm_state |= COMPLETE;
2791 	free_diradd(dap);
2792 	return (dirrem);
2793 }
2794 
2795 /*
2796  * Directory entry change dependencies.
2797  *
2798  * Changing an existing directory entry requires that an add operation
2799  * be completed first followed by a deletion. The semantics for the addition
2800  * are identical to the description of adding a new entry above except
2801  * that the rollback is to the old inode number rather than zero. Once
2802  * the addition dependency is completed, the removal is done as described
2803  * in the removal routine above.
2804  */
2805 
2806 /*
2807  * This routine should be called immediately after changing
2808  * a directory entry.  The inode's link count should not be
2809  * decremented by the calling procedure -- the soft updates
2810  * code will perform this task when it is safe.
2811  *
2812  * Parameters:
2813  *	bp:		buffer containing directory block
2814  *	dp:		inode for the directory being modified
2815  *	ip:		inode for directory entry being removed
2816  *	newinum:	new inode number for changed entry
2817  *	isrmdir:	indicates if doing RMDIR
2818  */
2819 void
2820 softdep_setup_directory_change(struct buf *bp, struct inode *dp,
2821 			       struct inode *ip, ino_t newinum,
2822 			       int isrmdir)
2823 {
2824 	int offset;
2825 	struct diradd *dap = NULL;
2826 	struct dirrem *dirrem, *prevdirrem;
2827 	struct pagedep *pagedep;
2828 	struct inodedep *inodedep;
2829 
2830 	offset = blkoff(dp->i_fs, dp->i_offset);
2831 
2832 	/*
2833 	 * Whiteouts do not need diradd dependencies.
2834 	 */
2835 	if (newinum != WINO) {
2836 		MALLOC(dap, struct diradd *, sizeof(struct diradd),
2837 		    M_DIRADD, M_SOFTDEP_FLAGS | M_ZERO);
2838 		dap->da_list.wk_type = D_DIRADD;
2839 		dap->da_state = DIRCHG | ATTACHED | DEPCOMPLETE;
2840 		dap->da_offset = offset;
2841 		dap->da_newinum = newinum;
2842 	}
2843 
2844 	/*
2845 	 * Allocate a new dirrem and ACQUIRE_LOCK.
2846 	 */
2847 	dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
2848 	pagedep = dirrem->dm_pagedep;
2849 	/*
2850 	 * The possible values for isrmdir:
2851 	 *	0 - non-directory file rename
2852 	 *	1 - directory rename within same directory
2853 	 *   inum - directory rename to new directory of given inode number
2854 	 * When renaming to a new directory, we are both deleting and
2855 	 * creating a new directory entry, so the link count on the new
2856 	 * directory should not change. Thus we do not need the followup
2857 	 * dirrem which is usually done in handle_workitem_remove. We set
2858 	 * the DIRCHG flag to tell handle_workitem_remove to skip the
2859 	 * followup dirrem.
2860 	 */
2861 	if (isrmdir > 1)
2862 		dirrem->dm_state |= DIRCHG;
2863 
2864 	/*
2865 	 * Whiteouts have no additional dependencies,
2866 	 * so just put the dirrem on the correct list.
2867 	 */
2868 	if (newinum == WINO) {
2869 		if ((dirrem->dm_state & COMPLETE) == 0) {
2870 			LIST_INSERT_HEAD(&pagedep->pd_dirremhd, dirrem,
2871 			    dm_next);
2872 		} else {
2873 			dirrem->dm_dirinum = pagedep->pd_ino;
2874 			add_to_worklist(&dirrem->dm_list);
2875 		}
2876 		FREE_LOCK(&lk);
2877 		return;
2878 	}
2879 
2880 	/*
2881 	 * If the COMPLETE flag is clear, then there were no active
2882 	 * entries and we want to roll back to the previous inode until
2883 	 * the new inode is committed to disk. If the COMPLETE flag is
2884 	 * set, then we have deleted an entry that never made it to disk.
2885 	 * If the entry we deleted resulted from a name change, then the old
2886 	 * inode reference still resides on disk. Any rollback that we do
2887 	 * needs to be to that old inode (returned to us in prevdirrem). If
2888 	 * the entry we deleted resulted from a create, then there is
2889 	 * no entry on the disk, so we want to roll back to zero rather
2890 	 * than the uncommitted inode. In either of the COMPLETE cases we
2891 	 * want to immediately free the unwritten and unreferenced inode.
2892 	 */
2893 	if ((dirrem->dm_state & COMPLETE) == 0) {
2894 		dap->da_previous = dirrem;
2895 	} else {
2896 		if (prevdirrem != NULL) {
2897 			dap->da_previous = prevdirrem;
2898 		} else {
2899 			dap->da_state &= ~DIRCHG;
2900 			dap->da_pagedep = pagedep;
2901 		}
2902 		dirrem->dm_dirinum = pagedep->pd_ino;
2903 		add_to_worklist(&dirrem->dm_list);
2904 	}
2905 	/*
2906 	 * Link into its inodedep. Put it on the id_bufwait list if the inode
2907 	 * is not yet written. If it is written, do the post-inode write
2908 	 * processing to put it on the id_pendinghd list.
2909 	 */
2910 	if (inodedep_lookup(dp->i_fs, newinum, DEPALLOC, &inodedep) == 0 ||
2911 	    (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
2912 		dap->da_state |= COMPLETE;
2913 		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
2914 		WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
2915 	} else {
2916 		LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)],
2917 		    dap, da_pdlist);
2918 		WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
2919 	}
2920 	FREE_LOCK(&lk);
2921 }
2922 
2923 /*
2924  * Called whenever the link count on an inode is changed.
2925  * It creates an inode dependency so that the new reference(s)
2926  * to the inode cannot be committed to disk until the updated
2927  * inode has been written.
2928  *
2929  * Parameters:
2930  *	ip:	the inode with the increased link count
2931  */
2932 void
2933 softdep_change_linkcnt(struct inode *ip)
2934 {
2935 	struct inodedep *inodedep;
2936 
2937 	ACQUIRE_LOCK(&lk);
2938 	(void) inodedep_lookup(ip->i_fs, ip->i_number, DEPALLOC, &inodedep);
2939 	if (ip->i_nlink < ip->i_effnlink) {
2940 		FREE_LOCK(&lk);
2941 		panic("softdep_change_linkcnt: bad delta");
2942 	}
2943 	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
2944 	FREE_LOCK(&lk);
2945 }
2946 
2947 /*
2948  * This workitem decrements the inode's link count.
2949  * If the link count reaches zero, the file is removed.
2950  */
2951 static void
2952 handle_workitem_remove(struct dirrem *dirrem)
2953 {
2954 	struct inodedep *inodedep;
2955 	struct vnode *vp;
2956 	struct inode *ip;
2957 	ino_t oldinum;
2958 	int error;
2959 
2960 	error = VFS_VGET(dirrem->dm_mnt, NULL, dirrem->dm_oldinum, &vp);
2961 	if (error) {
2962 		softdep_error("handle_workitem_remove: vget", error);
2963 		return;
2964 	}
2965 	ip = VTOI(vp);
2966 	ACQUIRE_LOCK(&lk);
2967 	if ((inodedep_lookup(ip->i_fs, dirrem->dm_oldinum, 0, &inodedep)) == 0){
2968 		FREE_LOCK(&lk);
2969 		panic("handle_workitem_remove: lost inodedep");
2970 	}
2971 	/*
2972 	 * Normal file deletion.
2973 	 */
2974 	if ((dirrem->dm_state & RMDIR) == 0) {
2975 		ip->i_nlink--;
2976 		ip->i_flag |= IN_CHANGE;
2977 		if (ip->i_nlink < ip->i_effnlink) {
2978 			FREE_LOCK(&lk);
2979 			panic("handle_workitem_remove: bad file delta");
2980 		}
2981 		inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
2982 		FREE_LOCK(&lk);
2983 		vput(vp);
2984 		num_dirrem -= 1;
2985 		WORKITEM_FREE(dirrem, D_DIRREM);
2986 		return;
2987 	}
2988 	/*
2989 	 * Directory deletion. Decrement reference count for both the
2990 	 * just deleted parent directory entry and the reference for ".".
2991 	 * Next truncate the directory to length zero. When the
2992 	 * truncation completes, arrange to have the reference count on
2993 	 * the parent decremented to account for the loss of "..".
2994 	 */
2995 	ip->i_nlink -= 2;
2996 	ip->i_flag |= IN_CHANGE;
2997 	if (ip->i_nlink < ip->i_effnlink) {
2998 		FREE_LOCK(&lk);
2999 		panic("handle_workitem_remove: bad dir delta");
3000 	}
3001 	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
3002 	FREE_LOCK(&lk);
3003 	if ((error = ffs_truncate(vp, (off_t)0, 0, proc0.p_ucred)) != 0)
3004 		softdep_error("handle_workitem_remove: truncate", error);
3005 	/*
3006 	 * Rename a directory to a new parent. Since, we are both deleting
3007 	 * and creating a new directory entry, the link count on the new
3008 	 * directory should not change. Thus we skip the followup dirrem.
3009 	 */
3010 	if (dirrem->dm_state & DIRCHG) {
3011 		vput(vp);
3012 		num_dirrem -= 1;
3013 		WORKITEM_FREE(dirrem, D_DIRREM);
3014 		return;
3015 	}
3016 	/*
3017 	 * If the inodedep does not exist, then the zero'ed inode has
3018 	 * been written to disk. If the allocated inode has never been
3019 	 * written to disk, then the on-disk inode is zero'ed. In either
3020 	 * case we can remove the file immediately.
3021 	 */
3022 	ACQUIRE_LOCK(&lk);
3023 	dirrem->dm_state = 0;
3024 	oldinum = dirrem->dm_oldinum;
3025 	dirrem->dm_oldinum = dirrem->dm_dirinum;
3026 	if (inodedep_lookup(ip->i_fs, oldinum, 0, &inodedep) == 0 ||
3027 	    check_inode_unwritten(inodedep)) {
3028 		FREE_LOCK(&lk);
3029 		vput(vp);
3030 		handle_workitem_remove(dirrem);
3031 		return;
3032 	}
3033 	WORKLIST_INSERT(&inodedep->id_inowait, &dirrem->dm_list);
3034 	FREE_LOCK(&lk);
3035 	ip->i_flag |= IN_CHANGE;
3036 	ffs_update(vp, 0);
3037 	vput(vp);
3038 }
3039 
3040 /*
3041  * Inode de-allocation dependencies.
3042  *
3043  * When an inode's link count is reduced to zero, it can be de-allocated. We
3044  * found it convenient to postpone de-allocation until after the inode is
3045  * written to disk with its new link count (zero).  At this point, all of the
3046  * on-disk inode's block pointers are nullified and, with careful dependency
3047  * list ordering, all dependencies related to the inode will be satisfied and
3048  * the corresponding dependency structures de-allocated.  So, if/when the
3049  * inode is reused, there will be no mixing of old dependencies with new
3050  * ones.  This artificial dependency is set up by the block de-allocation
3051  * procedure above (softdep_setup_freeblocks) and completed by the
3052  * following procedure.
3053  */
3054 static void
3055 handle_workitem_freefile(struct freefile *freefile)
3056 {
3057 	struct vnode vp;
3058 	struct inode tip;
3059 	struct inodedep *idp;
3060 	int error;
3061 
3062 #ifdef DEBUG
3063 	ACQUIRE_LOCK(&lk);
3064 	error = inodedep_lookup(freefile->fx_fs, freefile->fx_oldinum, 0, &idp);
3065 	FREE_LOCK(&lk);
3066 	if (error)
3067 		panic("handle_workitem_freefile: inodedep survived");
3068 #endif
3069 	tip.i_devvp = freefile->fx_devvp;
3070 	tip.i_dev = freefile->fx_devvp->v_rdev;
3071 	tip.i_fs = freefile->fx_fs;
3072 	vp.v_data = &tip;
3073 	if ((error = ffs_freefile(&vp, freefile->fx_oldinum, freefile->fx_mode)) != 0)
3074 		softdep_error("handle_workitem_freefile", error);
3075 	WORKITEM_FREE(freefile, D_FREEFILE);
3076 }
3077 
3078 /*
3079  * Helper function which unlinks marker element from work list and returns
3080  * the next element on the list.
