xref: /dragonfly/sys/vfs/ufs/ffs_softdep.c (revision b40e316c)
1 /*
2  * Copyright 1998, 2000 Marshall Kirk McKusick. All Rights Reserved.
3  *
4  * The soft updates code is derived from the appendix of a University
5  * of Michigan technical report (Gregory R. Ganger and Yale N. Patt,
6  * "Soft Updates: A Solution to the Metadata Update Problem in File
7  * Systems", CSE-TR-254-95, August 1995).
8  *
9  * Further information about soft updates can be obtained from:
10  *
11  *	Marshall Kirk McKusick		http://www.mckusick.com/softdep/
12  *	1614 Oxford Street		mckusick@mckusick.com
13  *	Berkeley, CA 94709-1608		+1-510-843-9542
14  *	USA
15  *
16  * Redistribution and use in source and binary forms, with or without
17  * modification, are permitted provided that the following conditions
18  * are met:
19  *
20  * 1. Redistributions of source code must retain the above copyright
21  *    notice, this list of conditions and the following disclaimer.
22  * 2. Redistributions in binary form must reproduce the above copyright
23  *    notice, this list of conditions and the following disclaimer in the
24  *    documentation and/or other materials provided with the distribution.
25  *
26  * THIS SOFTWARE IS PROVIDED BY MARSHALL KIRK MCKUSICK ``AS IS'' AND ANY
27  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
28  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
29  * DISCLAIMED.  IN NO EVENT SHALL MARSHALL KIRK MCKUSICK BE LIABLE FOR
30  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	from: @(#)ffs_softdep.c	9.59 (McKusick) 6/21/00
39  * $FreeBSD: src/sys/ufs/ffs/ffs_softdep.c,v 1.57.2.11 2002/02/05 18:46:53 dillon Exp $
40  * $DragonFly: src/sys/vfs/ufs/ffs_softdep.c,v 1.20 2004/11/09 04:41:47 dillon Exp $
41  */
42 
43 /*
44  * For now we want the safety net that the DIAGNOSTIC and DEBUG flags provide.
45  */
46 #ifndef DIAGNOSTIC
47 #define DIAGNOSTIC
48 #endif
49 #ifndef DEBUG
50 #define DEBUG
51 #endif
52 
53 #include <sys/param.h>
54 #include <sys/kernel.h>
55 #include <sys/systm.h>
56 #include <sys/buf.h>
57 #include <sys/malloc.h>
58 #include <sys/mount.h>
59 #include <sys/proc.h>
60 #include <sys/syslog.h>
61 #include <sys/vnode.h>
62 #include <sys/conf.h>
63 #include <sys/buf2.h>
64 #include "dir.h"
65 #include "quota.h"
66 #include "inode.h"
67 #include "ufsmount.h"
68 #include "fs.h"
69 #include "softdep.h"
70 #include "ffs_extern.h"
71 #include "ufs_extern.h"
72 
73 /*
74  * These definitions need to be adapted to the system to which
75  * this file is being ported.
76  */
77 /*
78  * malloc types defined for the softdep system.
79  */
80 MALLOC_DEFINE(M_PAGEDEP, "pagedep","File page dependencies");
81 MALLOC_DEFINE(M_INODEDEP, "inodedep","Inode dependencies");
82 MALLOC_DEFINE(M_NEWBLK, "newblk","New block allocation");
83 MALLOC_DEFINE(M_BMSAFEMAP, "bmsafemap","Block or frag allocated from cyl group map");
84 MALLOC_DEFINE(M_ALLOCDIRECT, "allocdirect","Block or frag dependency for an inode");
85 MALLOC_DEFINE(M_INDIRDEP, "indirdep","Indirect block dependencies");
86 MALLOC_DEFINE(M_ALLOCINDIR, "allocindir","Block dependency for an indirect block");
87 MALLOC_DEFINE(M_FREEFRAG, "freefrag","Previously used frag for an inode");
88 MALLOC_DEFINE(M_FREEBLKS, "freeblks","Blocks freed from an inode");
89 MALLOC_DEFINE(M_FREEFILE, "freefile","Inode deallocated");
90 MALLOC_DEFINE(M_DIRADD, "diradd","New directory entry");
91 MALLOC_DEFINE(M_MKDIR, "mkdir","New directory");
92 MALLOC_DEFINE(M_DIRREM, "dirrem","Directory entry deleted");
93 
94 #define M_SOFTDEP_FLAGS		(M_WAITOK | M_USE_RESERVE)
95 
96 #define	D_PAGEDEP	0
97 #define	D_INODEDEP	1
98 #define	D_NEWBLK	2
99 #define	D_BMSAFEMAP	3
100 #define	D_ALLOCDIRECT	4
101 #define	D_INDIRDEP	5
102 #define	D_ALLOCINDIR	6
103 #define	D_FREEFRAG	7
104 #define	D_FREEBLKS	8
105 #define	D_FREEFILE	9
106 #define	D_DIRADD	10
107 #define	D_MKDIR		11
108 #define	D_DIRREM	12
109 #define D_LAST		D_DIRREM
110 
111 /*
112  * translate from workitem type to memory type
113  * MUST match the defines above, such that memtype[D_XXX] == M_XXX
114  */
115 static struct malloc_type *memtype[] = {
116 	M_PAGEDEP,
117 	M_INODEDEP,
118 	M_NEWBLK,
119 	M_BMSAFEMAP,
120 	M_ALLOCDIRECT,
121 	M_INDIRDEP,
122 	M_ALLOCINDIR,
123 	M_FREEFRAG,
124 	M_FREEBLKS,
125 	M_FREEFILE,
126 	M_DIRADD,
127 	M_MKDIR,
128 	M_DIRREM
129 };
130 
131 #define DtoM(type) (memtype[type])
132 
133 /*
134  * Names of malloc types.
135  */
136 #define TYPENAME(type)  \
137 	((unsigned)(type) < D_LAST ? memtype[type]->ks_shortdesc : "???")
138 /*
139  * End system adaptaion definitions.
140  */
141 
142 /*
143  * Internal function prototypes.
144  */
145 static	void softdep_error(char *, int);
146 static	void drain_output(struct vnode *, int);
147 static	int getdirtybuf(struct buf **, int);
148 static	void clear_remove(struct thread *);
149 static	void clear_inodedeps(struct thread *);
150 static	int flush_pagedep_deps(struct vnode *, struct mount *,
151 	    struct diraddhd *);
152 static	int flush_inodedep_deps(struct fs *, ino_t);
153 static	int handle_written_filepage(struct pagedep *, struct buf *);
154 static  void diradd_inode_written(struct diradd *, struct inodedep *);
155 static	int handle_written_inodeblock(struct inodedep *, struct buf *);
156 static	void handle_allocdirect_partdone(struct allocdirect *);
157 static	void handle_allocindir_partdone(struct allocindir *);
158 static	void initiate_write_filepage(struct pagedep *, struct buf *);
159 static	void handle_written_mkdir(struct mkdir *, int);
160 static	void initiate_write_inodeblock(struct inodedep *, struct buf *);
161 static	void handle_workitem_freefile(struct freefile *);
162 static	void handle_workitem_remove(struct dirrem *);
163 static	struct dirrem *newdirrem(struct buf *, struct inode *,
164 	    struct inode *, int, struct dirrem **);
165 static	void free_diradd(struct diradd *);
166 static	void free_allocindir(struct allocindir *, struct inodedep *);
167 static	int indir_trunc (struct inode *, ufs_daddr_t, int, ufs_lbn_t,
168 	    long *);
169 static	void deallocate_dependencies(struct buf *, struct inodedep *);
170 static	void free_allocdirect(struct allocdirectlst *,
171 	    struct allocdirect *, int);
172 static	int check_inode_unwritten(struct inodedep *);
173 static	int free_inodedep(struct inodedep *);
174 static	void handle_workitem_freeblocks(struct freeblks *);
175 static	void merge_inode_lists(struct inodedep *);
176 static	void setup_allocindir_phase2(struct buf *, struct inode *,
177 	    struct allocindir *);
178 static	struct allocindir *newallocindir(struct inode *, int, ufs_daddr_t,
179 	    ufs_daddr_t);
180 static	void handle_workitem_freefrag(struct freefrag *);
181 static	struct freefrag *newfreefrag(struct inode *, ufs_daddr_t, long);
182 static	void allocdirect_merge(struct allocdirectlst *,
183 	    struct allocdirect *, struct allocdirect *);
184 static	struct bmsafemap *bmsafemap_lookup(struct buf *);
185 static	int newblk_lookup(struct fs *, ufs_daddr_t, int,
186 	    struct newblk **);
187 static	int inodedep_lookup(struct fs *, ino_t, int, struct inodedep **);
188 static	int pagedep_lookup(struct inode *, ufs_lbn_t, int,
189 	    struct pagedep **);
190 static	void pause_timer(void *);
191 static	int request_cleanup(int, int);
192 static	int process_worklist_item(struct mount *, int);
193 static	void add_to_worklist(struct worklist *);
194 
195 /*
196  * Exported softdep operations.
197  */
198 static	void softdep_disk_io_initiation(struct buf *);
199 static	void softdep_disk_write_complete(struct buf *);
200 static	void softdep_deallocate_dependencies(struct buf *);
201 static	int softdep_fsync(struct vnode *);
202 static	int softdep_process_worklist(struct mount *);
203 static	void softdep_move_dependencies(struct buf *, struct buf *);
204 static	int softdep_count_dependencies(struct buf *bp, int);
205 
206 static struct bio_ops softdep_bioops = {
207 	softdep_disk_io_initiation,		/* io_start */
208 	softdep_disk_write_complete,		/* io_complete */
209 	softdep_deallocate_dependencies,	/* io_deallocate */
210 	softdep_fsync,				/* io_fsync */
211 	softdep_process_worklist,		/* io_sync */
212 	softdep_move_dependencies,		/* io_movedeps */
213 	softdep_count_dependencies,		/* io_countdeps */
214 };
215 
216 /*
217  * Locking primitives.
218  *
219  * For a uniprocessor, all we need to do is protect against disk
220  * interrupts. For a multiprocessor, this lock would have to be
221  * a mutex. A single mutex is used throughout this file, though
222  * finer grain locking could be used if contention warranted it.
223  *
224  * For a multiprocessor, the sleep call would accept a lock and
225  * release it after the sleep processing was complete. In a uniprocessor
226  * implementation there is no such interlock, so we simple mark
227  * the places where it needs to be done with the `interlocked' form
228  * of the lock calls. Since the uniprocessor sleep already interlocks
229  * the spl, there is nothing that really needs to be done.
230  */
231 #ifndef /* NOT */ DEBUG
232 static struct lockit {
233 	int	lkt_spl;
234 } lk = { 0 };
235 #define ACQUIRE_LOCK(lk)		(lk)->lkt_spl = splbio()
236 #define FREE_LOCK(lk)			splx((lk)->lkt_spl)
237 
238 #else /* DEBUG */
239 #define NOHOLDER	((struct thread *)-1)
240 #define SPECIAL_FLAG	((struct thread *)-2)
241 static struct lockit {
242 	int	lkt_spl;
243 	struct thread *lkt_held;
244 } lk = { 0, NOHOLDER };
245 static int lockcnt;
246 
247 static	void acquire_lock(struct lockit *);
248 static	void free_lock(struct lockit *);
249 void	softdep_panic(char *);
250 
251 #define ACQUIRE_LOCK(lk)		acquire_lock(lk)
252 #define FREE_LOCK(lk)			free_lock(lk)
253 
254 static void
255 acquire_lock(lk)
256 	struct lockit *lk;
257 {
258 	thread_t holder;
259 
260 	if (lk->lkt_held != NOHOLDER) {
261 		holder = lk->lkt_held;
262 		FREE_LOCK(lk);
263 		if (holder == curthread)
264 			panic("softdep_lock: locking against myself");
265 		else
266 			panic("softdep_lock: lock held by %p", holder);
267 	}
268 	lk->lkt_spl = splbio();
269 	lk->lkt_held = curthread;
270 	lockcnt++;
271 }
272 
273 static void
274 free_lock(lk)
275 	struct lockit *lk;
276 {
277 
278 	if (lk->lkt_held == NOHOLDER)
279 		panic("softdep_unlock: lock not held");
280 	lk->lkt_held = NOHOLDER;
281 	splx(lk->lkt_spl);
282 }
283 
284 /*
285  * Function to release soft updates lock and panic.
286  */
287 void
288 softdep_panic(msg)
289 	char *msg;
290 {
291 
292 	if (lk.lkt_held != NOHOLDER)
293 		FREE_LOCK(&lk);
294 	panic(msg);
295 }
296 #endif /* DEBUG */
297 
298 static	int interlocked_sleep(struct lockit *, int, void *, int,
299 	    const char *, int);
300 
301 /*
302  * When going to sleep, we must save our SPL so that it does
303  * not get lost if some other process uses the lock while we
304  * are sleeping. We restore it after we have slept. This routine
305  * wraps the interlocking with functions that sleep. The list
306  * below enumerates the available set of operations.
307  */
308 #define	UNKNOWN		0
309 #define	SLEEP		1
310 #define	LOCKBUF		2
311 
312 static int
313 interlocked_sleep(lk, op, ident, flags, wmesg, timo)
314 	struct lockit *lk;
315 	int op;
316 	void *ident;
317 	int flags;
318 	const char *wmesg;
319 	int timo;
320 {
321 	thread_t holder;
322 	int s, retval;
323 
324 	s = lk->lkt_spl;
325 #	ifdef DEBUG
326 	if (lk->lkt_held == NOHOLDER)
327 		panic("interlocked_sleep: lock not held");
328 	lk->lkt_held = NOHOLDER;
329 #	endif /* DEBUG */
330 	switch (op) {
331 	case SLEEP:
332 		retval = tsleep(ident, flags, wmesg, timo);
333 		break;
334 	case LOCKBUF:
335 		retval = BUF_LOCK((struct buf *)ident, flags);
336 		break;
337 	default:
338 		panic("interlocked_sleep: unknown operation");
339 	}
340 #	ifdef DEBUG
341 	if (lk->lkt_held != NOHOLDER) {
342 		holder = lk->lkt_held;
343 		FREE_LOCK(lk);
344 		if (holder == curthread)
345 			panic("interlocked_sleep: locking against self");
346 		else
347 			panic("interlocked_sleep: lock held by %p", holder);
348 	}
349 	lk->lkt_held = curthread;
350 	lockcnt++;
351 #	endif /* DEBUG */
352 	lk->lkt_spl = s;
353 	return (retval);
354 }
355 
356 /*
357  * Place holder for real semaphores.
358  */
359 struct sema {
360 	int	value;
361 	thread_t holder;
362 	char	*name;
363 	int	prio;
364 	int	timo;
365 };
366 static	void sema_init(struct sema *, char *, int, int);
367 static	int sema_get(struct sema *, struct lockit *);
368 static	void sema_release(struct sema *);
369 
370 static void
371 sema_init(semap, name, prio, timo)
372 	struct sema *semap;
373 	char *name;
374 	int prio, timo;
375 {
376 
377 	semap->holder = NOHOLDER;
378 	semap->value = 0;
379 	semap->name = name;
380 	semap->prio = prio;
381 	semap->timo = timo;
382 }
383 
384 static int
385 sema_get(semap, interlock)
386 	struct sema *semap;
387 	struct lockit *interlock;
388 {
389 
390 	if (semap->value++ > 0) {
391 		if (interlock != NULL) {
392 			interlocked_sleep(interlock, SLEEP, (caddr_t)semap,
393 			    semap->prio, semap->name, semap->timo);
394 			FREE_LOCK(interlock);
395 		} else {
396 			tsleep((caddr_t)semap, semap->prio, semap->name,
397 			    semap->timo);
398 		}
399 		return (0);
400 	}
401 	semap->holder = curthread;
402 	if (interlock != NULL)
403 		FREE_LOCK(interlock);
404 	return (1);
405 }
406 
407 static void
408 sema_release(semap)
409 	struct sema *semap;
410 {
411 
412 	if (semap->value <= 0 || semap->holder != curthread) {
413 		if (lk.lkt_held != NOHOLDER)
414 			FREE_LOCK(&lk);
415 		panic("sema_release: not held");
416 	}
417 	if (--semap->value > 0) {
418 		semap->value = 0;
419 		wakeup(semap);
420 	}
421 	semap->holder = NOHOLDER;
422 }
423 
424 /*
425  * Worklist queue management.
426  * These routines require that the lock be held.
427  */
428 #ifndef /* NOT */ DEBUG
429 #define WORKLIST_INSERT(head, item) do {	\
430 	(item)->wk_state |= ONWORKLIST;		\
431 	LIST_INSERT_HEAD(head, item, wk_list);	\
432 } while (0)
433 #define WORKLIST_REMOVE(item) do {		\
434 	(item)->wk_state &= ~ONWORKLIST;	\
435 	LIST_REMOVE(item, wk_list);		\
436 } while (0)
437 #define WORKITEM_FREE(item, type) FREE(item, DtoM(type))
438 
439 #else /* DEBUG */
440 static	void worklist_insert(struct workhead *, struct worklist *);
441 static	void worklist_remove(struct worklist *);
442 static	void workitem_free(struct worklist *, int);
443 
444 #define WORKLIST_INSERT(head, item) worklist_insert(head, item)
445 #define WORKLIST_REMOVE(item) worklist_remove(item)
446 #define WORKITEM_FREE(item, type) workitem_free((struct worklist *)item, type)
447 
448 static void
449 worklist_insert(head, item)
450 	struct workhead *head;
451 	struct worklist *item;
452 {
453 
454 	if (lk.lkt_held == NOHOLDER)
455 		panic("worklist_insert: lock not held");
456 	if (item->wk_state & ONWORKLIST) {
457 		FREE_LOCK(&lk);
458 		panic("worklist_insert: already on list");
459 	}
460 	item->wk_state |= ONWORKLIST;
461 	LIST_INSERT_HEAD(head, item, wk_list);
462 }
463 
464 static void
465 worklist_remove(item)
466 	struct worklist *item;
467 {
468 
469 	if (lk.lkt_held == NOHOLDER)
470 		panic("worklist_remove: lock not held");
471 	if ((item->wk_state & ONWORKLIST) == 0) {
472 		FREE_LOCK(&lk);
473 		panic("worklist_remove: not on list");
474 	}
475 	item->wk_state &= ~ONWORKLIST;
476 	LIST_REMOVE(item, wk_list);
477 }
478 
479 static void
480 workitem_free(item, type)
481 	struct worklist *item;
482 	int type;
483 {
484 
485 	if (item->wk_state & ONWORKLIST) {
486 		if (lk.lkt_held != NOHOLDER)
487 			FREE_LOCK(&lk);
488 		panic("workitem_free: still on list");
489 	}
490 	if (item->wk_type != type) {
491 		if (lk.lkt_held != NOHOLDER)
492 			FREE_LOCK(&lk);
493 		panic("workitem_free: type mismatch");
494 	}
495 	FREE(item, DtoM(type));
496 }
497 #endif /* DEBUG */
498 
499 /*
500  * Workitem queue management
501  */
502 static struct workhead softdep_workitem_pending;
503 static int num_on_worklist;	/* number of worklist items to be processed */
504 static int softdep_worklist_busy; /* 1 => trying to do unmount */
505 static int softdep_worklist_req; /* serialized waiters */
506 static int max_softdeps;	/* maximum number of structs before slowdown */
507 static int tickdelay = 2;	/* number of ticks to pause during slowdown */
508 static int *stat_countp;	/* statistic to count in proc_waiting timeout */
509 static int proc_waiting;	/* tracks whether we have a timeout posted */
510 static struct callout handle; /* handle on posted proc_waiting timeout */
511 static struct thread *filesys_syncer; /* proc of filesystem syncer process */
512 static int req_clear_inodedeps;	/* syncer process flush some inodedeps */
513 #define FLUSH_INODES	1
514 static int req_clear_remove;	/* syncer process flush some freeblks */
515 #define FLUSH_REMOVE	2
516 /*
517  * runtime statistics
518  */
519 static int stat_worklist_push;	/* number of worklist cleanups */
520 static int stat_blk_limit_push;	/* number of times block limit neared */
521 static int stat_ino_limit_push;	/* number of times inode limit neared */
522 static int stat_blk_limit_hit;	/* number of times block slowdown imposed */
523 static int stat_ino_limit_hit;	/* number of times inode slowdown imposed */
524 static int stat_sync_limit_hit;	/* number of synchronous slowdowns imposed */
525 static int stat_indir_blk_ptrs;	/* bufs redirtied as indir ptrs not written */
526 static int stat_inode_bitmap;	/* bufs redirtied as inode bitmap not written */
527 static int stat_direct_blk_ptrs;/* bufs redirtied as direct ptrs not written */
528 static int stat_dir_entry;	/* bufs redirtied as dir entry cannot write */
529 #ifdef DEBUG
530 #include <vm/vm.h>
531 #include <sys/sysctl.h>
532 SYSCTL_INT(_debug, OID_AUTO, max_softdeps, CTLFLAG_RW, &max_softdeps, 0, "");
533 SYSCTL_INT(_debug, OID_AUTO, tickdelay, CTLFLAG_RW, &tickdelay, 0, "");
534 SYSCTL_INT(_debug, OID_AUTO, worklist_push, CTLFLAG_RW, &stat_worklist_push, 0,"");
535 SYSCTL_INT(_debug, OID_AUTO, blk_limit_push, CTLFLAG_RW, &stat_blk_limit_push, 0,"");
536 SYSCTL_INT(_debug, OID_AUTO, ino_limit_push, CTLFLAG_RW, &stat_ino_limit_push, 0,"");
537 SYSCTL_INT(_debug, OID_AUTO, blk_limit_hit, CTLFLAG_RW, &stat_blk_limit_hit, 0, "");
538 SYSCTL_INT(_debug, OID_AUTO, ino_limit_hit, CTLFLAG_RW, &stat_ino_limit_hit, 0, "");
539 SYSCTL_INT(_debug, OID_AUTO, sync_limit_hit, CTLFLAG_RW, &stat_sync_limit_hit, 0, "");
540 SYSCTL_INT(_debug, OID_AUTO, indir_blk_ptrs, CTLFLAG_RW, &stat_indir_blk_ptrs, 0, "");
541 SYSCTL_INT(_debug, OID_AUTO, inode_bitmap, CTLFLAG_RW, &stat_inode_bitmap, 0, "");
542 SYSCTL_INT(_debug, OID_AUTO, direct_blk_ptrs, CTLFLAG_RW, &stat_direct_blk_ptrs, 0, "");
543 SYSCTL_INT(_debug, OID_AUTO, dir_entry, CTLFLAG_RW, &stat_dir_entry, 0, "");
544 #endif /* DEBUG */
545 
546 /*
547  * Add an item to the end of the work queue.
548  * This routine requires that the lock be held.
549  * This is the only routine that adds items to the list.
550  * The following routine is the only one that removes items
551  * and does so in order from first to last.
552  */
553 static void
554 add_to_worklist(wk)
555 	struct worklist *wk;
556 {
557 	static struct worklist *worklist_tail;
558 
559 	if (wk->wk_state & ONWORKLIST) {
560 		if (lk.lkt_held != NOHOLDER)
561 			FREE_LOCK(&lk);
562 		panic("add_to_worklist: already on list");
563 	}
564 	wk->wk_state |= ONWORKLIST;
565 	if (LIST_FIRST(&softdep_workitem_pending) == NULL)
566 		LIST_INSERT_HEAD(&softdep_workitem_pending, wk, wk_list);
567 	else
568 		LIST_INSERT_AFTER(worklist_tail, wk, wk_list);
569 	worklist_tail = wk;
570 	num_on_worklist += 1;
571 }
572 
573 /*
574  * Process that runs once per second to handle items in the background queue.
575  *
576  * Note that we ensure that everything is done in the order in which they
577  * appear in the queue. The code below depends on this property to ensure
578  * that blocks of a file are freed before the inode itself is freed. This
579  * ordering ensures that no new <vfsid, inum, lbn> triples will be generated
580  * until all the old ones have been purged from the dependency lists.
581  */
582 static int
583 softdep_process_worklist(matchmnt)
584 	struct mount *matchmnt;
585 {
586 	thread_t td = curthread;
587 	int matchcnt, loopcount;
588 	long starttime;
589 
590 	/*
591 	 * Record the process identifier of our caller so that we can give
592 	 * this process preferential treatment in request_cleanup below.
593 	 */
594 	filesys_syncer = td;
595 	matchcnt = 0;
596 
597 	/*
598 	 * There is no danger of having multiple processes run this
599 	 * code, but we have to single-thread it when softdep_flushfiles()
600 	 * is in operation to get an accurate count of the number of items
601 	 * related to its mount point that are in the list.
602 	 */
603 	if (matchmnt == NULL) {
604 		if (softdep_worklist_busy < 0)
605 			return(-1);
606 		softdep_worklist_busy += 1;
607 	}
608 
609 	/*
610 	 * If requested, try removing inode or removal dependencies.
611 	 */
612 	if (req_clear_inodedeps) {
613 		clear_inodedeps(td);
614 		req_clear_inodedeps -= 1;
615 		wakeup_one(&proc_waiting);
616 	}
617 	if (req_clear_remove) {
618 		clear_remove(td);
619 		req_clear_remove -= 1;
620 		wakeup_one(&proc_waiting);
621 	}
622 	loopcount = 1;
623 	starttime = time_second;
624 	while (num_on_worklist > 0) {
625 		matchcnt += process_worklist_item(matchmnt, 0);
626 
627 		/*
628 		 * If a umount operation wants to run the worklist
629 		 * accurately, abort.
630 		 */
631 		if (softdep_worklist_req && matchmnt == NULL) {
632 			matchcnt = -1;
633 			break;
634 		}
635 
636 		/*
637 		 * If requested, try removing inode or removal dependencies.
638 		 */
639 		if (req_clear_inodedeps) {
640 			clear_inodedeps(td);
641 			req_clear_inodedeps -= 1;
642 			wakeup_one(&proc_waiting);
643 		}
644 		if (req_clear_remove) {
645 			clear_remove(td);
646 			req_clear_remove -= 1;
647 			wakeup_one(&proc_waiting);
648 		}
649 		/*
650 		 * We do not generally want to stop for buffer space, but if
651 		 * we are really being a buffer hog, we will stop and wait.
