xref: /dragonfly/sys/vfs/ufs/ffs_softdep.c (revision e6e77800)
1 /*
2  * Copyright 1998, 2000 Marshall Kirk McKusick. All Rights Reserved.
3  *
4  * The soft updates code is derived from the appendix of a University
5  * of Michigan technical report (Gregory R. Ganger and Yale N. Patt,
6  * "Soft Updates: A Solution to the Metadata Update Problem in File
7  * Systems", CSE-TR-254-95, August 1995).
8  *
9  * Further information about soft updates can be obtained from:
10  *
11  *	Marshall Kirk McKusick		http://www.mckusick.com/softdep/
12  *	1614 Oxford Street		mckusick@mckusick.com
13  *	Berkeley, CA 94709-1608		+1-510-843-9542
14  *	USA
15  *
16  * Redistribution and use in source and binary forms, with or without
17  * modification, are permitted provided that the following conditions
18  * are met:
19  *
20  * 1. Redistributions of source code must retain the above copyright
21  *    notice, this list of conditions and the following disclaimer.
22  * 2. Redistributions in binary form must reproduce the above copyright
23  *    notice, this list of conditions and the following disclaimer in the
24  *    documentation and/or other materials provided with the distribution.
25  *
26  * THIS SOFTWARE IS PROVIDED BY MARSHALL KIRK MCKUSICK ``AS IS'' AND ANY
27  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
28  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
29  * DISCLAIMED.  IN NO EVENT SHALL MARSHALL KIRK MCKUSICK BE LIABLE FOR
30  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	from: @(#)ffs_softdep.c	9.59 (McKusick) 6/21/00
39  * $FreeBSD: src/sys/ufs/ffs/ffs_softdep.c,v 1.57.2.11 2002/02/05 18:46:53 dillon Exp $
40  */
41 
42 /*
43  * For now we want the safety net that the DIAGNOSTIC and DEBUG flags provide.
44  */
45 #ifndef DIAGNOSTIC
46 #define DIAGNOSTIC
47 #endif
48 #ifndef DEBUG
49 #define DEBUG
50 #endif
51 
52 #include <sys/param.h>
53 #include <sys/kernel.h>
54 #include <sys/systm.h>
55 #include <sys/buf.h>
56 #include <sys/malloc.h>
57 #include <sys/mount.h>
58 #include <sys/proc.h>
59 #include <sys/syslog.h>
60 #include <sys/vnode.h>
61 #include <sys/conf.h>
62 #include <machine/inttypes.h>
63 #include "dir.h"
64 #include "quota.h"
65 #include "inode.h"
66 #include "ufsmount.h"
67 #include "fs.h"
68 #include "softdep.h"
69 #include "ffs_extern.h"
70 #include "ufs_extern.h"
71 
72 #include <sys/buf2.h>
73 #include <sys/thread2.h>
74 #include <sys/lock.h>
75 
76 /*
77  * These definitions need to be adapted to the system to which
78  * this file is being ported.
79  */
80 /*
81  * malloc types defined for the softdep system.
82  */
83 MALLOC_DEFINE(M_PAGEDEP, "pagedep","File page dependencies");
84 MALLOC_DEFINE(M_INODEDEP, "inodedep","Inode dependencies");
85 MALLOC_DEFINE(M_NEWBLK, "newblk","New block allocation");
86 MALLOC_DEFINE(M_BMSAFEMAP, "bmsafemap","Block or frag allocated from cyl group map");
87 MALLOC_DEFINE(M_ALLOCDIRECT, "allocdirect","Block or frag dependency for an inode");
88 MALLOC_DEFINE(M_INDIRDEP, "indirdep","Indirect block dependencies");
89 MALLOC_DEFINE(M_ALLOCINDIR, "allocindir","Block dependency for an indirect block");
90 MALLOC_DEFINE(M_FREEFRAG, "freefrag","Previously used frag for an inode");
91 MALLOC_DEFINE(M_FREEBLKS, "freeblks","Blocks freed from an inode");
92 MALLOC_DEFINE(M_FREEFILE, "freefile","Inode deallocated");
93 MALLOC_DEFINE(M_DIRADD, "diradd","New directory entry");
94 MALLOC_DEFINE(M_MKDIR, "mkdir","New directory");
95 MALLOC_DEFINE(M_DIRREM, "dirrem","Directory entry deleted");
96 
97 #define M_SOFTDEP_FLAGS		(M_WAITOK | M_USE_RESERVE)
98 
99 #define	D_PAGEDEP	0
100 #define	D_INODEDEP	1
101 #define	D_NEWBLK	2
102 #define	D_BMSAFEMAP	3
103 #define	D_ALLOCDIRECT	4
104 #define	D_INDIRDEP	5
105 #define	D_ALLOCINDIR	6
106 #define	D_FREEFRAG	7
107 #define	D_FREEBLKS	8
108 #define	D_FREEFILE	9
109 #define	D_DIRADD	10
110 #define	D_MKDIR		11
111 #define	D_DIRREM	12
112 #define D_LAST		D_DIRREM
113 
114 /*
115  * translate from workitem type to memory type
116  * MUST match the defines above, such that memtype[D_XXX] == M_XXX
117  */
118 static struct malloc_type *memtype[] = {
119 	M_PAGEDEP,
120 	M_INODEDEP,
121 	M_NEWBLK,
122 	M_BMSAFEMAP,
123 	M_ALLOCDIRECT,
124 	M_INDIRDEP,
125 	M_ALLOCINDIR,
126 	M_FREEFRAG,
127 	M_FREEBLKS,
128 	M_FREEFILE,
129 	M_DIRADD,
130 	M_MKDIR,
131 	M_DIRREM
132 };
133 
134 #define DtoM(type) (memtype[type])
135 
136 /*
137  * Names of malloc types.
138  */
139 #define TYPENAME(type)  \
140 	((unsigned)(type) < D_LAST ? memtype[type]->ks_shortdesc : "???")
141 /*
142  * End system adaptaion definitions.
143  */
144 
145 /*
146  * Internal function prototypes.
147  */
148 static	void softdep_error(char *, int);
149 static	void drain_output(struct vnode *, int);
150 static	int getdirtybuf(struct buf **, int);
151 static	void clear_remove(struct thread *);
152 static	void clear_inodedeps(struct thread *);
153 static	int flush_pagedep_deps(struct vnode *, struct mount *,
154 	    struct diraddhd *);
155 static	int flush_inodedep_deps(struct fs *, ino_t);
156 static	int handle_written_filepage(struct pagedep *, struct buf *);
157 static  void diradd_inode_written(struct diradd *, struct inodedep *);
158 static	int handle_written_inodeblock(struct inodedep *, struct buf *);
159 static	void handle_allocdirect_partdone(struct allocdirect *);
160 static	void handle_allocindir_partdone(struct allocindir *);
161 static	void initiate_write_filepage(struct pagedep *, struct buf *);
162 static	void handle_written_mkdir(struct mkdir *, int);
163 static	void initiate_write_inodeblock(struct inodedep *, struct buf *);
164 static	void handle_workitem_freefile(struct freefile *);
165 static	void handle_workitem_remove(struct dirrem *);
166 static	struct dirrem *newdirrem(struct buf *, struct inode *,
167 	    struct inode *, int, struct dirrem **);
168 static	void free_diradd(struct diradd *);
169 static	void free_allocindir(struct allocindir *, struct inodedep *);
170 static	int indir_trunc (struct inode *, off_t, int, ufs_lbn_t, long *);
171 static	void deallocate_dependencies(struct buf *, struct inodedep *);
172 static	void free_allocdirect(struct allocdirectlst *,
173 	    struct allocdirect *, int);
174 static	int check_inode_unwritten(struct inodedep *);
175 static	int free_inodedep(struct inodedep *);
176 static	void handle_workitem_freeblocks(struct freeblks *);
177 static	void merge_inode_lists(struct inodedep *);
178 static	void setup_allocindir_phase2(struct buf *, struct inode *,
179 	    struct allocindir *);
180 static	struct allocindir *newallocindir(struct inode *, int, ufs_daddr_t,
181 	    ufs_daddr_t);
182 static	void handle_workitem_freefrag(struct freefrag *);
183 static	struct freefrag *newfreefrag(struct inode *, ufs_daddr_t, long);
184 static	void allocdirect_merge(struct allocdirectlst *,
185 	    struct allocdirect *, struct allocdirect *);
186 static	struct bmsafemap *bmsafemap_lookup(struct buf *);
187 static	int newblk_lookup(struct fs *, ufs_daddr_t, int,
188 	    struct newblk **);
189 static	int inodedep_lookup(struct fs *, ino_t, int, struct inodedep **);
190 static	int pagedep_lookup(struct inode *, ufs_lbn_t, int,
191 	    struct pagedep **);
192 static	int request_cleanup(int);
193 static	int process_worklist_item(struct mount *, int);
194 static	void add_to_worklist(struct worklist *);
195 
196 /*
197  * Exported softdep operations.
198  */
199 static	void softdep_disk_io_initiation(struct buf *);
200 static	void softdep_disk_write_complete(struct buf *);
201 static	void softdep_deallocate_dependencies(struct buf *);
202 static	int softdep_fsync(struct vnode *);
203 static	int softdep_process_worklist(struct mount *);
204 static	void softdep_move_dependencies(struct buf *, struct buf *);
205 static	int softdep_count_dependencies(struct buf *bp, int);
206 static  int softdep_checkread(struct buf *bp);
207 static  int softdep_checkwrite(struct buf *bp);
208 
209 static struct bio_ops softdep_bioops = {
210 	.io_start = softdep_disk_io_initiation,
211 	.io_complete = softdep_disk_write_complete,
212 	.io_deallocate = softdep_deallocate_dependencies,
213 	.io_fsync = softdep_fsync,
214 	.io_sync = softdep_process_worklist,
215 	.io_movedeps = softdep_move_dependencies,
216 	.io_countdeps = softdep_count_dependencies,
217 	.io_checkread = softdep_checkread,
218 	.io_checkwrite = softdep_checkwrite
219 };
220 
221 /*
222  * Locking primitives.
223  */
224 static	void acquire_lock(struct lock *);
225 static	void free_lock(struct lock *);
226 #ifdef INVARIANTS
227 static	int lock_held(struct lock *);
228 #endif
229 
230 static struct lock lk;
231 
232 #define ACQUIRE_LOCK(lkp)		acquire_lock(lkp)
233 #define FREE_LOCK(lkp)			free_lock(lkp)
234 
235 static void
236 acquire_lock(struct lock *lkp)
237 {
238 	lockmgr(lkp, LK_EXCLUSIVE);
239 }
240 
241 static void
242 free_lock(struct lock *lkp)
243 {
244 	lockmgr(lkp, LK_RELEASE);
245 }
246 
247 #ifdef INVARIANTS
248 static int
249 lock_held(struct lock *lkp)
250 {
251 	return lockinuse(lkp);
252 }
253 #endif
254 
255 /*
256  * Place holder for real semaphores.
257  */
258 struct sema {
259 	int	value;
260 	thread_t holder;
261 	char	*name;
262 	int	timo;
263 	struct spinlock spin;
264 };
265 static	void sema_init(struct sema *, char *, int);
266 static	int sema_get(struct sema *, struct lock *);
267 static	void sema_release(struct sema *, struct lock *);
268 
269 #define NOHOLDER	((struct thread *) -1)
270 
271 static void
272 sema_init(struct sema *semap, char *name, int timo)
273 {
274 	semap->holder = NOHOLDER;
275 	semap->value = 0;
276 	semap->name = name;
277 	semap->timo = timo;
278 	spin_init(&semap->spin, "ufssema");
279 }
280 
281 /*
282  * Obtain exclusive access, semaphore is protected by the interlock.
283  * If interlock is NULL we must protect the semaphore ourselves.
284  */
285 static int
286 sema_get(struct sema *semap, struct lock *interlock)
287 {
288 	int rv;
289 
290 	if (interlock) {
291 		if (semap->value > 0) {
292 			++semap->value;		/* serves as wakeup flag */
293 			lksleep(semap, interlock, 0,
294 				semap->name, semap->timo);
295 			rv = 0;
296 		} else {
297 			semap->value = 1;	/* serves as owned flag */
298 			semap->holder = curthread;
299 			rv = 1;
300 		}
301 	} else {
302 		spin_lock(&semap->spin);
303 		if (semap->value > 0) {
304 			++semap->value;		/* serves as wakeup flag */
305 			ssleep(semap, &semap->spin, 0,
306 				semap->name, semap->timo);
307 			spin_unlock(&semap->spin);
308 			rv = 0;
309 		} else {
310 			semap->value = 1;	/* serves as owned flag */
311 			semap->holder = curthread;
312 			spin_unlock(&semap->spin);
313 			rv = 1;
314 		}
315 	}
316 	return (rv);
317 }
318 
319 static void
320 sema_release(struct sema *semap, struct lock *lk)
321 {
322 	if (semap->value <= 0 || semap->holder != curthread)
323 		panic("sema_release: not held");
324 	if (lk) {
325 		semap->holder = NOHOLDER;
326 		if (--semap->value > 0) {
327 			semap->value = 0;
328 			wakeup(semap);
329 		}
330 	} else {
331 		spin_lock(&semap->spin);
332 		semap->holder = NOHOLDER;
333 		if (--semap->value > 0) {
334 			semap->value = 0;
335 			spin_unlock(&semap->spin);
336 			wakeup(semap);
337 		} else {
338 			spin_unlock(&semap->spin);
339 		}
340 	}
341 }
342 
343 /*
344  * Worklist queue management.
345  * These routines require that the lock be held.
346  */
347 static	void worklist_insert(struct workhead *, struct worklist *);
348 static	void worklist_remove(struct worklist *);
349 static	void workitem_free(struct worklist *, int);
350 
351 #define WORKLIST_INSERT_BP(bp, item) do {	\
352 	(bp)->b_ops = &softdep_bioops;		\
353 	worklist_insert(&(bp)->b_dep, item);	\
354 } while (0)
355 
356 #define WORKLIST_INSERT(head, item) worklist_insert(head, item)
357 #define WORKLIST_REMOVE(item) worklist_remove(item)
358 #define WORKITEM_FREE(item, type) workitem_free((struct worklist *)item, type)
359 
360 static void
361 worklist_insert(struct workhead *head, struct worklist *item)
362 {
363 	KKASSERT(lock_held(&lk));
364 
365 	if (item->wk_state & ONWORKLIST) {
366 		panic("worklist_insert: already on list");
367 	}
368 	item->wk_state |= ONWORKLIST;
369 	LIST_INSERT_HEAD(head, item, wk_list);
370 }
371 
372 static void
373 worklist_remove(struct worklist *item)
374 {
375 
376 	KKASSERT(lock_held(&lk));
377 	if ((item->wk_state & ONWORKLIST) == 0)
378 		panic("worklist_remove: not on list");
379 
380 	item->wk_state &= ~ONWORKLIST;
381 	LIST_REMOVE(item, wk_list);
382 }
383 
384 static void
385 workitem_free(struct worklist *item, int type)
386 {
387 
388 	if (item->wk_state & ONWORKLIST)
389 		panic("workitem_free: still on list");
390 	if (item->wk_type != type)
391 		panic("workitem_free: type mismatch");
392 
393 	kfree(item, DtoM(type));
394 }
395 
396 /*
397  * Workitem queue management
398  */
399 static struct workhead softdep_workitem_pending;
400 static int num_on_worklist;	/* number of worklist items to be processed */
401 static int softdep_worklist_busy; /* 1 => trying to do unmount */
402 static int softdep_worklist_req; /* serialized waiters */
403 static int max_softdeps;	/* maximum number of structs before slowdown */
404 static int tickdelay = 2;	/* number of ticks to pause during slowdown */
405 static int *stat_countp;	/* statistic to count in proc_waiting timeout */
406 static int proc_waiting;	/* tracks whether we have a timeout posted */
407 static struct thread *filesys_syncer; /* proc of filesystem syncer process */
408 static int req_clear_inodedeps;	/* syncer process flush some inodedeps */
409 #define FLUSH_INODES	1
410 static int req_clear_remove;	/* syncer process flush some freeblks */
411 #define FLUSH_REMOVE	2
412 /*
413  * runtime statistics
414  */
415 static int stat_worklist_push;	/* number of worklist cleanups */
416 static int stat_blk_limit_push;	/* number of times block limit neared */
417 static int stat_ino_limit_push;	/* number of times inode limit neared */
418 static int stat_blk_limit_hit;	/* number of times block slowdown imposed */
419 static int stat_ino_limit_hit;	/* number of times inode slowdown imposed */
420 static int stat_sync_limit_hit;	/* number of synchronous slowdowns imposed */
421 static int stat_indir_blk_ptrs;	/* bufs redirtied as indir ptrs not written */
422 static int stat_inode_bitmap;	/* bufs redirtied as inode bitmap not written */
423 static int stat_direct_blk_ptrs;/* bufs redirtied as direct ptrs not written */
424 static int stat_dir_entry;	/* bufs redirtied as dir entry cannot write */
425 #ifdef DEBUG
426 #include <vm/vm.h>
427 #include <sys/sysctl.h>
428 SYSCTL_INT(_debug, OID_AUTO, max_softdeps, CTLFLAG_RW, &max_softdeps, 0,
429     "Maximum soft dependencies before slowdown occurs");
430 SYSCTL_INT(_debug, OID_AUTO, tickdelay, CTLFLAG_RW, &tickdelay, 0,
431     "Ticks to delay before allocating during slowdown");
432 SYSCTL_INT(_debug, OID_AUTO, worklist_push, CTLFLAG_RW, &stat_worklist_push, 0,
433     "Number of worklist cleanups");
434 SYSCTL_INT(_debug, OID_AUTO, blk_limit_push, CTLFLAG_RW, &stat_blk_limit_push, 0,
435     "Number of times block limit neared");
436 SYSCTL_INT(_debug, OID_AUTO, ino_limit_push, CTLFLAG_RW, &stat_ino_limit_push, 0,
437     "Number of times inode limit neared");
438 SYSCTL_INT(_debug, OID_AUTO, blk_limit_hit, CTLFLAG_RW, &stat_blk_limit_hit, 0,
439     "Number of times block slowdown imposed");
440 SYSCTL_INT(_debug, OID_AUTO, ino_limit_hit, CTLFLAG_RW, &stat_ino_limit_hit, 0,
441     "Number of times inode slowdown imposed ");
442 SYSCTL_INT(_debug, OID_AUTO, sync_limit_hit, CTLFLAG_RW, &stat_sync_limit_hit, 0,
443     "Number of synchronous slowdowns imposed");
444 SYSCTL_INT(_debug, OID_AUTO, indir_blk_ptrs, CTLFLAG_RW, &stat_indir_blk_ptrs, 0,
445     "Bufs redirtied as indir ptrs not written");
446 SYSCTL_INT(_debug, OID_AUTO, inode_bitmap, CTLFLAG_RW, &stat_inode_bitmap, 0,
447     "Bufs redirtied as inode bitmap not written");
448 SYSCTL_INT(_debug, OID_AUTO, direct_blk_ptrs, CTLFLAG_RW, &stat_direct_blk_ptrs, 0,
449     "Bufs redirtied as direct ptrs not written");
450 SYSCTL_INT(_debug, OID_AUTO, dir_entry, CTLFLAG_RW, &stat_dir_entry, 0,
451     "Bufs redirtied as dir entry cannot write");
452 #endif /* DEBUG */
453 
454 /*
455  * Add an item to the end of the work queue.
456  * This routine requires that the lock be held.
457  * This is the only routine that adds items to the list.
458  * The following routine is the only one that removes items
459  * and does so in order from first to last.
460  */
461 static void
462 add_to_worklist(struct worklist *wk)
463 {
464 	static struct worklist *worklist_tail;
465 
466 	if (wk->wk_state & ONWORKLIST) {
467 		panic("add_to_worklist: already on list");
468 	}
469 	wk->wk_state |= ONWORKLIST;
470 	if (LIST_FIRST(&softdep_workitem_pending) == NULL)
471 		LIST_INSERT_HEAD(&softdep_workitem_pending, wk, wk_list);
472 	else
473 		LIST_INSERT_AFTER(worklist_tail, wk, wk_list);
474 	worklist_tail = wk;
475 	num_on_worklist += 1;
476 }
477 
478 /*
479  * Process that runs once per second to handle items in the background queue.
480  *
481  * Note that we ensure that everything is done in the order in which they
482  * appear in the queue. The code below depends on this property to ensure
483  * that blocks of a file are freed before the inode itself is freed. This
484  * ordering ensures that no new <vfsid, inum, lbn> triples will be generated
485  * until all the old ones have been purged from the dependency lists.
486  *
487  * bioops callback - hold io_token
488  */
489 static int
490 softdep_process_worklist(struct mount *matchmnt)
491 {
492 	thread_t td = curthread;
493 	int matchcnt, loopcount;
494 	int starttime;
495 
496 	ACQUIRE_LOCK(&lk);
497 
498 	/*
499 	 * Record the process identifier of our caller so that we can give
500 	 * this process preferential treatment in request_cleanup below.
501 	 */
502 	filesys_syncer = td;
503 	matchcnt = 0;
504 
505 	/*
506 	 * There is no danger of having multiple processes run this
507 	 * code, but we have to single-thread it when softdep_flushfiles()
508 	 * is in operation to get an accurate count of the number of items
509 	 * related to its mount point that are in the list.
510 	 */
511 	if (matchmnt == NULL) {
512 		if (softdep_worklist_busy < 0) {
513 			matchcnt = -1;
514 			goto done;
515 		}
516 		softdep_worklist_busy += 1;
517 	}
518 
519 	/*
520 	 * If requested, try removing inode or removal dependencies.
521 	 */
522 	if (req_clear_inodedeps) {
523 		clear_inodedeps(td);
524 		req_clear_inodedeps -= 1;
525 		wakeup_one(&proc_waiting);
526 	}
527 	if (req_clear_remove) {
528 		clear_remove(td);
529 		req_clear_remove -= 1;
530 		wakeup_one(&proc_waiting);
531 	}
532 	loopcount = 1;
533 	starttime = ticks;
534 	while (num_on_worklist > 0) {
535 		matchcnt += process_worklist_item(matchmnt, 0);
536 
537 		/*
538 		 * If a umount operation wants to run the worklist
539 		 * accurately, abort.
540 		 */
541 		if (softdep_worklist_req && matchmnt == NULL) {
542 			matchcnt = -1;
543 			break;
544 		}
545 
546 		/*
547 		 * If requested, try removing inode or removal dependencies.
548 		 */
549 		if (req_clear_inodedeps) {
550 			clear_inodedeps(td);
551 			req_clear_inodedeps -= 1;
552 			wakeup_one(&proc_waiting);
553 		}
554 		if (req_clear_remove) {
555 			clear_remove(td);
556 			req_clear_remove -= 1;
557 			wakeup_one(&proc_waiting);
558 		}
559 		/*
560 		 * We do not generally want to stop for buffer space, but if
561 		 * we are really being a buffer hog, we will stop and wait.
562 		 */
563 		if (loopcount++ % 128 == 0) {
564 			FREE_LOCK(&lk);
565 			bwillinode(1);
566 			ACQUIRE_LOCK(&lk);
567 		}
568 
569 		/*
570 		 * Never allow processing to run for more than one
571 		 * second. Otherwise the other syncer tasks may get
572 		 * excessively backlogged.
573 		 *
574 		 * Use ticks to avoid boundary condition w/time_second or
575 		 * time_uptime.
576 		 */
577 		if ((ticks - starttime) > hz && matchmnt == NULL) {
578 			matchcnt = -1;
579 			break;
580 		}
581 	}
582 	if (matchmnt == NULL) {
583 		--softdep_worklist_busy;
584 		if (softdep_worklist_req && softdep_worklist_busy == 0)
585 			wakeup(&softdep_worklist_req);
586 	}
587 done:
588 	FREE_LOCK(&lk);
589 	return (matchcnt);
590 }
591 
592 /*
593  * Process one item on the worklist.
594  */
595 static int
596 process_worklist_item(struct mount *matchmnt, int flags)
597 {
598 	struct ufsmount *ump;
599 	struct worklist *wk;
600 	struct dirrem *dirrem;
601 	struct fs *matchfs;
602 	struct vnode *vp;
603 	int matchcnt = 0;
604 
605 	KKASSERT(lock_held(&lk));
606 
607 	matchfs = NULL;
608 	if (matchmnt != NULL)
609 		matchfs = VFSTOUFS(matchmnt)->um_fs;
610 
611 	/*
612 	 * Normally we just process each item on the worklist in order.
613 	 * However, if we are in a situation where we cannot lock any
614 	 * inodes, we have to skip over any dirrem requests whose
615 	 * vnodes are resident and locked.
616 	 */
617 	LIST_FOREACH(wk, &softdep_workitem_pending, wk_list) {
618 		if ((flags & LK_NOWAIT) == 0 || wk->wk_type != D_DIRREM)
619 			break;
620 		dirrem = WK_DIRREM(wk);
621 		ump = VFSTOUFS(dirrem->dm_mnt);
622 		lwkt_gettoken(&ump->um_mountp->mnt_token);
623 		vp = ufs_ihashlookup(ump, ump->um_dev, dirrem->dm_oldinum);
624 		lwkt_reltoken(&ump->um_mountp->mnt_token);
625 		if (vp == NULL || !vn_islocked(vp))
626 			break;
627 	}
628 	if (wk == NULL) {
629 		return (0);
630 	}
631 	WORKLIST_REMOVE(wk);
632 	num_on_worklist -= 1;
633 	FREE_LOCK(&lk);
634 	switch (wk->wk_type) {
635 	case D_DIRREM:
636 		/* removal of a directory entry */
637 		if (WK_DIRREM(wk)->dm_mnt == matchmnt)
638 			matchcnt += 1;
639 		handle_workitem_remove(WK_DIRREM(wk));
640 		break;
641 
642 	case D_FREEBLKS:
643 		/* releasing blocks and/or fragments from a file */
644 		if (WK_FREEBLKS(wk)->fb_fs == matchfs)
645 			matchcnt += 1;
646 		handle_workitem_freeblocks(WK_FREEBLKS(wk));
647 		break;
648 
649 	case D_FREEFRAG:
650 		/* releasing a fragment when replaced as a file grows */
651 		if (WK_FREEFRAG(wk)->ff_fs == matchfs)
652 			matchcnt += 1;
653 		handle_workitem_freefrag(WK_FREEFRAG(wk));
654 		break;
655 
656 	case D_FREEFILE:
657 		/* releasing an inode when its link count drops to 0 */
658 		if (WK_FREEFILE(wk)->fx_fs == matchfs)
659 			matchcnt += 1;
660 		handle_workitem_freefile(WK_FREEFILE(wk));
661 		break;
662 
663 	default:
664 		panic("%s_process_worklist: Unknown type %s",
665 		    "softdep", TYPENAME(wk->wk_type));
666 		/* NOTREACHED */
667 	}
668 	ACQUIRE_LOCK(&lk);
669 	return (matchcnt);
670 }
671 
672 /*
673  * Move dependencies from one buffer to another.