3081  */
3082 static __inline struct worklist *
3083 markernext(struct worklist *marker)
3084 {
3085 	struct worklist *next;
3086 
3087 	next = LIST_NEXT(marker, wk_list);
3088 	LIST_REMOVE(marker, wk_list);
3089 	return next;
3090 }
3091 
3092 /*
3093  * checkread, checkwrite
3094  *
3095  * bioops callback - hold io_token
3096  */
3097 static  int
3098 softdep_checkread(struct buf *bp)
3099 {
3100 	/* nothing to do, mp lock not needed */
3101 	return(0);
3102 }
3103 
3104 /*
3105  * bioops callback - hold io_token
3106  */
3107 static  int
3108 softdep_checkwrite(struct buf *bp)
3109 {
3110 	/* nothing to do, mp lock not needed */
3111 	return(0);
3112 }
3113 
3114 /*
3115  * Disk writes.
3116  *
3117  * The dependency structures constructed above are most actively used when file
3118  * system blocks are written to disk.  No constraints are placed on when a
3119  * block can be written, but unsatisfied update dependencies are made safe by
3120  * modifying (or replacing) the source memory for the duration of the disk
3121  * write.  When the disk write completes, the memory block is again brought
3122  * up-to-date.
3123  *
3124  * In-core inode structure reclamation.
3125  *
3126  * Because there are a finite number of "in-core" inode structures, they are
3127  * reused regularly.  By transferring all inode-related dependencies to the
3128  * in-memory inode block and indexing them separately (via "inodedep"s), we
3129  * can allow "in-core" inode structures to be reused at any time and avoid
3130  * any increase in contention.
3131  *
3132  * Called just before entering the device driver to initiate a new disk I/O.
3133  * The buffer must be locked, thus, no I/O completion operations can occur
3134  * while we are manipulating its associated dependencies.
3135  *
3136  * bioops callback - hold io_token
3137  *
3138  * Parameters:
3139  *	bp:	structure describing disk write to occur
3140  */
3141 static void
3142 softdep_disk_io_initiation(struct buf *bp)
3143 {
3144 	struct worklist *wk;
3145 	struct worklist marker;
3146 	struct indirdep *indirdep;
3147 
3148 	/*
3149 	 * We only care about write operations. There should never
3150 	 * be dependencies for reads.
3151 	 */
3152 	if (bp->b_cmd == BUF_CMD_READ)
3153 		panic("softdep_disk_io_initiation: read");
3154 
3155 	get_mplock();
3156 	marker.wk_type = D_LAST + 1;	/* Not a normal workitem */
3157 
3158 	/*
3159 	 * Do any necessary pre-I/O processing.
3160 	 */
3161 	for (wk = LIST_FIRST(&bp->b_dep); wk; wk = markernext(&marker)) {
3162 		LIST_INSERT_AFTER(wk, &marker, wk_list);
3163 
3164 		switch (wk->wk_type) {
3165 		case D_PAGEDEP:
3166 			initiate_write_filepage(WK_PAGEDEP(wk), bp);
3167 			continue;
3168 
3169 		case D_INODEDEP:
3170 			initiate_write_inodeblock(WK_INODEDEP(wk), bp);
3171 			continue;
3172 
3173 		case D_INDIRDEP:
3174 			indirdep = WK_INDIRDEP(wk);
3175 			if (indirdep->ir_state & GOINGAWAY)
3176 				panic("disk_io_initiation: indirdep gone");
3177 			/*
3178 			 * If there are no remaining dependencies, this
3179 			 * will be writing the real pointers, so the
3180 			 * dependency can be freed.
3181 			 */
3182 			if (LIST_FIRST(&indirdep->ir_deplisthd) == NULL) {
3183 				indirdep->ir_savebp->b_flags |= B_INVAL | B_NOCACHE;
3184 				brelse(indirdep->ir_savebp);
3185 				/* inline expand WORKLIST_REMOVE(wk); */
3186 				wk->wk_state &= ~ONWORKLIST;
3187 				LIST_REMOVE(wk, wk_list);
3188 				WORKITEM_FREE(indirdep, D_INDIRDEP);
3189 				continue;
3190 			}
3191 			/*
3192 			 * Replace up-to-date version with safe version.
3193 			 */
3194 			MALLOC(indirdep->ir_saveddata, caddr_t, bp->b_bcount,
3195 			    M_INDIRDEP, M_SOFTDEP_FLAGS);
3196 			ACQUIRE_LOCK(&lk);
3197 			indirdep->ir_state &= ~ATTACHED;
3198 			indirdep->ir_state |= UNDONE;
3199 			bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount);
3200 			bcopy(indirdep->ir_savebp->b_data, bp->b_data,
3201 			    bp->b_bcount);
3202 			FREE_LOCK(&lk);
3203 			continue;
3204 
3205 		case D_MKDIR:
3206 		case D_BMSAFEMAP:
3207 		case D_ALLOCDIRECT:
3208 		case D_ALLOCINDIR:
3209 			continue;
3210 
3211 		default:
3212 			panic("handle_disk_io_initiation: Unexpected type %s",
3213 			    TYPENAME(wk->wk_type));
3214 			/* NOTREACHED */
3215 		}
3216 	}
3217 	rel_mplock();
3218 }
3219 
3220 /*
3221  * Called from within the procedure above to deal with unsatisfied
3222  * allocation dependencies in a directory. The buffer must be locked,
3223  * thus, no I/O completion operations can occur while we are
3224  * manipulating its associated dependencies.
3225  */
3226 static void
3227 initiate_write_filepage(struct pagedep *pagedep, struct buf *bp)
3228 {
3229 	struct diradd *dap;
3230 	struct direct *ep;
3231 	int i;
3232 
3233 	if (pagedep->pd_state & IOSTARTED) {
3234 		/*
3235 		 * This can only happen if there is a driver that does not
3236 		 * understand chaining. Here biodone will reissue the call
3237 		 * to strategy for the incomplete buffers.
3238 		 */
3239 		kprintf("initiate_write_filepage: already started\n");
3240 		return;
3241 	}
3242 	pagedep->pd_state |= IOSTARTED;
3243 	ACQUIRE_LOCK(&lk);
3244 	for (i = 0; i < DAHASHSZ; i++) {
3245 		LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
3246 			ep = (struct direct *)
3247 			    ((char *)bp->b_data + dap->da_offset);
3248 			if (ep->d_ino != dap->da_newinum) {
3249 				FREE_LOCK(&lk);
3250 				panic("%s: dir inum %d != new %"PRId64,
3251 				    "initiate_write_filepage",
3252 				    ep->d_ino, dap->da_newinum);
3253 			}
3254 			if (dap->da_state & DIRCHG)
3255 				ep->d_ino = dap->da_previous->dm_oldinum;
3256 			else
3257 				ep->d_ino = 0;
3258 			dap->da_state &= ~ATTACHED;
3259 			dap->da_state |= UNDONE;
3260 		}
3261 	}
3262 	FREE_LOCK(&lk);
3263 }
3264 
3265 /*
3266  * Called from within the procedure above to deal with unsatisfied
3267  * allocation dependencies in an inodeblock. The buffer must be
3268  * locked, thus, no I/O completion operations can occur while we
3269  * are manipulating its associated dependencies.
3270  *
3271  * Parameters:
3272  *	bp:	The inode block
3273  */
3274 static void
3275 initiate_write_inodeblock(struct inodedep *inodedep, struct buf *bp)
3276 {
3277 	struct allocdirect *adp, *lastadp;
3278 	struct ufs1_dinode *dp;
3279 	struct ufs1_dinode *sip;
3280 	struct fs *fs;
3281 	ufs_lbn_t prevlbn = 0;
3282 	int i, deplist;
3283 
3284 	if (inodedep->id_state & IOSTARTED)
3285 		panic("initiate_write_inodeblock: already started");
3286 	inodedep->id_state |= IOSTARTED;
3287 	fs = inodedep->id_fs;
3288 	dp = (struct ufs1_dinode *)bp->b_data +
3289 	    ino_to_fsbo(fs, inodedep->id_ino);
3290 	/*
3291 	 * If the bitmap is not yet written, then the allocated
3292 	 * inode cannot be written to disk.
3293 	 */
3294 	if ((inodedep->id_state & DEPCOMPLETE) == 0) {
3295 		if (inodedep->id_savedino != NULL)
3296 			panic("initiate_write_inodeblock: already doing I/O");
3297 		MALLOC(sip, struct ufs1_dinode *,
3298 		    sizeof(struct ufs1_dinode), M_INODEDEP, M_SOFTDEP_FLAGS);
3299 		inodedep->id_savedino = sip;
3300 		*inodedep->id_savedino = *dp;
3301 		bzero((caddr_t)dp, sizeof(struct ufs1_dinode));
3302 		dp->di_gen = inodedep->id_savedino->di_gen;
3303 		return;
3304 	}
3305 	/*
3306 	 * If no dependencies, then there is nothing to roll back.
3307 	 */
3308 	inodedep->id_savedsize = dp->di_size;
3309 	if (TAILQ_FIRST(&inodedep->id_inoupdt) == NULL)
3310 		return;
3311 	/*
3312 	 * Set the dependencies to busy.
3313 	 */
3314 	ACQUIRE_LOCK(&lk);
3315 	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
3316 	     adp = TAILQ_NEXT(adp, ad_next)) {
3317 #ifdef DIAGNOSTIC
3318 		if (deplist != 0 && prevlbn >= adp->ad_lbn) {
3319 			FREE_LOCK(&lk);
3320 			panic("softdep_write_inodeblock: lbn order");
3321 		}
3322 		prevlbn = adp->ad_lbn;
3323 		if (adp->ad_lbn < NDADDR &&
3324 		    dp->di_db[adp->ad_lbn] != adp->ad_newblkno) {
3325 			FREE_LOCK(&lk);
3326 			panic("%s: direct pointer #%ld mismatch %d != %d",
3327 			    "softdep_write_inodeblock", adp->ad_lbn,
3328 			    dp->di_db[adp->ad_lbn], adp->ad_newblkno);
3329 		}
3330 		if (adp->ad_lbn >= NDADDR &&
3331 		    dp->di_ib[adp->ad_lbn - NDADDR] != adp->ad_newblkno) {
3332 			FREE_LOCK(&lk);
3333 			panic("%s: indirect pointer #%ld mismatch %d != %d",
3334 			    "softdep_write_inodeblock", adp->ad_lbn - NDADDR,
3335 			    dp->di_ib[adp->ad_lbn - NDADDR], adp->ad_newblkno);
3336 		}
3337 		deplist |= 1 << adp->ad_lbn;
3338 		if ((adp->ad_state & ATTACHED) == 0) {
3339 			FREE_LOCK(&lk);
3340 			panic("softdep_write_inodeblock: Unknown state 0x%x",
3341 			    adp->ad_state);
3342 		}
3343 #endif /* DIAGNOSTIC */
3344 		adp->ad_state &= ~ATTACHED;
3345 		adp->ad_state |= UNDONE;
3346 	}
3347 	/*
3348 	 * The on-disk inode cannot claim to be any larger than the last
3349 	 * fragment that has been written. Otherwise, the on-disk inode
3350 	 * might have fragments that were not the last block in the file
3351 	 * which would corrupt the filesystem.
3352 	 */
3353 	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
3354 	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
3355 		if (adp->ad_lbn >= NDADDR)
3356 			break;
3357 		dp->di_db[adp->ad_lbn] = adp->ad_oldblkno;
3358 		/* keep going until hitting a rollback to a frag */
3359 		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
3360 			continue;
3361 		dp->di_size = fs->fs_bsize * adp->ad_lbn + adp->ad_oldsize;
3362 		for (i = adp->ad_lbn + 1; i < NDADDR; i++) {
3363 #ifdef DIAGNOSTIC
3364 			if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0) {
3365 				FREE_LOCK(&lk);
3366 				panic("softdep_write_inodeblock: lost dep1");
3367 			}
3368 #endif /* DIAGNOSTIC */
3369 			dp->di_db[i] = 0;
3370 		}
3371 		for (i = 0; i < NIADDR; i++) {
3372 #ifdef DIAGNOSTIC
3373 			if (dp->di_ib[i] != 0 &&
3374 			    (deplist & ((1 << NDADDR) << i)) == 0) {
3375 				FREE_LOCK(&lk);
3376 				panic("softdep_write_inodeblock: lost dep2");
3377 			}
3378 #endif /* DIAGNOSTIC */
3379 			dp->di_ib[i] = 0;
3380 		}
3381 		FREE_LOCK(&lk);
3382 		return;
3383 	}
3384 	/*
3385 	 * If we have zero'ed out the last allocated block of the file,
3386 	 * roll back the size to the last currently allocated block.
