xref: /dragonfly/sys/vfs/ufs/ffs_softdep.c (revision e96fb831)
1 /*
2  * Copyright 1998, 2000 Marshall Kirk McKusick. All Rights Reserved.
3  *
4  * The soft updates code is derived from the appendix of a University
5  * of Michigan technical report (Gregory R. Ganger and Yale N. Patt,
6  * "Soft Updates: A Solution to the Metadata Update Problem in File
7  * Systems", CSE-TR-254-95, August 1995).
8  *
9  * Further information about soft updates can be obtained from:
10  *
11  *	Marshall Kirk McKusick		http://www.mckusick.com/softdep/
12  *	1614 Oxford Street		mckusick@mckusick.com
13  *	Berkeley, CA 94709-1608		+1-510-843-9542
14  *	USA
15  *
16  * Redistribution and use in source and binary forms, with or without
17  * modification, are permitted provided that the following conditions
18  * are met:
19  *
20  * 1. Redistributions of source code must retain the above copyright
21  *    notice, this list of conditions and the following disclaimer.
22  * 2. Redistributions in binary form must reproduce the above copyright
23  *    notice, this list of conditions and the following disclaimer in the
24  *    documentation and/or other materials provided with the distribution.
25  *
26  * THIS SOFTWARE IS PROVIDED BY MARSHALL KIRK MCKUSICK ``AS IS'' AND ANY
27  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
28  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
29  * DISCLAIMED.  IN NO EVENT SHALL MARSHALL KIRK MCKUSICK BE LIABLE FOR
30  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	from: @(#)ffs_softdep.c	9.59 (McKusick) 6/21/00
39  * $FreeBSD: src/sys/ufs/ffs/ffs_softdep.c,v 1.57.2.11 2002/02/05 18:46:53 dillon Exp $
40  */
41 
42 /*
43  * For now we want the safety net that the DIAGNOSTIC and DEBUG flags provide.
44  */
45 #ifndef DIAGNOSTIC
46 #define DIAGNOSTIC
47 #endif
48 #ifndef DEBUG
49 #define DEBUG
50 #endif
51 
52 #include <sys/param.h>
53 #include <sys/kernel.h>
54 #include <sys/systm.h>
55 #include <sys/buf.h>
56 #include <sys/malloc.h>
57 #include <sys/mount.h>
58 #include <sys/proc.h>
59 #include <sys/syslog.h>
60 #include <sys/vnode.h>
61 #include <sys/conf.h>
62 #include <machine/inttypes.h>
63 #include "dir.h"
64 #include "quota.h"
65 #include "inode.h"
66 #include "ufsmount.h"
67 #include "fs.h"
68 #include "softdep.h"
69 #include "ffs_extern.h"
70 #include "ufs_extern.h"
71 
72 #include <sys/buf2.h>
73 #include <sys/mplock2.h>
74 #include <sys/thread2.h>
75 
76 /*
77  * These definitions need to be adapted to the system to which
78  * this file is being ported.
79  */
80 /*
81  * malloc types defined for the softdep system.
82  */
83 MALLOC_DEFINE(M_PAGEDEP, "pagedep","File page dependencies");
84 MALLOC_DEFINE(M_INODEDEP, "inodedep","Inode dependencies");
85 MALLOC_DEFINE(M_NEWBLK, "newblk","New block allocation");
86 MALLOC_DEFINE(M_BMSAFEMAP, "bmsafemap","Block or frag allocated from cyl group map");
87 MALLOC_DEFINE(M_ALLOCDIRECT, "allocdirect","Block or frag dependency for an inode");
88 MALLOC_DEFINE(M_INDIRDEP, "indirdep","Indirect block dependencies");
89 MALLOC_DEFINE(M_ALLOCINDIR, "allocindir","Block dependency for an indirect block");
90 MALLOC_DEFINE(M_FREEFRAG, "freefrag","Previously used frag for an inode");
91 MALLOC_DEFINE(M_FREEBLKS, "freeblks","Blocks freed from an inode");
92 MALLOC_DEFINE(M_FREEFILE, "freefile","Inode deallocated");
93 MALLOC_DEFINE(M_DIRADD, "diradd","New directory entry");
94 MALLOC_DEFINE(M_MKDIR, "mkdir","New directory");
95 MALLOC_DEFINE(M_DIRREM, "dirrem","Directory entry deleted");
96 
97 #define M_SOFTDEP_FLAGS		(M_WAITOK | M_USE_RESERVE)
98 
99 #define	D_PAGEDEP	0
100 #define	D_INODEDEP	1
101 #define	D_NEWBLK	2
102 #define	D_BMSAFEMAP	3
103 #define	D_ALLOCDIRECT	4
104 #define	D_INDIRDEP	5
105 #define	D_ALLOCINDIR	6
106 #define	D_FREEFRAG	7
107 #define	D_FREEBLKS	8
108 #define	D_FREEFILE	9
109 #define	D_DIRADD	10
110 #define	D_MKDIR		11
111 #define	D_DIRREM	12
112 #define D_LAST		D_DIRREM
113 
114 /*
115  * translate from workitem type to memory type
116  * MUST match the defines above, such that memtype[D_XXX] == M_XXX
117  */
118 static struct malloc_type *memtype[] = {
119 	M_PAGEDEP,
120 	M_INODEDEP,
121 	M_NEWBLK,
122 	M_BMSAFEMAP,
123 	M_ALLOCDIRECT,
124 	M_INDIRDEP,
125 	M_ALLOCINDIR,
126 	M_FREEFRAG,
127 	M_FREEBLKS,
128 	M_FREEFILE,
129 	M_DIRADD,
130 	M_MKDIR,
131 	M_DIRREM
132 };
133 
134 #define DtoM(type) (memtype[type])
135 
136 /*
137  * Names of malloc types.
138  */
139 #define TYPENAME(type)  \
140 	((unsigned)(type) < D_LAST ? memtype[type]->ks_shortdesc : "???")
141 /*
142  * End system adaptaion definitions.
143  */
144 
145 /*
146  * Internal function prototypes.
147  */
148 static	void softdep_error(char *, int);
149 static	void drain_output(struct vnode *, int);
150 static	int getdirtybuf(struct buf **, int);
151 static	void clear_remove(struct thread *);
152 static	void clear_inodedeps(struct thread *);
153 static	int flush_pagedep_deps(struct vnode *, struct mount *,
154 	    struct diraddhd *);
155 static	int flush_inodedep_deps(struct fs *, ino_t);
156 static	int handle_written_filepage(struct pagedep *, struct buf *);
157 static  void diradd_inode_written(struct diradd *, struct inodedep *);
158 static	int handle_written_inodeblock(struct inodedep *, struct buf *);
159 static	void handle_allocdirect_partdone(struct allocdirect *);
160 static	void handle_allocindir_partdone(struct allocindir *);
161 static	void initiate_write_filepage(struct pagedep *, struct buf *);
162 static	void handle_written_mkdir(struct mkdir *, int);
163 static	void initiate_write_inodeblock(struct inodedep *, struct buf *);
164 static	void handle_workitem_freefile(struct freefile *);
165 static	void handle_workitem_remove(struct dirrem *);
166 static	struct dirrem *newdirrem(struct buf *, struct inode *,
167 	    struct inode *, int, struct dirrem **);
168 static	void free_diradd(struct diradd *);
169 static	void free_allocindir(struct allocindir *, struct inodedep *);
170 static	int indir_trunc (struct inode *, off_t, int, ufs_lbn_t, long *);
171 static	void deallocate_dependencies(struct buf *, struct inodedep *);
172 static	void free_allocdirect(struct allocdirectlst *,
173 	    struct allocdirect *, int);
174 static	int check_inode_unwritten(struct inodedep *);
175 static	int free_inodedep(struct inodedep *);
176 static	void handle_workitem_freeblocks(struct freeblks *);
177 static	void merge_inode_lists(struct inodedep *);
178 static	void setup_allocindir_phase2(struct buf *, struct inode *,
179 	    struct allocindir *);
180 static	struct allocindir *newallocindir(struct inode *, int, ufs_daddr_t,
181 	    ufs_daddr_t);
182 static	void handle_workitem_freefrag(struct freefrag *);
183 static	struct freefrag *newfreefrag(struct inode *, ufs_daddr_t, long);
184 static	void allocdirect_merge(struct allocdirectlst *,
185 	    struct allocdirect *, struct allocdirect *);
186 static	struct bmsafemap *bmsafemap_lookup(struct buf *);
187 static	int newblk_lookup(struct fs *, ufs_daddr_t, int,
188 	    struct newblk **);
189 static	int inodedep_lookup(struct fs *, ino_t, int, struct inodedep **);
190 static	int pagedep_lookup(struct inode *, ufs_lbn_t, int,
191 	    struct pagedep **);
192 static	void pause_timer(void *);
193 static	int request_cleanup(int, int);
194 static	int process_worklist_item(struct mount *, int);
195 static	void add_to_worklist(struct worklist *);
196 
197 /*
198  * Exported softdep operations.
199  */
200 static	void softdep_disk_io_initiation(struct buf *);
201 static	void softdep_disk_write_complete(struct buf *);
202 static	void softdep_deallocate_dependencies(struct buf *);
203 static	int softdep_fsync(struct vnode *);
204 static	int softdep_process_worklist(struct mount *);
205 static	void softdep_move_dependencies(struct buf *, struct buf *);
206 static	int softdep_count_dependencies(struct buf *bp, int);
207 static  int softdep_checkread(struct buf *bp);
208 static  int softdep_checkwrite(struct buf *bp);
209 
210 static struct bio_ops softdep_bioops = {
211 	.io_start = softdep_disk_io_initiation,
212 	.io_complete = softdep_disk_write_complete,
213 	.io_deallocate = softdep_deallocate_dependencies,
214 	.io_fsync = softdep_fsync,
215 	.io_sync = softdep_process_worklist,
216 	.io_movedeps = softdep_move_dependencies,
217 	.io_countdeps = softdep_count_dependencies,
218 	.io_checkread = softdep_checkread,
219 	.io_checkwrite = softdep_checkwrite
220 };
221 
222 /*
223  * Locking primitives.
224  *
225  * For a uniprocessor, all we need to do is protect against disk
226  * interrupts. For a multiprocessor, this lock would have to be
227  * a mutex. A single mutex is used throughout this file, though
228  * finer grain locking could be used if contention warranted it.
229  *
230  * For a multiprocessor, the sleep call would accept a lock and
231  * release it after the sleep processing was complete. In a uniprocessor
232  * implementation there is no such interlock, so we simple mark
233  * the places where it needs to be done with the `interlocked' form
234  * of the lock calls. Since the uniprocessor sleep already interlocks
235  * the spl, there is nothing that really needs to be done.
236  */
237 #ifndef /* NOT */ DEBUG
238 static struct lockit {
239 } lk = { 0 };
240 #define ACQUIRE_LOCK(lk)		crit_enter_id("softupdates");
241 #define FREE_LOCK(lk)			crit_exit_id("softupdates");
242 
243 #else /* DEBUG */
244 #define NOHOLDER	((struct thread *)-1)
245 #define SPECIAL_FLAG	((struct thread *)-2)
246 static struct lockit {
247 	int	lkt_spl;
248 	struct thread *lkt_held;
249 } lk = { 0, NOHOLDER };
250 static int lockcnt;
251 
252 static	void acquire_lock(struct lockit *);
253 static	void free_lock(struct lockit *);
254 void	softdep_panic(char *);
255 
256 #define ACQUIRE_LOCK(lk)		acquire_lock(lk)
257 #define FREE_LOCK(lk)			free_lock(lk)
258 
259 static void
260 acquire_lock(struct lockit *lk)
261 {
262 	thread_t holder;
263 
264 	if (lk->lkt_held != NOHOLDER) {
265 		holder = lk->lkt_held;
266 		FREE_LOCK(lk);
267 		if (holder == curthread)
268 			panic("softdep_lock: locking against myself");
269 		else
270 			panic("softdep_lock: lock held by %p", holder);
271 	}
272 	crit_enter_id("softupdates");
273 	lk->lkt_held = curthread;
274 	lockcnt++;
275 }
276 
277 static void
278 free_lock(struct lockit *lk)
279 {
280 
281 	if (lk->lkt_held == NOHOLDER)
282 		panic("softdep_unlock: lock not held");
283 	lk->lkt_held = NOHOLDER;
284 	crit_exit_id("softupdates");
285 }
286 
287 /*
288  * Function to release soft updates lock and panic.
289  */
290 void
291 softdep_panic(char *msg)
292 {
293 
294 	if (lk.lkt_held != NOHOLDER)
295 		FREE_LOCK(&lk);
296 	panic(msg);
297 }
298 #endif /* DEBUG */
299 
300 static	int interlocked_sleep(struct lockit *, int, void *, int,
301 	    const char *, int);
302 
303 /*
304  * When going to sleep, we must save our SPL so that it does
305  * not get lost if some other process uses the lock while we
306  * are sleeping. We restore it after we have slept. This routine
307  * wraps the interlocking with functions that sleep. The list
308  * below enumerates the available set of operations.
309  */
310 #define	UNKNOWN		0
311 #define	SLEEP		1
312 #define	LOCKBUF		2
313 
314 static int
315 interlocked_sleep(struct lockit *lk, int op, void *ident, int flags,
316 		  const char *wmesg, int timo)
317 {
318 	thread_t holder;
319 	int s, retval;
320 
321 	s = lk->lkt_spl;
322 #	ifdef DEBUG
323 	if (lk->lkt_held == NOHOLDER)
324 		panic("interlocked_sleep: lock not held");
325 	lk->lkt_held = NOHOLDER;
326 #	endif /* DEBUG */
327 	switch (op) {
328 	case SLEEP:
329 		retval = tsleep(ident, flags, wmesg, timo);
330 		break;
331 	case LOCKBUF:
332 		retval = BUF_LOCK((struct buf *)ident, flags);
333 		break;
334 	default:
335 		panic("interlocked_sleep: unknown operation");
336 	}
337 #	ifdef DEBUG
338 	if (lk->lkt_held != NOHOLDER) {
339 		holder = lk->lkt_held;
340 		FREE_LOCK(lk);
341 		if (holder == curthread)
342 			panic("interlocked_sleep: locking against self");
343 		else
344 			panic("interlocked_sleep: lock held by %p", holder);
345 	}
346 	lk->lkt_held = curthread;
347 	lockcnt++;
348 #	endif /* DEBUG */
349 	lk->lkt_spl = s;
350 	return (retval);
351 }
352 
353 /*
354  * Place holder for real semaphores.
355  */
356 struct sema {
357 	int	value;
358 	thread_t holder;
359 	char	*name;
360 	int	prio;
361 	int	timo;
362 };
363 static	void sema_init(struct sema *, char *, int, int);
364 static	int sema_get(struct sema *, struct lockit *);
365 static	void sema_release(struct sema *);
366 
367 static void
368 sema_init(struct sema *semap, char *name, int prio, int timo)
369 {
370 
371 	semap->holder = NOHOLDER;
372 	semap->value = 0;
373 	semap->name = name;
374 	semap->prio = prio;
375 	semap->timo = timo;
376 }
377 
378 static int
379 sema_get(struct sema *semap, struct lockit *interlock)
380 {
381 
382 	if (semap->value++ > 0) {
383 		if (interlock != NULL) {
384 			interlocked_sleep(interlock, SLEEP, (caddr_t)semap,
385 			    semap->prio, semap->name, semap->timo);
386 			FREE_LOCK(interlock);
387 		} else {
388 			tsleep((caddr_t)semap, semap->prio, semap->name,
389 			    semap->timo);
390 		}
391 		return (0);
392 	}
393 	semap->holder = curthread;
394 	if (interlock != NULL)
395 		FREE_LOCK(interlock);
396 	return (1);
397 }
398 
399 static void
400 sema_release(struct sema *semap)
401 {
402 
403 	if (semap->value <= 0 || semap->holder != curthread) {
404 		if (lk.lkt_held != NOHOLDER)
405 			FREE_LOCK(&lk);
406 		panic("sema_release: not held");
407 	}
408 	if (--semap->value > 0) {
409 		semap->value = 0;
410 		wakeup(semap);
411 	}
412 	semap->holder = NOHOLDER;
413 }
414 
415 /*
416  * Worklist queue management.
417  * These routines require that the lock be held.
418  */
419 #ifndef /* NOT */ DEBUG
420 #define WORKLIST_INSERT(head, item) do {	\
421 	(item)->wk_state |= ONWORKLIST;		\
422 	LIST_INSERT_HEAD(head, item, wk_list);	\
423 } while (0)
424 
425 #define WORKLIST_INSERT_BP(bp, item) do {	\
426 	(item)->wk_state |= ONWORKLIST;		\
427 	(bp)->b_ops = &softdep_bioops;		\
428 	LIST_INSERT_HEAD(&(bp)->b_dep, item, wk_list);	\
429 } while (0)
430 
431 #define WORKLIST_REMOVE(item) do {		\
432 	(item)->wk_state &= ~ONWORKLIST;	\
433 	LIST_REMOVE(item, wk_list);		\
434 } while (0)
435 
436 #define WORKITEM_FREE(item, type) kfree(item, DtoM(type))
437 
438 #else /* DEBUG */
439 static	void worklist_insert(struct workhead *, struct worklist *);
440 static	void worklist_remove(struct worklist *);
441 static	void workitem_free(struct worklist *, int);
442 
443 #define WORKLIST_INSERT_BP(bp, item) do {	\
444 	(bp)->b_ops = &softdep_bioops;		\
445 	worklist_insert(&(bp)->b_dep, item);	\
446 } while (0)
447 
448 #define WORKLIST_INSERT(head, item) worklist_insert(head, item)
449 #define WORKLIST_REMOVE(item) worklist_remove(item)
450 #define WORKITEM_FREE(item, type) workitem_free((struct worklist *)item, type)
451 
452 static void
453 worklist_insert(struct workhead *head, struct worklist *item)
454 {
455 
456 	if (lk.lkt_held == NOHOLDER)
457 		panic("worklist_insert: lock not held");
458 	if (item->wk_state & ONWORKLIST) {
459 		FREE_LOCK(&lk);
460 		panic("worklist_insert: already on list");
461 	}
462 	item->wk_state |= ONWORKLIST;
463 	LIST_INSERT_HEAD(head, item, wk_list);
464 }
465 
466 static void
467 worklist_remove(struct worklist *item)
468 {
469 
470 	if (lk.lkt_held == NOHOLDER)
471 		panic("worklist_remove: lock not held");
472 	if ((item->wk_state & ONWORKLIST) == 0) {
473 		FREE_LOCK(&lk);
474 		panic("worklist_remove: not on list");
475 	}
476 	item->wk_state &= ~ONWORKLIST;
477 	LIST_REMOVE(item, wk_list);
478 }
479 
480 static void
481 workitem_free(struct worklist *item, int type)
482 {
483 
484 	if (item->wk_state & ONWORKLIST) {
485 		if (lk.lkt_held != NOHOLDER)
486 			FREE_LOCK(&lk);
487 		panic("workitem_free: still on list");
488 	}
489 	if (item->wk_type != type) {
490 		if (lk.lkt_held != NOHOLDER)
491 			FREE_LOCK(&lk);
492 		panic("workitem_free: type mismatch");
493 	}
494 	kfree(item, DtoM(type));
495 }
496 #endif /* DEBUG */
497 
498 /*
499  * Workitem queue management
500  */
501 static struct workhead softdep_workitem_pending;
502 static int num_on_worklist;	/* number of worklist items to be processed */
503 static int softdep_worklist_busy; /* 1 => trying to do unmount */
504 static int softdep_worklist_req; /* serialized waiters */
505 static int max_softdeps;	/* maximum number of structs before slowdown */
506 static int tickdelay = 2;	/* number of ticks to pause during slowdown */
507 static int *stat_countp;	/* statistic to count in proc_waiting timeout */
508 static int proc_waiting;	/* tracks whether we have a timeout posted */
509 static struct callout handle; /* handle on posted proc_waiting timeout */
510 static struct thread *filesys_syncer; /* proc of filesystem syncer process */
511 static int req_clear_inodedeps;	/* syncer process flush some inodedeps */
512 #define FLUSH_INODES	1
513 static int req_clear_remove;	/* syncer process flush some freeblks */
514 #define FLUSH_REMOVE	2
515 /*
516  * runtime statistics
517  */
518 static int stat_worklist_push;	/* number of worklist cleanups */
519 static int stat_blk_limit_push;	/* number of times block limit neared */
520 static int stat_ino_limit_push;	/* number of times inode limit neared */
521 static int stat_blk_limit_hit;	/* number of times block slowdown imposed */
522 static int stat_ino_limit_hit;	/* number of times inode slowdown imposed */
523 static int stat_sync_limit_hit;	/* number of synchronous slowdowns imposed */
524 static int stat_indir_blk_ptrs;	/* bufs redirtied as indir ptrs not written */
525 static int stat_inode_bitmap;	/* bufs redirtied as inode bitmap not written */
526 static int stat_direct_blk_ptrs;/* bufs redirtied as direct ptrs not written */
527 static int stat_dir_entry;	/* bufs redirtied as dir entry cannot write */
528 #ifdef DEBUG
529 #include <vm/vm.h>
530 #include <sys/sysctl.h>
531 SYSCTL_INT(_debug, OID_AUTO, max_softdeps, CTLFLAG_RW, &max_softdeps, 0,
532     "Maximum soft dependencies before slowdown occurs");
533 SYSCTL_INT(_debug, OID_AUTO, tickdelay, CTLFLAG_RW, &tickdelay, 0,
534     "Ticks to delay before allocating during slowdown");
535 SYSCTL_INT(_debug, OID_AUTO, worklist_push, CTLFLAG_RW, &stat_worklist_push, 0,
536     "Number of worklist cleanups");
537 SYSCTL_INT(_debug, OID_AUTO, blk_limit_push, CTLFLAG_RW, &stat_blk_limit_push, 0,
538     "Number of times block limit neared");
539 SYSCTL_INT(_debug, OID_AUTO, ino_limit_push, CTLFLAG_RW, &stat_ino_limit_push, 0,
540     "Number of times inode limit neared");
541 SYSCTL_INT(_debug, OID_AUTO, blk_limit_hit, CTLFLAG_RW, &stat_blk_limit_hit, 0,
542     "Number of times block slowdown imposed");
543 SYSCTL_INT(_debug, OID_AUTO, ino_limit_hit, CTLFLAG_RW, &stat_ino_limit_hit, 0,
544     "Number of times inode slowdown imposed ");
545 SYSCTL_INT(_debug, OID_AUTO, sync_limit_hit, CTLFLAG_RW, &stat_sync_limit_hit, 0,
546     "Number of synchronous slowdowns imposed");
547 SYSCTL_INT(_debug, OID_AUTO, indir_blk_ptrs, CTLFLAG_RW, &stat_indir_blk_ptrs, 0,
548     "Bufs redirtied as indir ptrs not written");
549 SYSCTL_INT(_debug, OID_AUTO, inode_bitmap, CTLFLAG_RW, &stat_inode_bitmap, 0,
550     "Bufs redirtied as inode bitmap not written");
551 SYSCTL_INT(_debug, OID_AUTO, direct_blk_ptrs, CTLFLAG_RW, &stat_direct_blk_ptrs, 0,
552     "Bufs redirtied as direct ptrs not written");
553 SYSCTL_INT(_debug, OID_AUTO, dir_entry, CTLFLAG_RW, &stat_dir_entry, 0,
554     "Bufs redirtied as dir entry cannot write");
555 #endif /* DEBUG */
556 
557 /*
558  * Add an item to the end of the work queue.