674  *
675  * bioops callback - hold io_token
676  */
677 static void
678 softdep_move_dependencies(struct buf *oldbp, struct buf *newbp)
679 {
680 	struct worklist *wk, *wktail;
681 
682 	if (LIST_FIRST(&newbp->b_dep) != NULL)
683 		panic("softdep_move_dependencies: need merge code");
684 	wktail = NULL;
685 	ACQUIRE_LOCK(&lk);
686 	while ((wk = LIST_FIRST(&oldbp->b_dep)) != NULL) {
687 		LIST_REMOVE(wk, wk_list);
688 		if (wktail == NULL)
689 			LIST_INSERT_HEAD(&newbp->b_dep, wk, wk_list);
690 		else
691 			LIST_INSERT_AFTER(wktail, wk, wk_list);
692 		wktail = wk;
693 		newbp->b_ops = &softdep_bioops;
694 	}
695 	FREE_LOCK(&lk);
696 }
697 
698 /*
699  * Purge the work list of all items associated with a particular mount point.
700  */
701 int
702 softdep_flushfiles(struct mount *oldmnt, int flags)
703 {
704 	struct vnode *devvp;
705 	int error, loopcnt;
706 
707 	/*
708 	 * Await our turn to clear out the queue, then serialize access.
709 	 */
710 	ACQUIRE_LOCK(&lk);
711 	while (softdep_worklist_busy != 0) {
712 		softdep_worklist_req += 1;
713 		lksleep(&softdep_worklist_req, &lk, 0, "softflush", 0);
714 		softdep_worklist_req -= 1;
715 	}
716 	softdep_worklist_busy = -1;
717 	FREE_LOCK(&lk);
718 
719 	if ((error = ffs_flushfiles(oldmnt, flags)) != 0) {
720 		softdep_worklist_busy = 0;
721 		if (softdep_worklist_req)
722 			wakeup(&softdep_worklist_req);
723 		return (error);
724 	}
725 	/*
726 	 * Alternately flush the block device associated with the mount
727 	 * point and process any dependencies that the flushing
728 	 * creates. In theory, this loop can happen at most twice,
729 	 * but we give it a few extra just to be sure.
730 	 */
731 	devvp = VFSTOUFS(oldmnt)->um_devvp;
732 	for (loopcnt = 10; loopcnt > 0; ) {
733 		if (softdep_process_worklist(oldmnt) == 0) {
734 			loopcnt--;
735 			/*
736 			 * Do another flush in case any vnodes were brought in
737 			 * as part of the cleanup operations.
738 			 */
739 			if ((error = ffs_flushfiles(oldmnt, flags)) != 0)
740 				break;
741 			/*
742 			 * If we still found nothing to do, we are really done.
743 			 */
744 			if (softdep_process_worklist(oldmnt) == 0)
745 				break;
746 		}
747 		vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
748 		error = VOP_FSYNC(devvp, MNT_WAIT, 0);
749 		vn_unlock(devvp);
750 		if (error)
751 			break;
752 	}
753 	ACQUIRE_LOCK(&lk);
754 	softdep_worklist_busy = 0;
755 	if (softdep_worklist_req)
756 		wakeup(&softdep_worklist_req);
757 	FREE_LOCK(&lk);
758 
759 	/*
760 	 * If we are unmounting then it is an error to fail. If we
761 	 * are simply trying to downgrade to read-only, then filesystem
762 	 * activity can keep us busy forever, so we just fail with EBUSY.
763 	 */
764 	if (loopcnt == 0) {
765 		if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT)
766 			panic("softdep_flushfiles: looping");
767 		error = EBUSY;
768 	}
769 	return (error);
770 }
771 
772 /*
773  * Structure hashing.
774  *
775  * There are three types of structures that can be looked up:
776  *	1) pagedep structures identified by mount point, inode number,
777  *	   and logical block.
778  *	2) inodedep structures identified by mount point and inode number.
779  *	3) newblk structures identified by mount point and
780  *	   physical block number.
781  *
782  * The "pagedep" and "inodedep" dependency structures are hashed
783  * separately from the file blocks and inodes to which they correspond.
784  * This separation helps when the in-memory copy of an inode or
785  * file block must be replaced. It also obviates the need to access
786  * an inode or file page when simply updating (or de-allocating)
787  * dependency structures. Lookup of newblk structures is needed to
788  * find newly allocated blocks when trying to associate them with
789  * their allocdirect or allocindir structure.
790  *
791  * The lookup routines optionally create and hash a new instance when
792  * an existing entry is not found.
793  */
794 #define DEPALLOC	0x0001	/* allocate structure if lookup fails */
795 #define NODELAY		0x0002	/* cannot do background work */
796 
797 /*
798  * Structures and routines associated with pagedep caching.
799  */
800 LIST_HEAD(pagedep_hashhead, pagedep) *pagedep_hashtbl;
801 u_long	pagedep_hash;		/* size of hash table - 1 */
802 #define	PAGEDEP_HASH(mp, inum, lbn) \
803 	(&pagedep_hashtbl[((((register_t)(mp)) >> 13) + (inum) + (lbn)) & \
804 	    pagedep_hash])
805 static struct sema pagedep_in_progress;
806 
807 /*
808  * Helper routine for pagedep_lookup()
809  */
810 static __inline
811 struct pagedep *
812 pagedep_find(struct pagedep_hashhead *pagedephd, ino_t ino, ufs_lbn_t lbn,
813 	     struct mount *mp)
814 {
815 	struct pagedep *pagedep;
816 
817 	LIST_FOREACH(pagedep, pagedephd, pd_hash) {
818 		if (ino == pagedep->pd_ino &&
819 		    lbn == pagedep->pd_lbn &&
820 		    mp == pagedep->pd_mnt) {
821 			return (pagedep);
822 		}
823 	}
824 	return(NULL);
825 }
826 
827 /*
828  * Look up a pagedep. Return 1 if found, 0 if not found.
829  * If not found, allocate if DEPALLOC flag is passed.
830  * Found or allocated entry is returned in pagedeppp.
831  * This routine must be called with splbio interrupts blocked.
832  */
833 static int
834 pagedep_lookup(struct inode *ip, ufs_lbn_t lbn, int flags,
835 	       struct pagedep **pagedeppp)
836 {
837 	struct pagedep *pagedep;
838 	struct pagedep_hashhead *pagedephd;
839 	struct mount *mp;
840 	int i;
841 
842 	KKASSERT(lock_held(&lk));
843 
844 	mp = ITOV(ip)->v_mount;
845 	pagedephd = PAGEDEP_HASH(mp, ip->i_number, lbn);
846 top:
847 	*pagedeppp = pagedep_find(pagedephd, ip->i_number, lbn, mp);
848 	if (*pagedeppp)
849 		return(1);
850 	if ((flags & DEPALLOC) == 0)
851 		return (0);
852 	if (sema_get(&pagedep_in_progress, &lk) == 0)
853 		goto top;
854 
855 	FREE_LOCK(&lk);
856 	pagedep = kmalloc(sizeof(struct pagedep), M_PAGEDEP,
857 			  M_SOFTDEP_FLAGS | M_ZERO);
858 	ACQUIRE_LOCK(&lk);
859 	if (pagedep_find(pagedephd, ip->i_number, lbn, mp)) {
860 		kprintf("pagedep_lookup: blocking race avoided\n");
861 		sema_release(&pagedep_in_progress, &lk);
862 		kfree(pagedep, M_PAGEDEP);
863 		goto top;
864 	}
865 
866 	pagedep->pd_list.wk_type = D_PAGEDEP;
867 	pagedep->pd_mnt = mp;
868 	pagedep->pd_ino = ip->i_number;
869 	pagedep->pd_lbn = lbn;
870 	LIST_INIT(&pagedep->pd_dirremhd);
871 	LIST_INIT(&pagedep->pd_pendinghd);
872 	for (i = 0; i < DAHASHSZ; i++)
873 		LIST_INIT(&pagedep->pd_diraddhd[i]);
874 	LIST_INSERT_HEAD(pagedephd, pagedep, pd_hash);
875 	sema_release(&pagedep_in_progress, &lk);
876 	*pagedeppp = pagedep;
877 	return (0);
878 }
879 
880 /*
881  * Structures and routines associated with inodedep caching.
882  */
883 LIST_HEAD(inodedep_hashhead, inodedep) *inodedep_hashtbl;
884 static u_long	inodedep_hash;	/* size of hash table - 1 */
885 static long	num_inodedep;	/* number of inodedep allocated */
886 #define	INODEDEP_HASH(fs, inum) \
887       (&inodedep_hashtbl[((((register_t)(fs)) >> 13) + (inum)) & inodedep_hash])
888 static struct sema inodedep_in_progress;
889 
890 /*
891  * Helper routine for inodedep_lookup()
892  */
893 static __inline
894 struct inodedep *
895 inodedep_find(struct inodedep_hashhead *inodedephd, struct fs *fs, ino_t inum)
896 {
897 	struct inodedep *inodedep;
898 
899 	LIST_FOREACH(inodedep, inodedephd, id_hash) {
900 		if (inum == inodedep->id_ino && fs == inodedep->id_fs)
901 			return(inodedep);
902 	}
903 	return (NULL);
904 }
905 
906 /*
907  * Look up a inodedep. Return 1 if found, 0 if not found.
908  * If not found, allocate if DEPALLOC flag is passed.
909  * Found or allocated entry is returned in inodedeppp.
910  * This routine must be called with splbio interrupts blocked.
911  */
912 static int
913 inodedep_lookup(struct fs *fs, ino_t inum, int flags,
914 	        struct inodedep **inodedeppp)
915 {
916 	struct inodedep *inodedep;
917 	struct inodedep_hashhead *inodedephd;
918 
919 	KKASSERT(lock_held(&lk));
920 
921 	inodedephd = INODEDEP_HASH(fs, inum);
922 top:
923 	*inodedeppp = inodedep_find(inodedephd, fs, inum);
924 	if (*inodedeppp)
925 		return (1);
926 	if ((flags & DEPALLOC) == 0)
927 		return (0);
928 
929 	/*
930 	 * If we are over our limit, try to improve the situation.
931 	 */
932 	if (num_inodedep > max_softdeps / 2)
933 		speedup_syncer(NULL);
934 	if (num_inodedep > max_softdeps &&
935 	    (flags & NODELAY) == 0 &&
936 	    request_cleanup(FLUSH_INODES)) {
937 		goto top;
938 	}
939 	if (sema_get(&inodedep_in_progress, &lk) == 0)
940 		goto top;
941 
942 	FREE_LOCK(&lk);
943 	inodedep = kmalloc(sizeof(struct inodedep), M_INODEDEP,
944 			   M_SOFTDEP_FLAGS | M_ZERO);
945 	ACQUIRE_LOCK(&lk);
946 	if (inodedep_find(inodedephd, fs, inum)) {
947 		kprintf("inodedep_lookup: blocking race avoided\n");
948 		sema_release(&inodedep_in_progress, &lk);
949 		kfree(inodedep, M_INODEDEP);
950 		goto top;
951 	}
952 	inodedep->id_list.wk_type = D_INODEDEP;
953 	inodedep->id_fs = fs;
954 	inodedep->id_ino = inum;
955 	inodedep->id_state = ALLCOMPLETE;
956 	inodedep->id_nlinkdelta = 0;
957 	inodedep->id_savedino = NULL;
958 	inodedep->id_savedsize = -1;
959 	inodedep->id_buf = NULL;
960 	LIST_INIT(&inodedep->id_pendinghd);
961 	LIST_INIT(&inodedep->id_inowait);
962 	LIST_INIT(&inodedep->id_bufwait);
963 	TAILQ_INIT(&inodedep->id_inoupdt);
964 	TAILQ_INIT(&inodedep->id_newinoupdt);
965 	num_inodedep += 1;
966 	LIST_INSERT_HEAD(inodedephd, inodedep, id_hash);
967 	sema_release(&inodedep_in_progress, &lk);
968 	*inodedeppp = inodedep;
969 	return (0);
970 }
971 
972 /*
973  * Structures and routines associated with newblk caching.
974  */
975 LIST_HEAD(newblk_hashhead, newblk) *newblk_hashtbl;
976 u_long	newblk_hash;		/* size of hash table - 1 */
977 #define	NEWBLK_HASH(fs, inum) \
978 	(&newblk_hashtbl[((((register_t)(fs)) >> 13) + (inum)) & newblk_hash])
979 static struct sema newblk_in_progress;
980 
981 /*
982  * Helper routine for newblk_lookup()
983  */
984 static __inline
985 struct newblk *
986 newblk_find(struct newblk_hashhead *newblkhd, struct fs *fs,
987 	    ufs_daddr_t newblkno)
988 {
989 	struct newblk *newblk;
990 
991 	LIST_FOREACH(newblk, newblkhd, nb_hash) {
992 		if (newblkno == newblk->nb_newblkno && fs == newblk->nb_fs)
993 			return (newblk);
994 	}
995 	return(NULL);
996 }
997 
998 /*
999  * Look up a newblk. Return 1 if found, 0 if not found.
1000  * If not found, allocate if DEPALLOC flag is passed.
1001  * Found or allocated entry is returned in newblkpp.
1002  */
1003 static int
1004 newblk_lookup(struct fs *fs, ufs_daddr_t newblkno, int flags,
1005 	      struct newblk **newblkpp)
1006 {
1007 	struct newblk *newblk;
1008 	struct newblk_hashhead *newblkhd;
1009 
1010 	newblkhd = NEWBLK_HASH(fs, newblkno);
1011 top:
1012 	*newblkpp = newblk_find(newblkhd, fs, newblkno);
1013 	if (*newblkpp)
1014 		return(1);
1015 	if ((flags & DEPALLOC) == 0)
1016 		return (0);
1017 	if (sema_get(&newblk_in_progress, NULL) == 0)
1018 		goto top;
1019 
1020 	newblk = kmalloc(sizeof(struct newblk), M_NEWBLK,
1021 			 M_SOFTDEP_FLAGS | M_ZERO);
1022 
1023 	if (newblk_find(newblkhd, fs, newblkno)) {
1024 		kprintf("newblk_lookup: blocking race avoided\n");
1025 		sema_release(&pagedep_in_progress, NULL);
1026 		kfree(newblk, M_NEWBLK);
1027 		goto top;
1028 	}
1029 	newblk->nb_state = 0;
1030 	newblk->nb_fs = fs;
1031 	newblk->nb_newblkno = newblkno;
1032 	LIST_INSERT_HEAD(newblkhd, newblk, nb_hash);
1033 	sema_release(&newblk_in_progress, NULL);
1034 	*newblkpp = newblk;
1035 	return (0);
1036 }
1037 
1038 /*
1039  * Executed during filesystem system initialization before
1040  * mounting any filesystems.
1041  */
1042 void
1043 softdep_initialize(void)
1044 {
1045 	size_t idsize = sizeof(struct inodedep);
1046 	int hsize = vfs_inodehashsize();
1047 
1048 	LIST_INIT(&mkdirlisthd);
1049 	LIST_INIT(&softdep_workitem_pending);
1050 	max_softdeps = min(maxvnodes * 8, M_INODEDEP->ks_limit / (2 * idsize));
1051 
1052 	pagedep_hashtbl = hashinit(hsize / 4, M_PAGEDEP, &pagedep_hash);
1053 	lockinit(&lk, "ffs_softdep", 0, LK_CANRECURSE);
1054 	sema_init(&pagedep_in_progress, "pagedep", 0);
1055 	inodedep_hashtbl = hashinit(hsize, M_INODEDEP, &inodedep_hash);
1056 	sema_init(&inodedep_in_progress, "inodedep", 0);
1057 	newblk_hashtbl = hashinit(64, M_NEWBLK, &newblk_hash);
1058 	sema_init(&newblk_in_progress, "newblk", 0);
1059 	add_bio_ops(&softdep_bioops);
1060 }
1061 
1062 /*
1063  * Called at mount time to notify the dependency code that a
1064  * filesystem wishes to use it.
1065  */
1066 int
1067 softdep_mount(struct vnode *devvp, struct mount *mp, struct fs *fs)
1068 {
1069 	struct csum cstotal;
1070 	struct cg *cgp;
1071 	struct buf *bp;
1072 	int error, cyl;
1073 
1074 	mp->mnt_flag &= ~MNT_ASYNC;
1075 	mp->mnt_flag |= MNT_SOFTDEP;
1076 	mp->mnt_bioops = &softdep_bioops;
1077 	/*
1078 	 * When doing soft updates, the counters in the
1079 	 * superblock may have gotten out of sync, so we have
1080 	 * to scan the cylinder groups and recalculate them.
1081 	 */
1082 	if (fs->fs_clean != 0)
1083 		return (0);
1084 	bzero(&cstotal, sizeof cstotal);
1085 	for (cyl = 0; cyl < fs->fs_ncg; cyl++) {
1086 		if ((error = bread(devvp, fsbtodoff(fs, cgtod(fs, cyl)),
1087 				   fs->fs_cgsize, &bp)) != 0) {
1088 			brelse(bp);
1089 			return (error);
1090 		}
1091 		cgp = (struct cg *)bp->b_data;
1092 		cstotal.cs_nffree += cgp->cg_cs.cs_nffree;
1093 		cstotal.cs_nbfree += cgp->cg_cs.cs_nbfree;
1094 		cstotal.cs_nifree += cgp->cg_cs.cs_nifree;
1095 		cstotal.cs_ndir += cgp->cg_cs.cs_ndir;
1096 		fs->fs_cs(fs, cyl) = cgp->cg_cs;
1097 		brelse(bp);
1098 	}
1099 #ifdef DEBUG
1100 	if (bcmp(&cstotal, &fs->fs_cstotal, sizeof cstotal))
1101 		kprintf("ffs_mountfs: superblock updated for soft updates\n");
1102 #endif
1103 	bcopy(&cstotal, &fs->fs_cstotal, sizeof cstotal);
1104 	return (0);
1105 }
1106 
1107 /*
1108  * Protecting the freemaps (or bitmaps).
1109  *
1110  * To eliminate the need to execute fsck before mounting a filesystem
1111  * after a power failure, one must (conservatively) guarantee that the
1112  * on-disk copy of the bitmaps never indicate that a live inode or block is
1113  * free.  So, when a block or inode is allocated, the bitmap should be
1114  * updated (on disk) before any new pointers.  When a block or inode is
1115  * freed, the bitmap should not be updated until all pointers have been
1116  * reset.  The latter dependency is handled by the delayed de-allocation
1117  * approach described below for block and inode de-allocation.  The former
1118  * dependency is handled by calling the following procedure when a block or
1119  * inode is allocated. When an inode is allocated an "inodedep" is created
1120  * with its DEPCOMPLETE flag cleared until its bitmap is written to disk.
1121  * Each "inodedep" is also inserted into the hash indexing structure so
1122  * that any additional link additions can be made dependent on the inode
1123  * allocation.
1124  *
1125  * The ufs filesystem maintains a number of free block counts (e.g., per
1126  * cylinder group, per cylinder and per <cylinder, rotational position> pair)
1127  * in addition to the bitmaps.  These counts are used to improve efficiency
1128  * during allocation and therefore must be consistent with the bitmaps.
1129  * There is no convenient way to guarantee post-crash consistency of these
1130  * counts with simple update ordering, for two main reasons: (1) The counts
1131  * and bitmaps for a single cylinder group block are not in the same disk
1132  * sector.  If a disk write is interrupted (e.g., by power failure), one may
1133  * be written and the other not.  (2) Some of the counts are located in the
1134  * superblock rather than the cylinder group block. So, we focus our soft
1135  * updates implementation on protecting the bitmaps. When mounting a
1136  * filesystem, we recompute the auxiliary counts from the bitmaps.
1137  */
1138 
1139 /*
1140  * Called just after updating the cylinder group block to allocate an inode.
1141  *
1142  * Parameters:
1143  *	bp:		buffer for cylgroup block with inode map
1144  *	ip:		inode related to allocation
1145  *	newinum:	new inode number being allocated
1146  */
1147 void
1148 softdep_setup_inomapdep(struct buf *bp, struct inode *ip, ino_t newinum)
1149 {
1150 	struct inodedep *inodedep;
1151 	struct bmsafemap *bmsafemap;
1152 
1153 	/*
1154 	 * Create a dependency for the newly allocated inode.
1155 	 * Panic if it already exists as something is seriously wrong.
1156 	 * Otherwise add it to the dependency list for the buffer holding
1157 	 * the cylinder group map from which it was allocated.
1158 	 */
1159 	ACQUIRE_LOCK(&lk);
1160 	if ((inodedep_lookup(ip->i_fs, newinum, DEPALLOC|NODELAY, &inodedep))) {
1161 		panic("softdep_setup_inomapdep: found inode");
1162 	}
1163 	inodedep->id_buf = bp;
1164 	inodedep->id_state &= ~DEPCOMPLETE;
1165 	bmsafemap = bmsafemap_lookup(bp);
1166 	LIST_INSERT_HEAD(&bmsafemap->sm_inodedephd, inodedep, id_deps);
1167 	FREE_LOCK(&lk);
1168 }
1169 
1170 /*
1171  * Called just after updating the cylinder group block to
1172  * allocate block or fragment.
1173  *
1174  * Parameters:
1175  *	bp:		buffer for cylgroup block with block map
1176  *	fs:		filesystem doing allocation
1177  *	newblkno:	number of newly allocated block
1178  */
1179 void
1180 softdep_setup_blkmapdep(struct buf *bp, struct fs *fs,
1181 			ufs_daddr_t newblkno)
1182 {
1183 	struct newblk *newblk;
1184 	struct bmsafemap *bmsafemap;
1185 
1186 	/*
1187 	 * Create a dependency for the newly allocated block.
1188 	 * Add it to the dependency list for the buffer holding
1189 	 * the cylinder group map from which it was allocated.
1190 	 */
1191 	if (newblk_lookup(fs, newblkno, DEPALLOC, &newblk) != 0)
1192 		panic("softdep_setup_blkmapdep: found block");
1193 	ACQUIRE_LOCK(&lk);
1194 	newblk->nb_bmsafemap = bmsafemap = bmsafemap_lookup(bp);
1195 	LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, nb_deps);
1196 	FREE_LOCK(&lk);
1197 }
1198 
1199 /*
1200  * Find the bmsafemap associated with a cylinder group buffer.
1201  * If none exists, create one. The buffer must be locked when
1202  * this routine is called and this routine must be called with
1203  * splbio interrupts blocked.
1204  */
1205 static struct bmsafemap *
1206 bmsafemap_lookup(struct buf *bp)
1207 {
1208 	struct bmsafemap *bmsafemap;
1209 	struct worklist *wk;
1210 
1211 	KKASSERT(lock_held(&lk));
1212 
1213 	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
1214 		if (wk->wk_type == D_BMSAFEMAP)
1215 			return (WK_BMSAFEMAP(wk));
1216 	}
1217 	FREE_LOCK(&lk);
1218 	bmsafemap = kmalloc(sizeof(struct bmsafemap), M_BMSAFEMAP,
1219 			    M_SOFTDEP_FLAGS);
1220 	bmsafemap->sm_list.wk_type = D_BMSAFEMAP;
1221 	bmsafemap->sm_list.wk_state = 0;
1222 	bmsafemap->sm_buf = bp;
1223 	LIST_INIT(&bmsafemap->sm_allocdirecthd);
1224 	LIST_INIT(&bmsafemap->sm_allocindirhd);
1225 	LIST_INIT(&bmsafemap->sm_inodedephd);
1226 	LIST_INIT(&bmsafemap->sm_newblkhd);
1227 	ACQUIRE_LOCK(&lk);
1228 	WORKLIST_INSERT_BP(bp, &bmsafemap->sm_list);
1229 	return (bmsafemap);
1230 }
1231 
1232 /*
1233  * Direct block allocation dependencies.
1234  *
1235  * When a new block is allocated, the corresponding disk locations must be
1236  * initialized (with zeros or new data) before the on-disk inode points to
1237  * them.  Also, the freemap from which the block was allocated must be
1238  * updated (on disk) before the inode's pointer. These two dependencies are
1239  * independent of each other and are needed for all file blocks and indirect
1240  * blocks that are pointed to directly by the inode.  Just before the
1241  * "in-core" version of the inode is updated with a newly allocated block
1242  * number, a procedure (below) is called to setup allocation dependency
1243  * structures.  These structures are removed when the corresponding
1244  * dependencies are satisfied or when the block allocation becomes obsolete
1245  * (i.e., the file is deleted, the block is de-allocated, or the block is a
1246  * fragment that gets upgraded).  All of these cases are handled in
1247  * procedures described later.
1248  *
1249  * When a file extension causes a fragment to be upgraded, either to a larger
1250  * fragment or to a full block, the on-disk location may change (if the
1251  * previous fragment could not simply be extended). In this case, the old
1252  * fragment must be de-allocated, but not until after the inode's pointer has
1253  * been updated. In most cases, this is handled by later procedures, which
1254  * will construct a "freefrag" structure to be added to the workitem queue
1255  * when the inode update is complete (or obsolete).  The main exception to
1256  * this is when an allocation occurs while a pending allocation dependency
1257  * (for the same block pointer) remains.  This case is handled in the main
1258  * allocation dependency setup procedure by immediately freeing the
1259  * unreferenced fragments.