3387 	 * We know that this last allocated block is a full-sized as
3388 	 * we already checked for fragments in the loop above.
3389 	 */
3390 	if (lastadp != NULL &&
3391 	    dp->di_size <= (lastadp->ad_lbn + 1) * fs->fs_bsize) {
3392 		for (i = lastadp->ad_lbn; i >= 0; i--)
3393 			if (dp->di_db[i] != 0)
3394 				break;
3395 		dp->di_size = (i + 1) * fs->fs_bsize;
3396 	}
3397 	/*
3398 	 * The only dependencies are for indirect blocks.
3399 	 *
3400 	 * The file size for indirect block additions is not guaranteed.
3401 	 * Such a guarantee would be non-trivial to achieve. The conventional
3402 	 * synchronous write implementation also does not make this guarantee.
3403 	 * Fsck should catch and fix discrepancies. Arguably, the file size
3404 	 * can be over-estimated without destroying integrity when the file
3405 	 * moves into the indirect blocks (i.e., is large). If we want to
3406 	 * postpone fsck, we are stuck with this argument.
3407 	 */
3408 	for (; adp; adp = TAILQ_NEXT(adp, ad_next))
3409 		dp->di_ib[adp->ad_lbn - NDADDR] = 0;
3410 	FREE_LOCK(&lk);
3411 }
3412 
3413 /*
3414  * This routine is called during the completion interrupt
3415  * service routine for a disk write (from the procedure called
3416  * by the device driver to inform the filesystem caches of
3417  * a request completion).  It should be called early in this
3418  * procedure, before the block is made available to other
3419  * processes or other routines are called.
3420  *
3421  * bioops callback - hold io_token
3422  *
3423  * Parameters:
3424  *	bp:	describes the completed disk write
3425  */
3426 static void
3427 softdep_disk_write_complete(struct buf *bp)
3428 {
3429 	struct worklist *wk;
3430 	struct workhead reattach;
3431 	struct newblk *newblk;
3432 	struct allocindir *aip;
3433 	struct allocdirect *adp;
3434 	struct indirdep *indirdep;
3435 	struct inodedep *inodedep;
3436 	struct bmsafemap *bmsafemap;
3437 
3438 	get_mplock();
3439 #ifdef DEBUG
3440 	if (lk.lkt_held != NOHOLDER)
3441 		panic("softdep_disk_write_complete: lock is held");
3442 	lk.lkt_held = SPECIAL_FLAG;
3443 #endif
3444 	LIST_INIT(&reattach);
3445 	while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) {
3446 		WORKLIST_REMOVE(wk);
3447 		switch (wk->wk_type) {
3448 
3449 		case D_PAGEDEP:
3450 			if (handle_written_filepage(WK_PAGEDEP(wk), bp))
3451 				WORKLIST_INSERT(&reattach, wk);
3452 			continue;
3453 
3454 		case D_INODEDEP:
3455 			if (handle_written_inodeblock(WK_INODEDEP(wk), bp))
3456 				WORKLIST_INSERT(&reattach, wk);
3457 			continue;
3458 
3459 		case D_BMSAFEMAP:
3460 			bmsafemap = WK_BMSAFEMAP(wk);
3461 			while ((newblk = LIST_FIRST(&bmsafemap->sm_newblkhd))) {
3462 				newblk->nb_state |= DEPCOMPLETE;
3463 				newblk->nb_bmsafemap = NULL;
3464 				LIST_REMOVE(newblk, nb_deps);
3465 			}
3466 			while ((adp =
3467 			   LIST_FIRST(&bmsafemap->sm_allocdirecthd))) {
3468 				adp->ad_state |= DEPCOMPLETE;
3469 				adp->ad_buf = NULL;
3470 				LIST_REMOVE(adp, ad_deps);
3471 				handle_allocdirect_partdone(adp);
3472 			}
3473 			while ((aip =
3474 			    LIST_FIRST(&bmsafemap->sm_allocindirhd))) {
3475 				aip->ai_state |= DEPCOMPLETE;
3476 				aip->ai_buf = NULL;
3477 				LIST_REMOVE(aip, ai_deps);
3478 				handle_allocindir_partdone(aip);
3479 			}
3480 			while ((inodedep =
3481 			     LIST_FIRST(&bmsafemap->sm_inodedephd)) != NULL) {
3482 				inodedep->id_state |= DEPCOMPLETE;
3483 				LIST_REMOVE(inodedep, id_deps);
3484 				inodedep->id_buf = NULL;
3485 			}
3486 			WORKITEM_FREE(bmsafemap, D_BMSAFEMAP);
3487 			continue;
3488 
3489 		case D_MKDIR:
3490 			handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY);
3491 			continue;
3492 
3493 		case D_ALLOCDIRECT:
3494 			adp = WK_ALLOCDIRECT(wk);
3495 			adp->ad_state |= COMPLETE;
3496 			handle_allocdirect_partdone(adp);
3497 			continue;
3498 
3499 		case D_ALLOCINDIR:
3500 			aip = WK_ALLOCINDIR(wk);
3501 			aip->ai_state |= COMPLETE;
3502 			handle_allocindir_partdone(aip);
3503 			continue;
3504 
3505 		case D_INDIRDEP:
3506 			indirdep = WK_INDIRDEP(wk);
3507 			if (indirdep->ir_state & GOINGAWAY) {
3508 				lk.lkt_held = NOHOLDER;
3509 				panic("disk_write_complete: indirdep gone");
3510 			}
3511 			bcopy(indirdep->ir_saveddata, bp->b_data, bp->b_bcount);
3512 			FREE(indirdep->ir_saveddata, M_INDIRDEP);
3513 			indirdep->ir_saveddata = 0;
3514 			indirdep->ir_state &= ~UNDONE;
3515 			indirdep->ir_state |= ATTACHED;
3516 			while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != 0) {
3517 				handle_allocindir_partdone(aip);
3518 				if (aip == LIST_FIRST(&indirdep->ir_donehd)) {
3519 					lk.lkt_held = NOHOLDER;
3520 					panic("disk_write_complete: not gone");
3521 				}
3522 			}
3523 			WORKLIST_INSERT(&reattach, wk);
3524 			if ((bp->b_flags & B_DELWRI) == 0)
3525 				stat_indir_blk_ptrs++;
3526 			bdirty(bp);
3527 			continue;
3528 
3529 		default:
3530 			lk.lkt_held = NOHOLDER;
3531 			panic("handle_disk_write_complete: Unknown type %s",
3532 			    TYPENAME(wk->wk_type));
3533 			/* NOTREACHED */
3534 		}
3535 	}
3536 	/*
3537 	 * Reattach any requests that must be redone.
3538 	 */
3539 	while ((wk = LIST_FIRST(&reattach)) != NULL) {
3540 		WORKLIST_REMOVE(wk);
3541 		WORKLIST_INSERT_BP(bp, wk);
3542 	}
3543 #ifdef DEBUG
3544 	if (lk.lkt_held != SPECIAL_FLAG)
3545 		panic("softdep_disk_write_complete: lock lost");
3546 	lk.lkt_held = NOHOLDER;
3547 #endif
3548 	rel_mplock();
3549 }
3550 
3551 /*
3552  * Called from within softdep_disk_write_complete above. Note that
3553  * this routine is always called from interrupt level with further
3554  * splbio interrupts blocked.
3555  *
3556  * Parameters:
3557  *	adp:	the completed allocdirect
3558  */
3559 static void
3560 handle_allocdirect_partdone(struct allocdirect *adp)
3561 {
3562 	struct allocdirect *listadp;
3563 	struct inodedep *inodedep;
3564 	long bsize;
3565 
3566 	if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
3567 		return;
3568 	if (adp->ad_buf != NULL) {
3569 		lk.lkt_held = NOHOLDER;
3570 		panic("handle_allocdirect_partdone: dangling dep");
3571 	}
3572 	/*
3573 	 * The on-disk inode cannot claim to be any larger than the last
3574 	 * fragment that has been written. Otherwise, the on-disk inode
3575 	 * might have fragments that were not the last block in the file
3576 	 * which would corrupt the filesystem. Thus, we cannot free any
3577 	 * allocdirects after one whose ad_oldblkno claims a fragment as
3578 	 * these blocks must be rolled back to zero before writing the inode.
3579 	 * We check the currently active set of allocdirects in id_inoupdt.
3580 	 */
3581 	inodedep = adp->ad_inodedep;
3582 	bsize = inodedep->id_fs->fs_bsize;
3583 	TAILQ_FOREACH(listadp, &inodedep->id_inoupdt, ad_next) {
3584 		/* found our block */
3585 		if (listadp == adp)
3586 			break;
3587 		/* continue if ad_oldlbn is not a fragment */
3588 		if (listadp->ad_oldsize == 0 ||
3589 		    listadp->ad_oldsize == bsize)
3590 			continue;
3591 		/* hit a fragment */
3592 		return;
3593 	}
3594 	/*
3595 	 * If we have reached the end of the current list without
3596 	 * finding the just finished dependency, then it must be
3597 	 * on the future dependency list. Future dependencies cannot
3598 	 * be freed until they are moved to the current list.
3599 	 */
3600 	if (listadp == NULL) {
3601 #ifdef DEBUG
3602 		TAILQ_FOREACH(listadp, &inodedep->id_newinoupdt, ad_next)
3603 			/* found our block */
3604 			if (listadp == adp)
3605 				break;
3606 		if (listadp == NULL) {
3607 			lk.lkt_held = NOHOLDER;
3608 			panic("handle_allocdirect_partdone: lost dep");
3609 		}
3610 #endif /* DEBUG */
3611 		return;
3612 	}
3613 	/*
3614 	 * If we have found the just finished dependency, then free
3615 	 * it along with anything that follows it that is complete.
3616 	 */
3617 	for (; adp; adp = listadp) {
3618 		listadp = TAILQ_NEXT(adp, ad_next);
3619 		if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
3620 			return;
3621 		free_allocdirect(&inodedep->id_inoupdt, adp, 1);
3622 	}
3623 }
3624 
3625 /*
3626  * Called from within softdep_disk_write_complete above. Note that
3627  * this routine is always called from interrupt level with further
3628  * splbio interrupts blocked.
3629  *
3630  * Parameters:
3631  *	aip:	the completed allocindir
3632  */
3633 static void
3634 handle_allocindir_partdone(struct allocindir *aip)
3635 {
3636 	struct indirdep *indirdep;
3637 
3638 	if ((aip->ai_state & ALLCOMPLETE) != ALLCOMPLETE)
3639 		return;
3640 	if (aip->ai_buf != NULL) {
3641 		lk.lkt_held = NOHOLDER;
3642 		panic("handle_allocindir_partdone: dangling dependency");
3643 	}
3644 	indirdep = aip->ai_indirdep;
3645 	if (indirdep->ir_state & UNDONE) {
3646 		LIST_REMOVE(aip, ai_next);
3647 		LIST_INSERT_HEAD(&indirdep->ir_donehd, aip, ai_next);
3648 		return;
3649 	}
3650 	((ufs_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] =
3651 	    aip->ai_newblkno;
3652 	LIST_REMOVE(aip, ai_next);
3653 	if (aip->ai_freefrag != NULL)
3654 		add_to_worklist(&aip->ai_freefrag->ff_list);
3655 	WORKITEM_FREE(aip, D_ALLOCINDIR);
3656 }
3657 
3658 /*
3659  * Called from within softdep_disk_write_complete above to restore
3660  * in-memory inode block contents to their most up-to-date state. Note
3661  * that this routine is always called from interrupt level with further
3662  * splbio interrupts blocked.
3663  *
3664  * Parameters:
3665  *	bp:	buffer containing the inode block
3666  */
3667 static int
3668 handle_written_inodeblock(struct inodedep *inodedep, struct buf *bp)
3669 {
3670 	struct worklist *wk, *filefree;
3671 	struct allocdirect *adp, *nextadp;
3672 	struct ufs1_dinode *dp;
3673 	int hadchanges;
3674 
3675 	if ((inodedep->id_state & IOSTARTED) == 0) {
3676 		lk.lkt_held = NOHOLDER;
3677 		panic("handle_written_inodeblock: not started");
3678 	}
3679 	inodedep->id_state &= ~IOSTARTED;
3680 	dp = (struct ufs1_dinode *)bp->b_data +
3681 	    ino_to_fsbo(inodedep->id_fs, inodedep->id_ino);
3682 	/*
3683 	 * If we had to rollback the inode allocation because of
3684 	 * bitmaps being incomplete, then simply restore it.