559  * This routine requires that the lock be held.
560  * This is the only routine that adds items to the list.
561  * The following routine is the only one that removes items
562  * and does so in order from first to last.
563  */
564 static void
565 add_to_worklist(struct worklist *wk)
566 {
567 	static struct worklist *worklist_tail;
568 
569 	if (wk->wk_state & ONWORKLIST) {
570 		if (lk.lkt_held != NOHOLDER)
571 			FREE_LOCK(&lk);
572 		panic("add_to_worklist: already on list");
573 	}
574 	wk->wk_state |= ONWORKLIST;
575 	if (LIST_FIRST(&softdep_workitem_pending) == NULL)
576 		LIST_INSERT_HEAD(&softdep_workitem_pending, wk, wk_list);
577 	else
578 		LIST_INSERT_AFTER(worklist_tail, wk, wk_list);
579 	worklist_tail = wk;
580 	num_on_worklist += 1;
581 }
582 
583 /*
584  * Process that runs once per second to handle items in the background queue.
585  *
586  * Note that we ensure that everything is done in the order in which they
587  * appear in the queue. The code below depends on this property to ensure
588  * that blocks of a file are freed before the inode itself is freed. This
589  * ordering ensures that no new <vfsid, inum, lbn> triples will be generated
590  * until all the old ones have been purged from the dependency lists.
591  *
592  * bioops callback - hold io_token
593  */
594 static int
595 softdep_process_worklist(struct mount *matchmnt)
596 {
597 	thread_t td = curthread;
598 	int matchcnt, loopcount;
599 	long starttime;
600 
601 	get_mplock();
602 
603 	/*
604 	 * Record the process identifier of our caller so that we can give
605 	 * this process preferential treatment in request_cleanup below.
606 	 */
607 	filesys_syncer = td;
608 	matchcnt = 0;
609 
610 	/*
611 	 * There is no danger of having multiple processes run this
612 	 * code, but we have to single-thread it when softdep_flushfiles()
613 	 * is in operation to get an accurate count of the number of items
614 	 * related to its mount point that are in the list.
615 	 */
616 	if (matchmnt == NULL) {
617 		if (softdep_worklist_busy < 0) {
618 			matchcnt = -1;
619 			goto done;
620 		}
621 		softdep_worklist_busy += 1;
622 	}
623 
624 	/*
625 	 * If requested, try removing inode or removal dependencies.
626 	 */
627 	if (req_clear_inodedeps) {
628 		clear_inodedeps(td);
629 		req_clear_inodedeps -= 1;
630 		wakeup_one(&proc_waiting);
631 	}
632 	if (req_clear_remove) {
633 		clear_remove(td);
634 		req_clear_remove -= 1;
635 		wakeup_one(&proc_waiting);
636 	}
637 	loopcount = 1;
638 	starttime = time_second;
639 	while (num_on_worklist > 0) {
640 		matchcnt += process_worklist_item(matchmnt, 0);
641 
642 		/*
643 		 * If a umount operation wants to run the worklist
644 		 * accurately, abort.
645 		 */
646 		if (softdep_worklist_req && matchmnt == NULL) {
647 			matchcnt = -1;
648 			break;
649 		}
650 
651 		/*
652 		 * If requested, try removing inode or removal dependencies.
653 		 */
654 		if (req_clear_inodedeps) {
655 			clear_inodedeps(td);
656 			req_clear_inodedeps -= 1;
657 			wakeup_one(&proc_waiting);
658 		}
659 		if (req_clear_remove) {
660 			clear_remove(td);
661 			req_clear_remove -= 1;
662 			wakeup_one(&proc_waiting);
663 		}
664 		/*
665 		 * We do not generally want to stop for buffer space, but if
666 		 * we are really being a buffer hog, we will stop and wait.
667 		 */
668 		if (loopcount++ % 128 == 0)
669 			bwillinode(1);
670 		/*
671 		 * Never allow processing to run for more than one
672 		 * second. Otherwise the other syncer tasks may get
673 		 * excessively backlogged.
674 		 */
675 		if (starttime != time_second && matchmnt == NULL) {
676 			matchcnt = -1;
677 			break;
678 		}
679 	}
680 	if (matchmnt == NULL) {
681 		--softdep_worklist_busy;
682 		if (softdep_worklist_req && softdep_worklist_busy == 0)
683 			wakeup(&softdep_worklist_req);
684 	}
685 done:
686 	rel_mplock();
687 	return (matchcnt);
688 }
689 
690 /*
691  * Process one item on the worklist.
692  */
693 static int
694 process_worklist_item(struct mount *matchmnt, int flags)
695 {
696 	struct worklist *wk;
697 	struct dirrem *dirrem;
698 	struct fs *matchfs;
699 	struct vnode *vp;
700 	int matchcnt = 0;
701 
702 	matchfs = NULL;
703 	if (matchmnt != NULL)
704 		matchfs = VFSTOUFS(matchmnt)->um_fs;
705 	ACQUIRE_LOCK(&lk);
706 	/*
707 	 * Normally we just process each item on the worklist in order.
708 	 * However, if we are in a situation where we cannot lock any
709 	 * inodes, we have to skip over any dirrem requests whose
710 	 * vnodes are resident and locked.
711 	 */
712 	LIST_FOREACH(wk, &softdep_workitem_pending, wk_list) {
713 		if ((flags & LK_NOWAIT) == 0 || wk->wk_type != D_DIRREM)
714 			break;
715 		dirrem = WK_DIRREM(wk);
716 		vp = ufs_ihashlookup(VFSTOUFS(dirrem->dm_mnt)->um_dev,
717 		    dirrem->dm_oldinum);
718 		if (vp == NULL || !vn_islocked(vp))
719 			break;
720 	}
721 	if (wk == NULL) {
722 		FREE_LOCK(&lk);
723 		return (0);
724 	}
725 	WORKLIST_REMOVE(wk);
726 	num_on_worklist -= 1;
727 	FREE_LOCK(&lk);
728 	switch (wk->wk_type) {
729 
730 	case D_DIRREM:
731 		/* removal of a directory entry */
732 		if (WK_DIRREM(wk)->dm_mnt == matchmnt)
733 			matchcnt += 1;
734 		handle_workitem_remove(WK_DIRREM(wk));
735 		break;
736 
737 	case D_FREEBLKS:
738 		/* releasing blocks and/or fragments from a file */
739 		if (WK_FREEBLKS(wk)->fb_fs == matchfs)
740 			matchcnt += 1;
741 		handle_workitem_freeblocks(WK_FREEBLKS(wk));
742 		break;
743 
744 	case D_FREEFRAG:
745 		/* releasing a fragment when replaced as a file grows */
746 		if (WK_FREEFRAG(wk)->ff_fs == matchfs)
747 			matchcnt += 1;
748 		handle_workitem_freefrag(WK_FREEFRAG(wk));
749 		break;
750 
751 	case D_FREEFILE:
752 		/* releasing an inode when its link count drops to 0 */
753 		if (WK_FREEFILE(wk)->fx_fs == matchfs)
754 			matchcnt += 1;
755 		handle_workitem_freefile(WK_FREEFILE(wk));
756 		break;
757 
758 	default:
759 		panic("%s_process_worklist: Unknown type %s",
760 		    "softdep", TYPENAME(wk->wk_type));
761 		/* NOTREACHED */
762 	}
763 	return (matchcnt);
764 }
765 
766 /*
767  * Move dependencies from one buffer to another.
768  *
769  * bioops callback - hold io_token
770  */
771 static void
772 softdep_move_dependencies(struct buf *oldbp, struct buf *newbp)
773 {
774 	struct worklist *wk, *wktail;
775 
776 	get_mplock();
777 	if (LIST_FIRST(&newbp->b_dep) != NULL)
778 		panic("softdep_move_dependencies: need merge code");
779 	wktail = NULL;
780 	ACQUIRE_LOCK(&lk);
781 	while ((wk = LIST_FIRST(&oldbp->b_dep)) != NULL) {
782 		LIST_REMOVE(wk, wk_list);
783 		if (wktail == NULL)
784 			LIST_INSERT_HEAD(&newbp->b_dep, wk, wk_list);
785 		else
786 			LIST_INSERT_AFTER(wktail, wk, wk_list);
787 		wktail = wk;
788 		newbp->b_ops = &softdep_bioops;
789 	}
790 	FREE_LOCK(&lk);
791 	rel_mplock();
792 }
793 
794 /*
795  * Purge the work list of all items associated with a particular mount point.
796  */
797 int
798 softdep_flushfiles(struct mount *oldmnt, int flags)
799 {
800 	struct vnode *devvp;
801 	int error, loopcnt;
802 
803 	/*
804 	 * Await our turn to clear out the queue, then serialize access.
805 	 */
806 	while (softdep_worklist_busy != 0) {
807 		softdep_worklist_req += 1;
808 		tsleep(&softdep_worklist_req, 0, "softflush", 0);
809 		softdep_worklist_req -= 1;
810 	}
811 	softdep_worklist_busy = -1;
812 
813 	if ((error = ffs_flushfiles(oldmnt, flags)) != 0) {
814 		softdep_worklist_busy = 0;
815 		if (softdep_worklist_req)
816 			wakeup(&softdep_worklist_req);
817 		return (error);
818 	}
819 	/*
820 	 * Alternately flush the block device associated with the mount
821 	 * point and process any dependencies that the flushing
822 	 * creates. In theory, this loop can happen at most twice,
823 	 * but we give it a few extra just to be sure.
824 	 */
825 	devvp = VFSTOUFS(oldmnt)->um_devvp;
826 	for (loopcnt = 10; loopcnt > 0; ) {
827 		if (softdep_process_worklist(oldmnt) == 0) {
828 			loopcnt--;
829 			/*
830 			 * Do another flush in case any vnodes were brought in
831 			 * as part of the cleanup operations.
832 			 */
833 			if ((error = ffs_flushfiles(oldmnt, flags)) != 0)
834 				break;
835 			/*
836 			 * If we still found nothing to do, we are really done.
837 			 */
838 			if (softdep_process_worklist(oldmnt) == 0)
839 				break;
840 		}
841 		vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
842 		error = VOP_FSYNC(devvp, MNT_WAIT, 0);
843 		vn_unlock(devvp);
844 		if (error)
845 			break;
846 	}
847 	softdep_worklist_busy = 0;
848 	if (softdep_worklist_req)
849 		wakeup(&softdep_worklist_req);
850 
851 	/*
852 	 * If we are unmounting then it is an error to fail. If we
853 	 * are simply trying to downgrade to read-only, then filesystem
854 	 * activity can keep us busy forever, so we just fail with EBUSY.
855 	 */
856 	if (loopcnt == 0) {
857 		if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT)
858 			panic("softdep_flushfiles: looping");
859 		error = EBUSY;
860 	}
861 	return (error);
862 }
863 
864 /*
865  * Structure hashing.
866  *
867  * There are three types of structures that can be looked up:
868  *	1) pagedep structures identified by mount point, inode number,
869  *	   and logical block.
870  *	2) inodedep structures identified by mount point and inode number.
871  *	3) newblk structures identified by mount point and
872  *	   physical block number.
873  *
874  * The "pagedep" and "inodedep" dependency structures are hashed
875  * separately from the file blocks and inodes to which they correspond.
876  * This separation helps when the in-memory copy of an inode or
877  * file block must be replaced. It also obviates the need to access
878  * an inode or file page when simply updating (or de-allocating)
879  * dependency structures. Lookup of newblk structures is needed to
880  * find newly allocated blocks when trying to associate them with
881  * their allocdirect or allocindir structure.
882  *
883  * The lookup routines optionally create and hash a new instance when
884  * an existing entry is not found.
885  */
886 #define DEPALLOC	0x0001	/* allocate structure if lookup fails */
887 #define NODELAY		0x0002	/* cannot do background work */
888 
889 /*
890  * Structures and routines associated with pagedep caching.
891  */
892 LIST_HEAD(pagedep_hashhead, pagedep) *pagedep_hashtbl;
893 u_long	pagedep_hash;		/* size of hash table - 1 */
894 #define	PAGEDEP_HASH(mp, inum, lbn) \
895 	(&pagedep_hashtbl[((((register_t)(mp)) >> 13) + (inum) + (lbn)) & \
896 	    pagedep_hash])
897 static struct sema pagedep_in_progress;
898 
899 /*
900  * Helper routine for pagedep_lookup()
901  */
902 static __inline
903 struct pagedep *
904 pagedep_find(struct pagedep_hashhead *pagedephd, ino_t ino, ufs_lbn_t lbn,
905 	     struct mount *mp)
906 {
907 	struct pagedep *pagedep;
908 
909 	LIST_FOREACH(pagedep, pagedephd, pd_hash) {
910 		if (ino == pagedep->pd_ino &&
911 		    lbn == pagedep->pd_lbn &&
912 		    mp == pagedep->pd_mnt) {
913 			return (pagedep);
914 		}
915 	}
916 	return(NULL);
917 }
918 
919 /*
920  * Look up a pagedep. Return 1 if found, 0 if not found.
921  * If not found, allocate if DEPALLOC flag is passed.
922  * Found or allocated entry is returned in pagedeppp.
923  * This routine must be called with splbio interrupts blocked.
924  */
925 static int
926 pagedep_lookup(struct inode *ip, ufs_lbn_t lbn, int flags,
927 	       struct pagedep **pagedeppp)
928 {
929 	struct pagedep *pagedep;
930 	struct pagedep_hashhead *pagedephd;
931 	struct mount *mp;
932 	int i;
933 
934 #ifdef DEBUG
935 	if (lk.lkt_held == NOHOLDER)
936 		panic("pagedep_lookup: lock not held");
937 #endif
938 	mp = ITOV(ip)->v_mount;
939 	pagedephd = PAGEDEP_HASH(mp, ip->i_number, lbn);
940 top:
941 	*pagedeppp = pagedep_find(pagedephd, ip->i_number, lbn, mp);
942 	if (*pagedeppp)
943 		return(1);
944 	if ((flags & DEPALLOC) == 0)
945 		return (0);
946 	if (sema_get(&pagedep_in_progress, &lk) == 0) {
947 		ACQUIRE_LOCK(&lk);
948 		goto top;
949 	}
950 	pagedep = kmalloc(sizeof(struct pagedep), M_PAGEDEP,
951 			  M_SOFTDEP_FLAGS | M_ZERO);
952 
953 	if (pagedep_find(pagedephd, ip->i_number, lbn, mp)) {
954 		kprintf("pagedep_lookup: blocking race avoided\n");
955 		ACQUIRE_LOCK(&lk);
956 		sema_release(&pagedep_in_progress);
957 		kfree(pagedep, M_PAGEDEP);
958 		goto top;
959 	}
960 
961 	pagedep->pd_list.wk_type = D_PAGEDEP;
962 	pagedep->pd_mnt = mp;
963 	pagedep->pd_ino = ip->i_number;
964 	pagedep->pd_lbn = lbn;
965 	LIST_INIT(&pagedep->pd_dirremhd);
966 	LIST_INIT(&pagedep->pd_pendinghd);
967 	for (i = 0; i < DAHASHSZ; i++)
968 		LIST_INIT(&pagedep->pd_diraddhd[i]);
969 	ACQUIRE_LOCK(&lk);
970 	LIST_INSERT_HEAD(pagedephd, pagedep, pd_hash);
971 	sema_release(&pagedep_in_progress);
972 	*pagedeppp = pagedep;
973 	return (0);
974 }
975 
976 /*
977  * Structures and routines associated with inodedep caching.
978  */
979 LIST_HEAD(inodedep_hashhead, inodedep) *inodedep_hashtbl;
980 static u_long	inodedep_hash;	/* size of hash table - 1 */
981 static long	num_inodedep;	/* number of inodedep allocated */
982 #define	INODEDEP_HASH(fs, inum) \
983       (&inodedep_hashtbl[((((register_t)(fs)) >> 13) + (inum)) & inodedep_hash])
984 static struct sema inodedep_in_progress;
985 
986 /*
987  * Helper routine for inodedep_lookup()
988  */
989 static __inline
990 struct inodedep *
991 inodedep_find(struct inodedep_hashhead *inodedephd, struct fs *fs, ino_t inum)
992 {
993 	struct inodedep *inodedep;
994 
995 	LIST_FOREACH(inodedep, inodedephd, id_hash) {
996 		if (inum == inodedep->id_ino && fs == inodedep->id_fs)
997 			return(inodedep);
998 	}
999 	return (NULL);
1000 }
1001 
1002 /*
1003  * Look up a inodedep. Return 1 if found, 0 if not found.
1004  * If not found, allocate if DEPALLOC flag is passed.
1005  * Found or allocated entry is returned in inodedeppp.
1006  * This routine must be called with splbio interrupts blocked.
1007  */
1008 static int
1009 inodedep_lookup(struct fs *fs, ino_t inum, int flags,
1010 	        struct inodedep **inodedeppp)
1011 {
1012 	struct inodedep *inodedep;
1013 	struct inodedep_hashhead *inodedephd;
1014 	int firsttry;
1015 
1016 #ifdef DEBUG
1017 	if (lk.lkt_held == NOHOLDER)
1018 		panic("inodedep_lookup: lock not held");
1019 #endif
1020 	firsttry = 1;
1021 	inodedephd = INODEDEP_HASH(fs, inum);
1022 top:
1023 	*inodedeppp = inodedep_find(inodedephd, fs, inum);
1024 	if (*inodedeppp)
1025 		return (1);
1026 	if ((flags & DEPALLOC) == 0)
1027 		return (0);
1028 	/*
1029 	 * If we are over our limit, try to improve the situation.
1030 	 */
1031 	if (num_inodedep > max_softdeps && firsttry &&
1032 	    speedup_syncer() == 0 && (flags & NODELAY) == 0 &&
1033 	    request_cleanup(FLUSH_INODES, 1)) {
1034 		firsttry = 0;
1035 		goto top;
1036 	}
1037 	if (sema_get(&inodedep_in_progress, &lk) == 0) {
1038 		ACQUIRE_LOCK(&lk);
1039 		goto top;
1040 	}
1041 	inodedep = kmalloc(sizeof(struct inodedep), M_INODEDEP,
1042 			   M_SOFTDEP_FLAGS | M_ZERO);
1043 	if (inodedep_find(inodedephd, fs, inum)) {
1044 		kprintf("inodedep_lookup: blocking race avoided\n");
1045 		ACQUIRE_LOCK(&lk);
1046 		sema_release(&inodedep_in_progress);
1047 		kfree(inodedep, M_INODEDEP);
1048 		goto top;
1049 	}
1050 	inodedep->id_list.wk_type = D_INODEDEP;
1051 	inodedep->id_fs = fs;
1052 	inodedep->id_ino = inum;
1053 	inodedep->id_state = ALLCOMPLETE;
1054 	inodedep->id_nlinkdelta = 0;
1055 	inodedep->id_savedino = NULL;
1056 	inodedep->id_savedsize = -1;
1057 	inodedep->id_buf = NULL;
1058 	LIST_INIT(&inodedep->id_pendinghd);
1059 	LIST_INIT(&inodedep->id_inowait);
1060 	LIST_INIT(&inodedep->id_bufwait);
1061 	TAILQ_INIT(&inodedep->id_inoupdt);
1062 	TAILQ_INIT(&inodedep->id_newinoupdt);
1063 	ACQUIRE_LOCK(&lk);
1064 	num_inodedep += 1;
1065 	LIST_INSERT_HEAD(inodedephd, inodedep, id_hash);
1066 	sema_release(&inodedep_in_progress);
1067 	*inodedeppp = inodedep;
1068 	return (0);
1069 }
1070 
1071 /*
1072  * Structures and routines associated with newblk caching.
1073  */
1074 LIST_HEAD(newblk_hashhead, newblk) *newblk_hashtbl;
1075 u_long	newblk_hash;		/* size of hash table - 1 */
1076 #define	NEWBLK_HASH(fs, inum) \
1077 	(&newblk_hashtbl[((((register_t)(fs)) >> 13) + (inum)) & newblk_hash])
1078 static struct sema newblk_in_progress;
1079 
1080 /*
1081  * Helper routine for newblk_lookup()
1082  */
1083 static __inline
1084 struct newblk *
1085 newblk_find(struct newblk_hashhead *newblkhd, struct fs *fs,
1086 	    ufs_daddr_t newblkno)
1087 {
1088 	struct newblk *newblk;
1089 
1090 	LIST_FOREACH(newblk, newblkhd, nb_hash) {
1091 		if (newblkno == newblk->nb_newblkno && fs == newblk->nb_fs)
1092 			return (newblk);
1093 	}
1094 	return(NULL);
1095 }
1096 
1097 /*
1098  * Look up a newblk. Return 1 if found, 0 if not found.
1099  * If not found, allocate if DEPALLOC flag is passed.
1100  * Found or allocated entry is returned in newblkpp.
1101  */
1102 static int
1103 newblk_lookup(struct fs *fs, ufs_daddr_t newblkno, int flags,
1104 	      struct newblk **newblkpp)
1105 {
1106 	struct newblk *newblk;
1107 	struct newblk_hashhead *newblkhd;
1108 
1109 	newblkhd = NEWBLK_HASH(fs, newblkno);
1110 top:
1111 	*newblkpp = newblk_find(newblkhd, fs, newblkno);
1112 	if (*newblkpp)
1113 		return(1);
1114 	if ((flags & DEPALLOC) == 0)
1115 		return (0);
1116 	if (sema_get(&newblk_in_progress, 0) == 0)
1117 		goto top;
1118 	newblk = kmalloc(sizeof(struct newblk), M_NEWBLK,
1119 			 M_SOFTDEP_FLAGS | M_ZERO);
1120 
1121 	if (newblk_find(newblkhd, fs, newblkno)) {
1122 		kprintf("newblk_lookup: blocking race avoided\n");
1123 		sema_release(&pagedep_in_progress);
1124 		kfree(newblk, M_NEWBLK);
1125 		goto top;
1126 	}
1127 	newblk->nb_state = 0;
1128 	newblk->nb_fs = fs;
1129 	newblk->nb_newblkno = newblkno;
1130 	LIST_INSERT_HEAD(newblkhd, newblk, nb_hash);
1131 	sema_release(&newblk_in_progress);
1132 	*newblkpp = newblk;
1133 	return (0);
1134 }
1135 
1136 /*
1137  * Executed during filesystem system initialization before
1138  * mounting any filesystems.