1260  *
1261  * Parameters:
1262  *	ip:		inode to which block is being added
1263  *	lbn:		block pointer within inode
1264  *	newblkno:	disk block number being added
1265  *	oldblkno:	previous block number, 0 unless frag
1266  *	newsize:	size of new block
1267  *	oldsize:	size of new block
1268  *	bp:		bp for allocated block
1269  */
1270 void
1271 softdep_setup_allocdirect(struct inode *ip, ufs_lbn_t lbn, ufs_daddr_t newblkno,
1272 			  ufs_daddr_t oldblkno, long newsize, long oldsize,
1273 			  struct buf *bp)
1274 {
1275 	struct allocdirect *adp, *oldadp;
1276 	struct allocdirectlst *adphead;
1277 	struct bmsafemap *bmsafemap;
1278 	struct inodedep *inodedep;
1279 	struct pagedep *pagedep;
1280 	struct newblk *newblk;
1281 
1282 	adp = kmalloc(sizeof(struct allocdirect), M_ALLOCDIRECT,
1283 		      M_SOFTDEP_FLAGS | M_ZERO);
1284 	adp->ad_list.wk_type = D_ALLOCDIRECT;
1285 	adp->ad_lbn = lbn;
1286 	adp->ad_newblkno = newblkno;
1287 	adp->ad_oldblkno = oldblkno;
1288 	adp->ad_newsize = newsize;
1289 	adp->ad_oldsize = oldsize;
1290 	adp->ad_state = ATTACHED;
1291 	if (newblkno == oldblkno)
1292 		adp->ad_freefrag = NULL;
1293 	else
1294 		adp->ad_freefrag = newfreefrag(ip, oldblkno, oldsize);
1295 
1296 	if (newblk_lookup(ip->i_fs, newblkno, 0, &newblk) == 0)
1297 		panic("softdep_setup_allocdirect: lost block");
1298 
1299 	ACQUIRE_LOCK(&lk);
1300 	inodedep_lookup(ip->i_fs, ip->i_number, DEPALLOC | NODELAY, &inodedep);
1301 	adp->ad_inodedep = inodedep;
1302 
1303 	if (newblk->nb_state == DEPCOMPLETE) {
1304 		adp->ad_state |= DEPCOMPLETE;
1305 		adp->ad_buf = NULL;
1306 	} else {
1307 		bmsafemap = newblk->nb_bmsafemap;
1308 		adp->ad_buf = bmsafemap->sm_buf;
1309 		LIST_REMOVE(newblk, nb_deps);
1310 		LIST_INSERT_HEAD(&bmsafemap->sm_allocdirecthd, adp, ad_deps);
1311 	}
1312 	LIST_REMOVE(newblk, nb_hash);
1313 	kfree(newblk, M_NEWBLK);
1314 
1315 	WORKLIST_INSERT_BP(bp, &adp->ad_list);
1316 	if (lbn >= NDADDR) {
1317 		/* allocating an indirect block */
1318 		if (oldblkno != 0) {
1319 			panic("softdep_setup_allocdirect: non-zero indir");
1320 		}
1321 	} else {
1322 		/*
1323 		 * Allocating a direct block.
1324 		 *
1325 		 * If we are allocating a directory block, then we must
1326 		 * allocate an associated pagedep to track additions and
1327 		 * deletions.
1328 		 */
1329 		if ((ip->i_mode & IFMT) == IFDIR &&
1330 		    pagedep_lookup(ip, lbn, DEPALLOC, &pagedep) == 0) {
1331 			WORKLIST_INSERT_BP(bp, &pagedep->pd_list);
1332 		}
1333 	}
1334 	/*
1335 	 * The list of allocdirects must be kept in sorted and ascending
1336 	 * order so that the rollback routines can quickly determine the
1337 	 * first uncommitted block (the size of the file stored on disk
1338 	 * ends at the end of the lowest committed fragment, or if there
1339 	 * are no fragments, at the end of the highest committed block).
1340 	 * Since files generally grow, the typical case is that the new
1341 	 * block is to be added at the end of the list. We speed this
1342 	 * special case by checking against the last allocdirect in the
1343 	 * list before laboriously traversing the list looking for the
1344 	 * insertion point.
1345 	 */
1346 	adphead = &inodedep->id_newinoupdt;
1347 	oldadp = TAILQ_LAST(adphead, allocdirectlst);
1348 	if (oldadp == NULL || oldadp->ad_lbn <= lbn) {
1349 		/* insert at end of list */
1350 		TAILQ_INSERT_TAIL(adphead, adp, ad_next);
1351 		if (oldadp != NULL && oldadp->ad_lbn == lbn)
1352 			allocdirect_merge(adphead, adp, oldadp);
1353 		FREE_LOCK(&lk);
1354 		return;
1355 	}
1356 	TAILQ_FOREACH(oldadp, adphead, ad_next) {
1357 		if (oldadp->ad_lbn >= lbn)
1358 			break;
1359 	}
1360 	if (oldadp == NULL) {
1361 		panic("softdep_setup_allocdirect: lost entry");
1362 	}
1363 	/* insert in middle of list */
1364 	TAILQ_INSERT_BEFORE(oldadp, adp, ad_next);
1365 	if (oldadp->ad_lbn == lbn)
1366 		allocdirect_merge(adphead, adp, oldadp);
1367 	FREE_LOCK(&lk);
1368 }
1369 
1370 /*
1371  * Replace an old allocdirect dependency with a newer one.
1372  * This routine must be called with splbio interrupts blocked.
1373  *
1374  * Parameters:
1375  *	adphead:	head of list holding allocdirects
1376  *	newadp:		allocdirect being added
1377  *	oldadp:		existing allocdirect being checked
1378  */
1379 static void
1380 allocdirect_merge(struct allocdirectlst *adphead,
1381 		  struct allocdirect *newadp,
1382 		  struct allocdirect *oldadp)
1383 {
1384 	struct freefrag *freefrag;
1385 
1386 	KKASSERT(lock_held(&lk));
1387 
1388 	if (newadp->ad_oldblkno != oldadp->ad_newblkno ||
1389 	    newadp->ad_oldsize != oldadp->ad_newsize ||
1390 	    newadp->ad_lbn >= NDADDR) {
1391 		panic("allocdirect_check: old %d != new %d || lbn %ld >= %d",
1392 		    newadp->ad_oldblkno, oldadp->ad_newblkno, newadp->ad_lbn,
1393 		    NDADDR);
1394 	}
1395 	newadp->ad_oldblkno = oldadp->ad_oldblkno;
1396 	newadp->ad_oldsize = oldadp->ad_oldsize;
1397 	/*
1398 	 * If the old dependency had a fragment to free or had never
1399 	 * previously had a block allocated, then the new dependency
1400 	 * can immediately post its freefrag and adopt the old freefrag.
1401 	 * This action is done by swapping the freefrag dependencies.
1402 	 * The new dependency gains the old one's freefrag, and the
1403 	 * old one gets the new one and then immediately puts it on
1404 	 * the worklist when it is freed by free_allocdirect. It is
1405 	 * not possible to do this swap when the old dependency had a
1406 	 * non-zero size but no previous fragment to free. This condition
1407 	 * arises when the new block is an extension of the old block.
1408 	 * Here, the first part of the fragment allocated to the new
1409 	 * dependency is part of the block currently claimed on disk by
1410 	 * the old dependency, so cannot legitimately be freed until the
1411 	 * conditions for the new dependency are fulfilled.
1412 	 */
1413 	if (oldadp->ad_freefrag != NULL || oldadp->ad_oldblkno == 0) {
1414 		freefrag = newadp->ad_freefrag;
1415 		newadp->ad_freefrag = oldadp->ad_freefrag;
1416 		oldadp->ad_freefrag = freefrag;
1417 	}
1418 	free_allocdirect(adphead, oldadp, 0);
1419 }
1420 
1421 /*
1422  * Allocate a new freefrag structure if needed.
1423  */
1424 static struct freefrag *
1425 newfreefrag(struct inode *ip, ufs_daddr_t blkno, long size)
1426 {
1427 	struct freefrag *freefrag;
1428 	struct fs *fs;
1429 
1430 	if (blkno == 0)
1431 		return (NULL);
1432 	fs = ip->i_fs;
1433 	if (fragnum(fs, blkno) + numfrags(fs, size) > fs->fs_frag)
1434 		panic("newfreefrag: frag size");
1435 	freefrag = kmalloc(sizeof(struct freefrag), M_FREEFRAG,
1436 			   M_SOFTDEP_FLAGS);
1437 	freefrag->ff_list.wk_type = D_FREEFRAG;
1438 	freefrag->ff_state = ip->i_uid & ~ONWORKLIST;	/* XXX - used below */
1439 	freefrag->ff_inum = ip->i_number;
1440 	freefrag->ff_fs = fs;
1441 	freefrag->ff_devvp = ip->i_devvp;
1442 	freefrag->ff_blkno = blkno;
1443 	freefrag->ff_fragsize = size;
1444 	return (freefrag);
1445 }
1446 
1447 /*
1448  * This workitem de-allocates fragments that were replaced during
1449  * file block allocation.
1450  */
1451 static void
1452 handle_workitem_freefrag(struct freefrag *freefrag)
1453 {
1454 	struct inode tip;
1455 
1456 	tip.i_fs = freefrag->ff_fs;
1457 	tip.i_devvp = freefrag->ff_devvp;
1458 	tip.i_dev = freefrag->ff_devvp->v_rdev;
1459 	tip.i_number = freefrag->ff_inum;
1460 	tip.i_uid = freefrag->ff_state & ~ONWORKLIST;	/* XXX - set above */
1461 	ffs_blkfree(&tip, freefrag->ff_blkno, freefrag->ff_fragsize);
1462 	kfree(freefrag, M_FREEFRAG);
1463 }
1464 
1465 /*
1466  * Indirect block allocation dependencies.
1467  *
1468  * The same dependencies that exist for a direct block also exist when
1469  * a new block is allocated and pointed to by an entry in a block of
1470  * indirect pointers. The undo/redo states described above are also
1471  * used here. Because an indirect block contains many pointers that
1472  * may have dependencies, a second copy of the entire in-memory indirect
1473  * block is kept. The buffer cache copy is always completely up-to-date.
1474  * The second copy, which is used only as a source for disk writes,
1475  * contains only the safe pointers (i.e., those that have no remaining
1476  * update dependencies). The second copy is freed when all pointers
1477  * are safe. The cache is not allowed to replace indirect blocks with
1478  * pending update dependencies. If a buffer containing an indirect
1479  * block with dependencies is written, these routines will mark it
1480  * dirty again. It can only be successfully written once all the
1481  * dependencies are removed. The ffs_fsync routine in conjunction with
1482  * softdep_sync_metadata work together to get all the dependencies
1483  * removed so that a file can be successfully written to disk. Three
1484  * procedures are used when setting up indirect block pointer
1485  * dependencies. The division is necessary because of the organization
1486  * of the "balloc" routine and because of the distinction between file
1487  * pages and file metadata blocks.
1488  */
1489 
1490 /*
1491  * Allocate a new allocindir structure.
1492  *
1493  * Parameters:
1494  *	ip:		inode for file being extended
1495  *	ptrno:		offset of pointer in indirect block
1496  *	newblkno:	disk block number being added
1497  *	oldblkno:	previous block number, 0 if none
1498  */
1499 static struct allocindir *
1500 newallocindir(struct inode *ip, int ptrno, ufs_daddr_t newblkno,
1501 	      ufs_daddr_t oldblkno)
1502 {
1503 	struct allocindir *aip;
1504 
1505 	aip = kmalloc(sizeof(struct allocindir), M_ALLOCINDIR,
1506 		      M_SOFTDEP_FLAGS | M_ZERO);
1507 	aip->ai_list.wk_type = D_ALLOCINDIR;
1508 	aip->ai_state = ATTACHED;
1509 	aip->ai_offset = ptrno;
1510 	aip->ai_newblkno = newblkno;
1511 	aip->ai_oldblkno = oldblkno;
1512 	aip->ai_freefrag = newfreefrag(ip, oldblkno, ip->i_fs->fs_bsize);
1513 	return (aip);
1514 }
1515 
1516 /*
1517  * Called just before setting an indirect block pointer
1518  * to a newly allocated file page.
1519  *
1520  * Parameters:
1521  *	ip:		inode for file being extended
1522  *	lbn:		allocated block number within file
1523  *	bp:		buffer with indirect blk referencing page
1524  *	ptrno:		offset of pointer in indirect block
1525  *	newblkno:	disk block number being added
1526  *	oldblkno:	previous block number, 0 if none
1527  *	nbp:		buffer holding allocated page
1528  */
1529 void
1530 softdep_setup_allocindir_page(struct inode *ip, ufs_lbn_t lbn,
1531 			      struct buf *bp, int ptrno,
1532 			      ufs_daddr_t newblkno, ufs_daddr_t oldblkno,
1533 			      struct buf *nbp)
1534 {
1535 	struct allocindir *aip;
1536 	struct pagedep *pagedep;
1537 
1538 	aip = newallocindir(ip, ptrno, newblkno, oldblkno);
1539 	ACQUIRE_LOCK(&lk);
1540 	/*
1541 	 * If we are allocating a directory page, then we must
1542 	 * allocate an associated pagedep to track additions and
1543 	 * deletions.
1544 	 */
1545 	if ((ip->i_mode & IFMT) == IFDIR &&
1546 	    pagedep_lookup(ip, lbn, DEPALLOC, &pagedep) == 0)
1547 		WORKLIST_INSERT_BP(nbp, &pagedep->pd_list);
1548 	WORKLIST_INSERT_BP(nbp, &aip->ai_list);
1549 	FREE_LOCK(&lk);
1550 	setup_allocindir_phase2(bp, ip, aip);
1551 }
1552 
1553 /*
1554  * Called just before setting an indirect block pointer to a
1555  * newly allocated indirect block.
1556  * Parameters:
1557  *	nbp:		newly allocated indirect block
1558  *	ip:		inode for file being extended
1559  *	bp:		indirect block referencing allocated block
1560  *	ptrno:		offset of pointer in indirect block
1561  *	newblkno:	disk block number being added
1562  */
1563 void
1564 softdep_setup_allocindir_meta(struct buf *nbp, struct inode *ip,
1565 			      struct buf *bp, int ptrno,
1566 			      ufs_daddr_t newblkno)
1567 {
1568 	struct allocindir *aip;
1569 
1570 	aip = newallocindir(ip, ptrno, newblkno, 0);
1571 	ACQUIRE_LOCK(&lk);
1572 	WORKLIST_INSERT_BP(nbp, &aip->ai_list);
1573 	FREE_LOCK(&lk);
1574 	setup_allocindir_phase2(bp, ip, aip);
1575 }
1576 
1577 /*
1578  * Called to finish the allocation of the "aip" allocated
1579  * by one of the two routines above.
1580  *
1581  * Parameters:
1582  *	bp:	in-memory copy of the indirect block
1583  *	ip:	inode for file being extended
1584  *	aip:	allocindir allocated by the above routines
1585  */
1586 static void
1587 setup_allocindir_phase2(struct buf *bp, struct inode *ip,
1588 			struct allocindir *aip)
1589 {
1590 	struct worklist *wk;
1591 	struct indirdep *indirdep, *newindirdep;
1592 	struct bmsafemap *bmsafemap;
1593 	struct allocindir *oldaip;
1594 	struct freefrag *freefrag;
1595 	struct newblk *newblk;
1596 
1597 	if (bp->b_loffset >= 0)
1598 		panic("setup_allocindir_phase2: not indir blk");
1599 	for (indirdep = NULL, newindirdep = NULL; ; ) {
1600 		ACQUIRE_LOCK(&lk);
1601 		LIST_FOREACH(wk, &bp->b_dep, wk_list) {
1602 			if (wk->wk_type != D_INDIRDEP)
1603 				continue;
1604 			indirdep = WK_INDIRDEP(wk);
1605 			break;
1606 		}
1607 		if (indirdep == NULL && newindirdep) {
1608 			indirdep = newindirdep;
1609 			WORKLIST_INSERT_BP(bp, &indirdep->ir_list);
1610 			newindirdep = NULL;
1611 		}
1612 		FREE_LOCK(&lk);
1613 		if (indirdep) {
1614 			if (newblk_lookup(ip->i_fs, aip->ai_newblkno, 0,
1615 			    &newblk) == 0)
1616 				panic("setup_allocindir: lost block");
1617 			ACQUIRE_LOCK(&lk);
1618 			if (newblk->nb_state == DEPCOMPLETE) {
1619 				aip->ai_state |= DEPCOMPLETE;
1620 				aip->ai_buf = NULL;
1621 			} else {
1622 				bmsafemap = newblk->nb_bmsafemap;
1623 				aip->ai_buf = bmsafemap->sm_buf;
1624 				LIST_REMOVE(newblk, nb_deps);
1625 				LIST_INSERT_HEAD(&bmsafemap->sm_allocindirhd,
1626 				    aip, ai_deps);
1627 			}
1628 			LIST_REMOVE(newblk, nb_hash);
1629 			kfree(newblk, M_NEWBLK);
1630 			aip->ai_indirdep = indirdep;
1631 			/*
1632 			 * Check to see if there is an existing dependency
1633 			 * for this block. If there is, merge the old
1634 			 * dependency into the new one.
1635 			 */
1636 			if (aip->ai_oldblkno == 0)
1637 				oldaip = NULL;
1638 			else
1639 
1640 				LIST_FOREACH(oldaip, &indirdep->ir_deplisthd, ai_next)
1641 					if (oldaip->ai_offset == aip->ai_offset)
1642 						break;
1643 			if (oldaip != NULL) {
1644 				if (oldaip->ai_newblkno != aip->ai_oldblkno) {
1645 					panic("setup_allocindir_phase2: blkno");
1646 				}
1647 				aip->ai_oldblkno = oldaip->ai_oldblkno;
1648 				freefrag = oldaip->ai_freefrag;
1649 				oldaip->ai_freefrag = aip->ai_freefrag;
1650 				aip->ai_freefrag = freefrag;
1651 				free_allocindir(oldaip, NULL);
1652 			}
1653 			LIST_INSERT_HEAD(&indirdep->ir_deplisthd, aip, ai_next);
1654 			((ufs_daddr_t *)indirdep->ir_savebp->b_data)
1655 			    [aip->ai_offset] = aip->ai_oldblkno;
1656 			FREE_LOCK(&lk);
1657 		}
1658 		if (newindirdep) {
1659 			/*
1660 			 * Avoid any possibility of data corruption by
1661 			 * ensuring that our old version is thrown away.
1662 			 */
1663 			newindirdep->ir_savebp->b_flags |= B_INVAL | B_NOCACHE;
1664 			brelse(newindirdep->ir_savebp);
1665 			WORKITEM_FREE((caddr_t)newindirdep, D_INDIRDEP);
1666 		}
1667 		if (indirdep)
1668 			break;
1669 		newindirdep = kmalloc(sizeof(struct indirdep), M_INDIRDEP,
1670 				      M_SOFTDEP_FLAGS);
1671 		newindirdep->ir_list.wk_type = D_INDIRDEP;
1672 		newindirdep->ir_state = ATTACHED;
1673 		LIST_INIT(&newindirdep->ir_deplisthd);
1674 		LIST_INIT(&newindirdep->ir_donehd);
1675 		if (bp->b_bio2.bio_offset == NOOFFSET) {
1676 			VOP_BMAP(bp->b_vp, bp->b_bio1.bio_offset,
1677 				 &bp->b_bio2.bio_offset, NULL, NULL,
1678 				 BUF_CMD_WRITE);
1679 		}
1680 		KKASSERT(bp->b_bio2.bio_offset != NOOFFSET);
1681 		newindirdep->ir_savebp = getblk(ip->i_devvp,
1682 						bp->b_bio2.bio_offset,
1683 					        bp->b_bcount, 0, 0);
1684 		BUF_KERNPROC(newindirdep->ir_savebp);
1685 		bcopy(bp->b_data, newindirdep->ir_savebp->b_data, bp->b_bcount);
1686 	}
1687 }
1688 
1689 /*
1690  * Block de-allocation dependencies.
1691  *
1692  * When blocks are de-allocated, the on-disk pointers must be nullified before
1693  * the blocks are made available for use by other files.  (The true
1694  * requirement is that old pointers must be nullified before new on-disk
1695  * pointers are set.  We chose this slightly more stringent requirement to
1696  * reduce complexity.) Our implementation handles this dependency by updating
1697  * the inode (or indirect block) appropriately but delaying the actual block
1698  * de-allocation (i.e., freemap and free space count manipulation) until
1699  * after the updated versions reach stable storage.  After the disk is
1700  * updated, the blocks can be safely de-allocated whenever it is convenient.
1701  * This implementation handles only the common case of reducing a file's
1702  * length to zero. Other cases are handled by the conventional synchronous
1703  * write approach.
1704  *
1705  * The ffs implementation with which we worked double-checks
1706  * the state of the block pointers and file size as it reduces
1707  * a file's length.  Some of this code is replicated here in our
1708  * soft updates implementation.  The freeblks->fb_chkcnt field is
1709  * used to transfer a part of this information to the procedure
1710  * that eventually de-allocates the blocks.
1711  *
1712  * This routine should be called from the routine that shortens
1713  * a file's length, before the inode's size or block pointers
1714  * are modified. It will save the block pointer information for
1715  * later release and zero the inode so that the calling routine
1716  * can release it.
1717  */
1718 struct softdep_setup_freeblocks_info {
1719 	struct fs *fs;
1720 	struct inode *ip;
1721 };
1722 
1723 static int softdep_setup_freeblocks_bp(struct buf *bp, void *data);
1724 
1725 /*
1726  * Parameters:
1727  *	ip:	The inode whose length is to be reduced
1728  *	length:	The new length for the file
1729  */
1730 void
1731 softdep_setup_freeblocks(struct inode *ip, off_t length)
1732 {
1733 	struct softdep_setup_freeblocks_info info;
1734 	struct freeblks *freeblks;
1735 	struct inodedep *inodedep;
1736 	struct allocdirect *adp;
1737 	struct vnode *vp;
1738 	struct buf *bp;
1739 	struct fs *fs;
1740 	int i, error, delay;
1741 	int count;
1742 
1743 	fs = ip->i_fs;
1744 	if (length != 0)
1745 		panic("softde_setup_freeblocks: non-zero length");
1746 	freeblks = kmalloc(sizeof(struct freeblks), M_FREEBLKS,
1747 			   M_SOFTDEP_FLAGS | M_ZERO);
1748 	freeblks->fb_list.wk_type = D_FREEBLKS;
1749 	freeblks->fb_state = ATTACHED;
1750 	freeblks->fb_uid = ip->i_uid;
1751 	freeblks->fb_previousinum = ip->i_number;
1752 	freeblks->fb_devvp = ip->i_devvp;
1753 	freeblks->fb_fs = fs;
1754 	freeblks->fb_oldsize = ip->i_size;
1755 	freeblks->fb_newsize = length;
1756 	freeblks->fb_chkcnt = ip->i_blocks;
1757 	for (i = 0; i < NDADDR; i++) {
1758 		freeblks->fb_dblks[i] = ip->i_db[i];
1759 		ip->i_db[i] = 0;
1760 	}
1761 	for (i = 0; i < NIADDR; i++) {
1762 		freeblks->fb_iblks[i] = ip->i_ib[i];
1763 		ip->i_ib[i] = 0;
1764 	}
1765 	ip->i_blocks = 0;
1766 	ip->i_size = 0;
1767 	/*
1768 	 * Push the zero'ed inode to to its disk buffer so that we are free
1769 	 * to delete its dependencies below. Once the dependencies are gone
1770 	 * the buffer can be safely released.
1771 	 */
1772 	if ((error = bread(ip->i_devvp,
1773 			    fsbtodoff(fs, ino_to_fsba(fs, ip->i_number)),
1774 	    (int)fs->fs_bsize, &bp)) != 0)
1775 		softdep_error("softdep_setup_freeblocks", error);
1776 	*((struct ufs1_dinode *)bp->b_data + ino_to_fsbo(fs, ip->i_number)) =
1777 	    ip->i_din;
1778 	/*
1779 	 * Find and eliminate any inode dependencies.
1780 	 */
1781 	ACQUIRE_LOCK(&lk);
1782 	(void) inodedep_lookup(fs, ip->i_number, DEPALLOC, &inodedep);
1783 	if ((inodedep->id_state & IOSTARTED) != 0) {
1784 		panic("softdep_setup_freeblocks: inode busy");
1785 	}
1786 	/*
1787 	 * Add the freeblks structure to the list of operations that
1788 	 * must await the zero'ed inode being written to disk. If we
1789 	 * still have a bitmap dependency (delay == 0), then the inode
1790 	 * has never been written to disk, so we can process the
1791 	 * freeblks below once we have deleted the dependencies.
1792 	 */
1793 	delay = (inodedep->id_state & DEPCOMPLETE);
1794 	if (delay)
1795 		WORKLIST_INSERT(&inodedep->id_bufwait, &freeblks->fb_list);
1796 	/*
1797 	 * Because the file length has been truncated to zero, any
1798 	 * pending block allocation dependency structures associated
1799 	 * with this inode are obsolete and can simply be de-allocated.
1800 	 * We must first merge the two dependency lists to get rid of
1801 	 * any duplicate freefrag structures, then purge the merged list.
1802 	 */
1803 	merge_inode_lists(inodedep);
1804 	while ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL)
1805 		free_allocdirect(&inodedep->id_inoupdt, adp, 1);
1806 	FREE_LOCK(&lk);
1807 	bdwrite(bp);
1808 	/*
1809 	 * We must wait for any I/O in progress to finish so that
1810 	 * all potential buffers on the dirty list will be visible.
1811 	 * Once they are all there, walk the list and get rid of
1812 	 * any dependencies.
1813 	 */
1814 	vp = ITOV(ip);
1815 	ACQUIRE_LOCK(&lk);
1816 	drain_output(vp, 1);
1817 
1818 	info.fs = fs;
1819 	info.ip = ip;
1820 	lwkt_gettoken(&vp->v_token);
1821 	do {
1822 		count = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
1823 				softdep_setup_freeblocks_bp, &info);
1824 	} while (count != 0);
1825 	lwkt_reltoken(&vp->v_token);
1826 
1827 	if (inodedep_lookup(fs, ip->i_number, 0, &inodedep) != 0)
1828 		(void)free_inodedep(inodedep);
1829 
1830 	if (delay) {
1831 		freeblks->fb_state |= DEPCOMPLETE;
1832 		/*
1833 		 * If the inode with zeroed block pointers is now on disk
1834 		 * we can start freeing blocks. Add freeblks to the worklist
1835 		 * instead of calling  handle_workitem_freeblocks directly as
1836 		 * it is more likely that additional IO is needed to complete
1837 		 * the request here than in the !delay case.
1838 		 */
1839 		if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE)
1840 			add_to_worklist(&freeblks->fb_list);
1841 	}
1842 
1843 	FREE_LOCK(&lk);
1844 	/*
1845 	 * If the inode has never been written to disk (delay == 0),
1846 	 * then we can process the freeblks now that we have deleted
1847 	 * the dependencies.
