xref: /dragonfly/sys/vfs/ufs/ffs_softdep.c (revision cecb9aae)
1 /*
2  * Copyright 1998, 2000 Marshall Kirk McKusick. All Rights Reserved.
3  *
4  * The soft updates code is derived from the appendix of a University
5  * of Michigan technical report (Gregory R. Ganger and Yale N. Patt,
6  * "Soft Updates: A Solution to the Metadata Update Problem in File
7  * Systems", CSE-TR-254-95, August 1995).
8  *
9  * Further information about soft updates can be obtained from:
10  *
11  *	Marshall Kirk McKusick		http://www.mckusick.com/softdep/
12  *	1614 Oxford Street		mckusick@mckusick.com
13  *	Berkeley, CA 94709-1608		+1-510-843-9542
14  *	USA
15  *
16  * Redistribution and use in source and binary forms, with or without
17  * modification, are permitted provided that the following conditions
18  * are met:
19  *
20  * 1. Redistributions of source code must retain the above copyright
21  *    notice, this list of conditions and the following disclaimer.
22  * 2. Redistributions in binary form must reproduce the above copyright
23  *    notice, this list of conditions and the following disclaimer in the
24  *    documentation and/or other materials provided with the distribution.
25  *
26  * THIS SOFTWARE IS PROVIDED BY MARSHALL KIRK MCKUSICK ``AS IS'' AND ANY
27  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
28  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
29  * DISCLAIMED.  IN NO EVENT SHALL MARSHALL KIRK MCKUSICK BE LIABLE FOR
30  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	from: @(#)ffs_softdep.c	9.59 (McKusick) 6/21/00
39  * $FreeBSD: src/sys/ufs/ffs/ffs_softdep.c,v 1.57.2.11 2002/02/05 18:46:53 dillon Exp $
40  */
41 
42 /*
43  * For now we want the safety net that the DIAGNOSTIC and DEBUG flags provide.
44  */
45 #ifndef DIAGNOSTIC
46 #define DIAGNOSTIC
47 #endif
48 #ifndef DEBUG
49 #define DEBUG
50 #endif
51 
52 #include <sys/param.h>
53 #include <sys/kernel.h>
54 #include <sys/systm.h>
55 #include <sys/buf.h>
56 #include <sys/malloc.h>
57 #include <sys/mount.h>
58 #include <sys/proc.h>
59 #include <sys/syslog.h>
60 #include <sys/vnode.h>
61 #include <sys/conf.h>
62 #include <machine/inttypes.h>
63 #include "dir.h"
64 #include "quota.h"
65 #include "inode.h"
66 #include "ufsmount.h"
67 #include "fs.h"
68 #include "softdep.h"
69 #include "ffs_extern.h"
70 #include "ufs_extern.h"
71 
72 #include <sys/buf2.h>
73 #include <sys/thread2.h>
74 #include <sys/lock.h>
75 
76 /*
77  * These definitions need to be adapted to the system to which
78  * this file is being ported.
79  */
80 /*
81  * malloc types defined for the softdep system.
82  */
83 MALLOC_DEFINE(M_PAGEDEP, "pagedep","File page dependencies");
84 MALLOC_DEFINE(M_INODEDEP, "inodedep","Inode dependencies");
85 MALLOC_DEFINE(M_NEWBLK, "newblk","New block allocation");
86 MALLOC_DEFINE(M_BMSAFEMAP, "bmsafemap","Block or frag allocated from cyl group map");
87 MALLOC_DEFINE(M_ALLOCDIRECT, "allocdirect","Block or frag dependency for an inode");
88 MALLOC_DEFINE(M_INDIRDEP, "indirdep","Indirect block dependencies");
89 MALLOC_DEFINE(M_ALLOCINDIR, "allocindir","Block dependency for an indirect block");
90 MALLOC_DEFINE(M_FREEFRAG, "freefrag","Previously used frag for an inode");
91 MALLOC_DEFINE(M_FREEBLKS, "freeblks","Blocks freed from an inode");
92 MALLOC_DEFINE(M_FREEFILE, "freefile","Inode deallocated");
93 MALLOC_DEFINE(M_DIRADD, "diradd","New directory entry");
94 MALLOC_DEFINE(M_MKDIR, "mkdir","New directory");
95 MALLOC_DEFINE(M_DIRREM, "dirrem","Directory entry deleted");
96 
97 #define M_SOFTDEP_FLAGS		(M_WAITOK | M_USE_RESERVE)
98 
99 #define	D_PAGEDEP	0
100 #define	D_INODEDEP	1
101 #define	D_NEWBLK	2
102 #define	D_BMSAFEMAP	3
103 #define	D_ALLOCDIRECT	4
104 #define	D_INDIRDEP	5
105 #define	D_ALLOCINDIR	6
106 #define	D_FREEFRAG	7
107 #define	D_FREEBLKS	8
108 #define	D_FREEFILE	9
109 #define	D_DIRADD	10
110 #define	D_MKDIR		11
111 #define	D_DIRREM	12
112 #define D_LAST		D_DIRREM
113 
114 /*
115  * translate from workitem type to memory type
116  * MUST match the defines above, such that memtype[D_XXX] == M_XXX
117  */
118 static struct malloc_type *memtype[] = {
119 	M_PAGEDEP,
120 	M_INODEDEP,
121 	M_NEWBLK,
122 	M_BMSAFEMAP,
123 	M_ALLOCDIRECT,
124 	M_INDIRDEP,
125 	M_ALLOCINDIR,
126 	M_FREEFRAG,
127 	M_FREEBLKS,
128 	M_FREEFILE,
129 	M_DIRADD,
130 	M_MKDIR,
131 	M_DIRREM
132 };
133 
134 #define DtoM(type) (memtype[type])
135 
136 /*
137  * Names of malloc types.
138  */
139 #define TYPENAME(type)  \
140 	((unsigned)(type) < D_LAST ? memtype[type]->ks_shortdesc : "???")
141 /*
142  * End system adaptaion definitions.
143  */
144 
145 /*
146  * Internal function prototypes.
147  */
148 static	void softdep_error(char *, int);
149 static	void drain_output(struct vnode *, int);
150 static	int getdirtybuf(struct buf **, int);
151 static	void clear_remove(struct thread *);
152 static	void clear_inodedeps(struct thread *);
153 static	int flush_pagedep_deps(struct vnode *, struct mount *,
154 	    struct diraddhd *);
155 static	int flush_inodedep_deps(struct fs *, ino_t);
156 static	int handle_written_filepage(struct pagedep *, struct buf *);
157 static  void diradd_inode_written(struct diradd *, struct inodedep *);
158 static	int handle_written_inodeblock(struct inodedep *, struct buf *);
159 static	void handle_allocdirect_partdone(struct allocdirect *);
160 static	void handle_allocindir_partdone(struct allocindir *);
161 static	void initiate_write_filepage(struct pagedep *, struct buf *);
162 static	void handle_written_mkdir(struct mkdir *, int);
163 static	void initiate_write_inodeblock(struct inodedep *, struct buf *);
164 static	void handle_workitem_freefile(struct freefile *);
165 static	void handle_workitem_remove(struct dirrem *);
166 static	struct dirrem *newdirrem(struct buf *, struct inode *,
167 	    struct inode *, int, struct dirrem **);
168 static	void free_diradd(struct diradd *);
169 static	void free_allocindir(struct allocindir *, struct inodedep *);
170 static	int indir_trunc (struct inode *, off_t, int, ufs_lbn_t, long *);
171 static	void deallocate_dependencies(struct buf *, struct inodedep *);
172 static	void free_allocdirect(struct allocdirectlst *,
173 	    struct allocdirect *, int);
174 static	int check_inode_unwritten(struct inodedep *);
175 static	int free_inodedep(struct inodedep *);
176 static	void handle_workitem_freeblocks(struct freeblks *);
177 static	void merge_inode_lists(struct inodedep *);
178 static	void setup_allocindir_phase2(struct buf *, struct inode *,
179 	    struct allocindir *);
180 static	struct allocindir *newallocindir(struct inode *, int, ufs_daddr_t,
181 	    ufs_daddr_t);
182 static	void handle_workitem_freefrag(struct freefrag *);
183 static	struct freefrag *newfreefrag(struct inode *, ufs_daddr_t, long);
184 static	void allocdirect_merge(struct allocdirectlst *,
185 	    struct allocdirect *, struct allocdirect *);
186 static	struct bmsafemap *bmsafemap_lookup(struct buf *);
187 static	int newblk_lookup(struct fs *, ufs_daddr_t, int,
188 	    struct newblk **);
189 static	int inodedep_lookup(struct fs *, ino_t, int, struct inodedep **);
190 static	int pagedep_lookup(struct inode *, ufs_lbn_t, int,
191 	    struct pagedep **);
192 static	int request_cleanup(int);
193 static	int process_worklist_item(struct mount *, int);
194 static	void add_to_worklist(struct worklist *);
195 
196 /*
197  * Exported softdep operations.
198  */
199 static	void softdep_disk_io_initiation(struct buf *);
200 static	void softdep_disk_write_complete(struct buf *);
201 static	void softdep_deallocate_dependencies(struct buf *);
202 static	int softdep_fsync(struct vnode *);
203 static	int softdep_process_worklist(struct mount *);
204 static	void softdep_move_dependencies(struct buf *, struct buf *);
205 static	int softdep_count_dependencies(struct buf *bp, int);
206 static  int softdep_checkread(struct buf *bp);
207 static  int softdep_checkwrite(struct buf *bp);
208 
209 static struct bio_ops softdep_bioops = {
210 	.io_start = softdep_disk_io_initiation,
211 	.io_complete = softdep_disk_write_complete,
212 	.io_deallocate = softdep_deallocate_dependencies,
213 	.io_fsync = softdep_fsync,
214 	.io_sync = softdep_process_worklist,
215 	.io_movedeps = softdep_move_dependencies,
216 	.io_countdeps = softdep_count_dependencies,
217 	.io_checkread = softdep_checkread,
218 	.io_checkwrite = softdep_checkwrite
219 };
220 
221 /*
222  * Locking primitives.
223  */
224 static	void acquire_lock(struct lock *);
225 static	void free_lock(struct lock *);
226 #ifdef INVARIANTS
227 static	int lock_held(struct lock *);
228 #endif
229 
230 static struct lock lk;
231 
232 #define ACQUIRE_LOCK(lkp)		acquire_lock(lkp)
233 #define FREE_LOCK(lkp)			free_lock(lkp)
234 
235 static void
236 acquire_lock(struct lock *lkp)
237 {
238 	lockmgr(lkp, LK_EXCLUSIVE);
239 }
240 
241 static void
242 free_lock(struct lock *lkp)
243 {
244 	lockmgr(lkp, LK_RELEASE);
245 }
246 
247 #ifdef INVARIANTS
248 static int
249 lock_held(struct lock *lkp)
250 {
251 	return lockcountnb(lkp);
252 }
253 #endif
254 
255 /*
256  * Place holder for real semaphores.
257  */
258 struct sema {
259 	int	value;
260 	thread_t holder;
261 	char	*name;
262 	int	timo;
263 	struct spinlock spin;
264 };
265 static	void sema_init(struct sema *, char *, int);
266 static	int sema_get(struct sema *, struct lock *);
267 static	void sema_release(struct sema *, struct lock *);
268 
269 #define NOHOLDER	((struct thread *) -1)
270 
271 static void
272 sema_init(struct sema *semap, char *name, int timo)
273 {
274 	semap->holder = NOHOLDER;
275 	semap->value = 0;
276 	semap->name = name;
277 	semap->timo = timo;
278 	spin_init(&semap->spin);
279 }
280 
281 /*
282  * Obtain exclusive access, semaphore is protected by the interlock.
283  * If interlock is NULL we must protect the semaphore ourselves.
284  */
285 static int
286 sema_get(struct sema *semap, struct lock *interlock)
287 {
288 	int rv;
289 
290 	if (interlock) {
291 		if (semap->value > 0) {
292 			++semap->value;		/* serves as wakeup flag */
293 			lksleep(semap, interlock, 0,
294 				semap->name, semap->timo);
295 			rv = 0;
296 		} else {
297 			semap->value = 1;	/* serves as owned flag */
298 			semap->holder = curthread;
299 			rv = 1;
300 		}
301 	} else {
302 		spin_lock(&semap->spin);
303 		if (semap->value > 0) {
304 			++semap->value;		/* serves as wakeup flag */
305 			ssleep(semap, &semap->spin, 0,
306 				semap->name, semap->timo);
307 			spin_unlock(&semap->spin);
308 			rv = 0;
309 		} else {
310 			semap->value = 1;	/* serves as owned flag */
311 			semap->holder = curthread;
312 			spin_unlock(&semap->spin);
313 			rv = 1;
314 		}
315 	}
316 	return (rv);
317 }
318 
319 static void
320 sema_release(struct sema *semap, struct lock *lk)
321 {
322 	if (semap->value <= 0 || semap->holder != curthread)
323 		panic("sema_release: not held");
324 	if (lk) {
325 		semap->holder = NOHOLDER;
326 		if (--semap->value > 0) {
327 			semap->value = 0;
328 			wakeup(semap);
329 		}
330 	} else {
331 		spin_lock(&semap->spin);
332 		semap->holder = NOHOLDER;
333 		if (--semap->value > 0) {
334 			semap->value = 0;
335 			spin_unlock(&semap->spin);
336 			wakeup(semap);
337 		} else {
338 			spin_unlock(&semap->spin);
339 		}
340 	}
341 }
342 
343 /*
344  * Worklist queue management.
345  * These routines require that the lock be held.
346  */
347 static	void worklist_insert(struct workhead *, struct worklist *);
348 static	void worklist_remove(struct worklist *);
349 static	void workitem_free(struct worklist *, int);
350 
351 #define WORKLIST_INSERT_BP(bp, item) do {	\
352 	(bp)->b_ops = &softdep_bioops;		\
353 	worklist_insert(&(bp)->b_dep, item);	\
354 } while (0)
355 
356 #define WORKLIST_INSERT(head, item) worklist_insert(head, item)
357 #define WORKLIST_REMOVE(item) worklist_remove(item)
358 #define WORKITEM_FREE(item, type) workitem_free((struct worklist *)item, type)
359 
360 static void
361 worklist_insert(struct workhead *head, struct worklist *item)
362 {
363 	KKASSERT(lock_held(&lk) > 0);
364 
365 	if (item->wk_state & ONWORKLIST) {
366 		panic("worklist_insert: already on list");
367 	}
368 	item->wk_state |= ONWORKLIST;
369 	LIST_INSERT_HEAD(head, item, wk_list);
370 }
371 
372 static void
373 worklist_remove(struct worklist *item)
374 {
375 
376 	KKASSERT(lock_held(&lk));
377 	if ((item->wk_state & ONWORKLIST) == 0)
378 		panic("worklist_remove: not on list");
379 
380 	item->wk_state &= ~ONWORKLIST;
381 	LIST_REMOVE(item, wk_list);
382 }
383 
384 static void
385 workitem_free(struct worklist *item, int type)
386 {
387 
388 	if (item->wk_state & ONWORKLIST)
389 		panic("workitem_free: still on list");
390 	if (item->wk_type != type)
391 		panic("workitem_free: type mismatch");
392 
393 	kfree(item, DtoM(type));
394 }
395 
396 /*
397  * Workitem queue management
398  */
399 static struct workhead softdep_workitem_pending;
400 static int num_on_worklist;	/* number of worklist items to be processed */
401 static int softdep_worklist_busy; /* 1 => trying to do unmount */
402 static int softdep_worklist_req; /* serialized waiters */
403 static int max_softdeps;	/* maximum number of structs before slowdown */
404 static int tickdelay = 2;	/* number of ticks to pause during slowdown */
405 static int *stat_countp;	/* statistic to count in proc_waiting timeout */
406 static int proc_waiting;	/* tracks whether we have a timeout posted */
407 static struct thread *filesys_syncer; /* proc of filesystem syncer process */
408 static int req_clear_inodedeps;	/* syncer process flush some inodedeps */
409 #define FLUSH_INODES	1
410 static int req_clear_remove;	/* syncer process flush some freeblks */
411 #define FLUSH_REMOVE	2
412 /*
413  * runtime statistics
414  */
415 static int stat_worklist_push;	/* number of worklist cleanups */
416 static int stat_blk_limit_push;	/* number of times block limit neared */
417 static int stat_ino_limit_push;	/* number of times inode limit neared */
418 static int stat_blk_limit_hit;	/* number of times block slowdown imposed */
419 static int stat_ino_limit_hit;	/* number of times inode slowdown imposed */
420 static int stat_sync_limit_hit;	/* number of synchronous slowdowns imposed */
421 static int stat_indir_blk_ptrs;	/* bufs redirtied as indir ptrs not written */
422 static int stat_inode_bitmap;	/* bufs redirtied as inode bitmap not written */
423 static int stat_direct_blk_ptrs;/* bufs redirtied as direct ptrs not written */
424 static int stat_dir_entry;	/* bufs redirtied as dir entry cannot write */
425 #ifdef DEBUG
426 #include <vm/vm.h>
427 #include <sys/sysctl.h>
428 SYSCTL_INT(_debug, OID_AUTO, max_softdeps, CTLFLAG_RW, &max_softdeps, 0,
429     "Maximum soft dependencies before slowdown occurs");
430 SYSCTL_INT(_debug, OID_AUTO, tickdelay, CTLFLAG_RW, &tickdelay, 0,
431     "Ticks to delay before allocating during slowdown");
432 SYSCTL_INT(_debug, OID_AUTO, worklist_push, CTLFLAG_RW, &stat_worklist_push, 0,
433     "Number of worklist cleanups");
434 SYSCTL_INT(_debug, OID_AUTO, blk_limit_push, CTLFLAG_RW, &stat_blk_limit_push, 0,
435     "Number of times block limit neared");
436 SYSCTL_INT(_debug, OID_AUTO, ino_limit_push, CTLFLAG_RW, &stat_ino_limit_push, 0,
437     "Number of times inode limit neared");
438 SYSCTL_INT(_debug, OID_AUTO, blk_limit_hit, CTLFLAG_RW, &stat_blk_limit_hit, 0,
439     "Number of times block slowdown imposed");
440 SYSCTL_INT(_debug, OID_AUTO, ino_limit_hit, CTLFLAG_RW, &stat_ino_limit_hit, 0,
441     "Number of times inode slowdown imposed ");
442 SYSCTL_INT(_debug, OID_AUTO, sync_limit_hit, CTLFLAG_RW, &stat_sync_limit_hit, 0,
443     "Number of synchronous slowdowns imposed");
444 SYSCTL_INT(_debug, OID_AUTO, indir_blk_ptrs, CTLFLAG_RW, &stat_indir_blk_ptrs, 0,
445     "Bufs redirtied as indir ptrs not written");
446 SYSCTL_INT(_debug, OID_AUTO, inode_bitmap, CTLFLAG_RW, &stat_inode_bitmap, 0,
447     "Bufs redirtied as inode bitmap not written");
448 SYSCTL_INT(_debug, OID_AUTO, direct_blk_ptrs, CTLFLAG_RW, &stat_direct_blk_ptrs, 0,
449     "Bufs redirtied as direct ptrs not written");
450 SYSCTL_INT(_debug, OID_AUTO, dir_entry, CTLFLAG_RW, &stat_dir_entry, 0,
451     "Bufs redirtied as dir entry cannot write");
452 #endif /* DEBUG */
453 
454 /*
455  * Add an item to the end of the work queue.
456  * This routine requires that the lock be held.
457  * This is the only routine that adds items to the list.
458  * The following routine is the only one that removes items
459  * and does so in order from first to last.
460  */
461 static void
462 add_to_worklist(struct worklist *wk)
463 {
464 	static struct worklist *worklist_tail;
465 
466 	if (wk->wk_state & ONWORKLIST) {
467 		panic("add_to_worklist: already on list");
468 	}
469 	wk->wk_state |= ONWORKLIST;
470 	if (LIST_FIRST(&softdep_workitem_pending) == NULL)
471 		LIST_INSERT_HEAD(&softdep_workitem_pending, wk, wk_list);
472 	else
473 		LIST_INSERT_AFTER(worklist_tail, wk, wk_list);
474 	worklist_tail = wk;
475 	num_on_worklist += 1;
476 }
477 
478 /*
479  * Process that runs once per second to handle items in the background queue.
480  *
481  * Note that we ensure that everything is done in the order in which they
482  * appear in the queue. The code below depends on this property to ensure
483  * that blocks of a file are freed before the inode itself is freed. This
484  * ordering ensures that no new <vfsid, inum, lbn> triples will be generated
485  * until all the old ones have been purged from the dependency lists.
486  *
487  * bioops callback - hold io_token
488  */
489 static int
490 softdep_process_worklist(struct mount *matchmnt)
491 {
492 	thread_t td = curthread;
493 	int matchcnt, loopcount;
494 	long starttime;
495 
496 	ACQUIRE_LOCK(&lk);
497 
498 	/*
499 	 * Record the process identifier of our caller so that we can give
500 	 * this process preferential treatment in request_cleanup below.
501 	 */
502 	filesys_syncer = td;
503 	matchcnt = 0;
504 
505 	/*
506 	 * There is no danger of having multiple processes run this
507 	 * code, but we have to single-thread it when softdep_flushfiles()
508 	 * is in operation to get an accurate count of the number of items
509 	 * related to its mount point that are in the list.
510 	 */
511 	if (matchmnt == NULL) {
512 		if (softdep_worklist_busy < 0) {
513 			matchcnt = -1;
514 			goto done;
515 		}
516 		softdep_worklist_busy += 1;
517 	}
518 
519 	/*
520 	 * If requested, try removing inode or removal dependencies.
521 	 */
522 	if (req_clear_inodedeps) {
523 		clear_inodedeps(td);
524 		req_clear_inodedeps -= 1;
525 		wakeup_one(&proc_waiting);
526 	}
527 	if (req_clear_remove) {
528 		clear_remove(td);
529 		req_clear_remove -= 1;
530 		wakeup_one(&proc_waiting);
531 	}
532 	loopcount = 1;
533 	starttime = time_second;
534 	while (num_on_worklist > 0) {
535 		matchcnt += process_worklist_item(matchmnt, 0);
536 
537 		/*
538 		 * If a umount operation wants to run the worklist
539 		 * accurately, abort.
540 		 */
541 		if (softdep_worklist_req && matchmnt == NULL) {
542 			matchcnt = -1;
543 			break;
544 		}
545 
546 		/*
547 		 * If requested, try removing inode or removal dependencies.
548 		 */
549 		if (req_clear_inodedeps) {
550 			clear_inodedeps(td);
551 			req_clear_inodedeps -= 1;
552 			wakeup_one(&proc_waiting);
553 		}
554 		if (req_clear_remove) {
555 			clear_remove(td);
556 			req_clear_remove -= 1;
557 			wakeup_one(&proc_waiting);
558 		}
559 		/*
560 		 * We do not generally want to stop for buffer space, but if
561 		 * we are really being a buffer hog, we will stop and wait.
562 		 */
563 		if (loopcount++ % 128 == 0) {
564 			FREE_LOCK(&lk);
565 			bwillinode(1);
566 			ACQUIRE_LOCK(&lk);
567 		}
568 
569 		/*
570 		 * Never allow processing to run for more than one
571 		 * second. Otherwise the other syncer tasks may get
572 		 * excessively backlogged.
573 		 */
574 		if (starttime != time_second && matchmnt == NULL) {
575 			matchcnt = -1;
576 			break;
577 		}
578 	}
579 	if (matchmnt == NULL) {
580 		--softdep_worklist_busy;
581 		if (softdep_worklist_req && softdep_worklist_busy == 0)
582 			wakeup(&softdep_worklist_req);
583 	}
584 done:
585 	FREE_LOCK(&lk);
586 	return (matchcnt);
587 }
588 
589 /*
590  * Process one item on the worklist.
591  */
592 static int
593 process_worklist_item(struct mount *matchmnt, int flags)
594 {
595 	struct ufsmount *ump;
596 	struct worklist *wk;
597 	struct dirrem *dirrem;
598 	struct fs *matchfs;
599 	struct vnode *vp;
600 	int matchcnt = 0;
601 
602 	KKASSERT(lock_held(&lk) > 0);
603 
604 	matchfs = NULL;
605 	if (matchmnt != NULL)
606 		matchfs = VFSTOUFS(matchmnt)->um_fs;
607 
608 	/*
609 	 * Normally we just process each item on the worklist in order.
610 	 * However, if we are in a situation where we cannot lock any
611 	 * inodes, we have to skip over any dirrem requests whose
612 	 * vnodes are resident and locked.
613 	 */
614 	LIST_FOREACH(wk, &softdep_workitem_pending, wk_list) {
615 		if ((flags & LK_NOWAIT) == 0 || wk->wk_type != D_DIRREM)
616 			break;
617 		dirrem = WK_DIRREM(wk);
618 		ump = VFSTOUFS(dirrem->dm_mnt);
619 		lwkt_gettoken(&ump->um_mountp->mnt_token);
620 		vp = ufs_ihashlookup(ump, ump->um_dev, dirrem->dm_oldinum);
621 		lwkt_reltoken(&ump->um_mountp->mnt_token);
622 		if (vp == NULL || !vn_islocked(vp))
623 			break;
624 	}
625 	if (wk == NULL) {
626 		return (0);
627 	}
628 	WORKLIST_REMOVE(wk);
629 	num_on_worklist -= 1;
630 	FREE_LOCK(&lk);
631 	switch (wk->wk_type) {
632 	case D_DIRREM:
633 		/* removal of a directory entry */
634 		if (WK_DIRREM(wk)->dm_mnt == matchmnt)
635 			matchcnt += 1;
636 		handle_workitem_remove(WK_DIRREM(wk));
637 		break;
638 
639 	case D_FREEBLKS:
640 		/* releasing blocks and/or fragments from a file */
641 		if (WK_FREEBLKS(wk)->fb_fs == matchfs)
642 			matchcnt += 1;
643 		handle_workitem_freeblocks(WK_FREEBLKS(wk));
644 		break;
645 
646 	case D_FREEFRAG:
647 		/* releasing a fragment when replaced as a file grows */
648 		if (WK_FREEFRAG(wk)->ff_fs == matchfs)
649 			matchcnt += 1;
650 		handle_workitem_freefrag(WK_FREEFRAG(wk));
651 		break;
652 
653 	case D_FREEFILE:
654 		/* releasing an inode when its link count drops to 0 */
655 		if (WK_FREEFILE(wk)->fx_fs == matchfs)
656 			matchcnt += 1;
657 		handle_workitem_freefile(WK_FREEFILE(wk));
658 		break;
659 
660 	default:
661 		panic("%s_process_worklist: Unknown type %s",
662 		    "softdep", TYPENAME(wk->wk_type));
663 		/* NOTREACHED */
664 	}
665 	ACQUIRE_LOCK(&lk);
666 	return (matchcnt);
667 }
668 
669 /*
670  * Move dependencies from one buffer to another.