1139  */
1140 void
1141 softdep_initialize(void)
1142 {
1143 	callout_init(&handle);
1144 
1145 	LIST_INIT(&mkdirlisthd);
1146 	LIST_INIT(&softdep_workitem_pending);
1147 	max_softdeps = min(desiredvnodes * 8,
1148 		M_INODEDEP->ks_limit / (2 * sizeof(struct inodedep)));
1149 	pagedep_hashtbl = hashinit(desiredvnodes / 5, M_PAGEDEP,
1150 	    &pagedep_hash);
1151 	sema_init(&pagedep_in_progress, "pagedep", 0, 0);
1152 	inodedep_hashtbl = hashinit(desiredvnodes, M_INODEDEP, &inodedep_hash);
1153 	sema_init(&inodedep_in_progress, "inodedep", 0, 0);
1154 	newblk_hashtbl = hashinit(64, M_NEWBLK, &newblk_hash);
1155 	sema_init(&newblk_in_progress, "newblk", 0, 0);
1156 	add_bio_ops(&softdep_bioops);
1157 }
1158 
1159 /*
1160  * Called at mount time to notify the dependency code that a
1161  * filesystem wishes to use it.
1162  */
1163 int
1164 softdep_mount(struct vnode *devvp, struct mount *mp, struct fs *fs)
1165 {
1166 	struct csum cstotal;
1167 	struct cg *cgp;
1168 	struct buf *bp;
1169 	int error, cyl;
1170 
1171 	mp->mnt_flag &= ~MNT_ASYNC;
1172 	mp->mnt_flag |= MNT_SOFTDEP;
1173 	mp->mnt_bioops = &softdep_bioops;
1174 	/*
1175 	 * When doing soft updates, the counters in the
1176 	 * superblock may have gotten out of sync, so we have
1177 	 * to scan the cylinder groups and recalculate them.
1178 	 */
1179 	if (fs->fs_clean != 0)
1180 		return (0);
1181 	bzero(&cstotal, sizeof cstotal);
1182 	for (cyl = 0; cyl < fs->fs_ncg; cyl++) {
1183 		if ((error = bread(devvp, fsbtodoff(fs, cgtod(fs, cyl)),
1184 				   fs->fs_cgsize, &bp)) != 0) {
1185 			brelse(bp);
1186 			return (error);
1187 		}
1188 		cgp = (struct cg *)bp->b_data;
1189 		cstotal.cs_nffree += cgp->cg_cs.cs_nffree;
1190 		cstotal.cs_nbfree += cgp->cg_cs.cs_nbfree;
1191 		cstotal.cs_nifree += cgp->cg_cs.cs_nifree;
1192 		cstotal.cs_ndir += cgp->cg_cs.cs_ndir;
1193 		fs->fs_cs(fs, cyl) = cgp->cg_cs;
1194 		brelse(bp);
1195 	}
1196 #ifdef DEBUG
1197 	if (bcmp(&cstotal, &fs->fs_cstotal, sizeof cstotal))
1198 		kprintf("ffs_mountfs: superblock updated for soft updates\n");
1199 #endif
1200 	bcopy(&cstotal, &fs->fs_cstotal, sizeof cstotal);
1201 	return (0);
1202 }
1203 
1204 /*
1205  * Protecting the freemaps (or bitmaps).
1206  *
1207  * To eliminate the need to execute fsck before mounting a filesystem
1208  * after a power failure, one must (conservatively) guarantee that the
1209  * on-disk copy of the bitmaps never indicate that a live inode or block is
1210  * free.  So, when a block or inode is allocated, the bitmap should be
1211  * updated (on disk) before any new pointers.  When a block or inode is
1212  * freed, the bitmap should not be updated until all pointers have been
1213  * reset.  The latter dependency is handled by the delayed de-allocation
1214  * approach described below for block and inode de-allocation.  The former
1215  * dependency is handled by calling the following procedure when a block or
1216  * inode is allocated. When an inode is allocated an "inodedep" is created
1217  * with its DEPCOMPLETE flag cleared until its bitmap is written to disk.
1218  * Each "inodedep" is also inserted into the hash indexing structure so
1219  * that any additional link additions can be made dependent on the inode
1220  * allocation.
1221  *
1222  * The ufs filesystem maintains a number of free block counts (e.g., per
1223  * cylinder group, per cylinder and per <cylinder, rotational position> pair)
1224  * in addition to the bitmaps.  These counts are used to improve efficiency
1225  * during allocation and therefore must be consistent with the bitmaps.
1226  * There is no convenient way to guarantee post-crash consistency of these
1227  * counts with simple update ordering, for two main reasons: (1) The counts
1228  * and bitmaps for a single cylinder group block are not in the same disk
1229  * sector.  If a disk write is interrupted (e.g., by power failure), one may
1230  * be written and the other not.  (2) Some of the counts are located in the
1231  * superblock rather than the cylinder group block. So, we focus our soft
1232  * updates implementation on protecting the bitmaps. When mounting a
1233  * filesystem, we recompute the auxiliary counts from the bitmaps.
1234  */
1235 
1236 /*
1237  * Called just after updating the cylinder group block to allocate an inode.
1238  *
1239  * Parameters:
1240  *	bp:		buffer for cylgroup block with inode map
1241  *	ip:		inode related to allocation
1242  *	newinum:	new inode number being allocated
1243  */
1244 void
1245 softdep_setup_inomapdep(struct buf *bp, struct inode *ip, ino_t newinum)
1246 {
1247 	struct inodedep *inodedep;
1248 	struct bmsafemap *bmsafemap;
1249 
1250 	/*
1251 	 * Create a dependency for the newly allocated inode.
1252 	 * Panic if it already exists as something is seriously wrong.
1253 	 * Otherwise add it to the dependency list for the buffer holding
1254 	 * the cylinder group map from which it was allocated.
1255 	 */
1256 	ACQUIRE_LOCK(&lk);
1257 	if ((inodedep_lookup(ip->i_fs, newinum, DEPALLOC|NODELAY, &inodedep))) {
1258 		FREE_LOCK(&lk);
1259 		panic("softdep_setup_inomapdep: found inode");
1260 	}
1261 	inodedep->id_buf = bp;
1262 	inodedep->id_state &= ~DEPCOMPLETE;
1263 	bmsafemap = bmsafemap_lookup(bp);
1264 	LIST_INSERT_HEAD(&bmsafemap->sm_inodedephd, inodedep, id_deps);
1265 	FREE_LOCK(&lk);
1266 }
1267 
1268 /*
1269  * Called just after updating the cylinder group block to
1270  * allocate block or fragment.
1271  *
1272  * Parameters:
1273  *	bp:		buffer for cylgroup block with block map
1274  *	fs:		filesystem doing allocation
1275  *	newblkno:	number of newly allocated block
1276  */
1277 void
1278 softdep_setup_blkmapdep(struct buf *bp, struct fs *fs,
1279 			ufs_daddr_t newblkno)
1280 {
1281 	struct newblk *newblk;
1282 	struct bmsafemap *bmsafemap;
1283 
1284 	/*
1285 	 * Create a dependency for the newly allocated block.
1286 	 * Add it to the dependency list for the buffer holding
1287 	 * the cylinder group map from which it was allocated.
1288 	 */
1289 	if (newblk_lookup(fs, newblkno, DEPALLOC, &newblk) != 0)
1290 		panic("softdep_setup_blkmapdep: found block");
1291 	ACQUIRE_LOCK(&lk);
1292 	newblk->nb_bmsafemap = bmsafemap = bmsafemap_lookup(bp);
1293 	LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, nb_deps);
1294 	FREE_LOCK(&lk);
1295 }
1296 
1297 /*
1298  * Find the bmsafemap associated with a cylinder group buffer.
1299  * If none exists, create one. The buffer must be locked when
1300  * this routine is called and this routine must be called with
1301  * splbio interrupts blocked.
1302  */
1303 static struct bmsafemap *
1304 bmsafemap_lookup(struct buf *bp)
1305 {
1306 	struct bmsafemap *bmsafemap;
1307 	struct worklist *wk;
1308 
1309 #ifdef DEBUG
1310 	if (lk.lkt_held == NOHOLDER)
1311 		panic("bmsafemap_lookup: lock not held");
1312 #endif
1313 	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
1314 		if (wk->wk_type == D_BMSAFEMAP)
1315 			return (WK_BMSAFEMAP(wk));
1316 	}
1317 	FREE_LOCK(&lk);
1318 	bmsafemap = kmalloc(sizeof(struct bmsafemap), M_BMSAFEMAP,
1319 			    M_SOFTDEP_FLAGS);
1320 	bmsafemap->sm_list.wk_type = D_BMSAFEMAP;
1321 	bmsafemap->sm_list.wk_state = 0;
1322 	bmsafemap->sm_buf = bp;
1323 	LIST_INIT(&bmsafemap->sm_allocdirecthd);
1324 	LIST_INIT(&bmsafemap->sm_allocindirhd);
1325 	LIST_INIT(&bmsafemap->sm_inodedephd);
1326 	LIST_INIT(&bmsafemap->sm_newblkhd);
1327 	ACQUIRE_LOCK(&lk);
1328 	WORKLIST_INSERT_BP(bp, &bmsafemap->sm_list);
1329 	return (bmsafemap);
1330 }
1331 
1332 /*
1333  * Direct block allocation dependencies.
1334  *
1335  * When a new block is allocated, the corresponding disk locations must be
1336  * initialized (with zeros or new data) before the on-disk inode points to
1337  * them.  Also, the freemap from which the block was allocated must be
1338  * updated (on disk) before the inode's pointer. These two dependencies are
1339  * independent of each other and are needed for all file blocks and indirect
1340  * blocks that are pointed to directly by the inode.  Just before the
1341  * "in-core" version of the inode is updated with a newly allocated block
1342  * number, a procedure (below) is called to setup allocation dependency
1343  * structures.  These structures are removed when the corresponding
1344  * dependencies are satisfied or when the block allocation becomes obsolete
1345  * (i.e., the file is deleted, the block is de-allocated, or the block is a
1346  * fragment that gets upgraded).  All of these cases are handled in
1347  * procedures described later.
1348  *
1349  * When a file extension causes a fragment to be upgraded, either to a larger
1350  * fragment or to a full block, the on-disk location may change (if the
1351  * previous fragment could not simply be extended). In this case, the old
1352  * fragment must be de-allocated, but not until after the inode's pointer has
1353  * been updated. In most cases, this is handled by later procedures, which
1354  * will construct a "freefrag" structure to be added to the workitem queue
1355  * when the inode update is complete (or obsolete).  The main exception to
1356  * this is when an allocation occurs while a pending allocation dependency
1357  * (for the same block pointer) remains.  This case is handled in the main
1358  * allocation dependency setup procedure by immediately freeing the
1359  * unreferenced fragments.
1360  *
1361  * Parameters:
1362  *	ip:		inode to which block is being added
1363  *	lbn:		block pointer within inode
1364  *	newblkno:	disk block number being added
1365  *	oldblkno:	previous block number, 0 unless frag
1366  *	newsize:	size of new block
1367  *	oldsize:	size of new block
1368  *	bp:		bp for allocated block
1369  */
1370 void
1371 softdep_setup_allocdirect(struct inode *ip, ufs_lbn_t lbn, ufs_daddr_t newblkno,
1372 			  ufs_daddr_t oldblkno, long newsize, long oldsize,
1373 			  struct buf *bp)
1374 {
1375 	struct allocdirect *adp, *oldadp;
1376 	struct allocdirectlst *adphead;
1377 	struct bmsafemap *bmsafemap;
1378 	struct inodedep *inodedep;
1379 	struct pagedep *pagedep;
1380 	struct newblk *newblk;
1381 
1382 	adp = kmalloc(sizeof(struct allocdirect), M_ALLOCDIRECT,
1383 		      M_SOFTDEP_FLAGS | M_ZERO);
1384 	adp->ad_list.wk_type = D_ALLOCDIRECT;
1385 	adp->ad_lbn = lbn;
1386 	adp->ad_newblkno = newblkno;
1387 	adp->ad_oldblkno = oldblkno;
1388 	adp->ad_newsize = newsize;
1389 	adp->ad_oldsize = oldsize;
1390 	adp->ad_state = ATTACHED;
1391 	if (newblkno == oldblkno)
1392 		adp->ad_freefrag = NULL;
1393 	else
1394 		adp->ad_freefrag = newfreefrag(ip, oldblkno, oldsize);
1395 
1396 	if (newblk_lookup(ip->i_fs, newblkno, 0, &newblk) == 0)
1397 		panic("softdep_setup_allocdirect: lost block");
1398 
1399 	ACQUIRE_LOCK(&lk);
1400 	inodedep_lookup(ip->i_fs, ip->i_number, DEPALLOC | NODELAY, &inodedep);
1401 	adp->ad_inodedep = inodedep;
1402 
1403 	if (newblk->nb_state == DEPCOMPLETE) {
1404 		adp->ad_state |= DEPCOMPLETE;
1405 		adp->ad_buf = NULL;
1406 	} else {
1407 		bmsafemap = newblk->nb_bmsafemap;
1408 		adp->ad_buf = bmsafemap->sm_buf;
1409 		LIST_REMOVE(newblk, nb_deps);
1410 		LIST_INSERT_HEAD(&bmsafemap->sm_allocdirecthd, adp, ad_deps);
1411 	}
1412 	LIST_REMOVE(newblk, nb_hash);
1413 	kfree(newblk, M_NEWBLK);
1414 
1415 	WORKLIST_INSERT_BP(bp, &adp->ad_list);
1416 	if (lbn >= NDADDR) {
1417 		/* allocating an indirect block */
1418 		if (oldblkno != 0) {
1419 			FREE_LOCK(&lk);
1420 			panic("softdep_setup_allocdirect: non-zero indir");
1421 		}
1422 	} else {
1423 		/*
1424 		 * Allocating a direct block.
1425 		 *
1426 		 * If we are allocating a directory block, then we must
1427 		 * allocate an associated pagedep to track additions and
1428 		 * deletions.
1429 		 */
1430 		if ((ip->i_mode & IFMT) == IFDIR &&
1431 		    pagedep_lookup(ip, lbn, DEPALLOC, &pagedep) == 0) {
1432 			WORKLIST_INSERT_BP(bp, &pagedep->pd_list);
1433 		}
1434 	}
1435 	/*
1436 	 * The list of allocdirects must be kept in sorted and ascending
1437 	 * order so that the rollback routines can quickly determine the
1438 	 * first uncommitted block (the size of the file stored on disk
1439 	 * ends at the end of the lowest committed fragment, or if there
1440 	 * are no fragments, at the end of the highest committed block).
1441 	 * Since files generally grow, the typical case is that the new
1442 	 * block is to be added at the end of the list. We speed this
1443 	 * special case by checking against the last allocdirect in the
1444 	 * list before laboriously traversing the list looking for the
1445 	 * insertion point.
1446 	 */
1447 	adphead = &inodedep->id_newinoupdt;
1448 	oldadp = TAILQ_LAST(adphead, allocdirectlst);
1449 	if (oldadp == NULL || oldadp->ad_lbn <= lbn) {
1450 		/* insert at end of list */
1451 		TAILQ_INSERT_TAIL(adphead, adp, ad_next);
1452 		if (oldadp != NULL && oldadp->ad_lbn == lbn)
1453 			allocdirect_merge(adphead, adp, oldadp);
1454 		FREE_LOCK(&lk);
1455 		return;
1456 	}
1457 	TAILQ_FOREACH(oldadp, adphead, ad_next) {
1458 		if (oldadp->ad_lbn >= lbn)
1459 			break;
1460 	}
1461 	if (oldadp == NULL) {
1462 		FREE_LOCK(&lk);
1463 		panic("softdep_setup_allocdirect: lost entry");
1464 	}
1465 	/* insert in middle of list */
1466 	TAILQ_INSERT_BEFORE(oldadp, adp, ad_next);
1467 	if (oldadp->ad_lbn == lbn)
1468 		allocdirect_merge(adphead, adp, oldadp);
1469 	FREE_LOCK(&lk);
1470 }
1471 
1472 /*
1473  * Replace an old allocdirect dependency with a newer one.
1474  * This routine must be called with splbio interrupts blocked.
1475  *
1476  * Parameters:
1477  *	adphead:	head of list holding allocdirects
1478  *	newadp:		allocdirect being added
1479  *	oldadp:		existing allocdirect being checked
1480  */
1481 static void
1482 allocdirect_merge(struct allocdirectlst *adphead,
1483 		  struct allocdirect *newadp,
1484 		  struct allocdirect *oldadp)
1485 {
1486 	struct freefrag *freefrag;
1487 
1488 #ifdef DEBUG
1489 	if (lk.lkt_held == NOHOLDER)
1490 		panic("allocdirect_merge: lock not held");
1491 #endif
1492 	if (newadp->ad_oldblkno != oldadp->ad_newblkno ||
1493 	    newadp->ad_oldsize != oldadp->ad_newsize ||
1494 	    newadp->ad_lbn >= NDADDR) {
1495 		FREE_LOCK(&lk);
1496 		panic("allocdirect_check: old %d != new %d || lbn %ld >= %d",
1497 		    newadp->ad_oldblkno, oldadp->ad_newblkno, newadp->ad_lbn,
1498 		    NDADDR);
1499 	}
1500 	newadp->ad_oldblkno = oldadp->ad_oldblkno;
1501 	newadp->ad_oldsize = oldadp->ad_oldsize;
1502 	/*
1503 	 * If the old dependency had a fragment to free or had never
1504 	 * previously had a block allocated, then the new dependency
1505 	 * can immediately post its freefrag and adopt the old freefrag.
1506 	 * This action is done by swapping the freefrag dependencies.
1507 	 * The new dependency gains the old one's freefrag, and the
1508 	 * old one gets the new one and then immediately puts it on
1509 	 * the worklist when it is freed by free_allocdirect. It is
1510 	 * not possible to do this swap when the old dependency had a
1511 	 * non-zero size but no previous fragment to free. This condition
1512 	 * arises when the new block is an extension of the old block.
1513 	 * Here, the first part of the fragment allocated to the new
1514 	 * dependency is part of the block currently claimed on disk by
1515 	 * the old dependency, so cannot legitimately be freed until the
1516 	 * conditions for the new dependency are fulfilled.
1517 	 */
1518 	if (oldadp->ad_freefrag != NULL || oldadp->ad_oldblkno == 0) {
1519 		freefrag = newadp->ad_freefrag;
1520 		newadp->ad_freefrag = oldadp->ad_freefrag;
1521 		oldadp->ad_freefrag = freefrag;
1522 	}
1523 	free_allocdirect(adphead, oldadp, 0);
1524 }
1525 
1526 /*
1527  * Allocate a new freefrag structure if needed.
1528  */
1529 static struct freefrag *
1530 newfreefrag(struct inode *ip, ufs_daddr_t blkno, long size)
1531 {
1532 	struct freefrag *freefrag;
1533 	struct fs *fs;
1534 
1535 	if (blkno == 0)
1536 		return (NULL);
1537 	fs = ip->i_fs;
1538 	if (fragnum(fs, blkno) + numfrags(fs, size) > fs->fs_frag)
1539 		panic("newfreefrag: frag size");
1540 	freefrag = kmalloc(sizeof(struct freefrag), M_FREEFRAG,
1541 			   M_SOFTDEP_FLAGS);
1542 	freefrag->ff_list.wk_type = D_FREEFRAG;
1543 	freefrag->ff_state = ip->i_uid & ~ONWORKLIST;	/* XXX - used below */
1544 	freefrag->ff_inum = ip->i_number;
1545 	freefrag->ff_fs = fs;
1546 	freefrag->ff_devvp = ip->i_devvp;
1547 	freefrag->ff_blkno = blkno;
1548 	freefrag->ff_fragsize = size;
1549 	return (freefrag);
1550 }
1551 
1552 /*
1553  * This workitem de-allocates fragments that were replaced during
1554  * file block allocation.
1555  */
1556 static void
1557 handle_workitem_freefrag(struct freefrag *freefrag)
1558 {
1559 	struct inode tip;
1560 
1561 	tip.i_fs = freefrag->ff_fs;
1562 	tip.i_devvp = freefrag->ff_devvp;
1563 	tip.i_dev = freefrag->ff_devvp->v_rdev;
1564 	tip.i_number = freefrag->ff_inum;
1565 	tip.i_uid = freefrag->ff_state & ~ONWORKLIST;	/* XXX - set above */
1566 	ffs_blkfree(&tip, freefrag->ff_blkno, freefrag->ff_fragsize);
1567 	kfree(freefrag, M_FREEFRAG);
1568 }
1569 
1570 /*
1571  * Indirect block allocation dependencies.
1572  *
1573  * The same dependencies that exist for a direct block also exist when
1574  * a new block is allocated and pointed to by an entry in a block of
1575  * indirect pointers. The undo/redo states described above are also
1576  * used here. Because an indirect block contains many pointers that
1577  * may have dependencies, a second copy of the entire in-memory indirect
1578  * block is kept. The buffer cache copy is always completely up-to-date.
1579  * The second copy, which is used only as a source for disk writes,
1580  * contains only the safe pointers (i.e., those that have no remaining
1581  * update dependencies). The second copy is freed when all pointers
1582  * are safe. The cache is not allowed to replace indirect blocks with
1583  * pending update dependencies. If a buffer containing an indirect
1584  * block with dependencies is written, these routines will mark it
1585  * dirty again. It can only be successfully written once all the
1586  * dependencies are removed. The ffs_fsync routine in conjunction with
1587  * softdep_sync_metadata work together to get all the dependencies
1588  * removed so that a file can be successfully written to disk. Three
1589  * procedures are used when setting up indirect block pointer
1590  * dependencies. The division is necessary because of the organization
1591  * of the "balloc" routine and because of the distinction between file
1592  * pages and file metadata blocks.
1593  */
1594 
1595 /*
1596  * Allocate a new allocindir structure.