1848 	 */
1849 	if (!delay)
1850 		handle_workitem_freeblocks(freeblks);
1851 }
1852 
1853 static int
1854 softdep_setup_freeblocks_bp(struct buf *bp, void *data)
1855 {
1856 	struct softdep_setup_freeblocks_info *info = data;
1857 	struct inodedep *inodedep;
1858 
1859 	if (getdirtybuf(&bp, MNT_WAIT) == 0) {
1860 		kprintf("softdep_setup_freeblocks_bp(1): caught bp %p going away\n", bp);
1861 		return(-1);
1862 	}
1863 	if (bp->b_vp != ITOV(info->ip) || (bp->b_flags & B_DELWRI) == 0) {
1864 		kprintf("softdep_setup_freeblocks_bp(2): caught bp %p going away\n", bp);
1865 		BUF_UNLOCK(bp);
1866 		return(-1);
1867 	}
1868 	(void) inodedep_lookup(info->fs, info->ip->i_number, 0, &inodedep);
1869 	deallocate_dependencies(bp, inodedep);
1870 	bp->b_flags |= B_INVAL | B_NOCACHE;
1871 	FREE_LOCK(&lk);
1872 	brelse(bp);
1873 	ACQUIRE_LOCK(&lk);
1874 	return(1);
1875 }
1876 
1877 /*
1878  * Reclaim any dependency structures from a buffer that is about to
1879  * be reallocated to a new vnode. The buffer must be locked, thus,
1880  * no I/O completion operations can occur while we are manipulating
1881  * its associated dependencies. The mutex is held so that other I/O's
1882  * associated with related dependencies do not occur.
1883  */
1884 static void
1885 deallocate_dependencies(struct buf *bp, struct inodedep *inodedep)
1886 {
1887 	struct worklist *wk;
1888 	struct indirdep *indirdep;
1889 	struct allocindir *aip;
1890 	struct pagedep *pagedep;
1891 	struct dirrem *dirrem;
1892 	struct diradd *dap;
1893 	int i;
1894 
1895 	while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) {
1896 		switch (wk->wk_type) {
1897 
1898 		case D_INDIRDEP:
1899 			indirdep = WK_INDIRDEP(wk);
1900 			/*
1901 			 * None of the indirect pointers will ever be visible,
1902 			 * so they can simply be tossed. GOINGAWAY ensures
1903 			 * that allocated pointers will be saved in the buffer
1904 			 * cache until they are freed. Note that they will
1905 			 * only be able to be found by their physical address
1906 			 * since the inode mapping the logical address will
1907 			 * be gone. The save buffer used for the safe copy
1908 			 * was allocated in setup_allocindir_phase2 using
1909 			 * the physical address so it could be used for this
1910 			 * purpose. Hence we swap the safe copy with the real
1911 			 * copy, allowing the safe copy to be freed and holding
1912 			 * on to the real copy for later use in indir_trunc.
1913 			 *
1914 			 * NOTE: ir_savebp is relative to the block device
1915 			 * so b_bio1 contains the device block number.
1916 			 */
1917 			if (indirdep->ir_state & GOINGAWAY) {
1918 				panic("deallocate_dependencies: already gone");
1919 			}
1920 			indirdep->ir_state |= GOINGAWAY;
1921 			while ((aip = LIST_FIRST(&indirdep->ir_deplisthd)) != NULL)
1922 				free_allocindir(aip, inodedep);
1923 			if (bp->b_bio1.bio_offset >= 0 ||
1924 			    bp->b_bio2.bio_offset != indirdep->ir_savebp->b_bio1.bio_offset) {
1925 				panic("deallocate_dependencies: not indir");
1926 			}
1927 			bcopy(bp->b_data, indirdep->ir_savebp->b_data,
1928 			    bp->b_bcount);
1929 			WORKLIST_REMOVE(wk);
1930 			WORKLIST_INSERT_BP(indirdep->ir_savebp, wk);
1931 			continue;
1932 
1933 		case D_PAGEDEP:
1934 			pagedep = WK_PAGEDEP(wk);
1935 			/*
1936 			 * None of the directory additions will ever be
1937 			 * visible, so they can simply be tossed.
1938 			 */
1939 			for (i = 0; i < DAHASHSZ; i++)
1940 				while ((dap =
1941 				    LIST_FIRST(&pagedep->pd_diraddhd[i])))
1942 					free_diradd(dap);
1943 			while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
1944 				free_diradd(dap);
1945 			/*
1946 			 * Copy any directory remove dependencies to the list
1947 			 * to be processed after the zero'ed inode is written.
1948 			 * If the inode has already been written, then they
1949 			 * can be dumped directly onto the work list.
1950 			 */
1951 			LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) {
1952 				LIST_REMOVE(dirrem, dm_next);
1953 				dirrem->dm_dirinum = pagedep->pd_ino;
1954 				if (inodedep == NULL ||
1955 				    (inodedep->id_state & ALLCOMPLETE) ==
1956 				     ALLCOMPLETE)
1957 					add_to_worklist(&dirrem->dm_list);
1958 				else
1959 					WORKLIST_INSERT(&inodedep->id_bufwait,
1960 					    &dirrem->dm_list);
1961 			}
1962 			WORKLIST_REMOVE(&pagedep->pd_list);
1963 			LIST_REMOVE(pagedep, pd_hash);
1964 			WORKITEM_FREE(pagedep, D_PAGEDEP);
1965 			continue;
1966 
1967 		case D_ALLOCINDIR:
1968 			free_allocindir(WK_ALLOCINDIR(wk), inodedep);
1969 			continue;
1970 
1971 		case D_ALLOCDIRECT:
1972 		case D_INODEDEP:
1973 			panic("deallocate_dependencies: Unexpected type %s",
1974 			    TYPENAME(wk->wk_type));
1975 			/* NOTREACHED */
1976 
1977 		default:
1978 			panic("deallocate_dependencies: Unknown type %s",
1979 			    TYPENAME(wk->wk_type));
1980 			/* NOTREACHED */
1981 		}
1982 	}
1983 }
1984 
1985 /*
1986  * Free an allocdirect. Generate a new freefrag work request if appropriate.
1987  * This routine must be called with splbio interrupts blocked.
1988  */
1989 static void
1990 free_allocdirect(struct allocdirectlst *adphead,
1991 		 struct allocdirect *adp, int delay)
1992 {
1993 	KKASSERT(lock_held(&lk));
1994 
1995 	if ((adp->ad_state & DEPCOMPLETE) == 0)
1996 		LIST_REMOVE(adp, ad_deps);
1997 	TAILQ_REMOVE(adphead, adp, ad_next);
1998 	if ((adp->ad_state & COMPLETE) == 0)
1999 		WORKLIST_REMOVE(&adp->ad_list);
2000 	if (adp->ad_freefrag != NULL) {
2001 		if (delay)
2002 			WORKLIST_INSERT(&adp->ad_inodedep->id_bufwait,
2003 			    &adp->ad_freefrag->ff_list);
2004 		else
2005 			add_to_worklist(&adp->ad_freefrag->ff_list);
2006 	}
2007 	WORKITEM_FREE(adp, D_ALLOCDIRECT);
2008 }
2009 
2010 /*
2011  * Prepare an inode to be freed. The actual free operation is not
2012  * done until the zero'ed inode has been written to disk.
2013  */
2014 void
2015 softdep_freefile(struct vnode *pvp, ino_t ino, int mode)
2016 {
2017 	struct inode *ip = VTOI(pvp);
2018 	struct inodedep *inodedep;
2019 	struct freefile *freefile;
2020 
2021 	/*
2022 	 * This sets up the inode de-allocation dependency.
2023 	 */
2024 	freefile = kmalloc(sizeof(struct freefile), M_FREEFILE,
2025 			   M_SOFTDEP_FLAGS);
2026 	freefile->fx_list.wk_type = D_FREEFILE;
2027 	freefile->fx_list.wk_state = 0;
2028 	freefile->fx_mode = mode;
2029 	freefile->fx_oldinum = ino;
2030 	freefile->fx_devvp = ip->i_devvp;
2031 	freefile->fx_fs = ip->i_fs;
2032 
2033 	/*
2034 	 * If the inodedep does not exist, then the zero'ed inode has
2035 	 * been written to disk. If the allocated inode has never been
2036 	 * written to disk, then the on-disk inode is zero'ed. In either
2037 	 * case we can free the file immediately.
2038 	 */
2039 	ACQUIRE_LOCK(&lk);
2040 	if (inodedep_lookup(ip->i_fs, ino, 0, &inodedep) == 0 ||
2041 	    check_inode_unwritten(inodedep)) {
2042 		FREE_LOCK(&lk);
2043 		handle_workitem_freefile(freefile);
2044 		return;
2045 	}
2046 	WORKLIST_INSERT(&inodedep->id_inowait, &freefile->fx_list);
2047 	FREE_LOCK(&lk);
2048 }
2049 
2050 /*
2051  * Check to see if an inode has never been written to disk. If
2052  * so free the inodedep and return success, otherwise return failure.
2053  * This routine must be called with splbio interrupts blocked.
2054  *
2055  * If we still have a bitmap dependency, then the inode has never
2056  * been written to disk. Drop the dependency as it is no longer
2057  * necessary since the inode is being deallocated. We set the
2058  * ALLCOMPLETE flags since the bitmap now properly shows that the
2059  * inode is not allocated. Even if the inode is actively being
2060  * written, it has been rolled back to its zero'ed state, so we
2061  * are ensured that a zero inode is what is on the disk. For short
2062  * lived files, this change will usually result in removing all the
2063  * dependencies from the inode so that it can be freed immediately.
2064  */
2065 static int
2066 check_inode_unwritten(struct inodedep *inodedep)
2067 {
2068 
2069 	if ((inodedep->id_state & DEPCOMPLETE) != 0 ||
2070 	    LIST_FIRST(&inodedep->id_pendinghd) != NULL ||
2071 	    LIST_FIRST(&inodedep->id_bufwait) != NULL ||
2072 	    LIST_FIRST(&inodedep->id_inowait) != NULL ||
2073 	    TAILQ_FIRST(&inodedep->id_inoupdt) != NULL ||
2074 	    TAILQ_FIRST(&inodedep->id_newinoupdt) != NULL ||
2075 	    inodedep->id_nlinkdelta != 0)
2076 		return (0);
2077 
2078 	/*
2079 	 * Another process might be in initiate_write_inodeblock
2080 	 * trying to allocate memory without holding "Softdep Lock".
2081 	 */
2082 	if ((inodedep->id_state & IOSTARTED) != 0 &&
2083 	    inodedep->id_savedino == NULL)
2084 		return(0);
2085 
2086 	inodedep->id_state |= ALLCOMPLETE;
2087 	LIST_REMOVE(inodedep, id_deps);
2088 	inodedep->id_buf = NULL;
2089 	if (inodedep->id_state & ONWORKLIST)
2090 		WORKLIST_REMOVE(&inodedep->id_list);
2091 	if (inodedep->id_savedino != NULL) {
2092 		kfree(inodedep->id_savedino, M_INODEDEP);
2093 		inodedep->id_savedino = NULL;
2094 	}
2095 	if (free_inodedep(inodedep) == 0) {
2096 		panic("check_inode_unwritten: busy inode");
2097 	}
2098 	return (1);
2099 }
2100 
2101 /*
2102  * Try to free an inodedep structure. Return 1 if it could be freed.
2103  */
2104 static int
2105 free_inodedep(struct inodedep *inodedep)
2106 {
2107 
2108 	if ((inodedep->id_state & ONWORKLIST) != 0 ||
2109 	    (inodedep->id_state & ALLCOMPLETE) != ALLCOMPLETE ||
2110 	    LIST_FIRST(&inodedep->id_pendinghd) != NULL ||
2111 	    LIST_FIRST(&inodedep->id_bufwait) != NULL ||
2112 	    LIST_FIRST(&inodedep->id_inowait) != NULL ||
2113 	    TAILQ_FIRST(&inodedep->id_inoupdt) != NULL ||
2114 	    TAILQ_FIRST(&inodedep->id_newinoupdt) != NULL ||
2115 	    inodedep->id_nlinkdelta != 0 || inodedep->id_savedino != NULL)
2116 		return (0);
2117 	LIST_REMOVE(inodedep, id_hash);
2118 	WORKITEM_FREE(inodedep, D_INODEDEP);
2119 	num_inodedep -= 1;
2120 	return (1);
2121 }
2122 
2123 /*
2124  * This workitem routine performs the block de-allocation.
2125  * The workitem is added to the pending list after the updated
2126  * inode block has been written to disk.  As mentioned above,
2127  * checks regarding the number of blocks de-allocated (compared
2128  * to the number of blocks allocated for the file) are also
2129  * performed in this function.
2130  */
2131 static void
2132 handle_workitem_freeblocks(struct freeblks *freeblks)
2133 {
2134 	struct inode tip;
2135 	ufs_daddr_t bn;
2136 	struct fs *fs;
2137 	int i, level, bsize;
2138 	long nblocks, blocksreleased = 0;
2139 	int error, allerror = 0;
2140 	ufs_lbn_t baselbns[NIADDR], tmpval;
2141 
2142 	tip.i_number = freeblks->fb_previousinum;
2143 	tip.i_devvp = freeblks->fb_devvp;
2144 	tip.i_dev = freeblks->fb_devvp->v_rdev;
2145 	tip.i_fs = freeblks->fb_fs;
2146 	tip.i_size = freeblks->fb_oldsize;
2147 	tip.i_uid = freeblks->fb_uid;
2148 	fs = freeblks->fb_fs;
2149 	tmpval = 1;
2150 	baselbns[0] = NDADDR;
2151 	for (i = 1; i < NIADDR; i++) {
2152 		tmpval *= NINDIR(fs);
2153 		baselbns[i] = baselbns[i - 1] + tmpval;
2154 	}
2155 	nblocks = btodb(fs->fs_bsize);
2156 	blocksreleased = 0;
2157 	/*
2158 	 * Indirect blocks first.
2159 	 */
2160 	for (level = (NIADDR - 1); level >= 0; level--) {
2161 		if ((bn = freeblks->fb_iblks[level]) == 0)
2162 			continue;
2163 		if ((error = indir_trunc(&tip, fsbtodoff(fs, bn), level,
2164 		    baselbns[level], &blocksreleased)) == 0)
2165 			allerror = error;
2166 		ffs_blkfree(&tip, bn, fs->fs_bsize);
2167 		blocksreleased += nblocks;
2168 	}
2169 	/*
2170 	 * All direct blocks or frags.
2171 	 */
2172 	for (i = (NDADDR - 1); i >= 0; i--) {
2173 		if ((bn = freeblks->fb_dblks[i]) == 0)
2174 			continue;
2175 		bsize = blksize(fs, &tip, i);
2176 		ffs_blkfree(&tip, bn, bsize);
2177 		blocksreleased += btodb(bsize);
2178 	}
2179 
2180 #ifdef DIAGNOSTIC
2181 	if (freeblks->fb_chkcnt != blocksreleased)
2182 		kprintf("handle_workitem_freeblocks: block count\n");
2183 	if (allerror)
2184 		softdep_error("handle_workitem_freeblks", allerror);
2185 #endif /* DIAGNOSTIC */
2186 	WORKITEM_FREE(freeblks, D_FREEBLKS);
2187 }
2188 
2189 /*
2190  * Release blocks associated with the inode ip and stored in the indirect
2191  * block at doffset. If level is greater than SINGLE, the block is an
2192  * indirect block and recursive calls to indirtrunc must be used to
2193  * cleanse other indirect blocks.
2194  */
2195 static int
2196 indir_trunc(struct inode *ip, off_t doffset, int level, ufs_lbn_t lbn,
2197 	    long *countp)
2198 {
2199 	struct buf *bp;
2200 	ufs_daddr_t *bap;
2201 	ufs_daddr_t nb;
2202 	struct fs *fs;
2203 	struct worklist *wk;
2204 	struct indirdep *indirdep;
2205 	int i, lbnadd, nblocks;
2206 	int error, allerror = 0;
2207 
2208 	fs = ip->i_fs;
2209 	lbnadd = 1;
2210 	for (i = level; i > 0; i--)
2211 		lbnadd *= NINDIR(fs);
2212 	/*
2213 	 * Get buffer of block pointers to be freed. This routine is not
2214 	 * called until the zero'ed inode has been written, so it is safe
2215 	 * to free blocks as they are encountered. Because the inode has
2216 	 * been zero'ed, calls to bmap on these blocks will fail. So, we
2217 	 * have to use the on-disk address and the block device for the
2218 	 * filesystem to look them up. If the file was deleted before its
2219 	 * indirect blocks were all written to disk, the routine that set
2220 	 * us up (deallocate_dependencies) will have arranged to leave
2221 	 * a complete copy of the indirect block in memory for our use.
2222 	 * Otherwise we have to read the blocks in from the disk.
2223 	 */
2224 	ACQUIRE_LOCK(&lk);
2225 	if ((bp = findblk(ip->i_devvp, doffset, FINDBLK_TEST)) != NULL &&
2226 	    (wk = LIST_FIRST(&bp->b_dep)) != NULL) {
2227 		/*
2228 		 * bp must be ir_savebp, which is held locked for our use.
2229 		 */
2230 		if (wk->wk_type != D_INDIRDEP ||
2231 		    (indirdep = WK_INDIRDEP(wk))->ir_savebp != bp ||
2232 		    (indirdep->ir_state & GOINGAWAY) == 0) {
2233 			panic("indir_trunc: lost indirdep");
2234 		}
2235 		WORKLIST_REMOVE(wk);
2236 		WORKITEM_FREE(indirdep, D_INDIRDEP);
2237 		if (LIST_FIRST(&bp->b_dep) != NULL) {
2238 			panic("indir_trunc: dangling dep");
2239 		}
2240 		FREE_LOCK(&lk);
2241 	} else {
2242 		FREE_LOCK(&lk);
2243 		error = bread(ip->i_devvp, doffset, (int)fs->fs_bsize, &bp);
2244 		if (error)
2245 			return (error);
2246 	}
2247 	/*
2248 	 * Recursively free indirect blocks.
2249 	 */
2250 	bap = (ufs_daddr_t *)bp->b_data;
2251 	nblocks = btodb(fs->fs_bsize);
2252 	for (i = NINDIR(fs) - 1; i >= 0; i--) {
2253 		if ((nb = bap[i]) == 0)
2254 			continue;
2255 		if (level != 0) {
2256 			if ((error = indir_trunc(ip, fsbtodoff(fs, nb),
2257 			     level - 1, lbn + (i * lbnadd), countp)) != 0)
2258 				allerror = error;
2259 		}
2260 		ffs_blkfree(ip, nb, fs->fs_bsize);
2261 		*countp += nblocks;
2262 	}
2263 	bp->b_flags |= B_INVAL | B_NOCACHE;
2264 	brelse(bp);
2265 	return (allerror);
2266 }
2267 
2268 /*
2269  * Free an allocindir.
2270  * This routine must be called with splbio interrupts blocked.
2271  */
2272 static void
2273 free_allocindir(struct allocindir *aip, struct inodedep *inodedep)
2274 {
2275 	struct freefrag *freefrag;
2276 
2277 	KKASSERT(lock_held(&lk));
2278 
2279 	if ((aip->ai_state & DEPCOMPLETE) == 0)
2280 		LIST_REMOVE(aip, ai_deps);
2281 	if (aip->ai_state & ONWORKLIST)
2282 		WORKLIST_REMOVE(&aip->ai_list);
2283 	LIST_REMOVE(aip, ai_next);
2284 	if ((freefrag = aip->ai_freefrag) != NULL) {
2285 		if (inodedep == NULL)
2286 			add_to_worklist(&freefrag->ff_list);
2287 		else
2288 			WORKLIST_INSERT(&inodedep->id_bufwait,
2289 			    &freefrag->ff_list);
2290 	}
2291 	WORKITEM_FREE(aip, D_ALLOCINDIR);
2292 }
2293 
2294 /*
2295  * Directory entry addition dependencies.
2296  *
2297  * When adding a new directory entry, the inode (with its incremented link
2298  * count) must be written to disk before the directory entry's pointer to it.
2299  * Also, if the inode is newly allocated, the corresponding freemap must be
2300  * updated (on disk) before the directory entry's pointer. These requirements
2301  * are met via undo/redo on the directory entry's pointer, which consists
2302  * simply of the inode number.
2303  *
2304  * As directory entries are added and deleted, the free space within a
2305  * directory block can become fragmented.  The ufs filesystem will compact
2306  * a fragmented directory block to make space for a new entry. When this
2307  * occurs, the offsets of previously added entries change. Any "diradd"
2308  * dependency structures corresponding to these entries must be updated with
2309  * the new offsets.
2310  */
2311 
2312 /*
2313  * This routine is called after the in-memory inode's link
2314  * count has been incremented, but before the directory entry's
2315  * pointer to the inode has been set.
2316  *
2317  * Parameters:
2318  *	bp:		buffer containing directory block
2319  *	dp:		inode for directory
2320  *	diroffset:	offset of new entry in directory
2321  *	newinum:	inode referenced by new directory entry
2322  *	newdirbp:	non-NULL => contents of new mkdir
2323  */
2324 void
2325 softdep_setup_directory_add(struct buf *bp, struct inode *dp, off_t diroffset,
2326 			    ino_t newinum, struct buf *newdirbp)
2327 {
2328 	int offset;		/* offset of new entry within directory block */
2329 	ufs_lbn_t lbn;		/* block in directory containing new entry */
2330 	struct fs *fs;
2331 	struct diradd *dap;
2332 	struct pagedep *pagedep;
2333 	struct inodedep *inodedep;
2334 	struct mkdir *mkdir1, *mkdir2;
2335 
2336 	/*
2337 	 * Whiteouts have no dependencies.
2338 	 */
2339 	if (newinum == WINO) {
2340 		if (newdirbp != NULL)
2341 			bdwrite(newdirbp);
2342 		return;
2343 	}
2344 
2345 	fs = dp->i_fs;
2346 	lbn = lblkno(fs, diroffset);
2347 	offset = blkoff(fs, diroffset);
2348 	dap = kmalloc(sizeof(struct diradd), M_DIRADD,
2349 		      M_SOFTDEP_FLAGS | M_ZERO);
2350 	dap->da_list.wk_type = D_DIRADD;
2351 	dap->da_offset = offset;
2352 	dap->da_newinum = newinum;
2353 	dap->da_state = ATTACHED;
2354 	if (newdirbp == NULL) {
2355 		dap->da_state |= DEPCOMPLETE;
2356 		ACQUIRE_LOCK(&lk);
2357 	} else {
2358 		dap->da_state |= MKDIR_BODY | MKDIR_PARENT;
2359 		mkdir1 = kmalloc(sizeof(struct mkdir), M_MKDIR,
2360 				 M_SOFTDEP_FLAGS);
2361 		mkdir1->md_list.wk_type = D_MKDIR;
2362 		mkdir1->md_state = MKDIR_BODY;
2363 		mkdir1->md_diradd = dap;
2364 		mkdir2 = kmalloc(sizeof(struct mkdir), M_MKDIR,
2365 				 M_SOFTDEP_FLAGS);
2366 		mkdir2->md_list.wk_type = D_MKDIR;
2367 		mkdir2->md_state = MKDIR_PARENT;
2368 		mkdir2->md_diradd = dap;
2369 		/*
2370 		 * Dependency on "." and ".." being written to disk.
2371 		 */
2372 		mkdir1->md_buf = newdirbp;
2373 		ACQUIRE_LOCK(&lk);
2374 		LIST_INSERT_HEAD(&mkdirlisthd, mkdir1, md_mkdirs);
2375 		WORKLIST_INSERT_BP(newdirbp, &mkdir1->md_list);
2376 		FREE_LOCK(&lk);
2377 		bdwrite(newdirbp);
2378 		/*
2379 		 * Dependency on link count increase for parent directory
2380 		 */
2381 		ACQUIRE_LOCK(&lk);
2382 		if (inodedep_lookup(dp->i_fs, dp->i_number, 0, &inodedep) == 0
2383 		    || (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
2384 			dap->da_state &= ~MKDIR_PARENT;
2385 			WORKITEM_FREE(mkdir2, D_MKDIR);
2386 		} else {
2387 			LIST_INSERT_HEAD(&mkdirlisthd, mkdir2, md_mkdirs);
2388 			WORKLIST_INSERT(&inodedep->id_bufwait,&mkdir2->md_list);
2389 		}
2390 	}
2391 	/*
2392 	 * Link into parent directory pagedep to await its being written.
2393 	 */
2394 	if (pagedep_lookup(dp, lbn, DEPALLOC, &pagedep) == 0)
2395 		WORKLIST_INSERT_BP(bp, &pagedep->pd_list);
2396 	dap->da_pagedep = pagedep;
2397 	LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], dap,
2398 	    da_pdlist);
2399 	/*
2400 	 * Link into its inodedep. Put it on the id_bufwait list if the inode
2401 	 * is not yet written. If it is written, do the post-inode write
2402 	 * processing to put it on the id_pendinghd list.
2403 	 */
2404 	(void) inodedep_lookup(fs, newinum, DEPALLOC, &inodedep);
2405 	if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE)
2406 		diradd_inode_written(dap, inodedep);
2407 	else
2408 		WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
2409 	FREE_LOCK(&lk);
2410 }
2411 
2412 /*
2413  * This procedure is called to change the offset of a directory
2414  * entry when compacting a directory block which must be owned
2415  * exclusively by the caller. Note that the actual entry movement
2416  * must be done in this procedure to ensure that no I/O completions
2417  * occur while the move is in progress.
2418  *
2419  * Parameters:
2420  *	dp:	inode for directory
2421  *	base:		address of dp->i_offset
2422  *	oldloc:		address of old directory location
2423  *	newloc:		address of new directory location
2424  *	entrysize:	size of directory entry
2425  */
2426 void
2427 softdep_change_directoryentry_offset(struct inode *dp, caddr_t base,
2428 				     caddr_t oldloc, caddr_t newloc,
2429 				     int entrysize)
2430 {
2431 	int offset, oldoffset, newoffset;
2432 	struct pagedep *pagedep;
2433 	struct diradd *dap;
2434 	ufs_lbn_t lbn;
2435 
2436 	ACQUIRE_LOCK(&lk);
2437 	lbn = lblkno(dp->i_fs, dp->i_offset);
2438 	offset = blkoff(dp->i_fs, dp->i_offset);
2439 	if (pagedep_lookup(dp, lbn, 0, &pagedep) == 0)
2440 		goto done;
2441 	oldoffset = offset + (oldloc - base);
2442 	newoffset = offset + (newloc - base);
2443 
2444 	LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(oldoffset)], da_pdlist) {
2445 		if (dap->da_offset != oldoffset)
2446 			continue;
2447 		dap->da_offset = newoffset;
2448 		if (DIRADDHASH(newoffset) == DIRADDHASH(oldoffset))
2449 			break;
2450 		LIST_REMOVE(dap, da_pdlist);
2451 		LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(newoffset)],
2452 		    dap, da_pdlist);
2453 		break;
2454 	}
2455 	if (dap == NULL) {
2456 
2457 		LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist) {
2458 			if (dap->da_offset == oldoffset) {
2459 				dap->da_offset = newoffset;
2460 				break;
2461 			}
2462 		}
2463 	}
2464 done:
2465 	bcopy(oldloc, newloc, entrysize);
2466 	FREE_LOCK(&lk);
2467 }
2468 
2469 /*
2470  * Free a diradd dependency structure. This routine must be called
2471  * with splbio interrupts blocked.