3685 	 * Keep the block dirty so that it will not be reclaimed until
3686 	 * all associated dependencies have been cleared and the
3687 	 * corresponding updates written to disk.
3688 	 */
3689 	if (inodedep->id_savedino != NULL) {
3690 		*dp = *inodedep->id_savedino;
3691 		FREE(inodedep->id_savedino, M_INODEDEP);
3692 		inodedep->id_savedino = NULL;
3693 		if ((bp->b_flags & B_DELWRI) == 0)
3694 			stat_inode_bitmap++;
3695 		bdirty(bp);
3696 		return (1);
3697 	}
3698 	inodedep->id_state |= COMPLETE;
3699 	/*
3700 	 * Roll forward anything that had to be rolled back before
3701 	 * the inode could be updated.
3702 	 */
3703 	hadchanges = 0;
3704 	for (adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; adp = nextadp) {
3705 		nextadp = TAILQ_NEXT(adp, ad_next);
3706 		if (adp->ad_state & ATTACHED) {
3707 			lk.lkt_held = NOHOLDER;
3708 			panic("handle_written_inodeblock: new entry");
3709 		}
3710 		if (adp->ad_lbn < NDADDR) {
3711 			if (dp->di_db[adp->ad_lbn] != adp->ad_oldblkno) {
3712 				lk.lkt_held = NOHOLDER;
3713 				panic("%s: %s #%ld mismatch %d != %d",
3714 				    "handle_written_inodeblock",
3715 				    "direct pointer", adp->ad_lbn,
3716 				    dp->di_db[adp->ad_lbn], adp->ad_oldblkno);
3717 			}
3718 			dp->di_db[adp->ad_lbn] = adp->ad_newblkno;
3719 		} else {
3720 			if (dp->di_ib[adp->ad_lbn - NDADDR] != 0) {
3721 				lk.lkt_held = NOHOLDER;
3722 				panic("%s: %s #%ld allocated as %d",
3723 				    "handle_written_inodeblock",
3724 				    "indirect pointer", adp->ad_lbn - NDADDR,
3725 				    dp->di_ib[adp->ad_lbn - NDADDR]);
3726 			}
3727 			dp->di_ib[adp->ad_lbn - NDADDR] = adp->ad_newblkno;
3728 		}
3729 		adp->ad_state &= ~UNDONE;
3730 		adp->ad_state |= ATTACHED;
3731 		hadchanges = 1;
3732 	}
3733 	if (hadchanges && (bp->b_flags & B_DELWRI) == 0)
3734 		stat_direct_blk_ptrs++;
3735 	/*
3736 	 * Reset the file size to its most up-to-date value.
3737 	 */
3738 	if (inodedep->id_savedsize == -1) {
3739 		lk.lkt_held = NOHOLDER;
3740 		panic("handle_written_inodeblock: bad size");
3741 	}
3742 	if (dp->di_size != inodedep->id_savedsize) {
3743 		dp->di_size = inodedep->id_savedsize;
3744 		hadchanges = 1;
3745 	}
3746 	inodedep->id_savedsize = -1;
3747 	/*
3748 	 * If there were any rollbacks in the inode block, then it must be
3749 	 * marked dirty so that its will eventually get written back in
3750 	 * its correct form.
3751 	 */
3752 	if (hadchanges)
3753 		bdirty(bp);
3754 	/*
3755 	 * Process any allocdirects that completed during the update.
3756 	 */
3757 	if ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL)
3758 		handle_allocdirect_partdone(adp);
3759 	/*
3760 	 * Process deallocations that were held pending until the
3761 	 * inode had been written to disk. Freeing of the inode
3762 	 * is delayed until after all blocks have been freed to
3763 	 * avoid creation of new <vfsid, inum, lbn> triples
3764 	 * before the old ones have been deleted.
3765 	 */
3766 	filefree = NULL;
3767 	while ((wk = LIST_FIRST(&inodedep->id_bufwait)) != NULL) {
3768 		WORKLIST_REMOVE(wk);
3769 		switch (wk->wk_type) {
3770 
3771 		case D_FREEFILE:
3772 			/*
3773 			 * We defer adding filefree to the worklist until
3774 			 * all other additions have been made to ensure
3775 			 * that it will be done after all the old blocks
3776 			 * have been freed.
3777 			 */
3778 			if (filefree != NULL) {
3779 				lk.lkt_held = NOHOLDER;
3780 				panic("handle_written_inodeblock: filefree");
3781 			}
3782 			filefree = wk;
3783 			continue;
3784 
3785 		case D_MKDIR:
3786 			handle_written_mkdir(WK_MKDIR(wk), MKDIR_PARENT);
3787 			continue;
3788 
3789 		case D_DIRADD:
3790 			diradd_inode_written(WK_DIRADD(wk), inodedep);
3791 			continue;
3792 
3793 		case D_FREEBLKS:
3794 			wk->wk_state |= COMPLETE;
3795 			if ((wk->wk_state  & ALLCOMPLETE) != ALLCOMPLETE)
3796 				continue;
3797 			/* -- fall through -- */
3798 		case D_FREEFRAG:
3799 		case D_DIRREM:
3800 			add_to_worklist(wk);
3801 			continue;
3802 
3803 		default:
3804 			lk.lkt_held = NOHOLDER;
3805 			panic("handle_written_inodeblock: Unknown type %s",
3806 			    TYPENAME(wk->wk_type));
3807 			/* NOTREACHED */
3808 		}
3809 	}
3810 	if (filefree != NULL) {
3811 		if (free_inodedep(inodedep) == 0) {
3812 			lk.lkt_held = NOHOLDER;
3813 			panic("handle_written_inodeblock: live inodedep");
3814 		}
3815 		add_to_worklist(filefree);
3816 		return (0);
3817 	}
3818 
3819 	/*
3820 	 * If no outstanding dependencies, free it.
3821 	 */
3822 	if (free_inodedep(inodedep) || TAILQ_FIRST(&inodedep->id_inoupdt) == 0)
3823 		return (0);
3824 	return (hadchanges);
3825 }
3826 
3827 /*
3828  * Process a diradd entry after its dependent inode has been written.
3829  * This routine must be called with splbio interrupts blocked.
3830  */
3831 static void
3832 diradd_inode_written(struct diradd *dap, struct inodedep *inodedep)
3833 {
3834 	struct pagedep *pagedep;
3835 
3836 	dap->da_state |= COMPLETE;
3837 	if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
3838 		if (dap->da_state & DIRCHG)
3839 			pagedep = dap->da_previous->dm_pagedep;
3840 		else
3841 			pagedep = dap->da_pagedep;
3842 		LIST_REMOVE(dap, da_pdlist);
3843 		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
3844 	}
3845 	WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
3846 }
3847 
3848 /*
3849  * Handle the completion of a mkdir dependency.
3850  */
3851 static void
3852 handle_written_mkdir(struct mkdir *mkdir, int type)
3853 {
3854 	struct diradd *dap;
3855 	struct pagedep *pagedep;
3856 
3857 	if (mkdir->md_state != type) {
3858 		lk.lkt_held = NOHOLDER;
3859 		panic("handle_written_mkdir: bad type");
3860 	}
3861 	dap = mkdir->md_diradd;
3862 	dap->da_state &= ~type;
3863 	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0)
3864 		dap->da_state |= DEPCOMPLETE;
3865 	if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
3866 		if (dap->da_state & DIRCHG)
3867 			pagedep = dap->da_previous->dm_pagedep;
3868 		else
3869 			pagedep = dap->da_pagedep;
3870 		LIST_REMOVE(dap, da_pdlist);
3871 		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
3872 	}
3873 	LIST_REMOVE(mkdir, md_mkdirs);
3874 	WORKITEM_FREE(mkdir, D_MKDIR);
3875 }
3876 
3877 /*
3878  * Called from within softdep_disk_write_complete above.
3879  * A write operation was just completed. Removed inodes can
3880  * now be freed and associated block pointers may be committed.
3881  * Note that this routine is always called from interrupt level
3882  * with further splbio interrupts blocked.
3883  *
3884  * Parameters:
3885  *	bp:	buffer containing the written page
3886  */
3887 static int
3888 handle_written_filepage(struct pagedep *pagedep, struct buf *bp)
3889 {
3890 	struct dirrem *dirrem;
3891 	struct diradd *dap, *nextdap;
3892 	struct direct *ep;
3893 	int i, chgs;
3894 
3895 	if ((pagedep->pd_state & IOSTARTED) == 0) {
3896 		lk.lkt_held = NOHOLDER;
3897 		panic("handle_written_filepage: not started");
3898 	}
3899 	pagedep->pd_state &= ~IOSTARTED;
3900 	/*
3901 	 * Process any directory removals that have been committed.
3902 	 */
3903 	while ((dirrem = LIST_FIRST(&pagedep->pd_dirremhd)) != NULL) {
3904 		LIST_REMOVE(dirrem, dm_next);
3905 		dirrem->dm_dirinum = pagedep->pd_ino;
3906 		add_to_worklist(&dirrem->dm_list);
3907 	}
3908 	/*
3909 	 * Free any directory additions that have been committed.
3910 	 */
3911 	while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
3912 		free_diradd(dap);
3913 	/*
3914 	 * Uncommitted directory entries must be restored.
3915 	 */
3916 	for (chgs = 0, i = 0; i < DAHASHSZ; i++) {
3917 		for (dap = LIST_FIRST(&pagedep->pd_diraddhd[i]); dap;
3918 		     dap = nextdap) {
3919 			nextdap = LIST_NEXT(dap, da_pdlist);
3920 			if (dap->da_state & ATTACHED) {
3921 				lk.lkt_held = NOHOLDER;
3922 				panic("handle_written_filepage: attached");
3923 			}
3924 			ep = (struct direct *)
3925 			    ((char *)bp->b_data + dap->da_offset);
3926 			ep->d_ino = dap->da_newinum;
3927 			dap->da_state &= ~UNDONE;
3928 			dap->da_state |= ATTACHED;
3929 			chgs = 1;
3930 			/*
3931 			 * If the inode referenced by the directory has
3932 			 * been written out, then the dependency can be
3933 			 * moved to the pending list.
3934 			 */
3935 			if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
3936 				LIST_REMOVE(dap, da_pdlist);
3937 				LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap,
3938 				    da_pdlist);
3939 			}
3940 		}
3941 	}
3942 	/*
3943 	 * If there were any rollbacks in the directory, then it must be
3944 	 * marked dirty so that its will eventually get written back in
3945 	 * its correct form.
3946 	 */
3947 	if (chgs) {
3948 		if ((bp->b_flags & B_DELWRI) == 0)
3949 			stat_dir_entry++;
3950 		bdirty(bp);
3951 	}
3952 	/*
3953 	 * If no dependencies remain, the pagedep will be freed.
3954 	 * Otherwise it will remain to update the page before it
3955 	 * is written back to disk.
3956 	 */
3957 	if (LIST_FIRST(&pagedep->pd_pendinghd) == 0) {
3958 		for (i = 0; i < DAHASHSZ; i++)
3959 			if (LIST_FIRST(&pagedep->pd_diraddhd[i]) != NULL)
3960 				break;
3961 		if (i == DAHASHSZ) {
3962 			LIST_REMOVE(pagedep, pd_hash);
3963 			WORKITEM_FREE(pagedep, D_PAGEDEP);
3964 			return (0);
3965 		}
3966 	}
3967 	return (1);
3968 }
3969 
3970 /*
3971  * Writing back in-core inode structures.
3972  *
3973  * The filesystem only accesses an inode's contents when it occupies an
3974  * "in-core" inode structure.  These "in-core" structures are separate from
3975  * the page frames used to cache inode blocks.  Only the latter are
3976  * transferred to/from the disk.  So, when the updated contents of the
3977  * "in-core" inode structure are copied to the corresponding in-memory inode
3978  * block, the dependencies are also transferred.  The following procedure is
3979  * called when copying a dirty "in-core" inode to a cached inode block.
3980  */
3981 
3982 /*
3983  * Called when an inode is loaded from disk. If the effective link count
3984  * differed from the actual link count when it was last flushed, then we
3985  * need to ensure that the correct effective link count is put back.