1597  *
1598  * Parameters:
1599  *	ip:		inode for file being extended
1600  *	ptrno:		offset of pointer in indirect block
1601  *	newblkno:	disk block number being added
1602  *	oldblkno:	previous block number, 0 if none
1603  */
1604 static struct allocindir *
1605 newallocindir(struct inode *ip, int ptrno, ufs_daddr_t newblkno,
1606 	      ufs_daddr_t oldblkno)
1607 {
1608 	struct allocindir *aip;
1609 
1610 	aip = kmalloc(sizeof(struct allocindir), M_ALLOCINDIR,
1611 		      M_SOFTDEP_FLAGS | M_ZERO);
1612 	aip->ai_list.wk_type = D_ALLOCINDIR;
1613 	aip->ai_state = ATTACHED;
1614 	aip->ai_offset = ptrno;
1615 	aip->ai_newblkno = newblkno;
1616 	aip->ai_oldblkno = oldblkno;
1617 	aip->ai_freefrag = newfreefrag(ip, oldblkno, ip->i_fs->fs_bsize);
1618 	return (aip);
1619 }
1620 
1621 /*
1622  * Called just before setting an indirect block pointer
1623  * to a newly allocated file page.
1624  *
1625  * Parameters:
1626  *	ip:		inode for file being extended
1627  *	lbn:		allocated block number within file
1628  *	bp:		buffer with indirect blk referencing page
1629  *	ptrno:		offset of pointer in indirect block
1630  *	newblkno:	disk block number being added
1631  *	oldblkno:	previous block number, 0 if none
1632  *	nbp:		buffer holding allocated page
1633  */
1634 void
1635 softdep_setup_allocindir_page(struct inode *ip, ufs_lbn_t lbn,
1636 			      struct buf *bp, int ptrno,
1637 			      ufs_daddr_t newblkno, ufs_daddr_t oldblkno,
1638 			      struct buf *nbp)
1639 {
1640 	struct allocindir *aip;
1641 	struct pagedep *pagedep;
1642 
1643 	aip = newallocindir(ip, ptrno, newblkno, oldblkno);
1644 	ACQUIRE_LOCK(&lk);
1645 	/*
1646 	 * If we are allocating a directory page, then we must
1647 	 * allocate an associated pagedep to track additions and
1648 	 * deletions.
1649 	 */
1650 	if ((ip->i_mode & IFMT) == IFDIR &&
1651 	    pagedep_lookup(ip, lbn, DEPALLOC, &pagedep) == 0)
1652 		WORKLIST_INSERT_BP(nbp, &pagedep->pd_list);
1653 	WORKLIST_INSERT_BP(nbp, &aip->ai_list);
1654 	FREE_LOCK(&lk);
1655 	setup_allocindir_phase2(bp, ip, aip);
1656 }
1657 
1658 /*
1659  * Called just before setting an indirect block pointer to a
1660  * newly allocated indirect block.
1661  * Parameters:
1662  *	nbp:		newly allocated indirect block
1663  *	ip:		inode for file being extended
1664  *	bp:		indirect block referencing allocated block
1665  *	ptrno:		offset of pointer in indirect block
1666  *	newblkno:	disk block number being added
1667  */
1668 void
1669 softdep_setup_allocindir_meta(struct buf *nbp, struct inode *ip,
1670 			      struct buf *bp, int ptrno,
1671 			      ufs_daddr_t newblkno)
1672 {
1673 	struct allocindir *aip;
1674 
1675 	aip = newallocindir(ip, ptrno, newblkno, 0);
1676 	ACQUIRE_LOCK(&lk);
1677 	WORKLIST_INSERT_BP(nbp, &aip->ai_list);
1678 	FREE_LOCK(&lk);
1679 	setup_allocindir_phase2(bp, ip, aip);
1680 }
1681 
1682 /*
1683  * Called to finish the allocation of the "aip" allocated
1684  * by one of the two routines above.
1685  *
1686  * Parameters:
1687  *	bp:	in-memory copy of the indirect block
1688  *	ip:	inode for file being extended
1689  *	aip:	allocindir allocated by the above routines
1690  */
1691 static void
1692 setup_allocindir_phase2(struct buf *bp, struct inode *ip,
1693 			struct allocindir *aip)
1694 {
1695 	struct worklist *wk;
1696 	struct indirdep *indirdep, *newindirdep;
1697 	struct bmsafemap *bmsafemap;
1698 	struct allocindir *oldaip;
1699 	struct freefrag *freefrag;
1700 	struct newblk *newblk;
1701 
1702 	if (bp->b_loffset >= 0)
1703 		panic("setup_allocindir_phase2: not indir blk");
1704 	for (indirdep = NULL, newindirdep = NULL; ; ) {
1705 		ACQUIRE_LOCK(&lk);
1706 		LIST_FOREACH(wk, &bp->b_dep, wk_list) {
1707 			if (wk->wk_type != D_INDIRDEP)
1708 				continue;
1709 			indirdep = WK_INDIRDEP(wk);
1710 			break;
1711 		}
1712 		if (indirdep == NULL && newindirdep) {
1713 			indirdep = newindirdep;
1714 			WORKLIST_INSERT_BP(bp, &indirdep->ir_list);
1715 			newindirdep = NULL;
1716 		}
1717 		FREE_LOCK(&lk);
1718 		if (indirdep) {
1719 			if (newblk_lookup(ip->i_fs, aip->ai_newblkno, 0,
1720 			    &newblk) == 0)
1721 				panic("setup_allocindir: lost block");
1722 			ACQUIRE_LOCK(&lk);
1723 			if (newblk->nb_state == DEPCOMPLETE) {
1724 				aip->ai_state |= DEPCOMPLETE;
1725 				aip->ai_buf = NULL;
1726 			} else {
1727 				bmsafemap = newblk->nb_bmsafemap;
1728 				aip->ai_buf = bmsafemap->sm_buf;
1729 				LIST_REMOVE(newblk, nb_deps);
1730 				LIST_INSERT_HEAD(&bmsafemap->sm_allocindirhd,
1731 				    aip, ai_deps);
1732 			}
1733 			LIST_REMOVE(newblk, nb_hash);
1734 			kfree(newblk, M_NEWBLK);
1735 			aip->ai_indirdep = indirdep;
1736 			/*
1737 			 * Check to see if there is an existing dependency
1738 			 * for this block. If there is, merge the old
1739 			 * dependency into the new one.
1740 			 */
1741 			if (aip->ai_oldblkno == 0)
1742 				oldaip = NULL;
1743 			else
1744 
1745 				LIST_FOREACH(oldaip, &indirdep->ir_deplisthd, ai_next)
1746 					if (oldaip->ai_offset == aip->ai_offset)
1747 						break;
1748 			if (oldaip != NULL) {
1749 				if (oldaip->ai_newblkno != aip->ai_oldblkno) {
1750 					FREE_LOCK(&lk);
1751 					panic("setup_allocindir_phase2: blkno");
1752 				}
1753 				aip->ai_oldblkno = oldaip->ai_oldblkno;
1754 				freefrag = oldaip->ai_freefrag;
1755 				oldaip->ai_freefrag = aip->ai_freefrag;
1756 				aip->ai_freefrag = freefrag;
1757 				free_allocindir(oldaip, NULL);
1758 			}
1759 			LIST_INSERT_HEAD(&indirdep->ir_deplisthd, aip, ai_next);
1760 			((ufs_daddr_t *)indirdep->ir_savebp->b_data)
1761 			    [aip->ai_offset] = aip->ai_oldblkno;
1762 			FREE_LOCK(&lk);
1763 		}
1764 		if (newindirdep) {
1765 			/*
1766 			 * Avoid any possibility of data corruption by
1767 			 * ensuring that our old version is thrown away.
1768 			 */
1769 			newindirdep->ir_savebp->b_flags |= B_INVAL | B_NOCACHE;
1770 			brelse(newindirdep->ir_savebp);
1771 			WORKITEM_FREE((caddr_t)newindirdep, D_INDIRDEP);
1772 		}
1773 		if (indirdep)
1774 			break;
1775 		newindirdep = kmalloc(sizeof(struct indirdep), M_INDIRDEP,
1776 				      M_SOFTDEP_FLAGS);
1777 		newindirdep->ir_list.wk_type = D_INDIRDEP;
1778 		newindirdep->ir_state = ATTACHED;
1779 		LIST_INIT(&newindirdep->ir_deplisthd);
1780 		LIST_INIT(&newindirdep->ir_donehd);
1781 		if (bp->b_bio2.bio_offset == NOOFFSET) {
1782 			VOP_BMAP(bp->b_vp, bp->b_bio1.bio_offset,
1783 				 &bp->b_bio2.bio_offset, NULL, NULL,
1784 				 BUF_CMD_WRITE);
1785 		}
1786 		KKASSERT(bp->b_bio2.bio_offset != NOOFFSET);
1787 		newindirdep->ir_savebp = getblk(ip->i_devvp,
1788 						bp->b_bio2.bio_offset,
1789 					        bp->b_bcount, 0, 0);
1790 		BUF_KERNPROC(newindirdep->ir_savebp);
1791 		bcopy(bp->b_data, newindirdep->ir_savebp->b_data, bp->b_bcount);
1792 	}
1793 }
1794 
1795 /*
1796  * Block de-allocation dependencies.
1797  *
1798  * When blocks are de-allocated, the on-disk pointers must be nullified before
1799  * the blocks are made available for use by other files.  (The true
1800  * requirement is that old pointers must be nullified before new on-disk
1801  * pointers are set.  We chose this slightly more stringent requirement to
1802  * reduce complexity.) Our implementation handles this dependency by updating
1803  * the inode (or indirect block) appropriately but delaying the actual block
1804  * de-allocation (i.e., freemap and free space count manipulation) until
1805  * after the updated versions reach stable storage.  After the disk is
1806  * updated, the blocks can be safely de-allocated whenever it is convenient.
1807  * This implementation handles only the common case of reducing a file's
1808  * length to zero. Other cases are handled by the conventional synchronous
1809  * write approach.
1810  *
1811  * The ffs implementation with which we worked double-checks
1812  * the state of the block pointers and file size as it reduces
1813  * a file's length.  Some of this code is replicated here in our
1814  * soft updates implementation.  The freeblks->fb_chkcnt field is
1815  * used to transfer a part of this information to the procedure
1816  * that eventually de-allocates the blocks.
1817  *
1818  * This routine should be called from the routine that shortens
1819  * a file's length, before the inode's size or block pointers
1820  * are modified. It will save the block pointer information for
1821  * later release and zero the inode so that the calling routine
1822  * can release it.
1823  */
1824 struct softdep_setup_freeblocks_info {
1825 	struct fs *fs;
1826 	struct inode *ip;
1827 };
1828 
1829 static int softdep_setup_freeblocks_bp(struct buf *bp, void *data);
1830 
1831 /*
1832  * Parameters:
1833  *	ip:	The inode whose length is to be reduced
1834  *	length:	The new length for the file
1835  */
1836 void
1837 softdep_setup_freeblocks(struct inode *ip, off_t length)
1838 {
1839 	struct softdep_setup_freeblocks_info info;
1840 	struct freeblks *freeblks;
1841 	struct inodedep *inodedep;
1842 	struct allocdirect *adp;
1843 	struct vnode *vp;
1844 	struct buf *bp;
1845 	struct fs *fs;
1846 	int i, error, delay;
1847 	int count;
1848 
1849 	fs = ip->i_fs;
1850 	if (length != 0)
1851 		panic("softde_setup_freeblocks: non-zero length");
1852 	freeblks = kmalloc(sizeof(struct freeblks), M_FREEBLKS,
1853 			   M_SOFTDEP_FLAGS | M_ZERO);
1854 	freeblks->fb_list.wk_type = D_FREEBLKS;
1855 	freeblks->fb_state = ATTACHED;
1856 	freeblks->fb_uid = ip->i_uid;
1857 	freeblks->fb_previousinum = ip->i_number;
1858 	freeblks->fb_devvp = ip->i_devvp;
1859 	freeblks->fb_fs = fs;
1860 	freeblks->fb_oldsize = ip->i_size;
1861 	freeblks->fb_newsize = length;
1862 	freeblks->fb_chkcnt = ip->i_blocks;
1863 	for (i = 0; i < NDADDR; i++) {
1864 		freeblks->fb_dblks[i] = ip->i_db[i];
1865 		ip->i_db[i] = 0;
1866 	}
1867 	for (i = 0; i < NIADDR; i++) {
1868 		freeblks->fb_iblks[i] = ip->i_ib[i];
1869 		ip->i_ib[i] = 0;
1870 	}
1871 	ip->i_blocks = 0;
1872 	ip->i_size = 0;
1873 	/*
1874 	 * Push the zero'ed inode to to its disk buffer so that we are free
1875 	 * to delete its dependencies below. Once the dependencies are gone
1876 	 * the buffer can be safely released.
1877 	 */
1878 	if ((error = bread(ip->i_devvp,
1879 			    fsbtodoff(fs, ino_to_fsba(fs, ip->i_number)),
1880 	    (int)fs->fs_bsize, &bp)) != 0)
1881 		softdep_error("softdep_setup_freeblocks", error);
1882 	*((struct ufs1_dinode *)bp->b_data + ino_to_fsbo(fs, ip->i_number)) =
1883 	    ip->i_din;
1884 	/*
1885 	 * Find and eliminate any inode dependencies.
1886 	 */
1887 	ACQUIRE_LOCK(&lk);
1888 	(void) inodedep_lookup(fs, ip->i_number, DEPALLOC, &inodedep);
1889 	if ((inodedep->id_state & IOSTARTED) != 0) {
1890 		FREE_LOCK(&lk);
1891 		panic("softdep_setup_freeblocks: inode busy");
1892 	}
1893 	/*
1894 	 * Add the freeblks structure to the list of operations that
1895 	 * must await the zero'ed inode being written to disk. If we
1896 	 * still have a bitmap dependency (delay == 0), then the inode
1897 	 * has never been written to disk, so we can process the
1898 	 * freeblks below once we have deleted the dependencies.
1899 	 */
1900 	delay = (inodedep->id_state & DEPCOMPLETE);
1901 	if (delay)
1902 		WORKLIST_INSERT(&inodedep->id_bufwait, &freeblks->fb_list);
1903 	/*
1904 	 * Because the file length has been truncated to zero, any
1905 	 * pending block allocation dependency structures associated
1906 	 * with this inode are obsolete and can simply be de-allocated.
1907 	 * We must first merge the two dependency lists to get rid of
1908 	 * any duplicate freefrag structures, then purge the merged list.
1909 	 */
1910 	merge_inode_lists(inodedep);
1911 	while ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL)
1912 		free_allocdirect(&inodedep->id_inoupdt, adp, 1);
1913 	FREE_LOCK(&lk);
1914 	bdwrite(bp);
1915 	/*
1916 	 * We must wait for any I/O in progress to finish so that
1917 	 * all potential buffers on the dirty list will be visible.
1918 	 * Once they are all there, walk the list and get rid of
1919 	 * any dependencies.
1920 	 */
1921 	vp = ITOV(ip);
1922 	ACQUIRE_LOCK(&lk);
1923 	drain_output(vp, 1);
1924 
1925 	info.fs = fs;
1926 	info.ip = ip;
1927 	lwkt_gettoken(&vp->v_token);
1928 	do {
1929 		count = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
1930 				softdep_setup_freeblocks_bp, &info);
1931 	} while (count != 0);
1932 	lwkt_reltoken(&vp->v_token);
1933 
1934 	if (inodedep_lookup(fs, ip->i_number, 0, &inodedep) != 0)
1935 		(void)free_inodedep(inodedep);
1936 
1937 	if (delay) {
1938 		freeblks->fb_state |= DEPCOMPLETE;
1939 		/*
1940 		 * If the inode with zeroed block pointers is now on disk
1941 		 * we can start freeing blocks. Add freeblks to the worklist
1942 		 * instead of calling  handle_workitem_freeblocks directly as
1943 		 * it is more likely that additional IO is needed to complete
1944 		 * the request here than in the !delay case.
1945 		 */
1946 		if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE)
1947 			add_to_worklist(&freeblks->fb_list);
1948 	}
1949 
1950 	FREE_LOCK(&lk);
1951 	/*
1952 	 * If the inode has never been written to disk (delay == 0),
1953 	 * then we can process the freeblks now that we have deleted
1954 	 * the dependencies.
1955 	 */
1956 	if (!delay)
1957 		handle_workitem_freeblocks(freeblks);
1958 }
1959 
1960 static int
1961 softdep_setup_freeblocks_bp(struct buf *bp, void *data)
1962 {
1963 	struct softdep_setup_freeblocks_info *info = data;
1964 	struct inodedep *inodedep;
1965 
1966 	if (getdirtybuf(&bp, MNT_WAIT) == 0) {
1967 		kprintf("softdep_setup_freeblocks_bp(1): caught bp %p going away\n", bp);
1968 		return(-1);
1969 	}
1970 	if (bp->b_vp != ITOV(info->ip) || (bp->b_flags & B_DELWRI) == 0) {
1971 		kprintf("softdep_setup_freeblocks_bp(2): caught bp %p going away\n", bp);
1972 		BUF_UNLOCK(bp);
1973 		return(-1);
1974 	}
1975 	(void) inodedep_lookup(info->fs, info->ip->i_number, 0, &inodedep);
1976 	deallocate_dependencies(bp, inodedep);
1977 	bp->b_flags |= B_INVAL | B_NOCACHE;
1978 	FREE_LOCK(&lk);
1979 	brelse(bp);
1980 	ACQUIRE_LOCK(&lk);
1981 	return(1);
1982 }
1983 
1984 /*
1985  * Reclaim any dependency structures from a buffer that is about to
1986  * be reallocated to a new vnode. The buffer must be locked, thus,
1987  * no I/O completion operations can occur while we are manipulating
1988  * its associated dependencies. The mutex is held so that other I/O's
1989  * associated with related dependencies do not occur.
1990  */
1991 static void
1992 deallocate_dependencies(struct buf *bp, struct inodedep *inodedep)
1993 {
1994 	struct worklist *wk;
1995 	struct indirdep *indirdep;
1996 	struct allocindir *aip;
1997 	struct pagedep *pagedep;
1998 	struct dirrem *dirrem;
1999 	struct diradd *dap;
2000 	int i;
2001 
2002 	while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) {
2003 		switch (wk->wk_type) {
2004 
2005 		case D_INDIRDEP:
2006 			indirdep = WK_INDIRDEP(wk);
2007 			/*
2008 			 * None of the indirect pointers will ever be visible,
2009 			 * so they can simply be tossed. GOINGAWAY ensures
2010 			 * that allocated pointers will be saved in the buffer
2011 			 * cache until they are freed. Note that they will
2012 			 * only be able to be found by their physical address
2013 			 * since the inode mapping the logical address will
2014 			 * be gone. The save buffer used for the safe copy
2015 			 * was allocated in setup_allocindir_phase2 using
2016 			 * the physical address so it could be used for this
2017 			 * purpose. Hence we swap the safe copy with the real
2018 			 * copy, allowing the safe copy to be freed and holding
2019 			 * on to the real copy for later use in indir_trunc.
2020 			 *
2021 			 * NOTE: ir_savebp is relative to the block device
2022 			 * so b_bio1 contains the device block number.
2023 			 */
2024 			if (indirdep->ir_state & GOINGAWAY) {
2025 				FREE_LOCK(&lk);
2026 				panic("deallocate_dependencies: already gone");
2027 			}
2028 			indirdep->ir_state |= GOINGAWAY;
2029 			while ((aip = LIST_FIRST(&indirdep->ir_deplisthd)) != NULL)
2030 				free_allocindir(aip, inodedep);
2031 			if (bp->b_bio1.bio_offset >= 0 ||
2032 			    bp->b_bio2.bio_offset != indirdep->ir_savebp->b_bio1.bio_offset) {
2033 				FREE_LOCK(&lk);
2034 				panic("deallocate_dependencies: not indir");
2035 			}
2036 			bcopy(bp->b_data, indirdep->ir_savebp->b_data,
2037 			    bp->b_bcount);
2038 			WORKLIST_REMOVE(wk);
2039 			WORKLIST_INSERT_BP(indirdep->ir_savebp, wk);
2040 			continue;
2041 
2042 		case D_PAGEDEP:
2043 			pagedep = WK_PAGEDEP(wk);
2044 			/*
2045 			 * None of the directory additions will ever be
2046 			 * visible, so they can simply be tossed.
2047 			 */
2048 			for (i = 0; i < DAHASHSZ; i++)
2049 				while ((dap =
2050 				    LIST_FIRST(&pagedep->pd_diraddhd[i])))
2051 					free_diradd(dap);
2052 			while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
2053 				free_diradd(dap);
2054 			/*
2055 			 * Copy any directory remove dependencies to the list
2056 			 * to be processed after the zero'ed inode is written.
2057 			 * If the inode has already been written, then they
2058 			 * can be dumped directly onto the work list.
2059 			 */
2060 			LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) {
2061 				LIST_REMOVE(dirrem, dm_next);
2062 				dirrem->dm_dirinum = pagedep->pd_ino;
2063 				if (inodedep == NULL ||
2064 				    (inodedep->id_state & ALLCOMPLETE) ==
2065 				     ALLCOMPLETE)
2066 					add_to_worklist(&dirrem->dm_list);
2067 				else
2068 					WORKLIST_INSERT(&inodedep->id_bufwait,
2069 					    &dirrem->dm_list);
2070 			}
2071 			WORKLIST_REMOVE(&pagedep->pd_list);
2072 			LIST_REMOVE(pagedep, pd_hash);
2073 			WORKITEM_FREE(pagedep, D_PAGEDEP);
2074 			continue;
2075 
2076 		case D_ALLOCINDIR:
2077 			free_allocindir(WK_ALLOCINDIR(wk), inodedep);
2078 			continue;
2079 
2080 		case D_ALLOCDIRECT:
2081 		case D_INODEDEP:
2082 			FREE_LOCK(&lk);
2083 			panic("deallocate_dependencies: Unexpected type %s",
2084 			    TYPENAME(wk->wk_type));
2085 			/* NOTREACHED */
2086 
2087 		default:
2088 			FREE_LOCK(&lk);
2089 			panic("deallocate_dependencies: Unknown type %s",
2090 			    TYPENAME(wk->wk_type));
2091 			/* NOTREACHED */
2092 		}
2093 	}
2094 }
2095 
2096 /*
2097  * Free an allocdirect. Generate a new freefrag work request if appropriate.
2098  * This routine must be called with splbio interrupts blocked.
2099  */
2100 static void
2101 free_allocdirect(struct allocdirectlst *adphead,
2102 		 struct allocdirect *adp, int delay)
2103 {
2104 
2105 #ifdef DEBUG
2106 	if (lk.lkt_held == NOHOLDER)
2107 		panic("free_allocdirect: lock not held");
2108 #endif
2109 	if ((adp->ad_state & DEPCOMPLETE) == 0)
2110 		LIST_REMOVE(adp, ad_deps);
2111 	TAILQ_REMOVE(adphead, adp, ad_next);
2112 	if ((adp->ad_state & COMPLETE) == 0)
2113 		WORKLIST_REMOVE(&adp->ad_list);
2114 	if (adp->ad_freefrag != NULL) {
2115 		if (delay)
2116 			WORKLIST_INSERT(&adp->ad_inodedep->id_bufwait,
2117 			    &adp->ad_freefrag->ff_list);
2118 		else
2119 			add_to_worklist(&adp->ad_freefrag->ff_list);
2120 	}
2121 	WORKITEM_FREE(adp, D_ALLOCDIRECT);
2122 }
2123 
2124 /*
2125  * Prepare an inode to be freed. The actual free operation is not
2126  * done until the zero'ed inode has been written to disk.