2472  */
2473 static void
2474 free_diradd(struct diradd *dap)
2475 {
2476 	struct dirrem *dirrem;
2477 	struct pagedep *pagedep;
2478 	struct inodedep *inodedep;
2479 	struct mkdir *mkdir, *nextmd;
2480 
2481 	KKASSERT(lock_held(&lk));
2482 
2483 	WORKLIST_REMOVE(&dap->da_list);
2484 	LIST_REMOVE(dap, da_pdlist);
2485 	if ((dap->da_state & DIRCHG) == 0) {
2486 		pagedep = dap->da_pagedep;
2487 	} else {
2488 		dirrem = dap->da_previous;
2489 		pagedep = dirrem->dm_pagedep;
2490 		dirrem->dm_dirinum = pagedep->pd_ino;
2491 		add_to_worklist(&dirrem->dm_list);
2492 	}
2493 	if (inodedep_lookup(VFSTOUFS(pagedep->pd_mnt)->um_fs, dap->da_newinum,
2494 	    0, &inodedep) != 0)
2495 		(void) free_inodedep(inodedep);
2496 	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
2497 		for (mkdir = LIST_FIRST(&mkdirlisthd); mkdir; mkdir = nextmd) {
2498 			nextmd = LIST_NEXT(mkdir, md_mkdirs);
2499 			if (mkdir->md_diradd != dap)
2500 				continue;
2501 			dap->da_state &= ~mkdir->md_state;
2502 			WORKLIST_REMOVE(&mkdir->md_list);
2503 			LIST_REMOVE(mkdir, md_mkdirs);
2504 			WORKITEM_FREE(mkdir, D_MKDIR);
2505 		}
2506 		if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
2507 			panic("free_diradd: unfound ref");
2508 		}
2509 	}
2510 	WORKITEM_FREE(dap, D_DIRADD);
2511 }
2512 
2513 /*
2514  * Directory entry removal dependencies.
2515  *
2516  * When removing a directory entry, the entry's inode pointer must be
2517  * zero'ed on disk before the corresponding inode's link count is decremented
2518  * (possibly freeing the inode for re-use). This dependency is handled by
2519  * updating the directory entry but delaying the inode count reduction until
2520  * after the directory block has been written to disk. After this point, the
2521  * inode count can be decremented whenever it is convenient.
2522  */
2523 
2524 /*
2525  * This routine should be called immediately after removing
2526  * a directory entry.  The inode's link count should not be
2527  * decremented by the calling procedure -- the soft updates
2528  * code will do this task when it is safe.
2529  *
2530  * Parameters:
2531  *	bp:		buffer containing directory block
2532  *	dp:		inode for the directory being modified
2533  *	ip:		inode for directory entry being removed
2534  *	isrmdir:	indicates if doing RMDIR
2535  */
2536 void
2537 softdep_setup_remove(struct buf *bp, struct inode *dp, struct inode *ip,
2538 		     int isrmdir)
2539 {
2540 	struct dirrem *dirrem, *prevdirrem;
2541 
2542 	/*
2543 	 * Allocate a new dirrem if appropriate and ACQUIRE_LOCK.
2544 	 */
2545 	dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
2546 
2547 	/*
2548 	 * If the COMPLETE flag is clear, then there were no active
2549 	 * entries and we want to roll back to a zeroed entry until
2550 	 * the new inode is committed to disk. If the COMPLETE flag is
2551 	 * set then we have deleted an entry that never made it to
2552 	 * disk. If the entry we deleted resulted from a name change,
2553 	 * then the old name still resides on disk. We cannot delete
2554 	 * its inode (returned to us in prevdirrem) until the zeroed
2555 	 * directory entry gets to disk. The new inode has never been
2556 	 * referenced on the disk, so can be deleted immediately.
2557 	 */
2558 	if ((dirrem->dm_state & COMPLETE) == 0) {
2559 		LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, dirrem,
2560 		    dm_next);
2561 		FREE_LOCK(&lk);
2562 	} else {
2563 		if (prevdirrem != NULL)
2564 			LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd,
2565 			    prevdirrem, dm_next);
2566 		dirrem->dm_dirinum = dirrem->dm_pagedep->pd_ino;
2567 		FREE_LOCK(&lk);
2568 		handle_workitem_remove(dirrem);
2569 	}
2570 }
2571 
2572 /*
2573  * Allocate a new dirrem if appropriate and return it along with
2574  * its associated pagedep. Called without a lock, returns with lock.
2575  */
2576 static long num_dirrem;		/* number of dirrem allocated */
2577 
2578 /*
2579  * Parameters:
2580  *	bp:		buffer containing directory block
2581  *	dp:		inode for the directory being modified
2582  *	ip:		inode for directory entry being removed
2583  *	isrmdir:	indicates if doing RMDIR
2584  *	prevdirremp:	previously referenced inode, if any
2585  */
2586 static struct dirrem *
2587 newdirrem(struct buf *bp, struct inode *dp, struct inode *ip,
2588 	  int isrmdir, struct dirrem **prevdirremp)
2589 {
2590 	int offset;
2591 	ufs_lbn_t lbn;
2592 	struct diradd *dap;
2593 	struct dirrem *dirrem;
2594 	struct pagedep *pagedep;
2595 
2596 	/*
2597 	 * Whiteouts have no deletion dependencies.
2598 	 */
2599 	if (ip == NULL)
2600 		panic("newdirrem: whiteout");
2601 	/*
2602 	 * If we are over our limit, try to improve the situation.
2603 	 * Limiting the number of dirrem structures will also limit
2604 	 * the number of freefile and freeblks structures.
2605 	 */
2606 	if (num_dirrem > max_softdeps / 4)
2607 		speedup_syncer(NULL);
2608 	if (num_dirrem > max_softdeps / 2) {
2609 		ACQUIRE_LOCK(&lk);
2610 		request_cleanup(FLUSH_REMOVE);
2611 		FREE_LOCK(&lk);
2612 	}
2613 
2614 	num_dirrem += 1;
2615 	dirrem = kmalloc(sizeof(struct dirrem), M_DIRREM,
2616 			 M_SOFTDEP_FLAGS | M_ZERO);
2617 	dirrem->dm_list.wk_type = D_DIRREM;
2618 	dirrem->dm_state = isrmdir ? RMDIR : 0;
2619 	dirrem->dm_mnt = ITOV(ip)->v_mount;
2620 	dirrem->dm_oldinum = ip->i_number;
2621 	*prevdirremp = NULL;
2622 
2623 	ACQUIRE_LOCK(&lk);
2624 	lbn = lblkno(dp->i_fs, dp->i_offset);
2625 	offset = blkoff(dp->i_fs, dp->i_offset);
2626 	if (pagedep_lookup(dp, lbn, DEPALLOC, &pagedep) == 0)
2627 		WORKLIST_INSERT_BP(bp, &pagedep->pd_list);
2628 	dirrem->dm_pagedep = pagedep;
2629 	/*
2630 	 * Check for a diradd dependency for the same directory entry.
2631 	 * If present, then both dependencies become obsolete and can
2632 	 * be de-allocated. Check for an entry on both the pd_dirraddhd
2633 	 * list and the pd_pendinghd list.
2634 	 */
2635 
2636 	LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(offset)], da_pdlist)
2637 		if (dap->da_offset == offset)
2638 			break;
2639 	if (dap == NULL) {
2640 
2641 		LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist)
2642 			if (dap->da_offset == offset)
2643 				break;
2644 		if (dap == NULL)
2645 			return (dirrem);
2646 	}
2647 	/*
2648 	 * Must be ATTACHED at this point.
2649 	 */
2650 	if ((dap->da_state & ATTACHED) == 0) {
2651 		panic("newdirrem: not ATTACHED");
2652 	}
2653 	if (dap->da_newinum != ip->i_number) {
2654 		panic("newdirrem: inum %"PRId64" should be %"PRId64,
2655 		    ip->i_number, dap->da_newinum);
2656 	}
2657 	/*
2658 	 * If we are deleting a changed name that never made it to disk,
2659 	 * then return the dirrem describing the previous inode (which
2660 	 * represents the inode currently referenced from this entry on disk).
2661 	 */
2662 	if ((dap->da_state & DIRCHG) != 0) {
2663 		*prevdirremp = dap->da_previous;
2664 		dap->da_state &= ~DIRCHG;
2665 		dap->da_pagedep = pagedep;
2666 	}
2667 	/*
2668 	 * We are deleting an entry that never made it to disk.
2669 	 * Mark it COMPLETE so we can delete its inode immediately.
2670 	 */
2671 	dirrem->dm_state |= COMPLETE;
2672 	free_diradd(dap);
2673 	return (dirrem);
2674 }
2675 
2676 /*
2677  * Directory entry change dependencies.
2678  *
2679  * Changing an existing directory entry requires that an add operation
2680  * be completed first followed by a deletion. The semantics for the addition
2681  * are identical to the description of adding a new entry above except
2682  * that the rollback is to the old inode number rather than zero. Once
2683  * the addition dependency is completed, the removal is done as described
2684  * in the removal routine above.
2685  */
2686 
2687 /*
2688  * This routine should be called immediately after changing
2689  * a directory entry.  The inode's link count should not be
2690  * decremented by the calling procedure -- the soft updates
2691  * code will perform this task when it is safe.
2692  *
2693  * Parameters:
2694  *	bp:		buffer containing directory block
2695  *	dp:		inode for the directory being modified
2696  *	ip:		inode for directory entry being removed
2697  *	newinum:	new inode number for changed entry
2698  *	isrmdir:	indicates if doing RMDIR
2699  */
2700 void
2701 softdep_setup_directory_change(struct buf *bp, struct inode *dp,
2702 			       struct inode *ip, ino_t newinum,
2703 			       int isrmdir)
2704 {
2705 	int offset;
2706 	struct diradd *dap = NULL;
2707 	struct dirrem *dirrem, *prevdirrem;
2708 	struct pagedep *pagedep;
2709 	struct inodedep *inodedep;
2710 
2711 	offset = blkoff(dp->i_fs, dp->i_offset);
2712 
2713 	/*
2714 	 * Whiteouts do not need diradd dependencies.
2715 	 */
2716 	if (newinum != WINO) {
2717 		dap = kmalloc(sizeof(struct diradd), M_DIRADD,
2718 			      M_SOFTDEP_FLAGS | M_ZERO);
2719 		dap->da_list.wk_type = D_DIRADD;
2720 		dap->da_state = DIRCHG | ATTACHED | DEPCOMPLETE;
2721 		dap->da_offset = offset;
2722 		dap->da_newinum = newinum;
2723 	}
2724 
2725 	/*
2726 	 * Allocate a new dirrem and ACQUIRE_LOCK.
2727 	 */
2728 	dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
2729 	pagedep = dirrem->dm_pagedep;
2730 	/*
2731 	 * The possible values for isrmdir:
2732 	 *	0 - non-directory file rename
2733 	 *	1 - directory rename within same directory
2734 	 *   inum - directory rename to new directory of given inode number
2735 	 * When renaming to a new directory, we are both deleting and
2736 	 * creating a new directory entry, so the link count on the new
2737 	 * directory should not change. Thus we do not need the followup
2738 	 * dirrem which is usually done in handle_workitem_remove. We set
2739 	 * the DIRCHG flag to tell handle_workitem_remove to skip the
2740 	 * followup dirrem.
2741 	 */
2742 	if (isrmdir > 1)
2743 		dirrem->dm_state |= DIRCHG;
2744 
2745 	/*
2746 	 * Whiteouts have no additional dependencies,
2747 	 * so just put the dirrem on the correct list.
2748 	 */
2749 	if (newinum == WINO) {
2750 		if ((dirrem->dm_state & COMPLETE) == 0) {
2751 			LIST_INSERT_HEAD(&pagedep->pd_dirremhd, dirrem,
2752 			    dm_next);
2753 		} else {
2754 			dirrem->dm_dirinum = pagedep->pd_ino;
2755 			add_to_worklist(&dirrem->dm_list);
2756 		}
2757 		FREE_LOCK(&lk);
2758 		return;
2759 	}
2760 
2761 	/*
2762 	 * If the COMPLETE flag is clear, then there were no active
2763 	 * entries and we want to roll back to the previous inode until
2764 	 * the new inode is committed to disk. If the COMPLETE flag is
2765 	 * set, then we have deleted an entry that never made it to disk.
2766 	 * If the entry we deleted resulted from a name change, then the old
2767 	 * inode reference still resides on disk. Any rollback that we do
2768 	 * needs to be to that old inode (returned to us in prevdirrem). If
2769 	 * the entry we deleted resulted from a create, then there is
2770 	 * no entry on the disk, so we want to roll back to zero rather
2771 	 * than the uncommitted inode. In either of the COMPLETE cases we
2772 	 * want to immediately free the unwritten and unreferenced inode.
2773 	 */
2774 	if ((dirrem->dm_state & COMPLETE) == 0) {
2775 		dap->da_previous = dirrem;
2776 	} else {
2777 		if (prevdirrem != NULL) {
2778 			dap->da_previous = prevdirrem;
2779 		} else {
2780 			dap->da_state &= ~DIRCHG;
2781 			dap->da_pagedep = pagedep;
2782 		}
2783 		dirrem->dm_dirinum = pagedep->pd_ino;
2784 		add_to_worklist(&dirrem->dm_list);
2785 	}
2786 	/*
2787 	 * Link into its inodedep. Put it on the id_bufwait list if the inode
2788 	 * is not yet written. If it is written, do the post-inode write
2789 	 * processing to put it on the id_pendinghd list.
2790 	 */
2791 	if (inodedep_lookup(dp->i_fs, newinum, DEPALLOC, &inodedep) == 0 ||
2792 	    (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
2793 		dap->da_state |= COMPLETE;
2794 		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
2795 		WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
2796 	} else {
2797 		LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)],
2798 		    dap, da_pdlist);
2799 		WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
2800 	}
2801 	FREE_LOCK(&lk);
2802 }
2803 
2804 /*
2805  * Called whenever the link count on an inode is changed.
2806  * It creates an inode dependency so that the new reference(s)
2807  * to the inode cannot be committed to disk until the updated
2808  * inode has been written.
2809  *
2810  * Parameters:
2811  *	ip:	the inode with the increased link count
2812  */
2813 void
2814 softdep_change_linkcnt(struct inode *ip)
2815 {
2816 	struct inodedep *inodedep;
2817 
2818 	ACQUIRE_LOCK(&lk);
2819 	(void) inodedep_lookup(ip->i_fs, ip->i_number, DEPALLOC, &inodedep);
2820 	if (ip->i_nlink < ip->i_effnlink) {
2821 		panic("softdep_change_linkcnt: bad delta");
2822 	}
2823 	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
2824 	FREE_LOCK(&lk);
2825 }
2826 
2827 /*
2828  * This workitem decrements the inode's link count.
2829  * If the link count reaches zero, the file is removed.
2830  */
2831 static void
2832 handle_workitem_remove(struct dirrem *dirrem)
2833 {
2834 	struct inodedep *inodedep;
2835 	struct vnode *vp;
2836 	struct inode *ip;
2837 	ino_t oldinum;
2838 	int error;
2839 
2840 	error = VFS_VGET(dirrem->dm_mnt, NULL, dirrem->dm_oldinum, &vp);
2841 	if (error) {
2842 		softdep_error("handle_workitem_remove: vget", error);
2843 		return;
2844 	}
2845 	ip = VTOI(vp);
2846 	ACQUIRE_LOCK(&lk);
2847 	if ((inodedep_lookup(ip->i_fs, dirrem->dm_oldinum, 0, &inodedep)) == 0){
2848 		panic("handle_workitem_remove: lost inodedep");
2849 	}
2850 	/*
2851 	 * Normal file deletion.
2852 	 */
2853 	if ((dirrem->dm_state & RMDIR) == 0) {
2854 		ip->i_nlink--;
2855 		ip->i_flag |= IN_CHANGE;
2856 		if (ip->i_nlink < ip->i_effnlink) {
2857 			panic("handle_workitem_remove: bad file delta");
2858 		}
2859 		inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
2860 		FREE_LOCK(&lk);
2861 		vput(vp);
2862 		num_dirrem -= 1;
2863 		WORKITEM_FREE(dirrem, D_DIRREM);
2864 		return;
2865 	}
2866 	/*
2867 	 * Directory deletion. Decrement reference count for both the
2868 	 * just deleted parent directory entry and the reference for ".".
2869 	 * Next truncate the directory to length zero. When the
2870 	 * truncation completes, arrange to have the reference count on
2871 	 * the parent decremented to account for the loss of "..".
2872 	 */
2873 	ip->i_nlink -= 2;
2874 	ip->i_flag |= IN_CHANGE;
2875 	if (ip->i_nlink < ip->i_effnlink) {
2876 		panic("handle_workitem_remove: bad dir delta");
2877 	}
2878 	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
2879 	FREE_LOCK(&lk);
2880 	if ((error = ffs_truncate(vp, (off_t)0, 0, proc0.p_ucred)) != 0)
2881 		softdep_error("handle_workitem_remove: truncate", error);
2882 	/*
2883 	 * Rename a directory to a new parent. Since, we are both deleting
2884 	 * and creating a new directory entry, the link count on the new
2885 	 * directory should not change. Thus we skip the followup dirrem.
2886 	 */
2887 	if (dirrem->dm_state & DIRCHG) {
2888 		vput(vp);
2889 		num_dirrem -= 1;
2890 		WORKITEM_FREE(dirrem, D_DIRREM);
2891 		return;
2892 	}
2893 	/*
2894 	 * If the inodedep does not exist, then the zero'ed inode has
2895 	 * been written to disk. If the allocated inode has never been
2896 	 * written to disk, then the on-disk inode is zero'ed. In either
2897 	 * case we can remove the file immediately.
2898 	 */
2899 	ACQUIRE_LOCK(&lk);
2900 	dirrem->dm_state = 0;
2901 	oldinum = dirrem->dm_oldinum;
2902 	dirrem->dm_oldinum = dirrem->dm_dirinum;
2903 	if (inodedep_lookup(ip->i_fs, oldinum, 0, &inodedep) == 0 ||
2904 	    check_inode_unwritten(inodedep)) {
2905 		FREE_LOCK(&lk);
2906 		vput(vp);
2907 		handle_workitem_remove(dirrem);
2908 		return;
2909 	}
2910 	WORKLIST_INSERT(&inodedep->id_inowait, &dirrem->dm_list);
2911 	FREE_LOCK(&lk);
2912 	ip->i_flag |= IN_CHANGE;
2913 	ffs_update(vp, 0);
2914 	vput(vp);
2915 }
2916 
2917 /*
2918  * Inode de-allocation dependencies.
2919  *
2920  * When an inode's link count is reduced to zero, it can be de-allocated. We
2921  * found it convenient to postpone de-allocation until after the inode is
2922  * written to disk with its new link count (zero).  At this point, all of the
2923  * on-disk inode's block pointers are nullified and, with careful dependency
2924  * list ordering, all dependencies related to the inode will be satisfied and
2925  * the corresponding dependency structures de-allocated.  So, if/when the
2926  * inode is reused, there will be no mixing of old dependencies with new
2927  * ones.  This artificial dependency is set up by the block de-allocation
2928  * procedure above (softdep_setup_freeblocks) and completed by the
2929  * following procedure.
2930  */
2931 static void
2932 handle_workitem_freefile(struct freefile *freefile)
2933 {
2934 	struct vnode vp;
2935 	struct inode tip;
2936 	struct inodedep *idp;
2937 	int error;
2938 
2939 #ifdef DEBUG
2940 	ACQUIRE_LOCK(&lk);
2941 	error = inodedep_lookup(freefile->fx_fs, freefile->fx_oldinum, 0, &idp);
2942 	FREE_LOCK(&lk);
2943 	if (error)
2944 		panic("handle_workitem_freefile: inodedep survived");
2945 #endif
2946 	tip.i_devvp = freefile->fx_devvp;
2947 	tip.i_dev = freefile->fx_devvp->v_rdev;
2948 	tip.i_fs = freefile->fx_fs;
2949 	vp.v_data = &tip;
2950 	if ((error = ffs_freefile(&vp, freefile->fx_oldinum, freefile->fx_mode)) != 0)
2951 		softdep_error("handle_workitem_freefile", error);
2952 	WORKITEM_FREE(freefile, D_FREEFILE);
2953 }
2954 
2955 /*
2956  * Helper function which unlinks marker element from work list and returns
2957  * the next element on the list.
2958  */
2959 static __inline struct worklist *
2960 markernext(struct worklist *marker)
2961 {
2962 	struct worklist *next;
2963 
2964 	next = LIST_NEXT(marker, wk_list);
2965 	LIST_REMOVE(marker, wk_list);
2966 	return next;
2967 }
2968 
2969 /*
2970  * checkread, checkwrite
2971  *
2972  * bioops callback - hold io_token
2973  */
2974 static  int
2975 softdep_checkread(struct buf *bp)
2976 {
2977 	/* nothing to do, mp lock not needed */
2978 	return(0);
2979 }
2980 
2981 /*
2982  * bioops callback - hold io_token
2983  */
2984 static  int
2985 softdep_checkwrite(struct buf *bp)
2986 {
2987 	/* nothing to do, mp lock not needed */
2988 	return(0);
2989 }
2990 
2991 /*
2992  * Disk writes.
2993  *
2994  * The dependency structures constructed above are most actively used when file
2995  * system blocks are written to disk.  No constraints are placed on when a
2996  * block can be written, but unsatisfied update dependencies are made safe by
2997  * modifying (or replacing) the source memory for the duration of the disk
2998  * write.  When the disk write completes, the memory block is again brought
2999  * up-to-date.
3000  *
3001  * In-core inode structure reclamation.
3002  *
3003  * Because there are a finite number of "in-core" inode structures, they are
3004  * reused regularly.  By transferring all inode-related dependencies to the
3005  * in-memory inode block and indexing them separately (via "inodedep"s), we
3006  * can allow "in-core" inode structures to be reused at any time and avoid
3007  * any increase in contention.
3008  *
3009  * Called just before entering the device driver to initiate a new disk I/O.
3010  * The buffer must be locked, thus, no I/O completion operations can occur
3011  * while we are manipulating its associated dependencies.
3012  *
3013  * bioops callback - hold io_token
3014  *
3015  * Parameters:
3016  *	bp:	structure describing disk write to occur
3017  */
3018 static void
3019 softdep_disk_io_initiation(struct buf *bp)
3020 {
3021 	struct worklist *wk;
3022 	struct worklist marker;
3023 	struct indirdep *indirdep;
3024 
3025 	/*
3026 	 * We only care about write operations. There should never
3027 	 * be dependencies for reads.
3028 	 */
3029 	if (bp->b_cmd == BUF_CMD_READ)
3030 		panic("softdep_disk_io_initiation: read");
3031 
3032 	ACQUIRE_LOCK(&lk);
3033 	marker.wk_type = D_LAST + 1;	/* Not a normal workitem */
3034 
3035 	/*
3036 	 * Do any necessary pre-I/O processing.
3037 	 */
3038 	for (wk = LIST_FIRST(&bp->b_dep); wk; wk = markernext(&marker)) {
3039 		LIST_INSERT_AFTER(wk, &marker, wk_list);
3040 
3041 		switch (wk->wk_type) {
3042 		case D_PAGEDEP:
3043 			initiate_write_filepage(WK_PAGEDEP(wk), bp);
3044 			continue;
3045 
3046 		case D_INODEDEP:
3047 			initiate_write_inodeblock(WK_INODEDEP(wk), bp);
3048 			continue;
3049 
3050 		case D_INDIRDEP:
3051 			indirdep = WK_INDIRDEP(wk);
3052 			if (indirdep->ir_state & GOINGAWAY)
3053 				panic("disk_io_initiation: indirdep gone");
3054 			/*
3055 			 * If there are no remaining dependencies, this
3056 			 * will be writing the real pointers, so the
3057 			 * dependency can be freed.
3058 			 */
3059 			if (LIST_FIRST(&indirdep->ir_deplisthd) == NULL) {
3060 				indirdep->ir_savebp->b_flags |= B_INVAL | B_NOCACHE;
3061 				brelse(indirdep->ir_savebp);
3062 				/* inline expand WORKLIST_REMOVE(wk); */
3063 				wk->wk_state &= ~ONWORKLIST;
3064 				LIST_REMOVE(wk, wk_list);
3065 				WORKITEM_FREE(indirdep, D_INDIRDEP);
3066 				continue;
3067 			}
3068 			/*
3069 			 * Replace up-to-date version with safe version.
3070 			 */
3071 			indirdep->ir_saveddata = kmalloc(bp->b_bcount,
3072 							 M_INDIRDEP,
3073 							 M_SOFTDEP_FLAGS);
3074 			ACQUIRE_LOCK(&lk);
3075 			indirdep->ir_state &= ~ATTACHED;
3076 			indirdep->ir_state |= UNDONE;
3077 			bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount);
3078 			bcopy(indirdep->ir_savebp->b_data, bp->b_data,
3079 			    bp->b_bcount);
3080 			FREE_LOCK(&lk);
3081 			continue;
3082 
3083 		case D_MKDIR:
3084 		case D_BMSAFEMAP:
3085 		case D_ALLOCDIRECT:
3086 		case D_ALLOCINDIR:
3087 			continue;
3088 
3089 		default:
3090 			panic("handle_disk_io_initiation: Unexpected type %s",
3091 			    TYPENAME(wk->wk_type));
3092 			/* NOTREACHED */
3093 		}
3094 	}
3095 	FREE_LOCK(&lk);
3096 }
3097 
3098 /*
3099  * Called from within the procedure above to deal with unsatisfied
3100  * allocation dependencies in a directory. The buffer must be locked,
3101  * thus, no I/O completion operations can occur while we are
3102  * manipulating its associated dependencies.
3103  */
3104 static void
3105 initiate_write_filepage(struct pagedep *pagedep, struct buf *bp)
3106 {
3107 	struct diradd *dap;
3108 	struct direct *ep;
3109 	int i;
3110 
3111 	if (pagedep->pd_state & IOSTARTED) {
3112 		/*
3113 		 * This can only happen if there is a driver that does not
3114 		 * understand chaining. Here biodone will reissue the call
3115 		 * to strategy for the incomplete buffers.