3986  *
3987  * Parameters:
3988  *	ip:	the "in_core" copy of the inode
3989  */
3990 void
3991 softdep_load_inodeblock(struct inode *ip)
3992 {
3993 	struct inodedep *inodedep;
3994 
3995 	/*
3996 	 * Check for alternate nlink count.
3997 	 */
3998 	ip->i_effnlink = ip->i_nlink;
3999 	ACQUIRE_LOCK(&lk);
4000 	if (inodedep_lookup(ip->i_fs, ip->i_number, 0, &inodedep) == 0) {
4001 		FREE_LOCK(&lk);
4002 		return;
4003 	}
4004 	ip->i_effnlink -= inodedep->id_nlinkdelta;
4005 	FREE_LOCK(&lk);
4006 }
4007 
4008 /*
4009  * This routine is called just before the "in-core" inode
4010  * information is to be copied to the in-memory inode block.
4011  * Recall that an inode block contains several inodes. If
4012  * the force flag is set, then the dependencies will be
4013  * cleared so that the update can always be made. Note that
4014  * the buffer is locked when this routine is called, so we
4015  * will never be in the middle of writing the inode block
4016  * to disk.
4017  *
4018  * Parameters:
4019  *	ip:		the "in_core" copy of the inode
4020  *	bp:		the buffer containing the inode block
4021  *	waitfor:	nonzero => update must be allowed
4022  */
4023 void
4024 softdep_update_inodeblock(struct inode *ip, struct buf *bp,
4025 			  int waitfor)
4026 {
4027 	struct inodedep *inodedep;
4028 	struct worklist *wk;
4029 	int error, gotit;
4030 
4031 	/*
4032 	 * If the effective link count is not equal to the actual link
4033 	 * count, then we must track the difference in an inodedep while
4034 	 * the inode is (potentially) tossed out of the cache. Otherwise,
4035 	 * if there is no existing inodedep, then there are no dependencies
4036 	 * to track.
4037 	 */
4038 	ACQUIRE_LOCK(&lk);
4039 	if (inodedep_lookup(ip->i_fs, ip->i_number, 0, &inodedep) == 0) {
4040 		FREE_LOCK(&lk);
4041 		if (ip->i_effnlink != ip->i_nlink)
4042 			panic("softdep_update_inodeblock: bad link count");
4043 		return;
4044 	}
4045 	if (inodedep->id_nlinkdelta != ip->i_nlink - ip->i_effnlink) {
4046 		FREE_LOCK(&lk);
4047 		panic("softdep_update_inodeblock: bad delta");
4048 	}
4049 	/*
4050 	 * Changes have been initiated. Anything depending on these
4051 	 * changes cannot occur until this inode has been written.
4052 	 */
4053 	inodedep->id_state &= ~COMPLETE;
4054 	if ((inodedep->id_state & ONWORKLIST) == 0)
4055 		WORKLIST_INSERT_BP(bp, &inodedep->id_list);
4056 	/*
4057 	 * Any new dependencies associated with the incore inode must
4058 	 * now be moved to the list associated with the buffer holding
4059 	 * the in-memory copy of the inode. Once merged process any
4060 	 * allocdirects that are completed by the merger.
4061 	 */
4062 	merge_inode_lists(inodedep);
4063 	if (TAILQ_FIRST(&inodedep->id_inoupdt) != NULL)
4064 		handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_inoupdt));
4065 	/*
4066 	 * Now that the inode has been pushed into the buffer, the
4067 	 * operations dependent on the inode being written to disk
4068 	 * can be moved to the id_bufwait so that they will be
4069 	 * processed when the buffer I/O completes.
4070 	 */
4071 	while ((wk = LIST_FIRST(&inodedep->id_inowait)) != NULL) {
4072 		WORKLIST_REMOVE(wk);
4073 		WORKLIST_INSERT(&inodedep->id_bufwait, wk);
4074 	}
4075 	/*
4076 	 * Newly allocated inodes cannot be written until the bitmap
4077 	 * that allocates them have been written (indicated by
4078 	 * DEPCOMPLETE being set in id_state). If we are doing a
4079 	 * forced sync (e.g., an fsync on a file), we force the bitmap
4080 	 * to be written so that the update can be done.
4081 	 */
4082 	if ((inodedep->id_state & DEPCOMPLETE) != 0 || waitfor == 0) {
4083 		FREE_LOCK(&lk);
4084 		return;
4085 	}
4086 	gotit = getdirtybuf(&inodedep->id_buf, MNT_WAIT);
4087 	FREE_LOCK(&lk);
4088 	if (gotit &&
4089 	    (error = bwrite(inodedep->id_buf)) != 0)
4090 		softdep_error("softdep_update_inodeblock: bwrite", error);
4091 }
4092 
4093 /*
4094  * Merge the new inode dependency list (id_newinoupdt) into the old
4095  * inode dependency list (id_inoupdt). This routine must be called
4096  * with splbio interrupts blocked.
4097  */
4098 static void
4099 merge_inode_lists(struct inodedep *inodedep)
4100 {
4101 	struct allocdirect *listadp, *newadp;
4102 
4103 	newadp = TAILQ_FIRST(&inodedep->id_newinoupdt);
4104 	for (listadp = TAILQ_FIRST(&inodedep->id_inoupdt); listadp && newadp;) {
4105 		if (listadp->ad_lbn < newadp->ad_lbn) {
4106 			listadp = TAILQ_NEXT(listadp, ad_next);
4107 			continue;
4108 		}
4109 		TAILQ_REMOVE(&inodedep->id_newinoupdt, newadp, ad_next);
4110 		TAILQ_INSERT_BEFORE(listadp, newadp, ad_next);
4111 		if (listadp->ad_lbn == newadp->ad_lbn) {
4112 			allocdirect_merge(&inodedep->id_inoupdt, newadp,
4113 			    listadp);
4114 			listadp = newadp;
4115 		}
4116 		newadp = TAILQ_FIRST(&inodedep->id_newinoupdt);
4117 	}
4118 	while ((newadp = TAILQ_FIRST(&inodedep->id_newinoupdt)) != NULL) {
4119 		TAILQ_REMOVE(&inodedep->id_newinoupdt, newadp, ad_next);
4120 		TAILQ_INSERT_TAIL(&inodedep->id_inoupdt, newadp, ad_next);
4121 	}
4122 }
4123 
4124 /*
4125  * If we are doing an fsync, then we must ensure that any directory
4126  * entries for the inode have been written after the inode gets to disk.
4127  *
4128  * bioops callback - hold io_token
4129  *
4130  * Parameters:
4131  *	vp:	the "in_core" copy of the inode
4132  */
4133 static int
4134 softdep_fsync(struct vnode *vp)
4135 {
4136 	struct inodedep *inodedep;
4137 	struct pagedep *pagedep;
4138 	struct worklist *wk;
4139 	struct diradd *dap;
4140 	struct mount *mnt;
4141 	struct vnode *pvp;
4142 	struct inode *ip;
4143 	struct buf *bp;
4144 	struct fs *fs;
4145 	int error, flushparent;
4146 	ino_t parentino;
4147 	ufs_lbn_t lbn;
4148 
4149 	/*
4150 	 * Move check from original kernel code, possibly not needed any
4151 	 * more with the per-mount bioops.
4152 	 */
4153 	if ((vp->v_mount->mnt_flag & MNT_SOFTDEP) == 0)
4154 		return (0);
4155 
4156 	get_mplock();
4157 	ip = VTOI(vp);
4158 	fs = ip->i_fs;
4159 	ACQUIRE_LOCK(&lk);
4160 	if (inodedep_lookup(fs, ip->i_number, 0, &inodedep) == 0) {
4161 		FREE_LOCK(&lk);
4162 		rel_mplock();
4163 		return (0);
4164 	}
4165 	if (LIST_FIRST(&inodedep->id_inowait) != NULL ||
4166 	    LIST_FIRST(&inodedep->id_bufwait) != NULL ||
4167 	    TAILQ_FIRST(&inodedep->id_inoupdt) != NULL ||
4168 	    TAILQ_FIRST(&inodedep->id_newinoupdt) != NULL) {
4169 		FREE_LOCK(&lk);
4170 		panic("softdep_fsync: pending ops");
4171 	}
4172 	for (error = 0, flushparent = 0; ; ) {
4173 		if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) == NULL)
4174 			break;
4175 		if (wk->wk_type != D_DIRADD) {
4176 			FREE_LOCK(&lk);
4177 			panic("softdep_fsync: Unexpected type %s",
4178 			    TYPENAME(wk->wk_type));
4179 		}
4180 		dap = WK_DIRADD(wk);
4181 		/*
4182 		 * Flush our parent if this directory entry
4183 		 * has a MKDIR_PARENT dependency.
4184 		 */
4185 		if (dap->da_state & DIRCHG)
4186 			pagedep = dap->da_previous->dm_pagedep;
4187 		else
4188 			pagedep = dap->da_pagedep;
4189 		mnt = pagedep->pd_mnt;
4190 		parentino = pagedep->pd_ino;
4191 		lbn = pagedep->pd_lbn;
4192 		if ((dap->da_state & (MKDIR_BODY | COMPLETE)) != COMPLETE) {
4193 			FREE_LOCK(&lk);
4194 			panic("softdep_fsync: dirty");
4195 		}
4196 		flushparent = dap->da_state & MKDIR_PARENT;
4197 		/*
4198 		 * If we are being fsync'ed as part of vgone'ing this vnode,
4199 		 * then we will not be able to release and recover the
4200 		 * vnode below, so we just have to give up on writing its
4201 		 * directory entry out. It will eventually be written, just
4202 		 * not now, but then the user was not asking to have it
4203 		 * written, so we are not breaking any promises.
4204 		 */
4205 		if (vp->v_flag & VRECLAIMED)
4206 			break;
4207 		/*
4208 		 * We prevent deadlock by always fetching inodes from the
4209 		 * root, moving down the directory tree. Thus, when fetching
4210 		 * our parent directory, we must unlock ourselves before
4211 		 * requesting the lock on our parent. See the comment in
4212 		 * ufs_lookup for details on possible races.
4213 		 */
4214 		FREE_LOCK(&lk);
4215 		vn_unlock(vp);
4216 		error = VFS_VGET(mnt, NULL, parentino, &pvp);
4217 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
4218 		if (error != 0) {
4219 			rel_mplock();
4220 			return (error);
4221 		}
4222 		if (flushparent) {
4223 			if ((error = ffs_update(pvp, 1)) != 0) {
4224 				vput(pvp);
4225 				rel_mplock();
4226 				return (error);
4227 			}
4228 		}
4229 		/*
4230 		 * Flush directory page containing the inode's name.
4231 		 */
4232 		error = bread(pvp, lblktodoff(fs, lbn), blksize(fs, VTOI(pvp), lbn), &bp);
4233 		if (error == 0)
4234 			error = bwrite(bp);
4235 		vput(pvp);
4236 		if (error != 0) {
4237 			rel_mplock();
4238 			return (error);
4239 		}
4240 		ACQUIRE_LOCK(&lk);
4241 		if (inodedep_lookup(fs, ip->i_number, 0, &inodedep) == 0)
4242 			break;
4243 	}
4244 	FREE_LOCK(&lk);
4245 	rel_mplock();
4246 	return (0);
4247 }
4248 
4249 /*
4250  * Flush all the dirty bitmaps associated with the block device
4251  * before flushing the rest of the dirty blocks so as to reduce
4252  * the number of dependencies that will have to be rolled back.
4253  */
4254 static int softdep_fsync_mountdev_bp(struct buf *bp, void *data);
4255 
4256 void
4257 softdep_fsync_mountdev(struct vnode *vp)
4258 {
4259 	if (!vn_isdisk(vp, NULL))
4260 		panic("softdep_fsync_mountdev: vnode not a disk");
4261 	ACQUIRE_LOCK(&lk);
4262 	lwkt_gettoken(&vp->v_token);
4263 	RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
4264 		softdep_fsync_mountdev_bp, vp);
4265 	lwkt_reltoken(&vp->v_token);
4266 	drain_output(vp, 1);
4267 	FREE_LOCK(&lk);
4268 }
4269 
4270 static int
4271 softdep_fsync_mountdev_bp(struct buf *bp, void *data)
4272 {
4273 	struct worklist *wk;
4274 	struct vnode *vp = data;
4275 
4276 	/*
4277 	 * If it is already scheduled, skip to the next buffer.