2127  */
2128 void
2129 softdep_freefile(struct vnode *pvp, ino_t ino, int mode)
2130 {
2131 	struct inode *ip = VTOI(pvp);
2132 	struct inodedep *inodedep;
2133 	struct freefile *freefile;
2134 
2135 	/*
2136 	 * This sets up the inode de-allocation dependency.
2137 	 */
2138 	freefile = kmalloc(sizeof(struct freefile), M_FREEFILE,
2139 			   M_SOFTDEP_FLAGS);
2140 	freefile->fx_list.wk_type = D_FREEFILE;
2141 	freefile->fx_list.wk_state = 0;
2142 	freefile->fx_mode = mode;
2143 	freefile->fx_oldinum = ino;
2144 	freefile->fx_devvp = ip->i_devvp;
2145 	freefile->fx_fs = ip->i_fs;
2146 
2147 	/*
2148 	 * If the inodedep does not exist, then the zero'ed inode has
2149 	 * been written to disk. If the allocated inode has never been
2150 	 * written to disk, then the on-disk inode is zero'ed. In either
2151 	 * case we can free the file immediately.
2152 	 */
2153 	ACQUIRE_LOCK(&lk);
2154 	if (inodedep_lookup(ip->i_fs, ino, 0, &inodedep) == 0 ||
2155 	    check_inode_unwritten(inodedep)) {
2156 		FREE_LOCK(&lk);
2157 		handle_workitem_freefile(freefile);
2158 		return;
2159 	}
2160 	WORKLIST_INSERT(&inodedep->id_inowait, &freefile->fx_list);
2161 	FREE_LOCK(&lk);
2162 }
2163 
2164 /*
2165  * Check to see if an inode has never been written to disk. If
2166  * so free the inodedep and return success, otherwise return failure.
2167  * This routine must be called with splbio interrupts blocked.
2168  *
2169  * If we still have a bitmap dependency, then the inode has never
2170  * been written to disk. Drop the dependency as it is no longer
2171  * necessary since the inode is being deallocated. We set the
2172  * ALLCOMPLETE flags since the bitmap now properly shows that the
2173  * inode is not allocated. Even if the inode is actively being
2174  * written, it has been rolled back to its zero'ed state, so we
2175  * are ensured that a zero inode is what is on the disk. For short
2176  * lived files, this change will usually result in removing all the
2177  * dependencies from the inode so that it can be freed immediately.
2178  */
2179 static int
2180 check_inode_unwritten(struct inodedep *inodedep)
2181 {
2182 
2183 	if ((inodedep->id_state & DEPCOMPLETE) != 0 ||
2184 	    LIST_FIRST(&inodedep->id_pendinghd) != NULL ||
2185 	    LIST_FIRST(&inodedep->id_bufwait) != NULL ||
2186 	    LIST_FIRST(&inodedep->id_inowait) != NULL ||
2187 	    TAILQ_FIRST(&inodedep->id_inoupdt) != NULL ||
2188 	    TAILQ_FIRST(&inodedep->id_newinoupdt) != NULL ||
2189 	    inodedep->id_nlinkdelta != 0)
2190 		return (0);
2191 
2192 	/*
2193 	 * Another process might be in initiate_write_inodeblock
2194 	 * trying to allocate memory without holding "Softdep Lock".
2195 	 */
2196 	if ((inodedep->id_state & IOSTARTED) != 0 &&
2197 	    inodedep->id_savedino == NULL)
2198 		return(0);
2199 
2200 	inodedep->id_state |= ALLCOMPLETE;
2201 	LIST_REMOVE(inodedep, id_deps);
2202 	inodedep->id_buf = NULL;
2203 	if (inodedep->id_state & ONWORKLIST)
2204 		WORKLIST_REMOVE(&inodedep->id_list);
2205 	if (inodedep->id_savedino != NULL) {
2206 		kfree(inodedep->id_savedino, M_INODEDEP);
2207 		inodedep->id_savedino = NULL;
2208 	}
2209 	if (free_inodedep(inodedep) == 0) {
2210 		FREE_LOCK(&lk);
2211 		panic("check_inode_unwritten: busy inode");
2212 	}
2213 	return (1);
2214 }
2215 
2216 /*
2217  * Try to free an inodedep structure. Return 1 if it could be freed.
2218  */
2219 static int
2220 free_inodedep(struct inodedep *inodedep)
2221 {
2222 
2223 	if ((inodedep->id_state & ONWORKLIST) != 0 ||
2224 	    (inodedep->id_state & ALLCOMPLETE) != ALLCOMPLETE ||
2225 	    LIST_FIRST(&inodedep->id_pendinghd) != NULL ||
2226 	    LIST_FIRST(&inodedep->id_bufwait) != NULL ||
2227 	    LIST_FIRST(&inodedep->id_inowait) != NULL ||
2228 	    TAILQ_FIRST(&inodedep->id_inoupdt) != NULL ||
2229 	    TAILQ_FIRST(&inodedep->id_newinoupdt) != NULL ||
2230 	    inodedep->id_nlinkdelta != 0 || inodedep->id_savedino != NULL)
2231 		return (0);
2232 	LIST_REMOVE(inodedep, id_hash);
2233 	WORKITEM_FREE(inodedep, D_INODEDEP);
2234 	num_inodedep -= 1;
2235 	return (1);
2236 }
2237 
2238 /*
2239  * This workitem routine performs the block de-allocation.
2240  * The workitem is added to the pending list after the updated
2241  * inode block has been written to disk.  As mentioned above,
2242  * checks regarding the number of blocks de-allocated (compared
2243  * to the number of blocks allocated for the file) are also
2244  * performed in this function.
2245  */
2246 static void
2247 handle_workitem_freeblocks(struct freeblks *freeblks)
2248 {
2249 	struct inode tip;
2250 	ufs_daddr_t bn;
2251 	struct fs *fs;
2252 	int i, level, bsize;
2253 	long nblocks, blocksreleased = 0;
2254 	int error, allerror = 0;
2255 	ufs_lbn_t baselbns[NIADDR], tmpval;
2256 
2257 	tip.i_number = freeblks->fb_previousinum;
2258 	tip.i_devvp = freeblks->fb_devvp;
2259 	tip.i_dev = freeblks->fb_devvp->v_rdev;
2260 	tip.i_fs = freeblks->fb_fs;
2261 	tip.i_size = freeblks->fb_oldsize;
2262 	tip.i_uid = freeblks->fb_uid;
2263 	fs = freeblks->fb_fs;
2264 	tmpval = 1;
2265 	baselbns[0] = NDADDR;
2266 	for (i = 1; i < NIADDR; i++) {
2267 		tmpval *= NINDIR(fs);
2268 		baselbns[i] = baselbns[i - 1] + tmpval;
2269 	}
2270 	nblocks = btodb(fs->fs_bsize);
2271 	blocksreleased = 0;
2272 	/*
2273 	 * Indirect blocks first.
2274 	 */
2275 	for (level = (NIADDR - 1); level >= 0; level--) {
2276 		if ((bn = freeblks->fb_iblks[level]) == 0)
2277 			continue;
2278 		if ((error = indir_trunc(&tip, fsbtodoff(fs, bn), level,
2279 		    baselbns[level], &blocksreleased)) == 0)
2280 			allerror = error;
2281 		ffs_blkfree(&tip, bn, fs->fs_bsize);
2282 		blocksreleased += nblocks;
2283 	}
2284 	/*
2285 	 * All direct blocks or frags.
2286 	 */
2287 	for (i = (NDADDR - 1); i >= 0; i--) {
2288 		if ((bn = freeblks->fb_dblks[i]) == 0)
2289 			continue;
2290 		bsize = blksize(fs, &tip, i);
2291 		ffs_blkfree(&tip, bn, bsize);
2292 		blocksreleased += btodb(bsize);
2293 	}
2294 
2295 #ifdef DIAGNOSTIC
2296 	if (freeblks->fb_chkcnt != blocksreleased)
2297 		kprintf("handle_workitem_freeblocks: block count\n");
2298 	if (allerror)
2299 		softdep_error("handle_workitem_freeblks", allerror);
2300 #endif /* DIAGNOSTIC */
2301 	WORKITEM_FREE(freeblks, D_FREEBLKS);
2302 }
2303 
2304 /*
2305  * Release blocks associated with the inode ip and stored in the indirect
2306  * block at doffset. If level is greater than SINGLE, the block is an
2307  * indirect block and recursive calls to indirtrunc must be used to
2308  * cleanse other indirect blocks.
2309  */
2310 static int
2311 indir_trunc(struct inode *ip, off_t doffset, int level, ufs_lbn_t lbn,
2312 	    long *countp)
2313 {
2314 	struct buf *bp;
2315 	ufs_daddr_t *bap;
2316 	ufs_daddr_t nb;
2317 	struct fs *fs;
2318 	struct worklist *wk;
2319 	struct indirdep *indirdep;
2320 	int i, lbnadd, nblocks;
2321 	int error, allerror = 0;
2322 
2323 	fs = ip->i_fs;
2324 	lbnadd = 1;
2325 	for (i = level; i > 0; i--)
2326 		lbnadd *= NINDIR(fs);
2327 	/*
2328 	 * Get buffer of block pointers to be freed. This routine is not
2329 	 * called until the zero'ed inode has been written, so it is safe
2330 	 * to free blocks as they are encountered. Because the inode has
2331 	 * been zero'ed, calls to bmap on these blocks will fail. So, we
2332 	 * have to use the on-disk address and the block device for the
2333 	 * filesystem to look them up. If the file was deleted before its
2334 	 * indirect blocks were all written to disk, the routine that set
2335 	 * us up (deallocate_dependencies) will have arranged to leave
2336 	 * a complete copy of the indirect block in memory for our use.
2337 	 * Otherwise we have to read the blocks in from the disk.
2338 	 */
2339 	ACQUIRE_LOCK(&lk);
2340 	if ((bp = findblk(ip->i_devvp, doffset, FINDBLK_TEST)) != NULL &&
2341 	    (wk = LIST_FIRST(&bp->b_dep)) != NULL) {
2342 		/*
2343 		 * bp must be ir_savebp, which is held locked for our use.
2344 		 */
2345 		if (wk->wk_type != D_INDIRDEP ||
2346 		    (indirdep = WK_INDIRDEP(wk))->ir_savebp != bp ||
2347 		    (indirdep->ir_state & GOINGAWAY) == 0) {
2348 			FREE_LOCK(&lk);
2349 			panic("indir_trunc: lost indirdep");
2350 		}
2351 		WORKLIST_REMOVE(wk);
2352 		WORKITEM_FREE(indirdep, D_INDIRDEP);
2353 		if (LIST_FIRST(&bp->b_dep) != NULL) {
2354 			FREE_LOCK(&lk);
2355 			panic("indir_trunc: dangling dep");
2356 		}
2357 		FREE_LOCK(&lk);
2358 	} else {
2359 		FREE_LOCK(&lk);
2360 		error = bread(ip->i_devvp, doffset, (int)fs->fs_bsize, &bp);
2361 		if (error)
2362 			return (error);
2363 	}
2364 	/*
2365 	 * Recursively free indirect blocks.
2366 	 */
2367 	bap = (ufs_daddr_t *)bp->b_data;
2368 	nblocks = btodb(fs->fs_bsize);
2369 	for (i = NINDIR(fs) - 1; i >= 0; i--) {
2370 		if ((nb = bap[i]) == 0)
2371 			continue;
2372 		if (level != 0) {
2373 			if ((error = indir_trunc(ip, fsbtodoff(fs, nb),
2374 			     level - 1, lbn + (i * lbnadd), countp)) != 0)
2375 				allerror = error;
2376 		}
2377 		ffs_blkfree(ip, nb, fs->fs_bsize);
2378 		*countp += nblocks;
2379 	}
2380 	bp->b_flags |= B_INVAL | B_NOCACHE;
2381 	brelse(bp);
2382 	return (allerror);
2383 }
2384 
2385 /*
2386  * Free an allocindir.
2387  * This routine must be called with splbio interrupts blocked.
2388  */
2389 static void
2390 free_allocindir(struct allocindir *aip, struct inodedep *inodedep)
2391 {
2392 	struct freefrag *freefrag;
2393 
2394 #ifdef DEBUG
2395 	if (lk.lkt_held == NOHOLDER)
2396 		panic("free_allocindir: lock not held");
2397 #endif
2398 	if ((aip->ai_state & DEPCOMPLETE) == 0)
2399 		LIST_REMOVE(aip, ai_deps);
2400 	if (aip->ai_state & ONWORKLIST)
2401 		WORKLIST_REMOVE(&aip->ai_list);
2402 	LIST_REMOVE(aip, ai_next);
2403 	if ((freefrag = aip->ai_freefrag) != NULL) {
2404 		if (inodedep == NULL)
2405 			add_to_worklist(&freefrag->ff_list);
2406 		else
2407 			WORKLIST_INSERT(&inodedep->id_bufwait,
2408 			    &freefrag->ff_list);
2409 	}
2410 	WORKITEM_FREE(aip, D_ALLOCINDIR);
2411 }
2412 
2413 /*
2414  * Directory entry addition dependencies.
2415  *
2416  * When adding a new directory entry, the inode (with its incremented link
2417  * count) must be written to disk before the directory entry's pointer to it.
2418  * Also, if the inode is newly allocated, the corresponding freemap must be
2419  * updated (on disk) before the directory entry's pointer. These requirements
2420  * are met via undo/redo on the directory entry's pointer, which consists
2421  * simply of the inode number.
2422  *
2423  * As directory entries are added and deleted, the free space within a
2424  * directory block can become fragmented.  The ufs filesystem will compact
2425  * a fragmented directory block to make space for a new entry. When this
2426  * occurs, the offsets of previously added entries change. Any "diradd"
2427  * dependency structures corresponding to these entries must be updated with
2428  * the new offsets.
2429  */
2430 
2431 /*
2432  * This routine is called after the in-memory inode's link
2433  * count has been incremented, but before the directory entry's
2434  * pointer to the inode has been set.
2435  *
2436  * Parameters:
2437  *	bp:		buffer containing directory block
2438  *	dp:		inode for directory
2439  *	diroffset:	offset of new entry in directory
2440  *	newinum:	inode referenced by new directory entry
2441  *	newdirbp:	non-NULL => contents of new mkdir
2442  */
2443 void
2444 softdep_setup_directory_add(struct buf *bp, struct inode *dp, off_t diroffset,
2445 			    ino_t newinum, struct buf *newdirbp)
2446 {
2447 	int offset;		/* offset of new entry within directory block */
2448 	ufs_lbn_t lbn;		/* block in directory containing new entry */
2449 	struct fs *fs;
2450 	struct diradd *dap;
2451 	struct pagedep *pagedep;
2452 	struct inodedep *inodedep;
2453 	struct mkdir *mkdir1, *mkdir2;
2454 
2455 	/*
2456 	 * Whiteouts have no dependencies.
2457 	 */
2458 	if (newinum == WINO) {
2459 		if (newdirbp != NULL)
2460 			bdwrite(newdirbp);
2461 		return;
2462 	}
2463 
2464 	fs = dp->i_fs;
2465 	lbn = lblkno(fs, diroffset);
2466 	offset = blkoff(fs, diroffset);
2467 	dap = kmalloc(sizeof(struct diradd), M_DIRADD,
2468 		      M_SOFTDEP_FLAGS | M_ZERO);
2469 	dap->da_list.wk_type = D_DIRADD;
2470 	dap->da_offset = offset;
2471 	dap->da_newinum = newinum;
2472 	dap->da_state = ATTACHED;
2473 	if (newdirbp == NULL) {
2474 		dap->da_state |= DEPCOMPLETE;
2475 		ACQUIRE_LOCK(&lk);
2476 	} else {
2477 		dap->da_state |= MKDIR_BODY | MKDIR_PARENT;
2478 		mkdir1 = kmalloc(sizeof(struct mkdir), M_MKDIR,
2479 				 M_SOFTDEP_FLAGS);
2480 		mkdir1->md_list.wk_type = D_MKDIR;
2481 		mkdir1->md_state = MKDIR_BODY;
2482 		mkdir1->md_diradd = dap;
2483 		mkdir2 = kmalloc(sizeof(struct mkdir), M_MKDIR,
2484 				 M_SOFTDEP_FLAGS);
2485 		mkdir2->md_list.wk_type = D_MKDIR;
2486 		mkdir2->md_state = MKDIR_PARENT;
2487 		mkdir2->md_diradd = dap;
2488 		/*
2489 		 * Dependency on "." and ".." being written to disk.
2490 		 */
2491 		mkdir1->md_buf = newdirbp;
2492 		ACQUIRE_LOCK(&lk);
2493 		LIST_INSERT_HEAD(&mkdirlisthd, mkdir1, md_mkdirs);
2494 		WORKLIST_INSERT_BP(newdirbp, &mkdir1->md_list);
2495 		FREE_LOCK(&lk);
2496 		bdwrite(newdirbp);
2497 		/*
2498 		 * Dependency on link count increase for parent directory
2499 		 */
2500 		ACQUIRE_LOCK(&lk);
2501 		if (inodedep_lookup(dp->i_fs, dp->i_number, 0, &inodedep) == 0
2502 		    || (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
2503 			dap->da_state &= ~MKDIR_PARENT;
2504 			WORKITEM_FREE(mkdir2, D_MKDIR);
2505 		} else {
2506 			LIST_INSERT_HEAD(&mkdirlisthd, mkdir2, md_mkdirs);
2507 			WORKLIST_INSERT(&inodedep->id_bufwait,&mkdir2->md_list);
2508 		}
2509 	}
2510 	/*
2511 	 * Link into parent directory pagedep to await its being written.
2512 	 */
2513 	if (pagedep_lookup(dp, lbn, DEPALLOC, &pagedep) == 0)
2514 		WORKLIST_INSERT_BP(bp, &pagedep->pd_list);
2515 	dap->da_pagedep = pagedep;
2516 	LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], dap,
2517 	    da_pdlist);
2518 	/*
2519 	 * Link into its inodedep. Put it on the id_bufwait list if the inode
2520 	 * is not yet written. If it is written, do the post-inode write
2521 	 * processing to put it on the id_pendinghd list.
2522 	 */
2523 	(void) inodedep_lookup(fs, newinum, DEPALLOC, &inodedep);
2524 	if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE)
2525 		diradd_inode_written(dap, inodedep);
2526 	else
2527 		WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
2528 	FREE_LOCK(&lk);
2529 }
2530 
2531 /*
2532  * This procedure is called to change the offset of a directory
2533  * entry when compacting a directory block which must be owned
2534  * exclusively by the caller. Note that the actual entry movement
2535  * must be done in this procedure to ensure that no I/O completions
2536  * occur while the move is in progress.
2537  *
2538  * Parameters:
2539  *	dp:	inode for directory
2540  *	base:		address of dp->i_offset
2541  *	oldloc:		address of old directory location
2542  *	newloc:		address of new directory location
2543  *	entrysize:	size of directory entry
2544  */
2545 void
2546 softdep_change_directoryentry_offset(struct inode *dp, caddr_t base,
2547 				     caddr_t oldloc, caddr_t newloc,
2548 				     int entrysize)
2549 {
2550 	int offset, oldoffset, newoffset;
2551 	struct pagedep *pagedep;
2552 	struct diradd *dap;
2553 	ufs_lbn_t lbn;
2554 
2555 	ACQUIRE_LOCK(&lk);
2556 	lbn = lblkno(dp->i_fs, dp->i_offset);
2557 	offset = blkoff(dp->i_fs, dp->i_offset);
2558 	if (pagedep_lookup(dp, lbn, 0, &pagedep) == 0)
2559 		goto done;
2560 	oldoffset = offset + (oldloc - base);
2561 	newoffset = offset + (newloc - base);
2562 
2563 	LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(oldoffset)], da_pdlist) {
2564 		if (dap->da_offset != oldoffset)
2565 			continue;
2566 		dap->da_offset = newoffset;
2567 		if (DIRADDHASH(newoffset) == DIRADDHASH(oldoffset))
2568 			break;
2569 		LIST_REMOVE(dap, da_pdlist);
2570 		LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(newoffset)],
2571 		    dap, da_pdlist);
2572 		break;
2573 	}
2574 	if (dap == NULL) {
2575 
2576 		LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist) {
2577 			if (dap->da_offset == oldoffset) {
2578 				dap->da_offset = newoffset;
2579 				break;
2580 			}
2581 		}
2582 	}
2583 done:
2584 	bcopy(oldloc, newloc, entrysize);
2585 	FREE_LOCK(&lk);
2586 }
2587 
2588 /*
2589  * Free a diradd dependency structure. This routine must be called
2590  * with splbio interrupts blocked.
2591  */
2592 static void
2593 free_diradd(struct diradd *dap)
2594 {
2595 	struct dirrem *dirrem;
2596 	struct pagedep *pagedep;
2597 	struct inodedep *inodedep;
2598 	struct mkdir *mkdir, *nextmd;
2599 
2600 #ifdef DEBUG
2601 	if (lk.lkt_held == NOHOLDER)
2602 		panic("free_diradd: lock not held");
2603 #endif
2604 	WORKLIST_REMOVE(&dap->da_list);
2605 	LIST_REMOVE(dap, da_pdlist);
2606 	if ((dap->da_state & DIRCHG) == 0) {
2607 		pagedep = dap->da_pagedep;
2608 	} else {
2609 		dirrem = dap->da_previous;
2610 		pagedep = dirrem->dm_pagedep;
2611 		dirrem->dm_dirinum = pagedep->pd_ino;
2612 		add_to_worklist(&dirrem->dm_list);
2613 	}
2614 	if (inodedep_lookup(VFSTOUFS(pagedep->pd_mnt)->um_fs, dap->da_newinum,
2615 	    0, &inodedep) != 0)
2616 		(void) free_inodedep(inodedep);
2617 	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
2618 		for (mkdir = LIST_FIRST(&mkdirlisthd); mkdir; mkdir = nextmd) {
2619 			nextmd = LIST_NEXT(mkdir, md_mkdirs);
2620 			if (mkdir->md_diradd != dap)
2621 				continue;
2622 			dap->da_state &= ~mkdir->md_state;
2623 			WORKLIST_REMOVE(&mkdir->md_list);
2624 			LIST_REMOVE(mkdir, md_mkdirs);
2625 			WORKITEM_FREE(mkdir, D_MKDIR);
2626 		}
2627 		if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
2628 			FREE_LOCK(&lk);
2629 			panic("free_diradd: unfound ref");
2630 		}
2631 	}
2632 	WORKITEM_FREE(dap, D_DIRADD);
2633 }
2634 
2635 /*
2636  * Directory entry removal dependencies.