671  *
672  * bioops callback - hold io_token
673  */
674 static void
675 softdep_move_dependencies(struct buf *oldbp, struct buf *newbp)
676 {
677 	struct worklist *wk, *wktail;
678 
679 	if (LIST_FIRST(&newbp->b_dep) != NULL)
680 		panic("softdep_move_dependencies: need merge code");
681 	wktail = NULL;
682 	ACQUIRE_LOCK(&lk);
683 	while ((wk = LIST_FIRST(&oldbp->b_dep)) != NULL) {
684 		LIST_REMOVE(wk, wk_list);
685 		if (wktail == NULL)
686 			LIST_INSERT_HEAD(&newbp->b_dep, wk, wk_list);
687 		else
688 			LIST_INSERT_AFTER(wktail, wk, wk_list);
689 		wktail = wk;
690 		newbp->b_ops = &softdep_bioops;
691 	}
692 	FREE_LOCK(&lk);
693 }
694 
695 /*
696  * Purge the work list of all items associated with a particular mount point.
697  */
698 int
699 softdep_flushfiles(struct mount *oldmnt, int flags)
700 {
701 	struct vnode *devvp;
702 	int error, loopcnt;
703 
704 	/*
705 	 * Await our turn to clear out the queue, then serialize access.
706 	 */
707 	ACQUIRE_LOCK(&lk);
708 	while (softdep_worklist_busy != 0) {
709 		softdep_worklist_req += 1;
710 		lksleep(&softdep_worklist_req, &lk, 0, "softflush", 0);
711 		softdep_worklist_req -= 1;
712 	}
713 	softdep_worklist_busy = -1;
714 	FREE_LOCK(&lk);
715 
716 	if ((error = ffs_flushfiles(oldmnt, flags)) != 0) {
717 		softdep_worklist_busy = 0;
718 		if (softdep_worklist_req)
719 			wakeup(&softdep_worklist_req);
720 		return (error);
721 	}
722 	/*
723 	 * Alternately flush the block device associated with the mount
724 	 * point and process any dependencies that the flushing
725 	 * creates. In theory, this loop can happen at most twice,
726 	 * but we give it a few extra just to be sure.
727 	 */
728 	devvp = VFSTOUFS(oldmnt)->um_devvp;
729 	for (loopcnt = 10; loopcnt > 0; ) {
730 		if (softdep_process_worklist(oldmnt) == 0) {
731 			loopcnt--;
732 			/*
733 			 * Do another flush in case any vnodes were brought in
734 			 * as part of the cleanup operations.
735 			 */
736 			if ((error = ffs_flushfiles(oldmnt, flags)) != 0)
737 				break;
738 			/*
739 			 * If we still found nothing to do, we are really done.
740 			 */
741 			if (softdep_process_worklist(oldmnt) == 0)
742 				break;
743 		}
744 		vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
745 		error = VOP_FSYNC(devvp, MNT_WAIT, 0);
746 		vn_unlock(devvp);
747 		if (error)
748 			break;
749 	}
750 	ACQUIRE_LOCK(&lk);
751 	softdep_worklist_busy = 0;
752 	if (softdep_worklist_req)
753 		wakeup(&softdep_worklist_req);
754 	FREE_LOCK(&lk);
755 
756 	/*
757 	 * If we are unmounting then it is an error to fail. If we
758 	 * are simply trying to downgrade to read-only, then filesystem
759 	 * activity can keep us busy forever, so we just fail with EBUSY.
760 	 */
761 	if (loopcnt == 0) {
762 		if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT)
763 			panic("softdep_flushfiles: looping");
764 		error = EBUSY;
765 	}
766 	return (error);
767 }
768 
769 /*
770  * Structure hashing.
771  *
772  * There are three types of structures that can be looked up:
773  *	1) pagedep structures identified by mount point, inode number,
774  *	   and logical block.
775  *	2) inodedep structures identified by mount point and inode number.
776  *	3) newblk structures identified by mount point and
777  *	   physical block number.
778  *
779  * The "pagedep" and "inodedep" dependency structures are hashed
780  * separately from the file blocks and inodes to which they correspond.
781  * This separation helps when the in-memory copy of an inode or
782  * file block must be replaced. It also obviates the need to access
783  * an inode or file page when simply updating (or de-allocating)
784  * dependency structures. Lookup of newblk structures is needed to
785  * find newly allocated blocks when trying to associate them with
786  * their allocdirect or allocindir structure.
787  *
788  * The lookup routines optionally create and hash a new instance when
789  * an existing entry is not found.
790  */
791 #define DEPALLOC	0x0001	/* allocate structure if lookup fails */
792 #define NODELAY		0x0002	/* cannot do background work */
793 
794 /*
795  * Structures and routines associated with pagedep caching.
796  */
797 LIST_HEAD(pagedep_hashhead, pagedep) *pagedep_hashtbl;
798 u_long	pagedep_hash;		/* size of hash table - 1 */
799 #define	PAGEDEP_HASH(mp, inum, lbn) \
800 	(&pagedep_hashtbl[((((register_t)(mp)) >> 13) + (inum) + (lbn)) & \
801 	    pagedep_hash])
802 static struct sema pagedep_in_progress;
803 
804 /*
805  * Helper routine for pagedep_lookup()
806  */
807 static __inline
808 struct pagedep *
809 pagedep_find(struct pagedep_hashhead *pagedephd, ino_t ino, ufs_lbn_t lbn,
810 	     struct mount *mp)
811 {
812 	struct pagedep *pagedep;
813 
814 	LIST_FOREACH(pagedep, pagedephd, pd_hash) {
815 		if (ino == pagedep->pd_ino &&
816 		    lbn == pagedep->pd_lbn &&
817 		    mp == pagedep->pd_mnt) {
818 			return (pagedep);
819 		}
820 	}
821 	return(NULL);
822 }
823 
824 /*
825  * Look up a pagedep. Return 1 if found, 0 if not found.
826  * If not found, allocate if DEPALLOC flag is passed.
827  * Found or allocated entry is returned in pagedeppp.
828  * This routine must be called with splbio interrupts blocked.
829  */
830 static int
831 pagedep_lookup(struct inode *ip, ufs_lbn_t lbn, int flags,
832 	       struct pagedep **pagedeppp)
833 {
834 	struct pagedep *pagedep;
835 	struct pagedep_hashhead *pagedephd;
836 	struct mount *mp;
837 	int i;
838 
839 	KKASSERT(lock_held(&lk) > 0);
840 
841 	mp = ITOV(ip)->v_mount;
842 	pagedephd = PAGEDEP_HASH(mp, ip->i_number, lbn);
843 top:
844 	*pagedeppp = pagedep_find(pagedephd, ip->i_number, lbn, mp);
845 	if (*pagedeppp)
846 		return(1);
847 	if ((flags & DEPALLOC) == 0)
848 		return (0);
849 	if (sema_get(&pagedep_in_progress, &lk) == 0)
850 		goto top;
851 
852 	FREE_LOCK(&lk);
853 	pagedep = kmalloc(sizeof(struct pagedep), M_PAGEDEP,
854 			  M_SOFTDEP_FLAGS | M_ZERO);
855 	ACQUIRE_LOCK(&lk);
856 	if (pagedep_find(pagedephd, ip->i_number, lbn, mp)) {
857 		kprintf("pagedep_lookup: blocking race avoided\n");
858 		sema_release(&pagedep_in_progress, &lk);
859 		kfree(pagedep, M_PAGEDEP);
860 		goto top;
861 	}
862 
863 	pagedep->pd_list.wk_type = D_PAGEDEP;
864 	pagedep->pd_mnt = mp;
865 	pagedep->pd_ino = ip->i_number;
866 	pagedep->pd_lbn = lbn;
867 	LIST_INIT(&pagedep->pd_dirremhd);
868 	LIST_INIT(&pagedep->pd_pendinghd);
869 	for (i = 0; i < DAHASHSZ; i++)
870 		LIST_INIT(&pagedep->pd_diraddhd[i]);
871 	LIST_INSERT_HEAD(pagedephd, pagedep, pd_hash);
872 	sema_release(&pagedep_in_progress, &lk);
873 	*pagedeppp = pagedep;
874 	return (0);
875 }
876 
877 /*
878  * Structures and routines associated with inodedep caching.
879  */
880 LIST_HEAD(inodedep_hashhead, inodedep) *inodedep_hashtbl;
881 static u_long	inodedep_hash;	/* size of hash table - 1 */
882 static long	num_inodedep;	/* number of inodedep allocated */
883 #define	INODEDEP_HASH(fs, inum) \
884       (&inodedep_hashtbl[((((register_t)(fs)) >> 13) + (inum)) & inodedep_hash])
885 static struct sema inodedep_in_progress;
886 
887 /*
888  * Helper routine for inodedep_lookup()
889  */
890 static __inline
891 struct inodedep *
892 inodedep_find(struct inodedep_hashhead *inodedephd, struct fs *fs, ino_t inum)
893 {
894 	struct inodedep *inodedep;
895 
896 	LIST_FOREACH(inodedep, inodedephd, id_hash) {
897 		if (inum == inodedep->id_ino && fs == inodedep->id_fs)
898 			return(inodedep);
899 	}
900 	return (NULL);
901 }
902 
903 /*
904  * Look up a inodedep. Return 1 if found, 0 if not found.
905  * If not found, allocate if DEPALLOC flag is passed.
906  * Found or allocated entry is returned in inodedeppp.
907  * This routine must be called with splbio interrupts blocked.
908  */
909 static int
910 inodedep_lookup(struct fs *fs, ino_t inum, int flags,
911 	        struct inodedep **inodedeppp)
912 {
913 	struct inodedep *inodedep;
914 	struct inodedep_hashhead *inodedephd;
915 	int firsttry;
916 
917 	KKASSERT(lock_held(&lk) > 0);
918 
919 	firsttry = 1;
920 	inodedephd = INODEDEP_HASH(fs, inum);
921 top:
922 	*inodedeppp = inodedep_find(inodedephd, fs, inum);
923 	if (*inodedeppp)
924 		return (1);
925 	if ((flags & DEPALLOC) == 0)
926 		return (0);
927 	/*
928 	 * If we are over our limit, try to improve the situation.
929 	 */
930 	if (num_inodedep > max_softdeps && firsttry &&
931 	    speedup_syncer() == 0 && (flags & NODELAY) == 0 &&
932 	    request_cleanup(FLUSH_INODES)) {
933 		firsttry = 0;
934 		goto top;
935 	}
936 	if (sema_get(&inodedep_in_progress, &lk) == 0)
937 		goto top;
938 
939 	FREE_LOCK(&lk);
940 	inodedep = kmalloc(sizeof(struct inodedep), M_INODEDEP,
941 			   M_SOFTDEP_FLAGS | M_ZERO);
942 	ACQUIRE_LOCK(&lk);
943 	if (inodedep_find(inodedephd, fs, inum)) {
944 		kprintf("inodedep_lookup: blocking race avoided\n");
945 		sema_release(&inodedep_in_progress, &lk);
946 		kfree(inodedep, M_INODEDEP);
947 		goto top;
948 	}
949 	inodedep->id_list.wk_type = D_INODEDEP;
950 	inodedep->id_fs = fs;
951 	inodedep->id_ino = inum;
952 	inodedep->id_state = ALLCOMPLETE;
953 	inodedep->id_nlinkdelta = 0;
954 	inodedep->id_savedino = NULL;
955 	inodedep->id_savedsize = -1;
956 	inodedep->id_buf = NULL;
957 	LIST_INIT(&inodedep->id_pendinghd);
958 	LIST_INIT(&inodedep->id_inowait);
959 	LIST_INIT(&inodedep->id_bufwait);
960 	TAILQ_INIT(&inodedep->id_inoupdt);
961 	TAILQ_INIT(&inodedep->id_newinoupdt);
962 	num_inodedep += 1;
963 	LIST_INSERT_HEAD(inodedephd, inodedep, id_hash);
964 	sema_release(&inodedep_in_progress, &lk);
965 	*inodedeppp = inodedep;
966 	return (0);
967 }
968 
969 /*
970  * Structures and routines associated with newblk caching.
971  */
972 LIST_HEAD(newblk_hashhead, newblk) *newblk_hashtbl;
973 u_long	newblk_hash;		/* size of hash table - 1 */
974 #define	NEWBLK_HASH(fs, inum) \
975 	(&newblk_hashtbl[((((register_t)(fs)) >> 13) + (inum)) & newblk_hash])
976 static struct sema newblk_in_progress;
977 
978 /*
979  * Helper routine for newblk_lookup()
980  */
981 static __inline
982 struct newblk *
983 newblk_find(struct newblk_hashhead *newblkhd, struct fs *fs,
984 	    ufs_daddr_t newblkno)
985 {
986 	struct newblk *newblk;
987 
988 	LIST_FOREACH(newblk, newblkhd, nb_hash) {
989 		if (newblkno == newblk->nb_newblkno && fs == newblk->nb_fs)
990 			return (newblk);
991 	}
992 	return(NULL);
993 }
994 
995 /*
996  * Look up a newblk. Return 1 if found, 0 if not found.
997  * If not found, allocate if DEPALLOC flag is passed.
998  * Found or allocated entry is returned in newblkpp.
999  */
1000 static int
1001 newblk_lookup(struct fs *fs, ufs_daddr_t newblkno, int flags,
1002 	      struct newblk **newblkpp)
1003 {
1004 	struct newblk *newblk;
1005 	struct newblk_hashhead *newblkhd;
1006 
1007 	newblkhd = NEWBLK_HASH(fs, newblkno);
1008 top:
1009 	*newblkpp = newblk_find(newblkhd, fs, newblkno);
1010 	if (*newblkpp)
1011 		return(1);
1012 	if ((flags & DEPALLOC) == 0)
1013 		return (0);
1014 	if (sema_get(&newblk_in_progress, NULL) == 0)
1015 		goto top;
1016 
1017 	newblk = kmalloc(sizeof(struct newblk), M_NEWBLK,
1018 			 M_SOFTDEP_FLAGS | M_ZERO);
1019 
1020 	if (newblk_find(newblkhd, fs, newblkno)) {
1021 		kprintf("newblk_lookup: blocking race avoided\n");
1022 		sema_release(&pagedep_in_progress, NULL);
1023 		kfree(newblk, M_NEWBLK);
1024 		goto top;
1025 	}
1026 	newblk->nb_state = 0;
1027 	newblk->nb_fs = fs;
1028 	newblk->nb_newblkno = newblkno;
1029 	LIST_INSERT_HEAD(newblkhd, newblk, nb_hash);
1030 	sema_release(&newblk_in_progress, NULL);
1031 	*newblkpp = newblk;
1032 	return (0);
1033 }
1034 
1035 /*
1036  * Executed during filesystem system initialization before
1037  * mounting any filesystems.
1038  */
1039 void
1040 softdep_initialize(void)
1041 {
1042 	LIST_INIT(&mkdirlisthd);
1043 	LIST_INIT(&softdep_workitem_pending);
1044 	max_softdeps = min(desiredvnodes * 8,
1045 		M_INODEDEP->ks_limit / (2 * sizeof(struct inodedep)));
1046 	pagedep_hashtbl = hashinit(desiredvnodes / 5, M_PAGEDEP,
1047 	    &pagedep_hash);
1048 	lockinit(&lk, "ffs_softdep", 0, LK_CANRECURSE);
1049 	sema_init(&pagedep_in_progress, "pagedep", 0);
1050 	inodedep_hashtbl = hashinit(desiredvnodes, M_INODEDEP, &inodedep_hash);
1051 	sema_init(&inodedep_in_progress, "inodedep", 0);
1052 	newblk_hashtbl = hashinit(64, M_NEWBLK, &newblk_hash);
1053 	sema_init(&newblk_in_progress, "newblk", 0);
1054 	add_bio_ops(&softdep_bioops);
1055 }
1056 
1057 /*
1058  * Called at mount time to notify the dependency code that a
1059  * filesystem wishes to use it.
1060  */
1061 int
1062 softdep_mount(struct vnode *devvp, struct mount *mp, struct fs *fs)
1063 {
1064 	struct csum cstotal;
1065 	struct cg *cgp;
1066 	struct buf *bp;
1067 	int error, cyl;
1068 
1069 	mp->mnt_flag &= ~MNT_ASYNC;
1070 	mp->mnt_flag |= MNT_SOFTDEP;
1071 	mp->mnt_bioops = &softdep_bioops;
1072 	/*
1073 	 * When doing soft updates, the counters in the
1074 	 * superblock may have gotten out of sync, so we have
1075 	 * to scan the cylinder groups and recalculate them.
1076 	 */
1077 	if (fs->fs_clean != 0)
1078 		return (0);
1079 	bzero(&cstotal, sizeof cstotal);
1080 	for (cyl = 0; cyl < fs->fs_ncg; cyl++) {
1081 		if ((error = bread(devvp, fsbtodoff(fs, cgtod(fs, cyl)),
1082 				   fs->fs_cgsize, &bp)) != 0) {
1083 			brelse(bp);
1084 			return (error);
1085 		}
1086 		cgp = (struct cg *)bp->b_data;
1087 		cstotal.cs_nffree += cgp->cg_cs.cs_nffree;
1088 		cstotal.cs_nbfree += cgp->cg_cs.cs_nbfree;
1089 		cstotal.cs_nifree += cgp->cg_cs.cs_nifree;
1090 		cstotal.cs_ndir += cgp->cg_cs.cs_ndir;
1091 		fs->fs_cs(fs, cyl) = cgp->cg_cs;
1092 		brelse(bp);
1093 	}
1094 #ifdef DEBUG
1095 	if (bcmp(&cstotal, &fs->fs_cstotal, sizeof cstotal))
1096 		kprintf("ffs_mountfs: superblock updated for soft updates\n");
1097 #endif
1098 	bcopy(&cstotal, &fs->fs_cstotal, sizeof cstotal);
1099 	return (0);
1100 }
1101 
1102 /*
1103  * Protecting the freemaps (or bitmaps).
1104  *
1105  * To eliminate the need to execute fsck before mounting a filesystem
1106  * after a power failure, one must (conservatively) guarantee that the
1107  * on-disk copy of the bitmaps never indicate that a live inode or block is
1108  * free.  So, when a block or inode is allocated, the bitmap should be
1109  * updated (on disk) before any new pointers.  When a block or inode is
1110  * freed, the bitmap should not be updated until all pointers have been
1111  * reset.  The latter dependency is handled by the delayed de-allocation
1112  * approach described below for block and inode de-allocation.  The former
1113  * dependency is handled by calling the following procedure when a block or
1114  * inode is allocated. When an inode is allocated an "inodedep" is created
1115  * with its DEPCOMPLETE flag cleared until its bitmap is written to disk.
1116  * Each "inodedep" is also inserted into the hash indexing structure so
1117  * that any additional link additions can be made dependent on the inode
1118  * allocation.
1119  *
1120  * The ufs filesystem maintains a number of free block counts (e.g., per
1121  * cylinder group, per cylinder and per <cylinder, rotational position> pair)
1122  * in addition to the bitmaps.  These counts are used to improve efficiency
1123  * during allocation and therefore must be consistent with the bitmaps.
1124  * There is no convenient way to guarantee post-crash consistency of these
1125  * counts with simple update ordering, for two main reasons: (1) The counts
1126  * and bitmaps for a single cylinder group block are not in the same disk
1127  * sector.  If a disk write is interrupted (e.g., by power failure), one may
1128  * be written and the other not.  (2) Some of the counts are located in the
1129  * superblock rather than the cylinder group block. So, we focus our soft
1130  * updates implementation on protecting the bitmaps. When mounting a
1131  * filesystem, we recompute the auxiliary counts from the bitmaps.
1132  */
1133 
1134 /*
1135  * Called just after updating the cylinder group block to allocate an inode.
1136  *
1137  * Parameters:
1138  *	bp:		buffer for cylgroup block with inode map
1139  *	ip:		inode related to allocation
1140  *	newinum:	new inode number being allocated
1141  */
1142 void
1143 softdep_setup_inomapdep(struct buf *bp, struct inode *ip, ino_t newinum)
1144 {
1145 	struct inodedep *inodedep;
1146 	struct bmsafemap *bmsafemap;
1147 
1148 	/*
1149 	 * Create a dependency for the newly allocated inode.
1150 	 * Panic if it already exists as something is seriously wrong.
1151 	 * Otherwise add it to the dependency list for the buffer holding
1152 	 * the cylinder group map from which it was allocated.
1153 	 */
1154 	ACQUIRE_LOCK(&lk);
1155 	if ((inodedep_lookup(ip->i_fs, newinum, DEPALLOC|NODELAY, &inodedep))) {
1156 		panic("softdep_setup_inomapdep: found inode");
1157 	}
1158 	inodedep->id_buf = bp;
1159 	inodedep->id_state &= ~DEPCOMPLETE;
1160 	bmsafemap = bmsafemap_lookup(bp);
1161 	LIST_INSERT_HEAD(&bmsafemap->sm_inodedephd, inodedep, id_deps);
1162 	FREE_LOCK(&lk);
1163 }
1164 
1165 /*
1166  * Called just after updating the cylinder group block to
1167  * allocate block or fragment.
1168  *
1169  * Parameters:
1170  *	bp:		buffer for cylgroup block with block map
1171  *	fs:		filesystem doing allocation
1172  *	newblkno:	number of newly allocated block
1173  */
1174 void
1175 softdep_setup_blkmapdep(struct buf *bp, struct fs *fs,
1176 			ufs_daddr_t newblkno)
1177 {
1178 	struct newblk *newblk;
1179 	struct bmsafemap *bmsafemap;
1180 
1181 	/*
1182 	 * Create a dependency for the newly allocated block.
1183 	 * Add it to the dependency list for the buffer holding
1184 	 * the cylinder group map from which it was allocated.
1185 	 */
1186 	if (newblk_lookup(fs, newblkno, DEPALLOC, &newblk) != 0)
1187 		panic("softdep_setup_blkmapdep: found block");
1188 	ACQUIRE_LOCK(&lk);
1189 	newblk->nb_bmsafemap = bmsafemap = bmsafemap_lookup(bp);
1190 	LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, nb_deps);
1191 	FREE_LOCK(&lk);
1192 }
1193 
1194 /*
1195  * Find the bmsafemap associated with a cylinder group buffer.
1196  * If none exists, create one. The buffer must be locked when
1197  * this routine is called and this routine must be called with
1198  * splbio interrupts blocked.
1199  */
1200 static struct bmsafemap *
1201 bmsafemap_lookup(struct buf *bp)
1202 {
1203 	struct bmsafemap *bmsafemap;
1204 	struct worklist *wk;
1205 
1206 	KKASSERT(lock_held(&lk) > 0);
1207 
1208 	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
1209 		if (wk->wk_type == D_BMSAFEMAP)
1210 			return (WK_BMSAFEMAP(wk));
1211 	}
1212 	FREE_LOCK(&lk);
1213 	bmsafemap = kmalloc(sizeof(struct bmsafemap), M_BMSAFEMAP,
1214 			    M_SOFTDEP_FLAGS);
1215 	bmsafemap->sm_list.wk_type = D_BMSAFEMAP;
1216 	bmsafemap->sm_list.wk_state = 0;
1217 	bmsafemap->sm_buf = bp;
1218 	LIST_INIT(&bmsafemap->sm_allocdirecthd);
1219 	LIST_INIT(&bmsafemap->sm_allocindirhd);
1220 	LIST_INIT(&bmsafemap->sm_inodedephd);
1221 	LIST_INIT(&bmsafemap->sm_newblkhd);
1222 	ACQUIRE_LOCK(&lk);
1223 	WORKLIST_INSERT_BP(bp, &bmsafemap->sm_list);
1224 	return (bmsafemap);
1225 }
1226 
1227 /*
1228  * Direct block allocation dependencies.
1229  *
1230  * When a new block is allocated, the corresponding disk locations must be
1231  * initialized (with zeros or new data) before the on-disk inode points to
1232  * them.  Also, the freemap from which the block was allocated must be
1233  * updated (on disk) before the inode's pointer. These two dependencies are
1234  * independent of each other and are needed for all file blocks and indirect
1235  * blocks that are pointed to directly by the inode.  Just before the
1236  * "in-core" version of the inode is updated with a newly allocated block
1237  * number, a procedure (below) is called to setup allocation dependency
1238  * structures.  These structures are removed when the corresponding
1239  * dependencies are satisfied or when the block allocation becomes obsolete
1240  * (i.e., the file is deleted, the block is de-allocated, or the block is a
1241  * fragment that gets upgraded).  All of these cases are handled in
1242  * procedures described later.
1243  *
1244  * When a file extension causes a fragment to be upgraded, either to a larger
1245  * fragment or to a full block, the on-disk location may change (if the
1246  * previous fragment could not simply be extended). In this case, the old
1247  * fragment must be de-allocated, but not until after the inode's pointer has
1248  * been updated. In most cases, this is handled by later procedures, which
1249  * will construct a "freefrag" structure to be added to the workitem queue
1250  * when the inode update is complete (or obsolete).  The main exception to
1251  * this is when an allocation occurs while a pending allocation dependency
1252  * (for the same block pointer) remains.  This case is handled in the main
1253  * allocation dependency setup procedure by immediately freeing the
1254  * unreferenced fragments.