4278 	 */
4279 	if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT))
4280 		return(0);
4281 	if (bp->b_vp != vp || (bp->b_flags & B_DELWRI) == 0) {
4282 		BUF_UNLOCK(bp);
4283 		kprintf("softdep_fsync_mountdev_bp: warning, buffer %p ripped out from under vnode %p\n", bp, vp);
4284 		return(0);
4285 	}
4286 	/*
4287 	 * We are only interested in bitmaps with outstanding
4288 	 * dependencies.
4289 	 */
4290 	if ((wk = LIST_FIRST(&bp->b_dep)) == NULL ||
4291 	    wk->wk_type != D_BMSAFEMAP) {
4292 		BUF_UNLOCK(bp);
4293 		return(0);
4294 	}
4295 	bremfree(bp);
4296 	FREE_LOCK(&lk);
4297 	(void) bawrite(bp);
4298 	ACQUIRE_LOCK(&lk);
4299 	return(0);
4300 }
4301 
4302 /*
4303  * This routine is called when we are trying to synchronously flush a
4304  * file. This routine must eliminate any filesystem metadata dependencies
4305  * so that the syncing routine can succeed by pushing the dirty blocks
4306  * associated with the file. If any I/O errors occur, they are returned.
4307  */
4308 struct softdep_sync_metadata_info {
4309 	struct vnode *vp;
4310 	int waitfor;
4311 };
4312 
4313 static int softdep_sync_metadata_bp(struct buf *bp, void *data);
4314 
4315 int
4316 softdep_sync_metadata(struct vnode *vp, struct thread *td)
4317 {
4318 	struct softdep_sync_metadata_info info;
4319 	int error, waitfor;
4320 
4321 	/*
4322 	 * Check whether this vnode is involved in a filesystem
4323 	 * that is doing soft dependency processing.
4324 	 */
4325 	if (!vn_isdisk(vp, NULL)) {
4326 		if (!DOINGSOFTDEP(vp))
4327 			return (0);
4328 	} else
4329 		if (vp->v_rdev->si_mountpoint == NULL ||
4330 		    (vp->v_rdev->si_mountpoint->mnt_flag & MNT_SOFTDEP) == 0)
4331 			return (0);
4332 	/*
4333 	 * Ensure that any direct block dependencies have been cleared.
4334 	 */
4335 	ACQUIRE_LOCK(&lk);
4336 	if ((error = flush_inodedep_deps(VTOI(vp)->i_fs, VTOI(vp)->i_number))) {
4337 		FREE_LOCK(&lk);
4338 		return (error);
4339 	}
4340 	/*
4341 	 * For most files, the only metadata dependencies are the
4342 	 * cylinder group maps that allocate their inode or blocks.
4343 	 * The block allocation dependencies can be found by traversing
4344 	 * the dependency lists for any buffers that remain on their
4345 	 * dirty buffer list. The inode allocation dependency will
4346 	 * be resolved when the inode is updated with MNT_WAIT.
4347 	 * This work is done in two passes. The first pass grabs most
4348 	 * of the buffers and begins asynchronously writing them. The
4349 	 * only way to wait for these asynchronous writes is to sleep
4350 	 * on the filesystem vnode which may stay busy for a long time
4351 	 * if the filesystem is active. So, instead, we make a second
4352 	 * pass over the dependencies blocking on each write. In the
4353 	 * usual case we will be blocking against a write that we
4354 	 * initiated, so when it is done the dependency will have been
4355 	 * resolved. Thus the second pass is expected to end quickly.
4356 	 */
4357 	waitfor = MNT_NOWAIT;
4358 top:
4359 	/*
4360 	 * We must wait for any I/O in progress to finish so that
4361 	 * all potential buffers on the dirty list will be visible.
4362 	 */
4363 	drain_output(vp, 1);
4364 
4365 	info.vp = vp;
4366 	info.waitfor = waitfor;
4367 	lwkt_gettoken(&vp->v_token);
4368 	error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
4369 			softdep_sync_metadata_bp, &info);
4370 	lwkt_reltoken(&vp->v_token);
4371 	if (error < 0) {
4372 		FREE_LOCK(&lk);
4373 		return(-error);	/* error code */
4374 	}
4375 
4376 	/*
4377 	 * The brief unlock is to allow any pent up dependency
4378 	 * processing to be done.  Then proceed with the second pass.
4379 	 */
4380 	if (waitfor & MNT_NOWAIT) {
4381 		waitfor = MNT_WAIT;
4382 		FREE_LOCK(&lk);
4383 		ACQUIRE_LOCK(&lk);
4384 		goto top;
4385 	}
4386 
4387 	/*
4388 	 * If we have managed to get rid of all the dirty buffers,
4389 	 * then we are done. For certain directories and block
4390 	 * devices, we may need to do further work.
4391 	 *
4392 	 * We must wait for any I/O in progress to finish so that
4393 	 * all potential buffers on the dirty list will be visible.
4394 	 */
4395 	drain_output(vp, 1);
4396 	if (RB_EMPTY(&vp->v_rbdirty_tree)) {
4397 		FREE_LOCK(&lk);
4398 		return (0);
4399 	}
4400 
4401 	FREE_LOCK(&lk);
4402 	/*
4403 	 * If we are trying to sync a block device, some of its buffers may
4404 	 * contain metadata that cannot be written until the contents of some
4405 	 * partially written files have been written to disk. The only easy
4406 	 * way to accomplish this is to sync the entire filesystem (luckily
4407 	 * this happens rarely).
4408 	 */
4409 	if (vn_isdisk(vp, NULL) &&
4410 	    vp->v_rdev &&
4411 	    vp->v_rdev->si_mountpoint && !vn_islocked(vp) &&
4412 	    (error = VFS_SYNC(vp->v_rdev->si_mountpoint, MNT_WAIT)) != 0)
4413 		return (error);
4414 	return (0);
4415 }
4416 
4417 static int
4418 softdep_sync_metadata_bp(struct buf *bp, void *data)
4419 {
4420 	struct softdep_sync_metadata_info *info = data;
4421 	struct pagedep *pagedep;
4422 	struct allocdirect *adp;
4423 	struct allocindir *aip;
4424 	struct worklist *wk;
4425 	struct buf *nbp;
4426 	int error;
4427 	int i;
4428 
4429 	if (getdirtybuf(&bp, MNT_WAIT) == 0) {
4430 		kprintf("softdep_sync_metadata_bp(1): caught buf %p going away\n", bp);
4431 		return (1);
4432 	}
4433 	if (bp->b_vp != info->vp || (bp->b_flags & B_DELWRI) == 0) {
4434 		kprintf("softdep_sync_metadata_bp(2): caught buf %p going away vp %p\n", bp, info->vp);
4435 		BUF_UNLOCK(bp);
4436 		return(1);
4437 	}
4438 
4439 	/*
4440 	 * As we hold the buffer locked, none of its dependencies
4441 	 * will disappear.
4442 	 */
4443 	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
4444 		switch (wk->wk_type) {
4445 
4446 		case D_ALLOCDIRECT:
4447 			adp = WK_ALLOCDIRECT(wk);
4448 			if (adp->ad_state & DEPCOMPLETE)
4449 				break;
4450 			nbp = adp->ad_buf;
4451 			if (getdirtybuf(&nbp, info->waitfor) == 0)
4452 				break;
4453 			FREE_LOCK(&lk);
4454 			if (info->waitfor & MNT_NOWAIT) {
4455 				bawrite(nbp);
4456 			} else if ((error = bwrite(nbp)) != 0) {
4457 				bawrite(bp);
4458 				ACQUIRE_LOCK(&lk);
4459 				return (-error);
4460 			}
4461 			ACQUIRE_LOCK(&lk);
4462 			break;
4463 
4464 		case D_ALLOCINDIR:
4465 			aip = WK_ALLOCINDIR(wk);
4466 			if (aip->ai_state & DEPCOMPLETE)
4467 				break;
4468 			nbp = aip->ai_buf;
4469 			if (getdirtybuf(&nbp, info->waitfor) == 0)
4470 				break;
4471 			FREE_LOCK(&lk);
4472 			if (info->waitfor & MNT_NOWAIT) {
4473 				bawrite(nbp);
4474 			} else if ((error = bwrite(nbp)) != 0) {
4475 				bawrite(bp);
4476 				ACQUIRE_LOCK(&lk);
4477 				return (-error);
4478 			}
4479 			ACQUIRE_LOCK(&lk);
4480 			break;
4481 
4482 		case D_INDIRDEP:
4483 		restart:
4484 
4485 			LIST_FOREACH(aip, &WK_INDIRDEP(wk)->ir_deplisthd, ai_next) {
4486 				if (aip->ai_state & DEPCOMPLETE)
4487 					continue;
4488 				nbp = aip->ai_buf;
4489 				if (getdirtybuf(&nbp, MNT_WAIT) == 0)
4490 					goto restart;
4491 				FREE_LOCK(&lk);
4492 				if ((error = bwrite(nbp)) != 0) {
4493 					bawrite(bp);
4494 					ACQUIRE_LOCK(&lk);
4495 					return (-error);
4496 				}
4497 				ACQUIRE_LOCK(&lk);
4498 				goto restart;
4499 			}
4500 			break;
4501 
4502 		case D_INODEDEP:
4503 			if ((error = flush_inodedep_deps(WK_INODEDEP(wk)->id_fs,
4504 			    WK_INODEDEP(wk)->id_ino)) != 0) {
4505 				FREE_LOCK(&lk);
4506 				bawrite(bp);
4507 				ACQUIRE_LOCK(&lk);
4508 				return (-error);
4509 			}
4510 			break;
4511 
4512 		case D_PAGEDEP:
4513 			/*
4514 			 * We are trying to sync a directory that may
4515 			 * have dependencies on both its own metadata
4516 			 * and/or dependencies on the inodes of any
4517 			 * recently allocated files. We walk its diradd
4518 			 * lists pushing out the associated inode.
4519 			 */
4520 			pagedep = WK_PAGEDEP(wk);
4521 			for (i = 0; i < DAHASHSZ; i++) {
4522 				if (LIST_FIRST(&pagedep->pd_diraddhd[i]) == 0)
4523 					continue;
4524 				if ((error =
4525 				    flush_pagedep_deps(info->vp,
4526 						pagedep->pd_mnt,
4527 						&pagedep->pd_diraddhd[i]))) {
4528 					FREE_LOCK(&lk);
4529 					bawrite(bp);
4530 					ACQUIRE_LOCK(&lk);
4531 					return (-error);
4532 				}
4533 			}
4534 			break;
4535 
4536 		case D_MKDIR:
4537 			/*
4538 			 * This case should never happen if the vnode has
4539 			 * been properly sync'ed. However, if this function
4540 			 * is used at a place where the vnode has not yet
4541 			 * been sync'ed, this dependency can show up. So,
4542 			 * rather than panic, just flush it.
4543 			 */
4544 			nbp = WK_MKDIR(wk)->md_buf;
4545 			if (getdirtybuf(&nbp, info->waitfor) == 0)
4546 				break;
4547 			FREE_LOCK(&lk);
4548 			if (info->waitfor & MNT_NOWAIT) {
4549 				bawrite(nbp);
4550 			} else if ((error = bwrite(nbp)) != 0) {
4551 				bawrite(bp);
4552 				ACQUIRE_LOCK(&lk);
4553 				return (-error);
4554 			}
4555 			ACQUIRE_LOCK(&lk);
4556 			break;
4557 
4558 		case D_BMSAFEMAP:
4559 			/*
4560 			 * This case should never happen if the vnode has
4561 			 * been properly sync'ed. However, if this function
4562 			 * is used at a place where the vnode has not yet
4563 			 * been sync'ed, this dependency can show up. So,
4564 			 * rather than panic, just flush it.
4565 			 *
4566 			 * nbp can wind up == bp if a device node for the
4567 			 * same filesystem is being fsynced at the same time,
4568 			 * leading to a panic if we don't catch the case.