2637  *
2638  * When removing a directory entry, the entry's inode pointer must be
2639  * zero'ed on disk before the corresponding inode's link count is decremented
2640  * (possibly freeing the inode for re-use). This dependency is handled by
2641  * updating the directory entry but delaying the inode count reduction until
2642  * after the directory block has been written to disk. After this point, the
2643  * inode count can be decremented whenever it is convenient.
2644  */
2645 
2646 /*
2647  * This routine should be called immediately after removing
2648  * a directory entry.  The inode's link count should not be
2649  * decremented by the calling procedure -- the soft updates
2650  * code will do this task when it is safe.
2651  *
2652  * Parameters:
2653  *	bp:		buffer containing directory block
2654  *	dp:		inode for the directory being modified
2655  *	ip:		inode for directory entry being removed
2656  *	isrmdir:	indicates if doing RMDIR
2657  */
2658 void
2659 softdep_setup_remove(struct buf *bp, struct inode *dp, struct inode *ip,
2660 		     int isrmdir)
2661 {
2662 	struct dirrem *dirrem, *prevdirrem;
2663 
2664 	/*
2665 	 * Allocate a new dirrem if appropriate and ACQUIRE_LOCK.
2666 	 */
2667 	dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
2668 
2669 	/*
2670 	 * If the COMPLETE flag is clear, then there were no active
2671 	 * entries and we want to roll back to a zeroed entry until
2672 	 * the new inode is committed to disk. If the COMPLETE flag is
2673 	 * set then we have deleted an entry that never made it to
2674 	 * disk. If the entry we deleted resulted from a name change,
2675 	 * then the old name still resides on disk. We cannot delete
2676 	 * its inode (returned to us in prevdirrem) until the zeroed
2677 	 * directory entry gets to disk. The new inode has never been
2678 	 * referenced on the disk, so can be deleted immediately.
2679 	 */
2680 	if ((dirrem->dm_state & COMPLETE) == 0) {
2681 		LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, dirrem,
2682 		    dm_next);
2683 		FREE_LOCK(&lk);
2684 	} else {
2685 		if (prevdirrem != NULL)
2686 			LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd,
2687 			    prevdirrem, dm_next);
2688 		dirrem->dm_dirinum = dirrem->dm_pagedep->pd_ino;
2689 		FREE_LOCK(&lk);
2690 		handle_workitem_remove(dirrem);
2691 	}
2692 }
2693 
2694 /*
2695  * Allocate a new dirrem if appropriate and return it along with
2696  * its associated pagedep. Called without a lock, returns with lock.
2697  */
2698 static long num_dirrem;		/* number of dirrem allocated */
2699 
2700 /*
2701  * Parameters:
2702  *	bp:		buffer containing directory block
2703  *	dp:		inode for the directory being modified
2704  *	ip:		inode for directory entry being removed
2705  *	isrmdir:	indicates if doing RMDIR
2706  *	prevdirremp:	previously referenced inode, if any
2707  */
2708 static struct dirrem *
2709 newdirrem(struct buf *bp, struct inode *dp, struct inode *ip,
2710 	  int isrmdir, struct dirrem **prevdirremp)
2711 {
2712 	int offset;
2713 	ufs_lbn_t lbn;
2714 	struct diradd *dap;
2715 	struct dirrem *dirrem;
2716 	struct pagedep *pagedep;
2717 
2718 	/*
2719 	 * Whiteouts have no deletion dependencies.
2720 	 */
2721 	if (ip == NULL)
2722 		panic("newdirrem: whiteout");
2723 	/*
2724 	 * If we are over our limit, try to improve the situation.
2725 	 * Limiting the number of dirrem structures will also limit
2726 	 * the number of freefile and freeblks structures.
2727 	 */
2728 	if (num_dirrem > max_softdeps / 2 && speedup_syncer() == 0)
2729 		(void) request_cleanup(FLUSH_REMOVE, 0);
2730 	num_dirrem += 1;
2731 	dirrem = kmalloc(sizeof(struct dirrem), M_DIRREM,
2732 			 M_SOFTDEP_FLAGS | M_ZERO);
2733 	dirrem->dm_list.wk_type = D_DIRREM;
2734 	dirrem->dm_state = isrmdir ? RMDIR : 0;
2735 	dirrem->dm_mnt = ITOV(ip)->v_mount;
2736 	dirrem->dm_oldinum = ip->i_number;
2737 	*prevdirremp = NULL;
2738 
2739 	ACQUIRE_LOCK(&lk);
2740 	lbn = lblkno(dp->i_fs, dp->i_offset);
2741 	offset = blkoff(dp->i_fs, dp->i_offset);
2742 	if (pagedep_lookup(dp, lbn, DEPALLOC, &pagedep) == 0)
2743 		WORKLIST_INSERT_BP(bp, &pagedep->pd_list);
2744 	dirrem->dm_pagedep = pagedep;
2745 	/*
2746 	 * Check for a diradd dependency for the same directory entry.
2747 	 * If present, then both dependencies become obsolete and can
2748 	 * be de-allocated. Check for an entry on both the pd_dirraddhd
2749 	 * list and the pd_pendinghd list.
2750 	 */
2751 
2752 	LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(offset)], da_pdlist)
2753 		if (dap->da_offset == offset)
2754 			break;
2755 	if (dap == NULL) {
2756 
2757 		LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist)
2758 			if (dap->da_offset == offset)
2759 				break;
2760 		if (dap == NULL)
2761 			return (dirrem);
2762 	}
2763 	/*
2764 	 * Must be ATTACHED at this point.
2765 	 */
2766 	if ((dap->da_state & ATTACHED) == 0) {
2767 		FREE_LOCK(&lk);
2768 		panic("newdirrem: not ATTACHED");
2769 	}
2770 	if (dap->da_newinum != ip->i_number) {
2771 		FREE_LOCK(&lk);
2772 		panic("newdirrem: inum %"PRId64" should be %"PRId64,
2773 		    ip->i_number, dap->da_newinum);
2774 	}
2775 	/*
2776 	 * If we are deleting a changed name that never made it to disk,
2777 	 * then return the dirrem describing the previous inode (which
2778 	 * represents the inode currently referenced from this entry on disk).
2779 	 */
2780 	if ((dap->da_state & DIRCHG) != 0) {
2781 		*prevdirremp = dap->da_previous;
2782 		dap->da_state &= ~DIRCHG;
2783 		dap->da_pagedep = pagedep;
2784 	}
2785 	/*
2786 	 * We are deleting an entry that never made it to disk.
2787 	 * Mark it COMPLETE so we can delete its inode immediately.
2788 	 */
2789 	dirrem->dm_state |= COMPLETE;
2790 	free_diradd(dap);
2791 	return (dirrem);
2792 }
2793 
2794 /*
2795  * Directory entry change dependencies.
2796  *
2797  * Changing an existing directory entry requires that an add operation
2798  * be completed first followed by a deletion. The semantics for the addition
2799  * are identical to the description of adding a new entry above except
2800  * that the rollback is to the old inode number rather than zero. Once
2801  * the addition dependency is completed, the removal is done as described
2802  * in the removal routine above.
2803  */
2804 
2805 /*
2806  * This routine should be called immediately after changing
2807  * a directory entry.  The inode's link count should not be
2808  * decremented by the calling procedure -- the soft updates
2809  * code will perform this task when it is safe.
2810  *
2811  * Parameters:
2812  *	bp:		buffer containing directory block
2813  *	dp:		inode for the directory being modified
2814  *	ip:		inode for directory entry being removed
2815  *	newinum:	new inode number for changed entry
2816  *	isrmdir:	indicates if doing RMDIR
2817  */
2818 void
2819 softdep_setup_directory_change(struct buf *bp, struct inode *dp,
2820 			       struct inode *ip, ino_t newinum,
2821 			       int isrmdir)
2822 {
2823 	int offset;
2824 	struct diradd *dap = NULL;
2825 	struct dirrem *dirrem, *prevdirrem;
2826 	struct pagedep *pagedep;
2827 	struct inodedep *inodedep;
2828 
2829 	offset = blkoff(dp->i_fs, dp->i_offset);
2830 
2831 	/*
2832 	 * Whiteouts do not need diradd dependencies.
2833 	 */
2834 	if (newinum != WINO) {
2835 		dap = kmalloc(sizeof(struct diradd), M_DIRADD,
2836 			      M_SOFTDEP_FLAGS | M_ZERO);
2837 		dap->da_list.wk_type = D_DIRADD;
2838 		dap->da_state = DIRCHG | ATTACHED | DEPCOMPLETE;
2839 		dap->da_offset = offset;
2840 		dap->da_newinum = newinum;
2841 	}
2842 
2843 	/*
2844 	 * Allocate a new dirrem and ACQUIRE_LOCK.
2845 	 */
2846 	dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
2847 	pagedep = dirrem->dm_pagedep;
2848 	/*
2849 	 * The possible values for isrmdir:
2850 	 *	0 - non-directory file rename
2851 	 *	1 - directory rename within same directory
2852 	 *   inum - directory rename to new directory of given inode number
2853 	 * When renaming to a new directory, we are both deleting and
2854 	 * creating a new directory entry, so the link count on the new
2855 	 * directory should not change. Thus we do not need the followup
2856 	 * dirrem which is usually done in handle_workitem_remove. We set
2857 	 * the DIRCHG flag to tell handle_workitem_remove to skip the
2858 	 * followup dirrem.
2859 	 */
2860 	if (isrmdir > 1)
2861 		dirrem->dm_state |= DIRCHG;
2862 
2863 	/*
2864 	 * Whiteouts have no additional dependencies,
2865 	 * so just put the dirrem on the correct list.
2866 	 */
2867 	if (newinum == WINO) {
2868 		if ((dirrem->dm_state & COMPLETE) == 0) {
2869 			LIST_INSERT_HEAD(&pagedep->pd_dirremhd, dirrem,
2870 			    dm_next);
2871 		} else {
2872 			dirrem->dm_dirinum = pagedep->pd_ino;
2873 			add_to_worklist(&dirrem->dm_list);
2874 		}
2875 		FREE_LOCK(&lk);
2876 		return;
2877 	}
2878 
2879 	/*
2880 	 * If the COMPLETE flag is clear, then there were no active
2881 	 * entries and we want to roll back to the previous inode until
2882 	 * the new inode is committed to disk. If the COMPLETE flag is
2883 	 * set, then we have deleted an entry that never made it to disk.
2884 	 * If the entry we deleted resulted from a name change, then the old
2885 	 * inode reference still resides on disk. Any rollback that we do
2886 	 * needs to be to that old inode (returned to us in prevdirrem). If
2887 	 * the entry we deleted resulted from a create, then there is
2888 	 * no entry on the disk, so we want to roll back to zero rather
2889 	 * than the uncommitted inode. In either of the COMPLETE cases we
2890 	 * want to immediately free the unwritten and unreferenced inode.
2891 	 */
2892 	if ((dirrem->dm_state & COMPLETE) == 0) {
2893 		dap->da_previous = dirrem;
2894 	} else {
2895 		if (prevdirrem != NULL) {
2896 			dap->da_previous = prevdirrem;
2897 		} else {
2898 			dap->da_state &= ~DIRCHG;
2899 			dap->da_pagedep = pagedep;
2900 		}
2901 		dirrem->dm_dirinum = pagedep->pd_ino;
2902 		add_to_worklist(&dirrem->dm_list);
2903 	}
2904 	/*
2905 	 * Link into its inodedep. Put it on the id_bufwait list if the inode
2906 	 * is not yet written. If it is written, do the post-inode write
2907 	 * processing to put it on the id_pendinghd list.
2908 	 */
2909 	if (inodedep_lookup(dp->i_fs, newinum, DEPALLOC, &inodedep) == 0 ||
2910 	    (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
2911 		dap->da_state |= COMPLETE;
2912 		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
2913 		WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
2914 	} else {
2915 		LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)],
2916 		    dap, da_pdlist);
2917 		WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
2918 	}
2919 	FREE_LOCK(&lk);
2920 }
2921 
2922 /*
2923  * Called whenever the link count on an inode is changed.
2924  * It creates an inode dependency so that the new reference(s)
2925  * to the inode cannot be committed to disk until the updated
2926  * inode has been written.
2927  *
2928  * Parameters:
2929  *	ip:	the inode with the increased link count
2930  */
2931 void
2932 softdep_change_linkcnt(struct inode *ip)
2933 {
2934 	struct inodedep *inodedep;
2935 
2936 	ACQUIRE_LOCK(&lk);
2937 	(void) inodedep_lookup(ip->i_fs, ip->i_number, DEPALLOC, &inodedep);
2938 	if (ip->i_nlink < ip->i_effnlink) {
2939 		FREE_LOCK(&lk);
2940 		panic("softdep_change_linkcnt: bad delta");
2941 	}
2942 	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
2943 	FREE_LOCK(&lk);
2944 }
2945 
2946 /*
2947  * This workitem decrements the inode's link count.
2948  * If the link count reaches zero, the file is removed.
2949  */
2950 static void
2951 handle_workitem_remove(struct dirrem *dirrem)
2952 {
2953 	struct inodedep *inodedep;
2954 	struct vnode *vp;
2955 	struct inode *ip;
2956 	ino_t oldinum;
2957 	int error;
2958 
2959 	error = VFS_VGET(dirrem->dm_mnt, NULL, dirrem->dm_oldinum, &vp);
2960 	if (error) {
2961 		softdep_error("handle_workitem_remove: vget", error);
2962 		return;
2963 	}
2964 	ip = VTOI(vp);
2965 	ACQUIRE_LOCK(&lk);
2966 	if ((inodedep_lookup(ip->i_fs, dirrem->dm_oldinum, 0, &inodedep)) == 0){
2967 		FREE_LOCK(&lk);
2968 		panic("handle_workitem_remove: lost inodedep");
2969 	}
2970 	/*
2971 	 * Normal file deletion.
2972 	 */
2973 	if ((dirrem->dm_state & RMDIR) == 0) {
2974 		ip->i_nlink--;
2975 		ip->i_flag |= IN_CHANGE;
2976 		if (ip->i_nlink < ip->i_effnlink) {
2977 			FREE_LOCK(&lk);
2978 			panic("handle_workitem_remove: bad file delta");
2979 		}
2980 		inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
2981 		FREE_LOCK(&lk);
2982 		vput(vp);
2983 		num_dirrem -= 1;
2984 		WORKITEM_FREE(dirrem, D_DIRREM);
2985 		return;
2986 	}
2987 	/*
2988 	 * Directory deletion. Decrement reference count for both the
2989 	 * just deleted parent directory entry and the reference for ".".
2990 	 * Next truncate the directory to length zero. When the
2991 	 * truncation completes, arrange to have the reference count on
2992 	 * the parent decremented to account for the loss of "..".
2993 	 */
2994 	ip->i_nlink -= 2;
2995 	ip->i_flag |= IN_CHANGE;
2996 	if (ip->i_nlink < ip->i_effnlink) {
2997 		FREE_LOCK(&lk);
2998 		panic("handle_workitem_remove: bad dir delta");
2999 	}
3000 	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
3001 	FREE_LOCK(&lk);
3002 	if ((error = ffs_truncate(vp, (off_t)0, 0, proc0.p_ucred)) != 0)
3003 		softdep_error("handle_workitem_remove: truncate", error);
3004 	/*
3005 	 * Rename a directory to a new parent. Since, we are both deleting
3006 	 * and creating a new directory entry, the link count on the new
3007 	 * directory should not change. Thus we skip the followup dirrem.
3008 	 */
3009 	if (dirrem->dm_state & DIRCHG) {
3010 		vput(vp);
3011 		num_dirrem -= 1;
3012 		WORKITEM_FREE(dirrem, D_DIRREM);
3013 		return;
3014 	}
3015 	/*
3016 	 * If the inodedep does not exist, then the zero'ed inode has
3017 	 * been written to disk. If the allocated inode has never been
3018 	 * written to disk, then the on-disk inode is zero'ed. In either
3019 	 * case we can remove the file immediately.
3020 	 */
3021 	ACQUIRE_LOCK(&lk);
3022 	dirrem->dm_state = 0;
3023 	oldinum = dirrem->dm_oldinum;
3024 	dirrem->dm_oldinum = dirrem->dm_dirinum;
3025 	if (inodedep_lookup(ip->i_fs, oldinum, 0, &inodedep) == 0 ||
3026 	    check_inode_unwritten(inodedep)) {
3027 		FREE_LOCK(&lk);
3028 		vput(vp);
3029 		handle_workitem_remove(dirrem);
3030 		return;
3031 	}
3032 	WORKLIST_INSERT(&inodedep->id_inowait, &dirrem->dm_list);
3033 	FREE_LOCK(&lk);
3034 	ip->i_flag |= IN_CHANGE;
3035 	ffs_update(vp, 0);
3036 	vput(vp);
3037 }
3038 
3039 /*
3040  * Inode de-allocation dependencies.
3041  *
3042  * When an inode's link count is reduced to zero, it can be de-allocated. We
3043  * found it convenient to postpone de-allocation until after the inode is
3044  * written to disk with its new link count (zero).  At this point, all of the
3045  * on-disk inode's block pointers are nullified and, with careful dependency
3046  * list ordering, all dependencies related to the inode will be satisfied and
3047  * the corresponding dependency structures de-allocated.  So, if/when the
3048  * inode is reused, there will be no mixing of old dependencies with new
3049  * ones.  This artificial dependency is set up by the block de-allocation
3050  * procedure above (softdep_setup_freeblocks) and completed by the
3051  * following procedure.
3052  */
3053 static void
3054 handle_workitem_freefile(struct freefile *freefile)
3055 {
3056 	struct vnode vp;
3057 	struct inode tip;
3058 	struct inodedep *idp;
3059 	int error;
3060 
3061 #ifdef DEBUG
3062 	ACQUIRE_LOCK(&lk);
3063 	error = inodedep_lookup(freefile->fx_fs, freefile->fx_oldinum, 0, &idp);
3064 	FREE_LOCK(&lk);
3065 	if (error)
3066 		panic("handle_workitem_freefile: inodedep survived");
3067 #endif
3068 	tip.i_devvp = freefile->fx_devvp;
3069 	tip.i_dev = freefile->fx_devvp->v_rdev;
3070 	tip.i_fs = freefile->fx_fs;
3071 	vp.v_data = &tip;
3072 	if ((error = ffs_freefile(&vp, freefile->fx_oldinum, freefile->fx_mode)) != 0)
3073 		softdep_error("handle_workitem_freefile", error);
3074 	WORKITEM_FREE(freefile, D_FREEFILE);
3075 }
3076 
3077 /*
3078  * Helper function which unlinks marker element from work list and returns
3079  * the next element on the list.
3080  */
3081 static __inline struct worklist *
3082 markernext(struct worklist *marker)
3083 {
3084 	struct worklist *next;
3085 
3086 	next = LIST_NEXT(marker, wk_list);
3087 	LIST_REMOVE(marker, wk_list);
3088 	return next;
3089 }
3090 
3091 /*
3092  * checkread, checkwrite
3093  *
3094  * bioops callback - hold io_token
3095  */
3096 static  int
3097 softdep_checkread(struct buf *bp)
3098 {
3099 	/* nothing to do, mp lock not needed */
3100 	return(0);
3101 }
3102 
3103 /*
3104  * bioops callback - hold io_token
3105  */
3106 static  int
3107 softdep_checkwrite(struct buf *bp)
3108 {
3109 	/* nothing to do, mp lock not needed */
3110 	return(0);
3111 }
3112 
3113 /*
3114  * Disk writes.
3115  *
3116  * The dependency structures constructed above are most actively used when file
3117  * system blocks are written to disk.  No constraints are placed on when a
3118  * block can be written, but unsatisfied update dependencies are made safe by
3119  * modifying (or replacing) the source memory for the duration of the disk
3120  * write.  When the disk write completes, the memory block is again brought
3121  * up-to-date.
3122  *
3123  * In-core inode structure reclamation.
3124  *
3125  * Because there are a finite number of "in-core" inode structures, they are
3126  * reused regularly.  By transferring all inode-related dependencies to the
3127  * in-memory inode block and indexing them separately (via "inodedep"s), we
3128  * can allow "in-core" inode structures to be reused at any time and avoid
3129  * any increase in contention.
3130  *
3131  * Called just before entering the device driver to initiate a new disk I/O.
3132  * The buffer must be locked, thus, no I/O completion operations can occur
3133  * while we are manipulating its associated dependencies.
3134  *
3135  * bioops callback - hold io_token
3136  *
3137  * Parameters:
3138  *	bp:	structure describing disk write to occur
3139  */
3140 static void
3141 softdep_disk_io_initiation(struct buf *bp)
3142 {
3143 	struct worklist *wk;
3144 	struct worklist marker;
3145 	struct indirdep *indirdep;
3146 
3147 	/*
3148 	 * We only care about write operations. There should never
3149 	 * be dependencies for reads.
3150 	 */
3151 	if (bp->b_cmd == BUF_CMD_READ)
3152 		panic("softdep_disk_io_initiation: read");
3153 
3154 	get_mplock();
3155 	marker.wk_type = D_LAST + 1;	/* Not a normal workitem */
3156 
3157 	/*
3158 	 * Do any necessary pre-I/O processing.
3159 	 */
3160 	for (wk = LIST_FIRST(&bp->b_dep); wk; wk = markernext(&marker)) {
3161 		LIST_INSERT_AFTER(wk, &marker, wk_list);
3162 
3163 		switch (wk->wk_type) {
3164 		case D_PAGEDEP:
3165 			initiate_write_filepage(WK_PAGEDEP(wk), bp);
3166 			continue;
3167 
3168 		case D_INODEDEP:
3169 			initiate_write_inodeblock(WK_INODEDEP(wk), bp);
3170 			continue;
3171 
3172 		case D_INDIRDEP:
3173 			indirdep = WK_INDIRDEP(wk);
3174 			if (indirdep->ir_state & GOINGAWAY)
3175 				panic("disk_io_initiation: indirdep gone");
3176 			/*
3177 			 * If there are no remaining dependencies, this
3178 			 * will be writing the real pointers, so the
3179 			 * dependency can be freed.
3180 			 */
3181 			if (LIST_FIRST(&indirdep->ir_deplisthd) == NULL) {
3182 				indirdep->ir_savebp->b_flags |= B_INVAL | B_NOCACHE;
3183 				brelse(indirdep->ir_savebp);
3184 				/* inline expand WORKLIST_REMOVE(wk); */
3185 				wk->wk_state &= ~ONWORKLIST;
3186 				LIST_REMOVE(wk, wk_list);
3187 				WORKITEM_FREE(indirdep, D_INDIRDEP);
3188 				continue;
3189 			}
3190 			/*
3191 			 * Replace up-to-date version with safe version.