652 		 */
653 		if (loopcount++ % 128 == 0)
654 			bwillwrite();
655 		/*
656 		 * Never allow processing to run for more than one
657 		 * second. Otherwise the other syncer tasks may get
658 		 * excessively backlogged.
659 		 */
660 		if (starttime != time_second && matchmnt == NULL) {
661 			matchcnt = -1;
662 			break;
663 		}
664 	}
665 	if (matchmnt == NULL) {
666 		--softdep_worklist_busy;
667 		if (softdep_worklist_req && softdep_worklist_busy == 0)
668 			wakeup(&softdep_worklist_req);
669 	}
670 	return (matchcnt);
671 }
672 
673 /*
674  * Process one item on the worklist.
675  */
676 static int
677 process_worklist_item(matchmnt, flags)
678 	struct mount *matchmnt;
679 	int flags;
680 {
681 	struct worklist *wk;
682 	struct dirrem *dirrem;
683 	struct fs *matchfs;
684 	struct vnode *vp;
685 	int matchcnt = 0;
686 
687 	matchfs = NULL;
688 	if (matchmnt != NULL)
689 		matchfs = VFSTOUFS(matchmnt)->um_fs;
690 	ACQUIRE_LOCK(&lk);
691 	/*
692 	 * Normally we just process each item on the worklist in order.
693 	 * However, if we are in a situation where we cannot lock any
694 	 * inodes, we have to skip over any dirrem requests whose
695 	 * vnodes are resident and locked.
696 	 */
697 	LIST_FOREACH(wk, &softdep_workitem_pending, wk_list) {
698 		if ((flags & LK_NOWAIT) == 0 || wk->wk_type != D_DIRREM)
699 			break;
700 		dirrem = WK_DIRREM(wk);
701 		vp = ufs_ihashlookup(VFSTOUFS(dirrem->dm_mnt)->um_dev,
702 		    dirrem->dm_oldinum);
703 		if (vp == NULL || !VOP_ISLOCKED(vp, curthread))
704 			break;
705 	}
706 	if (wk == 0) {
707 		FREE_LOCK(&lk);
708 		return (0);
709 	}
710 	WORKLIST_REMOVE(wk);
711 	num_on_worklist -= 1;
712 	FREE_LOCK(&lk);
713 	switch (wk->wk_type) {
714 
715 	case D_DIRREM:
716 		/* removal of a directory entry */
717 		if (WK_DIRREM(wk)->dm_mnt == matchmnt)
718 			matchcnt += 1;
719 		handle_workitem_remove(WK_DIRREM(wk));
720 		break;
721 
722 	case D_FREEBLKS:
723 		/* releasing blocks and/or fragments from a file */
724 		if (WK_FREEBLKS(wk)->fb_fs == matchfs)
725 			matchcnt += 1;
726 		handle_workitem_freeblocks(WK_FREEBLKS(wk));
727 		break;
728 
729 	case D_FREEFRAG:
730 		/* releasing a fragment when replaced as a file grows */
731 		if (WK_FREEFRAG(wk)->ff_fs == matchfs)
732 			matchcnt += 1;
733 		handle_workitem_freefrag(WK_FREEFRAG(wk));
734 		break;
735 
736 	case D_FREEFILE:
737 		/* releasing an inode when its link count drops to 0 */
738 		if (WK_FREEFILE(wk)->fx_fs == matchfs)
739 			matchcnt += 1;
740 		handle_workitem_freefile(WK_FREEFILE(wk));
741 		break;
742 
743 	default:
744 		panic("%s_process_worklist: Unknown type %s",
745 		    "softdep", TYPENAME(wk->wk_type));
746 		/* NOTREACHED */
747 	}
748 	return (matchcnt);
749 }
750 
751 /*
752  * Move dependencies from one buffer to another.
753  */
754 static void
755 softdep_move_dependencies(oldbp, newbp)
756 	struct buf *oldbp;
757 	struct buf *newbp;
758 {
759 	struct worklist *wk, *wktail;
760 
761 	if (LIST_FIRST(&newbp->b_dep) != NULL)
762 		panic("softdep_move_dependencies: need merge code");
763 	wktail = 0;
764 	ACQUIRE_LOCK(&lk);
765 	while ((wk = LIST_FIRST(&oldbp->b_dep)) != NULL) {
766 		LIST_REMOVE(wk, wk_list);
767 		if (wktail == 0)
768 			LIST_INSERT_HEAD(&newbp->b_dep, wk, wk_list);
769 		else
770 			LIST_INSERT_AFTER(wktail, wk, wk_list);
771 		wktail = wk;
772 	}
773 	FREE_LOCK(&lk);
774 }
775 
776 /*
777  * Purge the work list of all items associated with a particular mount point.
778  */
779 int
780 softdep_flushfiles(struct mount *oldmnt, int flags, struct thread *td)
781 {
782 	struct vnode *devvp;
783 	int error, loopcnt;
784 
785 	/*
786 	 * Await our turn to clear out the queue, then serialize access.
787 	 */
788 	while (softdep_worklist_busy != 0) {
789 		softdep_worklist_req += 1;
790 		tsleep(&softdep_worklist_req, 0, "softflush", 0);
791 		softdep_worklist_req -= 1;
792 	}
793 	softdep_worklist_busy = -1;
794 
795 	if ((error = ffs_flushfiles(oldmnt, flags, td)) != 0) {
796 		softdep_worklist_busy = 0;
797 		if (softdep_worklist_req)
798 			wakeup(&softdep_worklist_req);
799 		return (error);
800 	}
801 	/*
802 	 * Alternately flush the block device associated with the mount
803 	 * point and process any dependencies that the flushing
804 	 * creates. In theory, this loop can happen at most twice,
805 	 * but we give it a few extra just to be sure.
806 	 */
807 	devvp = VFSTOUFS(oldmnt)->um_devvp;
808 	for (loopcnt = 10; loopcnt > 0; ) {
809 		if (softdep_process_worklist(oldmnt) == 0) {
810 			loopcnt--;
811 			/*
812 			 * Do another flush in case any vnodes were brought in
813 			 * as part of the cleanup operations.
814 			 */
815 			if ((error = ffs_flushfiles(oldmnt, flags, td)) != 0)
816 				break;
817 			/*
818 			 * If we still found nothing to do, we are really done.
819 			 */
820 			if (softdep_process_worklist(oldmnt) == 0)
821 				break;
822 		}
823 		vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY, td);
824 		error = VOP_FSYNC(devvp, MNT_WAIT, td);
825 		VOP_UNLOCK(devvp, 0, td);
826 		if (error)
827 			break;
828 	}
829 	softdep_worklist_busy = 0;
830 	if (softdep_worklist_req)
831 		wakeup(&softdep_worklist_req);
832 
833 	/*
834 	 * If we are unmounting then it is an error to fail. If we
835 	 * are simply trying to downgrade to read-only, then filesystem
836 	 * activity can keep us busy forever, so we just fail with EBUSY.
837 	 */
838 	if (loopcnt == 0) {
839 		if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT)
840 			panic("softdep_flushfiles: looping");
841 		error = EBUSY;
842 	}
843 	return (error);
844 }
845 
846 /*
847  * Structure hashing.
848  *
849  * There are three types of structures that can be looked up:
850  *	1) pagedep structures identified by mount point, inode number,
851  *	   and logical block.
852  *	2) inodedep structures identified by mount point and inode number.
853  *	3) newblk structures identified by mount point and
854  *	   physical block number.
855  *
856  * The "pagedep" and "inodedep" dependency structures are hashed
857  * separately from the file blocks and inodes to which they correspond.
858  * This separation helps when the in-memory copy of an inode or
859  * file block must be replaced. It also obviates the need to access
860  * an inode or file page when simply updating (or de-allocating)
861  * dependency structures. Lookup of newblk structures is needed to
862  * find newly allocated blocks when trying to associate them with
863  * their allocdirect or allocindir structure.
864  *
865  * The lookup routines optionally create and hash a new instance when
866  * an existing entry is not found.
867  */
868 #define DEPALLOC	0x0001	/* allocate structure if lookup fails */
869 #define NODELAY		0x0002	/* cannot do background work */
870 
871 /*
872  * Structures and routines associated with pagedep caching.
873  */
874 LIST_HEAD(pagedep_hashhead, pagedep) *pagedep_hashtbl;
875 u_long	pagedep_hash;		/* size of hash table - 1 */
876 #define	PAGEDEP_HASH(mp, inum, lbn) \
877 	(&pagedep_hashtbl[((((register_t)(mp)) >> 13) + (inum) + (lbn)) & \
878 	    pagedep_hash])
879 static struct sema pagedep_in_progress;
880 
881 /*
882  * Look up a pagedep. Return 1 if found, 0 if not found.
883  * If not found, allocate if DEPALLOC flag is passed.
884  * Found or allocated entry is returned in pagedeppp.
885  * This routine must be called with splbio interrupts blocked.
886  */
887 static int
888 pagedep_lookup(ip, lbn, flags, pagedeppp)
889 	struct inode *ip;
890 	ufs_lbn_t lbn;
891 	int flags;
892 	struct pagedep **pagedeppp;
893 {
894 	struct pagedep *pagedep;
895 	struct pagedep_hashhead *pagedephd;
896 	struct mount *mp;
897 	int i;
898 
899 #ifdef DEBUG
900 	if (lk.lkt_held == NOHOLDER)
901 		panic("pagedep_lookup: lock not held");
902 #endif
903 	mp = ITOV(ip)->v_mount;
904 	pagedephd = PAGEDEP_HASH(mp, ip->i_number, lbn);
905 top:
906 	LIST_FOREACH(pagedep, pagedephd, pd_hash)
907 		if (ip->i_number == pagedep->pd_ino &&
908 		    lbn == pagedep->pd_lbn &&
909 		    mp == pagedep->pd_mnt)
910 			break;
911 	if (pagedep) {
912 		*pagedeppp = pagedep;
913 		return (1);
914 	}
915 	if ((flags & DEPALLOC) == 0) {
916 		*pagedeppp = NULL;
917 		return (0);
918 	}
919 	if (sema_get(&pagedep_in_progress, &lk) == 0) {
920 		ACQUIRE_LOCK(&lk);
921 		goto top;
922 	}
923 	MALLOC(pagedep, struct pagedep *, sizeof(struct pagedep), M_PAGEDEP,
924 		M_SOFTDEP_FLAGS);
925 	bzero(pagedep, sizeof(struct pagedep));
926 	pagedep->pd_list.wk_type = D_PAGEDEP;
927 	pagedep->pd_mnt = mp;
928 	pagedep->pd_ino = ip->i_number;
929 	pagedep->pd_lbn = lbn;
930 	LIST_INIT(&pagedep->pd_dirremhd);
931 	LIST_INIT(&pagedep->pd_pendinghd);
932 	for (i = 0; i < DAHASHSZ; i++)
933 		LIST_INIT(&pagedep->pd_diraddhd[i]);
934 	ACQUIRE_LOCK(&lk);
935 	LIST_INSERT_HEAD(pagedephd, pagedep, pd_hash);
936 	sema_release(&pagedep_in_progress);
937 	*pagedeppp = pagedep;
938 	return (0);
939 }
940 
941 /*
942  * Structures and routines associated with inodedep caching.
943  */
944 LIST_HEAD(inodedep_hashhead, inodedep) *inodedep_hashtbl;
945 static u_long	inodedep_hash;	/* size of hash table - 1 */
946 static long	num_inodedep;	/* number of inodedep allocated */
947 #define	INODEDEP_HASH(fs, inum) \
948       (&inodedep_hashtbl[((((register_t)(fs)) >> 13) + (inum)) & inodedep_hash])
949 static struct sema inodedep_in_progress;
950 
951 /*
952  * Look up a inodedep. Return 1 if found, 0 if not found.
953  * If not found, allocate if DEPALLOC flag is passed.
954  * Found or allocated entry is returned in inodedeppp.
955  * This routine must be called with splbio interrupts blocked.
956  */
957 static int
958 inodedep_lookup(fs, inum, flags, inodedeppp)
959 	struct fs *fs;
960 	ino_t inum;
961 	int flags;
962 	struct inodedep **inodedeppp;
963 {
964 	struct inodedep *inodedep;
965 	struct inodedep_hashhead *inodedephd;
966 	int firsttry;
967 
968 #ifdef DEBUG
969 	if (lk.lkt_held == NOHOLDER)
970 		panic("inodedep_lookup: lock not held");
971 #endif
972 	firsttry = 1;
973 	inodedephd = INODEDEP_HASH(fs, inum);
974 top:
975 	LIST_FOREACH(inodedep, inodedephd, id_hash)
976 		if (inum == inodedep->id_ino && fs == inodedep->id_fs)
977 			break;
978 	if (inodedep) {
979 		*inodedeppp = inodedep;
980 		return (1);
981 	}
982 	if ((flags & DEPALLOC) == 0) {
983 		*inodedeppp = NULL;
984 		return (0);
985 	}
986 	/*
987 	 * If we are over our limit, try to improve the situation.
988 	 */
989 	if (num_inodedep > max_softdeps && firsttry &&
990 	    speedup_syncer() == 0 && (flags & NODELAY) == 0 &&
991 	    request_cleanup(FLUSH_INODES, 1)) {
992 		firsttry = 0;
993 		goto top;
994 	}
995 	if (sema_get(&inodedep_in_progress, &lk) == 0) {
996 		ACQUIRE_LOCK(&lk);
997 		goto top;
998 	}
999 	num_inodedep += 1;
1000 	MALLOC(inodedep, struct inodedep *, sizeof(struct inodedep),
1001 		M_INODEDEP, M_SOFTDEP_FLAGS);
1002 	inodedep->id_list.wk_type = D_INODEDEP;
1003 	inodedep->id_fs = fs;
1004 	inodedep->id_ino = inum;
1005 	inodedep->id_state = ALLCOMPLETE;
1006 	inodedep->id_nlinkdelta = 0;
1007 	inodedep->id_savedino = NULL;
1008 	inodedep->id_savedsize = -1;
1009 	inodedep->id_buf = NULL;
1010 	LIST_INIT(&inodedep->id_pendinghd);
1011 	LIST_INIT(&inodedep->id_inowait);
1012 	LIST_INIT(&inodedep->id_bufwait);
1013 	TAILQ_INIT(&inodedep->id_inoupdt);
1014 	TAILQ_INIT(&inodedep->id_newinoupdt);
1015 	ACQUIRE_LOCK(&lk);
1016 	LIST_INSERT_HEAD(inodedephd, inodedep, id_hash);
1017 	sema_release(&inodedep_in_progress);
1018 	*inodedeppp = inodedep;
1019 	return (0);
1020 }
1021 
1022 /*
1023  * Structures and routines associated with newblk caching.
1024  */
1025 LIST_HEAD(newblk_hashhead, newblk) *newblk_hashtbl;
1026 u_long	newblk_hash;		/* size of hash table - 1 */
1027 #define	NEWBLK_HASH(fs, inum) \
1028 	(&newblk_hashtbl[((((register_t)(fs)) >> 13) + (inum)) & newblk_hash])
1029 static struct sema newblk_in_progress;
1030 
1031 /*
1032  * Look up a newblk. Return 1 if found, 0 if not found.
1033  * If not found, allocate if DEPALLOC flag is passed.
1034  * Found or allocated entry is returned in newblkpp.
1035  */
1036 static int
1037 newblk_lookup(fs, newblkno, flags, newblkpp)
1038 	struct fs *fs;
1039 	ufs_daddr_t newblkno;
1040 	int flags;
1041 	struct newblk **newblkpp;
1042 {
1043 	struct newblk *newblk;
1044 	struct newblk_hashhead *newblkhd;
1045 
1046 	newblkhd = NEWBLK_HASH(fs, newblkno);
1047 top:
1048 	LIST_FOREACH(newblk, newblkhd, nb_hash)
1049 		if (newblkno == newblk->nb_newblkno && fs == newblk->nb_fs)
1050 			break;
1051 	if (newblk) {
1052 		*newblkpp = newblk;
1053 		return (1);
1054 	}
1055 	if ((flags & DEPALLOC) == 0) {
1056 		*newblkpp = NULL;
1057 		return (0);
1058 	}
1059 	if (sema_get(&newblk_in_progress, 0) == 0)
1060 		goto top;
1061 	MALLOC(newblk, struct newblk *, sizeof(struct newblk),
1062 		M_NEWBLK, M_SOFTDEP_FLAGS);
1063 	newblk->nb_state = 0;
1064 	newblk->nb_fs = fs;
1065 	newblk->nb_newblkno = newblkno;
1066 	LIST_INSERT_HEAD(newblkhd, newblk, nb_hash);
1067 	sema_release(&newblk_in_progress);
1068 	*newblkpp = newblk;
1069 	return (0);
1070 }
1071 
1072 /*
1073  * Executed during filesystem system initialization before
1074  * mounting any filesystems.
1075  */
1076 void
1077 softdep_initialize()
1078 {
1079 	callout_init(&handle);
1080 	bioops = softdep_bioops;	/* XXX hack */
1081 
1082 	LIST_INIT(&mkdirlisthd);
1083 	LIST_INIT(&softdep_workitem_pending);
1084 	max_softdeps = min(desiredvnodes * 8,
1085 		M_INODEDEP->ks_limit / (2 * sizeof(struct inodedep)));
1086 	pagedep_hashtbl = hashinit(desiredvnodes / 5, M_PAGEDEP,
1087 	    &pagedep_hash);
1088 	sema_init(&pagedep_in_progress, "pagedep", 0, 0);
1089 	inodedep_hashtbl = hashinit(desiredvnodes, M_INODEDEP, &inodedep_hash);
1090 	sema_init(&inodedep_in_progress, "inodedep", 0, 0);
1091 	newblk_hashtbl = hashinit(64, M_NEWBLK, &newblk_hash);
1092 	sema_init(&newblk_in_progress, "newblk", 0, 0);
1093 }
1094 
1095 /*
1096  * Called at mount time to notify the dependency code that a
1097  * filesystem wishes to use it.
1098  */
1099 int
1100 softdep_mount(devvp, mp, fs)
1101 	struct vnode *devvp;
1102 	struct mount *mp;
1103 	struct fs *fs;
1104 {
1105 	struct csum cstotal;
1106 	struct cg *cgp;
1107 	struct buf *bp;
1108 	int error, cyl;
1109 
1110 	mp->mnt_flag &= ~MNT_ASYNC;
1111 	mp->mnt_flag |= MNT_SOFTDEP;
1112 	/*
1113 	 * When doing soft updates, the counters in the
1114 	 * superblock may have gotten out of sync, so we have
1115 	 * to scan the cylinder groups and recalculate them.
1116 	 */
1117 	if (fs->fs_clean != 0)
1118 		return (0);
1119 	bzero(&cstotal, sizeof cstotal);
1120 	for (cyl = 0; cyl < fs->fs_ncg; cyl++) {
1121 		if ((error = bread(devvp, fsbtodb(fs, cgtod(fs, cyl)),
1122 		    fs->fs_cgsize, &bp)) != 0) {
1123 			brelse(bp);
1124 			return (error);
1125 		}
1126 		cgp = (struct cg *)bp->b_data;
1127 		cstotal.cs_nffree += cgp->cg_cs.cs_nffree;
1128 		cstotal.cs_nbfree += cgp->cg_cs.cs_nbfree;
1129 		cstotal.cs_nifree += cgp->cg_cs.cs_nifree;
1130 		cstotal.cs_ndir += cgp->cg_cs.cs_ndir;
1131 		fs->fs_cs(fs, cyl) = cgp->cg_cs;
1132 		brelse(bp);
1133 	}
1134 #ifdef DEBUG
1135 	if (bcmp(&cstotal, &fs->fs_cstotal, sizeof cstotal))
1136 		printf("ffs_mountfs: superblock updated for soft updates\n");
1137 #endif
1138 	bcopy(&cstotal, &fs->fs_cstotal, sizeof cstotal);
1139 	return (0);
1140 }
1141 
1142 /*
1143  * Protecting the freemaps (or bitmaps).
1144  *
1145  * To eliminate the need to execute fsck before mounting a filesystem
1146  * after a power failure, one must (conservatively) guarantee that the
1147  * on-disk copy of the bitmaps never indicate that a live inode or block is
1148  * free.  So, when a block or inode is allocated, the bitmap should be
1149  * updated (on disk) before any new pointers.  When a block or inode is
1150  * freed, the bitmap should not be updated until all pointers have been
1151  * reset.  The latter dependency is handled by the delayed de-allocation
1152  * approach described below for block and inode de-allocation.  The former
1153  * dependency is handled by calling the following procedure when a block or
1154  * inode is allocated. When an inode is allocated an "inodedep" is created
1155  * with its DEPCOMPLETE flag cleared until its bitmap is written to disk.
1156  * Each "inodedep" is also inserted into the hash indexing structure so
1157  * that any additional link additions can be made dependent on the inode
1158  * allocation.
1159  *
1160  * The ufs filesystem maintains a number of free block counts (e.g., per
1161  * cylinder group, per cylinder and per <cylinder, rotational position> pair)
1162  * in addition to the bitmaps.  These counts are used to improve efficiency
1163  * during allocation and therefore must be consistent with the bitmaps.
1164  * There is no convenient way to guarantee post-crash consistency of these
1165  * counts with simple update ordering, for two main reasons: (1) The counts
1166  * and bitmaps for a single cylinder group block are not in the same disk
1167  * sector.  If a disk write is interrupted (e.g., by power failure), one may
1168  * be written and the other not.  (2) Some of the counts are located in the
1169  * superblock rather than the cylinder group block. So, we focus our soft
1170  * updates implementation on protecting the bitmaps. When mounting a
1171  * filesystem, we recompute the auxiliary counts from the bitmaps.
1172  */
1173 
1174 /*
1175  * Called just after updating the cylinder group block to allocate an inode.
1176  */
1177 void
1178 softdep_setup_inomapdep(bp, ip, newinum)
1179 	struct buf *bp;		/* buffer for cylgroup block with inode map */
1180 	struct inode *ip;	/* inode related to allocation */
1181 	ino_t newinum;		/* new inode number being allocated */
1182 {
1183 	struct inodedep *inodedep;
1184 	struct bmsafemap *bmsafemap;
1185 
1186 	/*
1187 	 * Create a dependency for the newly allocated inode.
1188 	 * Panic if it already exists as something is seriously wrong.
1189 	 * Otherwise add it to the dependency list for the buffer holding
1190 	 * the cylinder group map from which it was allocated.
1191 	 */
1192 	ACQUIRE_LOCK(&lk);
1193 	if ((inodedep_lookup(ip->i_fs, newinum, DEPALLOC|NODELAY, &inodedep))) {
1194 		FREE_LOCK(&lk);
1195 		panic("softdep_setup_inomapdep: found inode");
1196 	}
1197 	inodedep->id_buf = bp;
1198 	inodedep->id_state &= ~DEPCOMPLETE;
1199 	bmsafemap = bmsafemap_lookup(bp);
1200 	LIST_INSERT_HEAD(&bmsafemap->sm_inodedephd, inodedep, id_deps);
1201 	FREE_LOCK(&lk);
1202 }
1203 
1204 /*
1205  * Called just after updating the cylinder group block to
1206  * allocate block or fragment.
1207  */
1208 void
1209 softdep_setup_blkmapdep(bp, fs, newblkno)
1210 	struct buf *bp;		/* buffer for cylgroup block with block map */
1211 	struct fs *fs;		/* filesystem doing allocation */
1212 	ufs_daddr_t newblkno;	/* number of newly allocated block */
1213 {
1214 	struct newblk *newblk;
1215 	struct bmsafemap *bmsafemap;
1216 
1217 	/*
1218 	 * Create a dependency for the newly allocated block.
1219 	 * Add it to the dependency list for the buffer holding
1220 	 * the cylinder group map from which it was allocated.
1221 	 */
1222 	if (newblk_lookup(fs, newblkno, DEPALLOC, &newblk) != 0)
1223 		panic("softdep_setup_blkmapdep: found block");
1224 	ACQUIRE_LOCK(&lk);
1225 	newblk->nb_bmsafemap = bmsafemap = bmsafemap_lookup(bp);
1226 	LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, nb_deps);
1227 	FREE_LOCK(&lk);
1228 }
1229 
1230 /*
1231  * Find the bmsafemap associated with a cylinder group buffer.
1232  * If none exists, create one. The buffer must be locked when
1233  * this routine is called and this routine must be called with
1234  * splbio interrupts blocked.
1235  */
1236 static struct bmsafemap *
1237 bmsafemap_lookup(bp)
1238 	struct buf *bp;
1239 {
1240 	struct bmsafemap *bmsafemap;
1241 	struct worklist *wk;
1242 
1243 #ifdef DEBUG
1244 	if (lk.lkt_held == NOHOLDER)
1245 		panic("bmsafemap_lookup: lock not held");
1246 #endif
1247 	LIST_FOREACH(wk, &bp->b_dep, wk_list)
1248 		if (wk->wk_type == D_BMSAFEMAP)
1249 			return (WK_BMSAFEMAP(wk));
1250 	FREE_LOCK(&lk);
1251 	MALLOC(bmsafemap, struct bmsafemap *, sizeof(struct bmsafemap),
1252 		M_BMSAFEMAP, M_SOFTDEP_FLAGS);
1253 	bmsafemap->sm_list.wk_type = D_BMSAFEMAP;
1254 	bmsafemap->sm_list.wk_state = 0;
1255 	bmsafemap->sm_buf = bp;
1256 	LIST_INIT(&bmsafemap->sm_allocdirecthd);
1257 	LIST_INIT(&bmsafemap->sm_allocindirhd);
1258 	LIST_INIT(&bmsafemap->sm_inodedephd);
1259 	LIST_INIT(&bmsafemap->sm_newblkhd);
1260 	ACQUIRE_LOCK(&lk);
1261 	WORKLIST_INSERT(&bp->b_dep, &bmsafemap->sm_list);
1262 	return (bmsafemap);
1263 }
1264 
1265 /*
1266  * Direct block allocation dependencies.