1255  *
1256  * Parameters:
1257  *	ip:		inode to which block is being added
1258  *	lbn:		block pointer within inode
1259  *	newblkno:	disk block number being added
1260  *	oldblkno:	previous block number, 0 unless frag
1261  *	newsize:	size of new block
1262  *	oldsize:	size of new block
1263  *	bp:		bp for allocated block
1264  */
1265 void
1266 softdep_setup_allocdirect(struct inode *ip, ufs_lbn_t lbn, ufs_daddr_t newblkno,
1267 			  ufs_daddr_t oldblkno, long newsize, long oldsize,
1268 			  struct buf *bp)
1269 {
1270 	struct allocdirect *adp, *oldadp;
1271 	struct allocdirectlst *adphead;
1272 	struct bmsafemap *bmsafemap;
1273 	struct inodedep *inodedep;
1274 	struct pagedep *pagedep;
1275 	struct newblk *newblk;
1276 
1277 	adp = kmalloc(sizeof(struct allocdirect), M_ALLOCDIRECT,
1278 		      M_SOFTDEP_FLAGS | M_ZERO);
1279 	adp->ad_list.wk_type = D_ALLOCDIRECT;
1280 	adp->ad_lbn = lbn;
1281 	adp->ad_newblkno = newblkno;
1282 	adp->ad_oldblkno = oldblkno;
1283 	adp->ad_newsize = newsize;
1284 	adp->ad_oldsize = oldsize;
1285 	adp->ad_state = ATTACHED;
1286 	if (newblkno == oldblkno)
1287 		adp->ad_freefrag = NULL;
1288 	else
1289 		adp->ad_freefrag = newfreefrag(ip, oldblkno, oldsize);
1290 
1291 	if (newblk_lookup(ip->i_fs, newblkno, 0, &newblk) == 0)
1292 		panic("softdep_setup_allocdirect: lost block");
1293 
1294 	ACQUIRE_LOCK(&lk);
1295 	inodedep_lookup(ip->i_fs, ip->i_number, DEPALLOC | NODELAY, &inodedep);
1296 	adp->ad_inodedep = inodedep;
1297 
1298 	if (newblk->nb_state == DEPCOMPLETE) {
1299 		adp->ad_state |= DEPCOMPLETE;
1300 		adp->ad_buf = NULL;
1301 	} else {
1302 		bmsafemap = newblk->nb_bmsafemap;
1303 		adp->ad_buf = bmsafemap->sm_buf;
1304 		LIST_REMOVE(newblk, nb_deps);
1305 		LIST_INSERT_HEAD(&bmsafemap->sm_allocdirecthd, adp, ad_deps);
1306 	}
1307 	LIST_REMOVE(newblk, nb_hash);
1308 	kfree(newblk, M_NEWBLK);
1309 
1310 	WORKLIST_INSERT_BP(bp, &adp->ad_list);
1311 	if (lbn >= NDADDR) {
1312 		/* allocating an indirect block */
1313 		if (oldblkno != 0) {
1314 			panic("softdep_setup_allocdirect: non-zero indir");
1315 		}
1316 	} else {
1317 		/*
1318 		 * Allocating a direct block.
1319 		 *
1320 		 * If we are allocating a directory block, then we must
1321 		 * allocate an associated pagedep to track additions and
1322 		 * deletions.
1323 		 */
1324 		if ((ip->i_mode & IFMT) == IFDIR &&
1325 		    pagedep_lookup(ip, lbn, DEPALLOC, &pagedep) == 0) {
1326 			WORKLIST_INSERT_BP(bp, &pagedep->pd_list);
1327 		}
1328 	}
1329 	/*
1330 	 * The list of allocdirects must be kept in sorted and ascending
1331 	 * order so that the rollback routines can quickly determine the
1332 	 * first uncommitted block (the size of the file stored on disk
1333 	 * ends at the end of the lowest committed fragment, or if there
1334 	 * are no fragments, at the end of the highest committed block).
1335 	 * Since files generally grow, the typical case is that the new
1336 	 * block is to be added at the end of the list. We speed this
1337 	 * special case by checking against the last allocdirect in the
1338 	 * list before laboriously traversing the list looking for the
1339 	 * insertion point.
1340 	 */
1341 	adphead = &inodedep->id_newinoupdt;
1342 	oldadp = TAILQ_LAST(adphead, allocdirectlst);
1343 	if (oldadp == NULL || oldadp->ad_lbn <= lbn) {
1344 		/* insert at end of list */
1345 		TAILQ_INSERT_TAIL(adphead, adp, ad_next);
1346 		if (oldadp != NULL && oldadp->ad_lbn == lbn)
1347 			allocdirect_merge(adphead, adp, oldadp);
1348 		FREE_LOCK(&lk);
1349 		return;
1350 	}
1351 	TAILQ_FOREACH(oldadp, adphead, ad_next) {
1352 		if (oldadp->ad_lbn >= lbn)
1353 			break;
1354 	}
1355 	if (oldadp == NULL) {
1356 		panic("softdep_setup_allocdirect: lost entry");
1357 	}
1358 	/* insert in middle of list */
1359 	TAILQ_INSERT_BEFORE(oldadp, adp, ad_next);
1360 	if (oldadp->ad_lbn == lbn)
1361 		allocdirect_merge(adphead, adp, oldadp);
1362 	FREE_LOCK(&lk);
1363 }
1364 
1365 /*
1366  * Replace an old allocdirect dependency with a newer one.
1367  * This routine must be called with splbio interrupts blocked.
1368  *
1369  * Parameters:
1370  *	adphead:	head of list holding allocdirects
1371  *	newadp:		allocdirect being added
1372  *	oldadp:		existing allocdirect being checked
1373  */
1374 static void
1375 allocdirect_merge(struct allocdirectlst *adphead,
1376 		  struct allocdirect *newadp,
1377 		  struct allocdirect *oldadp)
1378 {
1379 	struct freefrag *freefrag;
1380 
1381 	KKASSERT(lock_held(&lk) > 0);
1382 
1383 	if (newadp->ad_oldblkno != oldadp->ad_newblkno ||
1384 	    newadp->ad_oldsize != oldadp->ad_newsize ||
1385 	    newadp->ad_lbn >= NDADDR) {
1386 		panic("allocdirect_check: old %d != new %d || lbn %ld >= %d",
1387 		    newadp->ad_oldblkno, oldadp->ad_newblkno, newadp->ad_lbn,
1388 		    NDADDR);
1389 	}
1390 	newadp->ad_oldblkno = oldadp->ad_oldblkno;
1391 	newadp->ad_oldsize = oldadp->ad_oldsize;
1392 	/*
1393 	 * If the old dependency had a fragment to free or had never
1394 	 * previously had a block allocated, then the new dependency
1395 	 * can immediately post its freefrag and adopt the old freefrag.
1396 	 * This action is done by swapping the freefrag dependencies.
1397 	 * The new dependency gains the old one's freefrag, and the
1398 	 * old one gets the new one and then immediately puts it on
1399 	 * the worklist when it is freed by free_allocdirect. It is
1400 	 * not possible to do this swap when the old dependency had a
1401 	 * non-zero size but no previous fragment to free. This condition
1402 	 * arises when the new block is an extension of the old block.
1403 	 * Here, the first part of the fragment allocated to the new
1404 	 * dependency is part of the block currently claimed on disk by
1405 	 * the old dependency, so cannot legitimately be freed until the
1406 	 * conditions for the new dependency are fulfilled.
1407 	 */
1408 	if (oldadp->ad_freefrag != NULL || oldadp->ad_oldblkno == 0) {
1409 		freefrag = newadp->ad_freefrag;
1410 		newadp->ad_freefrag = oldadp->ad_freefrag;
1411 		oldadp->ad_freefrag = freefrag;
1412 	}
1413 	free_allocdirect(adphead, oldadp, 0);
1414 }
1415 
1416 /*
1417  * Allocate a new freefrag structure if needed.
1418  */
1419 static struct freefrag *
1420 newfreefrag(struct inode *ip, ufs_daddr_t blkno, long size)
1421 {
1422 	struct freefrag *freefrag;
1423 	struct fs *fs;
1424 
1425 	if (blkno == 0)
1426 		return (NULL);
1427 	fs = ip->i_fs;
1428 	if (fragnum(fs, blkno) + numfrags(fs, size) > fs->fs_frag)
1429 		panic("newfreefrag: frag size");
1430 	freefrag = kmalloc(sizeof(struct freefrag), M_FREEFRAG,
1431 			   M_SOFTDEP_FLAGS);
1432 	freefrag->ff_list.wk_type = D_FREEFRAG;
1433 	freefrag->ff_state = ip->i_uid & ~ONWORKLIST;	/* XXX - used below */
1434 	freefrag->ff_inum = ip->i_number;
1435 	freefrag->ff_fs = fs;
1436 	freefrag->ff_devvp = ip->i_devvp;
1437 	freefrag->ff_blkno = blkno;
1438 	freefrag->ff_fragsize = size;
1439 	return (freefrag);
1440 }
1441 
1442 /*
1443  * This workitem de-allocates fragments that were replaced during
1444  * file block allocation.
1445  */
1446 static void
1447 handle_workitem_freefrag(struct freefrag *freefrag)
1448 {
1449 	struct inode tip;
1450 
1451 	tip.i_fs = freefrag->ff_fs;
1452 	tip.i_devvp = freefrag->ff_devvp;
1453 	tip.i_dev = freefrag->ff_devvp->v_rdev;
1454 	tip.i_number = freefrag->ff_inum;
1455 	tip.i_uid = freefrag->ff_state & ~ONWORKLIST;	/* XXX - set above */
1456 	ffs_blkfree(&tip, freefrag->ff_blkno, freefrag->ff_fragsize);
1457 	kfree(freefrag, M_FREEFRAG);
1458 }
1459 
1460 /*
1461  * Indirect block allocation dependencies.
1462  *
1463  * The same dependencies that exist for a direct block also exist when
1464  * a new block is allocated and pointed to by an entry in a block of
1465  * indirect pointers. The undo/redo states described above are also
1466  * used here. Because an indirect block contains many pointers that
1467  * may have dependencies, a second copy of the entire in-memory indirect
1468  * block is kept. The buffer cache copy is always completely up-to-date.
1469  * The second copy, which is used only as a source for disk writes,
1470  * contains only the safe pointers (i.e., those that have no remaining
1471  * update dependencies). The second copy is freed when all pointers
1472  * are safe. The cache is not allowed to replace indirect blocks with
1473  * pending update dependencies. If a buffer containing an indirect
1474  * block with dependencies is written, these routines will mark it
1475  * dirty again. It can only be successfully written once all the
1476  * dependencies are removed. The ffs_fsync routine in conjunction with
1477  * softdep_sync_metadata work together to get all the dependencies
1478  * removed so that a file can be successfully written to disk. Three
1479  * procedures are used when setting up indirect block pointer
1480  * dependencies. The division is necessary because of the organization
1481  * of the "balloc" routine and because of the distinction between file
1482  * pages and file metadata blocks.
1483  */
1484 
1485 /*
1486  * Allocate a new allocindir structure.
1487  *
1488  * Parameters:
1489  *	ip:		inode for file being extended
1490  *	ptrno:		offset of pointer in indirect block
1491  *	newblkno:	disk block number being added
1492  *	oldblkno:	previous block number, 0 if none
1493  */
1494 static struct allocindir *
1495 newallocindir(struct inode *ip, int ptrno, ufs_daddr_t newblkno,
1496 	      ufs_daddr_t oldblkno)
1497 {
1498 	struct allocindir *aip;
1499 
1500 	aip = kmalloc(sizeof(struct allocindir), M_ALLOCINDIR,
1501 		      M_SOFTDEP_FLAGS | M_ZERO);
1502 	aip->ai_list.wk_type = D_ALLOCINDIR;
1503 	aip->ai_state = ATTACHED;
1504 	aip->ai_offset = ptrno;
1505 	aip->ai_newblkno = newblkno;
1506 	aip->ai_oldblkno = oldblkno;
1507 	aip->ai_freefrag = newfreefrag(ip, oldblkno, ip->i_fs->fs_bsize);
1508 	return (aip);
1509 }
1510 
1511 /*
1512  * Called just before setting an indirect block pointer
1513  * to a newly allocated file page.
1514  *
1515  * Parameters:
1516  *	ip:		inode for file being extended
1517  *	lbn:		allocated block number within file
1518  *	bp:		buffer with indirect blk referencing page
1519  *	ptrno:		offset of pointer in indirect block
1520  *	newblkno:	disk block number being added
1521  *	oldblkno:	previous block number, 0 if none
1522  *	nbp:		buffer holding allocated page
1523  */
1524 void
1525 softdep_setup_allocindir_page(struct inode *ip, ufs_lbn_t lbn,
1526 			      struct buf *bp, int ptrno,
1527 			      ufs_daddr_t newblkno, ufs_daddr_t oldblkno,
1528 			      struct buf *nbp)
1529 {
1530 	struct allocindir *aip;
1531 	struct pagedep *pagedep;
1532 
1533 	aip = newallocindir(ip, ptrno, newblkno, oldblkno);
1534 	ACQUIRE_LOCK(&lk);
1535 	/*
1536 	 * If we are allocating a directory page, then we must
1537 	 * allocate an associated pagedep to track additions and
1538 	 * deletions.
1539 	 */
1540 	if ((ip->i_mode & IFMT) == IFDIR &&
1541 	    pagedep_lookup(ip, lbn, DEPALLOC, &pagedep) == 0)
1542 		WORKLIST_INSERT_BP(nbp, &pagedep->pd_list);
1543 	WORKLIST_INSERT_BP(nbp, &aip->ai_list);
1544 	FREE_LOCK(&lk);
1545 	setup_allocindir_phase2(bp, ip, aip);
1546 }
1547 
1548 /*
1549  * Called just before setting an indirect block pointer to a
1550  * newly allocated indirect block.
1551  * Parameters:
1552  *	nbp:		newly allocated indirect block
1553  *	ip:		inode for file being extended
1554  *	bp:		indirect block referencing allocated block
1555  *	ptrno:		offset of pointer in indirect block
1556  *	newblkno:	disk block number being added
1557  */
1558 void
1559 softdep_setup_allocindir_meta(struct buf *nbp, struct inode *ip,
1560 			      struct buf *bp, int ptrno,
1561 			      ufs_daddr_t newblkno)
1562 {
1563 	struct allocindir *aip;
1564 
1565 	aip = newallocindir(ip, ptrno, newblkno, 0);
1566 	ACQUIRE_LOCK(&lk);
1567 	WORKLIST_INSERT_BP(nbp, &aip->ai_list);
1568 	FREE_LOCK(&lk);
1569 	setup_allocindir_phase2(bp, ip, aip);
1570 }
1571 
1572 /*
1573  * Called to finish the allocation of the "aip" allocated
1574  * by one of the two routines above.
1575  *
1576  * Parameters:
1577  *	bp:	in-memory copy of the indirect block
1578  *	ip:	inode for file being extended
1579  *	aip:	allocindir allocated by the above routines
1580  */
1581 static void
1582 setup_allocindir_phase2(struct buf *bp, struct inode *ip,
1583 			struct allocindir *aip)
1584 {
1585 	struct worklist *wk;
1586 	struct indirdep *indirdep, *newindirdep;
1587 	struct bmsafemap *bmsafemap;
1588 	struct allocindir *oldaip;
1589 	struct freefrag *freefrag;
1590 	struct newblk *newblk;
1591 
1592 	if (bp->b_loffset >= 0)
1593 		panic("setup_allocindir_phase2: not indir blk");
1594 	for (indirdep = NULL, newindirdep = NULL; ; ) {
1595 		ACQUIRE_LOCK(&lk);
1596 		LIST_FOREACH(wk, &bp->b_dep, wk_list) {
1597 			if (wk->wk_type != D_INDIRDEP)
1598 				continue;
1599 			indirdep = WK_INDIRDEP(wk);
1600 			break;
1601 		}
1602 		if (indirdep == NULL && newindirdep) {
1603 			indirdep = newindirdep;
1604 			WORKLIST_INSERT_BP(bp, &indirdep->ir_list);
1605 			newindirdep = NULL;
1606 		}
1607 		FREE_LOCK(&lk);
1608 		if (indirdep) {
1609 			if (newblk_lookup(ip->i_fs, aip->ai_newblkno, 0,
1610 			    &newblk) == 0)
1611 				panic("setup_allocindir: lost block");
1612 			ACQUIRE_LOCK(&lk);
1613 			if (newblk->nb_state == DEPCOMPLETE) {
1614 				aip->ai_state |= DEPCOMPLETE;
1615 				aip->ai_buf = NULL;
1616 			} else {
1617 				bmsafemap = newblk->nb_bmsafemap;
1618 				aip->ai_buf = bmsafemap->sm_buf;
1619 				LIST_REMOVE(newblk, nb_deps);
1620 				LIST_INSERT_HEAD(&bmsafemap->sm_allocindirhd,
1621 				    aip, ai_deps);
1622 			}
1623 			LIST_REMOVE(newblk, nb_hash);
1624 			kfree(newblk, M_NEWBLK);
1625 			aip->ai_indirdep = indirdep;
1626 			/*
1627 			 * Check to see if there is an existing dependency
1628 			 * for this block. If there is, merge the old
1629 			 * dependency into the new one.
1630 			 */
1631 			if (aip->ai_oldblkno == 0)
1632 				oldaip = NULL;
1633 			else
1634 
1635 				LIST_FOREACH(oldaip, &indirdep->ir_deplisthd, ai_next)
1636 					if (oldaip->ai_offset == aip->ai_offset)
1637 						break;
1638 			if (oldaip != NULL) {
1639 				if (oldaip->ai_newblkno != aip->ai_oldblkno) {
1640 					panic("setup_allocindir_phase2: blkno");
1641 				}
1642 				aip->ai_oldblkno = oldaip->ai_oldblkno;
1643 				freefrag = oldaip->ai_freefrag;
1644 				oldaip->ai_freefrag = aip->ai_freefrag;
1645 				aip->ai_freefrag = freefrag;
1646 				free_allocindir(oldaip, NULL);
1647 			}
1648 			LIST_INSERT_HEAD(&indirdep->ir_deplisthd, aip, ai_next);
1649 			((ufs_daddr_t *)indirdep->ir_savebp->b_data)
1650 			    [aip->ai_offset] = aip->ai_oldblkno;
1651 			FREE_LOCK(&lk);
1652 		}
1653 		if (newindirdep) {
1654 			/*
1655 			 * Avoid any possibility of data corruption by
1656 			 * ensuring that our old version is thrown away.
1657 			 */
1658 			newindirdep->ir_savebp->b_flags |= B_INVAL | B_NOCACHE;
1659 			brelse(newindirdep->ir_savebp);
1660 			WORKITEM_FREE((caddr_t)newindirdep, D_INDIRDEP);
1661 		}
1662 		if (indirdep)
1663 			break;
1664 		newindirdep = kmalloc(sizeof(struct indirdep), M_INDIRDEP,
1665 				      M_SOFTDEP_FLAGS);
1666 		newindirdep->ir_list.wk_type = D_INDIRDEP;
1667 		newindirdep->ir_state = ATTACHED;
1668 		LIST_INIT(&newindirdep->ir_deplisthd);
1669 		LIST_INIT(&newindirdep->ir_donehd);
1670 		if (bp->b_bio2.bio_offset == NOOFFSET) {
1671 			VOP_BMAP(bp->b_vp, bp->b_bio1.bio_offset,
1672 				 &bp->b_bio2.bio_offset, NULL, NULL,
1673 				 BUF_CMD_WRITE);
1674 		}
1675 		KKASSERT(bp->b_bio2.bio_offset != NOOFFSET);
1676 		newindirdep->ir_savebp = getblk(ip->i_devvp,
1677 						bp->b_bio2.bio_offset,
1678 					        bp->b_bcount, 0, 0);
1679 		BUF_KERNPROC(newindirdep->ir_savebp);
1680 		bcopy(bp->b_data, newindirdep->ir_savebp->b_data, bp->b_bcount);
1681 	}
1682 }
1683 
1684 /*
1685  * Block de-allocation dependencies.
1686  *
1687  * When blocks are de-allocated, the on-disk pointers must be nullified before
1688  * the blocks are made available for use by other files.  (The true
1689  * requirement is that old pointers must be nullified before new on-disk
1690  * pointers are set.  We chose this slightly more stringent requirement to
1691  * reduce complexity.) Our implementation handles this dependency by updating
1692  * the inode (or indirect block) appropriately but delaying the actual block
1693  * de-allocation (i.e., freemap and free space count manipulation) until
1694  * after the updated versions reach stable storage.  After the disk is
1695  * updated, the blocks can be safely de-allocated whenever it is convenient.
1696  * This implementation handles only the common case of reducing a file's
1697  * length to zero. Other cases are handled by the conventional synchronous
1698  * write approach.
1699  *
1700  * The ffs implementation with which we worked double-checks
1701  * the state of the block pointers and file size as it reduces
1702  * a file's length.  Some of this code is replicated here in our
1703  * soft updates implementation.  The freeblks->fb_chkcnt field is
1704  * used to transfer a part of this information to the procedure
1705  * that eventually de-allocates the blocks.
1706  *
1707  * This routine should be called from the routine that shortens
1708  * a file's length, before the inode's size or block pointers
1709  * are modified. It will save the block pointer information for
1710  * later release and zero the inode so that the calling routine
1711  * can release it.
1712  */
1713 struct softdep_setup_freeblocks_info {
1714 	struct fs *fs;
1715 	struct inode *ip;
1716 };
1717 
1718 static int softdep_setup_freeblocks_bp(struct buf *bp, void *data);
1719 
1720 /*
1721  * Parameters:
1722  *	ip:	The inode whose length is to be reduced
1723  *	length:	The new length for the file
1724  */
1725 void
1726 softdep_setup_freeblocks(struct inode *ip, off_t length)
1727 {
1728 	struct softdep_setup_freeblocks_info info;
1729 	struct freeblks *freeblks;
1730 	struct inodedep *inodedep;
1731 	struct allocdirect *adp;
1732 	struct vnode *vp;
1733 	struct buf *bp;
1734 	struct fs *fs;
1735 	int i, error, delay;
1736 	int count;
1737 
1738 	fs = ip->i_fs;
1739 	if (length != 0)
1740 		panic("softde_setup_freeblocks: non-zero length");
1741 	freeblks = kmalloc(sizeof(struct freeblks), M_FREEBLKS,
1742 			   M_SOFTDEP_FLAGS | M_ZERO);
1743 	freeblks->fb_list.wk_type = D_FREEBLKS;
1744 	freeblks->fb_state = ATTACHED;
1745 	freeblks->fb_uid = ip->i_uid;
1746 	freeblks->fb_previousinum = ip->i_number;
1747 	freeblks->fb_devvp = ip->i_devvp;
1748 	freeblks->fb_fs = fs;
1749 	freeblks->fb_oldsize = ip->i_size;
1750 	freeblks->fb_newsize = length;
1751 	freeblks->fb_chkcnt = ip->i_blocks;
1752 	for (i = 0; i < NDADDR; i++) {
1753 		freeblks->fb_dblks[i] = ip->i_db[i];
1754 		ip->i_db[i] = 0;
1755 	}
1756 	for (i = 0; i < NIADDR; i++) {
1757 		freeblks->fb_iblks[i] = ip->i_ib[i];
1758 		ip->i_ib[i] = 0;
1759 	}
1760 	ip->i_blocks = 0;
1761 	ip->i_size = 0;
1762 	/*
1763 	 * Push the zero'ed inode to to its disk buffer so that we are free
1764 	 * to delete its dependencies below. Once the dependencies are gone
1765 	 * the buffer can be safely released.
1766 	 */
1767 	if ((error = bread(ip->i_devvp,
1768 			    fsbtodoff(fs, ino_to_fsba(fs, ip->i_number)),
1769 	    (int)fs->fs_bsize, &bp)) != 0)
1770 		softdep_error("softdep_setup_freeblocks", error);
1771 	*((struct ufs1_dinode *)bp->b_data + ino_to_fsbo(fs, ip->i_number)) =
1772 	    ip->i_din;
1773 	/*
1774 	 * Find and eliminate any inode dependencies.
1775 	 */
1776 	ACQUIRE_LOCK(&lk);
1777 	(void) inodedep_lookup(fs, ip->i_number, DEPALLOC, &inodedep);
1778 	if ((inodedep->id_state & IOSTARTED) != 0) {
1779 		panic("softdep_setup_freeblocks: inode busy");
1780 	}
1781 	/*
1782 	 * Add the freeblks structure to the list of operations that
1783 	 * must await the zero'ed inode being written to disk. If we
1784 	 * still have a bitmap dependency (delay == 0), then the inode
1785 	 * has never been written to disk, so we can process the
1786 	 * freeblks below once we have deleted the dependencies.
1787 	 */
1788 	delay = (inodedep->id_state & DEPCOMPLETE);
1789 	if (delay)
1790 		WORKLIST_INSERT(&inodedep->id_bufwait, &freeblks->fb_list);
1791 	/*
1792 	 * Because the file length has been truncated to zero, any
1793 	 * pending block allocation dependency structures associated
1794 	 * with this inode are obsolete and can simply be de-allocated.
1795 	 * We must first merge the two dependency lists to get rid of
1796 	 * any duplicate freefrag structures, then purge the merged list.
1797 	 */
1798 	merge_inode_lists(inodedep);
1799 	while ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL)
1800 		free_allocdirect(&inodedep->id_inoupdt, adp, 1);
1801 	FREE_LOCK(&lk);
1802 	bdwrite(bp);
1803 	/*
1804 	 * We must wait for any I/O in progress to finish so that
1805 	 * all potential buffers on the dirty list will be visible.
1806 	 * Once they are all there, walk the list and get rid of
1807 	 * any dependencies.
1808 	 */
1809 	vp = ITOV(ip);
1810 	ACQUIRE_LOCK(&lk);
1811 	drain_output(vp, 1);
1812 
1813 	info.fs = fs;
1814 	info.ip = ip;
1815 	lwkt_gettoken(&vp->v_token);
1816 	do {
1817 		count = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
1818 				softdep_setup_freeblocks_bp, &info);
1819 	} while (count != 0);
1820 	lwkt_reltoken(&vp->v_token);
1821 
1822 	if (inodedep_lookup(fs, ip->i_number, 0, &inodedep) != 0)
1823 		(void)free_inodedep(inodedep);
1824 
1825 	if (delay) {
1826 		freeblks->fb_state |= DEPCOMPLETE;
1827 		/*
1828 		 * If the inode with zeroed block pointers is now on disk
1829 		 * we can start freeing blocks. Add freeblks to the worklist
1830 		 * instead of calling  handle_workitem_freeblocks directly as
1831 		 * it is more likely that additional IO is needed to complete
1832 		 * the request here than in the !delay case.
1833 		 */
1834 		if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE)
1835 			add_to_worklist(&freeblks->fb_list);
1836 	}
1837 
1838 	FREE_LOCK(&lk);
1839 	/*
1840 	 * If the inode has never been written to disk (delay == 0),
1841 	 * then we can process the freeblks now that we have deleted
1842 	 * the dependencies.