4569 			 */
4570 			nbp = WK_BMSAFEMAP(wk)->sm_buf;
4571 			if (nbp == bp)
4572 				break;
4573 			if (getdirtybuf(&nbp, info->waitfor) == 0)
4574 				break;
4575 			FREE_LOCK(&lk);
4576 			if (info->waitfor & MNT_NOWAIT) {
4577 				bawrite(nbp);
4578 			} else if ((error = bwrite(nbp)) != 0) {
4579 				bawrite(bp);
4580 				ACQUIRE_LOCK(&lk);
4581 				return (-error);
4582 			}
4583 			ACQUIRE_LOCK(&lk);
4584 			break;
4585 
4586 		default:
4587 			FREE_LOCK(&lk);
4588 			panic("softdep_sync_metadata: Unknown type %s",
4589 			    TYPENAME(wk->wk_type));
4590 			/* NOTREACHED */
4591 		}
4592 	}
4593 	FREE_LOCK(&lk);
4594 	bawrite(bp);
4595 	ACQUIRE_LOCK(&lk);
4596 	return(0);
4597 }
4598 
4599 /*
4600  * Flush the dependencies associated with an inodedep.
4601  * Called with splbio blocked.
4602  */
4603 static int
4604 flush_inodedep_deps(struct fs *fs, ino_t ino)
4605 {
4606 	struct inodedep *inodedep;
4607 	struct allocdirect *adp;
4608 	int error, waitfor;
4609 	struct buf *bp;
4610 
4611 	/*
4612 	 * This work is done in two passes. The first pass grabs most
4613 	 * of the buffers and begins asynchronously writing them. The
4614 	 * only way to wait for these asynchronous writes is to sleep
4615 	 * on the filesystem vnode which may stay busy for a long time
4616 	 * if the filesystem is active. So, instead, we make a second
4617 	 * pass over the dependencies blocking on each write. In the
4618 	 * usual case we will be blocking against a write that we
4619 	 * initiated, so when it is done the dependency will have been
4620 	 * resolved. Thus the second pass is expected to end quickly.
4621 	 * We give a brief window at the top of the loop to allow
4622 	 * any pending I/O to complete.
4623 	 */
4624 	for (waitfor = MNT_NOWAIT; ; ) {
4625 		FREE_LOCK(&lk);
4626 		ACQUIRE_LOCK(&lk);
4627 		if (inodedep_lookup(fs, ino, 0, &inodedep) == 0)
4628 			return (0);
4629 		TAILQ_FOREACH(adp, &inodedep->id_inoupdt, ad_next) {
4630 			if (adp->ad_state & DEPCOMPLETE)
4631 				continue;
4632 			bp = adp->ad_buf;
4633 			if (getdirtybuf(&bp, waitfor) == 0) {
4634 				if (waitfor & MNT_NOWAIT)
4635 					continue;
4636 				break;
4637 			}
4638 			FREE_LOCK(&lk);
4639 			if (waitfor & MNT_NOWAIT) {
4640 				bawrite(bp);
4641 			} else if ((error = bwrite(bp)) != 0) {
4642 				ACQUIRE_LOCK(&lk);
4643 				return (error);
4644 			}
4645 			ACQUIRE_LOCK(&lk);
4646 			break;
4647 		}
4648 		if (adp != NULL)
4649 			continue;
4650 		TAILQ_FOREACH(adp, &inodedep->id_newinoupdt, ad_next) {
4651 			if (adp->ad_state & DEPCOMPLETE)
4652 				continue;
4653 			bp = adp->ad_buf;
4654 			if (getdirtybuf(&bp, waitfor) == 0) {
4655 				if (waitfor & MNT_NOWAIT)
4656 					continue;
4657 				break;
4658 			}
4659 			FREE_LOCK(&lk);
4660 			if (waitfor & MNT_NOWAIT) {
4661 				bawrite(bp);
4662 			} else if ((error = bwrite(bp)) != 0) {
4663 				ACQUIRE_LOCK(&lk);
4664 				return (error);
4665 			}
4666 			ACQUIRE_LOCK(&lk);
4667 			break;
4668 		}
4669 		if (adp != NULL)
4670 			continue;
4671 		/*
4672 		 * If pass2, we are done, otherwise do pass 2.
4673 		 */
4674 		if (waitfor == MNT_WAIT)
4675 			break;
4676 		waitfor = MNT_WAIT;
4677 	}
4678 	/*
4679 	 * Try freeing inodedep in case all dependencies have been removed.
4680 	 */
4681 	if (inodedep_lookup(fs, ino, 0, &inodedep) != 0)
4682 		(void) free_inodedep(inodedep);
4683 	return (0);
4684 }
4685 
4686 /*
4687  * Eliminate a pagedep dependency by flushing out all its diradd dependencies.
4688  * Called with splbio blocked.
4689  */
4690 static int
4691 flush_pagedep_deps(struct vnode *pvp, struct mount *mp,
4692 		   struct diraddhd *diraddhdp)
4693 {
4694 	struct inodedep *inodedep;
4695 	struct ufsmount *ump;
4696 	struct diradd *dap;
4697 	struct vnode *vp;
4698 	int gotit, error = 0;
4699 	struct buf *bp;
4700 	ino_t inum;
4701 
4702 	ump = VFSTOUFS(mp);
4703 	while ((dap = LIST_FIRST(diraddhdp)) != NULL) {
4704 		/*
4705 		 * Flush ourselves if this directory entry
4706 		 * has a MKDIR_PARENT dependency.
4707 		 */
4708 		if (dap->da_state & MKDIR_PARENT) {
4709 			FREE_LOCK(&lk);
4710 			if ((error = ffs_update(pvp, 1)) != 0)
4711 				break;
4712 			ACQUIRE_LOCK(&lk);
4713 			/*
4714 			 * If that cleared dependencies, go on to next.
4715 			 */
4716 			if (dap != LIST_FIRST(diraddhdp))
4717 				continue;
4718 			if (dap->da_state & MKDIR_PARENT) {
4719 				FREE_LOCK(&lk);
4720 				panic("flush_pagedep_deps: MKDIR_PARENT");
4721 			}
4722 		}
4723 		/*
4724 		 * A newly allocated directory must have its "." and
4725 		 * ".." entries written out before its name can be
4726 		 * committed in its parent. We do not want or need
4727 		 * the full semantics of a synchronous VOP_FSYNC as
4728 		 * that may end up here again, once for each directory
4729 		 * level in the filesystem. Instead, we push the blocks
4730 		 * and wait for them to clear. We have to fsync twice
4731 		 * because the first call may choose to defer blocks
4732 		 * that still have dependencies, but deferral will
4733 		 * happen at most once.
4734 		 */
4735 		inum = dap->da_newinum;
4736 		if (dap->da_state & MKDIR_BODY) {
4737 			FREE_LOCK(&lk);
4738 			if ((error = VFS_VGET(mp, NULL, inum, &vp)) != 0)
4739 				break;
4740 			if ((error=VOP_FSYNC(vp, MNT_NOWAIT, 0)) ||
4741 			    (error=VOP_FSYNC(vp, MNT_NOWAIT, 0))) {
4742 				vput(vp);
4743 				break;
4744 			}
4745 			drain_output(vp, 0);
4746 			vput(vp);
4747 			ACQUIRE_LOCK(&lk);
4748 			/*
4749 			 * If that cleared dependencies, go on to next.
4750 			 */
4751 			if (dap != LIST_FIRST(diraddhdp))
4752 				continue;
4753 			if (dap->da_state & MKDIR_BODY) {
4754 				FREE_LOCK(&lk);
4755 				panic("flush_pagedep_deps: MKDIR_BODY");
4756 			}
4757 		}
4758 		/*
4759 		 * Flush the inode on which the directory entry depends.
4760 		 * Having accounted for MKDIR_PARENT and MKDIR_BODY above,
4761 		 * the only remaining dependency is that the updated inode
4762 		 * count must get pushed to disk. The inode has already
4763 		 * been pushed into its inode buffer (via VOP_UPDATE) at
4764 		 * the time of the reference count change. So we need only
4765 		 * locate that buffer, ensure that there will be no rollback
4766 		 * caused by a bitmap dependency, then write the inode buffer.
4767 		 */
4768 		if (inodedep_lookup(ump->um_fs, inum, 0, &inodedep) == 0) {
4769 			FREE_LOCK(&lk);
4770 			panic("flush_pagedep_deps: lost inode");
4771 		}
4772 		/*
4773 		 * If the inode still has bitmap dependencies,
4774 		 * push them to disk.
4775 		 */
4776 		if ((inodedep->id_state & DEPCOMPLETE) == 0) {
4777 			gotit = getdirtybuf(&inodedep->id_buf, MNT_WAIT);
4778 			FREE_LOCK(&lk);
4779 			if (gotit && (error = bwrite(inodedep->id_buf)) != 0)
4780 				break;
4781 			ACQUIRE_LOCK(&lk);
4782 			if (dap != LIST_FIRST(diraddhdp))
4783 				continue;
4784 		}
4785 		/*
4786 		 * If the inode is still sitting in a buffer waiting
4787 		 * to be written, push it to disk.
4788 		 */
4789 		FREE_LOCK(&lk);
4790 		if ((error = bread(ump->um_devvp,
4791 			fsbtodoff(ump->um_fs, ino_to_fsba(ump->um_fs, inum)),
4792 		    (int)ump->um_fs->fs_bsize, &bp)) != 0)
4793 			break;
4794 		if ((error = bwrite(bp)) != 0)
4795 			break;
4796 		ACQUIRE_LOCK(&lk);
4797 		/*
4798 		 * If we have failed to get rid of all the dependencies
4799 		 * then something is seriously wrong.
4800 		 */
4801 		if (dap == LIST_FIRST(diraddhdp)) {
4802 			FREE_LOCK(&lk);
4803 			panic("flush_pagedep_deps: flush failed");
4804 		}
4805 	}
4806 	if (error)
4807 		ACQUIRE_LOCK(&lk);
4808 	return (error);
4809 }
4810 
4811 /*
4812  * A large burst of file addition or deletion activity can drive the
4813  * memory load excessively high. First attempt to slow things down
4814  * using the techniques below. If that fails, this routine requests
4815  * the offending operations to fall back to running synchronously
4816  * until the memory load returns to a reasonable level.
4817  */
4818 int
4819 softdep_slowdown(struct vnode *vp)
4820 {
4821 	int max_softdeps_hard;
4822 
4823 	max_softdeps_hard = max_softdeps * 11 / 10;
4824 	if (num_dirrem < max_softdeps_hard / 2 &&
4825 	    num_inodedep < max_softdeps_hard)
4826 		return (0);
4827 	stat_sync_limit_hit += 1;
4828 	return (1);
4829 }
4830 
4831 /*
4832  * If memory utilization has gotten too high, deliberately slow things
4833  * down and speed up the I/O processing.
4834  */
4835 static int
4836 request_cleanup(int resource, int islocked)
4837 {
4838 	struct thread *td = curthread;		/* XXX */
4839 
4840 	/*
4841 	 * We never hold up the filesystem syncer process.
4842 	 */
4843 	if (td == filesys_syncer)
4844 		return (0);
4845 	/*
4846 	 * First check to see if the work list has gotten backlogged.
4847 	 * If it has, co-opt this process to help clean up two entries.
4848 	 * Because this process may hold inodes locked, we cannot
4849 	 * handle any remove requests that might block on a locked
4850 	 * inode as that could lead to deadlock.
4851 	 */
4852 	if (num_on_worklist > max_softdeps / 10) {
4853 		if (islocked)
4854 			FREE_LOCK(&lk);
4855 		process_worklist_item(NULL, LK_NOWAIT);
4856 		process_worklist_item(NULL, LK_NOWAIT);
4857 		stat_worklist_push += 2;
4858 		if (islocked)
4859 			ACQUIRE_LOCK(&lk);
4860 		return(1);
4861 	}
4862 
4863 	/*
4864 	 * If we are resource constrained on inode dependencies, try
4865 	 * flushing some dirty inodes. Otherwise, we are constrained
4866 	 * by file deletions, so try accelerating flushes of directories
4867 	 * with removal dependencies. We would like to do the cleanup
4868 	 * here, but we probably hold an inode locked at this point and
4869 	 * that might deadlock against one that we try to clean. So,
4870 	 * the best that we can do is request the syncer daemon to do
4871 	 * the cleanup for us.
4872 	 */
4873 	switch (resource) {
4874 
4875 	case FLUSH_INODES:
4876 		stat_ino_limit_push += 1;
4877 		req_clear_inodedeps += 1;
4878 		stat_countp = &stat_ino_limit_hit;
4879 		break;
4880 
4881 	case FLUSH_REMOVE:
4882 		stat_blk_limit_push += 1;
4883 		req_clear_remove += 1;
4884 		stat_countp = &stat_blk_limit_hit;
4885 		break;
4886 
4887 	default:
4888 		if (islocked)
4889 			FREE_LOCK(&lk);
4890 		panic("request_cleanup: unknown type");
4891 	}
4892 	/*
4893 	 * Hopefully the syncer daemon will catch up and awaken us.