1267  *
1268  * When a new block is allocated, the corresponding disk locations must be
1269  * initialized (with zeros or new data) before the on-disk inode points to
1270  * them.  Also, the freemap from which the block was allocated must be
1271  * updated (on disk) before the inode's pointer. These two dependencies are
1272  * independent of each other and are needed for all file blocks and indirect
1273  * blocks that are pointed to directly by the inode.  Just before the
1274  * "in-core" version of the inode is updated with a newly allocated block
1275  * number, a procedure (below) is called to setup allocation dependency
1276  * structures.  These structures are removed when the corresponding
1277  * dependencies are satisfied or when the block allocation becomes obsolete
1278  * (i.e., the file is deleted, the block is de-allocated, or the block is a
1279  * fragment that gets upgraded).  All of these cases are handled in
1280  * procedures described later.
1281  *
1282  * When a file extension causes a fragment to be upgraded, either to a larger
1283  * fragment or to a full block, the on-disk location may change (if the
1284  * previous fragment could not simply be extended). In this case, the old
1285  * fragment must be de-allocated, but not until after the inode's pointer has
1286  * been updated. In most cases, this is handled by later procedures, which
1287  * will construct a "freefrag" structure to be added to the workitem queue
1288  * when the inode update is complete (or obsolete).  The main exception to
1289  * this is when an allocation occurs while a pending allocation dependency
1290  * (for the same block pointer) remains.  This case is handled in the main
1291  * allocation dependency setup procedure by immediately freeing the
1292  * unreferenced fragments.
1293  */
1294 void
1295 softdep_setup_allocdirect(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp)
1296 	struct inode *ip;	/* inode to which block is being added */
1297 	ufs_lbn_t lbn;		/* block pointer within inode */
1298 	ufs_daddr_t newblkno;	/* disk block number being added */
1299 	ufs_daddr_t oldblkno;	/* previous block number, 0 unless frag */
1300 	long newsize;		/* size of new block */
1301 	long oldsize;		/* size of new block */
1302 	struct buf *bp;		/* bp for allocated block */
1303 {
1304 	struct allocdirect *adp, *oldadp;
1305 	struct allocdirectlst *adphead;
1306 	struct bmsafemap *bmsafemap;
1307 	struct inodedep *inodedep;
1308 	struct pagedep *pagedep;
1309 	struct newblk *newblk;
1310 
1311 	MALLOC(adp, struct allocdirect *, sizeof(struct allocdirect),
1312 		M_ALLOCDIRECT, M_SOFTDEP_FLAGS);
1313 	bzero(adp, sizeof(struct allocdirect));
1314 	adp->ad_list.wk_type = D_ALLOCDIRECT;
1315 	adp->ad_lbn = lbn;
1316 	adp->ad_newblkno = newblkno;
1317 	adp->ad_oldblkno = oldblkno;
1318 	adp->ad_newsize = newsize;
1319 	adp->ad_oldsize = oldsize;
1320 	adp->ad_state = ATTACHED;
1321 	if (newblkno == oldblkno)
1322 		adp->ad_freefrag = NULL;
1323 	else
1324 		adp->ad_freefrag = newfreefrag(ip, oldblkno, oldsize);
1325 
1326 	if (newblk_lookup(ip->i_fs, newblkno, 0, &newblk) == 0)
1327 		panic("softdep_setup_allocdirect: lost block");
1328 
1329 	ACQUIRE_LOCK(&lk);
1330 	inodedep_lookup(ip->i_fs, ip->i_number, DEPALLOC | NODELAY, &inodedep);
1331 	adp->ad_inodedep = inodedep;
1332 
1333 	if (newblk->nb_state == DEPCOMPLETE) {
1334 		adp->ad_state |= DEPCOMPLETE;
1335 		adp->ad_buf = NULL;
1336 	} else {
1337 		bmsafemap = newblk->nb_bmsafemap;
1338 		adp->ad_buf = bmsafemap->sm_buf;
1339 		LIST_REMOVE(newblk, nb_deps);
1340 		LIST_INSERT_HEAD(&bmsafemap->sm_allocdirecthd, adp, ad_deps);
1341 	}
1342 	LIST_REMOVE(newblk, nb_hash);
1343 	FREE(newblk, M_NEWBLK);
1344 
1345 	WORKLIST_INSERT(&bp->b_dep, &adp->ad_list);
1346 	if (lbn >= NDADDR) {
1347 		/* allocating an indirect block */
1348 		if (oldblkno != 0) {
1349 			FREE_LOCK(&lk);
1350 			panic("softdep_setup_allocdirect: non-zero indir");
1351 		}
1352 	} else {
1353 		/*
1354 		 * Allocating a direct block.
1355 		 *
1356 		 * If we are allocating a directory block, then we must
1357 		 * allocate an associated pagedep to track additions and
1358 		 * deletions.
1359 		 */
1360 		if ((ip->i_mode & IFMT) == IFDIR &&
1361 		    pagedep_lookup(ip, lbn, DEPALLOC, &pagedep) == 0)
1362 			WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list);
1363 	}
1364 	/*
1365 	 * The list of allocdirects must be kept in sorted and ascending
1366 	 * order so that the rollback routines can quickly determine the
1367 	 * first uncommitted block (the size of the file stored on disk
1368 	 * ends at the end of the lowest committed fragment, or if there
1369 	 * are no fragments, at the end of the highest committed block).
1370 	 * Since files generally grow, the typical case is that the new
1371 	 * block is to be added at the end of the list. We speed this
1372 	 * special case by checking against the last allocdirect in the
1373 	 * list before laboriously traversing the list looking for the
1374 	 * insertion point.
1375 	 */
1376 	adphead = &inodedep->id_newinoupdt;
1377 	oldadp = TAILQ_LAST(adphead, allocdirectlst);
1378 	if (oldadp == NULL || oldadp->ad_lbn <= lbn) {
1379 		/* insert at end of list */
1380 		TAILQ_INSERT_TAIL(adphead, adp, ad_next);
1381 		if (oldadp != NULL && oldadp->ad_lbn == lbn)
1382 			allocdirect_merge(adphead, adp, oldadp);
1383 		FREE_LOCK(&lk);
1384 		return;
1385 	}
1386 	TAILQ_FOREACH(oldadp, adphead, ad_next) {
1387 		if (oldadp->ad_lbn >= lbn)
1388 			break;
1389 	}
1390 	if (oldadp == NULL) {
1391 		FREE_LOCK(&lk);
1392 		panic("softdep_setup_allocdirect: lost entry");
1393 	}
1394 	/* insert in middle of list */
1395 	TAILQ_INSERT_BEFORE(oldadp, adp, ad_next);
1396 	if (oldadp->ad_lbn == lbn)
1397 		allocdirect_merge(adphead, adp, oldadp);
1398 	FREE_LOCK(&lk);
1399 }
1400 
1401 /*
1402  * Replace an old allocdirect dependency with a newer one.
1403  * This routine must be called with splbio interrupts blocked.
1404  */
1405 static void
1406 allocdirect_merge(adphead, newadp, oldadp)
1407 	struct allocdirectlst *adphead;	/* head of list holding allocdirects */
1408 	struct allocdirect *newadp;	/* allocdirect being added */
1409 	struct allocdirect *oldadp;	/* existing allocdirect being checked */
1410 {
1411 	struct freefrag *freefrag;
1412 
1413 #ifdef DEBUG
1414 	if (lk.lkt_held == NOHOLDER)
1415 		panic("allocdirect_merge: lock not held");
1416 #endif
1417 	if (newadp->ad_oldblkno != oldadp->ad_newblkno ||
1418 	    newadp->ad_oldsize != oldadp->ad_newsize ||
1419 	    newadp->ad_lbn >= NDADDR) {
1420 		FREE_LOCK(&lk);
1421 		panic("allocdirect_check: old %d != new %d || lbn %ld >= %d",
1422 		    newadp->ad_oldblkno, oldadp->ad_newblkno, newadp->ad_lbn,
1423 		    NDADDR);
1424 	}
1425 	newadp->ad_oldblkno = oldadp->ad_oldblkno;
1426 	newadp->ad_oldsize = oldadp->ad_oldsize;
1427 	/*
1428 	 * If the old dependency had a fragment to free or had never
1429 	 * previously had a block allocated, then the new dependency
1430 	 * can immediately post its freefrag and adopt the old freefrag.
1431 	 * This action is done by swapping the freefrag dependencies.
1432 	 * The new dependency gains the old one's freefrag, and the
1433 	 * old one gets the new one and then immediately puts it on
1434 	 * the worklist when it is freed by free_allocdirect. It is
1435 	 * not possible to do this swap when the old dependency had a
1436 	 * non-zero size but no previous fragment to free. This condition
1437 	 * arises when the new block is an extension of the old block.
1438 	 * Here, the first part of the fragment allocated to the new
1439 	 * dependency is part of the block currently claimed on disk by
1440 	 * the old dependency, so cannot legitimately be freed until the
1441 	 * conditions for the new dependency are fulfilled.
1442 	 */
1443 	if (oldadp->ad_freefrag != NULL || oldadp->ad_oldblkno == 0) {
1444 		freefrag = newadp->ad_freefrag;
1445 		newadp->ad_freefrag = oldadp->ad_freefrag;
1446 		oldadp->ad_freefrag = freefrag;
1447 	}
1448 	free_allocdirect(adphead, oldadp, 0);
1449 }
1450 
1451 /*
1452  * Allocate a new freefrag structure if needed.
1453  */
1454 static struct freefrag *
1455 newfreefrag(ip, blkno, size)
1456 	struct inode *ip;
1457 	ufs_daddr_t blkno;
1458 	long size;
1459 {
1460 	struct freefrag *freefrag;
1461 	struct fs *fs;
1462 
1463 	if (blkno == 0)
1464 		return (NULL);
1465 	fs = ip->i_fs;
1466 	if (fragnum(fs, blkno) + numfrags(fs, size) > fs->fs_frag)
1467 		panic("newfreefrag: frag size");
1468 	MALLOC(freefrag, struct freefrag *, sizeof(struct freefrag),
1469 		M_FREEFRAG, M_SOFTDEP_FLAGS);
1470 	freefrag->ff_list.wk_type = D_FREEFRAG;
1471 	freefrag->ff_state = ip->i_uid & ~ONWORKLIST;	/* XXX - used below */
1472 	freefrag->ff_inum = ip->i_number;
1473 	freefrag->ff_fs = fs;
1474 	freefrag->ff_devvp = ip->i_devvp;
1475 	freefrag->ff_blkno = blkno;
1476 	freefrag->ff_fragsize = size;
1477 	return (freefrag);
1478 }
1479 
1480 /*
1481  * This workitem de-allocates fragments that were replaced during
1482  * file block allocation.
1483  */
1484 static void
1485 handle_workitem_freefrag(freefrag)
1486 	struct freefrag *freefrag;
1487 {
1488 	struct inode tip;
1489 
1490 	tip.i_fs = freefrag->ff_fs;
1491 	tip.i_devvp = freefrag->ff_devvp;
1492 	tip.i_dev = freefrag->ff_devvp->v_rdev;
1493 	tip.i_number = freefrag->ff_inum;
1494 	tip.i_uid = freefrag->ff_state & ~ONWORKLIST;	/* XXX - set above */
1495 	ffs_blkfree(&tip, freefrag->ff_blkno, freefrag->ff_fragsize);
1496 	FREE(freefrag, M_FREEFRAG);
1497 }
1498 
1499 /*
1500  * Indirect block allocation dependencies.
1501  *
1502  * The same dependencies that exist for a direct block also exist when
1503  * a new block is allocated and pointed to by an entry in a block of
1504  * indirect pointers. The undo/redo states described above are also
1505  * used here. Because an indirect block contains many pointers that
1506  * may have dependencies, a second copy of the entire in-memory indirect
1507  * block is kept. The buffer cache copy is always completely up-to-date.
1508  * The second copy, which is used only as a source for disk writes,
1509  * contains only the safe pointers (i.e., those that have no remaining
1510  * update dependencies). The second copy is freed when all pointers
1511  * are safe. The cache is not allowed to replace indirect blocks with
1512  * pending update dependencies. If a buffer containing an indirect
1513  * block with dependencies is written, these routines will mark it
1514  * dirty again. It can only be successfully written once all the
1515  * dependencies are removed. The ffs_fsync routine in conjunction with
1516  * softdep_sync_metadata work together to get all the dependencies
1517  * removed so that a file can be successfully written to disk. Three
1518  * procedures are used when setting up indirect block pointer
1519  * dependencies. The division is necessary because of the organization
1520  * of the "balloc" routine and because of the distinction between file
1521  * pages and file metadata blocks.
1522  */
1523 
1524 /*
1525  * Allocate a new allocindir structure.
1526  */
1527 static struct allocindir *
1528 newallocindir(ip, ptrno, newblkno, oldblkno)
1529 	struct inode *ip;	/* inode for file being extended */
1530 	int ptrno;		/* offset of pointer in indirect block */
1531 	ufs_daddr_t newblkno;	/* disk block number being added */
1532 	ufs_daddr_t oldblkno;	/* previous block number, 0 if none */
1533 {
1534 	struct allocindir *aip;
1535 
1536 	MALLOC(aip, struct allocindir *, sizeof(struct allocindir),
1537 		M_ALLOCINDIR, M_SOFTDEP_FLAGS);
1538 	bzero(aip, sizeof(struct allocindir));
1539 	aip->ai_list.wk_type = D_ALLOCINDIR;
1540 	aip->ai_state = ATTACHED;
1541 	aip->ai_offset = ptrno;
1542 	aip->ai_newblkno = newblkno;
1543 	aip->ai_oldblkno = oldblkno;
1544 	aip->ai_freefrag = newfreefrag(ip, oldblkno, ip->i_fs->fs_bsize);
1545 	return (aip);
1546 }
1547 
1548 /*
1549  * Called just before setting an indirect block pointer
1550  * to a newly allocated file page.
1551  */
1552 void
1553 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp)
1554 	struct inode *ip;	/* inode for file being extended */
1555 	ufs_lbn_t lbn;		/* allocated block number within file */
1556 	struct buf *bp;		/* buffer with indirect blk referencing page */
1557 	int ptrno;		/* offset of pointer in indirect block */
1558 	ufs_daddr_t newblkno;	/* disk block number being added */
1559 	ufs_daddr_t oldblkno;	/* previous block number, 0 if none */
1560 	struct buf *nbp;	/* buffer holding allocated page */
1561 {
1562 	struct allocindir *aip;
1563 	struct pagedep *pagedep;
1564 
1565 	aip = newallocindir(ip, ptrno, newblkno, oldblkno);
1566 	ACQUIRE_LOCK(&lk);
1567 	/*
1568 	 * If we are allocating a directory page, then we must
1569 	 * allocate an associated pagedep to track additions and
1570 	 * deletions.
1571 	 */
1572 	if ((ip->i_mode & IFMT) == IFDIR &&
1573 	    pagedep_lookup(ip, lbn, DEPALLOC, &pagedep) == 0)
1574 		WORKLIST_INSERT(&nbp->b_dep, &pagedep->pd_list);
1575 	WORKLIST_INSERT(&nbp->b_dep, &aip->ai_list);
1576 	FREE_LOCK(&lk);
1577 	setup_allocindir_phase2(bp, ip, aip);
1578 }
1579 
1580 /*
1581  * Called just before setting an indirect block pointer to a
1582  * newly allocated indirect block.
1583  */
1584 void
1585 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno)
1586 	struct buf *nbp;	/* newly allocated indirect block */
1587 	struct inode *ip;	/* inode for file being extended */
1588 	struct buf *bp;		/* indirect block referencing allocated block */
1589 	int ptrno;		/* offset of pointer in indirect block */
1590 	ufs_daddr_t newblkno;	/* disk block number being added */
1591 {
1592 	struct allocindir *aip;
1593 
1594 	aip = newallocindir(ip, ptrno, newblkno, 0);
1595 	ACQUIRE_LOCK(&lk);
1596 	WORKLIST_INSERT(&nbp->b_dep, &aip->ai_list);
1597 	FREE_LOCK(&lk);
1598 	setup_allocindir_phase2(bp, ip, aip);
1599 }
1600 
1601 /*
1602  * Called to finish the allocation of the "aip" allocated
1603  * by one of the two routines above.
1604  */
1605 static void
1606 setup_allocindir_phase2(bp, ip, aip)
1607 	struct buf *bp;		/* in-memory copy of the indirect block */
1608 	struct inode *ip;	/* inode for file being extended */
1609 	struct allocindir *aip;	/* allocindir allocated by the above routines */
1610 {
1611 	struct worklist *wk;
1612 	struct indirdep *indirdep, *newindirdep;
1613 	struct bmsafemap *bmsafemap;
1614 	struct allocindir *oldaip;
1615 	struct freefrag *freefrag;
1616 	struct newblk *newblk;
1617 
1618 	if (bp->b_lblkno >= 0)
1619 		panic("setup_allocindir_phase2: not indir blk");
1620 	for (indirdep = NULL, newindirdep = NULL; ; ) {
1621 		ACQUIRE_LOCK(&lk);
1622 		LIST_FOREACH(wk, &bp->b_dep, wk_list) {
1623 			if (wk->wk_type != D_INDIRDEP)
1624 				continue;
1625 			indirdep = WK_INDIRDEP(wk);
1626 			break;
1627 		}
1628 		if (indirdep == NULL && newindirdep) {
1629 			indirdep = newindirdep;
1630 			WORKLIST_INSERT(&bp->b_dep, &indirdep->ir_list);
1631 			newindirdep = NULL;
1632 		}
1633 		FREE_LOCK(&lk);
1634 		if (indirdep) {
1635 			if (newblk_lookup(ip->i_fs, aip->ai_newblkno, 0,
1636 			    &newblk) == 0)
1637 				panic("setup_allocindir: lost block");
1638 			ACQUIRE_LOCK(&lk);
1639 			if (newblk->nb_state == DEPCOMPLETE) {
1640 				aip->ai_state |= DEPCOMPLETE;
1641 				aip->ai_buf = NULL;
1642 			} else {
1643 				bmsafemap = newblk->nb_bmsafemap;
1644 				aip->ai_buf = bmsafemap->sm_buf;
1645 				LIST_REMOVE(newblk, nb_deps);
1646 				LIST_INSERT_HEAD(&bmsafemap->sm_allocindirhd,
1647 				    aip, ai_deps);
1648 			}
1649 			LIST_REMOVE(newblk, nb_hash);
1650 			FREE(newblk, M_NEWBLK);
1651 			aip->ai_indirdep = indirdep;
1652 			/*
1653 			 * Check to see if there is an existing dependency
1654 			 * for this block. If there is, merge the old
1655 			 * dependency into the new one.
1656 			 */
1657 			if (aip->ai_oldblkno == 0)
1658 				oldaip = NULL;
1659 			else
1660 
1661 				LIST_FOREACH(oldaip, &indirdep->ir_deplisthd, ai_next)
1662 					if (oldaip->ai_offset == aip->ai_offset)
1663 						break;
1664 			if (oldaip != NULL) {
1665 				if (oldaip->ai_newblkno != aip->ai_oldblkno) {
1666 					FREE_LOCK(&lk);
1667 					panic("setup_allocindir_phase2: blkno");
1668 				}
1669 				aip->ai_oldblkno = oldaip->ai_oldblkno;
1670 				freefrag = oldaip->ai_freefrag;
1671 				oldaip->ai_freefrag = aip->ai_freefrag;
1672 				aip->ai_freefrag = freefrag;
1673 				free_allocindir(oldaip, NULL);
1674 			}
1675 			LIST_INSERT_HEAD(&indirdep->ir_deplisthd, aip, ai_next);
1676 			((ufs_daddr_t *)indirdep->ir_savebp->b_data)
1677 			    [aip->ai_offset] = aip->ai_oldblkno;
1678 			FREE_LOCK(&lk);
1679 		}
1680 		if (newindirdep) {
1681 			/*
1682 			 * Avoid any possibility of data corruption by
1683 			 * ensuring that our old version is thrown away.
1684 			 */
1685 			newindirdep->ir_savebp->b_flags |= B_INVAL | B_NOCACHE;
1686 			brelse(newindirdep->ir_savebp);
1687 			WORKITEM_FREE((caddr_t)newindirdep, D_INDIRDEP);
1688 		}
1689 		if (indirdep)
1690 			break;
1691 		MALLOC(newindirdep, struct indirdep *, sizeof(struct indirdep),
1692 			M_INDIRDEP, M_SOFTDEP_FLAGS);
1693 		newindirdep->ir_list.wk_type = D_INDIRDEP;
1694 		newindirdep->ir_state = ATTACHED;
1695 		LIST_INIT(&newindirdep->ir_deplisthd);
1696 		LIST_INIT(&newindirdep->ir_donehd);
1697 		if (bp->b_blkno == bp->b_lblkno) {
1698 			VOP_BMAP(bp->b_vp, bp->b_lblkno, NULL, &bp->b_blkno,
1699 				NULL, NULL);
1700 		}
1701 		newindirdep->ir_savebp =
1702 		    getblk(ip->i_devvp, bp->b_blkno, bp->b_bcount, 0, 0);
1703 		BUF_KERNPROC(newindirdep->ir_savebp);
1704 		bcopy(bp->b_data, newindirdep->ir_savebp->b_data, bp->b_bcount);
1705 	}
1706 }
1707 
1708 /*
1709  * Block de-allocation dependencies.
1710  *
1711  * When blocks are de-allocated, the on-disk pointers must be nullified before
1712  * the blocks are made available for use by other files.  (The true
1713  * requirement is that old pointers must be nullified before new on-disk
1714  * pointers are set.  We chose this slightly more stringent requirement to
1715  * reduce complexity.) Our implementation handles this dependency by updating
1716  * the inode (or indirect block) appropriately but delaying the actual block
1717  * de-allocation (i.e., freemap and free space count manipulation) until
1718  * after the updated versions reach stable storage.  After the disk is
1719  * updated, the blocks can be safely de-allocated whenever it is convenient.
1720  * This implementation handles only the common case of reducing a file's
1721  * length to zero. Other cases are handled by the conventional synchronous
1722  * write approach.
1723  *
1724  * The ffs implementation with which we worked double-checks
1725  * the state of the block pointers and file size as it reduces
1726  * a file's length.  Some of this code is replicated here in our
1727  * soft updates implementation.  The freeblks->fb_chkcnt field is
1728  * used to transfer a part of this information to the procedure
1729  * that eventually de-allocates the blocks.
1730  *
1731  * This routine should be called from the routine that shortens
1732  * a file's length, before the inode's size or block pointers
1733  * are modified. It will save the block pointer information for
1734  * later release and zero the inode so that the calling routine
1735  * can release it.
1736  */
1737 void
1738 softdep_setup_freeblocks(ip, length)
1739 	struct inode *ip;	/* The inode whose length is to be reduced */
1740 	off_t length;		/* The new length for the file */
1741 {
1742 	struct freeblks *freeblks;
1743 	struct inodedep *inodedep;
1744 	struct allocdirect *adp;
1745 	struct vnode *vp;
1746 	struct buf *bp;
1747 	struct fs *fs;
1748 	int i, error, delay;
1749 
1750 	fs = ip->i_fs;
1751 	if (length != 0)
1752 		panic("softde_setup_freeblocks: non-zero length");
1753 	MALLOC(freeblks, struct freeblks *, sizeof(struct freeblks),
1754 		M_FREEBLKS, M_SOFTDEP_FLAGS);
1755 	bzero(freeblks, sizeof(struct freeblks));
1756 	freeblks->fb_list.wk_type = D_FREEBLKS;
1757 	freeblks->fb_uid = ip->i_uid;
1758 	freeblks->fb_previousinum = ip->i_number;
1759 	freeblks->fb_devvp = ip->i_devvp;
1760 	freeblks->fb_fs = fs;
1761 	freeblks->fb_oldsize = ip->i_size;
1762 	freeblks->fb_newsize = length;
1763 	freeblks->fb_chkcnt = ip->i_blocks;
1764 	for (i = 0; i < NDADDR; i++) {
1765 		freeblks->fb_dblks[i] = ip->i_db[i];
1766 		ip->i_db[i] = 0;
1767 	}
1768 	for (i = 0; i < NIADDR; i++) {
1769 		freeblks->fb_iblks[i] = ip->i_ib[i];
1770 		ip->i_ib[i] = 0;
1771 	}
1772 	ip->i_blocks = 0;
1773 	ip->i_size = 0;
1774 	/*
1775 	 * Push the zero'ed inode to to its disk buffer so that we are free
1776 	 * to delete its dependencies below. Once the dependencies are gone
1777 	 * the buffer can be safely released.
1778 	 */
1779 	if ((error = bread(ip->i_devvp,
1780 	    fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
1781 	    (int)fs->fs_bsize, &bp)) != 0)
1782 		softdep_error("softdep_setup_freeblocks", error);
1783 	*((struct dinode *)bp->b_data + ino_to_fsbo(fs, ip->i_number)) =
1784 	    ip->i_din;
1785 	/*
1786 	 * Find and eliminate any inode dependencies.
1787 	 */
1788 	ACQUIRE_LOCK(&lk);
1789 	(void) inodedep_lookup(fs, ip->i_number, DEPALLOC, &inodedep);
1790 	if ((inodedep->id_state & IOSTARTED) != 0) {
1791 		FREE_LOCK(&lk);
1792 		panic("softdep_setup_freeblocks: inode busy");
1793 	}
1794 	/*
1795 	 * Add the freeblks structure to the list of operations that
1796 	 * must await the zero'ed inode being written to disk. If we
1797 	 * still have a bitmap dependency (delay == 0), then the inode
1798 	 * has never been written to disk, so we can process the
1799 	 * freeblks below once we have deleted the dependencies.
1800 	 */
1801 	delay = (inodedep->id_state & DEPCOMPLETE);
1802 	if (delay)
1803 		WORKLIST_INSERT(&inodedep->id_bufwait, &freeblks->fb_list);
1804 	/*
1805 	 * Because the file length has been truncated to zero, any
1806 	 * pending block allocation dependency structures associated
1807 	 * with this inode are obsolete and can simply be de-allocated.
1808 	 * We must first merge the two dependency lists to get rid of
1809 	 * any duplicate freefrag structures, then purge the merged list.
1810 	 */
1811 	merge_inode_lists(inodedep);
1812 	while ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != 0)
1813 		free_allocdirect(&inodedep->id_inoupdt, adp, 1);
1814 	FREE_LOCK(&lk);
1815 	bdwrite(bp);
1816 	/*
1817 	 * We must wait for any I/O in progress to finish so that
1818 	 * all potential buffers on the dirty list will be visible.