1843 	 */
1844 	if (!delay)
1845 		handle_workitem_freeblocks(freeblks);
1846 }
1847 
1848 static int
1849 softdep_setup_freeblocks_bp(struct buf *bp, void *data)
1850 {
1851 	struct softdep_setup_freeblocks_info *info = data;
1852 	struct inodedep *inodedep;
1853 
1854 	if (getdirtybuf(&bp, MNT_WAIT) == 0) {
1855 		kprintf("softdep_setup_freeblocks_bp(1): caught bp %p going away\n", bp);
1856 		return(-1);
1857 	}
1858 	if (bp->b_vp != ITOV(info->ip) || (bp->b_flags & B_DELWRI) == 0) {
1859 		kprintf("softdep_setup_freeblocks_bp(2): caught bp %p going away\n", bp);
1860 		BUF_UNLOCK(bp);
1861 		return(-1);
1862 	}
1863 	(void) inodedep_lookup(info->fs, info->ip->i_number, 0, &inodedep);
1864 	deallocate_dependencies(bp, inodedep);
1865 	bp->b_flags |= B_INVAL | B_NOCACHE;
1866 	FREE_LOCK(&lk);
1867 	brelse(bp);
1868 	ACQUIRE_LOCK(&lk);
1869 	return(1);
1870 }
1871 
1872 /*
1873  * Reclaim any dependency structures from a buffer that is about to
1874  * be reallocated to a new vnode. The buffer must be locked, thus,
1875  * no I/O completion operations can occur while we are manipulating
1876  * its associated dependencies. The mutex is held so that other I/O's
1877  * associated with related dependencies do not occur.
1878  */
1879 static void
1880 deallocate_dependencies(struct buf *bp, struct inodedep *inodedep)
1881 {
1882 	struct worklist *wk;
1883 	struct indirdep *indirdep;
1884 	struct allocindir *aip;
1885 	struct pagedep *pagedep;
1886 	struct dirrem *dirrem;
1887 	struct diradd *dap;
1888 	int i;
1889 
1890 	while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) {
1891 		switch (wk->wk_type) {
1892 
1893 		case D_INDIRDEP:
1894 			indirdep = WK_INDIRDEP(wk);
1895 			/*
1896 			 * None of the indirect pointers will ever be visible,
1897 			 * so they can simply be tossed. GOINGAWAY ensures
1898 			 * that allocated pointers will be saved in the buffer
1899 			 * cache until they are freed. Note that they will
1900 			 * only be able to be found by their physical address
1901 			 * since the inode mapping the logical address will
1902 			 * be gone. The save buffer used for the safe copy
1903 			 * was allocated in setup_allocindir_phase2 using
1904 			 * the physical address so it could be used for this
1905 			 * purpose. Hence we swap the safe copy with the real
1906 			 * copy, allowing the safe copy to be freed and holding
1907 			 * on to the real copy for later use in indir_trunc.
1908 			 *
1909 			 * NOTE: ir_savebp is relative to the block device
1910 			 * so b_bio1 contains the device block number.
1911 			 */
1912 			if (indirdep->ir_state & GOINGAWAY) {
1913 				panic("deallocate_dependencies: already gone");
1914 			}
1915 			indirdep->ir_state |= GOINGAWAY;
1916 			while ((aip = LIST_FIRST(&indirdep->ir_deplisthd)) != NULL)
1917 				free_allocindir(aip, inodedep);
1918 			if (bp->b_bio1.bio_offset >= 0 ||
1919 			    bp->b_bio2.bio_offset != indirdep->ir_savebp->b_bio1.bio_offset) {
1920 				panic("deallocate_dependencies: not indir");
1921 			}
1922 			bcopy(bp->b_data, indirdep->ir_savebp->b_data,
1923 			    bp->b_bcount);
1924 			WORKLIST_REMOVE(wk);
1925 			WORKLIST_INSERT_BP(indirdep->ir_savebp, wk);
1926 			continue;
1927 
1928 		case D_PAGEDEP:
1929 			pagedep = WK_PAGEDEP(wk);
1930 			/*
1931 			 * None of the directory additions will ever be
1932 			 * visible, so they can simply be tossed.
1933 			 */
1934 			for (i = 0; i < DAHASHSZ; i++)
1935 				while ((dap =
1936 				    LIST_FIRST(&pagedep->pd_diraddhd[i])))
1937 					free_diradd(dap);
1938 			while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
1939 				free_diradd(dap);
1940 			/*
1941 			 * Copy any directory remove dependencies to the list
1942 			 * to be processed after the zero'ed inode is written.
1943 			 * If the inode has already been written, then they
1944 			 * can be dumped directly onto the work list.
1945 			 */
1946 			LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) {
1947 				LIST_REMOVE(dirrem, dm_next);
1948 				dirrem->dm_dirinum = pagedep->pd_ino;
1949 				if (inodedep == NULL ||
1950 				    (inodedep->id_state & ALLCOMPLETE) ==
1951 				     ALLCOMPLETE)
1952 					add_to_worklist(&dirrem->dm_list);
1953 				else
1954 					WORKLIST_INSERT(&inodedep->id_bufwait,
1955 					    &dirrem->dm_list);
1956 			}
1957 			WORKLIST_REMOVE(&pagedep->pd_list);
1958 			LIST_REMOVE(pagedep, pd_hash);
1959 			WORKITEM_FREE(pagedep, D_PAGEDEP);
1960 			continue;
1961 
1962 		case D_ALLOCINDIR:
1963 			free_allocindir(WK_ALLOCINDIR(wk), inodedep);
1964 			continue;
1965 
1966 		case D_ALLOCDIRECT:
1967 		case D_INODEDEP:
1968 			panic("deallocate_dependencies: Unexpected type %s",
1969 			    TYPENAME(wk->wk_type));
1970 			/* NOTREACHED */
1971 
1972 		default:
1973 			panic("deallocate_dependencies: Unknown type %s",
1974 			    TYPENAME(wk->wk_type));
1975 			/* NOTREACHED */
1976 		}
1977 	}
1978 }
1979 
1980 /*
1981  * Free an allocdirect. Generate a new freefrag work request if appropriate.
1982  * This routine must be called with splbio interrupts blocked.
1983  */
1984 static void
1985 free_allocdirect(struct allocdirectlst *adphead,
1986 		 struct allocdirect *adp, int delay)
1987 {
1988 	KKASSERT(lock_held(&lk) > 0);
1989 
1990 	if ((adp->ad_state & DEPCOMPLETE) == 0)
1991 		LIST_REMOVE(adp, ad_deps);
1992 	TAILQ_REMOVE(adphead, adp, ad_next);
1993 	if ((adp->ad_state & COMPLETE) == 0)
1994 		WORKLIST_REMOVE(&adp->ad_list);
1995 	if (adp->ad_freefrag != NULL) {
1996 		if (delay)
1997 			WORKLIST_INSERT(&adp->ad_inodedep->id_bufwait,
1998 			    &adp->ad_freefrag->ff_list);
1999 		else
2000 			add_to_worklist(&adp->ad_freefrag->ff_list);
2001 	}
2002 	WORKITEM_FREE(adp, D_ALLOCDIRECT);
2003 }
2004 
2005 /*
2006  * Prepare an inode to be freed. The actual free operation is not
2007  * done until the zero'ed inode has been written to disk.
2008  */
2009 void
2010 softdep_freefile(struct vnode *pvp, ino_t ino, int mode)
2011 {
2012 	struct inode *ip = VTOI(pvp);
2013 	struct inodedep *inodedep;
2014 	struct freefile *freefile;
2015 
2016 	/*
2017 	 * This sets up the inode de-allocation dependency.
2018 	 */
2019 	freefile = kmalloc(sizeof(struct freefile), M_FREEFILE,
2020 			   M_SOFTDEP_FLAGS);
2021 	freefile->fx_list.wk_type = D_FREEFILE;
2022 	freefile->fx_list.wk_state = 0;
2023 	freefile->fx_mode = mode;
2024 	freefile->fx_oldinum = ino;
2025 	freefile->fx_devvp = ip->i_devvp;
2026 	freefile->fx_fs = ip->i_fs;
2027 
2028 	/*
2029 	 * If the inodedep does not exist, then the zero'ed inode has
2030 	 * been written to disk. If the allocated inode has never been
2031 	 * written to disk, then the on-disk inode is zero'ed. In either
2032 	 * case we can free the file immediately.
2033 	 */
2034 	ACQUIRE_LOCK(&lk);
2035 	if (inodedep_lookup(ip->i_fs, ino, 0, &inodedep) == 0 ||
2036 	    check_inode_unwritten(inodedep)) {
2037 		FREE_LOCK(&lk);
2038 		handle_workitem_freefile(freefile);
2039 		return;
2040 	}
2041 	WORKLIST_INSERT(&inodedep->id_inowait, &freefile->fx_list);
2042 	FREE_LOCK(&lk);
2043 }
2044 
2045 /*
2046  * Check to see if an inode has never been written to disk. If
2047  * so free the inodedep and return success, otherwise return failure.
2048  * This routine must be called with splbio interrupts blocked.
2049  *
2050  * If we still have a bitmap dependency, then the inode has never
2051  * been written to disk. Drop the dependency as it is no longer
2052  * necessary since the inode is being deallocated. We set the
2053  * ALLCOMPLETE flags since the bitmap now properly shows that the
2054  * inode is not allocated. Even if the inode is actively being
2055  * written, it has been rolled back to its zero'ed state, so we
2056  * are ensured that a zero inode is what is on the disk. For short
2057  * lived files, this change will usually result in removing all the
2058  * dependencies from the inode so that it can be freed immediately.
2059  */
2060 static int
2061 check_inode_unwritten(struct inodedep *inodedep)
2062 {
2063 
2064 	if ((inodedep->id_state & DEPCOMPLETE) != 0 ||
2065 	    LIST_FIRST(&inodedep->id_pendinghd) != NULL ||
2066 	    LIST_FIRST(&inodedep->id_bufwait) != NULL ||
2067 	    LIST_FIRST(&inodedep->id_inowait) != NULL ||
2068 	    TAILQ_FIRST(&inodedep->id_inoupdt) != NULL ||
2069 	    TAILQ_FIRST(&inodedep->id_newinoupdt) != NULL ||
2070 	    inodedep->id_nlinkdelta != 0)
2071 		return (0);
2072 
2073 	/*
2074 	 * Another process might be in initiate_write_inodeblock
2075 	 * trying to allocate memory without holding "Softdep Lock".
2076 	 */
2077 	if ((inodedep->id_state & IOSTARTED) != 0 &&
2078 	    inodedep->id_savedino == NULL)
2079 		return(0);
2080 
2081 	inodedep->id_state |= ALLCOMPLETE;
2082 	LIST_REMOVE(inodedep, id_deps);
2083 	inodedep->id_buf = NULL;
2084 	if (inodedep->id_state & ONWORKLIST)
2085 		WORKLIST_REMOVE(&inodedep->id_list);
2086 	if (inodedep->id_savedino != NULL) {
2087 		kfree(inodedep->id_savedino, M_INODEDEP);
2088 		inodedep->id_savedino = NULL;
2089 	}
2090 	if (free_inodedep(inodedep) == 0) {
2091 		panic("check_inode_unwritten: busy inode");
2092 	}
2093 	return (1);
2094 }
2095 
2096 /*
2097  * Try to free an inodedep structure. Return 1 if it could be freed.
2098  */
2099 static int
2100 free_inodedep(struct inodedep *inodedep)
2101 {
2102 
2103 	if ((inodedep->id_state & ONWORKLIST) != 0 ||
2104 	    (inodedep->id_state & ALLCOMPLETE) != ALLCOMPLETE ||
2105 	    LIST_FIRST(&inodedep->id_pendinghd) != NULL ||
2106 	    LIST_FIRST(&inodedep->id_bufwait) != NULL ||
2107 	    LIST_FIRST(&inodedep->id_inowait) != NULL ||
2108 	    TAILQ_FIRST(&inodedep->id_inoupdt) != NULL ||
2109 	    TAILQ_FIRST(&inodedep->id_newinoupdt) != NULL ||
2110 	    inodedep->id_nlinkdelta != 0 || inodedep->id_savedino != NULL)
2111 		return (0);
2112 	LIST_REMOVE(inodedep, id_hash);
2113 	WORKITEM_FREE(inodedep, D_INODEDEP);
2114 	num_inodedep -= 1;
2115 	return (1);
2116 }
2117 
2118 /*
2119  * This workitem routine performs the block de-allocation.
2120  * The workitem is added to the pending list after the updated
2121  * inode block has been written to disk.  As mentioned above,
2122  * checks regarding the number of blocks de-allocated (compared
2123  * to the number of blocks allocated for the file) are also
2124  * performed in this function.
2125  */
2126 static void
2127 handle_workitem_freeblocks(struct freeblks *freeblks)
2128 {
2129 	struct inode tip;
2130 	ufs_daddr_t bn;
2131 	struct fs *fs;
2132 	int i, level, bsize;
2133 	long nblocks, blocksreleased = 0;
2134 	int error, allerror = 0;
2135 	ufs_lbn_t baselbns[NIADDR], tmpval;
2136 
2137 	tip.i_number = freeblks->fb_previousinum;
2138 	tip.i_devvp = freeblks->fb_devvp;
2139 	tip.i_dev = freeblks->fb_devvp->v_rdev;
2140 	tip.i_fs = freeblks->fb_fs;
2141 	tip.i_size = freeblks->fb_oldsize;
2142 	tip.i_uid = freeblks->fb_uid;
2143 	fs = freeblks->fb_fs;
2144 	tmpval = 1;
2145 	baselbns[0] = NDADDR;
2146 	for (i = 1; i < NIADDR; i++) {
2147 		tmpval *= NINDIR(fs);
2148 		baselbns[i] = baselbns[i - 1] + tmpval;
2149 	}
2150 	nblocks = btodb(fs->fs_bsize);
2151 	blocksreleased = 0;
2152 	/*
2153 	 * Indirect blocks first.
2154 	 */
2155 	for (level = (NIADDR - 1); level >= 0; level--) {
2156 		if ((bn = freeblks->fb_iblks[level]) == 0)
2157 			continue;
2158 		if ((error = indir_trunc(&tip, fsbtodoff(fs, bn), level,
2159 		    baselbns[level], &blocksreleased)) == 0)
2160 			allerror = error;
2161 		ffs_blkfree(&tip, bn, fs->fs_bsize);
2162 		blocksreleased += nblocks;
2163 	}
2164 	/*
2165 	 * All direct blocks or frags.
2166 	 */
2167 	for (i = (NDADDR - 1); i >= 0; i--) {
2168 		if ((bn = freeblks->fb_dblks[i]) == 0)
2169 			continue;
2170 		bsize = blksize(fs, &tip, i);
2171 		ffs_blkfree(&tip, bn, bsize);
2172 		blocksreleased += btodb(bsize);
2173 	}
2174 
2175 #ifdef DIAGNOSTIC
2176 	if (freeblks->fb_chkcnt != blocksreleased)
2177 		kprintf("handle_workitem_freeblocks: block count\n");
2178 	if (allerror)
2179 		softdep_error("handle_workitem_freeblks", allerror);
2180 #endif /* DIAGNOSTIC */
2181 	WORKITEM_FREE(freeblks, D_FREEBLKS);
2182 }
2183 
2184 /*
2185  * Release blocks associated with the inode ip and stored in the indirect
2186  * block at doffset. If level is greater than SINGLE, the block is an
2187  * indirect block and recursive calls to indirtrunc must be used to
2188  * cleanse other indirect blocks.
2189  */
2190 static int
2191 indir_trunc(struct inode *ip, off_t doffset, int level, ufs_lbn_t lbn,
2192 	    long *countp)
2193 {
2194 	struct buf *bp;
2195 	ufs_daddr_t *bap;
2196 	ufs_daddr_t nb;
2197 	struct fs *fs;
2198 	struct worklist *wk;
2199 	struct indirdep *indirdep;
2200 	int i, lbnadd, nblocks;
2201 	int error, allerror = 0;
2202 
2203 	fs = ip->i_fs;
2204 	lbnadd = 1;
2205 	for (i = level; i > 0; i--)
2206 		lbnadd *= NINDIR(fs);
2207 	/*
2208 	 * Get buffer of block pointers to be freed. This routine is not
2209 	 * called until the zero'ed inode has been written, so it is safe
2210 	 * to free blocks as they are encountered. Because the inode has
2211 	 * been zero'ed, calls to bmap on these blocks will fail. So, we
2212 	 * have to use the on-disk address and the block device for the
2213 	 * filesystem to look them up. If the file was deleted before its
2214 	 * indirect blocks were all written to disk, the routine that set
2215 	 * us up (deallocate_dependencies) will have arranged to leave
2216 	 * a complete copy of the indirect block in memory for our use.
2217 	 * Otherwise we have to read the blocks in from the disk.
2218 	 */
2219 	ACQUIRE_LOCK(&lk);
2220 	if ((bp = findblk(ip->i_devvp, doffset, FINDBLK_TEST)) != NULL &&
2221 	    (wk = LIST_FIRST(&bp->b_dep)) != NULL) {
2222 		/*
2223 		 * bp must be ir_savebp, which is held locked for our use.
2224 		 */
2225 		if (wk->wk_type != D_INDIRDEP ||
2226 		    (indirdep = WK_INDIRDEP(wk))->ir_savebp != bp ||
2227 		    (indirdep->ir_state & GOINGAWAY) == 0) {
2228 			panic("indir_trunc: lost indirdep");
2229 		}
2230 		WORKLIST_REMOVE(wk);
2231 		WORKITEM_FREE(indirdep, D_INDIRDEP);
2232 		if (LIST_FIRST(&bp->b_dep) != NULL) {
2233 			panic("indir_trunc: dangling dep");
2234 		}
2235 		FREE_LOCK(&lk);
2236 	} else {
2237 		FREE_LOCK(&lk);
2238 		error = bread(ip->i_devvp, doffset, (int)fs->fs_bsize, &bp);
2239 		if (error)
2240 			return (error);
2241 	}
2242 	/*
2243 	 * Recursively free indirect blocks.
2244 	 */
2245 	bap = (ufs_daddr_t *)bp->b_data;
2246 	nblocks = btodb(fs->fs_bsize);
2247 	for (i = NINDIR(fs) - 1; i >= 0; i--) {
2248 		if ((nb = bap[i]) == 0)
2249 			continue;
2250 		if (level != 0) {
2251 			if ((error = indir_trunc(ip, fsbtodoff(fs, nb),
2252 			     level - 1, lbn + (i * lbnadd), countp)) != 0)
2253 				allerror = error;
2254 		}
2255 		ffs_blkfree(ip, nb, fs->fs_bsize);
2256 		*countp += nblocks;
2257 	}
2258 	bp->b_flags |= B_INVAL | B_NOCACHE;
2259 	brelse(bp);
2260 	return (allerror);
2261 }
2262 
2263 /*
2264  * Free an allocindir.
2265  * This routine must be called with splbio interrupts blocked.
2266  */
2267 static void
2268 free_allocindir(struct allocindir *aip, struct inodedep *inodedep)
2269 {
2270 	struct freefrag *freefrag;
2271 
2272 	KKASSERT(lock_held(&lk) > 0);
2273 
2274 	if ((aip->ai_state & DEPCOMPLETE) == 0)
2275 		LIST_REMOVE(aip, ai_deps);
2276 	if (aip->ai_state & ONWORKLIST)
2277 		WORKLIST_REMOVE(&aip->ai_list);
2278 	LIST_REMOVE(aip, ai_next);
2279 	if ((freefrag = aip->ai_freefrag) != NULL) {
2280 		if (inodedep == NULL)
2281 			add_to_worklist(&freefrag->ff_list);
2282 		else
2283 			WORKLIST_INSERT(&inodedep->id_bufwait,
2284 			    &freefrag->ff_list);
2285 	}
2286 	WORKITEM_FREE(aip, D_ALLOCINDIR);
2287 }
2288 
2289 /*
2290  * Directory entry addition dependencies.
2291  *
2292  * When adding a new directory entry, the inode (with its incremented link
2293  * count) must be written to disk before the directory entry's pointer to it.
2294  * Also, if the inode is newly allocated, the corresponding freemap must be
2295  * updated (on disk) before the directory entry's pointer. These requirements
2296  * are met via undo/redo on the directory entry's pointer, which consists
2297  * simply of the inode number.
2298  *
2299  * As directory entries are added and deleted, the free space within a
2300  * directory block can become fragmented.  The ufs filesystem will compact
2301  * a fragmented directory block to make space for a new entry. When this
2302  * occurs, the offsets of previously added entries change. Any "diradd"
2303  * dependency structures corresponding to these entries must be updated with
2304  * the new offsets.
2305  */
2306 
2307 /*
2308  * This routine is called after the in-memory inode's link
2309  * count has been incremented, but before the directory entry's
2310  * pointer to the inode has been set.
2311  *
2312  * Parameters:
2313  *	bp:		buffer containing directory block
2314  *	dp:		inode for directory
2315  *	diroffset:	offset of new entry in directory
2316  *	newinum:	inode referenced by new directory entry
2317  *	newdirbp:	non-NULL => contents of new mkdir
2318  */
2319 void
2320 softdep_setup_directory_add(struct buf *bp, struct inode *dp, off_t diroffset,
2321 			    ino_t newinum, struct buf *newdirbp)
2322 {
2323 	int offset;		/* offset of new entry within directory block */
2324 	ufs_lbn_t lbn;		/* block in directory containing new entry */
2325 	struct fs *fs;
2326 	struct diradd *dap;
2327 	struct pagedep *pagedep;
2328 	struct inodedep *inodedep;
2329 	struct mkdir *mkdir1, *mkdir2;
2330 
2331 	/*
2332 	 * Whiteouts have no dependencies.
2333 	 */
2334 	if (newinum == WINO) {
2335 		if (newdirbp != NULL)
2336 			bdwrite(newdirbp);
2337 		return;
2338 	}
2339 
2340 	fs = dp->i_fs;
2341 	lbn = lblkno(fs, diroffset);
2342 	offset = blkoff(fs, diroffset);
2343 	dap = kmalloc(sizeof(struct diradd), M_DIRADD,
2344 		      M_SOFTDEP_FLAGS | M_ZERO);
2345 	dap->da_list.wk_type = D_DIRADD;
2346 	dap->da_offset = offset;
2347 	dap->da_newinum = newinum;
2348 	dap->da_state = ATTACHED;
2349 	if (newdirbp == NULL) {
2350 		dap->da_state |= DEPCOMPLETE;
2351 		ACQUIRE_LOCK(&lk);
2352 	} else {
2353 		dap->da_state |= MKDIR_BODY | MKDIR_PARENT;
2354 		mkdir1 = kmalloc(sizeof(struct mkdir), M_MKDIR,
2355 				 M_SOFTDEP_FLAGS);
2356 		mkdir1->md_list.wk_type = D_MKDIR;
2357 		mkdir1->md_state = MKDIR_BODY;
2358 		mkdir1->md_diradd = dap;
2359 		mkdir2 = kmalloc(sizeof(struct mkdir), M_MKDIR,
2360 				 M_SOFTDEP_FLAGS);
2361 		mkdir2->md_list.wk_type = D_MKDIR;
2362 		mkdir2->md_state = MKDIR_PARENT;
2363 		mkdir2->md_diradd = dap;
2364 		/*
2365 		 * Dependency on "." and ".." being written to disk.
2366 		 */
2367 		mkdir1->md_buf = newdirbp;
2368 		ACQUIRE_LOCK(&lk);
2369 		LIST_INSERT_HEAD(&mkdirlisthd, mkdir1, md_mkdirs);
2370 		WORKLIST_INSERT_BP(newdirbp, &mkdir1->md_list);
2371 		FREE_LOCK(&lk);
2372 		bdwrite(newdirbp);
2373 		/*
2374 		 * Dependency on link count increase for parent directory
2375 		 */
2376 		ACQUIRE_LOCK(&lk);
2377 		if (inodedep_lookup(dp->i_fs, dp->i_number, 0, &inodedep) == 0
2378 		    || (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
2379 			dap->da_state &= ~MKDIR_PARENT;
2380 			WORKITEM_FREE(mkdir2, D_MKDIR);
2381 		} else {
2382 			LIST_INSERT_HEAD(&mkdirlisthd, mkdir2, md_mkdirs);
2383 			WORKLIST_INSERT(&inodedep->id_bufwait,&mkdir2->md_list);
2384 		}
2385 	}
2386 	/*
2387 	 * Link into parent directory pagedep to await its being written.
2388 	 */
2389 	if (pagedep_lookup(dp, lbn, DEPALLOC, &pagedep) == 0)
2390 		WORKLIST_INSERT_BP(bp, &pagedep->pd_list);
2391 	dap->da_pagedep = pagedep;
2392 	LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], dap,
2393 	    da_pdlist);
2394 	/*
2395 	 * Link into its inodedep. Put it on the id_bufwait list if the inode
2396 	 * is not yet written. If it is written, do the post-inode write
2397 	 * processing to put it on the id_pendinghd list.
2398 	 */
2399 	(void) inodedep_lookup(fs, newinum, DEPALLOC, &inodedep);
2400 	if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE)
2401 		diradd_inode_written(dap, inodedep);
2402 	else
2403 		WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
2404 	FREE_LOCK(&lk);
2405 }
2406 
2407 /*
2408  * This procedure is called to change the offset of a directory
2409  * entry when compacting a directory block which must be owned
2410  * exclusively by the caller. Note that the actual entry movement
2411  * must be done in this procedure to ensure that no I/O completions
2412  * occur while the move is in progress.
2413  *
2414  * Parameters:
2415  *	dp:	inode for directory
2416  *	base:		address of dp->i_offset
2417  *	oldloc:		address of old directory location
2418  *	newloc:		address of new directory location
2419  *	entrysize:	size of directory entry
2420  */
2421 void
2422 softdep_change_directoryentry_offset(struct inode *dp, caddr_t base,
2423 				     caddr_t oldloc, caddr_t newloc,
2424 				     int entrysize)
2425 {
2426 	int offset, oldoffset, newoffset;
2427 	struct pagedep *pagedep;
2428 	struct diradd *dap;
2429 	ufs_lbn_t lbn;
2430 
2431 	ACQUIRE_LOCK(&lk);
2432 	lbn = lblkno(dp->i_fs, dp->i_offset);
2433 	offset = blkoff(dp->i_fs, dp->i_offset);
2434 	if (pagedep_lookup(dp, lbn, 0, &pagedep) == 0)
2435 		goto done;
2436 	oldoffset = offset + (oldloc - base);
2437 	newoffset = offset + (newloc - base);
2438 
2439 	LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(oldoffset)], da_pdlist) {
2440 		if (dap->da_offset != oldoffset)
2441 			continue;
2442 		dap->da_offset = newoffset;
2443 		if (DIRADDHASH(newoffset) == DIRADDHASH(oldoffset))
2444 			break;
2445 		LIST_REMOVE(dap, da_pdlist);
2446 		LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(newoffset)],
2447 		    dap, da_pdlist);
2448 		break;
2449 	}
2450 	if (dap == NULL) {
2451 
2452 		LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist) {
2453 			if (dap->da_offset == oldoffset) {
2454 				dap->da_offset = newoffset;
2455 				break;
2456 			}
2457 		}
2458 	}
2459 done:
2460 	bcopy(oldloc, newloc, entrysize);
2461 	FREE_LOCK(&lk);
2462 }
2463 
2464 /*
2465  * Free a diradd dependency structure. This routine must be called
2466  * with splbio interrupts blocked.