3116 		 */
3117 		kprintf("initiate_write_filepage: already started\n");
3118 		return;
3119 	}
3120 	pagedep->pd_state |= IOSTARTED;
3121 	ACQUIRE_LOCK(&lk);
3122 	for (i = 0; i < DAHASHSZ; i++) {
3123 		LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
3124 			ep = (struct direct *)
3125 			    ((char *)bp->b_data + dap->da_offset);
3126 			if (ep->d_ino != dap->da_newinum) {
3127 				panic("%s: dir inum %d != new %"PRId64,
3128 				    "initiate_write_filepage",
3129 				    ep->d_ino, dap->da_newinum);
3130 			}
3131 			if (dap->da_state & DIRCHG)
3132 				ep->d_ino = dap->da_previous->dm_oldinum;
3133 			else
3134 				ep->d_ino = 0;
3135 			dap->da_state &= ~ATTACHED;
3136 			dap->da_state |= UNDONE;
3137 		}
3138 	}
3139 	FREE_LOCK(&lk);
3140 }
3141 
3142 /*
3143  * Called from within the procedure above to deal with unsatisfied
3144  * allocation dependencies in an inodeblock. The buffer must be
3145  * locked, thus, no I/O completion operations can occur while we
3146  * are manipulating its associated dependencies.
3147  *
3148  * Parameters:
3149  *	bp:	The inode block
3150  */
3151 static void
3152 initiate_write_inodeblock(struct inodedep *inodedep, struct buf *bp)
3153 {
3154 	struct allocdirect *adp, *lastadp;
3155 	struct ufs1_dinode *dp;
3156 	struct ufs1_dinode *sip;
3157 	struct fs *fs;
3158 	ufs_lbn_t prevlbn = 0;
3159 	int i, deplist;
3160 
3161 	if (inodedep->id_state & IOSTARTED)
3162 		panic("initiate_write_inodeblock: already started");
3163 	inodedep->id_state |= IOSTARTED;
3164 	fs = inodedep->id_fs;
3165 	dp = (struct ufs1_dinode *)bp->b_data +
3166 	    ino_to_fsbo(fs, inodedep->id_ino);
3167 	/*
3168 	 * If the bitmap is not yet written, then the allocated
3169 	 * inode cannot be written to disk.
3170 	 */
3171 	if ((inodedep->id_state & DEPCOMPLETE) == 0) {
3172 		if (inodedep->id_savedino != NULL)
3173 			panic("initiate_write_inodeblock: already doing I/O");
3174 		sip = kmalloc(sizeof(struct ufs1_dinode), M_INODEDEP,
3175 			      M_SOFTDEP_FLAGS);
3176 		inodedep->id_savedino = sip;
3177 		*inodedep->id_savedino = *dp;
3178 		bzero((caddr_t)dp, sizeof(struct ufs1_dinode));
3179 		dp->di_gen = inodedep->id_savedino->di_gen;
3180 		return;
3181 	}
3182 	/*
3183 	 * If no dependencies, then there is nothing to roll back.
3184 	 */
3185 	inodedep->id_savedsize = dp->di_size;
3186 	if (TAILQ_FIRST(&inodedep->id_inoupdt) == NULL)
3187 		return;
3188 	/*
3189 	 * Set the dependencies to busy.
3190 	 */
3191 	ACQUIRE_LOCK(&lk);
3192 	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
3193 	     adp = TAILQ_NEXT(adp, ad_next)) {
3194 #ifdef DIAGNOSTIC
3195 		if (deplist != 0 && prevlbn >= adp->ad_lbn) {
3196 			panic("softdep_write_inodeblock: lbn order");
3197 		}
3198 		prevlbn = adp->ad_lbn;
3199 		if (adp->ad_lbn < NDADDR &&
3200 		    dp->di_db[adp->ad_lbn] != adp->ad_newblkno) {
3201 			panic("%s: direct pointer #%ld mismatch %d != %d",
3202 			    "softdep_write_inodeblock", adp->ad_lbn,
3203 			    dp->di_db[adp->ad_lbn], adp->ad_newblkno);
3204 		}
3205 		if (adp->ad_lbn >= NDADDR &&
3206 		    dp->di_ib[adp->ad_lbn - NDADDR] != adp->ad_newblkno) {
3207 			panic("%s: indirect pointer #%ld mismatch %d != %d",
3208 			    "softdep_write_inodeblock", adp->ad_lbn - NDADDR,
3209 			    dp->di_ib[adp->ad_lbn - NDADDR], adp->ad_newblkno);
3210 		}
3211 		deplist |= 1 << adp->ad_lbn;
3212 		if ((adp->ad_state & ATTACHED) == 0) {
3213 			panic("softdep_write_inodeblock: Unknown state 0x%x",
3214 			    adp->ad_state);
3215 		}
3216 #endif /* DIAGNOSTIC */
3217 		adp->ad_state &= ~ATTACHED;
3218 		adp->ad_state |= UNDONE;
3219 	}
3220 	/*
3221 	 * The on-disk inode cannot claim to be any larger than the last
3222 	 * fragment that has been written. Otherwise, the on-disk inode
3223 	 * might have fragments that were not the last block in the file
3224 	 * which would corrupt the filesystem.
3225 	 */
3226 	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
3227 	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
3228 		if (adp->ad_lbn >= NDADDR)
3229 			break;
3230 		dp->di_db[adp->ad_lbn] = adp->ad_oldblkno;
3231 		/* keep going until hitting a rollback to a frag */
3232 		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
3233 			continue;
3234 		dp->di_size = fs->fs_bsize * adp->ad_lbn + adp->ad_oldsize;
3235 		for (i = adp->ad_lbn + 1; i < NDADDR; i++) {
3236 #ifdef DIAGNOSTIC
3237 			if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0) {
3238 				panic("softdep_write_inodeblock: lost dep1");
3239 			}
3240 #endif /* DIAGNOSTIC */
3241 			dp->di_db[i] = 0;
3242 		}
3243 		for (i = 0; i < NIADDR; i++) {
3244 #ifdef DIAGNOSTIC
3245 			if (dp->di_ib[i] != 0 &&
3246 			    (deplist & ((1 << NDADDR) << i)) == 0) {
3247 				panic("softdep_write_inodeblock: lost dep2");
3248 			}
3249 #endif /* DIAGNOSTIC */
3250 			dp->di_ib[i] = 0;
3251 		}
3252 		FREE_LOCK(&lk);
3253 		return;
3254 	}
3255 	/*
3256 	 * If we have zero'ed out the last allocated block of the file,
3257 	 * roll back the size to the last currently allocated block.
3258 	 * We know that this last allocated block is a full-sized as
3259 	 * we already checked for fragments in the loop above.
3260 	 */
3261 	if (lastadp != NULL &&
3262 	    dp->di_size <= (lastadp->ad_lbn + 1) * fs->fs_bsize) {
3263 		for (i = lastadp->ad_lbn; i >= 0; i--)
3264 			if (dp->di_db[i] != 0)
3265 				break;
3266 		dp->di_size = (i + 1) * fs->fs_bsize;
3267 	}
3268 	/*
3269 	 * The only dependencies are for indirect blocks.
3270 	 *
3271 	 * The file size for indirect block additions is not guaranteed.
3272 	 * Such a guarantee would be non-trivial to achieve. The conventional
3273 	 * synchronous write implementation also does not make this guarantee.
3274 	 * Fsck should catch and fix discrepancies. Arguably, the file size
3275 	 * can be over-estimated without destroying integrity when the file
3276 	 * moves into the indirect blocks (i.e., is large). If we want to
3277 	 * postpone fsck, we are stuck with this argument.
3278 	 */
3279 	for (; adp; adp = TAILQ_NEXT(adp, ad_next))
3280 		dp->di_ib[adp->ad_lbn - NDADDR] = 0;
3281 	FREE_LOCK(&lk);
3282 }
3283 
3284 /*
3285  * This routine is called during the completion interrupt
3286  * service routine for a disk write (from the procedure called
3287  * by the device driver to inform the filesystem caches of
3288  * a request completion).  It should be called early in this
3289  * procedure, before the block is made available to other
3290  * processes or other routines are called.
3291  *
3292  * bioops callback - hold io_token
3293  *
3294  * Parameters:
3295  *	bp:	describes the completed disk write
3296  */
3297 static void
3298 softdep_disk_write_complete(struct buf *bp)
3299 {
3300 	struct worklist *wk;
3301 	struct workhead reattach;
3302 	struct newblk *newblk;
3303 	struct allocindir *aip;
3304 	struct allocdirect *adp;
3305 	struct indirdep *indirdep;
3306 	struct inodedep *inodedep;
3307 	struct bmsafemap *bmsafemap;
3308 
3309 	ACQUIRE_LOCK(&lk);
3310 
3311 	LIST_INIT(&reattach);
3312 	while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) {
3313 		WORKLIST_REMOVE(wk);
3314 		switch (wk->wk_type) {
3315 
3316 		case D_PAGEDEP:
3317 			if (handle_written_filepage(WK_PAGEDEP(wk), bp))
3318 				WORKLIST_INSERT(&reattach, wk);
3319 			continue;
3320 
3321 		case D_INODEDEP:
3322 			if (handle_written_inodeblock(WK_INODEDEP(wk), bp))
3323 				WORKLIST_INSERT(&reattach, wk);
3324 			continue;
3325 
3326 		case D_BMSAFEMAP:
3327 			bmsafemap = WK_BMSAFEMAP(wk);
3328 			while ((newblk = LIST_FIRST(&bmsafemap->sm_newblkhd))) {
3329 				newblk->nb_state |= DEPCOMPLETE;
3330 				newblk->nb_bmsafemap = NULL;
3331 				LIST_REMOVE(newblk, nb_deps);
3332 			}
3333 			while ((adp =
3334 			   LIST_FIRST(&bmsafemap->sm_allocdirecthd))) {
3335 				adp->ad_state |= DEPCOMPLETE;
3336 				adp->ad_buf = NULL;
3337 				LIST_REMOVE(adp, ad_deps);
3338 				handle_allocdirect_partdone(adp);
3339 			}
3340 			while ((aip =
3341 			    LIST_FIRST(&bmsafemap->sm_allocindirhd))) {
3342 				aip->ai_state |= DEPCOMPLETE;
3343 				aip->ai_buf = NULL;
3344 				LIST_REMOVE(aip, ai_deps);
3345 				handle_allocindir_partdone(aip);
3346 			}
3347 			while ((inodedep =
3348 			     LIST_FIRST(&bmsafemap->sm_inodedephd)) != NULL) {
3349 				inodedep->id_state |= DEPCOMPLETE;
3350 				LIST_REMOVE(inodedep, id_deps);
3351 				inodedep->id_buf = NULL;
3352 			}
3353 			WORKITEM_FREE(bmsafemap, D_BMSAFEMAP);
3354 			continue;
3355 
3356 		case D_MKDIR:
3357 			handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY);
3358 			continue;
3359 
3360 		case D_ALLOCDIRECT:
3361 			adp = WK_ALLOCDIRECT(wk);
3362 			adp->ad_state |= COMPLETE;
3363 			handle_allocdirect_partdone(adp);
3364 			continue;
3365 
3366 		case D_ALLOCINDIR:
3367 			aip = WK_ALLOCINDIR(wk);
3368 			aip->ai_state |= COMPLETE;
3369 			handle_allocindir_partdone(aip);
3370 			continue;
3371 
3372 		case D_INDIRDEP:
3373 			indirdep = WK_INDIRDEP(wk);
3374 			if (indirdep->ir_state & GOINGAWAY) {
3375 				panic("disk_write_complete: indirdep gone");
3376 			}
3377 			bcopy(indirdep->ir_saveddata, bp->b_data, bp->b_bcount);
3378 			kfree(indirdep->ir_saveddata, M_INDIRDEP);
3379 			indirdep->ir_saveddata = NULL;
3380 			indirdep->ir_state &= ~UNDONE;
3381 			indirdep->ir_state |= ATTACHED;
3382 			while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != NULL) {
3383 				handle_allocindir_partdone(aip);
3384 				if (aip == LIST_FIRST(&indirdep->ir_donehd)) {
3385 					panic("disk_write_complete: not gone");
3386 				}
3387 			}
3388 			WORKLIST_INSERT(&reattach, wk);
3389 			if ((bp->b_flags & B_DELWRI) == 0)
3390 				stat_indir_blk_ptrs++;
3391 			bdirty(bp);
3392 			continue;
3393 
3394 		default:
3395 			panic("handle_disk_write_complete: Unknown type %s",
3396 			    TYPENAME(wk->wk_type));
3397 			/* NOTREACHED */
3398 		}
3399 	}
3400 	/*
3401 	 * Reattach any requests that must be redone.
3402 	 */
3403 	while ((wk = LIST_FIRST(&reattach)) != NULL) {
3404 		WORKLIST_REMOVE(wk);
3405 		WORKLIST_INSERT_BP(bp, wk);
3406 	}
3407 
3408 	FREE_LOCK(&lk);
3409 }
3410 
3411 /*
3412  * Called from within softdep_disk_write_complete above. Note that
3413  * this routine is always called from interrupt level with further
3414  * splbio interrupts blocked.
3415  *
3416  * Parameters:
3417  *	adp:	the completed allocdirect
3418  */
3419 static void
3420 handle_allocdirect_partdone(struct allocdirect *adp)
3421 {
3422 	struct allocdirect *listadp;
3423 	struct inodedep *inodedep;
3424 	long bsize;
3425 
3426 	if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
3427 		return;
3428 	if (adp->ad_buf != NULL)
3429 		panic("handle_allocdirect_partdone: dangling dep");
3430 
3431 	/*
3432 	 * The on-disk inode cannot claim to be any larger than the last
3433 	 * fragment that has been written. Otherwise, the on-disk inode
3434 	 * might have fragments that were not the last block in the file
3435 	 * which would corrupt the filesystem. Thus, we cannot free any
3436 	 * allocdirects after one whose ad_oldblkno claims a fragment as
3437 	 * these blocks must be rolled back to zero before writing the inode.
3438 	 * We check the currently active set of allocdirects in id_inoupdt.
3439 	 */
3440 	inodedep = adp->ad_inodedep;
3441 	bsize = inodedep->id_fs->fs_bsize;
3442 	TAILQ_FOREACH(listadp, &inodedep->id_inoupdt, ad_next) {
3443 		/* found our block */
3444 		if (listadp == adp)
3445 			break;
3446 		/* continue if ad_oldlbn is not a fragment */
3447 		if (listadp->ad_oldsize == 0 ||
3448 		    listadp->ad_oldsize == bsize)
3449 			continue;
3450 		/* hit a fragment */
3451 		return;
3452 	}
3453 	/*
3454 	 * If we have reached the end of the current list without
3455 	 * finding the just finished dependency, then it must be
3456 	 * on the future dependency list. Future dependencies cannot
3457 	 * be freed until they are moved to the current list.
3458 	 */
3459 	if (listadp == NULL) {
3460 #ifdef DEBUG
3461 		TAILQ_FOREACH(listadp, &inodedep->id_newinoupdt, ad_next)
3462 			/* found our block */
3463 			if (listadp == adp)
3464 				break;
3465 		if (listadp == NULL)
3466 			panic("handle_allocdirect_partdone: lost dep");
3467 #endif /* DEBUG */
3468 		return;
3469 	}
3470 	/*
3471 	 * If we have found the just finished dependency, then free
3472 	 * it along with anything that follows it that is complete.
3473 	 */
3474 	for (; adp; adp = listadp) {
3475 		listadp = TAILQ_NEXT(adp, ad_next);
3476 		if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
3477 			return;
3478 		free_allocdirect(&inodedep->id_inoupdt, adp, 1);
3479 	}
3480 }
3481 
3482 /*
3483  * Called from within softdep_disk_write_complete above. Note that
3484  * this routine is always called from interrupt level with further
3485  * splbio interrupts blocked.
3486  *
3487  * Parameters:
3488  *	aip:	the completed allocindir
3489  */
3490 static void
3491 handle_allocindir_partdone(struct allocindir *aip)
3492 {
3493 	struct indirdep *indirdep;
3494 
3495 	if ((aip->ai_state & ALLCOMPLETE) != ALLCOMPLETE)
3496 		return;
3497 	if (aip->ai_buf != NULL)
3498 		panic("handle_allocindir_partdone: dangling dependency");
3499 
3500 	indirdep = aip->ai_indirdep;
3501 	if (indirdep->ir_state & UNDONE) {
3502 		LIST_REMOVE(aip, ai_next);
3503 		LIST_INSERT_HEAD(&indirdep->ir_donehd, aip, ai_next);
3504 		return;
3505 	}
3506 	((ufs_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] =
3507 	    aip->ai_newblkno;
3508 	LIST_REMOVE(aip, ai_next);
3509 	if (aip->ai_freefrag != NULL)
3510 		add_to_worklist(&aip->ai_freefrag->ff_list);
3511 	WORKITEM_FREE(aip, D_ALLOCINDIR);
3512 }
3513 
3514 /*
3515  * Called from within softdep_disk_write_complete above to restore
3516  * in-memory inode block contents to their most up-to-date state. Note
3517  * that this routine is always called from interrupt level with further
3518  * splbio interrupts blocked.
3519  *
3520  * Parameters:
3521  *	bp:	buffer containing the inode block
3522  */
3523 static int
3524 handle_written_inodeblock(struct inodedep *inodedep, struct buf *bp)
3525 {
3526 	struct worklist *wk, *filefree;
3527 	struct allocdirect *adp, *nextadp;
3528 	struct ufs1_dinode *dp;
3529 	int hadchanges;
3530 
3531 	if ((inodedep->id_state & IOSTARTED) == 0)
3532 		panic("handle_written_inodeblock: not started");
3533 
3534 	inodedep->id_state &= ~IOSTARTED;
3535 	dp = (struct ufs1_dinode *)bp->b_data +
3536 	    ino_to_fsbo(inodedep->id_fs, inodedep->id_ino);
3537 	/*
3538 	 * If we had to rollback the inode allocation because of
3539 	 * bitmaps being incomplete, then simply restore it.
3540 	 * Keep the block dirty so that it will not be reclaimed until
3541 	 * all associated dependencies have been cleared and the
3542 	 * corresponding updates written to disk.
3543 	 */
3544 	if (inodedep->id_savedino != NULL) {
3545 		*dp = *inodedep->id_savedino;
3546 		kfree(inodedep->id_savedino, M_INODEDEP);
3547 		inodedep->id_savedino = NULL;
3548 		if ((bp->b_flags & B_DELWRI) == 0)
3549 			stat_inode_bitmap++;
3550 		bdirty(bp);
3551 		return (1);
3552 	}
3553 	inodedep->id_state |= COMPLETE;
3554 	/*
3555 	 * Roll forward anything that had to be rolled back before
3556 	 * the inode could be updated.
3557 	 */
3558 	hadchanges = 0;
3559 	for (adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; adp = nextadp) {
3560 		nextadp = TAILQ_NEXT(adp, ad_next);
3561 		if (adp->ad_state & ATTACHED)
3562 			panic("handle_written_inodeblock: new entry");
3563 
3564 		if (adp->ad_lbn < NDADDR) {
3565 			if (dp->di_db[adp->ad_lbn] != adp->ad_oldblkno) {
3566 				panic("%s: %s #%ld mismatch %d != %d",
3567 				    "handle_written_inodeblock",
3568 				    "direct pointer", adp->ad_lbn,
3569 				    dp->di_db[adp->ad_lbn], adp->ad_oldblkno);
3570 			}
3571 			dp->di_db[adp->ad_lbn] = adp->ad_newblkno;
3572 		} else {
3573 			if (dp->di_ib[adp->ad_lbn - NDADDR] != 0) {
3574 				panic("%s: %s #%ld allocated as %d",
3575 				    "handle_written_inodeblock",
3576 				    "indirect pointer", adp->ad_lbn - NDADDR,
3577 				    dp->di_ib[adp->ad_lbn - NDADDR]);
3578 			}
3579 			dp->di_ib[adp->ad_lbn - NDADDR] = adp->ad_newblkno;
3580 		}
3581 		adp->ad_state &= ~UNDONE;
3582 		adp->ad_state |= ATTACHED;
3583 		hadchanges = 1;
3584 	}
3585 	if (hadchanges && (bp->b_flags & B_DELWRI) == 0)
3586 		stat_direct_blk_ptrs++;
3587 	/*
3588 	 * Reset the file size to its most up-to-date value.
3589 	 */
3590 	if (inodedep->id_savedsize == -1) {
3591 		panic("handle_written_inodeblock: bad size");
3592 	}
3593 	if (dp->di_size != inodedep->id_savedsize) {
3594 		dp->di_size = inodedep->id_savedsize;
3595 		hadchanges = 1;
3596 	}
3597 	inodedep->id_savedsize = -1;
3598 	/*
3599 	 * If there were any rollbacks in the inode block, then it must be
3600 	 * marked dirty so that its will eventually get written back in
3601 	 * its correct form.
3602 	 */
3603 	if (hadchanges)
3604 		bdirty(bp);
3605 	/*
3606 	 * Process any allocdirects that completed during the update.
3607 	 */
3608 	if ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL)
3609 		handle_allocdirect_partdone(adp);
3610 	/*
3611 	 * Process deallocations that were held pending until the
3612 	 * inode had been written to disk. Freeing of the inode
3613 	 * is delayed until after all blocks have been freed to
3614 	 * avoid creation of new <vfsid, inum, lbn> triples
3615 	 * before the old ones have been deleted.
3616 	 */
3617 	filefree = NULL;
3618 	while ((wk = LIST_FIRST(&inodedep->id_bufwait)) != NULL) {
3619 		WORKLIST_REMOVE(wk);
3620 		switch (wk->wk_type) {
3621 
3622 		case D_FREEFILE:
3623 			/*
3624 			 * We defer adding filefree to the worklist until
3625 			 * all other additions have been made to ensure
3626 			 * that it will be done after all the old blocks
3627 			 * have been freed.
3628 			 */
3629 			if (filefree != NULL) {
3630 				panic("handle_written_inodeblock: filefree");
3631 			}
3632 			filefree = wk;
3633 			continue;
3634 
3635 		case D_MKDIR:
3636 			handle_written_mkdir(WK_MKDIR(wk), MKDIR_PARENT);
3637 			continue;
3638 
3639 		case D_DIRADD:
3640 			diradd_inode_written(WK_DIRADD(wk), inodedep);
3641 			continue;
3642 
3643 		case D_FREEBLKS:
3644 			wk->wk_state |= COMPLETE;
3645 			if ((wk->wk_state  & ALLCOMPLETE) != ALLCOMPLETE)
3646 				continue;
3647 			/* -- fall through -- */
3648 		case D_FREEFRAG:
3649 		case D_DIRREM:
3650 			add_to_worklist(wk);
3651 			continue;
3652 
3653 		default:
3654 			panic("handle_written_inodeblock: Unknown type %s",
3655 			    TYPENAME(wk->wk_type));
3656 			/* NOTREACHED */
3657 		}
3658 	}
3659 	if (filefree != NULL) {
3660 		if (free_inodedep(inodedep) == 0) {
3661 			panic("handle_written_inodeblock: live inodedep");
3662 		}
3663 		add_to_worklist(filefree);
3664 		return (0);
3665 	}
3666 
3667 	/*
3668 	 * If no outstanding dependencies, free it.
3669 	 */
3670 	if (free_inodedep(inodedep) || TAILQ_FIRST(&inodedep->id_inoupdt) == NULL)
3671 		return (0);
3672 	return (hadchanges);
3673 }
3674 
3675 /*
3676  * Process a diradd entry after its dependent inode has been written.
3677  * This routine must be called with splbio interrupts blocked.
3678  */
3679 static void
3680 diradd_inode_written(struct diradd *dap, struct inodedep *inodedep)
3681 {
3682 	struct pagedep *pagedep;
3683 
3684 	dap->da_state |= COMPLETE;
3685 	if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
3686 		if (dap->da_state & DIRCHG)
3687 			pagedep = dap->da_previous->dm_pagedep;
3688 		else
3689 			pagedep = dap->da_pagedep;
3690 		LIST_REMOVE(dap, da_pdlist);
3691 		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
3692 	}
3693 	WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
3694 }
3695 
3696 /*
3697  * Handle the completion of a mkdir dependency.
3698  */
3699 static void
3700 handle_written_mkdir(struct mkdir *mkdir, int type)
3701 {
3702 	struct diradd *dap;
3703 	struct pagedep *pagedep;
3704 
3705 	if (mkdir->md_state != type) {
3706 		panic("handle_written_mkdir: bad type");
3707 	}
3708 	dap = mkdir->md_diradd;
3709 	dap->da_state &= ~type;
3710 	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0)
3711 		dap->da_state |= DEPCOMPLETE;
3712 	if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
3713 		if (dap->da_state & DIRCHG)
3714 			pagedep = dap->da_previous->dm_pagedep;
3715 		else
3716 			pagedep = dap->da_pagedep;
3717 		LIST_REMOVE(dap, da_pdlist);
3718 		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
3719 	}
3720 	LIST_REMOVE(mkdir, md_mkdirs);
3721 	WORKITEM_FREE(mkdir, D_MKDIR);
3722 }
3723 
3724 /*
3725  * Called from within softdep_disk_write_complete above.
3726  * A write operation was just completed. Removed inodes can
3727  * now be freed and associated block pointers may be committed.
3728  * Note that this routine is always called from interrupt level
3729  * with further splbio interrupts blocked.
3730  *
3731  * Parameters:
3732  *	bp:	buffer containing the written page
3733  */
3734 static int
3735 handle_written_filepage(struct pagedep *pagedep, struct buf *bp)
3736 {
3737 	struct dirrem *dirrem;
3738 	struct diradd *dap, *nextdap;
3739 	struct direct *ep;
3740 	int i, chgs;
3741 
3742 	if ((pagedep->pd_state & IOSTARTED) == 0) {
3743 		panic("handle_written_filepage: not started");
3744 	}
3745 	pagedep->pd_state &= ~IOSTARTED;
3746 	/*
3747 	 * Process any directory removals that have been committed.
3748 	 */
3749 	while ((dirrem = LIST_FIRST(&pagedep->pd_dirremhd)) != NULL) {
3750 		LIST_REMOVE(dirrem, dm_next);
3751 		dirrem->dm_dirinum = pagedep->pd_ino;
3752 		add_to_worklist(&dirrem->dm_list);
3753 	}
3754 	/*
3755 	 * Free any directory additions that have been committed.