3192 			 */
3193 			indirdep->ir_saveddata = kmalloc(bp->b_bcount,
3194 							 M_INDIRDEP,
3195 							 M_SOFTDEP_FLAGS);
3196 			ACQUIRE_LOCK(&lk);
3197 			indirdep->ir_state &= ~ATTACHED;
3198 			indirdep->ir_state |= UNDONE;
3199 			bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount);
3200 			bcopy(indirdep->ir_savebp->b_data, bp->b_data,
3201 			    bp->b_bcount);
3202 			FREE_LOCK(&lk);
3203 			continue;
3204 
3205 		case D_MKDIR:
3206 		case D_BMSAFEMAP:
3207 		case D_ALLOCDIRECT:
3208 		case D_ALLOCINDIR:
3209 			continue;
3210 
3211 		default:
3212 			panic("handle_disk_io_initiation: Unexpected type %s",
3213 			    TYPENAME(wk->wk_type));
3214 			/* NOTREACHED */
3215 		}
3216 	}
3217 	rel_mplock();
3218 }
3219 
3220 /*
3221  * Called from within the procedure above to deal with unsatisfied
3222  * allocation dependencies in a directory. The buffer must be locked,
3223  * thus, no I/O completion operations can occur while we are
3224  * manipulating its associated dependencies.
3225  */
3226 static void
3227 initiate_write_filepage(struct pagedep *pagedep, struct buf *bp)
3228 {
3229 	struct diradd *dap;
3230 	struct direct *ep;
3231 	int i;
3232 
3233 	if (pagedep->pd_state & IOSTARTED) {
3234 		/*
3235 		 * This can only happen if there is a driver that does not
3236 		 * understand chaining. Here biodone will reissue the call
3237 		 * to strategy for the incomplete buffers.
3238 		 */
3239 		kprintf("initiate_write_filepage: already started\n");
3240 		return;
3241 	}
3242 	pagedep->pd_state |= IOSTARTED;
3243 	ACQUIRE_LOCK(&lk);
3244 	for (i = 0; i < DAHASHSZ; i++) {
3245 		LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
3246 			ep = (struct direct *)
3247 			    ((char *)bp->b_data + dap->da_offset);
3248 			if (ep->d_ino != dap->da_newinum) {
3249 				FREE_LOCK(&lk);
3250 				panic("%s: dir inum %d != new %"PRId64,
3251 				    "initiate_write_filepage",
3252 				    ep->d_ino, dap->da_newinum);
3253 			}
3254 			if (dap->da_state & DIRCHG)
3255 				ep->d_ino = dap->da_previous->dm_oldinum;
3256 			else
3257 				ep->d_ino = 0;
3258 			dap->da_state &= ~ATTACHED;
3259 			dap->da_state |= UNDONE;
3260 		}
3261 	}
3262 	FREE_LOCK(&lk);
3263 }
3264 
3265 /*
3266  * Called from within the procedure above to deal with unsatisfied
3267  * allocation dependencies in an inodeblock. The buffer must be
3268  * locked, thus, no I/O completion operations can occur while we
3269  * are manipulating its associated dependencies.
3270  *
3271  * Parameters:
3272  *	bp:	The inode block
3273  */
3274 static void
3275 initiate_write_inodeblock(struct inodedep *inodedep, struct buf *bp)
3276 {
3277 	struct allocdirect *adp, *lastadp;
3278 	struct ufs1_dinode *dp;
3279 	struct ufs1_dinode *sip;
3280 	struct fs *fs;
3281 	ufs_lbn_t prevlbn = 0;
3282 	int i, deplist;
3283 
3284 	if (inodedep->id_state & IOSTARTED)
3285 		panic("initiate_write_inodeblock: already started");
3286 	inodedep->id_state |= IOSTARTED;
3287 	fs = inodedep->id_fs;
3288 	dp = (struct ufs1_dinode *)bp->b_data +
3289 	    ino_to_fsbo(fs, inodedep->id_ino);
3290 	/*
3291 	 * If the bitmap is not yet written, then the allocated
3292 	 * inode cannot be written to disk.
3293 	 */
3294 	if ((inodedep->id_state & DEPCOMPLETE) == 0) {
3295 		if (inodedep->id_savedino != NULL)
3296 			panic("initiate_write_inodeblock: already doing I/O");
3297 		sip = kmalloc(sizeof(struct ufs1_dinode), M_INODEDEP,
3298 			      M_SOFTDEP_FLAGS);
3299 		inodedep->id_savedino = sip;
3300 		*inodedep->id_savedino = *dp;
3301 		bzero((caddr_t)dp, sizeof(struct ufs1_dinode));
3302 		dp->di_gen = inodedep->id_savedino->di_gen;
3303 		return;
3304 	}
3305 	/*
3306 	 * If no dependencies, then there is nothing to roll back.
3307 	 */
3308 	inodedep->id_savedsize = dp->di_size;
3309 	if (TAILQ_FIRST(&inodedep->id_inoupdt) == NULL)
3310 		return;
3311 	/*
3312 	 * Set the dependencies to busy.
3313 	 */
3314 	ACQUIRE_LOCK(&lk);
3315 	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
3316 	     adp = TAILQ_NEXT(adp, ad_next)) {
3317 #ifdef DIAGNOSTIC
3318 		if (deplist != 0 && prevlbn >= adp->ad_lbn) {
3319 			FREE_LOCK(&lk);
3320 			panic("softdep_write_inodeblock: lbn order");
3321 		}
3322 		prevlbn = adp->ad_lbn;
3323 		if (adp->ad_lbn < NDADDR &&
3324 		    dp->di_db[adp->ad_lbn] != adp->ad_newblkno) {
3325 			FREE_LOCK(&lk);
3326 			panic("%s: direct pointer #%ld mismatch %d != %d",
3327 			    "softdep_write_inodeblock", adp->ad_lbn,
3328 			    dp->di_db[adp->ad_lbn], adp->ad_newblkno);
3329 		}
3330 		if (adp->ad_lbn >= NDADDR &&
3331 		    dp->di_ib[adp->ad_lbn - NDADDR] != adp->ad_newblkno) {
3332 			FREE_LOCK(&lk);
3333 			panic("%s: indirect pointer #%ld mismatch %d != %d",
3334 			    "softdep_write_inodeblock", adp->ad_lbn - NDADDR,
3335 			    dp->di_ib[adp->ad_lbn - NDADDR], adp->ad_newblkno);
3336 		}
3337 		deplist |= 1 << adp->ad_lbn;
3338 		if ((adp->ad_state & ATTACHED) == 0) {
3339 			FREE_LOCK(&lk);
3340 			panic("softdep_write_inodeblock: Unknown state 0x%x",
3341 			    adp->ad_state);
3342 		}
3343 #endif /* DIAGNOSTIC */
3344 		adp->ad_state &= ~ATTACHED;
3345 		adp->ad_state |= UNDONE;
3346 	}
3347 	/*
3348 	 * The on-disk inode cannot claim to be any larger than the last
3349 	 * fragment that has been written. Otherwise, the on-disk inode
3350 	 * might have fragments that were not the last block in the file
3351 	 * which would corrupt the filesystem.
3352 	 */
3353 	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
3354 	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
3355 		if (adp->ad_lbn >= NDADDR)
3356 			break;
3357 		dp->di_db[adp->ad_lbn] = adp->ad_oldblkno;
3358 		/* keep going until hitting a rollback to a frag */
3359 		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
3360 			continue;
3361 		dp->di_size = fs->fs_bsize * adp->ad_lbn + adp->ad_oldsize;
3362 		for (i = adp->ad_lbn + 1; i < NDADDR; i++) {
3363 #ifdef DIAGNOSTIC
3364 			if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0) {
3365 				FREE_LOCK(&lk);
3366 				panic("softdep_write_inodeblock: lost dep1");
3367 			}
3368 #endif /* DIAGNOSTIC */
3369 			dp->di_db[i] = 0;
3370 		}
3371 		for (i = 0; i < NIADDR; i++) {
3372 #ifdef DIAGNOSTIC
3373 			if (dp->di_ib[i] != 0 &&
3374 			    (deplist & ((1 << NDADDR) << i)) == 0) {
3375 				FREE_LOCK(&lk);
3376 				panic("softdep_write_inodeblock: lost dep2");
3377 			}
3378 #endif /* DIAGNOSTIC */
3379 			dp->di_ib[i] = 0;
3380 		}
3381 		FREE_LOCK(&lk);
3382 		return;
3383 	}
3384 	/*
3385 	 * If we have zero'ed out the last allocated block of the file,
3386 	 * roll back the size to the last currently allocated block.
3387 	 * We know that this last allocated block is a full-sized as
3388 	 * we already checked for fragments in the loop above.
3389 	 */
3390 	if (lastadp != NULL &&
3391 	    dp->di_size <= (lastadp->ad_lbn + 1) * fs->fs_bsize) {
3392 		for (i = lastadp->ad_lbn; i >= 0; i--)
3393 			if (dp->di_db[i] != 0)
3394 				break;
3395 		dp->di_size = (i + 1) * fs->fs_bsize;
3396 	}
3397 	/*
3398 	 * The only dependencies are for indirect blocks.
3399 	 *
3400 	 * The file size for indirect block additions is not guaranteed.
3401 	 * Such a guarantee would be non-trivial to achieve. The conventional
3402 	 * synchronous write implementation also does not make this guarantee.
3403 	 * Fsck should catch and fix discrepancies. Arguably, the file size
3404 	 * can be over-estimated without destroying integrity when the file
3405 	 * moves into the indirect blocks (i.e., is large). If we want to
3406 	 * postpone fsck, we are stuck with this argument.
3407 	 */
3408 	for (; adp; adp = TAILQ_NEXT(adp, ad_next))
3409 		dp->di_ib[adp->ad_lbn - NDADDR] = 0;
3410 	FREE_LOCK(&lk);
3411 }
3412 
3413 /*
3414  * This routine is called during the completion interrupt
3415  * service routine for a disk write (from the procedure called
3416  * by the device driver to inform the filesystem caches of
3417  * a request completion).  It should be called early in this
3418  * procedure, before the block is made available to other
3419  * processes or other routines are called.
3420  *
3421  * bioops callback - hold io_token
3422  *
3423  * Parameters:
3424  *	bp:	describes the completed disk write
3425  */
3426 static void
3427 softdep_disk_write_complete(struct buf *bp)
3428 {
3429 	struct worklist *wk;
3430 	struct workhead reattach;
3431 	struct newblk *newblk;
3432 	struct allocindir *aip;
3433 	struct allocdirect *adp;
3434 	struct indirdep *indirdep;
3435 	struct inodedep *inodedep;
3436 	struct bmsafemap *bmsafemap;
3437 
3438 	get_mplock();
3439 #ifdef DEBUG
3440 	if (lk.lkt_held != NOHOLDER)
3441 		panic("softdep_disk_write_complete: lock is held");
3442 	lk.lkt_held = SPECIAL_FLAG;
3443 #endif
3444 	LIST_INIT(&reattach);
3445 	while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) {
3446 		WORKLIST_REMOVE(wk);
3447 		switch (wk->wk_type) {
3448 
3449 		case D_PAGEDEP:
3450 			if (handle_written_filepage(WK_PAGEDEP(wk), bp))
3451 				WORKLIST_INSERT(&reattach, wk);
3452 			continue;
3453 
3454 		case D_INODEDEP:
3455 			if (handle_written_inodeblock(WK_INODEDEP(wk), bp))
3456 				WORKLIST_INSERT(&reattach, wk);
3457 			continue;
3458 
3459 		case D_BMSAFEMAP:
3460 			bmsafemap = WK_BMSAFEMAP(wk);
3461 			while ((newblk = LIST_FIRST(&bmsafemap->sm_newblkhd))) {
3462 				newblk->nb_state |= DEPCOMPLETE;
3463 				newblk->nb_bmsafemap = NULL;
3464 				LIST_REMOVE(newblk, nb_deps);
3465 			}
3466 			while ((adp =
3467 			   LIST_FIRST(&bmsafemap->sm_allocdirecthd))) {
3468 				adp->ad_state |= DEPCOMPLETE;
3469 				adp->ad_buf = NULL;
3470 				LIST_REMOVE(adp, ad_deps);
3471 				handle_allocdirect_partdone(adp);
3472 			}
3473 			while ((aip =
3474 			    LIST_FIRST(&bmsafemap->sm_allocindirhd))) {
3475 				aip->ai_state |= DEPCOMPLETE;
3476 				aip->ai_buf = NULL;
3477 				LIST_REMOVE(aip, ai_deps);
3478 				handle_allocindir_partdone(aip);
3479 			}
3480 			while ((inodedep =
3481 			     LIST_FIRST(&bmsafemap->sm_inodedephd)) != NULL) {
3482 				inodedep->id_state |= DEPCOMPLETE;
3483 				LIST_REMOVE(inodedep, id_deps);
3484 				inodedep->id_buf = NULL;
3485 			}
3486 			WORKITEM_FREE(bmsafemap, D_BMSAFEMAP);
3487 			continue;
3488 
3489 		case D_MKDIR:
3490 			handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY);
3491 			continue;
3492 
3493 		case D_ALLOCDIRECT:
3494 			adp = WK_ALLOCDIRECT(wk);
3495 			adp->ad_state |= COMPLETE;
3496 			handle_allocdirect_partdone(adp);
3497 			continue;
3498 
3499 		case D_ALLOCINDIR:
3500 			aip = WK_ALLOCINDIR(wk);
3501 			aip->ai_state |= COMPLETE;
3502 			handle_allocindir_partdone(aip);
3503 			continue;
3504 
3505 		case D_INDIRDEP:
3506 			indirdep = WK_INDIRDEP(wk);
3507 			if (indirdep->ir_state & GOINGAWAY) {
3508 				lk.lkt_held = NOHOLDER;
3509 				panic("disk_write_complete: indirdep gone");
3510 			}
3511 			bcopy(indirdep->ir_saveddata, bp->b_data, bp->b_bcount);
3512 			kfree(indirdep->ir_saveddata, M_INDIRDEP);
3513 			indirdep->ir_saveddata = 0;
3514 			indirdep->ir_state &= ~UNDONE;
3515 			indirdep->ir_state |= ATTACHED;
3516 			while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != NULL) {
3517 				handle_allocindir_partdone(aip);
3518 				if (aip == LIST_FIRST(&indirdep->ir_donehd)) {
3519 					lk.lkt_held = NOHOLDER;
3520 					panic("disk_write_complete: not gone");
3521 				}
3522 			}
3523 			WORKLIST_INSERT(&reattach, wk);
3524 			if ((bp->b_flags & B_DELWRI) == 0)
3525 				stat_indir_blk_ptrs++;
3526 			bdirty(bp);
3527 			continue;
3528 
3529 		default:
3530 			lk.lkt_held = NOHOLDER;
3531 			panic("handle_disk_write_complete: Unknown type %s",
3532 			    TYPENAME(wk->wk_type));
3533 			/* NOTREACHED */
3534 		}
3535 	}
3536 	/*
3537 	 * Reattach any requests that must be redone.
3538 	 */
3539 	while ((wk = LIST_FIRST(&reattach)) != NULL) {
3540 		WORKLIST_REMOVE(wk);
3541 		WORKLIST_INSERT_BP(bp, wk);
3542 	}
3543 #ifdef DEBUG
3544 	if (lk.lkt_held != SPECIAL_FLAG)
3545 		panic("softdep_disk_write_complete: lock lost");
3546 	lk.lkt_held = NOHOLDER;
3547 #endif
3548 	rel_mplock();
3549 }
3550 
3551 /*
3552  * Called from within softdep_disk_write_complete above. Note that
3553  * this routine is always called from interrupt level with further
3554  * splbio interrupts blocked.
3555  *
3556  * Parameters:
3557  *	adp:	the completed allocdirect
3558  */
3559 static void
3560 handle_allocdirect_partdone(struct allocdirect *adp)
3561 {
3562 	struct allocdirect *listadp;
3563 	struct inodedep *inodedep;
3564 	long bsize;
3565 
3566 	if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
3567 		return;
3568 	if (adp->ad_buf != NULL) {
3569 		lk.lkt_held = NOHOLDER;
3570 		panic("handle_allocdirect_partdone: dangling dep");
3571 	}
3572 	/*
3573 	 * The on-disk inode cannot claim to be any larger than the last
3574 	 * fragment that has been written. Otherwise, the on-disk inode
3575 	 * might have fragments that were not the last block in the file
3576 	 * which would corrupt the filesystem. Thus, we cannot free any
3577 	 * allocdirects after one whose ad_oldblkno claims a fragment as
3578 	 * these blocks must be rolled back to zero before writing the inode.
3579 	 * We check the currently active set of allocdirects in id_inoupdt.
3580 	 */
3581 	inodedep = adp->ad_inodedep;
3582 	bsize = inodedep->id_fs->fs_bsize;
3583 	TAILQ_FOREACH(listadp, &inodedep->id_inoupdt, ad_next) {
3584 		/* found our block */
3585 		if (listadp == adp)
3586 			break;
3587 		/* continue if ad_oldlbn is not a fragment */
3588 		if (listadp->ad_oldsize == 0 ||
3589 		    listadp->ad_oldsize == bsize)
3590 			continue;
3591 		/* hit a fragment */
3592 		return;
3593 	}
3594 	/*
3595 	 * If we have reached the end of the current list without
3596 	 * finding the just finished dependency, then it must be
3597 	 * on the future dependency list. Future dependencies cannot
3598 	 * be freed until they are moved to the current list.
3599 	 */
3600 	if (listadp == NULL) {
3601 #ifdef DEBUG
3602 		TAILQ_FOREACH(listadp, &inodedep->id_newinoupdt, ad_next)
3603 			/* found our block */
3604 			if (listadp == adp)
3605 				break;
3606 		if (listadp == NULL) {
3607 			lk.lkt_held = NOHOLDER;
3608 			panic("handle_allocdirect_partdone: lost dep");
3609 		}
3610 #endif /* DEBUG */
3611 		return;
3612 	}
3613 	/*
3614 	 * If we have found the just finished dependency, then free
3615 	 * it along with anything that follows it that is complete.
3616 	 */
3617 	for (; adp; adp = listadp) {
3618 		listadp = TAILQ_NEXT(adp, ad_next);
3619 		if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
3620 			return;
3621 		free_allocdirect(&inodedep->id_inoupdt, adp, 1);
3622 	}
3623 }
3624 
3625 /*
3626  * Called from within softdep_disk_write_complete above. Note that
3627  * this routine is always called from interrupt level with further
3628  * splbio interrupts blocked.
3629  *
3630  * Parameters:
3631  *	aip:	the completed allocindir
3632  */
3633 static void
3634 handle_allocindir_partdone(struct allocindir *aip)
3635 {
3636 	struct indirdep *indirdep;
3637 
3638 	if ((aip->ai_state & ALLCOMPLETE) != ALLCOMPLETE)
3639 		return;
3640 	if (aip->ai_buf != NULL) {
3641 		lk.lkt_held = NOHOLDER;
3642 		panic("handle_allocindir_partdone: dangling dependency");
3643 	}
3644 	indirdep = aip->ai_indirdep;
3645 	if (indirdep->ir_state & UNDONE) {
3646 		LIST_REMOVE(aip, ai_next);
3647 		LIST_INSERT_HEAD(&indirdep->ir_donehd, aip, ai_next);
3648 		return;
3649 	}
3650 	((ufs_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] =
3651 	    aip->ai_newblkno;
3652 	LIST_REMOVE(aip, ai_next);
3653 	if (aip->ai_freefrag != NULL)
3654 		add_to_worklist(&aip->ai_freefrag->ff_list);
3655 	WORKITEM_FREE(aip, D_ALLOCINDIR);
3656 }
3657 
3658 /*
3659  * Called from within softdep_disk_write_complete above to restore
3660  * in-memory inode block contents to their most up-to-date state. Note
3661  * that this routine is always called from interrupt level with further
3662  * splbio interrupts blocked.
3663  *
3664  * Parameters:
3665  *	bp:	buffer containing the inode block
3666  */
3667 static int
3668 handle_written_inodeblock(struct inodedep *inodedep, struct buf *bp)
3669 {
3670 	struct worklist *wk, *filefree;
3671 	struct allocdirect *adp, *nextadp;
3672 	struct ufs1_dinode *dp;
3673 	int hadchanges;
3674 
3675 	if ((inodedep->id_state & IOSTARTED) == 0) {
3676 		lk.lkt_held = NOHOLDER;
3677 		panic("handle_written_inodeblock: not started");
3678 	}
3679 	inodedep->id_state &= ~IOSTARTED;
3680 	dp = (struct ufs1_dinode *)bp->b_data +
3681 	    ino_to_fsbo(inodedep->id_fs, inodedep->id_ino);
3682 	/*
3683 	 * If we had to rollback the inode allocation because of
3684 	 * bitmaps being incomplete, then simply restore it.
3685 	 * Keep the block dirty so that it will not be reclaimed until
3686 	 * all associated dependencies have been cleared and the
3687 	 * corresponding updates written to disk.
3688 	 */
3689 	if (inodedep->id_savedino != NULL) {
3690 		*dp = *inodedep->id_savedino;
3691 		kfree(inodedep->id_savedino, M_INODEDEP);
3692 		inodedep->id_savedino = NULL;
3693 		if ((bp->b_flags & B_DELWRI) == 0)
3694 			stat_inode_bitmap++;
3695 		bdirty(bp);
3696 		return (1);
3697 	}
3698 	inodedep->id_state |= COMPLETE;
3699 	/*
3700 	 * Roll forward anything that had to be rolled back before
3701 	 * the inode could be updated.
3702 	 */
3703 	hadchanges = 0;
3704 	for (adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; adp = nextadp) {
3705 		nextadp = TAILQ_NEXT(adp, ad_next);
3706 		if (adp->ad_state & ATTACHED) {
3707 			lk.lkt_held = NOHOLDER;
3708 			panic("handle_written_inodeblock: new entry");
3709 		}
3710 		if (adp->ad_lbn < NDADDR) {
3711 			if (dp->di_db[adp->ad_lbn] != adp->ad_oldblkno) {
3712 				lk.lkt_held = NOHOLDER;
3713 				panic("%s: %s #%ld mismatch %d != %d",
3714 				    "handle_written_inodeblock",
3715 				    "direct pointer", adp->ad_lbn,
3716 				    dp->di_db[adp->ad_lbn], adp->ad_oldblkno);
3717 			}
3718 			dp->di_db[adp->ad_lbn] = adp->ad_newblkno;
3719 		} else {
3720 			if (dp->di_ib[adp->ad_lbn - NDADDR] != 0) {
3721 				lk.lkt_held = NOHOLDER;
3722 				panic("%s: %s #%ld allocated as %d",
3723 				    "handle_written_inodeblock",
3724 				    "indirect pointer", adp->ad_lbn - NDADDR,
3725 				    dp->di_ib[adp->ad_lbn - NDADDR]);
3726 			}
3727 			dp->di_ib[adp->ad_lbn - NDADDR] = adp->ad_newblkno;
3728 		}
3729 		adp->ad_state &= ~UNDONE;
3730 		adp->ad_state |= ATTACHED;
3731 		hadchanges = 1;
3732 	}
3733 	if (hadchanges && (bp->b_flags & B_DELWRI) == 0)
3734 		stat_direct_blk_ptrs++;
3735 	/*
3736 	 * Reset the file size to its most up-to-date value.