2467  */
2468 static void
2469 free_diradd(struct diradd *dap)
2470 {
2471 	struct dirrem *dirrem;
2472 	struct pagedep *pagedep;
2473 	struct inodedep *inodedep;
2474 	struct mkdir *mkdir, *nextmd;
2475 
2476 	KKASSERT(lock_held(&lk) > 0);
2477 
2478 	WORKLIST_REMOVE(&dap->da_list);
2479 	LIST_REMOVE(dap, da_pdlist);
2480 	if ((dap->da_state & DIRCHG) == 0) {
2481 		pagedep = dap->da_pagedep;
2482 	} else {
2483 		dirrem = dap->da_previous;
2484 		pagedep = dirrem->dm_pagedep;
2485 		dirrem->dm_dirinum = pagedep->pd_ino;
2486 		add_to_worklist(&dirrem->dm_list);
2487 	}
2488 	if (inodedep_lookup(VFSTOUFS(pagedep->pd_mnt)->um_fs, dap->da_newinum,
2489 	    0, &inodedep) != 0)
2490 		(void) free_inodedep(inodedep);
2491 	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
2492 		for (mkdir = LIST_FIRST(&mkdirlisthd); mkdir; mkdir = nextmd) {
2493 			nextmd = LIST_NEXT(mkdir, md_mkdirs);
2494 			if (mkdir->md_diradd != dap)
2495 				continue;
2496 			dap->da_state &= ~mkdir->md_state;
2497 			WORKLIST_REMOVE(&mkdir->md_list);
2498 			LIST_REMOVE(mkdir, md_mkdirs);
2499 			WORKITEM_FREE(mkdir, D_MKDIR);
2500 		}
2501 		if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
2502 			panic("free_diradd: unfound ref");
2503 		}
2504 	}
2505 	WORKITEM_FREE(dap, D_DIRADD);
2506 }
2507 
2508 /*
2509  * Directory entry removal dependencies.
2510  *
2511  * When removing a directory entry, the entry's inode pointer must be
2512  * zero'ed on disk before the corresponding inode's link count is decremented
2513  * (possibly freeing the inode for re-use). This dependency is handled by
2514  * updating the directory entry but delaying the inode count reduction until
2515  * after the directory block has been written to disk. After this point, the
2516  * inode count can be decremented whenever it is convenient.
2517  */
2518 
2519 /*
2520  * This routine should be called immediately after removing
2521  * a directory entry.  The inode's link count should not be
2522  * decremented by the calling procedure -- the soft updates
2523  * code will do this task when it is safe.
2524  *
2525  * Parameters:
2526  *	bp:		buffer containing directory block
2527  *	dp:		inode for the directory being modified
2528  *	ip:		inode for directory entry being removed
2529  *	isrmdir:	indicates if doing RMDIR
2530  */
2531 void
2532 softdep_setup_remove(struct buf *bp, struct inode *dp, struct inode *ip,
2533 		     int isrmdir)
2534 {
2535 	struct dirrem *dirrem, *prevdirrem;
2536 
2537 	/*
2538 	 * Allocate a new dirrem if appropriate and ACQUIRE_LOCK.
2539 	 */
2540 	dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
2541 
2542 	/*
2543 	 * If the COMPLETE flag is clear, then there were no active
2544 	 * entries and we want to roll back to a zeroed entry until
2545 	 * the new inode is committed to disk. If the COMPLETE flag is
2546 	 * set then we have deleted an entry that never made it to
2547 	 * disk. If the entry we deleted resulted from a name change,
2548 	 * then the old name still resides on disk. We cannot delete
2549 	 * its inode (returned to us in prevdirrem) until the zeroed
2550 	 * directory entry gets to disk. The new inode has never been
2551 	 * referenced on the disk, so can be deleted immediately.
2552 	 */
2553 	if ((dirrem->dm_state & COMPLETE) == 0) {
2554 		LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, dirrem,
2555 		    dm_next);
2556 		FREE_LOCK(&lk);
2557 	} else {
2558 		if (prevdirrem != NULL)
2559 			LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd,
2560 			    prevdirrem, dm_next);
2561 		dirrem->dm_dirinum = dirrem->dm_pagedep->pd_ino;
2562 		FREE_LOCK(&lk);
2563 		handle_workitem_remove(dirrem);
2564 	}
2565 }
2566 
2567 /*
2568  * Allocate a new dirrem if appropriate and return it along with
2569  * its associated pagedep. Called without a lock, returns with lock.
2570  */
2571 static long num_dirrem;		/* number of dirrem allocated */
2572 
2573 /*
2574  * Parameters:
2575  *	bp:		buffer containing directory block
2576  *	dp:		inode for the directory being modified
2577  *	ip:		inode for directory entry being removed
2578  *	isrmdir:	indicates if doing RMDIR
2579  *	prevdirremp:	previously referenced inode, if any
2580  */
2581 static struct dirrem *
2582 newdirrem(struct buf *bp, struct inode *dp, struct inode *ip,
2583 	  int isrmdir, struct dirrem **prevdirremp)
2584 {
2585 	int offset;
2586 	ufs_lbn_t lbn;
2587 	struct diradd *dap;
2588 	struct dirrem *dirrem;
2589 	struct pagedep *pagedep;
2590 
2591 	/*
2592 	 * Whiteouts have no deletion dependencies.
2593 	 */
2594 	if (ip == NULL)
2595 		panic("newdirrem: whiteout");
2596 	/*
2597 	 * If we are over our limit, try to improve the situation.
2598 	 * Limiting the number of dirrem structures will also limit
2599 	 * the number of freefile and freeblks structures.
2600 	 */
2601 	if (num_dirrem > max_softdeps / 2 && speedup_syncer() == 0) {
2602 		ACQUIRE_LOCK(&lk);
2603 		request_cleanup(FLUSH_REMOVE);
2604 		FREE_LOCK(&lk);
2605 	}
2606 
2607 	num_dirrem += 1;
2608 	dirrem = kmalloc(sizeof(struct dirrem), M_DIRREM,
2609 			 M_SOFTDEP_FLAGS | M_ZERO);
2610 	dirrem->dm_list.wk_type = D_DIRREM;
2611 	dirrem->dm_state = isrmdir ? RMDIR : 0;
2612 	dirrem->dm_mnt = ITOV(ip)->v_mount;
2613 	dirrem->dm_oldinum = ip->i_number;
2614 	*prevdirremp = NULL;
2615 
2616 	ACQUIRE_LOCK(&lk);
2617 	lbn = lblkno(dp->i_fs, dp->i_offset);
2618 	offset = blkoff(dp->i_fs, dp->i_offset);
2619 	if (pagedep_lookup(dp, lbn, DEPALLOC, &pagedep) == 0)
2620 		WORKLIST_INSERT_BP(bp, &pagedep->pd_list);
2621 	dirrem->dm_pagedep = pagedep;
2622 	/*
2623 	 * Check for a diradd dependency for the same directory entry.
2624 	 * If present, then both dependencies become obsolete and can
2625 	 * be de-allocated. Check for an entry on both the pd_dirraddhd
2626 	 * list and the pd_pendinghd list.
2627 	 */
2628 
2629 	LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(offset)], da_pdlist)
2630 		if (dap->da_offset == offset)
2631 			break;
2632 	if (dap == NULL) {
2633 
2634 		LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist)
2635 			if (dap->da_offset == offset)
2636 				break;
2637 		if (dap == NULL)
2638 			return (dirrem);
2639 	}
2640 	/*
2641 	 * Must be ATTACHED at this point.
2642 	 */
2643 	if ((dap->da_state & ATTACHED) == 0) {
2644 		panic("newdirrem: not ATTACHED");
2645 	}
2646 	if (dap->da_newinum != ip->i_number) {
2647 		panic("newdirrem: inum %"PRId64" should be %"PRId64,
2648 		    ip->i_number, dap->da_newinum);
2649 	}
2650 	/*
2651 	 * If we are deleting a changed name that never made it to disk,
2652 	 * then return the dirrem describing the previous inode (which
2653 	 * represents the inode currently referenced from this entry on disk).
2654 	 */
2655 	if ((dap->da_state & DIRCHG) != 0) {
2656 		*prevdirremp = dap->da_previous;
2657 		dap->da_state &= ~DIRCHG;
2658 		dap->da_pagedep = pagedep;
2659 	}
2660 	/*
2661 	 * We are deleting an entry that never made it to disk.
2662 	 * Mark it COMPLETE so we can delete its inode immediately.
2663 	 */
2664 	dirrem->dm_state |= COMPLETE;
2665 	free_diradd(dap);
2666 	return (dirrem);
2667 }
2668 
2669 /*
2670  * Directory entry change dependencies.
2671  *
2672  * Changing an existing directory entry requires that an add operation
2673  * be completed first followed by a deletion. The semantics for the addition
2674  * are identical to the description of adding a new entry above except
2675  * that the rollback is to the old inode number rather than zero. Once
2676  * the addition dependency is completed, the removal is done as described
2677  * in the removal routine above.
2678  */
2679 
2680 /*
2681  * This routine should be called immediately after changing
2682  * a directory entry.  The inode's link count should not be
2683  * decremented by the calling procedure -- the soft updates
2684  * code will perform this task when it is safe.
2685  *
2686  * Parameters:
2687  *	bp:		buffer containing directory block
2688  *	dp:		inode for the directory being modified
2689  *	ip:		inode for directory entry being removed
2690  *	newinum:	new inode number for changed entry
2691  *	isrmdir:	indicates if doing RMDIR
2692  */
2693 void
2694 softdep_setup_directory_change(struct buf *bp, struct inode *dp,
2695 			       struct inode *ip, ino_t newinum,
2696 			       int isrmdir)
2697 {
2698 	int offset;
2699 	struct diradd *dap = NULL;
2700 	struct dirrem *dirrem, *prevdirrem;
2701 	struct pagedep *pagedep;
2702 	struct inodedep *inodedep;
2703 
2704 	offset = blkoff(dp->i_fs, dp->i_offset);
2705 
2706 	/*
2707 	 * Whiteouts do not need diradd dependencies.
2708 	 */
2709 	if (newinum != WINO) {
2710 		dap = kmalloc(sizeof(struct diradd), M_DIRADD,
2711 			      M_SOFTDEP_FLAGS | M_ZERO);
2712 		dap->da_list.wk_type = D_DIRADD;
2713 		dap->da_state = DIRCHG | ATTACHED | DEPCOMPLETE;
2714 		dap->da_offset = offset;
2715 		dap->da_newinum = newinum;
2716 	}
2717 
2718 	/*
2719 	 * Allocate a new dirrem and ACQUIRE_LOCK.
2720 	 */
2721 	dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
2722 	pagedep = dirrem->dm_pagedep;
2723 	/*
2724 	 * The possible values for isrmdir:
2725 	 *	0 - non-directory file rename
2726 	 *	1 - directory rename within same directory
2727 	 *   inum - directory rename to new directory of given inode number
2728 	 * When renaming to a new directory, we are both deleting and
2729 	 * creating a new directory entry, so the link count on the new
2730 	 * directory should not change. Thus we do not need the followup
2731 	 * dirrem which is usually done in handle_workitem_remove. We set
2732 	 * the DIRCHG flag to tell handle_workitem_remove to skip the
2733 	 * followup dirrem.
2734 	 */
2735 	if (isrmdir > 1)
2736 		dirrem->dm_state |= DIRCHG;
2737 
2738 	/*
2739 	 * Whiteouts have no additional dependencies,
2740 	 * so just put the dirrem on the correct list.
2741 	 */
2742 	if (newinum == WINO) {
2743 		if ((dirrem->dm_state & COMPLETE) == 0) {
2744 			LIST_INSERT_HEAD(&pagedep->pd_dirremhd, dirrem,
2745 			    dm_next);
2746 		} else {
2747 			dirrem->dm_dirinum = pagedep->pd_ino;
2748 			add_to_worklist(&dirrem->dm_list);
2749 		}
2750 		FREE_LOCK(&lk);
2751 		return;
2752 	}
2753 
2754 	/*
2755 	 * If the COMPLETE flag is clear, then there were no active
2756 	 * entries and we want to roll back to the previous inode until
2757 	 * the new inode is committed to disk. If the COMPLETE flag is
2758 	 * set, then we have deleted an entry that never made it to disk.
2759 	 * If the entry we deleted resulted from a name change, then the old
2760 	 * inode reference still resides on disk. Any rollback that we do
2761 	 * needs to be to that old inode (returned to us in prevdirrem). If
2762 	 * the entry we deleted resulted from a create, then there is
2763 	 * no entry on the disk, so we want to roll back to zero rather
2764 	 * than the uncommitted inode. In either of the COMPLETE cases we
2765 	 * want to immediately free the unwritten and unreferenced inode.
2766 	 */
2767 	if ((dirrem->dm_state & COMPLETE) == 0) {
2768 		dap->da_previous = dirrem;
2769 	} else {
2770 		if (prevdirrem != NULL) {
2771 			dap->da_previous = prevdirrem;
2772 		} else {
2773 			dap->da_state &= ~DIRCHG;
2774 			dap->da_pagedep = pagedep;
2775 		}
2776 		dirrem->dm_dirinum = pagedep->pd_ino;
2777 		add_to_worklist(&dirrem->dm_list);
2778 	}
2779 	/*
2780 	 * Link into its inodedep. Put it on the id_bufwait list if the inode
2781 	 * is not yet written. If it is written, do the post-inode write
2782 	 * processing to put it on the id_pendinghd list.
2783 	 */
2784 	if (inodedep_lookup(dp->i_fs, newinum, DEPALLOC, &inodedep) == 0 ||
2785 	    (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
2786 		dap->da_state |= COMPLETE;
2787 		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
2788 		WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
2789 	} else {
2790 		LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)],
2791 		    dap, da_pdlist);
2792 		WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
2793 	}
2794 	FREE_LOCK(&lk);
2795 }
2796 
2797 /*
2798  * Called whenever the link count on an inode is changed.
2799  * It creates an inode dependency so that the new reference(s)
2800  * to the inode cannot be committed to disk until the updated
2801  * inode has been written.
2802  *
2803  * Parameters:
2804  *	ip:	the inode with the increased link count
2805  */
2806 void
2807 softdep_change_linkcnt(struct inode *ip)
2808 {
2809 	struct inodedep *inodedep;
2810 
2811 	ACQUIRE_LOCK(&lk);
2812 	(void) inodedep_lookup(ip->i_fs, ip->i_number, DEPALLOC, &inodedep);
2813 	if (ip->i_nlink < ip->i_effnlink) {
2814 		panic("softdep_change_linkcnt: bad delta");
2815 	}
2816 	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
2817 	FREE_LOCK(&lk);
2818 }
2819 
2820 /*
2821  * This workitem decrements the inode's link count.
2822  * If the link count reaches zero, the file is removed.
2823  */
2824 static void
2825 handle_workitem_remove(struct dirrem *dirrem)
2826 {
2827 	struct inodedep *inodedep;
2828 	struct vnode *vp;
2829 	struct inode *ip;
2830 	ino_t oldinum;
2831 	int error;
2832 
2833 	error = VFS_VGET(dirrem->dm_mnt, NULL, dirrem->dm_oldinum, &vp);
2834 	if (error) {
2835 		softdep_error("handle_workitem_remove: vget", error);
2836 		return;
2837 	}
2838 	ip = VTOI(vp);
2839 	ACQUIRE_LOCK(&lk);
2840 	if ((inodedep_lookup(ip->i_fs, dirrem->dm_oldinum, 0, &inodedep)) == 0){
2841 		panic("handle_workitem_remove: lost inodedep");
2842 	}
2843 	/*
2844 	 * Normal file deletion.
2845 	 */
2846 	if ((dirrem->dm_state & RMDIR) == 0) {
2847 		ip->i_nlink--;
2848 		ip->i_flag |= IN_CHANGE;
2849 		if (ip->i_nlink < ip->i_effnlink) {
2850 			panic("handle_workitem_remove: bad file delta");
2851 		}
2852 		inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
2853 		FREE_LOCK(&lk);
2854 		vput(vp);
2855 		num_dirrem -= 1;
2856 		WORKITEM_FREE(dirrem, D_DIRREM);
2857 		return;
2858 	}
2859 	/*
2860 	 * Directory deletion. Decrement reference count for both the
2861 	 * just deleted parent directory entry and the reference for ".".
2862 	 * Next truncate the directory to length zero. When the
2863 	 * truncation completes, arrange to have the reference count on
2864 	 * the parent decremented to account for the loss of "..".
2865 	 */
2866 	ip->i_nlink -= 2;
2867 	ip->i_flag |= IN_CHANGE;
2868 	if (ip->i_nlink < ip->i_effnlink) {
2869 		panic("handle_workitem_remove: bad dir delta");
2870 	}
2871 	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
2872 	FREE_LOCK(&lk);
2873 	if ((error = ffs_truncate(vp, (off_t)0, 0, proc0.p_ucred)) != 0)
2874 		softdep_error("handle_workitem_remove: truncate", error);
2875 	/*
2876 	 * Rename a directory to a new parent. Since, we are both deleting
2877 	 * and creating a new directory entry, the link count on the new
2878 	 * directory should not change. Thus we skip the followup dirrem.
2879 	 */
2880 	if (dirrem->dm_state & DIRCHG) {
2881 		vput(vp);
2882 		num_dirrem -= 1;
2883 		WORKITEM_FREE(dirrem, D_DIRREM);
2884 		return;
2885 	}
2886 	/*
2887 	 * If the inodedep does not exist, then the zero'ed inode has
2888 	 * been written to disk. If the allocated inode has never been
2889 	 * written to disk, then the on-disk inode is zero'ed. In either
2890 	 * case we can remove the file immediately.
2891 	 */
2892 	ACQUIRE_LOCK(&lk);
2893 	dirrem->dm_state = 0;
2894 	oldinum = dirrem->dm_oldinum;
2895 	dirrem->dm_oldinum = dirrem->dm_dirinum;
2896 	if (inodedep_lookup(ip->i_fs, oldinum, 0, &inodedep) == 0 ||
2897 	    check_inode_unwritten(inodedep)) {
2898 		FREE_LOCK(&lk);
2899 		vput(vp);
2900 		handle_workitem_remove(dirrem);
2901 		return;
2902 	}
2903 	WORKLIST_INSERT(&inodedep->id_inowait, &dirrem->dm_list);
2904 	FREE_LOCK(&lk);
2905 	ip->i_flag |= IN_CHANGE;
2906 	ffs_update(vp, 0);
2907 	vput(vp);
2908 }
2909 
2910 /*
2911  * Inode de-allocation dependencies.
2912  *
2913  * When an inode's link count is reduced to zero, it can be de-allocated. We
2914  * found it convenient to postpone de-allocation until after the inode is
2915  * written to disk with its new link count (zero).  At this point, all of the
2916  * on-disk inode's block pointers are nullified and, with careful dependency
2917  * list ordering, all dependencies related to the inode will be satisfied and
2918  * the corresponding dependency structures de-allocated.  So, if/when the
2919  * inode is reused, there will be no mixing of old dependencies with new
2920  * ones.  This artificial dependency is set up by the block de-allocation
2921  * procedure above (softdep_setup_freeblocks) and completed by the
2922  * following procedure.
2923  */
2924 static void
2925 handle_workitem_freefile(struct freefile *freefile)
2926 {
2927 	struct vnode vp;
2928 	struct inode tip;
2929 	struct inodedep *idp;
2930 	int error;
2931 
2932 #ifdef DEBUG
2933 	ACQUIRE_LOCK(&lk);
2934 	error = inodedep_lookup(freefile->fx_fs, freefile->fx_oldinum, 0, &idp);
2935 	FREE_LOCK(&lk);
2936 	if (error)
2937 		panic("handle_workitem_freefile: inodedep survived");
2938 #endif
2939 	tip.i_devvp = freefile->fx_devvp;
2940 	tip.i_dev = freefile->fx_devvp->v_rdev;
2941 	tip.i_fs = freefile->fx_fs;
2942 	vp.v_data = &tip;
2943 	if ((error = ffs_freefile(&vp, freefile->fx_oldinum, freefile->fx_mode)) != 0)
2944 		softdep_error("handle_workitem_freefile", error);
2945 	WORKITEM_FREE(freefile, D_FREEFILE);
2946 }
2947 
2948 /*
2949  * Helper function which unlinks marker element from work list and returns
2950  * the next element on the list.
2951  */
2952 static __inline struct worklist *
2953 markernext(struct worklist *marker)
2954 {
2955 	struct worklist *next;
2956 
2957 	next = LIST_NEXT(marker, wk_list);
2958 	LIST_REMOVE(marker, wk_list);
2959 	return next;
2960 }
2961 
2962 /*
2963  * checkread, checkwrite
2964  *
2965  * bioops callback - hold io_token
2966  */
2967 static  int
2968 softdep_checkread(struct buf *bp)
2969 {
2970 	/* nothing to do, mp lock not needed */
2971 	return(0);
2972 }
2973 
2974 /*
2975  * bioops callback - hold io_token
2976  */
2977 static  int
2978 softdep_checkwrite(struct buf *bp)
2979 {
2980 	/* nothing to do, mp lock not needed */
2981 	return(0);
2982 }
2983 
2984 /*
2985  * Disk writes.
2986  *
2987  * The dependency structures constructed above are most actively used when file
2988  * system blocks are written to disk.  No constraints are placed on when a
2989  * block can be written, but unsatisfied update dependencies are made safe by
2990  * modifying (or replacing) the source memory for the duration of the disk
2991  * write.  When the disk write completes, the memory block is again brought
2992  * up-to-date.
2993  *
2994  * In-core inode structure reclamation.
2995  *
2996  * Because there are a finite number of "in-core" inode structures, they are
2997  * reused regularly.  By transferring all inode-related dependencies to the
2998  * in-memory inode block and indexing them separately (via "inodedep"s), we
2999  * can allow "in-core" inode structures to be reused at any time and avoid
3000  * any increase in contention.
3001  *
3002  * Called just before entering the device driver to initiate a new disk I/O.
3003  * The buffer must be locked, thus, no I/O completion operations can occur
3004  * while we are manipulating its associated dependencies.
3005  *
3006  * bioops callback - hold io_token
3007  *
3008  * Parameters:
3009  *	bp:	structure describing disk write to occur
3010  */
3011 static void
3012 softdep_disk_io_initiation(struct buf *bp)
3013 {
3014 	struct worklist *wk;
3015 	struct worklist marker;
3016 	struct indirdep *indirdep;
3017 
3018 	/*
3019 	 * We only care about write operations. There should never
3020 	 * be dependencies for reads.
3021 	 */
3022 	if (bp->b_cmd == BUF_CMD_READ)
3023 		panic("softdep_disk_io_initiation: read");
3024 
3025 	ACQUIRE_LOCK(&lk);
3026 	marker.wk_type = D_LAST + 1;	/* Not a normal workitem */
3027 
3028 	/*
3029 	 * Do any necessary pre-I/O processing.
3030 	 */
3031 	for (wk = LIST_FIRST(&bp->b_dep); wk; wk = markernext(&marker)) {
3032 		LIST_INSERT_AFTER(wk, &marker, wk_list);
3033 
3034 		switch (wk->wk_type) {
3035 		case D_PAGEDEP:
3036 			initiate_write_filepage(WK_PAGEDEP(wk), bp);
3037 			continue;
3038 
3039 		case D_INODEDEP:
3040 			initiate_write_inodeblock(WK_INODEDEP(wk), bp);
3041 			continue;
3042 
3043 		case D_INDIRDEP:
3044 			indirdep = WK_INDIRDEP(wk);
3045 			if (indirdep->ir_state & GOINGAWAY)
3046 				panic("disk_io_initiation: indirdep gone");
3047 			/*
3048 			 * If there are no remaining dependencies, this
3049 			 * will be writing the real pointers, so the
3050 			 * dependency can be freed.
3051 			 */
3052 			if (LIST_FIRST(&indirdep->ir_deplisthd) == NULL) {
3053 				indirdep->ir_savebp->b_flags |= B_INVAL | B_NOCACHE;
3054 				brelse(indirdep->ir_savebp);
3055 				/* inline expand WORKLIST_REMOVE(wk); */
3056 				wk->wk_state &= ~ONWORKLIST;
3057 				LIST_REMOVE(wk, wk_list);
3058 				WORKITEM_FREE(indirdep, D_INDIRDEP);
3059 				continue;
3060 			}
3061 			/*
3062 			 * Replace up-to-date version with safe version.
3063 			 */
3064 			indirdep->ir_saveddata = kmalloc(bp->b_bcount,
3065 							 M_INDIRDEP,
3066 							 M_SOFTDEP_FLAGS);
3067 			ACQUIRE_LOCK(&lk);
3068 			indirdep->ir_state &= ~ATTACHED;
3069 			indirdep->ir_state |= UNDONE;
3070 			bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount);
3071 			bcopy(indirdep->ir_savebp->b_data, bp->b_data,
3072 			    bp->b_bcount);
3073 			FREE_LOCK(&lk);
3074 			continue;
3075 
3076 		case D_MKDIR:
3077 		case D_BMSAFEMAP:
3078 		case D_ALLOCDIRECT:
3079 		case D_ALLOCINDIR:
3080 			continue;
3081 
3082 		default:
3083 			panic("handle_disk_io_initiation: Unexpected type %s",
3084 			    TYPENAME(wk->wk_type));
3085 			/* NOTREACHED */
3086 		}
3087 	}
3088 	FREE_LOCK(&lk);
3089 }
3090 
3091 /*
3092  * Called from within the procedure above to deal with unsatisfied
3093  * allocation dependencies in a directory. The buffer must be locked,
3094  * thus, no I/O completion operations can occur while we are
3095  * manipulating its associated dependencies.