1819 	 * Once they are all there, walk the list and get rid of
1820 	 * any dependencies.
1821 	 */
1822 	vp = ITOV(ip);
1823 	ACQUIRE_LOCK(&lk);
1824 	drain_output(vp, 1);
1825 	while (getdirtybuf(&TAILQ_FIRST(&vp->v_dirtyblkhd), MNT_WAIT)) {
1826 		bp = TAILQ_FIRST(&vp->v_dirtyblkhd);
1827 		(void) inodedep_lookup(fs, ip->i_number, 0, &inodedep);
1828 		deallocate_dependencies(bp, inodedep);
1829 		bp->b_flags |= B_INVAL | B_NOCACHE;
1830 		FREE_LOCK(&lk);
1831 		brelse(bp);
1832 		ACQUIRE_LOCK(&lk);
1833 	}
1834 	if (inodedep_lookup(fs, ip->i_number, 0, &inodedep) != 0)
1835 		(void)free_inodedep(inodedep);
1836 	FREE_LOCK(&lk);
1837 	/*
1838 	 * If the inode has never been written to disk (delay == 0),
1839 	 * then we can process the freeblks now that we have deleted
1840 	 * the dependencies.
1841 	 */
1842 	if (!delay)
1843 		handle_workitem_freeblocks(freeblks);
1844 }
1845 
1846 /*
1847  * Reclaim any dependency structures from a buffer that is about to
1848  * be reallocated to a new vnode. The buffer must be locked, thus,
1849  * no I/O completion operations can occur while we are manipulating
1850  * its associated dependencies. The mutex is held so that other I/O's
1851  * associated with related dependencies do not occur.
1852  */
1853 static void
1854 deallocate_dependencies(bp, inodedep)
1855 	struct buf *bp;
1856 	struct inodedep *inodedep;
1857 {
1858 	struct worklist *wk;
1859 	struct indirdep *indirdep;
1860 	struct allocindir *aip;
1861 	struct pagedep *pagedep;
1862 	struct dirrem *dirrem;
1863 	struct diradd *dap;
1864 	int i;
1865 
1866 	while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) {
1867 		switch (wk->wk_type) {
1868 
1869 		case D_INDIRDEP:
1870 			indirdep = WK_INDIRDEP(wk);
1871 			/*
1872 			 * None of the indirect pointers will ever be visible,
1873 			 * so they can simply be tossed. GOINGAWAY ensures
1874 			 * that allocated pointers will be saved in the buffer
1875 			 * cache until they are freed. Note that they will
1876 			 * only be able to be found by their physical address
1877 			 * since the inode mapping the logical address will
1878 			 * be gone. The save buffer used for the safe copy
1879 			 * was allocated in setup_allocindir_phase2 using
1880 			 * the physical address so it could be used for this
1881 			 * purpose. Hence we swap the safe copy with the real
1882 			 * copy, allowing the safe copy to be freed and holding
1883 			 * on to the real copy for later use in indir_trunc.
1884 			 */
1885 			if (indirdep->ir_state & GOINGAWAY) {
1886 				FREE_LOCK(&lk);
1887 				panic("deallocate_dependencies: already gone");
1888 			}
1889 			indirdep->ir_state |= GOINGAWAY;
1890 			while ((aip = LIST_FIRST(&indirdep->ir_deplisthd)) != 0)
1891 				free_allocindir(aip, inodedep);
1892 			if (bp->b_lblkno >= 0 ||
1893 			    bp->b_blkno != indirdep->ir_savebp->b_lblkno) {
1894 				FREE_LOCK(&lk);
1895 				panic("deallocate_dependencies: not indir");
1896 			}
1897 			bcopy(bp->b_data, indirdep->ir_savebp->b_data,
1898 			    bp->b_bcount);
1899 			WORKLIST_REMOVE(wk);
1900 			WORKLIST_INSERT(&indirdep->ir_savebp->b_dep, wk);
1901 			continue;
1902 
1903 		case D_PAGEDEP:
1904 			pagedep = WK_PAGEDEP(wk);
1905 			/*
1906 			 * None of the directory additions will ever be
1907 			 * visible, so they can simply be tossed.
1908 			 */
1909 			for (i = 0; i < DAHASHSZ; i++)
1910 				while ((dap =
1911 				    LIST_FIRST(&pagedep->pd_diraddhd[i])))
1912 					free_diradd(dap);
1913 			while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != 0)
1914 				free_diradd(dap);
1915 			/*
1916 			 * Copy any directory remove dependencies to the list
1917 			 * to be processed after the zero'ed inode is written.
1918 			 * If the inode has already been written, then they
1919 			 * can be dumped directly onto the work list.
1920 			 */
1921 			LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) {
1922 				LIST_REMOVE(dirrem, dm_next);
1923 				dirrem->dm_dirinum = pagedep->pd_ino;
1924 				if (inodedep == NULL ||
1925 				    (inodedep->id_state & ALLCOMPLETE) ==
1926 				     ALLCOMPLETE)
1927 					add_to_worklist(&dirrem->dm_list);
1928 				else
1929 					WORKLIST_INSERT(&inodedep->id_bufwait,
1930 					    &dirrem->dm_list);
1931 			}
1932 			WORKLIST_REMOVE(&pagedep->pd_list);
1933 			LIST_REMOVE(pagedep, pd_hash);
1934 			WORKITEM_FREE(pagedep, D_PAGEDEP);
1935 			continue;
1936 
1937 		case D_ALLOCINDIR:
1938 			free_allocindir(WK_ALLOCINDIR(wk), inodedep);
1939 			continue;
1940 
1941 		case D_ALLOCDIRECT:
1942 		case D_INODEDEP:
1943 			FREE_LOCK(&lk);
1944 			panic("deallocate_dependencies: Unexpected type %s",
1945 			    TYPENAME(wk->wk_type));
1946 			/* NOTREACHED */
1947 
1948 		default:
1949 			FREE_LOCK(&lk);
1950 			panic("deallocate_dependencies: Unknown type %s",
1951 			    TYPENAME(wk->wk_type));
1952 			/* NOTREACHED */
1953 		}
1954 	}
1955 }
1956 
1957 /*
1958  * Free an allocdirect. Generate a new freefrag work request if appropriate.
1959  * This routine must be called with splbio interrupts blocked.
1960  */
1961 static void
1962 free_allocdirect(adphead, adp, delay)
1963 	struct allocdirectlst *adphead;
1964 	struct allocdirect *adp;
1965 	int delay;
1966 {
1967 
1968 #ifdef DEBUG
1969 	if (lk.lkt_held == NOHOLDER)
1970 		panic("free_allocdirect: lock not held");
1971 #endif
1972 	if ((adp->ad_state & DEPCOMPLETE) == 0)
1973 		LIST_REMOVE(adp, ad_deps);
1974 	TAILQ_REMOVE(adphead, adp, ad_next);
1975 	if ((adp->ad_state & COMPLETE) == 0)
1976 		WORKLIST_REMOVE(&adp->ad_list);
1977 	if (adp->ad_freefrag != NULL) {
1978 		if (delay)
1979 			WORKLIST_INSERT(&adp->ad_inodedep->id_bufwait,
1980 			    &adp->ad_freefrag->ff_list);
1981 		else
1982 			add_to_worklist(&adp->ad_freefrag->ff_list);
1983 	}
1984 	WORKITEM_FREE(adp, D_ALLOCDIRECT);
1985 }
1986 
1987 /*
1988  * Prepare an inode to be freed. The actual free operation is not
1989  * done until the zero'ed inode has been written to disk.
1990  */
1991 void
1992 softdep_freefile(pvp, ino, mode)
1993 		struct vnode *pvp;
1994 		ino_t ino;
1995 		int mode;
1996 {
1997 	struct inode *ip = VTOI(pvp);
1998 	struct inodedep *inodedep;
1999 	struct freefile *freefile;
2000 
2001 	/*
2002 	 * This sets up the inode de-allocation dependency.
2003 	 */
2004 	MALLOC(freefile, struct freefile *, sizeof(struct freefile),
2005 		M_FREEFILE, M_SOFTDEP_FLAGS);
2006 	freefile->fx_list.wk_type = D_FREEFILE;
2007 	freefile->fx_list.wk_state = 0;
2008 	freefile->fx_mode = mode;
2009 	freefile->fx_oldinum = ino;
2010 	freefile->fx_devvp = ip->i_devvp;
2011 	freefile->fx_fs = ip->i_fs;
2012 
2013 	/*
2014 	 * If the inodedep does not exist, then the zero'ed inode has
2015 	 * been written to disk. If the allocated inode has never been
2016 	 * written to disk, then the on-disk inode is zero'ed. In either
2017 	 * case we can free the file immediately.
2018 	 */
2019 	ACQUIRE_LOCK(&lk);
2020 	if (inodedep_lookup(ip->i_fs, ino, 0, &inodedep) == 0 ||
2021 	    check_inode_unwritten(inodedep)) {
2022 		FREE_LOCK(&lk);
2023 		handle_workitem_freefile(freefile);
2024 		return;
2025 	}
2026 	WORKLIST_INSERT(&inodedep->id_inowait, &freefile->fx_list);
2027 	FREE_LOCK(&lk);
2028 }
2029 
2030 /*
2031  * Check to see if an inode has never been written to disk. If
2032  * so free the inodedep and return success, otherwise return failure.
2033  * This routine must be called with splbio interrupts blocked.
2034  *
2035  * If we still have a bitmap dependency, then the inode has never
2036  * been written to disk. Drop the dependency as it is no longer
2037  * necessary since the inode is being deallocated. We set the
2038  * ALLCOMPLETE flags since the bitmap now properly shows that the
2039  * inode is not allocated. Even if the inode is actively being
2040  * written, it has been rolled back to its zero'ed state, so we
2041  * are ensured that a zero inode is what is on the disk. For short
2042  * lived files, this change will usually result in removing all the
2043  * dependencies from the inode so that it can be freed immediately.
2044  */
2045 static int
2046 check_inode_unwritten(inodedep)
2047 	struct inodedep *inodedep;
2048 {
2049 
2050 	if ((inodedep->id_state & DEPCOMPLETE) != 0 ||
2051 	    LIST_FIRST(&inodedep->id_pendinghd) != NULL ||
2052 	    LIST_FIRST(&inodedep->id_bufwait) != NULL ||
2053 	    LIST_FIRST(&inodedep->id_inowait) != NULL ||
2054 	    TAILQ_FIRST(&inodedep->id_inoupdt) != NULL ||
2055 	    TAILQ_FIRST(&inodedep->id_newinoupdt) != NULL ||
2056 	    inodedep->id_nlinkdelta != 0)
2057 		return (0);
2058 	inodedep->id_state |= ALLCOMPLETE;
2059 	LIST_REMOVE(inodedep, id_deps);
2060 	inodedep->id_buf = NULL;
2061 	if (inodedep->id_state & ONWORKLIST)
2062 		WORKLIST_REMOVE(&inodedep->id_list);
2063 	if (inodedep->id_savedino != NULL) {
2064 		FREE(inodedep->id_savedino, M_INODEDEP);
2065 		inodedep->id_savedino = NULL;
2066 	}
2067 	if (free_inodedep(inodedep) == 0) {
2068 		FREE_LOCK(&lk);
2069 		panic("check_inode_unwritten: busy inode");
2070 	}
2071 	return (1);
2072 }
2073 
2074 /*
2075  * Try to free an inodedep structure. Return 1 if it could be freed.
2076  */
2077 static int
2078 free_inodedep(inodedep)
2079 	struct inodedep *inodedep;
2080 {
2081 
2082 	if ((inodedep->id_state & ONWORKLIST) != 0 ||
2083 	    (inodedep->id_state & ALLCOMPLETE) != ALLCOMPLETE ||
2084 	    LIST_FIRST(&inodedep->id_pendinghd) != NULL ||
2085 	    LIST_FIRST(&inodedep->id_bufwait) != NULL ||
2086 	    LIST_FIRST(&inodedep->id_inowait) != NULL ||
2087 	    TAILQ_FIRST(&inodedep->id_inoupdt) != NULL ||
2088 	    TAILQ_FIRST(&inodedep->id_newinoupdt) != NULL ||
2089 	    inodedep->id_nlinkdelta != 0 || inodedep->id_savedino != NULL)
2090 		return (0);
2091 	LIST_REMOVE(inodedep, id_hash);
2092 	WORKITEM_FREE(inodedep, D_INODEDEP);
2093 	num_inodedep -= 1;
2094 	return (1);
2095 }
2096 
2097 /*
2098  * This workitem routine performs the block de-allocation.
2099  * The workitem is added to the pending list after the updated
2100  * inode block has been written to disk.  As mentioned above,
2101  * checks regarding the number of blocks de-allocated (compared
2102  * to the number of blocks allocated for the file) are also
2103  * performed in this function.
2104  */
2105 static void
2106 handle_workitem_freeblocks(freeblks)
2107 	struct freeblks *freeblks;
2108 {
2109 	struct inode tip;
2110 	ufs_daddr_t bn;
2111 	struct fs *fs;
2112 	int i, level, bsize;
2113 	long nblocks, blocksreleased = 0;
2114 	int error, allerror = 0;
2115 	ufs_lbn_t baselbns[NIADDR], tmpval;
2116 
2117 	tip.i_number = freeblks->fb_previousinum;
2118 	tip.i_devvp = freeblks->fb_devvp;
2119 	tip.i_dev = freeblks->fb_devvp->v_rdev;
2120 	tip.i_fs = freeblks->fb_fs;
2121 	tip.i_size = freeblks->fb_oldsize;
2122 	tip.i_uid = freeblks->fb_uid;
2123 	fs = freeblks->fb_fs;
2124 	tmpval = 1;
2125 	baselbns[0] = NDADDR;
2126 	for (i = 1; i < NIADDR; i++) {
2127 		tmpval *= NINDIR(fs);
2128 		baselbns[i] = baselbns[i - 1] + tmpval;
2129 	}
2130 	nblocks = btodb(fs->fs_bsize);
2131 	blocksreleased = 0;
2132 	/*
2133 	 * Indirect blocks first.
2134 	 */
2135 	for (level = (NIADDR - 1); level >= 0; level--) {
2136 		if ((bn = freeblks->fb_iblks[level]) == 0)
2137 			continue;
2138 		if ((error = indir_trunc(&tip, fsbtodb(fs, bn), level,
2139 		    baselbns[level], &blocksreleased)) == 0)
2140 			allerror = error;
2141 		ffs_blkfree(&tip, bn, fs->fs_bsize);
2142 		blocksreleased += nblocks;
2143 	}
2144 	/*
2145 	 * All direct blocks or frags.
2146 	 */
2147 	for (i = (NDADDR - 1); i >= 0; i--) {
2148 		if ((bn = freeblks->fb_dblks[i]) == 0)
2149 			continue;
2150 		bsize = blksize(fs, &tip, i);
2151 		ffs_blkfree(&tip, bn, bsize);
2152 		blocksreleased += btodb(bsize);
2153 	}
2154 
2155 #ifdef DIAGNOSTIC
2156 	if (freeblks->fb_chkcnt != blocksreleased)
2157 		printf("handle_workitem_freeblocks: block count\n");
2158 	if (allerror)
2159 		softdep_error("handle_workitem_freeblks", allerror);
2160 #endif /* DIAGNOSTIC */
2161 	WORKITEM_FREE(freeblks, D_FREEBLKS);
2162 }
2163 
2164 /*
2165  * Release blocks associated with the inode ip and stored in the indirect
2166  * block dbn. If level is greater than SINGLE, the block is an indirect block
2167  * and recursive calls to indirtrunc must be used to cleanse other indirect
2168  * blocks.
2169  */
2170 static int
2171 indir_trunc(ip, dbn, level, lbn, countp)
2172 	struct inode *ip;
2173 	ufs_daddr_t dbn;
2174 	int level;
2175 	ufs_lbn_t lbn;
2176 	long *countp;
2177 {
2178 	struct buf *bp;
2179 	ufs_daddr_t *bap;
2180 	ufs_daddr_t nb;
2181 	struct fs *fs;
2182 	struct worklist *wk;
2183 	struct indirdep *indirdep;
2184 	int i, lbnadd, nblocks;
2185 	int error, allerror = 0;
2186 
2187 	fs = ip->i_fs;
2188 	lbnadd = 1;
2189 	for (i = level; i > 0; i--)
2190 		lbnadd *= NINDIR(fs);
2191 	/*
2192 	 * Get buffer of block pointers to be freed. This routine is not
2193 	 * called until the zero'ed inode has been written, so it is safe
2194 	 * to free blocks as they are encountered. Because the inode has
2195 	 * been zero'ed, calls to bmap on these blocks will fail. So, we
2196 	 * have to use the on-disk address and the block device for the
2197 	 * filesystem to look them up. If the file was deleted before its
2198 	 * indirect blocks were all written to disk, the routine that set
2199 	 * us up (deallocate_dependencies) will have arranged to leave
2200 	 * a complete copy of the indirect block in memory for our use.
2201 	 * Otherwise we have to read the blocks in from the disk.
2202 	 */
2203 	ACQUIRE_LOCK(&lk);
2204 	if ((bp = incore(ip->i_devvp, dbn)) != NULL &&
2205 	    (wk = LIST_FIRST(&bp->b_dep)) != NULL) {
2206 		if (wk->wk_type != D_INDIRDEP ||
2207 		    (indirdep = WK_INDIRDEP(wk))->ir_savebp != bp ||
2208 		    (indirdep->ir_state & GOINGAWAY) == 0) {
2209 			FREE_LOCK(&lk);
2210 			panic("indir_trunc: lost indirdep");
2211 		}
2212 		WORKLIST_REMOVE(wk);
2213 		WORKITEM_FREE(indirdep, D_INDIRDEP);
2214 		if (LIST_FIRST(&bp->b_dep) != NULL) {
2215 			FREE_LOCK(&lk);
2216 			panic("indir_trunc: dangling dep");
2217 		}
2218 		FREE_LOCK(&lk);
2219 	} else {
2220 		FREE_LOCK(&lk);
2221 		error = bread(ip->i_devvp, dbn, (int)fs->fs_bsize, &bp);
2222 		if (error)
2223 			return (error);
2224 	}
2225 	/*
2226 	 * Recursively free indirect blocks.
2227 	 */
2228 	bap = (ufs_daddr_t *)bp->b_data;
2229 	nblocks = btodb(fs->fs_bsize);
2230 	for (i = NINDIR(fs) - 1; i >= 0; i--) {
2231 		if ((nb = bap[i]) == 0)
2232 			continue;
2233 		if (level != 0) {
2234 			if ((error = indir_trunc(ip, fsbtodb(fs, nb),
2235 			     level - 1, lbn + (i * lbnadd), countp)) != 0)
2236 				allerror = error;
2237 		}
2238 		ffs_blkfree(ip, nb, fs->fs_bsize);
2239 		*countp += nblocks;
2240 	}
2241 	bp->b_flags |= B_INVAL | B_NOCACHE;
2242 	brelse(bp);
2243 	return (allerror);
2244 }
2245 
2246 /*
2247  * Free an allocindir.
2248  * This routine must be called with splbio interrupts blocked.
2249  */
2250 static void
2251 free_allocindir(aip, inodedep)
2252 	struct allocindir *aip;
2253 	struct inodedep *inodedep;
2254 {
2255 	struct freefrag *freefrag;
2256 
2257 #ifdef DEBUG
2258 	if (lk.lkt_held == NOHOLDER)
2259 		panic("free_allocindir: lock not held");
2260 #endif
2261 	if ((aip->ai_state & DEPCOMPLETE) == 0)
2262 		LIST_REMOVE(aip, ai_deps);
2263 	if (aip->ai_state & ONWORKLIST)
2264 		WORKLIST_REMOVE(&aip->ai_list);
2265 	LIST_REMOVE(aip, ai_next);
2266 	if ((freefrag = aip->ai_freefrag) != NULL) {
2267 		if (inodedep == NULL)
2268 			add_to_worklist(&freefrag->ff_list);
2269 		else
2270 			WORKLIST_INSERT(&inodedep->id_bufwait,
2271 			    &freefrag->ff_list);
2272 	}
2273 	WORKITEM_FREE(aip, D_ALLOCINDIR);
2274 }
2275 
2276 /*
2277  * Directory entry addition dependencies.
2278  *
2279  * When adding a new directory entry, the inode (with its incremented link
2280  * count) must be written to disk before the directory entry's pointer to it.
2281  * Also, if the inode is newly allocated, the corresponding freemap must be
2282  * updated (on disk) before the directory entry's pointer. These requirements
2283  * are met via undo/redo on the directory entry's pointer, which consists
2284  * simply of the inode number.
2285  *
2286  * As directory entries are added and deleted, the free space within a
2287  * directory block can become fragmented.  The ufs filesystem will compact
2288  * a fragmented directory block to make space for a new entry. When this
2289  * occurs, the offsets of previously added entries change. Any "diradd"
2290  * dependency structures corresponding to these entries must be updated with
2291  * the new offsets.
2292  */
2293 
2294 /*
2295  * This routine is called after the in-memory inode's link
2296  * count has been incremented, but before the directory entry's
2297  * pointer to the inode has been set.
2298  */
2299 void
2300 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp)
2301 	struct buf *bp;		/* buffer containing directory block */
2302 	struct inode *dp;	/* inode for directory */
2303 	off_t diroffset;	/* offset of new entry in directory */
2304 	ino_t newinum;		/* inode referenced by new directory entry */
2305 	struct buf *newdirbp;	/* non-NULL => contents of new mkdir */
2306 {
2307 	int offset;		/* offset of new entry within directory block */
2308 	ufs_lbn_t lbn;		/* block in directory containing new entry */
2309 	struct fs *fs;
2310 	struct diradd *dap;
2311 	struct pagedep *pagedep;
2312 	struct inodedep *inodedep;
2313 	struct mkdir *mkdir1, *mkdir2;
2314 
2315 	/*
2316 	 * Whiteouts have no dependencies.
2317 	 */
2318 	if (newinum == WINO) {
2319 		if (newdirbp != NULL)
2320 			bdwrite(newdirbp);
2321 		return;
2322 	}
2323 
2324 	fs = dp->i_fs;
2325 	lbn = lblkno(fs, diroffset);
2326 	offset = blkoff(fs, diroffset);
2327 	MALLOC(dap, struct diradd *, sizeof(struct diradd), M_DIRADD,
2328 	    M_SOFTDEP_FLAGS);
2329 	bzero(dap, sizeof(struct diradd));
2330 	dap->da_list.wk_type = D_DIRADD;
2331 	dap->da_offset = offset;
2332 	dap->da_newinum = newinum;
2333 	dap->da_state = ATTACHED;
2334 	if (newdirbp == NULL) {
2335 		dap->da_state |= DEPCOMPLETE;
2336 		ACQUIRE_LOCK(&lk);
2337 	} else {
2338 		dap->da_state |= MKDIR_BODY | MKDIR_PARENT;
2339 		MALLOC(mkdir1, struct mkdir *, sizeof(struct mkdir), M_MKDIR,
2340 		    M_SOFTDEP_FLAGS);
2341 		mkdir1->md_list.wk_type = D_MKDIR;
2342 		mkdir1->md_state = MKDIR_BODY;
2343 		mkdir1->md_diradd = dap;
2344 		MALLOC(mkdir2, struct mkdir *, sizeof(struct mkdir), M_MKDIR,
2345 		    M_SOFTDEP_FLAGS);
2346 		mkdir2->md_list.wk_type = D_MKDIR;
2347 		mkdir2->md_state = MKDIR_PARENT;
2348 		mkdir2->md_diradd = dap;
2349 		/*
2350 		 * Dependency on "." and ".." being written to disk.
2351 		 */
2352 		mkdir1->md_buf = newdirbp;
2353 		ACQUIRE_LOCK(&lk);
2354 		LIST_INSERT_HEAD(&mkdirlisthd, mkdir1, md_mkdirs);
2355 		WORKLIST_INSERT(&newdirbp->b_dep, &mkdir1->md_list);
2356 		FREE_LOCK(&lk);
2357 		bdwrite(newdirbp);
2358 		/*
2359 		 * Dependency on link count increase for parent directory
2360 		 */
2361 		ACQUIRE_LOCK(&lk);
2362 		if (inodedep_lookup(dp->i_fs, dp->i_number, 0, &inodedep) == 0
2363 		    || (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
2364 			dap->da_state &= ~MKDIR_PARENT;
2365 			WORKITEM_FREE(mkdir2, D_MKDIR);
2366 		} else {
2367 			LIST_INSERT_HEAD(&mkdirlisthd, mkdir2, md_mkdirs);
2368 			WORKLIST_INSERT(&inodedep->id_bufwait,&mkdir2->md_list);
2369 		}
2370 	}
2371 	/*
2372 	 * Link into parent directory pagedep to await its being written.
2373 	 */
2374 	if (pagedep_lookup(dp, lbn, DEPALLOC, &pagedep) == 0)
2375 		WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list);
2376 	dap->da_pagedep = pagedep;
2377 	LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], dap,
2378 	    da_pdlist);
2379 	/*
2380 	 * Link into its inodedep. Put it on the id_bufwait list if the inode
2381 	 * is not yet written. If it is written, do the post-inode write
2382 	 * processing to put it on the id_pendinghd list.
2383 	 */
2384 	(void) inodedep_lookup(fs, newinum, DEPALLOC, &inodedep);
2385 	if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE)
2386 		diradd_inode_written(dap, inodedep);
2387 	else
2388 		WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
2389 	FREE_LOCK(&lk);
2390 }
2391 
2392 /*
2393  * This procedure is called to change the offset of a directory
2394  * entry when compacting a directory block which must be owned
2395  * exclusively by the caller. Note that the actual entry movement
2396  * must be done in this procedure to ensure that no I/O completions
2397  * occur while the move is in progress.