4894 	 * We wait at most tickdelay before proceeding in any case.
4895 	 */
4896 	if (islocked == 0)
4897 		ACQUIRE_LOCK(&lk);
4898 	proc_waiting += 1;
4899 	if (!callout_active(&handle))
4900 		callout_reset(&handle, tickdelay > 2 ? tickdelay : 2,
4901 			      pause_timer, NULL);
4902 	interlocked_sleep(&lk, SLEEP, (caddr_t)&proc_waiting, 0,
4903 	    "softupdate", 0);
4904 	proc_waiting -= 1;
4905 	if (islocked == 0)
4906 		FREE_LOCK(&lk);
4907 	return (1);
4908 }
4909 
4910 /*
4911  * Awaken processes pausing in request_cleanup and clear proc_waiting
4912  * to indicate that there is no longer a timer running.
4913  */
4914 void
4915 pause_timer(void *arg)
4916 {
4917 	*stat_countp += 1;
4918 	wakeup_one(&proc_waiting);
4919 	if (proc_waiting > 0)
4920 		callout_reset(&handle, tickdelay > 2 ? tickdelay : 2,
4921 			      pause_timer, NULL);
4922 	else
4923 		callout_deactivate(&handle);
4924 }
4925 
4926 /*
4927  * Flush out a directory with at least one removal dependency in an effort to
4928  * reduce the number of dirrem, freefile, and freeblks dependency structures.
4929  */
4930 static void
4931 clear_remove(struct thread *td)
4932 {
4933 	struct pagedep_hashhead *pagedephd;
4934 	struct pagedep *pagedep;
4935 	static int next = 0;
4936 	struct mount *mp;
4937 	struct vnode *vp;
4938 	int error, cnt;
4939 	ino_t ino;
4940 
4941 	ACQUIRE_LOCK(&lk);
4942 	for (cnt = 0; cnt < pagedep_hash; cnt++) {
4943 		pagedephd = &pagedep_hashtbl[next++];
4944 		if (next >= pagedep_hash)
4945 			next = 0;
4946 		LIST_FOREACH(pagedep, pagedephd, pd_hash) {
4947 			if (LIST_FIRST(&pagedep->pd_dirremhd) == NULL)
4948 				continue;
4949 			mp = pagedep->pd_mnt;
4950 			ino = pagedep->pd_ino;
4951 			FREE_LOCK(&lk);
4952 			if ((error = VFS_VGET(mp, NULL, ino, &vp)) != 0) {
4953 				softdep_error("clear_remove: vget", error);
4954 				return;
4955 			}
4956 			if ((error = VOP_FSYNC(vp, MNT_NOWAIT, 0)))
4957 				softdep_error("clear_remove: fsync", error);
4958 			drain_output(vp, 0);
4959 			vput(vp);
4960 			return;
4961 		}
4962 	}
4963 	FREE_LOCK(&lk);
4964 }
4965 
4966 /*
4967  * Clear out a block of dirty inodes in an effort to reduce
4968  * the number of inodedep dependency structures.
4969  */
4970 struct clear_inodedeps_info {
4971 	struct fs *fs;
4972 	struct mount *mp;
4973 };
4974 
4975 static int
4976 clear_inodedeps_mountlist_callback(struct mount *mp, void *data)
4977 {
4978 	struct clear_inodedeps_info *info = data;
4979 
4980 	if ((mp->mnt_flag & MNT_SOFTDEP) && info->fs == VFSTOUFS(mp)->um_fs) {
4981 		info->mp = mp;
4982 		return(-1);
4983 	}
4984 	return(0);
4985 }
4986 
4987 static void
4988 clear_inodedeps(struct thread *td)
4989 {
4990 	struct clear_inodedeps_info info;
4991 	struct inodedep_hashhead *inodedephd;
4992 	struct inodedep *inodedep;
4993 	static int next = 0;
4994 	struct vnode *vp;
4995 	struct fs *fs;
4996 	int error, cnt;
4997 	ino_t firstino, lastino, ino;
4998 
4999 	ACQUIRE_LOCK(&lk);
5000 	/*
5001 	 * Pick a random inode dependency to be cleared.
5002 	 * We will then gather up all the inodes in its block
5003 	 * that have dependencies and flush them out.
5004 	 */
5005 	for (cnt = 0; cnt < inodedep_hash; cnt++) {
5006 		inodedephd = &inodedep_hashtbl[next++];
5007 		if (next >= inodedep_hash)
5008 			next = 0;
5009 		if ((inodedep = LIST_FIRST(inodedephd)) != NULL)
5010 			break;
5011 	}
5012 	if (inodedep == NULL) {
5013 		FREE_LOCK(&lk);
5014 		return;
5015 	}
5016 	/*
5017 	 * Ugly code to find mount point given pointer to superblock.
5018 	 */
5019 	fs = inodedep->id_fs;
5020 	info.mp = NULL;
5021 	info.fs = fs;
5022 	mountlist_scan(clear_inodedeps_mountlist_callback,
5023 			&info, MNTSCAN_FORWARD|MNTSCAN_NOBUSY);
5024 	/*
5025 	 * Find the last inode in the block with dependencies.
5026 	 */
5027 	firstino = inodedep->id_ino & ~(INOPB(fs) - 1);
5028 	for (lastino = firstino + INOPB(fs) - 1; lastino > firstino; lastino--)
5029 		if (inodedep_lookup(fs, lastino, 0, &inodedep) != 0)
5030 			break;
5031 	/*
5032 	 * Asynchronously push all but the last inode with dependencies.
5033 	 * Synchronously push the last inode with dependencies to ensure
5034 	 * that the inode block gets written to free up the inodedeps.
5035 	 */
5036 	for (ino = firstino; ino <= lastino; ino++) {
5037 		if (inodedep_lookup(fs, ino, 0, &inodedep) == 0)
5038 			continue;
5039 		FREE_LOCK(&lk);
5040 		if ((error = VFS_VGET(info.mp, NULL, ino, &vp)) != 0) {
5041 			softdep_error("clear_inodedeps: vget", error);
5042 			return;
5043 		}
5044 		if (ino == lastino) {
5045 			if ((error = VOP_FSYNC(vp, MNT_WAIT, 0)))
5046 				softdep_error("clear_inodedeps: fsync1", error);
5047 		} else {
5048 			if ((error = VOP_FSYNC(vp, MNT_NOWAIT, 0)))
5049 				softdep_error("clear_inodedeps: fsync2", error);
5050 			drain_output(vp, 0);
5051 		}
5052 		vput(vp);
5053 		ACQUIRE_LOCK(&lk);
5054 	}
5055 	FREE_LOCK(&lk);
5056 }
5057 
5058 /*
5059  * Function to determine if the buffer has outstanding dependencies
5060  * that will cause a roll-back if the buffer is written. If wantcount
5061  * is set, return number of dependencies, otherwise just yes or no.
5062  *
5063  * bioops callback - hold io_token
5064  */
5065 static int
5066 softdep_count_dependencies(struct buf *bp, int wantcount)
5067 {
5068 	struct worklist *wk;
5069 	struct inodedep *inodedep;
5070 	struct indirdep *indirdep;
5071 	struct allocindir *aip;
5072 	struct pagedep *pagedep;
5073 	struct diradd *dap;
5074 	int i, retval;
5075 
5076 	get_mplock();
5077 
5078 	retval = 0;
5079 	ACQUIRE_LOCK(&lk);
5080 
5081 	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
5082 		switch (wk->wk_type) {
5083 
5084 		case D_INODEDEP:
5085 			inodedep = WK_INODEDEP(wk);
5086 			if ((inodedep->id_state & DEPCOMPLETE) == 0) {
5087 				/* bitmap allocation dependency */
5088 				retval += 1;
5089 				if (!wantcount)
5090 					goto out;
5091 			}
5092 			if (TAILQ_FIRST(&inodedep->id_inoupdt)) {
5093 				/* direct block pointer dependency */
5094 				retval += 1;
5095 				if (!wantcount)
5096 					goto out;
5097 			}
5098 			continue;
5099 
5100 		case D_INDIRDEP:
5101 			indirdep = WK_INDIRDEP(wk);
5102 
5103 			LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) {
5104 				/* indirect block pointer dependency */
5105 				retval += 1;
5106 				if (!wantcount)
5107 					goto out;
5108 			}
5109 			continue;
5110 
5111 		case D_PAGEDEP:
5112 			pagedep = WK_PAGEDEP(wk);
5113 			for (i = 0; i < DAHASHSZ; i++) {
5114 
5115 				LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
5116 					/* directory entry dependency */
5117 					retval += 1;
5118 					if (!wantcount)
5119 						goto out;
5120 				}
5121 			}
5122 			continue;
5123 
5124 		case D_BMSAFEMAP:
5125 		case D_ALLOCDIRECT:
5126 		case D_ALLOCINDIR:
5127 		case D_MKDIR:
5128 			/* never a dependency on these blocks */
5129 			continue;
5130 
5131 		default:
5132 			FREE_LOCK(&lk);
5133 			panic("softdep_check_for_rollback: Unexpected type %s",
5134 			    TYPENAME(wk->wk_type));
5135 			/* NOTREACHED */
5136 		}
5137 	}
5138 out:
5139 	FREE_LOCK(&lk);
5140 	rel_mplock();
5141 
5142 	return retval;
5143 }
5144 
5145 /*
5146  * Acquire exclusive access to a buffer.
5147  * Must be called with splbio blocked.
5148  * Return 1 if buffer was acquired.
5149  */
5150 static int
5151 getdirtybuf(struct buf **bpp, int waitfor)
5152 {
5153 	struct buf *bp;
5154 	int error;
5155 
5156 	for (;;) {
5157 		if ((bp = *bpp) == NULL)
5158 			return (0);
5159 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) == 0)
5160 			break;
5161 		if (waitfor != MNT_WAIT)
5162 			return (0);
5163 		error = interlocked_sleep(&lk, LOCKBUF, bp,
5164 		    LK_EXCLUSIVE | LK_SLEEPFAIL, 0, 0);
5165 		if (error != ENOLCK) {
5166 			FREE_LOCK(&lk);
5167 			panic("getdirtybuf: inconsistent lock");
5168 		}
5169 	}
5170 	if ((bp->b_flags & B_DELWRI) == 0) {
5171 		BUF_UNLOCK(bp);
5172 		return (0);
5173 	}
5174 	bremfree(bp);
5175 	return (1);
5176 }
5177 
5178 /*
5179  * Wait for pending output on a vnode to complete.
5180  * Must be called with vnode locked.
5181  */
5182 static void
5183 drain_output(struct vnode *vp, int islocked)
5184 {
5185 
5186 	if (!islocked)
5187 		ACQUIRE_LOCK(&lk);
5188 	while (bio_track_active(&vp->v_track_write)) {
5189 		FREE_LOCK(&lk);
5190 		bio_track_wait(&vp->v_track_write, 0, 0);
5191 		ACQUIRE_LOCK(&lk);
5192 	}
5193 	if (!islocked)
5194 		FREE_LOCK(&lk);
5195 }
5196 
5197 /*
5198  * Called whenever a buffer that is being invalidated or reallocated
5199  * contains dependencies. This should only happen if an I/O error has
5200  * occurred. The routine is called with the buffer locked.
5201  *
5202  * bioops callback - hold io_token
5203  */
5204 static void
5205 softdep_deallocate_dependencies(struct buf *bp)
5206 {
5207 	/* nothing to do, mp lock not needed */
5208 	if ((bp->b_flags & B_ERROR) == 0)
5209 		panic("softdep_deallocate_dependencies: dangling deps");
5210 	softdep_error(bp->b_vp->v_mount->mnt_stat.f_mntfromname, bp->b_error);
5211 	panic("softdep_deallocate_dependencies: unrecovered I/O error");
5212 }
5213 
5214 /*
5215  * Function to handle asynchronous write errors in the filesystem.
5216  */
5217 void
5218 softdep_error(char *func, int error)
5219 {
5220 
5221 	/* XXX should do something better! */
5222 	kprintf("%s: got error %d while accessing filesystem\n", func, error);
5223 }
5224