3096  */
3097 static void
3098 initiate_write_filepage(struct pagedep *pagedep, struct buf *bp)
3099 {
3100 	struct diradd *dap;
3101 	struct direct *ep;
3102 	int i;
3103 
3104 	if (pagedep->pd_state & IOSTARTED) {
3105 		/*
3106 		 * This can only happen if there is a driver that does not
3107 		 * understand chaining. Here biodone will reissue the call
3108 		 * to strategy for the incomplete buffers.
3109 		 */
3110 		kprintf("initiate_write_filepage: already started\n");
3111 		return;
3112 	}
3113 	pagedep->pd_state |= IOSTARTED;
3114 	ACQUIRE_LOCK(&lk);
3115 	for (i = 0; i < DAHASHSZ; i++) {
3116 		LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
3117 			ep = (struct direct *)
3118 			    ((char *)bp->b_data + dap->da_offset);
3119 			if (ep->d_ino != dap->da_newinum) {
3120 				panic("%s: dir inum %d != new %"PRId64,
3121 				    "initiate_write_filepage",
3122 				    ep->d_ino, dap->da_newinum);
3123 			}
3124 			if (dap->da_state & DIRCHG)
3125 				ep->d_ino = dap->da_previous->dm_oldinum;
3126 			else
3127 				ep->d_ino = 0;
3128 			dap->da_state &= ~ATTACHED;
3129 			dap->da_state |= UNDONE;
3130 		}
3131 	}
3132 	FREE_LOCK(&lk);
3133 }
3134 
3135 /*
3136  * Called from within the procedure above to deal with unsatisfied
3137  * allocation dependencies in an inodeblock. The buffer must be
3138  * locked, thus, no I/O completion operations can occur while we
3139  * are manipulating its associated dependencies.
3140  *
3141  * Parameters:
3142  *	bp:	The inode block
3143  */
3144 static void
3145 initiate_write_inodeblock(struct inodedep *inodedep, struct buf *bp)
3146 {
3147 	struct allocdirect *adp, *lastadp;
3148 	struct ufs1_dinode *dp;
3149 	struct ufs1_dinode *sip;
3150 	struct fs *fs;
3151 	ufs_lbn_t prevlbn = 0;
3152 	int i, deplist;
3153 
3154 	if (inodedep->id_state & IOSTARTED)
3155 		panic("initiate_write_inodeblock: already started");
3156 	inodedep->id_state |= IOSTARTED;
3157 	fs = inodedep->id_fs;
3158 	dp = (struct ufs1_dinode *)bp->b_data +
3159 	    ino_to_fsbo(fs, inodedep->id_ino);
3160 	/*
3161 	 * If the bitmap is not yet written, then the allocated
3162 	 * inode cannot be written to disk.
3163 	 */
3164 	if ((inodedep->id_state & DEPCOMPLETE) == 0) {
3165 		if (inodedep->id_savedino != NULL)
3166 			panic("initiate_write_inodeblock: already doing I/O");
3167 		sip = kmalloc(sizeof(struct ufs1_dinode), M_INODEDEP,
3168 			      M_SOFTDEP_FLAGS);
3169 		inodedep->id_savedino = sip;
3170 		*inodedep->id_savedino = *dp;
3171 		bzero((caddr_t)dp, sizeof(struct ufs1_dinode));
3172 		dp->di_gen = inodedep->id_savedino->di_gen;
3173 		return;
3174 	}
3175 	/*
3176 	 * If no dependencies, then there is nothing to roll back.
3177 	 */
3178 	inodedep->id_savedsize = dp->di_size;
3179 	if (TAILQ_FIRST(&inodedep->id_inoupdt) == NULL)
3180 		return;
3181 	/*
3182 	 * Set the dependencies to busy.
3183 	 */
3184 	ACQUIRE_LOCK(&lk);
3185 	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
3186 	     adp = TAILQ_NEXT(adp, ad_next)) {
3187 #ifdef DIAGNOSTIC
3188 		if (deplist != 0 && prevlbn >= adp->ad_lbn) {
3189 			panic("softdep_write_inodeblock: lbn order");
3190 		}
3191 		prevlbn = adp->ad_lbn;
3192 		if (adp->ad_lbn < NDADDR &&
3193 		    dp->di_db[adp->ad_lbn] != adp->ad_newblkno) {
3194 			panic("%s: direct pointer #%ld mismatch %d != %d",
3195 			    "softdep_write_inodeblock", adp->ad_lbn,
3196 			    dp->di_db[adp->ad_lbn], adp->ad_newblkno);
3197 		}
3198 		if (adp->ad_lbn >= NDADDR &&
3199 		    dp->di_ib[adp->ad_lbn - NDADDR] != adp->ad_newblkno) {
3200 			panic("%s: indirect pointer #%ld mismatch %d != %d",
3201 			    "softdep_write_inodeblock", adp->ad_lbn - NDADDR,
3202 			    dp->di_ib[adp->ad_lbn - NDADDR], adp->ad_newblkno);
3203 		}
3204 		deplist |= 1 << adp->ad_lbn;
3205 		if ((adp->ad_state & ATTACHED) == 0) {
3206 			panic("softdep_write_inodeblock: Unknown state 0x%x",
3207 			    adp->ad_state);
3208 		}
3209 #endif /* DIAGNOSTIC */
3210 		adp->ad_state &= ~ATTACHED;
3211 		adp->ad_state |= UNDONE;
3212 	}
3213 	/*
3214 	 * The on-disk inode cannot claim to be any larger than the last
3215 	 * fragment that has been written. Otherwise, the on-disk inode
3216 	 * might have fragments that were not the last block in the file
3217 	 * which would corrupt the filesystem.
3218 	 */
3219 	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
3220 	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
3221 		if (adp->ad_lbn >= NDADDR)
3222 			break;
3223 		dp->di_db[adp->ad_lbn] = adp->ad_oldblkno;
3224 		/* keep going until hitting a rollback to a frag */
3225 		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
3226 			continue;
3227 		dp->di_size = fs->fs_bsize * adp->ad_lbn + adp->ad_oldsize;
3228 		for (i = adp->ad_lbn + 1; i < NDADDR; i++) {
3229 #ifdef DIAGNOSTIC
3230 			if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0) {
3231 				panic("softdep_write_inodeblock: lost dep1");
3232 			}
3233 #endif /* DIAGNOSTIC */
3234 			dp->di_db[i] = 0;
3235 		}
3236 		for (i = 0; i < NIADDR; i++) {
3237 #ifdef DIAGNOSTIC
3238 			if (dp->di_ib[i] != 0 &&
3239 			    (deplist & ((1 << NDADDR) << i)) == 0) {
3240 				panic("softdep_write_inodeblock: lost dep2");
3241 			}
3242 #endif /* DIAGNOSTIC */
3243 			dp->di_ib[i] = 0;
3244 		}
3245 		FREE_LOCK(&lk);
3246 		return;
3247 	}
3248 	/*
3249 	 * If we have zero'ed out the last allocated block of the file,
3250 	 * roll back the size to the last currently allocated block.
3251 	 * We know that this last allocated block is a full-sized as
3252 	 * we already checked for fragments in the loop above.
3253 	 */
3254 	if (lastadp != NULL &&
3255 	    dp->di_size <= (lastadp->ad_lbn + 1) * fs->fs_bsize) {
3256 		for (i = lastadp->ad_lbn; i >= 0; i--)
3257 			if (dp->di_db[i] != 0)
3258 				break;
3259 		dp->di_size = (i + 1) * fs->fs_bsize;
3260 	}
3261 	/*
3262 	 * The only dependencies are for indirect blocks.
3263 	 *
3264 	 * The file size for indirect block additions is not guaranteed.
3265 	 * Such a guarantee would be non-trivial to achieve. The conventional
3266 	 * synchronous write implementation also does not make this guarantee.
3267 	 * Fsck should catch and fix discrepancies. Arguably, the file size
3268 	 * can be over-estimated without destroying integrity when the file
3269 	 * moves into the indirect blocks (i.e., is large). If we want to
3270 	 * postpone fsck, we are stuck with this argument.
3271 	 */
3272 	for (; adp; adp = TAILQ_NEXT(adp, ad_next))
3273 		dp->di_ib[adp->ad_lbn - NDADDR] = 0;
3274 	FREE_LOCK(&lk);
3275 }
3276 
3277 /*
3278  * This routine is called during the completion interrupt
3279  * service routine for a disk write (from the procedure called
3280  * by the device driver to inform the filesystem caches of
3281  * a request completion).  It should be called early in this
3282  * procedure, before the block is made available to other
3283  * processes or other routines are called.
3284  *
3285  * bioops callback - hold io_token
3286  *
3287  * Parameters:
3288  *	bp:	describes the completed disk write
3289  */
3290 static void
3291 softdep_disk_write_complete(struct buf *bp)
3292 {
3293 	struct worklist *wk;
3294 	struct workhead reattach;
3295 	struct newblk *newblk;
3296 	struct allocindir *aip;
3297 	struct allocdirect *adp;
3298 	struct indirdep *indirdep;
3299 	struct inodedep *inodedep;
3300 	struct bmsafemap *bmsafemap;
3301 
3302 	ACQUIRE_LOCK(&lk);
3303 
3304 	LIST_INIT(&reattach);
3305 	while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) {
3306 		WORKLIST_REMOVE(wk);
3307 		switch (wk->wk_type) {
3308 
3309 		case D_PAGEDEP:
3310 			if (handle_written_filepage(WK_PAGEDEP(wk), bp))
3311 				WORKLIST_INSERT(&reattach, wk);
3312 			continue;
3313 
3314 		case D_INODEDEP:
3315 			if (handle_written_inodeblock(WK_INODEDEP(wk), bp))
3316 				WORKLIST_INSERT(&reattach, wk);
3317 			continue;
3318 
3319 		case D_BMSAFEMAP:
3320 			bmsafemap = WK_BMSAFEMAP(wk);
3321 			while ((newblk = LIST_FIRST(&bmsafemap->sm_newblkhd))) {
3322 				newblk->nb_state |= DEPCOMPLETE;
3323 				newblk->nb_bmsafemap = NULL;
3324 				LIST_REMOVE(newblk, nb_deps);
3325 			}
3326 			while ((adp =
3327 			   LIST_FIRST(&bmsafemap->sm_allocdirecthd))) {
3328 				adp->ad_state |= DEPCOMPLETE;
3329 				adp->ad_buf = NULL;
3330 				LIST_REMOVE(adp, ad_deps);
3331 				handle_allocdirect_partdone(adp);
3332 			}
3333 			while ((aip =
3334 			    LIST_FIRST(&bmsafemap->sm_allocindirhd))) {
3335 				aip->ai_state |= DEPCOMPLETE;
3336 				aip->ai_buf = NULL;
3337 				LIST_REMOVE(aip, ai_deps);
3338 				handle_allocindir_partdone(aip);
3339 			}
3340 			while ((inodedep =
3341 			     LIST_FIRST(&bmsafemap->sm_inodedephd)) != NULL) {
3342 				inodedep->id_state |= DEPCOMPLETE;
3343 				LIST_REMOVE(inodedep, id_deps);
3344 				inodedep->id_buf = NULL;
3345 			}
3346 			WORKITEM_FREE(bmsafemap, D_BMSAFEMAP);
3347 			continue;
3348 
3349 		case D_MKDIR:
3350 			handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY);
3351 			continue;
3352 
3353 		case D_ALLOCDIRECT:
3354 			adp = WK_ALLOCDIRECT(wk);
3355 			adp->ad_state |= COMPLETE;
3356 			handle_allocdirect_partdone(adp);
3357 			continue;
3358 
3359 		case D_ALLOCINDIR:
3360 			aip = WK_ALLOCINDIR(wk);
3361 			aip->ai_state |= COMPLETE;
3362 			handle_allocindir_partdone(aip);
3363 			continue;
3364 
3365 		case D_INDIRDEP:
3366 			indirdep = WK_INDIRDEP(wk);
3367 			if (indirdep->ir_state & GOINGAWAY) {
3368 				panic("disk_write_complete: indirdep gone");
3369 			}
3370 			bcopy(indirdep->ir_saveddata, bp->b_data, bp->b_bcount);
3371 			kfree(indirdep->ir_saveddata, M_INDIRDEP);
3372 			indirdep->ir_saveddata = NULL;
3373 			indirdep->ir_state &= ~UNDONE;
3374 			indirdep->ir_state |= ATTACHED;
3375 			while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != NULL) {
3376 				handle_allocindir_partdone(aip);
3377 				if (aip == LIST_FIRST(&indirdep->ir_donehd)) {
3378 					panic("disk_write_complete: not gone");
3379 				}
3380 			}
3381 			WORKLIST_INSERT(&reattach, wk);
3382 			if ((bp->b_flags & B_DELWRI) == 0)
3383 				stat_indir_blk_ptrs++;
3384 			bdirty(bp);
3385 			continue;
3386 
3387 		default:
3388 			panic("handle_disk_write_complete: Unknown type %s",
3389 			    TYPENAME(wk->wk_type));
3390 			/* NOTREACHED */
3391 		}
3392 	}
3393 	/*
3394 	 * Reattach any requests that must be redone.
3395 	 */
3396 	while ((wk = LIST_FIRST(&reattach)) != NULL) {
3397 		WORKLIST_REMOVE(wk);
3398 		WORKLIST_INSERT_BP(bp, wk);
3399 	}
3400 
3401 	FREE_LOCK(&lk);
3402 }
3403 
3404 /*
3405  * Called from within softdep_disk_write_complete above. Note that
3406  * this routine is always called from interrupt level with further
3407  * splbio interrupts blocked.
3408  *
3409  * Parameters:
3410  *	adp:	the completed allocdirect
3411  */
3412 static void
3413 handle_allocdirect_partdone(struct allocdirect *adp)
3414 {
3415 	struct allocdirect *listadp;
3416 	struct inodedep *inodedep;
3417 	long bsize;
3418 
3419 	if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
3420 		return;
3421 	if (adp->ad_buf != NULL)
3422 		panic("handle_allocdirect_partdone: dangling dep");
3423 
3424 	/*
3425 	 * The on-disk inode cannot claim to be any larger than the last
3426 	 * fragment that has been written. Otherwise, the on-disk inode
3427 	 * might have fragments that were not the last block in the file
3428 	 * which would corrupt the filesystem. Thus, we cannot free any
3429 	 * allocdirects after one whose ad_oldblkno claims a fragment as
3430 	 * these blocks must be rolled back to zero before writing the inode.
3431 	 * We check the currently active set of allocdirects in id_inoupdt.
3432 	 */
3433 	inodedep = adp->ad_inodedep;
3434 	bsize = inodedep->id_fs->fs_bsize;
3435 	TAILQ_FOREACH(listadp, &inodedep->id_inoupdt, ad_next) {
3436 		/* found our block */
3437 		if (listadp == adp)
3438 			break;
3439 		/* continue if ad_oldlbn is not a fragment */
3440 		if (listadp->ad_oldsize == 0 ||
3441 		    listadp->ad_oldsize == bsize)
3442 			continue;
3443 		/* hit a fragment */
3444 		return;
3445 	}
3446 	/*
3447 	 * If we have reached the end of the current list without
3448 	 * finding the just finished dependency, then it must be
3449 	 * on the future dependency list. Future dependencies cannot
3450 	 * be freed until they are moved to the current list.
3451 	 */
3452 	if (listadp == NULL) {
3453 #ifdef DEBUG
3454 		TAILQ_FOREACH(listadp, &inodedep->id_newinoupdt, ad_next)
3455 			/* found our block */
3456 			if (listadp == adp)
3457 				break;
3458 		if (listadp == NULL)
3459 			panic("handle_allocdirect_partdone: lost dep");
3460 #endif /* DEBUG */
3461 		return;
3462 	}
3463 	/*
3464 	 * If we have found the just finished dependency, then free
3465 	 * it along with anything that follows it that is complete.
3466 	 */
3467 	for (; adp; adp = listadp) {
3468 		listadp = TAILQ_NEXT(adp, ad_next);
3469 		if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
3470 			return;
3471 		free_allocdirect(&inodedep->id_inoupdt, adp, 1);
3472 	}
3473 }
3474 
3475 /*
3476  * Called from within softdep_disk_write_complete above. Note that
3477  * this routine is always called from interrupt level with further
3478  * splbio interrupts blocked.
3479  *
3480  * Parameters:
3481  *	aip:	the completed allocindir
3482  */
3483 static void
3484 handle_allocindir_partdone(struct allocindir *aip)
3485 {
3486 	struct indirdep *indirdep;
3487 
3488 	if ((aip->ai_state & ALLCOMPLETE) != ALLCOMPLETE)
3489 		return;
3490 	if (aip->ai_buf != NULL)
3491 		panic("handle_allocindir_partdone: dangling dependency");
3492 
3493 	indirdep = aip->ai_indirdep;
3494 	if (indirdep->ir_state & UNDONE) {
3495 		LIST_REMOVE(aip, ai_next);
3496 		LIST_INSERT_HEAD(&indirdep->ir_donehd, aip, ai_next);
3497 		return;
3498 	}
3499 	((ufs_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] =
3500 	    aip->ai_newblkno;
3501 	LIST_REMOVE(aip, ai_next);
3502 	if (aip->ai_freefrag != NULL)
3503 		add_to_worklist(&aip->ai_freefrag->ff_list);
3504 	WORKITEM_FREE(aip, D_ALLOCINDIR);
3505 }
3506 
3507 /*
3508  * Called from within softdep_disk_write_complete above to restore
3509  * in-memory inode block contents to their most up-to-date state. Note
3510  * that this routine is always called from interrupt level with further
3511  * splbio interrupts blocked.
3512  *
3513  * Parameters:
3514  *	bp:	buffer containing the inode block
3515  */
3516 static int
3517 handle_written_inodeblock(struct inodedep *inodedep, struct buf *bp)
3518 {
3519 	struct worklist *wk, *filefree;
3520 	struct allocdirect *adp, *nextadp;
3521 	struct ufs1_dinode *dp;
3522 	int hadchanges;
3523 
3524 	if ((inodedep->id_state & IOSTARTED) == 0)
3525 		panic("handle_written_inodeblock: not started");
3526 
3527 	inodedep->id_state &= ~IOSTARTED;
3528 	dp = (struct ufs1_dinode *)bp->b_data +
3529 	    ino_to_fsbo(inodedep->id_fs, inodedep->id_ino);
3530 	/*
3531 	 * If we had to rollback the inode allocation because of
3532 	 * bitmaps being incomplete, then simply restore it.
3533 	 * Keep the block dirty so that it will not be reclaimed until
3534 	 * all associated dependencies have been cleared and the
3535 	 * corresponding updates written to disk.
3536 	 */
3537 	if (inodedep->id_savedino != NULL) {
3538 		*dp = *inodedep->id_savedino;
3539 		kfree(inodedep->id_savedino, M_INODEDEP);
3540 		inodedep->id_savedino = NULL;
3541 		if ((bp->b_flags & B_DELWRI) == 0)
3542 			stat_inode_bitmap++;
3543 		bdirty(bp);
3544 		return (1);
3545 	}
3546 	inodedep->id_state |= COMPLETE;
3547 	/*
3548 	 * Roll forward anything that had to be rolled back before
3549 	 * the inode could be updated.
3550 	 */
3551 	hadchanges = 0;
3552 	for (adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; adp = nextadp) {
3553 		nextadp = TAILQ_NEXT(adp, ad_next);
3554 		if (adp->ad_state & ATTACHED)
3555 			panic("handle_written_inodeblock: new entry");
3556 
3557 		if (adp->ad_lbn < NDADDR) {
3558 			if (dp->di_db[adp->ad_lbn] != adp->ad_oldblkno) {
3559 				panic("%s: %s #%ld mismatch %d != %d",
3560 				    "handle_written_inodeblock",
3561 				    "direct pointer", adp->ad_lbn,
3562 				    dp->di_db[adp->ad_lbn], adp->ad_oldblkno);
3563 			}
3564 			dp->di_db[adp->ad_lbn] = adp->ad_newblkno;
3565 		} else {
3566 			if (dp->di_ib[adp->ad_lbn - NDADDR] != 0) {
3567 				panic("%s: %s #%ld allocated as %d",
3568 				    "handle_written_inodeblock",
3569 				    "indirect pointer", adp->ad_lbn - NDADDR,
3570 				    dp->di_ib[adp->ad_lbn - NDADDR]);
3571 			}
3572 			dp->di_ib[adp->ad_lbn - NDADDR] = adp->ad_newblkno;
3573 		}
3574 		adp->ad_state &= ~UNDONE;
3575 		adp->ad_state |= ATTACHED;
3576 		hadchanges = 1;
3577 	}
3578 	if (hadchanges && (bp->b_flags & B_DELWRI) == 0)
3579 		stat_direct_blk_ptrs++;
3580 	/*
3581 	 * Reset the file size to its most up-to-date value.
3582 	 */
3583 	if (inodedep->id_savedsize == -1) {
3584 		panic("handle_written_inodeblock: bad size");
3585 	}
3586 	if (dp->di_size != inodedep->id_savedsize) {
3587 		dp->di_size = inodedep->id_savedsize;
3588 		hadchanges = 1;
3589 	}
3590 	inodedep->id_savedsize = -1;
3591 	/*
3592 	 * If there were any rollbacks in the inode block, then it must be
3593 	 * marked dirty so that its will eventually get written back in
3594 	 * its correct form.
3595 	 */
3596 	if (hadchanges)
3597 		bdirty(bp);
3598 	/*
3599 	 * Process any allocdirects that completed during the update.
3600 	 */
3601 	if ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL)
3602 		handle_allocdirect_partdone(adp);
3603 	/*
3604 	 * Process deallocations that were held pending until the
3605 	 * inode had been written to disk. Freeing of the inode
3606 	 * is delayed until after all blocks have been freed to
3607 	 * avoid creation of new <vfsid, inum, lbn> triples
3608 	 * before the old ones have been deleted.
3609 	 */
3610 	filefree = NULL;
3611 	while ((wk = LIST_FIRST(&inodedep->id_bufwait)) != NULL) {
3612 		WORKLIST_REMOVE(wk);
3613 		switch (wk->wk_type) {
3614 
3615 		case D_FREEFILE:
3616 			/*
3617 			 * We defer adding filefree to the worklist until
3618 			 * all other additions have been made to ensure
3619 			 * that it will be done after all the old blocks
3620 			 * have been freed.
3621 			 */
3622 			if (filefree != NULL) {
3623 				panic("handle_written_inodeblock: filefree");
3624 			}
3625 			filefree = wk;
3626 			continue;
3627 
3628 		case D_MKDIR:
3629 			handle_written_mkdir(WK_MKDIR(wk), MKDIR_PARENT);
3630 			continue;
3631 
3632 		case D_DIRADD:
3633 			diradd_inode_written(WK_DIRADD(wk), inodedep);
3634 			continue;
3635 
3636 		case D_FREEBLKS:
3637 			wk->wk_state |= COMPLETE;
3638 			if ((wk->wk_state  & ALLCOMPLETE) != ALLCOMPLETE)
3639 				continue;
3640 			/* -- fall through -- */
3641 		case D_FREEFRAG:
3642 		case D_DIRREM:
3643 			add_to_worklist(wk);
3644 			continue;
3645 
3646 		default:
3647 			panic("handle_written_inodeblock: Unknown type %s",
3648 			    TYPENAME(wk->wk_type));
3649 			/* NOTREACHED */
3650 		}
3651 	}
3652 	if (filefree != NULL) {
3653 		if (free_inodedep(inodedep) == 0) {
3654 			panic("handle_written_inodeblock: live inodedep");
3655 		}
3656 		add_to_worklist(filefree);
3657 		return (0);
3658 	}
3659 
3660 	/*
3661 	 * If no outstanding dependencies, free it.
3662 	 */
3663 	if (free_inodedep(inodedep) || TAILQ_FIRST(&inodedep->id_inoupdt) == NULL)
3664 		return (0);
3665 	return (hadchanges);
3666 }
3667 
3668 /*
3669  * Process a diradd entry after its dependent inode has been written.
3670  * This routine must be called with splbio interrupts blocked.
3671  */
3672 static void
3673 diradd_inode_written(struct diradd *dap, struct inodedep *inodedep)
3674 {
3675 	struct pagedep *pagedep;
3676 
3677 	dap->da_state |= COMPLETE;
3678 	if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
3679 		if (dap->da_state & DIRCHG)
3680 			pagedep = dap->da_previous->dm_pagedep;
3681 		else
3682 			pagedep = dap->da_pagedep;
3683 		LIST_REMOVE(dap, da_pdlist);
3684 		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
3685 	}
3686 	WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
3687 }
3688 
3689 /*
3690  * Handle the completion of a mkdir dependency.
3691  */
3692 static void
3693 handle_written_mkdir(struct mkdir *mkdir, int type)
3694 {
3695 	struct diradd *dap;
3696 	struct pagedep *pagedep;
3697 
3698 	if (mkdir->md_state != type) {
3699 		panic("handle_written_mkdir: bad type");
3700 	}
3701 	dap = mkdir->md_diradd;
3702 	dap->da_state &= ~type;
3703 	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0)
3704 		dap->da_state |= DEPCOMPLETE;
3705 	if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
3706 		if (dap->da_state & DIRCHG)
3707 			pagedep = dap->da_previous->dm_pagedep;
3708 		else
3709 			pagedep = dap->da_pagedep;
3710 		LIST_REMOVE(dap, da_pdlist);
3711 		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
3712 	}
3713 	LIST_REMOVE(mkdir, md_mkdirs);
3714 	WORKITEM_FREE(mkdir, D_MKDIR);
3715 }
3716 
3717 /*
3718  * Called from within softdep_disk_write_complete above.
3719  * A write operation was just completed. Removed inodes can
3720  * now be freed and associated block pointers may be committed.
3721  * Note that this routine is always called from interrupt level
3722  * with further splbio interrupts blocked.
3723  *
3724  * Parameters:
3725  *	bp:	buffer containing the written page
3726  */
3727 static int
3728 handle_written_filepage(struct pagedep *pagedep, struct buf *bp)
3729 {
3730 	struct dirrem *dirrem;
3731 	struct diradd *dap, *nextdap;
3732 	struct direct *ep;
3733 	int i, chgs;
3734 
3735 	if ((pagedep->pd_state & IOSTARTED) == 0) {
3736 		panic("handle_written_filepage: not started");
3737 	}
3738 	pagedep->pd_state &= ~IOSTARTED;
3739 	/*
3740 	 * Process any directory removals that have been committed.
3741 	 */
3742 	while ((dirrem = LIST_FIRST(&pagedep->pd_dirremhd)) != NULL) {
3743 		LIST_REMOVE(dirrem, dm_next);
3744 		dirrem->dm_dirinum = pagedep->pd_ino;
3745 		add_to_worklist(&dirrem->dm_list);
3746 	}
3747 	/*
3748 	 * Free any directory additions that have been committed.