2398  */
2399 void
2400 softdep_change_directoryentry_offset(dp, base, oldloc, newloc, entrysize)
2401 	struct inode *dp;	/* inode for directory */
2402 	caddr_t base;		/* address of dp->i_offset */
2403 	caddr_t oldloc;		/* address of old directory location */
2404 	caddr_t newloc;		/* address of new directory location */
2405 	int entrysize;		/* size of directory entry */
2406 {
2407 	int offset, oldoffset, newoffset;
2408 	struct pagedep *pagedep;
2409 	struct diradd *dap;
2410 	ufs_lbn_t lbn;
2411 
2412 	ACQUIRE_LOCK(&lk);
2413 	lbn = lblkno(dp->i_fs, dp->i_offset);
2414 	offset = blkoff(dp->i_fs, dp->i_offset);
2415 	if (pagedep_lookup(dp, lbn, 0, &pagedep) == 0)
2416 		goto done;
2417 	oldoffset = offset + (oldloc - base);
2418 	newoffset = offset + (newloc - base);
2419 
2420 	LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(oldoffset)], da_pdlist) {
2421 		if (dap->da_offset != oldoffset)
2422 			continue;
2423 		dap->da_offset = newoffset;
2424 		if (DIRADDHASH(newoffset) == DIRADDHASH(oldoffset))
2425 			break;
2426 		LIST_REMOVE(dap, da_pdlist);
2427 		LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(newoffset)],
2428 		    dap, da_pdlist);
2429 		break;
2430 	}
2431 	if (dap == NULL) {
2432 
2433 		LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist) {
2434 			if (dap->da_offset == oldoffset) {
2435 				dap->da_offset = newoffset;
2436 				break;
2437 			}
2438 		}
2439 	}
2440 done:
2441 	bcopy(oldloc, newloc, entrysize);
2442 	FREE_LOCK(&lk);
2443 }
2444 
2445 /*
2446  * Free a diradd dependency structure. This routine must be called
2447  * with splbio interrupts blocked.
2448  */
2449 static void
2450 free_diradd(dap)
2451 	struct diradd *dap;
2452 {
2453 	struct dirrem *dirrem;
2454 	struct pagedep *pagedep;
2455 	struct inodedep *inodedep;
2456 	struct mkdir *mkdir, *nextmd;
2457 
2458 #ifdef DEBUG
2459 	if (lk.lkt_held == NOHOLDER)
2460 		panic("free_diradd: lock not held");
2461 #endif
2462 	WORKLIST_REMOVE(&dap->da_list);
2463 	LIST_REMOVE(dap, da_pdlist);
2464 	if ((dap->da_state & DIRCHG) == 0) {
2465 		pagedep = dap->da_pagedep;
2466 	} else {
2467 		dirrem = dap->da_previous;
2468 		pagedep = dirrem->dm_pagedep;
2469 		dirrem->dm_dirinum = pagedep->pd_ino;
2470 		add_to_worklist(&dirrem->dm_list);
2471 	}
2472 	if (inodedep_lookup(VFSTOUFS(pagedep->pd_mnt)->um_fs, dap->da_newinum,
2473 	    0, &inodedep) != 0)
2474 		(void) free_inodedep(inodedep);
2475 	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
2476 		for (mkdir = LIST_FIRST(&mkdirlisthd); mkdir; mkdir = nextmd) {
2477 			nextmd = LIST_NEXT(mkdir, md_mkdirs);
2478 			if (mkdir->md_diradd != dap)
2479 				continue;
2480 			dap->da_state &= ~mkdir->md_state;
2481 			WORKLIST_REMOVE(&mkdir->md_list);
2482 			LIST_REMOVE(mkdir, md_mkdirs);
2483 			WORKITEM_FREE(mkdir, D_MKDIR);
2484 		}
2485 		if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
2486 			FREE_LOCK(&lk);
2487 			panic("free_diradd: unfound ref");
2488 		}
2489 	}
2490 	WORKITEM_FREE(dap, D_DIRADD);
2491 }
2492 
2493 /*
2494  * Directory entry removal dependencies.
2495  *
2496  * When removing a directory entry, the entry's inode pointer must be
2497  * zero'ed on disk before the corresponding inode's link count is decremented
2498  * (possibly freeing the inode for re-use). This dependency is handled by
2499  * updating the directory entry but delaying the inode count reduction until
2500  * after the directory block has been written to disk. After this point, the
2501  * inode count can be decremented whenever it is convenient.
2502  */
2503 
2504 /*
2505  * This routine should be called immediately after removing
2506  * a directory entry.  The inode's link count should not be
2507  * decremented by the calling procedure -- the soft updates
2508  * code will do this task when it is safe.
2509  */
2510 void
2511 softdep_setup_remove(bp, dp, ip, isrmdir)
2512 	struct buf *bp;		/* buffer containing directory block */
2513 	struct inode *dp;	/* inode for the directory being modified */
2514 	struct inode *ip;	/* inode for directory entry being removed */
2515 	int isrmdir;		/* indicates if doing RMDIR */
2516 {
2517 	struct dirrem *dirrem, *prevdirrem;
2518 
2519 	/*
2520 	 * Allocate a new dirrem if appropriate and ACQUIRE_LOCK.
2521 	 */
2522 	dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
2523 
2524 	/*
2525 	 * If the COMPLETE flag is clear, then there were no active
2526 	 * entries and we want to roll back to a zeroed entry until
2527 	 * the new inode is committed to disk. If the COMPLETE flag is
2528 	 * set then we have deleted an entry that never made it to
2529 	 * disk. If the entry we deleted resulted from a name change,
2530 	 * then the old name still resides on disk. We cannot delete
2531 	 * its inode (returned to us in prevdirrem) until the zeroed
2532 	 * directory entry gets to disk. The new inode has never been
2533 	 * referenced on the disk, so can be deleted immediately.
2534 	 */
2535 	if ((dirrem->dm_state & COMPLETE) == 0) {
2536 		LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, dirrem,
2537 		    dm_next);
2538 		FREE_LOCK(&lk);
2539 	} else {
2540 		if (prevdirrem != NULL)
2541 			LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd,
2542 			    prevdirrem, dm_next);
2543 		dirrem->dm_dirinum = dirrem->dm_pagedep->pd_ino;
2544 		FREE_LOCK(&lk);
2545 		handle_workitem_remove(dirrem);
2546 	}
2547 }
2548 
2549 /*
2550  * Allocate a new dirrem if appropriate and return it along with
2551  * its associated pagedep. Called without a lock, returns with lock.
2552  */
2553 static long num_dirrem;		/* number of dirrem allocated */
2554 static struct dirrem *
2555 newdirrem(bp, dp, ip, isrmdir, prevdirremp)
2556 	struct buf *bp;		/* buffer containing directory block */
2557 	struct inode *dp;	/* inode for the directory being modified */
2558 	struct inode *ip;	/* inode for directory entry being removed */
2559 	int isrmdir;		/* indicates if doing RMDIR */
2560 	struct dirrem **prevdirremp; /* previously referenced inode, if any */
2561 {
2562 	int offset;
2563 	ufs_lbn_t lbn;
2564 	struct diradd *dap;
2565 	struct dirrem *dirrem;
2566 	struct pagedep *pagedep;
2567 
2568 	/*
2569 	 * Whiteouts have no deletion dependencies.
2570 	 */
2571 	if (ip == NULL)
2572 		panic("newdirrem: whiteout");
2573 	/*
2574 	 * If we are over our limit, try to improve the situation.
2575 	 * Limiting the number of dirrem structures will also limit
2576 	 * the number of freefile and freeblks structures.
2577 	 */
2578 	if (num_dirrem > max_softdeps / 2 && speedup_syncer() == 0)
2579 		(void) request_cleanup(FLUSH_REMOVE, 0);
2580 	num_dirrem += 1;
2581 	MALLOC(dirrem, struct dirrem *, sizeof(struct dirrem),
2582 		M_DIRREM, M_SOFTDEP_FLAGS);
2583 	bzero(dirrem, sizeof(struct dirrem));
2584 	dirrem->dm_list.wk_type = D_DIRREM;
2585 	dirrem->dm_state = isrmdir ? RMDIR : 0;
2586 	dirrem->dm_mnt = ITOV(ip)->v_mount;
2587 	dirrem->dm_oldinum = ip->i_number;
2588 	*prevdirremp = NULL;
2589 
2590 	ACQUIRE_LOCK(&lk);
2591 	lbn = lblkno(dp->i_fs, dp->i_offset);
2592 	offset = blkoff(dp->i_fs, dp->i_offset);
2593 	if (pagedep_lookup(dp, lbn, DEPALLOC, &pagedep) == 0)
2594 		WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list);
2595 	dirrem->dm_pagedep = pagedep;
2596 	/*
2597 	 * Check for a diradd dependency for the same directory entry.
2598 	 * If present, then both dependencies become obsolete and can
2599 	 * be de-allocated. Check for an entry on both the pd_dirraddhd
2600 	 * list and the pd_pendinghd list.
2601 	 */
2602 
2603 	LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(offset)], da_pdlist)
2604 		if (dap->da_offset == offset)
2605 			break;
2606 	if (dap == NULL) {
2607 
2608 		LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist)
2609 			if (dap->da_offset == offset)
2610 				break;
2611 		if (dap == NULL)
2612 			return (dirrem);
2613 	}
2614 	/*
2615 	 * Must be ATTACHED at this point.
2616 	 */
2617 	if ((dap->da_state & ATTACHED) == 0) {
2618 		FREE_LOCK(&lk);
2619 		panic("newdirrem: not ATTACHED");
2620 	}
2621 	if (dap->da_newinum != ip->i_number) {
2622 		FREE_LOCK(&lk);
2623 		panic("newdirrem: inum %d should be %d",
2624 		    ip->i_number, dap->da_newinum);
2625 	}
2626 	/*
2627 	 * If we are deleting a changed name that never made it to disk,
2628 	 * then return the dirrem describing the previous inode (which
2629 	 * represents the inode currently referenced from this entry on disk).
2630 	 */
2631 	if ((dap->da_state & DIRCHG) != 0) {
2632 		*prevdirremp = dap->da_previous;
2633 		dap->da_state &= ~DIRCHG;
2634 		dap->da_pagedep = pagedep;
2635 	}
2636 	/*
2637 	 * We are deleting an entry that never made it to disk.
2638 	 * Mark it COMPLETE so we can delete its inode immediately.
2639 	 */
2640 	dirrem->dm_state |= COMPLETE;
2641 	free_diradd(dap);
2642 	return (dirrem);
2643 }
2644 
2645 /*
2646  * Directory entry change dependencies.
2647  *
2648  * Changing an existing directory entry requires that an add operation
2649  * be completed first followed by a deletion. The semantics for the addition
2650  * are identical to the description of adding a new entry above except
2651  * that the rollback is to the old inode number rather than zero. Once
2652  * the addition dependency is completed, the removal is done as described
2653  * in the removal routine above.
2654  */
2655 
2656 /*
2657  * This routine should be called immediately after changing
2658  * a directory entry.  The inode's link count should not be
2659  * decremented by the calling procedure -- the soft updates
2660  * code will perform this task when it is safe.
2661  */
2662 void
2663 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir)
2664 	struct buf *bp;		/* buffer containing directory block */
2665 	struct inode *dp;	/* inode for the directory being modified */
2666 	struct inode *ip;	/* inode for directory entry being removed */
2667 	ino_t newinum;		/* new inode number for changed entry */
2668 	int isrmdir;		/* indicates if doing RMDIR */
2669 {
2670 	int offset;
2671 	struct diradd *dap = NULL;
2672 	struct dirrem *dirrem, *prevdirrem;
2673 	struct pagedep *pagedep;
2674 	struct inodedep *inodedep;
2675 
2676 	offset = blkoff(dp->i_fs, dp->i_offset);
2677 
2678 	/*
2679 	 * Whiteouts do not need diradd dependencies.
2680 	 */
2681 	if (newinum != WINO) {
2682 		MALLOC(dap, struct diradd *, sizeof(struct diradd),
2683 		    M_DIRADD, M_SOFTDEP_FLAGS);
2684 		bzero(dap, sizeof(struct diradd));
2685 		dap->da_list.wk_type = D_DIRADD;
2686 		dap->da_state = DIRCHG | ATTACHED | DEPCOMPLETE;
2687 		dap->da_offset = offset;
2688 		dap->da_newinum = newinum;
2689 	}
2690 
2691 	/*
2692 	 * Allocate a new dirrem and ACQUIRE_LOCK.
2693 	 */
2694 	dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
2695 	pagedep = dirrem->dm_pagedep;
2696 	/*
2697 	 * The possible values for isrmdir:
2698 	 *	0 - non-directory file rename
2699 	 *	1 - directory rename within same directory
2700 	 *   inum - directory rename to new directory of given inode number
2701 	 * When renaming to a new directory, we are both deleting and
2702 	 * creating a new directory entry, so the link count on the new
2703 	 * directory should not change. Thus we do not need the followup
2704 	 * dirrem which is usually done in handle_workitem_remove. We set
2705 	 * the DIRCHG flag to tell handle_workitem_remove to skip the
2706 	 * followup dirrem.
2707 	 */
2708 	if (isrmdir > 1)
2709 		dirrem->dm_state |= DIRCHG;
2710 
2711 	/*
2712 	 * Whiteouts have no additional dependencies,
2713 	 * so just put the dirrem on the correct list.
2714 	 */
2715 	if (newinum == WINO) {
2716 		if ((dirrem->dm_state & COMPLETE) == 0) {
2717 			LIST_INSERT_HEAD(&pagedep->pd_dirremhd, dirrem,
2718 			    dm_next);
2719 		} else {
2720 			dirrem->dm_dirinum = pagedep->pd_ino;
2721 			add_to_worklist(&dirrem->dm_list);
2722 		}
2723 		FREE_LOCK(&lk);
2724 		return;
2725 	}
2726 
2727 	/*
2728 	 * If the COMPLETE flag is clear, then there were no active
2729 	 * entries and we want to roll back to the previous inode until
2730 	 * the new inode is committed to disk. If the COMPLETE flag is
2731 	 * set, then we have deleted an entry that never made it to disk.
2732 	 * If the entry we deleted resulted from a name change, then the old
2733 	 * inode reference still resides on disk. Any rollback that we do
2734 	 * needs to be to that old inode (returned to us in prevdirrem). If
2735 	 * the entry we deleted resulted from a create, then there is
2736 	 * no entry on the disk, so we want to roll back to zero rather
2737 	 * than the uncommitted inode. In either of the COMPLETE cases we
2738 	 * want to immediately free the unwritten and unreferenced inode.
2739 	 */
2740 	if ((dirrem->dm_state & COMPLETE) == 0) {
2741 		dap->da_previous = dirrem;
2742 	} else {
2743 		if (prevdirrem != NULL) {
2744 			dap->da_previous = prevdirrem;
2745 		} else {
2746 			dap->da_state &= ~DIRCHG;
2747 			dap->da_pagedep = pagedep;
2748 		}
2749 		dirrem->dm_dirinum = pagedep->pd_ino;
2750 		add_to_worklist(&dirrem->dm_list);
2751 	}
2752 	/*
2753 	 * Link into its inodedep. Put it on the id_bufwait list if the inode
2754 	 * is not yet written. If it is written, do the post-inode write
2755 	 * processing to put it on the id_pendinghd list.
2756 	 */
2757 	if (inodedep_lookup(dp->i_fs, newinum, DEPALLOC, &inodedep) == 0 ||
2758 	    (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
2759 		dap->da_state |= COMPLETE;
2760 		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
2761 		WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
2762 	} else {
2763 		LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)],
2764 		    dap, da_pdlist);
2765 		WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
2766 	}
2767 	FREE_LOCK(&lk);
2768 }
2769 
2770 /*
2771  * Called whenever the link count on an inode is changed.
2772  * It creates an inode dependency so that the new reference(s)
2773  * to the inode cannot be committed to disk until the updated
2774  * inode has been written.
2775  */
2776 void
2777 softdep_change_linkcnt(ip)
2778 	struct inode *ip;	/* the inode with the increased link count */
2779 {
2780 	struct inodedep *inodedep;
2781 
2782 	ACQUIRE_LOCK(&lk);
2783 	(void) inodedep_lookup(ip->i_fs, ip->i_number, DEPALLOC, &inodedep);
2784 	if (ip->i_nlink < ip->i_effnlink) {
2785 		FREE_LOCK(&lk);
2786 		panic("softdep_change_linkcnt: bad delta");
2787 	}
2788 	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
2789 	FREE_LOCK(&lk);
2790 }
2791 
2792 /*
2793  * This workitem decrements the inode's link count.
2794  * If the link count reaches zero, the file is removed.
2795  */
2796 static void
2797 handle_workitem_remove(dirrem)
2798 	struct dirrem *dirrem;
2799 {
2800 	struct thread *td = curthread;	/* XXX */
2801 	struct inodedep *inodedep;
2802 	struct vnode *vp;
2803 	struct inode *ip;
2804 	ino_t oldinum;
2805 	int error;
2806 
2807 	if ((error = VFS_VGET(dirrem->dm_mnt, dirrem->dm_oldinum, &vp)) != 0) {
2808 		softdep_error("handle_workitem_remove: vget", error);
2809 		return;
2810 	}
2811 	ip = VTOI(vp);
2812 	ACQUIRE_LOCK(&lk);
2813 	if ((inodedep_lookup(ip->i_fs, dirrem->dm_oldinum, 0, &inodedep)) == 0){
2814 		FREE_LOCK(&lk);
2815 		panic("handle_workitem_remove: lost inodedep");
2816 	}
2817 	/*
2818 	 * Normal file deletion.
2819 	 */
2820 	if ((dirrem->dm_state & RMDIR) == 0) {
2821 		ip->i_nlink--;
2822 		ip->i_flag |= IN_CHANGE;
2823 		if (ip->i_nlink < ip->i_effnlink) {
2824 			FREE_LOCK(&lk);
2825 			panic("handle_workitem_remove: bad file delta");
2826 		}
2827 		inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
2828 		FREE_LOCK(&lk);
2829 		vput(vp);
2830 		num_dirrem -= 1;
2831 		WORKITEM_FREE(dirrem, D_DIRREM);
2832 		return;
2833 	}
2834 	/*
2835 	 * Directory deletion. Decrement reference count for both the
2836 	 * just deleted parent directory entry and the reference for ".".
2837 	 * Next truncate the directory to length zero. When the
2838 	 * truncation completes, arrange to have the reference count on
2839 	 * the parent decremented to account for the loss of "..".
2840 	 */
2841 	ip->i_nlink -= 2;
2842 	ip->i_flag |= IN_CHANGE;
2843 	if (ip->i_nlink < ip->i_effnlink) {
2844 		FREE_LOCK(&lk);
2845 		panic("handle_workitem_remove: bad dir delta");
2846 	}
2847 	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
2848 	FREE_LOCK(&lk);
2849 	if ((error = UFS_TRUNCATE(vp, (off_t)0, 0, proc0.p_ucred, td)) != 0)
2850 		softdep_error("handle_workitem_remove: truncate", error);
2851 	/*
2852 	 * Rename a directory to a new parent. Since, we are both deleting
2853 	 * and creating a new directory entry, the link count on the new
2854 	 * directory should not change. Thus we skip the followup dirrem.
2855 	 */
2856 	if (dirrem->dm_state & DIRCHG) {
2857 		vput(vp);
2858 		num_dirrem -= 1;
2859 		WORKITEM_FREE(dirrem, D_DIRREM);
2860 		return;
2861 	}
2862 	/*
2863 	 * If the inodedep does not exist, then the zero'ed inode has
2864 	 * been written to disk. If the allocated inode has never been
2865 	 * written to disk, then the on-disk inode is zero'ed. In either
2866 	 * case we can remove the file immediately.
2867 	 */
2868 	ACQUIRE_LOCK(&lk);
2869 	dirrem->dm_state = 0;
2870 	oldinum = dirrem->dm_oldinum;
2871 	dirrem->dm_oldinum = dirrem->dm_dirinum;
2872 	if (inodedep_lookup(ip->i_fs, oldinum, 0, &inodedep) == 0 ||
2873 	    check_inode_unwritten(inodedep)) {
2874 		FREE_LOCK(&lk);
2875 		vput(vp);
2876 		handle_workitem_remove(dirrem);
2877 		return;
2878 	}
2879 	WORKLIST_INSERT(&inodedep->id_inowait, &dirrem->dm_list);
2880 	FREE_LOCK(&lk);
2881 	vput(vp);
2882 }
2883 
2884 /*
2885  * Inode de-allocation dependencies.
2886  *
2887  * When an inode's link count is reduced to zero, it can be de-allocated. We
2888  * found it convenient to postpone de-allocation until after the inode is
2889  * written to disk with its new link count (zero).  At this point, all of the
2890  * on-disk inode's block pointers are nullified and, with careful dependency
2891  * list ordering, all dependencies related to the inode will be satisfied and
2892  * the corresponding dependency structures de-allocated.  So, if/when the
2893  * inode is reused, there will be no mixing of old dependencies with new
2894  * ones.  This artificial dependency is set up by the block de-allocation
2895  * procedure above (softdep_setup_freeblocks) and completed by the
2896  * following procedure.
2897  */
2898 static void
2899 handle_workitem_freefile(freefile)
2900 	struct freefile *freefile;
2901 {
2902 	struct vnode vp;
2903 	struct inode tip;
2904 	struct inodedep *idp;
2905 	int error;
2906 
2907 #ifdef DEBUG
2908 	ACQUIRE_LOCK(&lk);
2909 	error = inodedep_lookup(freefile->fx_fs, freefile->fx_oldinum, 0, &idp);
2910 	FREE_LOCK(&lk);
2911 	if (error)
2912 		panic("handle_workitem_freefile: inodedep survived");
2913 #endif
2914 	tip.i_devvp = freefile->fx_devvp;
2915 	tip.i_dev = freefile->fx_devvp->v_rdev;
2916 	tip.i_fs = freefile->fx_fs;
2917 	vp.v_data = &tip;
2918 	if ((error = ffs_freefile(&vp, freefile->fx_oldinum, freefile->fx_mode)) != 0)
2919 		softdep_error("handle_workitem_freefile", error);
2920 	WORKITEM_FREE(freefile, D_FREEFILE);
2921 }
2922 
2923 /*
2924  * Disk writes.
2925  *
2926  * The dependency structures constructed above are most actively used when file
2927  * system blocks are written to disk.  No constraints are placed on when a
2928  * block can be written, but unsatisfied update dependencies are made safe by
2929  * modifying (or replacing) the source memory for the duration of the disk
2930  * write.  When the disk write completes, the memory block is again brought
2931  * up-to-date.
2932  *
2933  * In-core inode structure reclamation.
2934  *
2935  * Because there are a finite number of "in-core" inode structures, they are
2936  * reused regularly.  By transferring all inode-related dependencies to the
2937  * in-memory inode block and indexing them separately (via "inodedep"s), we
2938  * can allow "in-core" inode structures to be reused at any time and avoid
2939  * any increase in contention.
2940  *
2941  * Called just before entering the device driver to initiate a new disk I/O.
2942  * The buffer must be locked, thus, no I/O completion operations can occur
2943  * while we are manipulating its associated dependencies.
2944  */
2945 static void
2946 softdep_disk_io_initiation(bp)
2947 	struct buf *bp;		/* structure describing disk write to occur */
2948 {
2949 	struct worklist *wk, *nextwk;
2950 	struct indirdep *indirdep;
2951 
2952 	/*
2953 	 * We only care about write operations. There should never
2954 	 * be dependencies for reads.
2955 	 */
2956 	if (bp->b_flags & B_READ)
2957 		panic("softdep_disk_io_initiation: read");
2958 	/*
2959 	 * Do any necessary pre-I/O processing.
2960 	 */
2961 	for (wk = LIST_FIRST(&bp->b_dep); wk; wk = nextwk) {
2962 		nextwk = LIST_NEXT(wk, wk_list);
2963 		switch (wk->wk_type) {
2964 
2965 		case D_PAGEDEP:
2966 			initiate_write_filepage(WK_PAGEDEP(wk), bp);
2967 			continue;
2968 
2969 		case D_INODEDEP:
2970 			initiate_write_inodeblock(WK_INODEDEP(wk), bp);
2971 			continue;
2972 
2973 		case D_INDIRDEP:
2974 			indirdep = WK_INDIRDEP(wk);
2975 			if (indirdep->ir_state & GOINGAWAY)
2976 				panic("disk_io_initiation: indirdep gone");
2977 			/*
2978 			 * If there are no remaining dependencies, this
2979 			 * will be writing the real pointers, so the
2980 			 * dependency can be freed.
2981 			 */
2982 			if (LIST_FIRST(&indirdep->ir_deplisthd) == NULL) {
2983 				indirdep->ir_savebp->b_flags |= B_INVAL | B_NOCACHE;
2984 				brelse(indirdep->ir_savebp);
2985 				/* inline expand WORKLIST_REMOVE(wk); */
2986 				wk->wk_state &= ~ONWORKLIST;
2987 				LIST_REMOVE(wk, wk_list);
2988 				WORKITEM_FREE(indirdep, D_INDIRDEP);
2989 				continue;
2990 			}
2991 			/*
2992 			 * Replace up-to-date version with safe version.
2993 			 */
2994 			MALLOC(indirdep->ir_saveddata, caddr_t, bp->b_bcount,
2995 			    M_INDIRDEP, M_SOFTDEP_FLAGS);
2996 			ACQUIRE_LOCK(&lk);
2997 			indirdep->ir_state &= ~ATTACHED;
2998 			indirdep->ir_state |= UNDONE;
2999 			bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount);
3000 			bcopy(indirdep->ir_savebp->b_data, bp->b_data,
3001 			    bp->b_bcount);
3002 			FREE_LOCK(&lk);
3003 			continue;
3004 
3005 		case D_MKDIR:
3006 		case D_BMSAFEMAP:
3007 		case D_ALLOCDIRECT:
3008 		case D_ALLOCINDIR:
3009 			continue;
3010 
3011 		default:
3012 			panic("handle_disk_io_initiation: Unexpected type %s",
3013 			    TYPENAME(wk->wk_type));
3014 			/* NOTREACHED */
3015 		}
3016 	}
3017 }
3018 
3019 /*
3020  * Called from within the procedure above to deal with unsatisfied
3021  * allocation dependencies in a directory. The buffer must be locked,
3022  * thus, no I/O completion operations can occur while we are
3023  * manipulating its associated dependencies.