3756 	 */
3757 	while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
3758 		free_diradd(dap);
3759 	/*
3760 	 * Uncommitted directory entries must be restored.
3761 	 */
3762 	for (chgs = 0, i = 0; i < DAHASHSZ; i++) {
3763 		for (dap = LIST_FIRST(&pagedep->pd_diraddhd[i]); dap;
3764 		     dap = nextdap) {
3765 			nextdap = LIST_NEXT(dap, da_pdlist);
3766 			if (dap->da_state & ATTACHED) {
3767 				panic("handle_written_filepage: attached");
3768 			}
3769 			ep = (struct direct *)
3770 			    ((char *)bp->b_data + dap->da_offset);
3771 			ep->d_ino = dap->da_newinum;
3772 			dap->da_state &= ~UNDONE;
3773 			dap->da_state |= ATTACHED;
3774 			chgs = 1;
3775 			/*
3776 			 * If the inode referenced by the directory has
3777 			 * been written out, then the dependency can be
3778 			 * moved to the pending list.
3779 			 */
3780 			if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
3781 				LIST_REMOVE(dap, da_pdlist);
3782 				LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap,
3783 				    da_pdlist);
3784 			}
3785 		}
3786 	}
3787 	/*
3788 	 * If there were any rollbacks in the directory, then it must be
3789 	 * marked dirty so that its will eventually get written back in
3790 	 * its correct form.
3791 	 */
3792 	if (chgs) {
3793 		if ((bp->b_flags & B_DELWRI) == 0)
3794 			stat_dir_entry++;
3795 		bdirty(bp);
3796 	}
3797 	/*
3798 	 * If no dependencies remain, the pagedep will be freed.
3799 	 * Otherwise it will remain to update the page before it
3800 	 * is written back to disk.
3801 	 */
3802 	if (LIST_FIRST(&pagedep->pd_pendinghd) == NULL) {
3803 		for (i = 0; i < DAHASHSZ; i++)
3804 			if (LIST_FIRST(&pagedep->pd_diraddhd[i]) != NULL)
3805 				break;
3806 		if (i == DAHASHSZ) {
3807 			LIST_REMOVE(pagedep, pd_hash);
3808 			WORKITEM_FREE(pagedep, D_PAGEDEP);
3809 			return (0);
3810 		}
3811 	}
3812 	return (1);
3813 }
3814 
3815 /*
3816  * Writing back in-core inode structures.
3817  *
3818  * The filesystem only accesses an inode's contents when it occupies an
3819  * "in-core" inode structure.  These "in-core" structures are separate from
3820  * the page frames used to cache inode blocks.  Only the latter are
3821  * transferred to/from the disk.  So, when the updated contents of the
3822  * "in-core" inode structure are copied to the corresponding in-memory inode
3823  * block, the dependencies are also transferred.  The following procedure is
3824  * called when copying a dirty "in-core" inode to a cached inode block.
3825  */
3826 
3827 /*
3828  * Called when an inode is loaded from disk. If the effective link count
3829  * differed from the actual link count when it was last flushed, then we
3830  * need to ensure that the correct effective link count is put back.
3831  *
3832  * Parameters:
3833  *	ip:	the "in_core" copy of the inode
3834  */
3835 void
3836 softdep_load_inodeblock(struct inode *ip)
3837 {
3838 	struct inodedep *inodedep;
3839 
3840 	/*
3841 	 * Check for alternate nlink count.
3842 	 */
3843 	ip->i_effnlink = ip->i_nlink;
3844 	ACQUIRE_LOCK(&lk);
3845 	if (inodedep_lookup(ip->i_fs, ip->i_number, 0, &inodedep) == 0) {
3846 		FREE_LOCK(&lk);
3847 		return;
3848 	}
3849 	ip->i_effnlink -= inodedep->id_nlinkdelta;
3850 	FREE_LOCK(&lk);
3851 }
3852 
3853 /*
3854  * This routine is called just before the "in-core" inode
3855  * information is to be copied to the in-memory inode block.
3856  * Recall that an inode block contains several inodes. If
3857  * the force flag is set, then the dependencies will be
3858  * cleared so that the update can always be made. Note that
3859  * the buffer is locked when this routine is called, so we
3860  * will never be in the middle of writing the inode block
3861  * to disk.
3862  *
3863  * Parameters:
3864  *	ip:		the "in_core" copy of the inode
3865  *	bp:		the buffer containing the inode block
3866  *	waitfor:	nonzero => update must be allowed
3867  */
3868 void
3869 softdep_update_inodeblock(struct inode *ip, struct buf *bp,
3870 			  int waitfor)
3871 {
3872 	struct inodedep *inodedep;
3873 	struct worklist *wk;
3874 	struct buf *ibp;
3875 	int error, gotit;
3876 
3877 	/*
3878 	 * If the effective link count is not equal to the actual link
3879 	 * count, then we must track the difference in an inodedep while
3880 	 * the inode is (potentially) tossed out of the cache. Otherwise,
3881 	 * if there is no existing inodedep, then there are no dependencies
3882 	 * to track.
3883 	 */
3884 	ACQUIRE_LOCK(&lk);
3885 	if (inodedep_lookup(ip->i_fs, ip->i_number, 0, &inodedep) == 0) {
3886 		FREE_LOCK(&lk);
3887 		if (ip->i_effnlink != ip->i_nlink)
3888 			panic("softdep_update_inodeblock: bad link count");
3889 		return;
3890 	}
3891 	if (inodedep->id_nlinkdelta != ip->i_nlink - ip->i_effnlink) {
3892 		panic("softdep_update_inodeblock: bad delta");
3893 	}
3894 	/*
3895 	 * Changes have been initiated. Anything depending on these
3896 	 * changes cannot occur until this inode has been written.
3897 	 */
3898 	inodedep->id_state &= ~COMPLETE;
3899 	if ((inodedep->id_state & ONWORKLIST) == 0)
3900 		WORKLIST_INSERT_BP(bp, &inodedep->id_list);
3901 	/*
3902 	 * Any new dependencies associated with the incore inode must
3903 	 * now be moved to the list associated with the buffer holding
3904 	 * the in-memory copy of the inode. Once merged process any
3905 	 * allocdirects that are completed by the merger.
3906 	 */
3907 	merge_inode_lists(inodedep);
3908 	if (TAILQ_FIRST(&inodedep->id_inoupdt) != NULL)
3909 		handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_inoupdt));
3910 	/*
3911 	 * Now that the inode has been pushed into the buffer, the
3912 	 * operations dependent on the inode being written to disk
3913 	 * can be moved to the id_bufwait so that they will be
3914 	 * processed when the buffer I/O completes.
3915 	 */
3916 	while ((wk = LIST_FIRST(&inodedep->id_inowait)) != NULL) {
3917 		WORKLIST_REMOVE(wk);
3918 		WORKLIST_INSERT(&inodedep->id_bufwait, wk);
3919 	}
3920 	/*
3921 	 * Newly allocated inodes cannot be written until the bitmap
3922 	 * that allocates them have been written (indicated by
3923 	 * DEPCOMPLETE being set in id_state). If we are doing a
3924 	 * forced sync (e.g., an fsync on a file), we force the bitmap
3925 	 * to be written so that the update can be done.
3926 	 */
3927 	if (waitfor == 0) {
3928 		FREE_LOCK(&lk);
3929 		return;
3930 	}
3931 retry:
3932 	if ((inodedep->id_state & DEPCOMPLETE) != 0) {
3933 		FREE_LOCK(&lk);
3934 		return;
3935 	}
3936 	gotit = getdirtybuf(&inodedep->id_buf, MNT_WAIT);
3937 	if (gotit == 0) {
3938 		if (inodedep_lookup(ip->i_fs, ip->i_number, 0, &inodedep) != 0)
3939 			goto retry;
3940 		FREE_LOCK(&lk);
3941 		return;
3942 	}
3943 	ibp = inodedep->id_buf;
3944 	FREE_LOCK(&lk);
3945 	if ((error = bwrite(ibp)) != 0)
3946 		softdep_error("softdep_update_inodeblock: bwrite", error);
3947 }
3948 
3949 /*
3950  * Merge the new inode dependency list (id_newinoupdt) into the old
3951  * inode dependency list (id_inoupdt). This routine must be called
3952  * with splbio interrupts blocked.
3953  */
3954 static void
3955 merge_inode_lists(struct inodedep *inodedep)
3956 {
3957 	struct allocdirect *listadp, *newadp;
3958 
3959 	newadp = TAILQ_FIRST(&inodedep->id_newinoupdt);
3960 	for (listadp = TAILQ_FIRST(&inodedep->id_inoupdt); listadp && newadp;) {
3961 		if (listadp->ad_lbn < newadp->ad_lbn) {
3962 			listadp = TAILQ_NEXT(listadp, ad_next);
3963 			continue;
3964 		}
3965 		TAILQ_REMOVE(&inodedep->id_newinoupdt, newadp, ad_next);
3966 		TAILQ_INSERT_BEFORE(listadp, newadp, ad_next);
3967 		if (listadp->ad_lbn == newadp->ad_lbn) {
3968 			allocdirect_merge(&inodedep->id_inoupdt, newadp,
3969 			    listadp);
3970 			listadp = newadp;
3971 		}
3972 		newadp = TAILQ_FIRST(&inodedep->id_newinoupdt);
3973 	}
3974 	while ((newadp = TAILQ_FIRST(&inodedep->id_newinoupdt)) != NULL) {
3975 		TAILQ_REMOVE(&inodedep->id_newinoupdt, newadp, ad_next);
3976 		TAILQ_INSERT_TAIL(&inodedep->id_inoupdt, newadp, ad_next);
3977 	}
3978 }
3979 
3980 /*
3981  * If we are doing an fsync, then we must ensure that any directory
3982  * entries for the inode have been written after the inode gets to disk.
3983  *
3984  * bioops callback - hold io_token
3985  *
3986  * Parameters:
3987  *	vp:	the "in_core" copy of the inode
3988  */
3989 static int
3990 softdep_fsync(struct vnode *vp)
3991 {
3992 	struct inodedep *inodedep;
3993 	struct pagedep *pagedep;
3994 	struct worklist *wk;
3995 	struct diradd *dap;
3996 	struct mount *mnt;
3997 	struct vnode *pvp;
3998 	struct inode *ip;
3999 	struct buf *bp;
4000 	struct fs *fs;
4001 	int error, flushparent;
4002 	ino_t parentino;
4003 	ufs_lbn_t lbn;
4004 
4005 	/*
4006 	 * Move check from original kernel code, possibly not needed any
4007 	 * more with the per-mount bioops.
4008 	 */
4009 	if ((vp->v_mount->mnt_flag & MNT_SOFTDEP) == 0)
4010 		return (0);
4011 
4012 	ip = VTOI(vp);
4013 	fs = ip->i_fs;
4014 	ACQUIRE_LOCK(&lk);
4015 	if (inodedep_lookup(fs, ip->i_number, 0, &inodedep) == 0) {
4016 		FREE_LOCK(&lk);
4017 		return (0);
4018 	}
4019 	if (LIST_FIRST(&inodedep->id_inowait) != NULL ||
4020 	    LIST_FIRST(&inodedep->id_bufwait) != NULL ||
4021 	    TAILQ_FIRST(&inodedep->id_inoupdt) != NULL ||
4022 	    TAILQ_FIRST(&inodedep->id_newinoupdt) != NULL) {
4023 		panic("softdep_fsync: pending ops");
4024 	}
4025 	for (error = 0, flushparent = 0; ; ) {
4026 		if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) == NULL)
4027 			break;
4028 		if (wk->wk_type != D_DIRADD) {
4029 			panic("softdep_fsync: Unexpected type %s",
4030 			    TYPENAME(wk->wk_type));
4031 		}
4032 		dap = WK_DIRADD(wk);
4033 		/*
4034 		 * Flush our parent if this directory entry
4035 		 * has a MKDIR_PARENT dependency.
4036 		 */
4037 		if (dap->da_state & DIRCHG)
4038 			pagedep = dap->da_previous->dm_pagedep;
4039 		else
4040 			pagedep = dap->da_pagedep;
4041 		mnt = pagedep->pd_mnt;
4042 		parentino = pagedep->pd_ino;
4043 		lbn = pagedep->pd_lbn;
4044 		if ((dap->da_state & (MKDIR_BODY | COMPLETE)) != COMPLETE) {
4045 			panic("softdep_fsync: dirty");
4046 		}
4047 		flushparent = dap->da_state & MKDIR_PARENT;
4048 		/*
4049 		 * If we are being fsync'ed as part of vgone'ing this vnode,
4050 		 * then we will not be able to release and recover the
4051 		 * vnode below, so we just have to give up on writing its
4052 		 * directory entry out. It will eventually be written, just
4053 		 * not now, but then the user was not asking to have it
4054 		 * written, so we are not breaking any promises.
4055 		 */
4056 		if (vp->v_flag & VRECLAIMED)
4057 			break;
4058 		/*
4059 		 * We prevent deadlock by always fetching inodes from the
4060 		 * root, moving down the directory tree. Thus, when fetching
4061 		 * our parent directory, we must unlock ourselves before
4062 		 * requesting the lock on our parent. See the comment in
4063 		 * ufs_lookup for details on possible races.
4064 		 */
4065 		FREE_LOCK(&lk);
4066 		vn_unlock(vp);
4067 		error = VFS_VGET(mnt, NULL, parentino, &pvp);
4068 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
4069 		if (error != 0) {
4070 			return (error);
4071 		}
4072 		if (flushparent) {
4073 			if ((error = ffs_update(pvp, 1)) != 0) {
4074 				vput(pvp);
4075 				return (error);
4076 			}
4077 		}
4078 		/*
4079 		 * Flush directory page containing the inode's name.
4080 		 */
4081 		error = bread(pvp, lblktodoff(fs, lbn), blksize(fs, VTOI(pvp), lbn), &bp);
4082 		if (error == 0)
4083 			error = bwrite(bp);
4084 		vput(pvp);
4085 		if (error != 0) {
4086 			return (error);
4087 		}
4088 		ACQUIRE_LOCK(&lk);
4089 		if (inodedep_lookup(fs, ip->i_number, 0, &inodedep) == 0)
4090 			break;
4091 	}
4092 	FREE_LOCK(&lk);
4093 	return (0);
4094 }
4095 
4096 /*
4097  * Flush all the dirty bitmaps associated with the block device
4098  * before flushing the rest of the dirty blocks so as to reduce
4099  * the number of dependencies that will have to be rolled back.
4100  */
4101 static int softdep_fsync_mountdev_bp(struct buf *bp, void *data);
4102 
4103 void
4104 softdep_fsync_mountdev(struct vnode *vp)
4105 {
4106 	if (!vn_isdisk(vp, NULL))
4107 		panic("softdep_fsync_mountdev: vnode not a disk");
4108 	ACQUIRE_LOCK(&lk);
4109 	lwkt_gettoken(&vp->v_token);
4110 	RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
4111 		softdep_fsync_mountdev_bp, vp);
4112 	lwkt_reltoken(&vp->v_token);
4113 	drain_output(vp, 1);
4114 	FREE_LOCK(&lk);
4115 }
4116 
4117 static int
4118 softdep_fsync_mountdev_bp(struct buf *bp, void *data)
4119 {
4120 	struct worklist *wk;
4121 	struct vnode *vp = data;
4122 
4123 	/*
4124 	 * If it is already scheduled, skip to the next buffer.
4125 	 */
4126 	if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT))
4127 		return(0);
4128 	if (bp->b_vp != vp || (bp->b_flags & B_DELWRI) == 0) {
4129 		BUF_UNLOCK(bp);
4130 		kprintf("softdep_fsync_mountdev_bp: warning, buffer %p ripped out from under vnode %p\n", bp, vp);
4131 		return(0);
4132 	}
4133 	/*
4134 	 * We are only interested in bitmaps with outstanding
4135 	 * dependencies.
4136 	 */
4137 	if ((wk = LIST_FIRST(&bp->b_dep)) == NULL ||
4138 	    wk->wk_type != D_BMSAFEMAP) {
4139 		BUF_UNLOCK(bp);
4140 		return(0);
4141 	}
4142 	bremfree(bp);
4143 	FREE_LOCK(&lk);
4144 	(void) bawrite(bp);
4145 	ACQUIRE_LOCK(&lk);
4146 	return(0);
4147 }
4148 
4149 /*
4150  * This routine is called when we are trying to synchronously flush a
4151  * file. This routine must eliminate any filesystem metadata dependencies
4152  * so that the syncing routine can succeed by pushing the dirty blocks
4153  * associated with the file. If any I/O errors occur, they are returned.
4154  */
4155 struct softdep_sync_metadata_info {
4156 	struct vnode *vp;
4157 	int waitfor;
4158 };
4159 
4160 static int softdep_sync_metadata_bp(struct buf *bp, void *data);
4161 
4162 int
4163 softdep_sync_metadata(struct vnode *vp, struct thread *td)
4164 {
4165 	struct softdep_sync_metadata_info info;
4166 	int error, waitfor;
4167 
4168 	/*
4169 	 * Check whether this vnode is involved in a filesystem
4170 	 * that is doing soft dependency processing.
4171 	 */
4172 	if (!vn_isdisk(vp, NULL)) {
4173 		if (!DOINGSOFTDEP(vp))
4174 			return (0);
4175 	} else
4176 		if (vp->v_rdev->si_mountpoint == NULL ||
4177 		    (vp->v_rdev->si_mountpoint->mnt_flag & MNT_SOFTDEP) == 0)
4178 			return (0);
4179 	/*
4180 	 * Ensure that any direct block dependencies have been cleared.
4181 	 */
4182 	ACQUIRE_LOCK(&lk);
4183 	if ((error = flush_inodedep_deps(VTOI(vp)->i_fs, VTOI(vp)->i_number))) {
4184 		FREE_LOCK(&lk);
4185 		return (error);
4186 	}
4187 	/*
4188 	 * For most files, the only metadata dependencies are the
4189 	 * cylinder group maps that allocate their inode or blocks.
4190 	 * The block allocation dependencies can be found by traversing
4191 	 * the dependency lists for any buffers that remain on their
4192 	 * dirty buffer list. The inode allocation dependency will
4193 	 * be resolved when the inode is updated with MNT_WAIT.
4194 	 * This work is done in two passes. The first pass grabs most
4195 	 * of the buffers and begins asynchronously writing them. The
4196 	 * only way to wait for these asynchronous writes is to sleep
4197 	 * on the filesystem vnode which may stay busy for a long time
4198 	 * if the filesystem is active. So, instead, we make a second
4199 	 * pass over the dependencies blocking on each write. In the
4200 	 * usual case we will be blocking against a write that we
4201 	 * initiated, so when it is done the dependency will have been
4202 	 * resolved. Thus the second pass is expected to end quickly.
4203 	 */
4204 	waitfor = MNT_NOWAIT;
4205 top:
4206 	/*
4207 	 * We must wait for any I/O in progress to finish so that
4208 	 * all potential buffers on the dirty list will be visible.
4209 	 */
4210 	drain_output(vp, 1);
4211 
4212 	info.vp = vp;
4213 	info.waitfor = waitfor;
4214 	lwkt_gettoken(&vp->v_token);
4215 	error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
4216 			softdep_sync_metadata_bp, &info);
4217 	lwkt_reltoken(&vp->v_token);
4218 	if (error < 0) {
4219 		FREE_LOCK(&lk);
4220 		return(-error);	/* error code */
4221 	}
4222 
4223 	/*
4224 	 * The brief unlock is to allow any pent up dependency
4225 	 * processing to be done.  Then proceed with the second pass.
4226 	 */
4227 	if (waitfor & MNT_NOWAIT) {
4228 		waitfor = MNT_WAIT;
4229 		FREE_LOCK(&lk);
4230 		ACQUIRE_LOCK(&lk);
4231 		goto top;
4232 	}
4233 
4234 	/*
4235 	 * If we have managed to get rid of all the dirty buffers,
4236 	 * then we are done. For certain directories and block
4237 	 * devices, we may need to do further work.
4238 	 *
4239 	 * We must wait for any I/O in progress to finish so that
4240 	 * all potential buffers on the dirty list will be visible.
4241 	 */
4242 	drain_output(vp, 1);
4243 	if (RB_EMPTY(&vp->v_rbdirty_tree)) {
4244 		FREE_LOCK(&lk);
4245 		return (0);
4246 	}
4247 
4248 	FREE_LOCK(&lk);
4249 	/*
4250 	 * If we are trying to sync a block device, some of its buffers may
4251 	 * contain metadata that cannot be written until the contents of some
4252 	 * partially written files have been written to disk. The only easy
4253 	 * way to accomplish this is to sync the entire filesystem (luckily
4254 	 * this happens rarely).
4255 	 */
4256 	if (vn_isdisk(vp, NULL) &&
4257 	    vp->v_rdev &&
4258 	    vp->v_rdev->si_mountpoint && !vn_islocked(vp) &&
4259 	    (error = VFS_SYNC(vp->v_rdev->si_mountpoint, MNT_WAIT)) != 0)
4260 		return (error);
4261 	return (0);
4262 }
4263 
4264 static int
4265 softdep_sync_metadata_bp(struct buf *bp, void *data)
4266 {
4267 	struct softdep_sync_metadata_info *info = data;
4268 	struct pagedep *pagedep;
4269 	struct allocdirect *adp;
4270 	struct allocindir *aip;
4271 	struct worklist *wk;
4272 	struct buf *nbp;
4273 	int error;
4274 	int i;
4275 
4276 	if (getdirtybuf(&bp, MNT_WAIT) == 0) {
4277 		kprintf("softdep_sync_metadata_bp(1): caught buf %p going away\n", bp);
4278 		return (1);
4279 	}
4280 	if (bp->b_vp != info->vp || (bp->b_flags & B_DELWRI) == 0) {
4281 		kprintf("softdep_sync_metadata_bp(2): caught buf %p going away vp %p\n", bp, info->vp);
4282 		BUF_UNLOCK(bp);
4283 		return(1);
4284 	}
4285 
4286 	/*
4287 	 * As we hold the buffer locked, none of its dependencies
4288 	 * will disappear.
4289 	 */
4290 	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
4291 		switch (wk->wk_type) {
4292 
4293 		case D_ALLOCDIRECT:
4294 			adp = WK_ALLOCDIRECT(wk);
4295 			if (adp->ad_state & DEPCOMPLETE)
4296 				break;
4297 			nbp = adp->ad_buf;
4298 			if (getdirtybuf(&nbp, info->waitfor) == 0)
4299 				break;
4300 			FREE_LOCK(&lk);
4301 			if (info->waitfor & MNT_NOWAIT) {
4302 				bawrite(nbp);
4303 			} else if ((error = bwrite(nbp)) != 0) {
4304 				bawrite(bp);
4305 				ACQUIRE_LOCK(&lk);
4306 				return (-error);
4307 			}
4308 			ACQUIRE_LOCK(&lk);
4309 			break;
4310 
4311 		case D_ALLOCINDIR:
4312 			aip = WK_ALLOCINDIR(wk);
4313 			if (aip->ai_state & DEPCOMPLETE)
4314 				break;
4315 			nbp = aip->ai_buf;
4316 			if (getdirtybuf(&nbp, info->waitfor) == 0)
4317 				break;
4318 			FREE_LOCK(&lk);
4319 			if (info->waitfor & MNT_NOWAIT) {
4320 				bawrite(nbp);
4321 			} else if ((error = bwrite(nbp)) != 0) {
4322 				bawrite(bp);
4323 				ACQUIRE_LOCK(&lk);
4324 				return (-error);
4325 			}
4326 			ACQUIRE_LOCK(&lk);
4327 			break;
4328 
4329 		case D_INDIRDEP:
4330 		restart:
4331 
4332 			LIST_FOREACH(aip, &WK_INDIRDEP(wk)->ir_deplisthd, ai_next) {
4333 				if (aip->ai_state & DEPCOMPLETE)
4334 					continue;
4335 				nbp = aip->ai_buf;
4336 				if (getdirtybuf(&nbp, MNT_WAIT) == 0)
4337 					goto restart;
4338 				FREE_LOCK(&lk);
4339 				if ((error = bwrite(nbp)) != 0) {
4340 					bawrite(bp);
4341 					ACQUIRE_LOCK(&lk);
4342 					return (-error);
4343 				}
4344 				ACQUIRE_LOCK(&lk);
4345 				goto restart;
4346 			}
4347 			break;
4348 
4349 		case D_INODEDEP:
4350 			if ((error = flush_inodedep_deps(WK_INODEDEP(wk)->id_fs,
4351 			    WK_INODEDEP(wk)->id_ino)) != 0) {
4352 				FREE_LOCK(&lk);
4353 				bawrite(bp);
4354 				ACQUIRE_LOCK(&lk);
4355 				return (-error);
4356 			}
4357 			break;
4358 
4359 		case D_PAGEDEP:
4360 			/*
4361 			 * We are trying to sync a directory that may
4362 			 * have dependencies on both its own metadata
4363 			 * and/or dependencies on the inodes of any
4364 			 * recently allocated files. We walk its diradd
4365 			 * lists pushing out the associated inode.
4366 			 */
4367 			pagedep = WK_PAGEDEP(wk);
4368 			for (i = 0; i < DAHASHSZ; i++) {
4369 				if (LIST_FIRST(&pagedep->pd_diraddhd[i]) == NULL)
4370 					continue;
4371 				if ((error =
4372 				    flush_pagedep_deps(info->vp,
4373 						pagedep->pd_mnt,
4374 						&pagedep->pd_diraddhd[i]))) {
4375 					FREE_LOCK(&lk);
4376 					bawrite(bp);
4377 					ACQUIRE_LOCK(&lk);
4378 					return (-error);
4379 				}
4380 			}
4381 			break;
4382 
4383 		case D_MKDIR:
4384 			/*
4385 			 * This case should never happen if the vnode has
4386 			 * been properly sync'ed. However, if this function
4387 			 * is used at a place where the vnode has not yet
4388 			 * been sync'ed, this dependency can show up. So,
4389 			 * rather than panic, just flush it.
4390 			 */
4391 			nbp = WK_MKDIR(wk)->md_buf;
4392 			if (getdirtybuf(&nbp, info->waitfor) == 0)
4393 				break;
4394 			FREE_LOCK(&lk);
4395 			if (info->waitfor & MNT_NOWAIT) {
4396 				bawrite(nbp);
4397 			} else if ((error = bwrite(nbp)) != 0) {
4398 				bawrite(bp);
4399 				ACQUIRE_LOCK(&lk);
4400 				return (-error);
4401 			}
4402 			ACQUIRE_LOCK(&lk);
4403 			break;
4404 
4405 		case D_BMSAFEMAP:
4406 			/*
4407 			 * This case should never happen if the vnode has
4408 			 * been properly sync'ed. However, if this function
4409 			 * is used at a place where the vnode has not yet
4410 			 * been sync'ed, this dependency can show up. So,
4411 			 * rather than panic, just flush it.