3749 	 */
3750 	while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
3751 		free_diradd(dap);
3752 	/*
3753 	 * Uncommitted directory entries must be restored.
3754 	 */
3755 	for (chgs = 0, i = 0; i < DAHASHSZ; i++) {
3756 		for (dap = LIST_FIRST(&pagedep->pd_diraddhd[i]); dap;
3757 		     dap = nextdap) {
3758 			nextdap = LIST_NEXT(dap, da_pdlist);
3759 			if (dap->da_state & ATTACHED) {
3760 				panic("handle_written_filepage: attached");
3761 			}
3762 			ep = (struct direct *)
3763 			    ((char *)bp->b_data + dap->da_offset);
3764 			ep->d_ino = dap->da_newinum;
3765 			dap->da_state &= ~UNDONE;
3766 			dap->da_state |= ATTACHED;
3767 			chgs = 1;
3768 			/*
3769 			 * If the inode referenced by the directory has
3770 			 * been written out, then the dependency can be
3771 			 * moved to the pending list.
3772 			 */
3773 			if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
3774 				LIST_REMOVE(dap, da_pdlist);
3775 				LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap,
3776 				    da_pdlist);
3777 			}
3778 		}
3779 	}
3780 	/*
3781 	 * If there were any rollbacks in the directory, then it must be
3782 	 * marked dirty so that its will eventually get written back in
3783 	 * its correct form.
3784 	 */
3785 	if (chgs) {
3786 		if ((bp->b_flags & B_DELWRI) == 0)
3787 			stat_dir_entry++;
3788 		bdirty(bp);
3789 	}
3790 	/*
3791 	 * If no dependencies remain, the pagedep will be freed.
3792 	 * Otherwise it will remain to update the page before it
3793 	 * is written back to disk.
3794 	 */
3795 	if (LIST_FIRST(&pagedep->pd_pendinghd) == NULL) {
3796 		for (i = 0; i < DAHASHSZ; i++)
3797 			if (LIST_FIRST(&pagedep->pd_diraddhd[i]) != NULL)
3798 				break;
3799 		if (i == DAHASHSZ) {
3800 			LIST_REMOVE(pagedep, pd_hash);
3801 			WORKITEM_FREE(pagedep, D_PAGEDEP);
3802 			return (0);
3803 		}
3804 	}
3805 	return (1);
3806 }
3807 
3808 /*
3809  * Writing back in-core inode structures.
3810  *
3811  * The filesystem only accesses an inode's contents when it occupies an
3812  * "in-core" inode structure.  These "in-core" structures are separate from
3813  * the page frames used to cache inode blocks.  Only the latter are
3814  * transferred to/from the disk.  So, when the updated contents of the
3815  * "in-core" inode structure are copied to the corresponding in-memory inode
3816  * block, the dependencies are also transferred.  The following procedure is
3817  * called when copying a dirty "in-core" inode to a cached inode block.
3818  */
3819 
3820 /*
3821  * Called when an inode is loaded from disk. If the effective link count
3822  * differed from the actual link count when it was last flushed, then we
3823  * need to ensure that the correct effective link count is put back.
3824  *
3825  * Parameters:
3826  *	ip:	the "in_core" copy of the inode
3827  */
3828 void
3829 softdep_load_inodeblock(struct inode *ip)
3830 {
3831 	struct inodedep *inodedep;
3832 
3833 	/*
3834 	 * Check for alternate nlink count.
3835 	 */
3836 	ip->i_effnlink = ip->i_nlink;
3837 	ACQUIRE_LOCK(&lk);
3838 	if (inodedep_lookup(ip->i_fs, ip->i_number, 0, &inodedep) == 0) {
3839 		FREE_LOCK(&lk);
3840 		return;
3841 	}
3842 	ip->i_effnlink -= inodedep->id_nlinkdelta;
3843 	FREE_LOCK(&lk);
3844 }
3845 
3846 /*
3847  * This routine is called just before the "in-core" inode
3848  * information is to be copied to the in-memory inode block.
3849  * Recall that an inode block contains several inodes. If
3850  * the force flag is set, then the dependencies will be
3851  * cleared so that the update can always be made. Note that
3852  * the buffer is locked when this routine is called, so we
3853  * will never be in the middle of writing the inode block
3854  * to disk.
3855  *
3856  * Parameters:
3857  *	ip:		the "in_core" copy of the inode
3858  *	bp:		the buffer containing the inode block
3859  *	waitfor:	nonzero => update must be allowed
3860  */
3861 void
3862 softdep_update_inodeblock(struct inode *ip, struct buf *bp,
3863 			  int waitfor)
3864 {
3865 	struct inodedep *inodedep;
3866 	struct worklist *wk;
3867 	struct buf *ibp;
3868 	int error, gotit;
3869 
3870 	/*
3871 	 * If the effective link count is not equal to the actual link
3872 	 * count, then we must track the difference in an inodedep while
3873 	 * the inode is (potentially) tossed out of the cache. Otherwise,
3874 	 * if there is no existing inodedep, then there are no dependencies
3875 	 * to track.
3876 	 */
3877 	ACQUIRE_LOCK(&lk);
3878 	if (inodedep_lookup(ip->i_fs, ip->i_number, 0, &inodedep) == 0) {
3879 		FREE_LOCK(&lk);
3880 		if (ip->i_effnlink != ip->i_nlink)
3881 			panic("softdep_update_inodeblock: bad link count");
3882 		return;
3883 	}
3884 	if (inodedep->id_nlinkdelta != ip->i_nlink - ip->i_effnlink) {
3885 		panic("softdep_update_inodeblock: bad delta");
3886 	}
3887 	/*
3888 	 * Changes have been initiated. Anything depending on these
3889 	 * changes cannot occur until this inode has been written.
3890 	 */
3891 	inodedep->id_state &= ~COMPLETE;
3892 	if ((inodedep->id_state & ONWORKLIST) == 0)
3893 		WORKLIST_INSERT_BP(bp, &inodedep->id_list);
3894 	/*
3895 	 * Any new dependencies associated with the incore inode must
3896 	 * now be moved to the list associated with the buffer holding
3897 	 * the in-memory copy of the inode. Once merged process any
3898 	 * allocdirects that are completed by the merger.
3899 	 */
3900 	merge_inode_lists(inodedep);
3901 	if (TAILQ_FIRST(&inodedep->id_inoupdt) != NULL)
3902 		handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_inoupdt));
3903 	/*
3904 	 * Now that the inode has been pushed into the buffer, the
3905 	 * operations dependent on the inode being written to disk
3906 	 * can be moved to the id_bufwait so that they will be
3907 	 * processed when the buffer I/O completes.
3908 	 */
3909 	while ((wk = LIST_FIRST(&inodedep->id_inowait)) != NULL) {
3910 		WORKLIST_REMOVE(wk);
3911 		WORKLIST_INSERT(&inodedep->id_bufwait, wk);
3912 	}
3913 	/*
3914 	 * Newly allocated inodes cannot be written until the bitmap
3915 	 * that allocates them have been written (indicated by
3916 	 * DEPCOMPLETE being set in id_state). If we are doing a
3917 	 * forced sync (e.g., an fsync on a file), we force the bitmap
3918 	 * to be written so that the update can be done.
3919 	 */
3920 	if (waitfor == 0) {
3921 		FREE_LOCK(&lk);
3922 		return;
3923 	}
3924 retry:
3925 	if ((inodedep->id_state & DEPCOMPLETE) != 0) {
3926 		FREE_LOCK(&lk);
3927 		return;
3928 	}
3929 	gotit = getdirtybuf(&inodedep->id_buf, MNT_WAIT);
3930 	if (gotit == 0) {
3931 		if (inodedep_lookup(ip->i_fs, ip->i_number, 0, &inodedep) != 0)
3932 			goto retry;
3933 		FREE_LOCK(&lk);
3934 		return;
3935 	}
3936 	ibp = inodedep->id_buf;
3937 	FREE_LOCK(&lk);
3938 	if ((error = bwrite(ibp)) != 0)
3939 		softdep_error("softdep_update_inodeblock: bwrite", error);
3940 }
3941 
3942 /*
3943  * Merge the new inode dependency list (id_newinoupdt) into the old
3944  * inode dependency list (id_inoupdt). This routine must be called
3945  * with splbio interrupts blocked.
3946  */
3947 static void
3948 merge_inode_lists(struct inodedep *inodedep)
3949 {
3950 	struct allocdirect *listadp, *newadp;
3951 
3952 	newadp = TAILQ_FIRST(&inodedep->id_newinoupdt);
3953 	for (listadp = TAILQ_FIRST(&inodedep->id_inoupdt); listadp && newadp;) {
3954 		if (listadp->ad_lbn < newadp->ad_lbn) {
3955 			listadp = TAILQ_NEXT(listadp, ad_next);
3956 			continue;
3957 		}
3958 		TAILQ_REMOVE(&inodedep->id_newinoupdt, newadp, ad_next);
3959 		TAILQ_INSERT_BEFORE(listadp, newadp, ad_next);
3960 		if (listadp->ad_lbn == newadp->ad_lbn) {
3961 			allocdirect_merge(&inodedep->id_inoupdt, newadp,
3962 			    listadp);
3963 			listadp = newadp;
3964 		}
3965 		newadp = TAILQ_FIRST(&inodedep->id_newinoupdt);
3966 	}
3967 	while ((newadp = TAILQ_FIRST(&inodedep->id_newinoupdt)) != NULL) {
3968 		TAILQ_REMOVE(&inodedep->id_newinoupdt, newadp, ad_next);
3969 		TAILQ_INSERT_TAIL(&inodedep->id_inoupdt, newadp, ad_next);
3970 	}
3971 }
3972 
3973 /*
3974  * If we are doing an fsync, then we must ensure that any directory
3975  * entries for the inode have been written after the inode gets to disk.
3976  *
3977  * bioops callback - hold io_token
3978  *
3979  * Parameters:
3980  *	vp:	the "in_core" copy of the inode
3981  */
3982 static int
3983 softdep_fsync(struct vnode *vp)
3984 {
3985 	struct inodedep *inodedep;
3986 	struct pagedep *pagedep;
3987 	struct worklist *wk;
3988 	struct diradd *dap;
3989 	struct mount *mnt;
3990 	struct vnode *pvp;
3991 	struct inode *ip;
3992 	struct buf *bp;
3993 	struct fs *fs;
3994 	int error, flushparent;
3995 	ino_t parentino;
3996 	ufs_lbn_t lbn;
3997 
3998 	/*
3999 	 * Move check from original kernel code, possibly not needed any
4000 	 * more with the per-mount bioops.
4001 	 */
4002 	if ((vp->v_mount->mnt_flag & MNT_SOFTDEP) == 0)
4003 		return (0);
4004 
4005 	ip = VTOI(vp);
4006 	fs = ip->i_fs;
4007 	ACQUIRE_LOCK(&lk);
4008 	if (inodedep_lookup(fs, ip->i_number, 0, &inodedep) == 0) {
4009 		FREE_LOCK(&lk);
4010 		return (0);
4011 	}
4012 	if (LIST_FIRST(&inodedep->id_inowait) != NULL ||
4013 	    LIST_FIRST(&inodedep->id_bufwait) != NULL ||
4014 	    TAILQ_FIRST(&inodedep->id_inoupdt) != NULL ||
4015 	    TAILQ_FIRST(&inodedep->id_newinoupdt) != NULL) {
4016 		panic("softdep_fsync: pending ops");
4017 	}
4018 	for (error = 0, flushparent = 0; ; ) {
4019 		if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) == NULL)
4020 			break;
4021 		if (wk->wk_type != D_DIRADD) {
4022 			panic("softdep_fsync: Unexpected type %s",
4023 			    TYPENAME(wk->wk_type));
4024 		}
4025 		dap = WK_DIRADD(wk);
4026 		/*
4027 		 * Flush our parent if this directory entry
4028 		 * has a MKDIR_PARENT dependency.
4029 		 */
4030 		if (dap->da_state & DIRCHG)
4031 			pagedep = dap->da_previous->dm_pagedep;
4032 		else
4033 			pagedep = dap->da_pagedep;
4034 		mnt = pagedep->pd_mnt;
4035 		parentino = pagedep->pd_ino;
4036 		lbn = pagedep->pd_lbn;
4037 		if ((dap->da_state & (MKDIR_BODY | COMPLETE)) != COMPLETE) {
4038 			panic("softdep_fsync: dirty");
4039 		}
4040 		flushparent = dap->da_state & MKDIR_PARENT;
4041 		/*
4042 		 * If we are being fsync'ed as part of vgone'ing this vnode,
4043 		 * then we will not be able to release and recover the
4044 		 * vnode below, so we just have to give up on writing its
4045 		 * directory entry out. It will eventually be written, just
4046 		 * not now, but then the user was not asking to have it
4047 		 * written, so we are not breaking any promises.
4048 		 */
4049 		if (vp->v_flag & VRECLAIMED)
4050 			break;
4051 		/*
4052 		 * We prevent deadlock by always fetching inodes from the
4053 		 * root, moving down the directory tree. Thus, when fetching
4054 		 * our parent directory, we must unlock ourselves before
4055 		 * requesting the lock on our parent. See the comment in
4056 		 * ufs_lookup for details on possible races.
4057 		 */
4058 		FREE_LOCK(&lk);
4059 		vn_unlock(vp);
4060 		error = VFS_VGET(mnt, NULL, parentino, &pvp);
4061 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
4062 		if (error != 0) {
4063 			return (error);
4064 		}
4065 		if (flushparent) {
4066 			if ((error = ffs_update(pvp, 1)) != 0) {
4067 				vput(pvp);
4068 				return (error);
4069 			}
4070 		}
4071 		/*
4072 		 * Flush directory page containing the inode's name.
4073 		 */
4074 		error = bread(pvp, lblktodoff(fs, lbn), blksize(fs, VTOI(pvp), lbn), &bp);
4075 		if (error == 0)
4076 			error = bwrite(bp);
4077 		vput(pvp);
4078 		if (error != 0) {
4079 			return (error);
4080 		}
4081 		ACQUIRE_LOCK(&lk);
4082 		if (inodedep_lookup(fs, ip->i_number, 0, &inodedep) == 0)
4083 			break;
4084 	}
4085 	FREE_LOCK(&lk);
4086 	return (0);
4087 }
4088 
4089 /*
4090  * Flush all the dirty bitmaps associated with the block device
4091  * before flushing the rest of the dirty blocks so as to reduce
4092  * the number of dependencies that will have to be rolled back.
4093  */
4094 static int softdep_fsync_mountdev_bp(struct buf *bp, void *data);
4095 
4096 void
4097 softdep_fsync_mountdev(struct vnode *vp)
4098 {
4099 	if (!vn_isdisk(vp, NULL))
4100 		panic("softdep_fsync_mountdev: vnode not a disk");
4101 	ACQUIRE_LOCK(&lk);
4102 	lwkt_gettoken(&vp->v_token);
4103 	RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
4104 		softdep_fsync_mountdev_bp, vp);
4105 	lwkt_reltoken(&vp->v_token);
4106 	drain_output(vp, 1);
4107 	FREE_LOCK(&lk);
4108 }
4109 
4110 static int
4111 softdep_fsync_mountdev_bp(struct buf *bp, void *data)
4112 {
4113 	struct worklist *wk;
4114 	struct vnode *vp = data;
4115 
4116 	/*
4117 	 * If it is already scheduled, skip to the next buffer.
4118 	 */
4119 	if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT))
4120 		return(0);
4121 	if (bp->b_vp != vp || (bp->b_flags & B_DELWRI) == 0) {
4122 		BUF_UNLOCK(bp);
4123 		kprintf("softdep_fsync_mountdev_bp: warning, buffer %p ripped out from under vnode %p\n", bp, vp);
4124 		return(0);
4125 	}
4126 	/*
4127 	 * We are only interested in bitmaps with outstanding
4128 	 * dependencies.
4129 	 */
4130 	if ((wk = LIST_FIRST(&bp->b_dep)) == NULL ||
4131 	    wk->wk_type != D_BMSAFEMAP) {
4132 		BUF_UNLOCK(bp);
4133 		return(0);
4134 	}
4135 	bremfree(bp);
4136 	FREE_LOCK(&lk);
4137 	(void) bawrite(bp);
4138 	ACQUIRE_LOCK(&lk);
4139 	return(0);
4140 }
4141 
4142 /*
4143  * This routine is called when we are trying to synchronously flush a
4144  * file. This routine must eliminate any filesystem metadata dependencies
4145  * so that the syncing routine can succeed by pushing the dirty blocks
4146  * associated with the file. If any I/O errors occur, they are returned.
4147  */
4148 struct softdep_sync_metadata_info {
4149 	struct vnode *vp;
4150 	int waitfor;
4151 };
4152 
4153 static int softdep_sync_metadata_bp(struct buf *bp, void *data);
4154 
4155 int
4156 softdep_sync_metadata(struct vnode *vp, struct thread *td)
4157 {
4158 	struct softdep_sync_metadata_info info;
4159 	int error, waitfor;
4160 
4161 	/*
4162 	 * Check whether this vnode is involved in a filesystem
4163 	 * that is doing soft dependency processing.
4164 	 */
4165 	if (!vn_isdisk(vp, NULL)) {
4166 		if (!DOINGSOFTDEP(vp))
4167 			return (0);
4168 	} else
4169 		if (vp->v_rdev->si_mountpoint == NULL ||
4170 		    (vp->v_rdev->si_mountpoint->mnt_flag & MNT_SOFTDEP) == 0)
4171 			return (0);
4172 	/*
4173 	 * Ensure that any direct block dependencies have been cleared.
4174 	 */
4175 	ACQUIRE_LOCK(&lk);
4176 	if ((error = flush_inodedep_deps(VTOI(vp)->i_fs, VTOI(vp)->i_number))) {
4177 		FREE_LOCK(&lk);
4178 		return (error);
4179 	}
4180 	/*
4181 	 * For most files, the only metadata dependencies are the
4182 	 * cylinder group maps that allocate their inode or blocks.
4183 	 * The block allocation dependencies can be found by traversing
4184 	 * the dependency lists for any buffers that remain on their
4185 	 * dirty buffer list. The inode allocation dependency will
4186 	 * be resolved when the inode is updated with MNT_WAIT.
4187 	 * This work is done in two passes. The first pass grabs most
4188 	 * of the buffers and begins asynchronously writing them. The
4189 	 * only way to wait for these asynchronous writes is to sleep
4190 	 * on the filesystem vnode which may stay busy for a long time
4191 	 * if the filesystem is active. So, instead, we make a second
4192 	 * pass over the dependencies blocking on each write. In the
4193 	 * usual case we will be blocking against a write that we
4194 	 * initiated, so when it is done the dependency will have been
4195 	 * resolved. Thus the second pass is expected to end quickly.
4196 	 */
4197 	waitfor = MNT_NOWAIT;
4198 top:
4199 	/*
4200 	 * We must wait for any I/O in progress to finish so that
4201 	 * all potential buffers on the dirty list will be visible.
4202 	 */
4203 	drain_output(vp, 1);
4204 
4205 	info.vp = vp;
4206 	info.waitfor = waitfor;
4207 	lwkt_gettoken(&vp->v_token);
4208 	error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
4209 			softdep_sync_metadata_bp, &info);
4210 	lwkt_reltoken(&vp->v_token);
4211 	if (error < 0) {
4212 		FREE_LOCK(&lk);
4213 		return(-error);	/* error code */
4214 	}
4215 
4216 	/*
4217 	 * The brief unlock is to allow any pent up dependency
4218 	 * processing to be done.  Then proceed with the second pass.
4219 	 */
4220 	if (waitfor & MNT_NOWAIT) {
4221 		waitfor = MNT_WAIT;
4222 		FREE_LOCK(&lk);
4223 		ACQUIRE_LOCK(&lk);
4224 		goto top;
4225 	}
4226 
4227 	/*
4228 	 * If we have managed to get rid of all the dirty buffers,
4229 	 * then we are done. For certain directories and block
4230 	 * devices, we may need to do further work.
4231 	 *
4232 	 * We must wait for any I/O in progress to finish so that
4233 	 * all potential buffers on the dirty list will be visible.
4234 	 */
4235 	drain_output(vp, 1);
4236 	if (RB_EMPTY(&vp->v_rbdirty_tree)) {
4237 		FREE_LOCK(&lk);
4238 		return (0);
4239 	}
4240 
4241 	FREE_LOCK(&lk);
4242 	/*
4243 	 * If we are trying to sync a block device, some of its buffers may
4244 	 * contain metadata that cannot be written until the contents of some
4245 	 * partially written files have been written to disk. The only easy
4246 	 * way to accomplish this is to sync the entire filesystem (luckily
4247 	 * this happens rarely).
4248 	 */
4249 	if (vn_isdisk(vp, NULL) &&
4250 	    vp->v_rdev &&
4251 	    vp->v_rdev->si_mountpoint && !vn_islocked(vp) &&
4252 	    (error = VFS_SYNC(vp->v_rdev->si_mountpoint, MNT_WAIT)) != 0)
4253 		return (error);
4254 	return (0);
4255 }
4256 
4257 static int
4258 softdep_sync_metadata_bp(struct buf *bp, void *data)
4259 {
4260 	struct softdep_sync_metadata_info *info = data;
4261 	struct pagedep *pagedep;
4262 	struct allocdirect *adp;
4263 	struct allocindir *aip;
4264 	struct worklist *wk;
4265 	struct buf *nbp;
4266 	int error;
4267 	int i;
4268 
4269 	if (getdirtybuf(&bp, MNT_WAIT) == 0) {
4270 		kprintf("softdep_sync_metadata_bp(1): caught buf %p going away\n", bp);
4271 		return (1);
4272 	}
4273 	if (bp->b_vp != info->vp || (bp->b_flags & B_DELWRI) == 0) {
4274 		kprintf("softdep_sync_metadata_bp(2): caught buf %p going away vp %p\n", bp, info->vp);
4275 		BUF_UNLOCK(bp);
4276 		return(1);
4277 	}
4278 
4279 	/*
4280 	 * As we hold the buffer locked, none of its dependencies
4281 	 * will disappear.
4282 	 */
4283 	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
4284 		switch (wk->wk_type) {
4285 
4286 		case D_ALLOCDIRECT:
4287 			adp = WK_ALLOCDIRECT(wk);
4288 			if (adp->ad_state & DEPCOMPLETE)
4289 				break;
4290 			nbp = adp->ad_buf;
4291 			if (getdirtybuf(&nbp, info->waitfor) == 0)
4292 				break;
4293 			FREE_LOCK(&lk);
4294 			if (info->waitfor & MNT_NOWAIT) {
4295 				bawrite(nbp);
4296 			} else if ((error = bwrite(nbp)) != 0) {
4297 				bawrite(bp);
4298 				ACQUIRE_LOCK(&lk);
4299 				return (-error);
4300 			}
4301 			ACQUIRE_LOCK(&lk);
4302 			break;
4303 
4304 		case D_ALLOCINDIR:
4305 			aip = WK_ALLOCINDIR(wk);
4306 			if (aip->ai_state & DEPCOMPLETE)
4307 				break;
4308 			nbp = aip->ai_buf;
4309 			if (getdirtybuf(&nbp, info->waitfor) == 0)
4310 				break;
4311 			FREE_LOCK(&lk);
4312 			if (info->waitfor & MNT_NOWAIT) {
4313 				bawrite(nbp);
4314 			} else if ((error = bwrite(nbp)) != 0) {
4315 				bawrite(bp);
4316 				ACQUIRE_LOCK(&lk);
4317 				return (-error);
4318 			}
4319 			ACQUIRE_LOCK(&lk);
4320 			break;
4321 
4322 		case D_INDIRDEP:
4323 		restart:
4324 
4325 			LIST_FOREACH(aip, &WK_INDIRDEP(wk)->ir_deplisthd, ai_next) {
4326 				if (aip->ai_state & DEPCOMPLETE)
4327 					continue;
4328 				nbp = aip->ai_buf;
4329 				if (getdirtybuf(&nbp, MNT_WAIT) == 0)
4330 					goto restart;
4331 				FREE_LOCK(&lk);
4332 				if ((error = bwrite(nbp)) != 0) {
4333 					bawrite(bp);
4334 					ACQUIRE_LOCK(&lk);
4335 					return (-error);
4336 				}
4337 				ACQUIRE_LOCK(&lk);
4338 				goto restart;
4339 			}
4340 			break;
4341 
4342 		case D_INODEDEP:
4343 			if ((error = flush_inodedep_deps(WK_INODEDEP(wk)->id_fs,
4344 			    WK_INODEDEP(wk)->id_ino)) != 0) {
4345 				FREE_LOCK(&lk);
4346 				bawrite(bp);
4347 				ACQUIRE_LOCK(&lk);
4348 				return (-error);
4349 			}
4350 			break;
4351 
4352 		case D_PAGEDEP:
4353 			/*
4354 			 * We are trying to sync a directory that may
4355 			 * have dependencies on both its own metadata
4356 			 * and/or dependencies on the inodes of any
4357 			 * recently allocated files. We walk its diradd
4358 			 * lists pushing out the associated inode.
4359 			 */
4360 			pagedep = WK_PAGEDEP(wk);
4361 			for (i = 0; i < DAHASHSZ; i++) {
4362 				if (LIST_FIRST(&pagedep->pd_diraddhd[i]) == NULL)
4363 					continue;
4364 				if ((error =
4365 				    flush_pagedep_deps(info->vp,
4366 						pagedep->pd_mnt,
4367 						&pagedep->pd_diraddhd[i]))) {
4368 					FREE_LOCK(&lk);
4369 					bawrite(bp);
4370 					ACQUIRE_LOCK(&lk);
4371 					return (-error);
4372 				}
4373 			}
4374 			break;
4375 
4376 		case D_MKDIR:
4377 			/*
4378 			 * This case should never happen if the vnode has
4379 			 * been properly sync'ed. However, if this function
4380 			 * is used at a place where the vnode has not yet
4381 			 * been sync'ed, this dependency can show up. So,
4382 			 * rather than panic, just flush it.