3024  */
3025 static void
3026 initiate_write_filepage(pagedep, bp)
3027 	struct pagedep *pagedep;
3028 	struct buf *bp;
3029 {
3030 	struct diradd *dap;
3031 	struct direct *ep;
3032 	int i;
3033 
3034 	if (pagedep->pd_state & IOSTARTED) {
3035 		/*
3036 		 * This can only happen if there is a driver that does not
3037 		 * understand chaining. Here biodone will reissue the call
3038 		 * to strategy for the incomplete buffers.
3039 		 */
3040 		printf("initiate_write_filepage: already started\n");
3041 		return;
3042 	}
3043 	pagedep->pd_state |= IOSTARTED;
3044 	ACQUIRE_LOCK(&lk);
3045 	for (i = 0; i < DAHASHSZ; i++) {
3046 		LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
3047 			ep = (struct direct *)
3048 			    ((char *)bp->b_data + dap->da_offset);
3049 			if (ep->d_ino != dap->da_newinum) {
3050 				FREE_LOCK(&lk);
3051 				panic("%s: dir inum %d != new %d",
3052 				    "initiate_write_filepage",
3053 				    ep->d_ino, dap->da_newinum);
3054 			}
3055 			if (dap->da_state & DIRCHG)
3056 				ep->d_ino = dap->da_previous->dm_oldinum;
3057 			else
3058 				ep->d_ino = 0;
3059 			dap->da_state &= ~ATTACHED;
3060 			dap->da_state |= UNDONE;
3061 		}
3062 	}
3063 	FREE_LOCK(&lk);
3064 }
3065 
3066 /*
3067  * Called from within the procedure above to deal with unsatisfied
3068  * allocation dependencies in an inodeblock. The buffer must be
3069  * locked, thus, no I/O completion operations can occur while we
3070  * are manipulating its associated dependencies.
3071  */
3072 static void
3073 initiate_write_inodeblock(inodedep, bp)
3074 	struct inodedep *inodedep;
3075 	struct buf *bp;			/* The inode block */
3076 {
3077 	struct allocdirect *adp, *lastadp;
3078 	struct dinode *dp;
3079 	struct fs *fs;
3080 	ufs_lbn_t prevlbn = 0;
3081 	int i, deplist;
3082 
3083 	if (inodedep->id_state & IOSTARTED)
3084 		panic("initiate_write_inodeblock: already started");
3085 	inodedep->id_state |= IOSTARTED;
3086 	fs = inodedep->id_fs;
3087 	dp = (struct dinode *)bp->b_data +
3088 	    ino_to_fsbo(fs, inodedep->id_ino);
3089 	/*
3090 	 * If the bitmap is not yet written, then the allocated
3091 	 * inode cannot be written to disk.
3092 	 */
3093 	if ((inodedep->id_state & DEPCOMPLETE) == 0) {
3094 		if (inodedep->id_savedino != NULL)
3095 			panic("initiate_write_inodeblock: already doing I/O");
3096 		MALLOC(inodedep->id_savedino, struct dinode *,
3097 		    sizeof(struct dinode), M_INODEDEP, M_SOFTDEP_FLAGS);
3098 		*inodedep->id_savedino = *dp;
3099 		bzero((caddr_t)dp, sizeof(struct dinode));
3100 		return;
3101 	}
3102 	/*
3103 	 * If no dependencies, then there is nothing to roll back.
3104 	 */
3105 	inodedep->id_savedsize = dp->di_size;
3106 	if (TAILQ_FIRST(&inodedep->id_inoupdt) == NULL)
3107 		return;
3108 	/*
3109 	 * Set the dependencies to busy.
3110 	 */
3111 	ACQUIRE_LOCK(&lk);
3112 	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
3113 	     adp = TAILQ_NEXT(adp, ad_next)) {
3114 #ifdef DIAGNOSTIC
3115 		if (deplist != 0 && prevlbn >= adp->ad_lbn) {
3116 			FREE_LOCK(&lk);
3117 			panic("softdep_write_inodeblock: lbn order");
3118 		}
3119 		prevlbn = adp->ad_lbn;
3120 		if (adp->ad_lbn < NDADDR &&
3121 		    dp->di_db[adp->ad_lbn] != adp->ad_newblkno) {
3122 			FREE_LOCK(&lk);
3123 			panic("%s: direct pointer #%ld mismatch %d != %d",
3124 			    "softdep_write_inodeblock", adp->ad_lbn,
3125 			    dp->di_db[adp->ad_lbn], adp->ad_newblkno);
3126 		}
3127 		if (adp->ad_lbn >= NDADDR &&
3128 		    dp->di_ib[adp->ad_lbn - NDADDR] != adp->ad_newblkno) {
3129 			FREE_LOCK(&lk);
3130 			panic("%s: indirect pointer #%ld mismatch %d != %d",
3131 			    "softdep_write_inodeblock", adp->ad_lbn - NDADDR,
3132 			    dp->di_ib[adp->ad_lbn - NDADDR], adp->ad_newblkno);
3133 		}
3134 		deplist |= 1 << adp->ad_lbn;
3135 		if ((adp->ad_state & ATTACHED) == 0) {
3136 			FREE_LOCK(&lk);
3137 			panic("softdep_write_inodeblock: Unknown state 0x%x",
3138 			    adp->ad_state);
3139 		}
3140 #endif /* DIAGNOSTIC */
3141 		adp->ad_state &= ~ATTACHED;
3142 		adp->ad_state |= UNDONE;
3143 	}
3144 	/*
3145 	 * The on-disk inode cannot claim to be any larger than the last
3146 	 * fragment that has been written. Otherwise, the on-disk inode
3147 	 * might have fragments that were not the last block in the file
3148 	 * which would corrupt the filesystem.
3149 	 */
3150 	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
3151 	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
3152 		if (adp->ad_lbn >= NDADDR)
3153 			break;
3154 		dp->di_db[adp->ad_lbn] = adp->ad_oldblkno;
3155 		/* keep going until hitting a rollback to a frag */
3156 		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
3157 			continue;
3158 		dp->di_size = fs->fs_bsize * adp->ad_lbn + adp->ad_oldsize;
3159 		for (i = adp->ad_lbn + 1; i < NDADDR; i++) {
3160 #ifdef DIAGNOSTIC
3161 			if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0) {
3162 				FREE_LOCK(&lk);
3163 				panic("softdep_write_inodeblock: lost dep1");
3164 			}
3165 #endif /* DIAGNOSTIC */
3166 			dp->di_db[i] = 0;
3167 		}
3168 		for (i = 0; i < NIADDR; i++) {
3169 #ifdef DIAGNOSTIC
3170 			if (dp->di_ib[i] != 0 &&
3171 			    (deplist & ((1 << NDADDR) << i)) == 0) {
3172 				FREE_LOCK(&lk);
3173 				panic("softdep_write_inodeblock: lost dep2");
3174 			}
3175 #endif /* DIAGNOSTIC */
3176 			dp->di_ib[i] = 0;
3177 		}
3178 		FREE_LOCK(&lk);
3179 		return;
3180 	}
3181 	/*
3182 	 * If we have zero'ed out the last allocated block of the file,
3183 	 * roll back the size to the last currently allocated block.
3184 	 * We know that this last allocated block is a full-sized as
3185 	 * we already checked for fragments in the loop above.
3186 	 */
3187 	if (lastadp != NULL &&
3188 	    dp->di_size <= (lastadp->ad_lbn + 1) * fs->fs_bsize) {
3189 		for (i = lastadp->ad_lbn; i >= 0; i--)
3190 			if (dp->di_db[i] != 0)
3191 				break;
3192 		dp->di_size = (i + 1) * fs->fs_bsize;
3193 	}
3194 	/*
3195 	 * The only dependencies are for indirect blocks.
3196 	 *
3197 	 * The file size for indirect block additions is not guaranteed.
3198 	 * Such a guarantee would be non-trivial to achieve. The conventional
3199 	 * synchronous write implementation also does not make this guarantee.
3200 	 * Fsck should catch and fix discrepancies. Arguably, the file size
3201 	 * can be over-estimated without destroying integrity when the file
3202 	 * moves into the indirect blocks (i.e., is large). If we want to
3203 	 * postpone fsck, we are stuck with this argument.
3204 	 */
3205 	for (; adp; adp = TAILQ_NEXT(adp, ad_next))
3206 		dp->di_ib[adp->ad_lbn - NDADDR] = 0;
3207 	FREE_LOCK(&lk);
3208 }
3209 
3210 /*
3211  * This routine is called during the completion interrupt
3212  * service routine for a disk write (from the procedure called
3213  * by the device driver to inform the filesystem caches of
3214  * a request completion).  It should be called early in this
3215  * procedure, before the block is made available to other
3216  * processes or other routines are called.
3217  */
3218 static void
3219 softdep_disk_write_complete(bp)
3220 	struct buf *bp;		/* describes the completed disk write */
3221 {
3222 	struct worklist *wk;
3223 	struct workhead reattach;
3224 	struct newblk *newblk;
3225 	struct allocindir *aip;
3226 	struct allocdirect *adp;
3227 	struct indirdep *indirdep;
3228 	struct inodedep *inodedep;
3229 	struct bmsafemap *bmsafemap;
3230 
3231 #ifdef DEBUG
3232 	if (lk.lkt_held != NOHOLDER)
3233 		panic("softdep_disk_write_complete: lock is held");
3234 	lk.lkt_held = SPECIAL_FLAG;
3235 #endif
3236 	LIST_INIT(&reattach);
3237 	while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) {
3238 		WORKLIST_REMOVE(wk);
3239 		switch (wk->wk_type) {
3240 
3241 		case D_PAGEDEP:
3242 			if (handle_written_filepage(WK_PAGEDEP(wk), bp))
3243 				WORKLIST_INSERT(&reattach, wk);
3244 			continue;
3245 
3246 		case D_INODEDEP:
3247 			if (handle_written_inodeblock(WK_INODEDEP(wk), bp))
3248 				WORKLIST_INSERT(&reattach, wk);
3249 			continue;
3250 
3251 		case D_BMSAFEMAP:
3252 			bmsafemap = WK_BMSAFEMAP(wk);
3253 			while ((newblk = LIST_FIRST(&bmsafemap->sm_newblkhd))) {
3254 				newblk->nb_state |= DEPCOMPLETE;
3255 				newblk->nb_bmsafemap = NULL;
3256 				LIST_REMOVE(newblk, nb_deps);
3257 			}
3258 			while ((adp =
3259 			   LIST_FIRST(&bmsafemap->sm_allocdirecthd))) {
3260 				adp->ad_state |= DEPCOMPLETE;
3261 				adp->ad_buf = NULL;
3262 				LIST_REMOVE(adp, ad_deps);
3263 				handle_allocdirect_partdone(adp);
3264 			}
3265 			while ((aip =
3266 			    LIST_FIRST(&bmsafemap->sm_allocindirhd))) {
3267 				aip->ai_state |= DEPCOMPLETE;
3268 				aip->ai_buf = NULL;
3269 				LIST_REMOVE(aip, ai_deps);
3270 				handle_allocindir_partdone(aip);
3271 			}
3272 			while ((inodedep =
3273 			     LIST_FIRST(&bmsafemap->sm_inodedephd)) != NULL) {
3274 				inodedep->id_state |= DEPCOMPLETE;
3275 				LIST_REMOVE(inodedep, id_deps);
3276 				inodedep->id_buf = NULL;
3277 			}
3278 			WORKITEM_FREE(bmsafemap, D_BMSAFEMAP);
3279 			continue;
3280 
3281 		case D_MKDIR:
3282 			handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY);
3283 			continue;
3284 
3285 		case D_ALLOCDIRECT:
3286 			adp = WK_ALLOCDIRECT(wk);
3287 			adp->ad_state |= COMPLETE;
3288 			handle_allocdirect_partdone(adp);
3289 			continue;
3290 
3291 		case D_ALLOCINDIR:
3292 			aip = WK_ALLOCINDIR(wk);
3293 			aip->ai_state |= COMPLETE;
3294 			handle_allocindir_partdone(aip);
3295 			continue;
3296 
3297 		case D_INDIRDEP:
3298 			indirdep = WK_INDIRDEP(wk);
3299 			if (indirdep->ir_state & GOINGAWAY) {
3300 				lk.lkt_held = NOHOLDER;
3301 				panic("disk_write_complete: indirdep gone");
3302 			}
3303 			bcopy(indirdep->ir_saveddata, bp->b_data, bp->b_bcount);
3304 			FREE(indirdep->ir_saveddata, M_INDIRDEP);
3305 			indirdep->ir_saveddata = 0;
3306 			indirdep->ir_state &= ~UNDONE;
3307 			indirdep->ir_state |= ATTACHED;
3308 			while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != 0) {
3309 				handle_allocindir_partdone(aip);
3310 				if (aip == LIST_FIRST(&indirdep->ir_donehd)) {
3311 					lk.lkt_held = NOHOLDER;
3312 					panic("disk_write_complete: not gone");
3313 				}
3314 			}
3315 			WORKLIST_INSERT(&reattach, wk);
3316 			if ((bp->b_flags & B_DELWRI) == 0)
3317 				stat_indir_blk_ptrs++;
3318 			bdirty(bp);
3319 			continue;
3320 
3321 		default:
3322 			lk.lkt_held = NOHOLDER;
3323 			panic("handle_disk_write_complete: Unknown type %s",
3324 			    TYPENAME(wk->wk_type));
3325 			/* NOTREACHED */
3326 		}
3327 	}
3328 	/*
3329 	 * Reattach any requests that must be redone.
3330 	 */
3331 	while ((wk = LIST_FIRST(&reattach)) != NULL) {
3332 		WORKLIST_REMOVE(wk);
3333 		WORKLIST_INSERT(&bp->b_dep, wk);
3334 	}
3335 #ifdef DEBUG
3336 	if (lk.lkt_held != SPECIAL_FLAG)
3337 		panic("softdep_disk_write_complete: lock lost");
3338 	lk.lkt_held = NOHOLDER;
3339 #endif
3340 }
3341 
3342 /*
3343  * Called from within softdep_disk_write_complete above. Note that
3344  * this routine is always called from interrupt level with further
3345  * splbio interrupts blocked.
3346  */
3347 static void
3348 handle_allocdirect_partdone(adp)
3349 	struct allocdirect *adp;	/* the completed allocdirect */
3350 {
3351 	struct allocdirect *listadp;
3352 	struct inodedep *inodedep;
3353 	long bsize;
3354 
3355 	if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
3356 		return;
3357 	if (adp->ad_buf != NULL) {
3358 		lk.lkt_held = NOHOLDER;
3359 		panic("handle_allocdirect_partdone: dangling dep");
3360 	}
3361 	/*
3362 	 * The on-disk inode cannot claim to be any larger than the last
3363 	 * fragment that has been written. Otherwise, the on-disk inode
3364 	 * might have fragments that were not the last block in the file
3365 	 * which would corrupt the filesystem. Thus, we cannot free any
3366 	 * allocdirects after one whose ad_oldblkno claims a fragment as
3367 	 * these blocks must be rolled back to zero before writing the inode.
3368 	 * We check the currently active set of allocdirects in id_inoupdt.
3369 	 */
3370 	inodedep = adp->ad_inodedep;
3371 	bsize = inodedep->id_fs->fs_bsize;
3372 	TAILQ_FOREACH(listadp, &inodedep->id_inoupdt, ad_next) {
3373 		/* found our block */
3374 		if (listadp == adp)
3375 			break;
3376 		/* continue if ad_oldlbn is not a fragment */
3377 		if (listadp->ad_oldsize == 0 ||
3378 		    listadp->ad_oldsize == bsize)
3379 			continue;
3380 		/* hit a fragment */
3381 		return;
3382 	}
3383 	/*
3384 	 * If we have reached the end of the current list without
3385 	 * finding the just finished dependency, then it must be
3386 	 * on the future dependency list. Future dependencies cannot
3387 	 * be freed until they are moved to the current list.
3388 	 */
3389 	if (listadp == NULL) {
3390 #ifdef DEBUG
3391 		TAILQ_FOREACH(listadp, &inodedep->id_newinoupdt, ad_next)
3392 			/* found our block */
3393 			if (listadp == adp)
3394 				break;
3395 		if (listadp == NULL) {
3396 			lk.lkt_held = NOHOLDER;
3397 			panic("handle_allocdirect_partdone: lost dep");
3398 		}
3399 #endif /* DEBUG */
3400 		return;
3401 	}
3402 	/*
3403 	 * If we have found the just finished dependency, then free
3404 	 * it along with anything that follows it that is complete.
3405 	 */
3406 	for (; adp; adp = listadp) {
3407 		listadp = TAILQ_NEXT(adp, ad_next);
3408 		if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
3409 			return;
3410 		free_allocdirect(&inodedep->id_inoupdt, adp, 1);
3411 	}
3412 }
3413 
3414 /*
3415  * Called from within softdep_disk_write_complete above. Note that
3416  * this routine is always called from interrupt level with further
3417  * splbio interrupts blocked.
3418  */
3419 static void
3420 handle_allocindir_partdone(aip)
3421 	struct allocindir *aip;		/* the completed allocindir */
3422 {
3423 	struct indirdep *indirdep;
3424 
3425 	if ((aip->ai_state & ALLCOMPLETE) != ALLCOMPLETE)
3426 		return;
3427 	if (aip->ai_buf != NULL) {
3428 		lk.lkt_held = NOHOLDER;
3429 		panic("handle_allocindir_partdone: dangling dependency");
3430 	}
3431 	indirdep = aip->ai_indirdep;
3432 	if (indirdep->ir_state & UNDONE) {
3433 		LIST_REMOVE(aip, ai_next);
3434 		LIST_INSERT_HEAD(&indirdep->ir_donehd, aip, ai_next);
3435 		return;
3436 	}
3437 	((ufs_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] =
3438 	    aip->ai_newblkno;
3439 	LIST_REMOVE(aip, ai_next);
3440 	if (aip->ai_freefrag != NULL)
3441 		add_to_worklist(&aip->ai_freefrag->ff_list);
3442 	WORKITEM_FREE(aip, D_ALLOCINDIR);
3443 }
3444 
3445 /*
3446  * Called from within softdep_disk_write_complete above to restore
3447  * in-memory inode block contents to their most up-to-date state. Note
3448  * that this routine is always called from interrupt level with further
3449  * splbio interrupts blocked.
3450  */
3451 static int
3452 handle_written_inodeblock(inodedep, bp)
3453 	struct inodedep *inodedep;
3454 	struct buf *bp;		/* buffer containing the inode block */
3455 {
3456 	struct worklist *wk, *filefree;
3457 	struct allocdirect *adp, *nextadp;
3458 	struct dinode *dp;
3459 	int hadchanges;
3460 
3461 	if ((inodedep->id_state & IOSTARTED) == 0) {
3462 		lk.lkt_held = NOHOLDER;
3463 		panic("handle_written_inodeblock: not started");
3464 	}
3465 	inodedep->id_state &= ~IOSTARTED;
3466 	inodedep->id_state |= COMPLETE;
3467 	dp = (struct dinode *)bp->b_data +
3468 	    ino_to_fsbo(inodedep->id_fs, inodedep->id_ino);
3469 	/*
3470 	 * If we had to rollback the inode allocation because of
3471 	 * bitmaps being incomplete, then simply restore it.
3472 	 * Keep the block dirty so that it will not be reclaimed until
3473 	 * all associated dependencies have been cleared and the
3474 	 * corresponding updates written to disk.
3475 	 */
3476 	if (inodedep->id_savedino != NULL) {
3477 		*dp = *inodedep->id_savedino;
3478 		FREE(inodedep->id_savedino, M_INODEDEP);
3479 		inodedep->id_savedino = NULL;
3480 		if ((bp->b_flags & B_DELWRI) == 0)
3481 			stat_inode_bitmap++;
3482 		bdirty(bp);
3483 		return (1);
3484 	}
3485 	/*
3486 	 * Roll forward anything that had to be rolled back before
3487 	 * the inode could be updated.
3488 	 */
3489 	hadchanges = 0;
3490 	for (adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; adp = nextadp) {
3491 		nextadp = TAILQ_NEXT(adp, ad_next);
3492 		if (adp->ad_state & ATTACHED) {
3493 			lk.lkt_held = NOHOLDER;
3494 			panic("handle_written_inodeblock: new entry");
3495 		}
3496 		if (adp->ad_lbn < NDADDR) {
3497 			if (dp->di_db[adp->ad_lbn] != adp->ad_oldblkno) {
3498 				lk.lkt_held = NOHOLDER;
3499 				panic("%s: %s #%ld mismatch %d != %d",
3500 				    "handle_written_inodeblock",
3501 				    "direct pointer", adp->ad_lbn,
3502 				    dp->di_db[adp->ad_lbn], adp->ad_oldblkno);
3503 			}
3504 			dp->di_db[adp->ad_lbn] = adp->ad_newblkno;
3505 		} else {
3506 			if (dp->di_ib[adp->ad_lbn - NDADDR] != 0) {
3507 				lk.lkt_held = NOHOLDER;
3508 				panic("%s: %s #%ld allocated as %d",
3509 				    "handle_written_inodeblock",
3510 				    "indirect pointer", adp->ad_lbn - NDADDR,
3511 				    dp->di_ib[adp->ad_lbn - NDADDR]);
3512 			}
3513 			dp->di_ib[adp->ad_lbn - NDADDR] = adp->ad_newblkno;
3514 		}
3515 		adp->ad_state &= ~UNDONE;
3516 		adp->ad_state |= ATTACHED;
3517 		hadchanges = 1;
3518 	}
3519 	if (hadchanges && (bp->b_flags & B_DELWRI) == 0)
3520 		stat_direct_blk_ptrs++;
3521 	/*
3522 	 * Reset the file size to its most up-to-date value.
3523 	 */
3524 	if (inodedep->id_savedsize == -1) {
3525 		lk.lkt_held = NOHOLDER;
3526 		panic("handle_written_inodeblock: bad size");
3527 	}
3528 	if (dp->di_size != inodedep->id_savedsize) {
3529 		dp->di_size = inodedep->id_savedsize;
3530 		hadchanges = 1;
3531 	}
3532 	inodedep->id_savedsize = -1;
3533 	/*
3534 	 * If there were any rollbacks in the inode block, then it must be
3535 	 * marked dirty so that its will eventually get written back in
3536 	 * its correct form.
3537 	 */
3538 	if (hadchanges)
3539 		bdirty(bp);
3540 	/*
3541 	 * Process any allocdirects that completed during the update.
3542 	 */
3543 	if ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL)
3544 		handle_allocdirect_partdone(adp);
3545 	/*
3546 	 * Process deallocations that were held pending until the
3547 	 * inode had been written to disk. Freeing of the inode
3548 	 * is delayed until after all blocks have been freed to
3549 	 * avoid creation of new <vfsid, inum, lbn> triples
3550 	 * before the old ones have been deleted.
3551 	 */
3552 	filefree = NULL;
3553 	while ((wk = LIST_FIRST(&inodedep->id_bufwait)) != NULL) {
3554 		WORKLIST_REMOVE(wk);
3555 		switch (wk->wk_type) {
3556 
3557 		case D_FREEFILE:
3558 			/*
3559 			 * We defer adding filefree to the worklist until
3560 			 * all other additions have been made to ensure
3561 			 * that it will be done after all the old blocks
3562 			 * have been freed.
3563 			 */
3564 			if (filefree != NULL) {
3565 				lk.lkt_held = NOHOLDER;
3566 				panic("handle_written_inodeblock: filefree");
3567 			}
3568 			filefree = wk;
3569 			continue;
3570 
3571 		case D_MKDIR:
3572 			handle_written_mkdir(WK_MKDIR(wk), MKDIR_PARENT);
3573 			continue;
3574 
3575 		case D_DIRADD:
3576 			diradd_inode_written(WK_DIRADD(wk), inodedep);
3577 			continue;
3578 
3579 		case D_FREEBLKS:
3580 		case D_FREEFRAG:
3581 		case D_DIRREM:
3582 			add_to_worklist(wk);
3583 			continue;
3584 
3585 		default:
3586 			lk.lkt_held = NOHOLDER;
3587 			panic("handle_written_inodeblock: Unknown type %s",
3588 			    TYPENAME(wk->wk_type));
3589 			/* NOTREACHED */
3590 		}
3591 	}
3592 	if (filefree != NULL) {
3593 		if (free_inodedep(inodedep) == 0) {
3594 			lk.lkt_held = NOHOLDER;
3595 			panic("handle_written_inodeblock: live inodedep");
3596 		}
3597 		add_to_worklist(filefree);
3598 		return (0);
3599 	}
3600 
3601 	/*
3602 	 * If no outstanding dependencies, free it.
3603 	 */
3604 	if (free_inodedep(inodedep) || TAILQ_FIRST(&inodedep->id_inoupdt) == 0)
3605 		return (0);
3606 	return (hadchanges);
3607 }
3608 
3609 /*
3610  * Process a diradd entry after its dependent inode has been written.
3611  * This routine must be called with splbio interrupts blocked.
3612  */
3613 static void
3614 diradd_inode_written(dap, inodedep)
3615 	struct diradd *dap;
3616 	struct inodedep *inodedep;
3617 {
3618 	struct pagedep *pagedep;
3619 
3620 	dap->da_state |= COMPLETE;
3621 	if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
3622 		if (dap->da_state & DIRCHG)
3623 			pagedep = dap->da_previous->dm_pagedep;
3624 		else
3625 			pagedep = dap->da_pagedep;
3626 		LIST_REMOVE(dap, da_pdlist);
3627 		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
3628 	}
3629 	WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
3630 }
3631 
3632 /*
3633  * Handle the completion of a mkdir dependency.
3634  */
3635 static void
3636 handle_written_mkdir(mkdir, type)
3637 	struct mkdir *mkdir;
3638 	int type;
3639 {
3640 	struct diradd *dap;
3641 	struct pagedep *pagedep;
3642 
3643 	if (mkdir->md_state != type) {
3644 		lk.lkt_held = NOHOLDER;
3645 		panic("handle_written_mkdir: bad type");
3646 	}
3647 	dap = mkdir->md_diradd;
3648 	dap->da_state &= ~type;
3649 	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0)
3650 		dap->da_state |= DEPCOMPLETE;
3651 	if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
3652 		if (dap->da_state & DIRCHG)
3653 			pagedep = dap->da_previous->dm_pagedep;
3654 		else
3655 			pagedep = dap->da_pagedep;
3656 		LIST_REMOVE(dap, da_pdlist);
3657 		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
3658 	}
3659 	LIST_REMOVE(mkdir, md_mkdirs);
3660 	WORKITEM_FREE(mkdir, D_MKDIR);
3661 }
3662 
3663 /*
3664  * Called from within softdep_disk_write_complete above.