4412 			 *
4413 			 * nbp can wind up == bp if a device node for the
4414 			 * same filesystem is being fsynced at the same time,
4415 			 * leading to a panic if we don't catch the case.
4416 			 */
4417 			nbp = WK_BMSAFEMAP(wk)->sm_buf;
4418 			if (nbp == bp)
4419 				break;
4420 			if (getdirtybuf(&nbp, info->waitfor) == 0)
4421 				break;
4422 			FREE_LOCK(&lk);
4423 			if (info->waitfor & MNT_NOWAIT) {
4424 				bawrite(nbp);
4425 			} else if ((error = bwrite(nbp)) != 0) {
4426 				bawrite(bp);
4427 				ACQUIRE_LOCK(&lk);
4428 				return (-error);
4429 			}
4430 			ACQUIRE_LOCK(&lk);
4431 			break;
4432 
4433 		default:
4434 			panic("softdep_sync_metadata: Unknown type %s",
4435 			    TYPENAME(wk->wk_type));
4436 			/* NOTREACHED */
4437 		}
4438 	}
4439 	FREE_LOCK(&lk);
4440 	bawrite(bp);
4441 	ACQUIRE_LOCK(&lk);
4442 	return(0);
4443 }
4444 
4445 /*
4446  * Flush the dependencies associated with an inodedep.
4447  * Called with splbio blocked.
4448  */
4449 static int
4450 flush_inodedep_deps(struct fs *fs, ino_t ino)
4451 {
4452 	struct inodedep *inodedep;
4453 	struct allocdirect *adp;
4454 	int error, waitfor;
4455 	struct buf *bp;
4456 
4457 	/*
4458 	 * This work is done in two passes. The first pass grabs most
4459 	 * of the buffers and begins asynchronously writing them. The
4460 	 * only way to wait for these asynchronous writes is to sleep
4461 	 * on the filesystem vnode which may stay busy for a long time
4462 	 * if the filesystem is active. So, instead, we make a second
4463 	 * pass over the dependencies blocking on each write. In the
4464 	 * usual case we will be blocking against a write that we
4465 	 * initiated, so when it is done the dependency will have been
4466 	 * resolved. Thus the second pass is expected to end quickly.
4467 	 * We give a brief window at the top of the loop to allow
4468 	 * any pending I/O to complete.
4469 	 */
4470 	for (waitfor = MNT_NOWAIT; ; ) {
4471 		FREE_LOCK(&lk);
4472 		ACQUIRE_LOCK(&lk);
4473 		if (inodedep_lookup(fs, ino, 0, &inodedep) == 0)
4474 			return (0);
4475 		TAILQ_FOREACH(adp, &inodedep->id_inoupdt, ad_next) {
4476 			if (adp->ad_state & DEPCOMPLETE)
4477 				continue;
4478 			bp = adp->ad_buf;
4479 			if (getdirtybuf(&bp, waitfor) == 0) {
4480 				if (waitfor & MNT_NOWAIT)
4481 					continue;
4482 				break;
4483 			}
4484 			FREE_LOCK(&lk);
4485 			if (waitfor & MNT_NOWAIT) {
4486 				bawrite(bp);
4487 			} else if ((error = bwrite(bp)) != 0) {
4488 				ACQUIRE_LOCK(&lk);
4489 				return (error);
4490 			}
4491 			ACQUIRE_LOCK(&lk);
4492 			break;
4493 		}
4494 		if (adp != NULL)
4495 			continue;
4496 		TAILQ_FOREACH(adp, &inodedep->id_newinoupdt, ad_next) {
4497 			if (adp->ad_state & DEPCOMPLETE)
4498 				continue;
4499 			bp = adp->ad_buf;
4500 			if (getdirtybuf(&bp, waitfor) == 0) {
4501 				if (waitfor & MNT_NOWAIT)
4502 					continue;
4503 				break;
4504 			}
4505 			FREE_LOCK(&lk);
4506 			if (waitfor & MNT_NOWAIT) {
4507 				bawrite(bp);
4508 			} else if ((error = bwrite(bp)) != 0) {
4509 				ACQUIRE_LOCK(&lk);
4510 				return (error);
4511 			}
4512 			ACQUIRE_LOCK(&lk);
4513 			break;
4514 		}
4515 		if (adp != NULL)
4516 			continue;
4517 		/*
4518 		 * If pass2, we are done, otherwise do pass 2.
4519 		 */
4520 		if (waitfor == MNT_WAIT)
4521 			break;
4522 		waitfor = MNT_WAIT;
4523 	}
4524 	/*
4525 	 * Try freeing inodedep in case all dependencies have been removed.
4526 	 */
4527 	if (inodedep_lookup(fs, ino, 0, &inodedep) != 0)
4528 		(void) free_inodedep(inodedep);
4529 	return (0);
4530 }
4531 
4532 /*
4533  * Eliminate a pagedep dependency by flushing out all its diradd dependencies.
4534  * Called with splbio blocked.
4535  */
4536 static int
4537 flush_pagedep_deps(struct vnode *pvp, struct mount *mp,
4538 		   struct diraddhd *diraddhdp)
4539 {
4540 	struct inodedep *inodedep;
4541 	struct ufsmount *ump;
4542 	struct diradd *dap;
4543 	struct worklist *wk;
4544 	struct vnode *vp;
4545 	int gotit, error = 0;
4546 	struct buf *bp;
4547 	ino_t inum;
4548 
4549 	ump = VFSTOUFS(mp);
4550 	while ((dap = LIST_FIRST(diraddhdp)) != NULL) {
4551 		/*
4552 		 * Flush ourselves if this directory entry
4553 		 * has a MKDIR_PARENT dependency.
4554 		 */
4555 		if (dap->da_state & MKDIR_PARENT) {
4556 			FREE_LOCK(&lk);
4557 			if ((error = ffs_update(pvp, 1)) != 0)
4558 				break;
4559 			ACQUIRE_LOCK(&lk);
4560 			/*
4561 			 * If that cleared dependencies, go on to next.
4562 			 */
4563 			if (dap != LIST_FIRST(diraddhdp))
4564 				continue;
4565 			if (dap->da_state & MKDIR_PARENT) {
4566 				panic("flush_pagedep_deps: MKDIR_PARENT");
4567 			}
4568 		}
4569 		/*
4570 		 * A newly allocated directory must have its "." and
4571 		 * ".." entries written out before its name can be
4572 		 * committed in its parent. We do not want or need
4573 		 * the full semantics of a synchronous VOP_FSYNC as
4574 		 * that may end up here again, once for each directory
4575 		 * level in the filesystem. Instead, we push the blocks
4576 		 * and wait for them to clear. We have to fsync twice
4577 		 * because the first call may choose to defer blocks
4578 		 * that still have dependencies, but deferral will
4579 		 * happen at most once.
4580 		 */
4581 		inum = dap->da_newinum;
4582 		if (dap->da_state & MKDIR_BODY) {
4583 			FREE_LOCK(&lk);
4584 			if ((error = VFS_VGET(mp, NULL, inum, &vp)) != 0)
4585 				break;
4586 			if ((error=VOP_FSYNC(vp, MNT_NOWAIT, 0)) ||
4587 			    (error=VOP_FSYNC(vp, MNT_NOWAIT, 0))) {
4588 				vput(vp);
4589 				break;
4590 			}
4591 			drain_output(vp, 0);
4592 			/*
4593 			 * If first block is still dirty with a D_MKDIR
4594 			 * dependency then it needs to be written now.
4595 			 */
4596 			error = 0;
4597 			ACQUIRE_LOCK(&lk);
4598 			bp = findblk(vp, 0, FINDBLK_TEST);
4599 			if (bp == NULL) {
4600 				FREE_LOCK(&lk);
4601 				goto mkdir_body_continue;
4602 			}
4603 			LIST_FOREACH(wk, &bp->b_dep, wk_list)
4604 				if (wk->wk_type == D_MKDIR) {
4605 					gotit = getdirtybuf(&bp, MNT_WAIT);
4606 					FREE_LOCK(&lk);
4607 					if (gotit && (error = bwrite(bp)) != 0)
4608 						goto mkdir_body_continue;
4609 					break;
4610 				}
4611 			if (wk == NULL)
4612 				FREE_LOCK(&lk);
4613 		mkdir_body_continue:
4614 			vput(vp);
4615 			/* Flushing of first block failed. */
4616 			if (error)
4617 				break;
4618 			ACQUIRE_LOCK(&lk);
4619 			/*
4620 			 * If that cleared dependencies, go on to next.
4621 			 */
4622 			if (dap != LIST_FIRST(diraddhdp))
4623 				continue;
4624 			if (dap->da_state & MKDIR_BODY) {
4625 				panic("flush_pagedep_deps: %p MKDIR_BODY", dap);
4626 			}
4627 		}
4628 		/*
4629 		 * Flush the inode on which the directory entry depends.
4630 		 * Having accounted for MKDIR_PARENT and MKDIR_BODY above,
4631 		 * the only remaining dependency is that the updated inode
4632 		 * count must get pushed to disk. The inode has already
4633 		 * been pushed into its inode buffer (via VOP_UPDATE) at
4634 		 * the time of the reference count change. So we need only
4635 		 * locate that buffer, ensure that there will be no rollback
4636 		 * caused by a bitmap dependency, then write the inode buffer.
4637 		 */
4638 retry_lookup:
4639 		if (inodedep_lookup(ump->um_fs, inum, 0, &inodedep) == 0) {
4640 			panic("flush_pagedep_deps: lost inode");
4641 		}
4642 		/*
4643 		 * If the inode still has bitmap dependencies,
4644 		 * push them to disk.
4645 		 */
4646 		if ((inodedep->id_state & DEPCOMPLETE) == 0) {
4647 			gotit = getdirtybuf(&inodedep->id_buf, MNT_WAIT);
4648 			if (gotit == 0)
4649 				goto retry_lookup;
4650 			FREE_LOCK(&lk);
4651 			if (gotit && (error = bwrite(inodedep->id_buf)) != 0)
4652 				break;
4653 			ACQUIRE_LOCK(&lk);
4654 			if (dap != LIST_FIRST(diraddhdp))
4655 				continue;
4656 		}
4657 		/*
4658 		 * If the inode is still sitting in a buffer waiting
4659 		 * to be written, push it to disk.
4660 		 */
4661 		FREE_LOCK(&lk);
4662 		if ((error = bread(ump->um_devvp,
4663 			fsbtodoff(ump->um_fs, ino_to_fsba(ump->um_fs, inum)),
4664 		    (int)ump->um_fs->fs_bsize, &bp)) != 0)
4665 			break;
4666 		if ((error = bwrite(bp)) != 0)
4667 			break;
4668 		ACQUIRE_LOCK(&lk);
4669 		/*
4670 		 * If we have failed to get rid of all the dependencies
4671 		 * then something is seriously wrong.
4672 		 */
4673 		if (dap == LIST_FIRST(diraddhdp)) {
4674 			panic("flush_pagedep_deps: flush failed");
4675 		}
4676 	}
4677 	if (error)
4678 		ACQUIRE_LOCK(&lk);
4679 	return (error);
4680 }
4681 
4682 /*
4683  * A large burst of file addition or deletion activity can drive the
4684  * memory load excessively high. First attempt to slow things down
4685  * using the techniques below. If that fails, this routine requests
4686  * the offending operations to fall back to running synchronously
4687  * until the memory load returns to a reasonable level.
4688  */
4689 int
4690 softdep_slowdown(struct vnode *vp)
4691 {
4692 	int max_softdeps_hard;
4693 
4694 	max_softdeps_hard = max_softdeps * 11 / 10;
4695 	if (num_dirrem < max_softdeps_hard / 2 &&
4696 	    num_inodedep < max_softdeps_hard)
4697 		return (0);
4698 	stat_sync_limit_hit += 1;
4699 	return (1);
4700 }
4701 
4702 /*
4703  * If memory utilization has gotten too high, deliberately slow things
4704  * down and speed up the I/O processing.
4705  */
4706 static int
4707 request_cleanup(int resource)
4708 {
4709 	struct thread *td = curthread;		/* XXX */
4710 
4711 	KKASSERT(lock_held(&lk));
4712 
4713 	/*
4714 	 * We never hold up the filesystem syncer process.
4715 	 */
4716 	if (td == filesys_syncer)
4717 		return (0);
4718 	/*
4719 	 * First check to see if the work list has gotten backlogged.
4720 	 * If it has, co-opt this process to help clean up two entries.
4721 	 * Because this process may hold inodes locked, we cannot
4722 	 * handle any remove requests that might block on a locked
4723 	 * inode as that could lead to deadlock.
4724 	 */
4725 	if (num_on_worklist > max_softdeps / 10) {
4726 		process_worklist_item(NULL, LK_NOWAIT);
4727 		process_worklist_item(NULL, LK_NOWAIT);
4728 		stat_worklist_push += 2;
4729 		return(1);
4730 	}
4731 
4732 	/*
4733 	 * If we are resource constrained on inode dependencies, try
4734 	 * flushing some dirty inodes. Otherwise, we are constrained
4735 	 * by file deletions, so try accelerating flushes of directories
4736 	 * with removal dependencies. We would like to do the cleanup
4737 	 * here, but we probably hold an inode locked at this point and
4738 	 * that might deadlock against one that we try to clean. So,
4739 	 * the best that we can do is request the syncer daemon to do
4740 	 * the cleanup for us.
4741 	 */
4742 	switch (resource) {
4743 
4744 	case FLUSH_INODES:
4745 		stat_ino_limit_push += 1;
4746 		req_clear_inodedeps += 1;
4747 		stat_countp = &stat_ino_limit_hit;
4748 		break;
4749 
4750 	case FLUSH_REMOVE:
4751 		stat_blk_limit_push += 1;
4752 		req_clear_remove += 1;
4753 		stat_countp = &stat_blk_limit_hit;
4754 		break;
4755 
4756 	default:
4757 		panic("request_cleanup: unknown type");
4758 	}
4759 	/*
4760 	 * Hopefully the syncer daemon will catch up and awaken us.
4761 	 * We wait at most tickdelay before proceeding in any case.
4762 	 */
4763 	lksleep(&proc_waiting, &lk, 0, "softupdate",
4764 		tickdelay > 2 ? tickdelay : 2);
4765 	return (1);
4766 }
4767 
4768 /*
4769  * Flush out a directory with at least one removal dependency in an effort to
4770  * reduce the number of dirrem, freefile, and freeblks dependency structures.
4771  */
4772 static void
4773 clear_remove(struct thread *td)
4774 {
4775 	struct pagedep_hashhead *pagedephd;
4776 	struct pagedep *pagedep;
4777 	static int next = 0;
4778 	struct mount *mp;
4779 	struct vnode *vp;
4780 	int error, cnt;
4781 	ino_t ino;
4782 
4783 	ACQUIRE_LOCK(&lk);
4784 	for (cnt = 0; cnt < pagedep_hash; cnt++) {
4785 		pagedephd = &pagedep_hashtbl[next++];
4786 		if (next >= pagedep_hash)
4787 			next = 0;
4788 		LIST_FOREACH(pagedep, pagedephd, pd_hash) {
4789 			if (LIST_FIRST(&pagedep->pd_dirremhd) == NULL)
4790 				continue;
4791 			mp = pagedep->pd_mnt;
4792 			ino = pagedep->pd_ino;
4793 			FREE_LOCK(&lk);
4794 			if ((error = VFS_VGET(mp, NULL, ino, &vp)) != 0) {
4795 				softdep_error("clear_remove: vget", error);
4796 				return;
4797 			}
4798 			if ((error = VOP_FSYNC(vp, MNT_NOWAIT, 0)))
4799 				softdep_error("clear_remove: fsync", error);
4800 			drain_output(vp, 0);
4801 			vput(vp);
4802 			return;
4803 		}
4804 	}
4805 	FREE_LOCK(&lk);
4806 }
4807 
4808 /*
4809  * Clear out a block of dirty inodes in an effort to reduce
4810  * the number of inodedep dependency structures.
4811  */
4812 struct clear_inodedeps_info {
4813 	struct fs *fs;
4814 	struct mount *mp;
4815 };
4816 
4817 static int
4818 clear_inodedeps_mountlist_callback(struct mount *mp, void *data)
4819 {
4820 	struct clear_inodedeps_info *info = data;
4821 
4822 	if ((mp->mnt_flag & MNT_SOFTDEP) && info->fs == VFSTOUFS(mp)->um_fs) {
4823 		info->mp = mp;
4824 		return(-1);
4825 	}
4826 	return(0);
4827 }
4828 
4829 static void
4830 clear_inodedeps(struct thread *td)
4831 {
4832 	struct clear_inodedeps_info info;
4833 	struct inodedep_hashhead *inodedephd;
4834 	struct inodedep *inodedep;
4835 	static int next = 0;
4836 	struct vnode *vp;
4837 	struct fs *fs;
4838 	int error, cnt;
4839 	ino_t firstino, lastino, ino;
4840 
4841 	ACQUIRE_LOCK(&lk);
4842 	/*
4843 	 * Pick a random inode dependency to be cleared.
4844 	 * We will then gather up all the inodes in its block
4845 	 * that have dependencies and flush them out.
4846 	 */
4847 	inodedep = NULL;	/* avoid gcc warnings */
4848 	for (cnt = 0; cnt < inodedep_hash; cnt++) {
4849 		inodedephd = &inodedep_hashtbl[next++];
4850 		if (next >= inodedep_hash)
4851 			next = 0;
4852 		if ((inodedep = LIST_FIRST(inodedephd)) != NULL)
4853 			break;
4854 	}
4855 	if (inodedep == NULL) {
4856 		FREE_LOCK(&lk);
4857 		return;
4858 	}
4859 	/*
4860 	 * Ugly code to find mount point given pointer to superblock.
4861 	 */
4862 	fs = inodedep->id_fs;
4863 	info.mp = NULL;
4864 	info.fs = fs;
4865 	mountlist_scan(clear_inodedeps_mountlist_callback,
4866 			&info, MNTSCAN_FORWARD|MNTSCAN_NOBUSY);
4867 	/*
4868 	 * Find the last inode in the block with dependencies.
4869 	 */
4870 	firstino = inodedep->id_ino & ~(INOPB(fs) - 1);
4871 	for (lastino = firstino + INOPB(fs) - 1; lastino > firstino; lastino--)
4872 		if (inodedep_lookup(fs, lastino, 0, &inodedep) != 0)
4873 			break;
4874 	/*
4875 	 * Asynchronously push all but the last inode with dependencies.
4876 	 * Synchronously push the last inode with dependencies to ensure
4877 	 * that the inode block gets written to free up the inodedeps.
4878 	 */
4879 	for (ino = firstino; ino <= lastino; ino++) {
4880 		if (inodedep_lookup(fs, ino, 0, &inodedep) == 0)
4881 			continue;
4882 		FREE_LOCK(&lk);
4883 		if ((error = VFS_VGET(info.mp, NULL, ino, &vp)) != 0) {
4884 			softdep_error("clear_inodedeps: vget", error);
4885 			return;
4886 		}
4887 		if (ino == lastino) {
4888 			if ((error = VOP_FSYNC(vp, MNT_WAIT, 0)))
4889 				softdep_error("clear_inodedeps: fsync1", error);
4890 		} else {
4891 			if ((error = VOP_FSYNC(vp, MNT_NOWAIT, 0)))
4892 				softdep_error("clear_inodedeps: fsync2", error);
4893 			drain_output(vp, 0);
4894 		}
4895 		vput(vp);
4896 		ACQUIRE_LOCK(&lk);
4897 	}
4898 	FREE_LOCK(&lk);
4899 }
4900 
4901 /*
4902  * Function to determine if the buffer has outstanding dependencies
4903  * that will cause a roll-back if the buffer is written. If wantcount
4904  * is set, return number of dependencies, otherwise just yes or no.
4905  *
4906  * bioops callback - hold io_token
4907  */
4908 static int
4909 softdep_count_dependencies(struct buf *bp, int wantcount)
4910 {
4911 	struct worklist *wk;
4912 	struct inodedep *inodedep;
4913 	struct indirdep *indirdep;
4914 	struct allocindir *aip;
4915 	struct pagedep *pagedep;
4916 	struct diradd *dap;
4917 	int i, retval;
4918 
4919 	retval = 0;
4920 	ACQUIRE_LOCK(&lk);
4921 
4922 	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
4923 		switch (wk->wk_type) {
4924 
4925 		case D_INODEDEP:
4926 			inodedep = WK_INODEDEP(wk);
4927 			if ((inodedep->id_state & DEPCOMPLETE) == 0) {
4928 				/* bitmap allocation dependency */
4929 				retval += 1;
4930 				if (!wantcount)
4931 					goto out;
4932 			}
4933 			if (TAILQ_FIRST(&inodedep->id_inoupdt)) {
4934 				/* direct block pointer dependency */
4935 				retval += 1;
4936 				if (!wantcount)
4937 					goto out;
4938 			}
4939 			continue;
4940 
4941 		case D_INDIRDEP:
4942 			indirdep = WK_INDIRDEP(wk);
4943 
4944 			LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) {
4945 				/* indirect block pointer dependency */
4946 				retval += 1;
4947 				if (!wantcount)
4948 					goto out;
4949 			}
4950 			continue;
4951 
4952 		case D_PAGEDEP:
4953 			pagedep = WK_PAGEDEP(wk);
4954 			for (i = 0; i < DAHASHSZ; i++) {
4955 
4956 				LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
4957 					/* directory entry dependency */
4958 					retval += 1;
4959 					if (!wantcount)
4960 						goto out;
4961 				}
4962 			}
4963 			continue;
4964 
4965 		case D_BMSAFEMAP:
4966 		case D_ALLOCDIRECT:
4967 		case D_ALLOCINDIR:
4968 		case D_MKDIR:
4969 			/* never a dependency on these blocks */
4970 			continue;
4971 
4972 		default:
4973 			panic("softdep_check_for_rollback: Unexpected type %s",
4974 			    TYPENAME(wk->wk_type));
4975 			/* NOTREACHED */
4976 		}
4977 	}
4978 out:
4979 	FREE_LOCK(&lk);
4980 
4981 	return retval;
4982 }
4983 
4984 /*
4985  * Acquire exclusive access to a buffer. Requires softdep lock
4986  * to be held on entry. If waitfor is MNT_WAIT, may release/reacquire
4987  * softdep lock.
4988  *
4989  * Returns 1 if the buffer was locked, 0 if it was not locked or
4990  * if we had to block.
4991  *
4992  * NOTE!  In order to return 1 we must acquire the buffer lock prior
4993  *	  to any release of &lk.  Once we release &lk it's all over.
4994  *	  We may still have to block on the (type-stable) bp in that
4995  *	  case, but we must then unlock it and return 0.
4996  */
4997 static int
4998 getdirtybuf(struct buf **bpp, int waitfor)
4999 {
5000 	struct buf *bp;
5001 	int error;
5002 
5003 	/*
5004 	 * If the contents of *bpp is NULL the caller presumably lost a race.
5005 	 */
5006 	bp = *bpp;
5007 	if (bp == NULL)
5008 		return (0);
5009 
5010 	/*
5011 	 * Try to obtain the buffer lock without deadlocking on &lk.
5012 	 */
5013 	KKASSERT(lock_held(&lk));
5014 	error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT);
5015 	if (error == 0) {
5016 		/*
5017 		 * If the buffer is no longer dirty the OS already wrote it
5018 		 * out, return failure.
5019 		 */
5020 		if ((bp->b_flags & B_DELWRI) == 0) {
5021 			BUF_UNLOCK(bp);
5022 			return (0);
5023 		}
5024 
5025 		/*
5026 		 * Finish nominal buffer locking sequence return success.
5027 		 *
5028 		 * Since we are not using a normal getblk(), and UFS
5029 		 * isn't KVABIO aware, we must make sure that the bp
5030 		 * is synchronized before returning it.
5031 		 */
5032 		bremfree(bp);
5033 		bkvasync_all(bp);
5034 		return (1);
5035 	}
5036 
5037 	/*
5038 	 * Failure case.
5039 	 *
5040 	 * If we are not being asked to wait, return 0 immediately.
5041 	 */
5042 	if (waitfor != MNT_WAIT)
5043 		return (0);
5044 
5045 	/*
5046 	 * Once we release the softdep lock we can never return success,
5047 	 * but we still have to block on the type-stable buf for the caller
5048 	 * to be able to retry without livelocking the system.
5049 	 *
5050 	 * The caller will normally retry in this case.
5051 	 */
5052 	FREE_LOCK(&lk);
5053 	error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL);
5054 	ACQUIRE_LOCK(&lk);
5055 	if (error == 0)
5056 		BUF_UNLOCK(bp);
5057 	return (0);
5058 }
5059 
5060 /*
5061  * Wait for pending output on a vnode to complete.
5062  * Must be called with vnode locked.
5063  */
5064 static void
5065 drain_output(struct vnode *vp, int islocked)
5066 {
5067 
5068 	if (!islocked)
5069 		ACQUIRE_LOCK(&lk);
5070 	while (bio_track_active(&vp->v_track_write)) {
5071 		FREE_LOCK(&lk);
5072 		bio_track_wait(&vp->v_track_write, 0, 0);
5073 		ACQUIRE_LOCK(&lk);
5074 	}
5075 	if (!islocked)
5076 		FREE_LOCK(&lk);
5077 }
5078 
5079 /*
5080  * Called whenever a buffer that is being invalidated or reallocated
5081  * contains dependencies. This should only happen if an I/O error has
5082  * occurred. The routine is called with the buffer locked.
5083  *
5084  * bioops callback - hold io_token
5085  */
5086 static void
5087 softdep_deallocate_dependencies(struct buf *bp)
5088 {
5089 	/* nothing to do, mp lock not needed */
5090 	if ((bp->b_flags & B_ERROR) == 0)
5091 		panic("softdep_deallocate_dependencies: dangling deps");
5092 	softdep_error(bp->b_vp->v_mount->mnt_stat.f_mntfromname, bp->b_error);
5093 	panic("softdep_deallocate_dependencies: unrecovered I/O error");
5094 }
5095 
5096 /*
5097  * Function to handle asynchronous write errors in the filesystem.
5098  */
5099 void
5100 softdep_error(char *func, int error)
5101 {
5102 	/* XXX should do something better! */
5103 	kprintf("%s: got error %d while accessing filesystem\n", func, error);
5104 }
5105