4383 			 */
4384 			nbp = WK_MKDIR(wk)->md_buf;
4385 			if (getdirtybuf(&nbp, info->waitfor) == 0)
4386 				break;
4387 			FREE_LOCK(&lk);
4388 			if (info->waitfor & MNT_NOWAIT) {
4389 				bawrite(nbp);
4390 			} else if ((error = bwrite(nbp)) != 0) {
4391 				bawrite(bp);
4392 				ACQUIRE_LOCK(&lk);
4393 				return (-error);
4394 			}
4395 			ACQUIRE_LOCK(&lk);
4396 			break;
4397 
4398 		case D_BMSAFEMAP:
4399 			/*
4400 			 * This case should never happen if the vnode has
4401 			 * been properly sync'ed. However, if this function
4402 			 * is used at a place where the vnode has not yet
4403 			 * been sync'ed, this dependency can show up. So,
4404 			 * rather than panic, just flush it.
4405 			 *
4406 			 * nbp can wind up == bp if a device node for the
4407 			 * same filesystem is being fsynced at the same time,
4408 			 * leading to a panic if we don't catch the case.
4409 			 */
4410 			nbp = WK_BMSAFEMAP(wk)->sm_buf;
4411 			if (nbp == bp)
4412 				break;
4413 			if (getdirtybuf(&nbp, info->waitfor) == 0)
4414 				break;
4415 			FREE_LOCK(&lk);
4416 			if (info->waitfor & MNT_NOWAIT) {
4417 				bawrite(nbp);
4418 			} else if ((error = bwrite(nbp)) != 0) {
4419 				bawrite(bp);
4420 				ACQUIRE_LOCK(&lk);
4421 				return (-error);
4422 			}
4423 			ACQUIRE_LOCK(&lk);
4424 			break;
4425 
4426 		default:
4427 			panic("softdep_sync_metadata: Unknown type %s",
4428 			    TYPENAME(wk->wk_type));
4429 			/* NOTREACHED */
4430 		}
4431 	}
4432 	FREE_LOCK(&lk);
4433 	bawrite(bp);
4434 	ACQUIRE_LOCK(&lk);
4435 	return(0);
4436 }
4437 
4438 /*
4439  * Flush the dependencies associated with an inodedep.
4440  * Called with splbio blocked.
4441  */
4442 static int
4443 flush_inodedep_deps(struct fs *fs, ino_t ino)
4444 {
4445 	struct inodedep *inodedep;
4446 	struct allocdirect *adp;
4447 	int error, waitfor;
4448 	struct buf *bp;
4449 
4450 	/*
4451 	 * This work is done in two passes. The first pass grabs most
4452 	 * of the buffers and begins asynchronously writing them. The
4453 	 * only way to wait for these asynchronous writes is to sleep
4454 	 * on the filesystem vnode which may stay busy for a long time
4455 	 * if the filesystem is active. So, instead, we make a second
4456 	 * pass over the dependencies blocking on each write. In the
4457 	 * usual case we will be blocking against a write that we
4458 	 * initiated, so when it is done the dependency will have been
4459 	 * resolved. Thus the second pass is expected to end quickly.
4460 	 * We give a brief window at the top of the loop to allow
4461 	 * any pending I/O to complete.
4462 	 */
4463 	for (waitfor = MNT_NOWAIT; ; ) {
4464 		FREE_LOCK(&lk);
4465 		ACQUIRE_LOCK(&lk);
4466 		if (inodedep_lookup(fs, ino, 0, &inodedep) == 0)
4467 			return (0);
4468 		TAILQ_FOREACH(adp, &inodedep->id_inoupdt, ad_next) {
4469 			if (adp->ad_state & DEPCOMPLETE)
4470 				continue;
4471 			bp = adp->ad_buf;
4472 			if (getdirtybuf(&bp, waitfor) == 0) {
4473 				if (waitfor & MNT_NOWAIT)
4474 					continue;
4475 				break;
4476 			}
4477 			FREE_LOCK(&lk);
4478 			if (waitfor & MNT_NOWAIT) {
4479 				bawrite(bp);
4480 			} else if ((error = bwrite(bp)) != 0) {
4481 				ACQUIRE_LOCK(&lk);
4482 				return (error);
4483 			}
4484 			ACQUIRE_LOCK(&lk);
4485 			break;
4486 		}
4487 		if (adp != NULL)
4488 			continue;
4489 		TAILQ_FOREACH(adp, &inodedep->id_newinoupdt, ad_next) {
4490 			if (adp->ad_state & DEPCOMPLETE)
4491 				continue;
4492 			bp = adp->ad_buf;
4493 			if (getdirtybuf(&bp, waitfor) == 0) {
4494 				if (waitfor & MNT_NOWAIT)
4495 					continue;
4496 				break;
4497 			}
4498 			FREE_LOCK(&lk);
4499 			if (waitfor & MNT_NOWAIT) {
4500 				bawrite(bp);
4501 			} else if ((error = bwrite(bp)) != 0) {
4502 				ACQUIRE_LOCK(&lk);
4503 				return (error);
4504 			}
4505 			ACQUIRE_LOCK(&lk);
4506 			break;
4507 		}
4508 		if (adp != NULL)
4509 			continue;
4510 		/*
4511 		 * If pass2, we are done, otherwise do pass 2.
4512 		 */
4513 		if (waitfor == MNT_WAIT)
4514 			break;
4515 		waitfor = MNT_WAIT;
4516 	}
4517 	/*
4518 	 * Try freeing inodedep in case all dependencies have been removed.
4519 	 */
4520 	if (inodedep_lookup(fs, ino, 0, &inodedep) != 0)
4521 		(void) free_inodedep(inodedep);
4522 	return (0);
4523 }
4524 
4525 /*
4526  * Eliminate a pagedep dependency by flushing out all its diradd dependencies.
4527  * Called with splbio blocked.
4528  */
4529 static int
4530 flush_pagedep_deps(struct vnode *pvp, struct mount *mp,
4531 		   struct diraddhd *diraddhdp)
4532 {
4533 	struct inodedep *inodedep;
4534 	struct ufsmount *ump;
4535 	struct diradd *dap;
4536 	struct worklist *wk;
4537 	struct vnode *vp;
4538 	int gotit, error = 0;
4539 	struct buf *bp;
4540 	ino_t inum;
4541 
4542 	ump = VFSTOUFS(mp);
4543 	while ((dap = LIST_FIRST(diraddhdp)) != NULL) {
4544 		/*
4545 		 * Flush ourselves if this directory entry
4546 		 * has a MKDIR_PARENT dependency.
4547 		 */
4548 		if (dap->da_state & MKDIR_PARENT) {
4549 			FREE_LOCK(&lk);
4550 			if ((error = ffs_update(pvp, 1)) != 0)
4551 				break;
4552 			ACQUIRE_LOCK(&lk);
4553 			/*
4554 			 * If that cleared dependencies, go on to next.
4555 			 */
4556 			if (dap != LIST_FIRST(diraddhdp))
4557 				continue;
4558 			if (dap->da_state & MKDIR_PARENT) {
4559 				panic("flush_pagedep_deps: MKDIR_PARENT");
4560 			}
4561 		}
4562 		/*
4563 		 * A newly allocated directory must have its "." and
4564 		 * ".." entries written out before its name can be
4565 		 * committed in its parent. We do not want or need
4566 		 * the full semantics of a synchronous VOP_FSYNC as
4567 		 * that may end up here again, once for each directory
4568 		 * level in the filesystem. Instead, we push the blocks
4569 		 * and wait for them to clear. We have to fsync twice
4570 		 * because the first call may choose to defer blocks
4571 		 * that still have dependencies, but deferral will
4572 		 * happen at most once.
4573 		 */
4574 		inum = dap->da_newinum;
4575 		if (dap->da_state & MKDIR_BODY) {
4576 			FREE_LOCK(&lk);
4577 			if ((error = VFS_VGET(mp, NULL, inum, &vp)) != 0)
4578 				break;
4579 			if ((error=VOP_FSYNC(vp, MNT_NOWAIT, 0)) ||
4580 			    (error=VOP_FSYNC(vp, MNT_NOWAIT, 0))) {
4581 				vput(vp);
4582 				break;
4583 			}
4584 			drain_output(vp, 0);
4585 			/*
4586 			 * If first block is still dirty with a D_MKDIR
4587 			 * dependency then it needs to be written now.
4588 			 */
4589 			error = 0;
4590 			ACQUIRE_LOCK(&lk);
4591 			bp = findblk(vp, 0, FINDBLK_TEST);
4592 			if (bp == NULL) {
4593 				FREE_LOCK(&lk);
4594 				goto mkdir_body_continue;
4595 			}
4596 			LIST_FOREACH(wk, &bp->b_dep, wk_list)
4597 				if (wk->wk_type == D_MKDIR) {
4598 					gotit = getdirtybuf(&bp, MNT_WAIT);
4599 					FREE_LOCK(&lk);
4600 					if (gotit && (error = bwrite(bp)) != 0)
4601 						goto mkdir_body_continue;
4602 					break;
4603 				}
4604 			if (wk == NULL)
4605 				FREE_LOCK(&lk);
4606 		mkdir_body_continue:
4607 			vput(vp);
4608 			/* Flushing of first block failed. */
4609 			if (error)
4610 				break;
4611 			ACQUIRE_LOCK(&lk);
4612 			/*
4613 			 * If that cleared dependencies, go on to next.
4614 			 */
4615 			if (dap != LIST_FIRST(diraddhdp))
4616 				continue;
4617 			if (dap->da_state & MKDIR_BODY) {
4618 				panic("flush_pagedep_deps: %p MKDIR_BODY", dap);
4619 			}
4620 		}
4621 		/*
4622 		 * Flush the inode on which the directory entry depends.
4623 		 * Having accounted for MKDIR_PARENT and MKDIR_BODY above,
4624 		 * the only remaining dependency is that the updated inode
4625 		 * count must get pushed to disk. The inode has already
4626 		 * been pushed into its inode buffer (via VOP_UPDATE) at
4627 		 * the time of the reference count change. So we need only
4628 		 * locate that buffer, ensure that there will be no rollback
4629 		 * caused by a bitmap dependency, then write the inode buffer.
4630 		 */
4631 retry_lookup:
4632 		if (inodedep_lookup(ump->um_fs, inum, 0, &inodedep) == 0) {
4633 			panic("flush_pagedep_deps: lost inode");
4634 		}
4635 		/*
4636 		 * If the inode still has bitmap dependencies,
4637 		 * push them to disk.
4638 		 */
4639 		if ((inodedep->id_state & DEPCOMPLETE) == 0) {
4640 			gotit = getdirtybuf(&inodedep->id_buf, MNT_WAIT);
4641 			if (gotit == 0)
4642 				goto retry_lookup;
4643 			FREE_LOCK(&lk);
4644 			if (gotit && (error = bwrite(inodedep->id_buf)) != 0)
4645 				break;
4646 			ACQUIRE_LOCK(&lk);
4647 			if (dap != LIST_FIRST(diraddhdp))
4648 				continue;
4649 		}
4650 		/*
4651 		 * If the inode is still sitting in a buffer waiting
4652 		 * to be written, push it to disk.
4653 		 */
4654 		FREE_LOCK(&lk);
4655 		if ((error = bread(ump->um_devvp,
4656 			fsbtodoff(ump->um_fs, ino_to_fsba(ump->um_fs, inum)),
4657 		    (int)ump->um_fs->fs_bsize, &bp)) != 0)
4658 			break;
4659 		if ((error = bwrite(bp)) != 0)
4660 			break;
4661 		ACQUIRE_LOCK(&lk);
4662 		/*
4663 		 * If we have failed to get rid of all the dependencies
4664 		 * then something is seriously wrong.
4665 		 */
4666 		if (dap == LIST_FIRST(diraddhdp)) {
4667 			panic("flush_pagedep_deps: flush failed");
4668 		}
4669 	}
4670 	if (error)
4671 		ACQUIRE_LOCK(&lk);
4672 	return (error);
4673 }
4674 
4675 /*
4676  * A large burst of file addition or deletion activity can drive the
4677  * memory load excessively high. First attempt to slow things down
4678  * using the techniques below. If that fails, this routine requests
4679  * the offending operations to fall back to running synchronously
4680  * until the memory load returns to a reasonable level.
4681  */
4682 int
4683 softdep_slowdown(struct vnode *vp)
4684 {
4685 	int max_softdeps_hard;
4686 
4687 	max_softdeps_hard = max_softdeps * 11 / 10;
4688 	if (num_dirrem < max_softdeps_hard / 2 &&
4689 	    num_inodedep < max_softdeps_hard)
4690 		return (0);
4691 	stat_sync_limit_hit += 1;
4692 	return (1);
4693 }
4694 
4695 /*
4696  * If memory utilization has gotten too high, deliberately slow things
4697  * down and speed up the I/O processing.
4698  */
4699 static int
4700 request_cleanup(int resource)
4701 {
4702 	struct thread *td = curthread;		/* XXX */
4703 
4704 	KKASSERT(lock_held(&lk) > 0);
4705 
4706 	/*
4707 	 * We never hold up the filesystem syncer process.
4708 	 */
4709 	if (td == filesys_syncer)
4710 		return (0);
4711 	/*
4712 	 * First check to see if the work list has gotten backlogged.
4713 	 * If it has, co-opt this process to help clean up two entries.
4714 	 * Because this process may hold inodes locked, we cannot
4715 	 * handle any remove requests that might block on a locked
4716 	 * inode as that could lead to deadlock.
4717 	 */
4718 	if (num_on_worklist > max_softdeps / 10) {
4719 		process_worklist_item(NULL, LK_NOWAIT);
4720 		process_worklist_item(NULL, LK_NOWAIT);
4721 		stat_worklist_push += 2;
4722 		return(1);
4723 	}
4724 
4725 	/*
4726 	 * If we are resource constrained on inode dependencies, try
4727 	 * flushing some dirty inodes. Otherwise, we are constrained
4728 	 * by file deletions, so try accelerating flushes of directories
4729 	 * with removal dependencies. We would like to do the cleanup
4730 	 * here, but we probably hold an inode locked at this point and
4731 	 * that might deadlock against one that we try to clean. So,
4732 	 * the best that we can do is request the syncer daemon to do
4733 	 * the cleanup for us.
4734 	 */
4735 	switch (resource) {
4736 
4737 	case FLUSH_INODES:
4738 		stat_ino_limit_push += 1;
4739 		req_clear_inodedeps += 1;
4740 		stat_countp = &stat_ino_limit_hit;
4741 		break;
4742 
4743 	case FLUSH_REMOVE:
4744 		stat_blk_limit_push += 1;
4745 		req_clear_remove += 1;
4746 		stat_countp = &stat_blk_limit_hit;
4747 		break;
4748 
4749 	default:
4750 		panic("request_cleanup: unknown type");
4751 	}
4752 	/*
4753 	 * Hopefully the syncer daemon will catch up and awaken us.
4754 	 * We wait at most tickdelay before proceeding in any case.
4755 	 */
4756 	lksleep(&proc_waiting, &lk, 0, "softupdate",
4757 		tickdelay > 2 ? tickdelay : 2);
4758 	return (1);
4759 }
4760 
4761 /*
4762  * Flush out a directory with at least one removal dependency in an effort to
4763  * reduce the number of dirrem, freefile, and freeblks dependency structures.
4764  */
4765 static void
4766 clear_remove(struct thread *td)
4767 {
4768 	struct pagedep_hashhead *pagedephd;
4769 	struct pagedep *pagedep;
4770 	static int next = 0;
4771 	struct mount *mp;
4772 	struct vnode *vp;
4773 	int error, cnt;
4774 	ino_t ino;
4775 
4776 	ACQUIRE_LOCK(&lk);
4777 	for (cnt = 0; cnt < pagedep_hash; cnt++) {
4778 		pagedephd = &pagedep_hashtbl[next++];
4779 		if (next >= pagedep_hash)
4780 			next = 0;
4781 		LIST_FOREACH(pagedep, pagedephd, pd_hash) {
4782 			if (LIST_FIRST(&pagedep->pd_dirremhd) == NULL)
4783 				continue;
4784 			mp = pagedep->pd_mnt;
4785 			ino = pagedep->pd_ino;
4786 			FREE_LOCK(&lk);
4787 			if ((error = VFS_VGET(mp, NULL, ino, &vp)) != 0) {
4788 				softdep_error("clear_remove: vget", error);
4789 				return;
4790 			}
4791 			if ((error = VOP_FSYNC(vp, MNT_NOWAIT, 0)))
4792 				softdep_error("clear_remove: fsync", error);
4793 			drain_output(vp, 0);
4794 			vput(vp);
4795 			return;
4796 		}
4797 	}
4798 	FREE_LOCK(&lk);
4799 }
4800 
4801 /*
4802  * Clear out a block of dirty inodes in an effort to reduce
4803  * the number of inodedep dependency structures.
4804  */
4805 struct clear_inodedeps_info {
4806 	struct fs *fs;
4807 	struct mount *mp;
4808 };
4809 
4810 static int
4811 clear_inodedeps_mountlist_callback(struct mount *mp, void *data)
4812 {
4813 	struct clear_inodedeps_info *info = data;
4814 
4815 	if ((mp->mnt_flag & MNT_SOFTDEP) && info->fs == VFSTOUFS(mp)->um_fs) {
4816 		info->mp = mp;
4817 		return(-1);
4818 	}
4819 	return(0);
4820 }
4821 
4822 static void
4823 clear_inodedeps(struct thread *td)
4824 {
4825 	struct clear_inodedeps_info info;
4826 	struct inodedep_hashhead *inodedephd;
4827 	struct inodedep *inodedep;
4828 	static int next = 0;
4829 	struct vnode *vp;
4830 	struct fs *fs;
4831 	int error, cnt;
4832 	ino_t firstino, lastino, ino;
4833 
4834 	ACQUIRE_LOCK(&lk);
4835 	/*
4836 	 * Pick a random inode dependency to be cleared.
4837 	 * We will then gather up all the inodes in its block
4838 	 * that have dependencies and flush them out.
4839 	 */
4840 	for (cnt = 0; cnt < inodedep_hash; cnt++) {
4841 		inodedephd = &inodedep_hashtbl[next++];
4842 		if (next >= inodedep_hash)
4843 			next = 0;
4844 		if ((inodedep = LIST_FIRST(inodedephd)) != NULL)
4845 			break;
4846 	}
4847 	if (inodedep == NULL) {
4848 		FREE_LOCK(&lk);
4849 		return;
4850 	}
4851 	/*
4852 	 * Ugly code to find mount point given pointer to superblock.
4853 	 */
4854 	fs = inodedep->id_fs;
4855 	info.mp = NULL;
4856 	info.fs = fs;
4857 	mountlist_scan(clear_inodedeps_mountlist_callback,
4858 			&info, MNTSCAN_FORWARD|MNTSCAN_NOBUSY);
4859 	/*
4860 	 * Find the last inode in the block with dependencies.
4861 	 */
4862 	firstino = inodedep->id_ino & ~(INOPB(fs) - 1);
4863 	for (lastino = firstino + INOPB(fs) - 1; lastino > firstino; lastino--)
4864 		if (inodedep_lookup(fs, lastino, 0, &inodedep) != 0)
4865 			break;
4866 	/*
4867 	 * Asynchronously push all but the last inode with dependencies.
4868 	 * Synchronously push the last inode with dependencies to ensure
4869 	 * that the inode block gets written to free up the inodedeps.
4870 	 */
4871 	for (ino = firstino; ino <= lastino; ino++) {
4872 		if (inodedep_lookup(fs, ino, 0, &inodedep) == 0)
4873 			continue;
4874 		FREE_LOCK(&lk);
4875 		if ((error = VFS_VGET(info.mp, NULL, ino, &vp)) != 0) {
4876 			softdep_error("clear_inodedeps: vget", error);
4877 			return;
4878 		}
4879 		if (ino == lastino) {
4880 			if ((error = VOP_FSYNC(vp, MNT_WAIT, 0)))
4881 				softdep_error("clear_inodedeps: fsync1", error);
4882 		} else {
4883 			if ((error = VOP_FSYNC(vp, MNT_NOWAIT, 0)))
4884 				softdep_error("clear_inodedeps: fsync2", error);
4885 			drain_output(vp, 0);
4886 		}
4887 		vput(vp);
4888 		ACQUIRE_LOCK(&lk);
4889 	}
4890 	FREE_LOCK(&lk);
4891 }
4892 
4893 /*
4894  * Function to determine if the buffer has outstanding dependencies
4895  * that will cause a roll-back if the buffer is written. If wantcount
4896  * is set, return number of dependencies, otherwise just yes or no.
4897  *
4898  * bioops callback - hold io_token
4899  */
4900 static int
4901 softdep_count_dependencies(struct buf *bp, int wantcount)
4902 {
4903 	struct worklist *wk;
4904 	struct inodedep *inodedep;
4905 	struct indirdep *indirdep;
4906 	struct allocindir *aip;
4907 	struct pagedep *pagedep;
4908 	struct diradd *dap;
4909 	int i, retval;
4910 
4911 	retval = 0;
4912 	ACQUIRE_LOCK(&lk);
4913 
4914 	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
4915 		switch (wk->wk_type) {
4916 
4917 		case D_INODEDEP:
4918 			inodedep = WK_INODEDEP(wk);
4919 			if ((inodedep->id_state & DEPCOMPLETE) == 0) {
4920 				/* bitmap allocation dependency */
4921 				retval += 1;
4922 				if (!wantcount)
4923 					goto out;
4924 			}
4925 			if (TAILQ_FIRST(&inodedep->id_inoupdt)) {
4926 				/* direct block pointer dependency */
4927 				retval += 1;
4928 				if (!wantcount)
4929 					goto out;
4930 			}
4931 			continue;
4932 
4933 		case D_INDIRDEP:
4934 			indirdep = WK_INDIRDEP(wk);
4935 
4936 			LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) {
4937 				/* indirect block pointer dependency */
4938 				retval += 1;
4939 				if (!wantcount)
4940 					goto out;
4941 			}
4942 			continue;
4943 
4944 		case D_PAGEDEP:
4945 			pagedep = WK_PAGEDEP(wk);
4946 			for (i = 0; i < DAHASHSZ; i++) {
4947 
4948 				LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
4949 					/* directory entry dependency */
4950 					retval += 1;
4951 					if (!wantcount)
4952 						goto out;
4953 				}
4954 			}
4955 			continue;
4956 
4957 		case D_BMSAFEMAP:
4958 		case D_ALLOCDIRECT:
4959 		case D_ALLOCINDIR:
4960 		case D_MKDIR:
4961 			/* never a dependency on these blocks */
4962 			continue;
4963 
4964 		default:
4965 			panic("softdep_check_for_rollback: Unexpected type %s",
4966 			    TYPENAME(wk->wk_type));
4967 			/* NOTREACHED */
4968 		}
4969 	}
4970 out:
4971 	FREE_LOCK(&lk);
4972 
4973 	return retval;
4974 }
4975 
4976 /*
4977  * Acquire exclusive access to a buffer. Requires softdep lock
4978  * to be held on entry. If waitfor is MNT_WAIT, may release/reacquire
4979  * softdep lock.
4980  *
4981  * Returns 1 if the buffer was locked, 0 if it was not locked or
4982  * if we had to block.
4983  *
4984  * NOTE!  In order to return 1 we must acquire the buffer lock prior
4985  *	  to any release of &lk.  Once we release &lk it's all over.
4986  *	  We may still have to block on the (type-stable) bp in that
4987  *	  case, but we must then unlock it and return 0.
4988  */
4989 static int
4990 getdirtybuf(struct buf **bpp, int waitfor)
4991 {
4992 	struct buf *bp;
4993 	int error;
4994 
4995 	/*
4996 	 * If the contents of *bpp is NULL the caller presumably lost a race.
4997 	 */
4998 	bp = *bpp;
4999 	if (bp == NULL)
5000 		return (0);
5001 
5002 	/*
5003 	 * Try to obtain the buffer lock without deadlocking on &lk.
5004 	 */
5005 	KKASSERT(lock_held(&lk) > 0);
5006 	error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT);
5007 	if (error == 0) {
5008 		/*
5009 		 * If the buffer is no longer dirty the OS already wrote it
5010 		 * out, return failure.
5011 		 */
5012 		if ((bp->b_flags & B_DELWRI) == 0) {
5013 			BUF_UNLOCK(bp);
5014 			return (0);
5015 		}
5016 
5017 		/*
5018 		 * Finish nominal buffer locking sequence return success.
5019 		 */
5020 		bremfree(bp);
5021 		return (1);
5022 	}
5023 
5024 	/*
5025 	 * Failure case.
5026 	 *
5027 	 * If we are not being asked to wait, return 0 immediately.
5028 	 */
5029 	if (waitfor != MNT_WAIT)
5030 		return (0);
5031 
5032 	/*
5033 	 * Once we release the softdep lock we can never return success,
5034 	 * but we still have to block on the type-stable buf for the caller
5035 	 * to be able to retry without livelocking the system.
5036 	 *
5037 	 * The caller will normally retry in this case.
5038 	 */
5039 	FREE_LOCK(&lk);
5040 	error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL);
5041 	ACQUIRE_LOCK(&lk);
5042 	if (error == 0)
5043 		BUF_UNLOCK(bp);
5044 	return (0);
5045 }
5046 
5047 /*
5048  * Wait for pending output on a vnode to complete.
5049  * Must be called with vnode locked.
5050  */
5051 static void
5052 drain_output(struct vnode *vp, int islocked)
5053 {
5054 
5055 	if (!islocked)
5056 		ACQUIRE_LOCK(&lk);
5057 	while (bio_track_active(&vp->v_track_write)) {
5058 		FREE_LOCK(&lk);
5059 		bio_track_wait(&vp->v_track_write, 0, 0);
5060 		ACQUIRE_LOCK(&lk);
5061 	}
5062 	if (!islocked)
5063 		FREE_LOCK(&lk);
5064 }
5065 
5066 /*
5067  * Called whenever a buffer that is being invalidated or reallocated
5068  * contains dependencies. This should only happen if an I/O error has
5069  * occurred. The routine is called with the buffer locked.
5070  *
5071  * bioops callback - hold io_token
5072  */
5073 static void
5074 softdep_deallocate_dependencies(struct buf *bp)
5075 {
5076 	/* nothing to do, mp lock not needed */
5077 	if ((bp->b_flags & B_ERROR) == 0)
5078 		panic("softdep_deallocate_dependencies: dangling deps");
5079 	softdep_error(bp->b_vp->v_mount->mnt_stat.f_mntfromname, bp->b_error);
5080 	panic("softdep_deallocate_dependencies: unrecovered I/O error");
5081 }
5082 
5083 /*
5084  * Function to handle asynchronous write errors in the filesystem.
5085  */
5086 void
5087 softdep_error(char *func, int error)
5088 {
5089 	/* XXX should do something better! */
5090 	kprintf("%s: got error %d while accessing filesystem\n", func, error);
5091 }
5092