3665  * A write operation was just completed. Removed inodes can
3666  * now be freed and associated block pointers may be committed.
3667  * Note that this routine is always called from interrupt level
3668  * with further splbio interrupts blocked.
3669  */
3670 static int
3671 handle_written_filepage(pagedep, bp)
3672 	struct pagedep *pagedep;
3673 	struct buf *bp;		/* buffer containing the written page */
3674 {
3675 	struct dirrem *dirrem;
3676 	struct diradd *dap, *nextdap;
3677 	struct direct *ep;
3678 	int i, chgs;
3679 
3680 	if ((pagedep->pd_state & IOSTARTED) == 0) {
3681 		lk.lkt_held = NOHOLDER;
3682 		panic("handle_written_filepage: not started");
3683 	}
3684 	pagedep->pd_state &= ~IOSTARTED;
3685 	/*
3686 	 * Process any directory removals that have been committed.
3687 	 */
3688 	while ((dirrem = LIST_FIRST(&pagedep->pd_dirremhd)) != NULL) {
3689 		LIST_REMOVE(dirrem, dm_next);
3690 		dirrem->dm_dirinum = pagedep->pd_ino;
3691 		add_to_worklist(&dirrem->dm_list);
3692 	}
3693 	/*
3694 	 * Free any directory additions that have been committed.
3695 	 */
3696 	while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
3697 		free_diradd(dap);
3698 	/*
3699 	 * Uncommitted directory entries must be restored.
3700 	 */
3701 	for (chgs = 0, i = 0; i < DAHASHSZ; i++) {
3702 		for (dap = LIST_FIRST(&pagedep->pd_diraddhd[i]); dap;
3703 		     dap = nextdap) {
3704 			nextdap = LIST_NEXT(dap, da_pdlist);
3705 			if (dap->da_state & ATTACHED) {
3706 				lk.lkt_held = NOHOLDER;
3707 				panic("handle_written_filepage: attached");
3708 			}
3709 			ep = (struct direct *)
3710 			    ((char *)bp->b_data + dap->da_offset);
3711 			ep->d_ino = dap->da_newinum;
3712 			dap->da_state &= ~UNDONE;
3713 			dap->da_state |= ATTACHED;
3714 			chgs = 1;
3715 			/*
3716 			 * If the inode referenced by the directory has
3717 			 * been written out, then the dependency can be
3718 			 * moved to the pending list.
3719 			 */
3720 			if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
3721 				LIST_REMOVE(dap, da_pdlist);
3722 				LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap,
3723 				    da_pdlist);
3724 			}
3725 		}
3726 	}
3727 	/*
3728 	 * If there were any rollbacks in the directory, then it must be
3729 	 * marked dirty so that its will eventually get written back in
3730 	 * its correct form.
3731 	 */
3732 	if (chgs) {
3733 		if ((bp->b_flags & B_DELWRI) == 0)
3734 			stat_dir_entry++;
3735 		bdirty(bp);
3736 	}
3737 	/*
3738 	 * If no dependencies remain, the pagedep will be freed.
3739 	 * Otherwise it will remain to update the page before it
3740 	 * is written back to disk.
3741 	 */
3742 	if (LIST_FIRST(&pagedep->pd_pendinghd) == 0) {
3743 		for (i = 0; i < DAHASHSZ; i++)
3744 			if (LIST_FIRST(&pagedep->pd_diraddhd[i]) != NULL)
3745 				break;
3746 		if (i == DAHASHSZ) {
3747 			LIST_REMOVE(pagedep, pd_hash);
3748 			WORKITEM_FREE(pagedep, D_PAGEDEP);
3749 			return (0);
3750 		}
3751 	}
3752 	return (1);
3753 }
3754 
3755 /*
3756  * Writing back in-core inode structures.
3757  *
3758  * The filesystem only accesses an inode's contents when it occupies an
3759  * "in-core" inode structure.  These "in-core" structures are separate from
3760  * the page frames used to cache inode blocks.  Only the latter are
3761  * transferred to/from the disk.  So, when the updated contents of the
3762  * "in-core" inode structure are copied to the corresponding in-memory inode
3763  * block, the dependencies are also transferred.  The following procedure is
3764  * called when copying a dirty "in-core" inode to a cached inode block.
3765  */
3766 
3767 /*
3768  * Called when an inode is loaded from disk. If the effective link count
3769  * differed from the actual link count when it was last flushed, then we
3770  * need to ensure that the correct effective link count is put back.
3771  */
3772 void
3773 softdep_load_inodeblock(ip)
3774 	struct inode *ip;	/* the "in_core" copy of the inode */
3775 {
3776 	struct inodedep *inodedep;
3777 
3778 	/*
3779 	 * Check for alternate nlink count.
3780 	 */
3781 	ip->i_effnlink = ip->i_nlink;
3782 	ACQUIRE_LOCK(&lk);
3783 	if (inodedep_lookup(ip->i_fs, ip->i_number, 0, &inodedep) == 0) {
3784 		FREE_LOCK(&lk);
3785 		return;
3786 	}
3787 	ip->i_effnlink -= inodedep->id_nlinkdelta;
3788 	FREE_LOCK(&lk);
3789 }
3790 
3791 /*
3792  * This routine is called just before the "in-core" inode
3793  * information is to be copied to the in-memory inode block.
3794  * Recall that an inode block contains several inodes. If
3795  * the force flag is set, then the dependencies will be
3796  * cleared so that the update can always be made. Note that
3797  * the buffer is locked when this routine is called, so we
3798  * will never be in the middle of writing the inode block
3799  * to disk.
3800  */
3801 void
3802 softdep_update_inodeblock(ip, bp, waitfor)
3803 	struct inode *ip;	/* the "in_core" copy of the inode */
3804 	struct buf *bp;		/* the buffer containing the inode block */
3805 	int waitfor;		/* nonzero => update must be allowed */
3806 {
3807 	struct inodedep *inodedep;
3808 	struct worklist *wk;
3809 	int error, gotit;
3810 
3811 	/*
3812 	 * If the effective link count is not equal to the actual link
3813 	 * count, then we must track the difference in an inodedep while
3814 	 * the inode is (potentially) tossed out of the cache. Otherwise,
3815 	 * if there is no existing inodedep, then there are no dependencies
3816 	 * to track.
3817 	 */
3818 	ACQUIRE_LOCK(&lk);
3819 	if (inodedep_lookup(ip->i_fs, ip->i_number, 0, &inodedep) == 0) {
3820 		FREE_LOCK(&lk);
3821 		if (ip->i_effnlink != ip->i_nlink)
3822 			panic("softdep_update_inodeblock: bad link count");
3823 		return;
3824 	}
3825 	if (inodedep->id_nlinkdelta != ip->i_nlink - ip->i_effnlink) {
3826 		FREE_LOCK(&lk);
3827 		panic("softdep_update_inodeblock: bad delta");
3828 	}
3829 	/*
3830 	 * Changes have been initiated. Anything depending on these
3831 	 * changes cannot occur until this inode has been written.
3832 	 */
3833 	inodedep->id_state &= ~COMPLETE;
3834 	if ((inodedep->id_state & ONWORKLIST) == 0)
3835 		WORKLIST_INSERT(&bp->b_dep, &inodedep->id_list);
3836 	/*
3837 	 * Any new dependencies associated with the incore inode must
3838 	 * now be moved to the list associated with the buffer holding
3839 	 * the in-memory copy of the inode. Once merged process any
3840 	 * allocdirects that are completed by the merger.
3841 	 */
3842 	merge_inode_lists(inodedep);
3843 	if (TAILQ_FIRST(&inodedep->id_inoupdt) != NULL)
3844 		handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_inoupdt));
3845 	/*
3846 	 * Now that the inode has been pushed into the buffer, the
3847 	 * operations dependent on the inode being written to disk
3848 	 * can be moved to the id_bufwait so that they will be
3849 	 * processed when the buffer I/O completes.
3850 	 */
3851 	while ((wk = LIST_FIRST(&inodedep->id_inowait)) != NULL) {
3852 		WORKLIST_REMOVE(wk);
3853 		WORKLIST_INSERT(&inodedep->id_bufwait, wk);
3854 	}
3855 	/*
3856 	 * Newly allocated inodes cannot be written until the bitmap
3857 	 * that allocates them have been written (indicated by
3858 	 * DEPCOMPLETE being set in id_state). If we are doing a
3859 	 * forced sync (e.g., an fsync on a file), we force the bitmap
3860 	 * to be written so that the update can be done.
3861 	 */
3862 	if ((inodedep->id_state & DEPCOMPLETE) != 0 || waitfor == 0) {
3863 		FREE_LOCK(&lk);
3864 		return;
3865 	}
3866 	gotit = getdirtybuf(&inodedep->id_buf, MNT_WAIT);
3867 	FREE_LOCK(&lk);
3868 	if (gotit &&
3869 	    (error = VOP_BWRITE(inodedep->id_buf->b_vp, inodedep->id_buf)) != 0)
3870 		softdep_error("softdep_update_inodeblock: bwrite", error);
3871 	if ((inodedep->id_state & DEPCOMPLETE) == 0)
3872 		panic("softdep_update_inodeblock: update failed");
3873 }
3874 
3875 /*
3876  * Merge the new inode dependency list (id_newinoupdt) into the old
3877  * inode dependency list (id_inoupdt). This routine must be called
3878  * with splbio interrupts blocked.
3879  */
3880 static void
3881 merge_inode_lists(inodedep)
3882 	struct inodedep *inodedep;
3883 {
3884 	struct allocdirect *listadp, *newadp;
3885 
3886 	newadp = TAILQ_FIRST(&inodedep->id_newinoupdt);
3887 	for (listadp = TAILQ_FIRST(&inodedep->id_inoupdt); listadp && newadp;) {
3888 		if (listadp->ad_lbn < newadp->ad_lbn) {
3889 			listadp = TAILQ_NEXT(listadp, ad_next);
3890 			continue;
3891 		}
3892 		TAILQ_REMOVE(&inodedep->id_newinoupdt, newadp, ad_next);
3893 		TAILQ_INSERT_BEFORE(listadp, newadp, ad_next);
3894 		if (listadp->ad_lbn == newadp->ad_lbn) {
3895 			allocdirect_merge(&inodedep->id_inoupdt, newadp,
3896 			    listadp);
3897 			listadp = newadp;
3898 		}
3899 		newadp = TAILQ_FIRST(&inodedep->id_newinoupdt);
3900 	}
3901 	while ((newadp = TAILQ_FIRST(&inodedep->id_newinoupdt)) != NULL) {
3902 		TAILQ_REMOVE(&inodedep->id_newinoupdt, newadp, ad_next);
3903 		TAILQ_INSERT_TAIL(&inodedep->id_inoupdt, newadp, ad_next);
3904 	}
3905 }
3906 
3907 /*
3908  * If we are doing an fsync, then we must ensure that any directory
3909  * entries for the inode have been written after the inode gets to disk.
3910  */
3911 static int
3912 softdep_fsync(vp)
3913 	struct vnode *vp;	/* the "in_core" copy of the inode */
3914 {
3915 	struct inodedep *inodedep;
3916 	struct pagedep *pagedep;
3917 	struct worklist *wk;
3918 	struct diradd *dap;
3919 	struct mount *mnt;
3920 	struct vnode *pvp;
3921 	struct inode *ip;
3922 	struct buf *bp;
3923 	struct fs *fs;
3924 	struct thread *td = curthread;		/* XXX */
3925 	int error, flushparent;
3926 	ino_t parentino;
3927 	ufs_lbn_t lbn;
3928 
3929 	ip = VTOI(vp);
3930 	fs = ip->i_fs;
3931 	ACQUIRE_LOCK(&lk);
3932 	if (inodedep_lookup(fs, ip->i_number, 0, &inodedep) == 0) {
3933 		FREE_LOCK(&lk);
3934 		return (0);
3935 	}
3936 	if (LIST_FIRST(&inodedep->id_inowait) != NULL ||
3937 	    LIST_FIRST(&inodedep->id_bufwait) != NULL ||
3938 	    TAILQ_FIRST(&inodedep->id_inoupdt) != NULL ||
3939 	    TAILQ_FIRST(&inodedep->id_newinoupdt) != NULL) {
3940 		FREE_LOCK(&lk);
3941 		panic("softdep_fsync: pending ops");
3942 	}
3943 	for (error = 0, flushparent = 0; ; ) {
3944 		if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) == NULL)
3945 			break;
3946 		if (wk->wk_type != D_DIRADD) {
3947 			FREE_LOCK(&lk);
3948 			panic("softdep_fsync: Unexpected type %s",
3949 			    TYPENAME(wk->wk_type));
3950 		}
3951 		dap = WK_DIRADD(wk);
3952 		/*
3953 		 * Flush our parent if this directory entry
3954 		 * has a MKDIR_PARENT dependency.
3955 		 */
3956 		if (dap->da_state & DIRCHG)
3957 			pagedep = dap->da_previous->dm_pagedep;
3958 		else
3959 			pagedep = dap->da_pagedep;
3960 		mnt = pagedep->pd_mnt;
3961 		parentino = pagedep->pd_ino;
3962 		lbn = pagedep->pd_lbn;
3963 		if ((dap->da_state & (MKDIR_BODY | COMPLETE)) != COMPLETE) {
3964 			FREE_LOCK(&lk);
3965 			panic("softdep_fsync: dirty");
3966 		}
3967 		flushparent = dap->da_state & MKDIR_PARENT;
3968 		/*
3969 		 * If we are being fsync'ed as part of vgone'ing this vnode,
3970 		 * then we will not be able to release and recover the
3971 		 * vnode below, so we just have to give up on writing its
3972 		 * directory entry out. It will eventually be written, just
3973 		 * not now, but then the user was not asking to have it
3974 		 * written, so we are not breaking any promises.
3975 		 */
3976 		if (vp->v_flag & VRECLAIMED)
3977 			break;
3978 		/*
3979 		 * We prevent deadlock by always fetching inodes from the
3980 		 * root, moving down the directory tree. Thus, when fetching
3981 		 * our parent directory, we must unlock ourselves before
3982 		 * requesting the lock on our parent. See the comment in
3983 		 * ufs_lookup for details on possible races.
3984 		 */
3985 		FREE_LOCK(&lk);
3986 		VOP_UNLOCK(vp, 0, td);
3987 		error = VFS_VGET(mnt, parentino, &pvp);
3988 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td);
3989 		if (error != 0)
3990 			return (error);
3991 		if (flushparent) {
3992 			if ((error = UFS_UPDATE(pvp, 1)) != 0) {
3993 				vput(pvp);
3994 				return (error);
3995 			}
3996 		}
3997 		/*
3998 		 * Flush directory page containing the inode's name.
3999 		 */
4000 		error = bread(pvp, lbn, blksize(fs, VTOI(pvp), lbn), &bp);
4001 		if (error == 0)
4002 			error = VOP_BWRITE(bp->b_vp, bp);
4003 		vput(pvp);
4004 		if (error != 0)
4005 			return (error);
4006 		ACQUIRE_LOCK(&lk);
4007 		if (inodedep_lookup(fs, ip->i_number, 0, &inodedep) == 0)
4008 			break;
4009 	}
4010 	FREE_LOCK(&lk);
4011 	return (0);
4012 }
4013 
4014 /*
4015  * Flush all the dirty bitmaps associated with the block device
4016  * before flushing the rest of the dirty blocks so as to reduce
4017  * the number of dependencies that will have to be rolled back.
4018  */
4019 void
4020 softdep_fsync_mountdev(vp)
4021 	struct vnode *vp;
4022 {
4023 	struct buf *bp, *nbp;
4024 	struct worklist *wk;
4025 
4026 	if (!vn_isdisk(vp, NULL))
4027 		panic("softdep_fsync_mountdev: vnode not a disk");
4028 	ACQUIRE_LOCK(&lk);
4029 	for (bp = TAILQ_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
4030 		nbp = TAILQ_NEXT(bp, b_vnbufs);
4031 		/*
4032 		 * If it is already scheduled, skip to the next buffer.
4033 		 */
4034 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT))
4035 			continue;
4036 		if ((bp->b_flags & B_DELWRI) == 0) {
4037 			FREE_LOCK(&lk);
4038 			panic("softdep_fsync_mountdev: not dirty");
4039 		}
4040 		/*
4041 		 * We are only interested in bitmaps with outstanding
4042 		 * dependencies.
4043 		 */
4044 		if ((wk = LIST_FIRST(&bp->b_dep)) == NULL ||
4045 		    wk->wk_type != D_BMSAFEMAP ||
4046 		    (bp->b_xflags & BX_BKGRDINPROG)) {
4047 			BUF_UNLOCK(bp);
4048 			continue;
4049 		}
4050 		bremfree(bp);
4051 		FREE_LOCK(&lk);
4052 		(void) bawrite(bp);
4053 		ACQUIRE_LOCK(&lk);
4054 		/*
4055 		 * Since we may have slept during the I/O, we need
4056 		 * to start from a known point.
4057 		 */
4058 		nbp = TAILQ_FIRST(&vp->v_dirtyblkhd);
4059 	}
4060 	drain_output(vp, 1);
4061 	FREE_LOCK(&lk);
4062 }
4063 
4064 /*
4065  * This routine is called when we are trying to synchronously flush a
4066  * file. This routine must eliminate any filesystem metadata dependencies
4067  * so that the syncing routine can succeed by pushing the dirty blocks
4068  * associated with the file. If any I/O errors occur, they are returned.
4069  */
4070 int
4071 softdep_sync_metadata(ap)
4072 	struct vop_fsync_args /* {
4073 		struct vnode *a_vp;
4074 		struct ucred *a_cred;
4075 		int a_waitfor;
4076 		struct proc *a_p;
4077 	} */ *ap;
4078 {
4079 	struct vnode *vp = ap->a_vp;
4080 	struct pagedep *pagedep;
4081 	struct allocdirect *adp;
4082 	struct allocindir *aip;
4083 	struct buf *bp, *nbp;
4084 	struct worklist *wk;
4085 	int i, error, waitfor;
4086 
4087 	/*
4088 	 * Check whether this vnode is involved in a filesystem
4089 	 * that is doing soft dependency processing.
4090 	 */
4091 	if (!vn_isdisk(vp, NULL)) {
4092 		if (!DOINGSOFTDEP(vp))
4093 			return (0);
4094 	} else
4095 		if (vp->v_rdev->si_mountpoint == NULL ||
4096 		    (vp->v_rdev->si_mountpoint->mnt_flag & MNT_SOFTDEP) == 0)
4097 			return (0);
4098 	/*
4099 	 * Ensure that any direct block dependencies have been cleared.
4100 	 */
4101 	ACQUIRE_LOCK(&lk);
4102 	if ((error = flush_inodedep_deps(VTOI(vp)->i_fs, VTOI(vp)->i_number))) {
4103 		FREE_LOCK(&lk);
4104 		return (error);
4105 	}
4106 	/*
4107 	 * For most files, the only metadata dependencies are the
4108 	 * cylinder group maps that allocate their inode or blocks.
4109 	 * The block allocation dependencies can be found by traversing
4110 	 * the dependency lists for any buffers that remain on their
4111 	 * dirty buffer list. The inode allocation dependency will
4112 	 * be resolved when the inode is updated with MNT_WAIT.
4113 	 * This work is done in two passes. The first pass grabs most
4114 	 * of the buffers and begins asynchronously writing them. The
4115 	 * only way to wait for these asynchronous writes is to sleep
4116 	 * on the filesystem vnode which may stay busy for a long time
4117 	 * if the filesystem is active. So, instead, we make a second
4118 	 * pass over the dependencies blocking on each write. In the
4119 	 * usual case we will be blocking against a write that we
4120 	 * initiated, so when it is done the dependency will have been
4121 	 * resolved. Thus the second pass is expected to end quickly.
4122 	 */
4123 	waitfor = MNT_NOWAIT;
4124 top:
4125 	/*
4126 	 * We must wait for any I/O in progress to finish so that
4127 	 * all potential buffers on the dirty list will be visible.
4128 	 */
4129 	drain_output(vp, 1);
4130 	if (getdirtybuf(&TAILQ_FIRST(&vp->v_dirtyblkhd), MNT_WAIT) == 0) {
4131 		FREE_LOCK(&lk);
4132 		return (0);
4133 	}
4134 	bp = TAILQ_FIRST(&vp->v_dirtyblkhd);
4135 loop:
4136 	/*
4137 	 * As we hold the buffer locked, none of its dependencies
4138 	 * will disappear.
4139 	 */
4140 	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
4141 		switch (wk->wk_type) {
4142 
4143 		case D_ALLOCDIRECT:
4144 			adp = WK_ALLOCDIRECT(wk);
4145 			if (adp->ad_state & DEPCOMPLETE)
4146 				break;
4147 			nbp = adp->ad_buf;
4148 			if (getdirtybuf(&nbp, waitfor) == 0)
4149 				break;
4150 			FREE_LOCK(&lk);
4151 			if (waitfor == MNT_NOWAIT) {
4152 				bawrite(nbp);
4153 			} else if ((error = VOP_BWRITE(nbp->b_vp, nbp)) != 0) {
4154 				bawrite(bp);
4155 				return (error);
4156 			}
4157 			ACQUIRE_LOCK(&lk);
4158 			break;
4159 
4160 		case D_ALLOCINDIR:
4161 			aip = WK_ALLOCINDIR(wk);
4162 			if (aip->ai_state & DEPCOMPLETE)
4163 				break;
4164 			nbp = aip->ai_buf;
4165 			if (getdirtybuf(&nbp, waitfor) == 0)
4166 				break;
4167 			FREE_LOCK(&lk);
4168 			if (waitfor == MNT_NOWAIT) {
4169 				bawrite(nbp);
4170 			} else if ((error = VOP_BWRITE(nbp->b_vp, nbp)) != 0) {
4171 				bawrite(bp);
4172 				return (error);
4173 			}
4174 			ACQUIRE_LOCK(&lk);
4175 			break;
4176 
4177 		case D_INDIRDEP:
4178 		restart:
4179 
4180 			LIST_FOREACH(aip, &WK_INDIRDEP(wk)->ir_deplisthd, ai_next) {
4181 				if (aip->ai_state & DEPCOMPLETE)
4182 					continue;
4183 				nbp = aip->ai_buf;
4184 				if (getdirtybuf(&nbp, MNT_WAIT) == 0)
4185 					goto restart;
4186 				FREE_LOCK(&lk);
4187 				if ((error = VOP_BWRITE(nbp->b_vp, nbp)) != 0) {
4188 					bawrite(bp);
4189 					return (error);
4190 				}
4191 				ACQUIRE_LOCK(&lk);
4192 				goto restart;
4193 			}
4194 			break;
4195 
4196 		case D_INODEDEP:
4197 			if ((error = flush_inodedep_deps(WK_INODEDEP(wk)->id_fs,
4198 			    WK_INODEDEP(wk)->id_ino)) != 0) {
4199 				FREE_LOCK(&lk);
4200 				bawrite(bp);
4201 				return (error);
4202 			}
4203 			break;
4204 
4205 		case D_PAGEDEP:
4206 			/*
4207 			 * We are trying to sync a directory that may
4208 			 * have dependencies on both its own metadata
4209 			 * and/or dependencies on the inodes of any
4210 			 * recently allocated files. We walk its diradd
4211 			 * lists pushing out the associated inode.
4212 			 */
4213 			pagedep = WK_PAGEDEP(wk);
4214 			for (i = 0; i < DAHASHSZ; i++) {
4215 				if (LIST_FIRST(&pagedep->pd_diraddhd[i]) == 0)
4216 					continue;
4217 				if ((error =
4218 				    flush_pagedep_deps(vp, pagedep->pd_mnt,
4219 						&pagedep->pd_diraddhd[i]))) {
4220 					FREE_LOCK(&lk);
4221 					bawrite(bp);
4222 					return (error);
4223 				}
4224 			}
4225 			break;
4226 
4227 		case D_MKDIR:
4228 			/*
4229 			 * This case should never happen if the vnode has
4230 			 * been properly sync'ed. However, if this function
4231 			 * is used at a place where the vnode has not yet
4232 			 * been sync'ed, this dependency can show up. So,
4233 			 * rather than panic, just flush it.
4234 			 */
4235 			nbp = WK_MKDIR(wk)->md_buf;
4236 			if (getdirtybuf(&nbp, waitfor) == 0)
4237 				break;
4238 			FREE_LOCK(&lk);
4239 			if (waitfor == MNT_NOWAIT) {
4240 				bawrite(nbp);
4241 			} else if ((error = VOP_BWRITE(nbp->b_vp, nbp)) != 0) {
4242 				bawrite(bp);
4243 				return (error);
4244 			}
4245 			ACQUIRE_LOCK(&lk);
4246 			break;
4247 
4248 		case D_BMSAFEMAP:
4249 			/*
4250 			 * This case should never happen if the vnode has
4251 			 * been properly sync'ed. However, if this function
4252 			 * is used at a place where the vnode has not yet
4253 			 * been sync'ed, this dependency can show up. So,
4254 			 * rather than panic, just flush it.
4255 			 */
4256 			nbp = WK_BMSAFEMAP(wk)->sm_buf;
4257 			if (getdirtybuf(&nbp, waitfor) == 0)
4258 				break;
4259 			FREE_LOCK(&lk);
4260 			if (waitfor == MNT_NOWAIT) {
4261 				bawrite(nbp);
4262 			} else if ((error = VOP_BWRITE(nbp->b_vp, nbp)) != 0) {
4263 				bawrite(bp);
4264 				return (error);
4265 			}
4266 			ACQUIRE_LOCK(&lk);
4267 			break;
4268 
4269 		default:
4270 			FREE_LOCK(&lk);
4271 			panic("softdep_sync_metadata: Unknown type %s",
4272 			    TYPENAME(wk->wk_type));
4273 			/* NOTREACHED */
4274 		}
4275 	}
4276 	(void) getdirtybuf(&TAILQ_NEXT(bp, b_vnbufs), MNT_WAIT);
4277 	nbp = TAILQ_NEXT(bp, b_vnbufs);
4278 	FREE_LOCK(&lk);
4279 	bawrite(bp);
4280 	ACQUIRE_LOCK(&lk);
4281 	if (nbp != NULL) {
4282 		bp = nbp;
4283 		goto loop;
4284 	}
4285 	/*
4286 	 * The brief unlock is to allow any pent up dependency
4287 	 * processing to be done.  Then proceed with the second pass.
4288 	 */
4289 	if (waitfor == MNT_NOWAIT) {
4290 		waitfor = MNT_WAIT;
4291 		FREE_LOCK(&lk);
4292 		ACQUIRE_LOCK(&lk);
4293 		goto top;
4294 	}
4295 
4296 	/*
4297 	 * If we have managed to get rid of all the dirty buffers,
4298 	 * then we are done. For certain directories and block
4299 	 * devices, we may need to do further work.
4300 	 *
4301 	 * We must wait for any I/O in progress to finish so that
4302 	 * all potential buffers on the dirty list will be visible.
4303 	 */
4304 	drain_output(vp, 1);
4305 	if (TAILQ_FIRST(&vp->v_dirtyblkhd) == NULL) {
4306 		FREE_LOCK(&lk);
4307 		return (0);
4308 	}
4309 
4310 	FREE_LOCK(&lk);
4311 	/*
4312 	 * If we are trying to sync a block device, some of its buffers may
4313 	 * contain metadata that cannot be written until the contents of some
4314 	 * partially written files have been written to disk. The only easy
4315 	 * way to accomplish this is to sync the entire filesystem (luckily
4316 	 * this happens rarely).
4317 	 */
4318 	if (vn_isdisk(vp, NULL) &&
4319 	    vp->v_rdev &&
4320 	    vp->v_rdev->si_mountpoint && !VOP_ISLOCKED(vp, NULL) &&
4321 	    (error = VFS_SYNC(vp->v_rdev->si_mountpoint, MNT_WAIT, ap->a_td)) != 0)
4322 		return (error);
4323 	return (0);
4324 }
4325 
4326 /*
4327  * Flush the dependencies associated with an inodedep.
4328  * Called with splbio blocked.
4329  */
4330 static int
4331 flush_inodedep_deps(fs, ino)
4332 	struct fs *fs;
4333 	ino_t ino;
4334 {
4335 	struct inodedep *inodedep;
4336 	struct allocdirect *adp;
4337 	int error, waitfor;
4338 	struct buf *bp;
4339 
4340 	/*
4341 	 * This work is done in two passes. The first pass grabs most
4342 	 * of the buffers and begins asynchronously writing them. The
4343 	 * only way to wait for these asynchronous writes is to sleep
4344 	 * on the filesystem vnode which may stay busy for a long time
4345 	 * if the filesystem is active. So, instead, we make a second
4346 	 * pass over the dependencies blocking on each write. In the
4347 	 * usual case we will be blocking against a write that we
4348 	 * initiated, so when it is done the dependency will have been
4349 	 * resolved. Thus the second pass is expected to end quickly.
4350 	 * We give a brief window at the top of the loop to allow
4351 	 * any pending I/O to complete.
4352 	 */
4353 	for (waitfor = MNT_NOWAIT; ; ) {
4354 		FREE_LOCK(&lk);
4355 		ACQUIRE_LOCK(&lk);
4356 		if (inodedep_lookup(fs, ino, 0, &inodedep) == 0)
4357 			return (0);
4358 		TAILQ_FOREACH(adp, &inodedep->id_inoupdt, ad_next) {
4359 			if (adp->ad_state & DEPCOMPLETE)
4360 				continue;
4361 			bp = adp->ad_buf;
4362 			if (getdirtybuf(&bp, waitfor) == 0) {
4363 				if (waitfor == MNT_NOWAIT)
4364 					continue;
4365 				break;
4366 			}
4367 			FREE_LOCK(&lk);
4368 			if (waitfor == MNT_NOWAIT) {
4369 				bawrite(bp);
4370 			} else if ((error = VOP_BWRITE(bp->b_vp, bp)) != 0) {
4371 				ACQUIRE_LOCK(&lk);
4372 				return (error);
4373 			}
4374 			ACQUIRE_LOCK(&lk);
4375 			break;
4376 		}
4377 		if (adp != NULL)
4378 			continue;
4379 		TAILQ_FOREACH(adp, &inodedep->id_newinoupdt, ad_next) {
4380 			if (adp->ad_state & DEPCOMPLETE)
4381 				continue;
4382 			bp = adp->ad_buf;
4383 			if (getdirtybuf(&bp, waitfor) == 0) {
4384 				if (waitfor == MNT_NOWAIT)
4385 					continue;
4386 				break;
4387 			}
4388 			FREE_LOCK(&lk);
4389 			if (waitfor == MNT_NOWAIT) {
4390 				bawrite(bp);
4391 			} else if ((error = VOP_BWRITE(bp->b_vp, bp)) != 0) {
4392 				ACQUIRE_LOCK(&lk);
4393 				return (error);
4394 			}
4395 			ACQUIRE_LOCK(&lk);
4396 			break;
4397 		}
4398 		if (adp != NULL)
4399 			continue;
4400 		/*
4401 		 * If pass2, we are done, otherwise do pass 2.
4402 		 */
4403 		if (waitfor == MNT_WAIT)
4404 			break;
4405 		waitfor = MNT_WAIT;
4406 	}
4407 	/*
4408 	 * Try freeing inodedep in case all dependencies have been removed.
4409 	 */
4410 	if (inodedep_lookup(fs, ino, 0, &inodedep) != 0)
4411 		(void) free_inodedep(inodedep);
4412 	return (0);
4413 }
4414 
4415 /*
4416  * Eliminate a pagedep dependency by flushing out all its diradd dependencies.
4417  * Called with splbio blocked.
4418  */
4419 static int
4420 flush_pagedep_deps(pvp, mp, diraddhdp)
4421 	struct vnode *pvp;
4422 	struct mount *mp;
4423 	struct diraddhd *diraddhdp;
4424 {
4425 	struct thread *td = curthread;		/* XXX */
4426 	struct inodedep *inodedep;
4427 	struct ufsmount *ump;
4428 	struct diradd *dap;
4429 	struct vnode *vp;
4430 	int gotit, error = 0;
4431 	struct buf *bp;
4432 	ino_t inum;
4433 
4434 	ump = VFSTOUFS(mp);
4435 	while ((dap = LIST_FIRST(diraddhdp)) != NULL) {
4436 		/*
4437 		 * Flush ourselves if this directory entry
4438 		 * has a MKDIR_PARENT dependency.
4439 		 */
4440 		if (dap->da_state & MKDIR_PARENT) {
4441 			FREE_LOCK(&lk);
4442 			if ((error = UFS_UPDATE(pvp, 1)) != 0)
4443 				break;
4444 			ACQUIRE_LOCK(&lk);
4445 			/*
4446 			 * If that cleared dependencies, go on to next.
4447 			 */
4448 			if (dap != LIST_FIRST(diraddhdp))
4449 				continue;
4450 			if (dap->da_state & MKDIR_PARENT) {
4451 				FREE_LOCK(&lk);
4452 				panic("flush_pagedep_deps: MKDIR_PARENT");
4453 			}
4454 		}
4455 		/*
4456 		 * A newly allocated directory must have its "." and
4457 		 * ".." entries written out before its name can be
4458 		 * committed in its parent. We do not want or need
4459 		 * the full semantics of a synchronous VOP_FSYNC as
4460 		 * that may end up here again, once for each directory
4461 		 * level in the filesystem. Instead, we push the blocks
4462 		 * and wait for them to clear. We have to fsync twice
4463 		 * because the first call may choose to defer blocks
4464 		 * that still have dependencies, but deferral will
4465 		 * happen at most once.
4466 		 */
4467 		inum = dap->da_newinum;
4468 		if (dap->da_state & MKDIR_BODY) {
4469 			FREE_LOCK(&lk);
4470 			if ((error = VFS_VGET(mp, inum, &vp)) != 0)
4471 				break;
4472 			if ((error=VOP_FSYNC(vp, MNT_NOWAIT, td)) ||
4473 			    (error=VOP_FSYNC(vp, MNT_NOWAIT, td))) {
4474 				vput(vp);
4475 				break;
4476 			}
4477 			drain_output(vp, 0);
4478 			vput(vp);
4479 			ACQUIRE_LOCK(&lk);
4480 			/*
4481 			 * If that cleared dependencies, go on to next.
4482 			 */
4483 			if (dap != LIST_FIRST(diraddhdp))
4484 				continue;
4485 			if (dap->da_state & MKDIR_BODY) {
4486 				FREE_LOCK(&lk);
4487 				panic("flush_pagedep_deps: MKDIR_BODY");
4488 			}
4489 		}
4490 		/*
4491 		 * Flush the inode on which the directory entry depends.
4492 		 * Having accounted for MKDIR_PARENT and MKDIR_BODY above,
4493 		 * the only remaining dependency is that the updated inode
4494 		 * count must get pushed to disk. The inode has already
4495 		 * been pushed into its inode buffer (via VOP_UPDATE) at
4496 		 * the time of the reference count change. So we need only
4497 		 * locate that buffer, ensure that there will be no rollback
4498 		 * caused by a bitmap dependency, then write the inode buffer.
4499 		 */
4500 		if (inodedep_lookup(ump->um_fs, inum, 0, &inodedep) == 0) {
4501 			FREE_LOCK(&lk);
4502 			panic("flush_pagedep_deps: lost inode");
4503 		}
4504 		/*
4505 		 * If the inode still has bitmap dependencies,
4506 		 * push them to disk.
4507 		 */
4508 		if ((inodedep->id_state & DEPCOMPLETE) == 0) {
4509 			gotit = getdirtybuf(&inodedep->id_buf, MNT_WAIT);
4510 			FREE_LOCK(&lk);
4511 			if (gotit &&
4512 			    (error = VOP_BWRITE(inodedep->id_buf->b_vp,
4513 			     inodedep->id_buf)) != 0)
4514 				break;
4515 			ACQUIRE_LOCK(&lk);
4516 			if (dap != LIST_FIRST(diraddhdp))
4517 				continue;
4518 		}
4519 		/*
4520 		 * If the inode is still sitting in a buffer waiting
4521 		 * to be written, push it to disk.
4522 		 */
4523 		FREE_LOCK(&lk);
4524 		if ((error = bread(ump->um_devvp,
4525 		    fsbtodb(ump->um_fs, ino_to_fsba(ump->um_fs, inum)),
4526 		    (int)ump->um_fs->fs_bsize, &bp)) != 0)
4527 			break;
4528 		if ((error = VOP_BWRITE(bp->b_vp, bp)) != 0)
4529 			break;
4530 		ACQUIRE_LOCK(&lk);
4531 		/*
4532 		 * If we have failed to get rid of all the dependencies
4533 		 * then something is seriously wrong.
4534 		 */
4535 		if (dap == LIST_FIRST(diraddhdp)) {
4536 			FREE_LOCK(&lk);
4537 			panic("flush_pagedep_deps: flush failed");
4538 		}
4539 	}
4540 	if (error)
4541 		ACQUIRE_LOCK(&lk);
4542 	return (error);
4543 }
4544 
4545 /*
4546  * A large burst of file addition or deletion activity can drive the
4547  * memory load excessively high. First attempt to slow things down
4548  * using the techniques below. If that fails, this routine requests
4549  * the offending operations to fall back to running synchronously
4550  * until the memory load returns to a reasonable level.
4551  */
4552 int
4553 softdep_slowdown(vp)
4554 	struct vnode *vp;
4555 {
4556 	int max_softdeps_hard;
4557 
4558 	max_softdeps_hard = max_softdeps * 11 / 10;
4559 	if (num_dirrem < max_softdeps_hard / 2 &&
4560 	    num_inodedep < max_softdeps_hard)
4561 		return (0);
4562 	stat_sync_limit_hit += 1;
4563 	return (1);
4564 }
4565 
4566 /*
4567  * If memory utilization has gotten too high, deliberately slow things
4568  * down and speed up the I/O processing.
4569  */
4570 static int
4571 request_cleanup(resource, islocked)
4572 	int resource;
4573 	int islocked;
4574 {
4575 	struct thread *td = curthread;		/* XXX */
4576 	int s;
4577 
4578 	/*
4579 	 * We never hold up the filesystem syncer process.
4580 	 */
4581 	if (td == filesys_syncer)
4582 		return (0);
4583 	/*
4584 	 * First check to see if the work list has gotten backlogged.
4585 	 * If it has, co-opt this process to help clean up two entries.
4586 	 * Because this process may hold inodes locked, we cannot
4587 	 * handle any remove requests that might block on a locked
4588 	 * inode as that could lead to deadlock.
4589 	 */
4590 	if (num_on_worklist > max_softdeps / 10) {
4591 		if (islocked)
4592 			FREE_LOCK(&lk);
4593 		process_worklist_item(NULL, LK_NOWAIT);
4594 		process_worklist_item(NULL, LK_NOWAIT);
4595 		stat_worklist_push += 2;
4596 		if (islocked)
4597 			ACQUIRE_LOCK(&lk);
4598 		return(1);
4599 	}
4600 
4601 	/*
4602 	 * If we are resource constrained on inode dependencies, try
4603 	 * flushing some dirty inodes. Otherwise, we are constrained
4604 	 * by file deletions, so try accelerating flushes of directories
4605 	 * with removal dependencies. We would like to do the cleanup
4606 	 * here, but we probably hold an inode locked at this point and
4607 	 * that might deadlock against one that we try to clean. So,
4608 	 * the best that we can do is request the syncer daemon to do
4609 	 * the cleanup for us.
4610 	 */
4611 	switch (resource) {
4612 
4613 	case FLUSH_INODES:
4614 		stat_ino_limit_push += 1;
4615 		req_clear_inodedeps += 1;
4616 		stat_countp = &stat_ino_limit_hit;
4617 		break;
4618 
4619 	case FLUSH_REMOVE:
4620 		stat_blk_limit_push += 1;
4621 		req_clear_remove += 1;
4622 		stat_countp = &stat_blk_limit_hit;
4623 		break;
4624 
4625 	default:
4626 		if (islocked)
4627 			FREE_LOCK(&lk);
4628 		panic("request_cleanup: unknown type");
4629 	}
4630 	/*
4631 	 * Hopefully the syncer daemon will catch up and awaken us.
4632 	 * We wait at most tickdelay before proceeding in any case.
4633 	 */
4634 	if (islocked == 0)
4635 		ACQUIRE_LOCK(&lk);
4636 	s = splsoftclock();
4637 	proc_waiting += 1;
4638 	if (!callout_active(&handle))
4639 		callout_reset(&handle, tickdelay > 2 ? tickdelay : 2,
4640 			      pause_timer, NULL);
4641 	interlocked_sleep(&lk, SLEEP, (caddr_t)&proc_waiting, 0,
4642 	    "softupdate", 0);
4643 	proc_waiting -= 1;
4644 	splx(s);
4645 	if (islocked == 0)
4646 		FREE_LOCK(&lk);
4647 	return (1);
4648 }
4649 
4650 /*
4651  * Awaken processes pausing in request_cleanup and clear proc_waiting
4652  * to indicate that there is no longer a timer running.
4653  */
4654 void
4655 pause_timer(arg)
4656 	void *arg;
4657 {
4658 	*stat_countp += 1;
4659 	wakeup_one(&proc_waiting);
4660 	if (proc_waiting > 0)
4661 		callout_reset(&handle, tickdelay > 2 ? tickdelay : 2,
4662 			      pause_timer, NULL);
4663 	else
4664 		callout_deactivate(&handle);
4665 }
4666 
4667 /*
4668  * Flush out a directory with at least one removal dependency in an effort to
4669  * reduce the number of dirrem, freefile, and freeblks dependency structures.
4670  */
4671 static void
4672 clear_remove(struct thread *td)
4673 {
4674 	struct pagedep_hashhead *pagedephd;
4675 	struct pagedep *pagedep;
4676 	static int next = 0;
4677 	struct mount *mp;
4678 	struct vnode *vp;
4679 	int error, cnt;
4680 	ino_t ino;
4681 
4682 	ACQUIRE_LOCK(&lk);
4683 	for (cnt = 0; cnt < pagedep_hash; cnt++) {
4684 		pagedephd = &pagedep_hashtbl[next++];
4685 		if (next >= pagedep_hash)
4686 			next = 0;
4687 		LIST_FOREACH(pagedep, pagedephd, pd_hash) {
4688 			if (LIST_FIRST(&pagedep->pd_dirremhd) == NULL)
4689 				continue;
4690 			mp = pagedep->pd_mnt;
4691 			ino = pagedep->pd_ino;
4692 			FREE_LOCK(&lk);
4693 			if ((error = VFS_VGET(mp, ino, &vp)) != 0) {
4694 				softdep_error("clear_remove: vget", error);
4695 				return;
4696 			}
4697 			if ((error = VOP_FSYNC(vp, MNT_NOWAIT, td)))
4698 				softdep_error("clear_remove: fsync", error);
4699 			drain_output(vp, 0);
4700 			vput(vp);
4701 			return;
4702 		}
4703 	}
4704 	FREE_LOCK(&lk);
4705 }
4706 
4707 /*
4708  * Clear out a block of dirty inodes in an effort to reduce
4709  * the number of inodedep dependency structures.
4710  */
4711 static void
4712 clear_inodedeps(struct thread *td)
4713 {
4714 	struct inodedep_hashhead *inodedephd;
4715 	struct inodedep *inodedep;
4716 	static int next = 0;
4717 	struct mount *mp;
4718 	struct vnode *vp;
4719 	struct fs *fs;
4720 	int error, cnt;
4721 	ino_t firstino, lastino, ino;
4722 
4723 	ACQUIRE_LOCK(&lk);
4724 	/*
4725 	 * Pick a random inode dependency to be cleared.
4726 	 * We will then gather up all the inodes in its block
4727 	 * that have dependencies and flush them out.
4728 	 */
4729 	for (cnt = 0; cnt < inodedep_hash; cnt++) {
4730 		inodedephd = &inodedep_hashtbl[next++];
4731 		if (next >= inodedep_hash)
4732 			next = 0;
4733 		if ((inodedep = LIST_FIRST(inodedephd)) != NULL)
4734 			break;
4735 	}
4736 	if (inodedep == NULL)
4737 		return;
4738 	/*
4739 	 * Ugly code to find mount point given pointer to superblock.
4740 	 */
4741 	fs = inodedep->id_fs;
4742 	TAILQ_FOREACH(mp, &mountlist, mnt_list)
4743 		if ((mp->mnt_flag & MNT_SOFTDEP) && fs == VFSTOUFS(mp)->um_fs)
4744 			break;
4745 	/*
4746 	 * Find the last inode in the block with dependencies.
4747 	 */
4748 	firstino = inodedep->id_ino & ~(INOPB(fs) - 1);
4749 	for (lastino = firstino + INOPB(fs) - 1; lastino > firstino; lastino--)
4750 		if (inodedep_lookup(fs, lastino, 0, &inodedep) != 0)
4751 			break;
4752 	/*
4753 	 * Asynchronously push all but the last inode with dependencies.
4754 	 * Synchronously push the last inode with dependencies to ensure
4755 	 * that the inode block gets written to free up the inodedeps.
4756 	 */
4757 	for (ino = firstino; ino <= lastino; ino++) {
4758 		if (inodedep_lookup(fs, ino, 0, &inodedep) == 0)
4759 			continue;
4760 		FREE_LOCK(&lk);
4761 		if ((error = VFS_VGET(mp, ino, &vp)) != 0) {
4762 			softdep_error("clear_inodedeps: vget", error);
4763 			return;
4764 		}
4765 		if (ino == lastino) {
4766 			if ((error = VOP_FSYNC(vp, MNT_WAIT, td)))
4767 				softdep_error("clear_inodedeps: fsync1", error);
4768 		} else {
4769 			if ((error = VOP_FSYNC(vp, MNT_NOWAIT, td)))
4770 				softdep_error("clear_inodedeps: fsync2", error);
4771 			drain_output(vp, 0);
4772 		}
4773 		vput(vp);
4774 		ACQUIRE_LOCK(&lk);
4775 	}
4776 	FREE_LOCK(&lk);
4777 }
4778 
4779 /*
4780  * Function to determine if the buffer has outstanding dependencies
4781  * that will cause a roll-back if the buffer is written. If wantcount
4782  * is set, return number of dependencies, otherwise just yes or no.
4783  */
4784 static int
4785 softdep_count_dependencies(bp, wantcount)
4786 	struct buf *bp;
4787 	int wantcount;
4788 {
4789 	struct worklist *wk;
4790 	struct inodedep *inodedep;
4791 	struct indirdep *indirdep;
4792 	struct allocindir *aip;
4793 	struct pagedep *pagedep;
4794 	struct diradd *dap;
4795 	int i, retval;
4796 
4797 	retval = 0;
4798 	ACQUIRE_LOCK(&lk);
4799 	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
4800 		switch (wk->wk_type) {
4801 
4802 		case D_INODEDEP:
4803 			inodedep = WK_INODEDEP(wk);
4804 			if ((inodedep->id_state & DEPCOMPLETE) == 0) {
4805 				/* bitmap allocation dependency */
4806 				retval += 1;
4807 				if (!wantcount)
4808 					goto out;
4809 			}
4810 			if (TAILQ_FIRST(&inodedep->id_inoupdt)) {
4811 				/* direct block pointer dependency */
4812 				retval += 1;
4813 				if (!wantcount)
4814 					goto out;
4815 			}
4816 			continue;
4817 
4818 		case D_INDIRDEP:
4819 			indirdep = WK_INDIRDEP(wk);
4820 
4821 			LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) {
4822 				/* indirect block pointer dependency */
4823 				retval += 1;
4824 				if (!wantcount)
4825 					goto out;
4826 			}
4827 			continue;
4828 
4829 		case D_PAGEDEP:
4830 			pagedep = WK_PAGEDEP(wk);
4831 			for (i = 0; i < DAHASHSZ; i++) {
4832 
4833 				LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
4834 					/* directory entry dependency */
4835 					retval += 1;
4836 					if (!wantcount)
4837 						goto out;
4838 				}
4839 			}
4840 			continue;
4841 
4842 		case D_BMSAFEMAP:
4843 		case D_ALLOCDIRECT:
4844 		case D_ALLOCINDIR:
4845 		case D_MKDIR:
4846 			/* never a dependency on these blocks */
4847 			continue;
4848 
4849 		default:
4850 			FREE_LOCK(&lk);
4851 			panic("softdep_check_for_rollback: Unexpected type %s",
4852 			    TYPENAME(wk->wk_type));
4853 			/* NOTREACHED */
4854 		}
4855 	}
4856 out:
4857 	FREE_LOCK(&lk);
4858 	return retval;
4859 }
4860 
4861 /*
4862  * Acquire exclusive access to a buffer.
4863  * Must be called with splbio blocked.
4864  * Return 1 if buffer was acquired.
4865  */
4866 static int
4867 getdirtybuf(bpp, waitfor)
4868 	struct buf **bpp;
4869 	int waitfor;
4870 {
4871 	struct buf *bp;
4872 	int error;
4873 
4874 	for (;;) {
4875 		if ((bp = *bpp) == NULL)
4876 			return (0);
4877 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) == 0) {
4878 			if ((bp->b_xflags & BX_BKGRDINPROG) == 0)
4879 				break;
4880 			BUF_UNLOCK(bp);
4881 			if (waitfor != MNT_WAIT)
4882 				return (0);
4883 			bp->b_xflags |= BX_BKGRDWAIT;
4884 			interlocked_sleep(&lk, SLEEP, &bp->b_xflags, 0,
4885 			    "getbuf", 0);
4886 			continue;
4887 		}
4888 		if (waitfor != MNT_WAIT)
4889 			return (0);
4890 		error = interlocked_sleep(&lk, LOCKBUF, bp,
4891 		    LK_EXCLUSIVE | LK_SLEEPFAIL, 0, 0);
4892 		if (error != ENOLCK) {
4893 			FREE_LOCK(&lk);
4894 			panic("getdirtybuf: inconsistent lock");
4895 		}
4896 	}
4897 	if ((bp->b_flags & B_DELWRI) == 0) {
4898 		BUF_UNLOCK(bp);
4899 		return (0);
4900 	}
4901 	bremfree(bp);
4902 	return (1);
4903 }
4904 
4905 /*
4906  * Wait for pending output on a vnode to complete.
4907  * Must be called with vnode locked.
4908  */
4909 static void
4910 drain_output(vp, islocked)
4911 	struct vnode *vp;
4912 	int islocked;
4913 {
4914 
4915 	if (!islocked)
4916 		ACQUIRE_LOCK(&lk);
4917 	while (vp->v_numoutput) {
4918 		vp->v_flag |= VBWAIT;
4919 		interlocked_sleep(&lk, SLEEP, (caddr_t)&vp->v_numoutput,
4920 		    0, "drainvp", 0);
4921 	}
4922 	if (!islocked)
4923 		FREE_LOCK(&lk);
4924 }
4925 
4926 /*
4927  * Called whenever a buffer that is being invalidated or reallocated
4928  * contains dependencies. This should only happen if an I/O error has
4929  * occurred. The routine is called with the buffer locked.
4930  */
4931 static void
4932 softdep_deallocate_dependencies(bp)
4933 	struct buf *bp;
4934 {
4935 
4936 	if ((bp->b_flags & B_ERROR) == 0)
4937 		panic("softdep_deallocate_dependencies: dangling deps");
4938 	softdep_error(bp->b_vp->v_mount->mnt_stat.f_mntonname, bp->b_error);
4939 	panic("softdep_deallocate_dependencies: unrecovered I/O error");
4940 }
4941 
4942 /*
4943  * Function to handle asynchronous write errors in the filesystem.
4944  */
4945 void
4946 softdep_error(func, error)
4947 	char *func;
4948 	int error;
4949 {
4950 
4951 	/* XXX should do something better! */
4952 	printf("%s: got error %d while accessing filesystem\n", func, error);
4953 }
4954