3737 	 */
3738 	if (inodedep->id_savedsize == -1) {
3739 		lk.lkt_held = NOHOLDER;
3740 		panic("handle_written_inodeblock: bad size");
3741 	}
3742 	if (dp->di_size != inodedep->id_savedsize) {
3743 		dp->di_size = inodedep->id_savedsize;
3744 		hadchanges = 1;
3745 	}
3746 	inodedep->id_savedsize = -1;
3747 	/*
3748 	 * If there were any rollbacks in the inode block, then it must be
3749 	 * marked dirty so that its will eventually get written back in
3750 	 * its correct form.
3751 	 */
3752 	if (hadchanges)
3753 		bdirty(bp);
3754 	/*
3755 	 * Process any allocdirects that completed during the update.
3756 	 */
3757 	if ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL)
3758 		handle_allocdirect_partdone(adp);
3759 	/*
3760 	 * Process deallocations that were held pending until the
3761 	 * inode had been written to disk. Freeing of the inode
3762 	 * is delayed until after all blocks have been freed to
3763 	 * avoid creation of new <vfsid, inum, lbn> triples
3764 	 * before the old ones have been deleted.
3765 	 */
3766 	filefree = NULL;
3767 	while ((wk = LIST_FIRST(&inodedep->id_bufwait)) != NULL) {
3768 		WORKLIST_REMOVE(wk);
3769 		switch (wk->wk_type) {
3770 
3771 		case D_FREEFILE:
3772 			/*
3773 			 * We defer adding filefree to the worklist until
3774 			 * all other additions have been made to ensure
3775 			 * that it will be done after all the old blocks
3776 			 * have been freed.
3777 			 */
3778 			if (filefree != NULL) {
3779 				lk.lkt_held = NOHOLDER;
3780 				panic("handle_written_inodeblock: filefree");
3781 			}
3782 			filefree = wk;
3783 			continue;
3784 
3785 		case D_MKDIR:
3786 			handle_written_mkdir(WK_MKDIR(wk), MKDIR_PARENT);
3787 			continue;
3788 
3789 		case D_DIRADD:
3790 			diradd_inode_written(WK_DIRADD(wk), inodedep);
3791 			continue;
3792 
3793 		case D_FREEBLKS:
3794 			wk->wk_state |= COMPLETE;
3795 			if ((wk->wk_state  & ALLCOMPLETE) != ALLCOMPLETE)
3796 				continue;
3797 			/* -- fall through -- */
3798 		case D_FREEFRAG:
3799 		case D_DIRREM:
3800 			add_to_worklist(wk);
3801 			continue;
3802 
3803 		default:
3804 			lk.lkt_held = NOHOLDER;
3805 			panic("handle_written_inodeblock: Unknown type %s",
3806 			    TYPENAME(wk->wk_type));
3807 			/* NOTREACHED */
3808 		}
3809 	}
3810 	if (filefree != NULL) {
3811 		if (free_inodedep(inodedep) == 0) {
3812 			lk.lkt_held = NOHOLDER;
3813 			panic("handle_written_inodeblock: live inodedep");
3814 		}
3815 		add_to_worklist(filefree);
3816 		return (0);
3817 	}
3818 
3819 	/*
3820 	 * If no outstanding dependencies, free it.
3821 	 */
3822 	if (free_inodedep(inodedep) || TAILQ_FIRST(&inodedep->id_inoupdt) == 0)
3823 		return (0);
3824 	return (hadchanges);
3825 }
3826 
3827 /*
3828  * Process a diradd entry after its dependent inode has been written.
3829  * This routine must be called with splbio interrupts blocked.
3830  */
3831 static void
3832 diradd_inode_written(struct diradd *dap, struct inodedep *inodedep)
3833 {
3834 	struct pagedep *pagedep;
3835 
3836 	dap->da_state |= COMPLETE;
3837 	if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
3838 		if (dap->da_state & DIRCHG)
3839 			pagedep = dap->da_previous->dm_pagedep;
3840 		else
3841 			pagedep = dap->da_pagedep;
3842 		LIST_REMOVE(dap, da_pdlist);
3843 		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
3844 	}
3845 	WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
3846 }
3847 
3848 /*
3849  * Handle the completion of a mkdir dependency.
3850  */
3851 static void
3852 handle_written_mkdir(struct mkdir *mkdir, int type)
3853 {
3854 	struct diradd *dap;
3855 	struct pagedep *pagedep;
3856 
3857 	if (mkdir->md_state != type) {
3858 		lk.lkt_held = NOHOLDER;
3859 		panic("handle_written_mkdir: bad type");
3860 	}
3861 	dap = mkdir->md_diradd;
3862 	dap->da_state &= ~type;
3863 	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0)
3864 		dap->da_state |= DEPCOMPLETE;
3865 	if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
3866 		if (dap->da_state & DIRCHG)
3867 			pagedep = dap->da_previous->dm_pagedep;
3868 		else
3869 			pagedep = dap->da_pagedep;
3870 		LIST_REMOVE(dap, da_pdlist);
3871 		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
3872 	}
3873 	LIST_REMOVE(mkdir, md_mkdirs);
3874 	WORKITEM_FREE(mkdir, D_MKDIR);
3875 }
3876 
3877 /*
3878  * Called from within softdep_disk_write_complete above.
3879  * A write operation was just completed. Removed inodes can
3880  * now be freed and associated block pointers may be committed.
3881  * Note that this routine is always called from interrupt level
3882  * with further splbio interrupts blocked.
3883  *
3884  * Parameters:
3885  *	bp:	buffer containing the written page
3886  */
3887 static int
3888 handle_written_filepage(struct pagedep *pagedep, struct buf *bp)
3889 {
3890 	struct dirrem *dirrem;
3891 	struct diradd *dap, *nextdap;
3892 	struct direct *ep;
3893 	int i, chgs;
3894 
3895 	if ((pagedep->pd_state & IOSTARTED) == 0) {
3896 		lk.lkt_held = NOHOLDER;
3897 		panic("handle_written_filepage: not started");
3898 	}
3899 	pagedep->pd_state &= ~IOSTARTED;
3900 	/*
3901 	 * Process any directory removals that have been committed.
3902 	 */
3903 	while ((dirrem = LIST_FIRST(&pagedep->pd_dirremhd)) != NULL) {
3904 		LIST_REMOVE(dirrem, dm_next);
3905 		dirrem->dm_dirinum = pagedep->pd_ino;
3906 		add_to_worklist(&dirrem->dm_list);
3907 	}
3908 	/*
3909 	 * Free any directory additions that have been committed.
3910 	 */
3911 	while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
3912 		free_diradd(dap);
3913 	/*
3914 	 * Uncommitted directory entries must be restored.
3915 	 */
3916 	for (chgs = 0, i = 0; i < DAHASHSZ; i++) {
3917 		for (dap = LIST_FIRST(&pagedep->pd_diraddhd[i]); dap;
3918 		     dap = nextdap) {
3919 			nextdap = LIST_NEXT(dap, da_pdlist);
3920 			if (dap->da_state & ATTACHED) {
3921 				lk.lkt_held = NOHOLDER;
3922 				panic("handle_written_filepage: attached");
3923 			}
3924 			ep = (struct direct *)
3925 			    ((char *)bp->b_data + dap->da_offset);
3926 			ep->d_ino = dap->da_newinum;
3927 			dap->da_state &= ~UNDONE;
3928 			dap->da_state |= ATTACHED;
3929 			chgs = 1;
3930 			/*
3931 			 * If the inode referenced by the directory has
3932 			 * been written out, then the dependency can be
3933 			 * moved to the pending list.
3934 			 */
3935 			if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
3936 				LIST_REMOVE(dap, da_pdlist);
3937 				LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap,
3938 				    da_pdlist);
3939 			}
3940 		}
3941 	}
3942 	/*
3943 	 * If there were any rollbacks in the directory, then it must be
3944 	 * marked dirty so that its will eventually get written back in
3945 	 * its correct form.
3946 	 */
3947 	if (chgs) {
3948 		if ((bp->b_flags & B_DELWRI) == 0)
3949 			stat_dir_entry++;
3950 		bdirty(bp);
3951 	}
3952 	/*
3953 	 * If no dependencies remain, the pagedep will be freed.
3954 	 * Otherwise it will remain to update the page before it
3955 	 * is written back to disk.
3956 	 */
3957 	if (LIST_FIRST(&pagedep->pd_pendinghd) == 0) {
3958 		for (i = 0; i < DAHASHSZ; i++)
3959 			if (LIST_FIRST(&pagedep->pd_diraddhd[i]) != NULL)
3960 				break;
3961 		if (i == DAHASHSZ) {
3962 			LIST_REMOVE(pagedep, pd_hash);
3963 			WORKITEM_FREE(pagedep, D_PAGEDEP);
3964 			return (0);
3965 		}
3966 	}
3967 	return (1);
3968 }
3969 
3970 /*
3971  * Writing back in-core inode structures.
3972  *
3973  * The filesystem only accesses an inode's contents when it occupies an
3974  * "in-core" inode structure.  These "in-core" structures are separate from
3975  * the page frames used to cache inode blocks.  Only the latter are
3976  * transferred to/from the disk.  So, when the updated contents of the
3977  * "in-core" inode structure are copied to the corresponding in-memory inode
3978  * block, the dependencies are also transferred.  The following procedure is
3979  * called when copying a dirty "in-core" inode to a cached inode block.
3980  */
3981 
3982 /*
3983  * Called when an inode is loaded from disk. If the effective link count
3984  * differed from the actual link count when it was last flushed, then we
3985  * need to ensure that the correct effective link count is put back.
3986  *
3987  * Parameters:
3988  *	ip:	the "in_core" copy of the inode
3989  */
3990 void
3991 softdep_load_inodeblock(struct inode *ip)
3992 {
3993 	struct inodedep *inodedep;
3994 
3995 	/*
3996 	 * Check for alternate nlink count.
3997 	 */
3998 	ip->i_effnlink = ip->i_nlink;
3999 	ACQUIRE_LOCK(&lk);
4000 	if (inodedep_lookup(ip->i_fs, ip->i_number, 0, &inodedep) == 0) {
4001 		FREE_LOCK(&lk);
4002 		return;
4003 	}
4004 	ip->i_effnlink -= inodedep->id_nlinkdelta;
4005 	FREE_LOCK(&lk);
4006 }
4007 
4008 /*
4009  * This routine is called just before the "in-core" inode
4010  * information is to be copied to the in-memory inode block.
4011  * Recall that an inode block contains several inodes. If
4012  * the force flag is set, then the dependencies will be
4013  * cleared so that the update can always be made. Note that
4014  * the buffer is locked when this routine is called, so we
4015  * will never be in the middle of writing the inode block
4016  * to disk.
4017  *
4018  * Parameters:
4019  *	ip:		the "in_core" copy of the inode
4020  *	bp:		the buffer containing the inode block
4021  *	waitfor:	nonzero => update must be allowed
4022  */
4023 void
4024 softdep_update_inodeblock(struct inode *ip, struct buf *bp,
4025 			  int waitfor)
4026 {
4027 	struct inodedep *inodedep;
4028 	struct worklist *wk;
4029 	int error, gotit;
4030 
4031 	/*
4032 	 * If the effective link count is not equal to the actual link
4033 	 * count, then we must track the difference in an inodedep while
4034 	 * the inode is (potentially) tossed out of the cache. Otherwise,
4035 	 * if there is no existing inodedep, then there are no dependencies
4036 	 * to track.
4037 	 */
4038 	ACQUIRE_LOCK(&lk);
4039 	if (inodedep_lookup(ip->i_fs, ip->i_number, 0, &inodedep) == 0) {
4040 		FREE_LOCK(&lk);
4041 		if (ip->i_effnlink != ip->i_nlink)
4042 			panic("softdep_update_inodeblock: bad link count");
4043 		return;
4044 	}
4045 	if (inodedep->id_nlinkdelta != ip->i_nlink - ip->i_effnlink) {
4046 		FREE_LOCK(&lk);
4047 		panic("softdep_update_inodeblock: bad delta");
4048 	}
4049 	/*
4050 	 * Changes have been initiated. Anything depending on these
4051 	 * changes cannot occur until this inode has been written.
4052 	 */
4053 	inodedep->id_state &= ~COMPLETE;
4054 	if ((inodedep->id_state & ONWORKLIST) == 0)
4055 		WORKLIST_INSERT_BP(bp, &inodedep->id_list);
4056 	/*
4057 	 * Any new dependencies associated with the incore inode must
4058 	 * now be moved to the list associated with the buffer holding
4059 	 * the in-memory copy of the inode. Once merged process any
4060 	 * allocdirects that are completed by the merger.
4061 	 */
4062 	merge_inode_lists(inodedep);
4063 	if (TAILQ_FIRST(&inodedep->id_inoupdt) != NULL)
4064 		handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_inoupdt));
4065 	/*
4066 	 * Now that the inode has been pushed into the buffer, the
4067 	 * operations dependent on the inode being written to disk
4068 	 * can be moved to the id_bufwait so that they will be
4069 	 * processed when the buffer I/O completes.
4070 	 */
4071 	while ((wk = LIST_FIRST(&inodedep->id_inowait)) != NULL) {
4072 		WORKLIST_REMOVE(wk);
4073 		WORKLIST_INSERT(&inodedep->id_bufwait, wk);
4074 	}
4075 	/*
4076 	 * Newly allocated inodes cannot be written until the bitmap
4077 	 * that allocates them have been written (indicated by
4078 	 * DEPCOMPLETE being set in id_state). If we are doing a
4079 	 * forced sync (e.g., an fsync on a file), we force the bitmap
4080 	 * to be written so that the update can be done.
4081 	 */
4082 	if ((inodedep->id_state & DEPCOMPLETE) != 0 || waitfor == 0) {
4083 		FREE_LOCK(&lk);
4084 		return;
4085 	}
4086 	gotit = getdirtybuf(&inodedep->id_buf, MNT_WAIT);
4087 	FREE_LOCK(&lk);
4088 	if (gotit &&
4089 	    (error = bwrite(inodedep->id_buf)) != 0)
4090 		softdep_error("softdep_update_inodeblock: bwrite", error);
4091 }
4092 
4093 /*
4094  * Merge the new inode dependency list (id_newinoupdt) into the old
4095  * inode dependency list (id_inoupdt). This routine must be called
4096  * with splbio interrupts blocked.
4097  */
4098 static void
4099 merge_inode_lists(struct inodedep *inodedep)
4100 {
4101 	struct allocdirect *listadp, *newadp;
4102 
4103 	newadp = TAILQ_FIRST(&inodedep->id_newinoupdt);
4104 	for (listadp = TAILQ_FIRST(&inodedep->id_inoupdt); listadp && newadp;) {
4105 		if (listadp->ad_lbn < newadp->ad_lbn) {
4106 			listadp = TAILQ_NEXT(listadp, ad_next);
4107 			continue;
4108 		}
4109 		TAILQ_REMOVE(&inodedep->id_newinoupdt, newadp, ad_next);
4110 		TAILQ_INSERT_BEFORE(listadp, newadp, ad_next);
4111 		if (listadp->ad_lbn == newadp->ad_lbn) {
4112 			allocdirect_merge(&inodedep->id_inoupdt, newadp,
4113 			    listadp);
4114 			listadp = newadp;
4115 		}
4116 		newadp = TAILQ_FIRST(&inodedep->id_newinoupdt);
4117 	}
4118 	while ((newadp = TAILQ_FIRST(&inodedep->id_newinoupdt)) != NULL) {
4119 		TAILQ_REMOVE(&inodedep->id_newinoupdt, newadp, ad_next);
4120 		TAILQ_INSERT_TAIL(&inodedep->id_inoupdt, newadp, ad_next);
4121 	}
4122 }
4123 
4124 /*
4125  * If we are doing an fsync, then we must ensure that any directory
4126  * entries for the inode have been written after the inode gets to disk.
4127  *
4128  * bioops callback - hold io_token
4129  *
4130  * Parameters:
4131  *	vp:	the "in_core" copy of the inode
4132  */
4133 static int
4134 softdep_fsync(struct vnode *vp)
4135 {
4136 	struct inodedep *inodedep;
4137 	struct pagedep *pagedep;
4138 	struct worklist *wk;
4139 	struct diradd *dap;
4140 	struct mount *mnt;
4141 	struct vnode *pvp;
4142 	struct inode *ip;
4143 	struct buf *bp;
4144 	struct fs *fs;
4145 	int error, flushparent;
4146 	ino_t parentino;
4147 	ufs_lbn_t lbn;
4148 
4149 	/*
4150 	 * Move check from original kernel code, possibly not needed any
4151 	 * more with the per-mount bioops.
4152 	 */
4153 	if ((vp->v_mount->mnt_flag & MNT_SOFTDEP) == 0)
4154 		return (0);
4155 
4156 	get_mplock();
4157 	ip = VTOI(vp);
4158 	fs = ip->i_fs;
4159 	ACQUIRE_LOCK(&lk);
4160 	if (inodedep_lookup(fs, ip->i_number, 0, &inodedep) == 0) {
4161 		FREE_LOCK(&lk);
4162 		rel_mplock();
4163 		return (0);
4164 	}
4165 	if (LIST_FIRST(&inodedep->id_inowait) != NULL ||
4166 	    LIST_FIRST(&inodedep->id_bufwait) != NULL ||
4167 	    TAILQ_FIRST(&inodedep->id_inoupdt) != NULL ||
4168 	    TAILQ_FIRST(&inodedep->id_newinoupdt) != NULL) {
4169 		FREE_LOCK(&lk);
4170 		panic("softdep_fsync: pending ops");
4171 	}
4172 	for (error = 0, flushparent = 0; ; ) {
4173 		if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) == NULL)
4174 			break;
4175 		if (wk->wk_type != D_DIRADD) {
4176 			FREE_LOCK(&lk);
4177 			panic("softdep_fsync: Unexpected type %s",
4178 			    TYPENAME(wk->wk_type));
4179 		}
4180 		dap = WK_DIRADD(wk);
4181 		/*
4182 		 * Flush our parent if this directory entry
4183 		 * has a MKDIR_PARENT dependency.
4184 		 */
4185 		if (dap->da_state & DIRCHG)
4186 			pagedep = dap->da_previous->dm_pagedep;
4187 		else
4188 			pagedep = dap->da_pagedep;
4189 		mnt = pagedep->pd_mnt;
4190 		parentino = pagedep->pd_ino;
4191 		lbn = pagedep->pd_lbn;
4192 		if ((dap->da_state & (MKDIR_BODY | COMPLETE)) != COMPLETE) {
4193 			FREE_LOCK(&lk);
4194 			panic("softdep_fsync: dirty");
4195 		}
4196 		flushparent = dap->da_state & MKDIR_PARENT;
4197 		/*
4198 		 * If we are being fsync'ed as part of vgone'ing this vnode,
4199 		 * then we will not be able to release and recover the
4200 		 * vnode below, so we just have to give up on writing its
4201 		 * directory entry out. It will eventually be written, just
4202 		 * not now, but then the user was not asking to have it
4203 		 * written, so we are not breaking any promises.
4204 		 */
4205 		if (vp->v_flag & VRECLAIMED)
4206 			break;
4207 		/*
4208 		 * We prevent deadlock by always fetching inodes from the
4209 		 * root, moving down the directory tree. Thus, when fetching
4210 		 * our parent directory, we must unlock ourselves before
4211 		 * requesting the lock on our parent. See the comment in
4212 		 * ufs_lookup for details on possible races.
4213 		 */
4214 		FREE_LOCK(&lk);
4215 		vn_unlock(vp);
4216 		error = VFS_VGET(mnt, NULL, parentino, &pvp);
4217 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
4218 		if (error != 0) {
4219 			rel_mplock();
4220 			return (error);
4221 		}
4222 		if (flushparent) {
4223 			if ((error = ffs_update(pvp, 1)) != 0) {
4224 				vput(pvp);
4225 				rel_mplock();
4226 				return (error);
4227 			}
4228 		}
4229 		/*
4230 		 * Flush directory page containing the inode's name.
4231 		 */
4232 		error = bread(pvp, lblktodoff(fs, lbn), blksize(fs, VTOI(pvp), lbn), &bp);
4233 		if (error == 0)
4234 			error = bwrite(bp);
4235 		vput(pvp);
4236 		if (error != 0) {
4237 			rel_mplock();
4238 			return (error);
4239 		}
4240 		ACQUIRE_LOCK(&lk);
4241 		if (inodedep_lookup(fs, ip->i_number, 0, &inodedep) == 0)
4242 			break;
4243 	}
4244 	FREE_LOCK(&lk);
4245 	rel_mplock();
4246 	return (0);
4247 }
4248 
4249 /*
4250  * Flush all the dirty bitmaps associated with the block device
4251  * before flushing the rest of the dirty blocks so as to reduce
4252  * the number of dependencies that will have to be rolled back.
4253  */
4254 static int softdep_fsync_mountdev_bp(struct buf *bp, void *data);
4255 
4256 void
4257 softdep_fsync_mountdev(struct vnode *vp)
4258 {
4259 	if (!vn_isdisk(vp, NULL))
4260 		panic("softdep_fsync_mountdev: vnode not a disk");
4261 	ACQUIRE_LOCK(&lk);
4262 	lwkt_gettoken(&vp->v_token);
4263 	RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
4264 		softdep_fsync_mountdev_bp, vp);
4265 	lwkt_reltoken(&vp->v_token);
4266 	drain_output(vp, 1);
4267 	FREE_LOCK(&lk);
4268 }
4269 
4270 static int
4271 softdep_fsync_mountdev_bp(struct buf *bp, void *data)
4272 {
4273 	struct worklist *wk;
4274 	struct vnode *vp = data;
4275 
4276 	/*
4277 	 * If it is already scheduled, skip to the next buffer.
4278 	 */
4279 	if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT))
4280 		return(0);
4281 	if (bp->b_vp != vp || (bp->b_flags & B_DELWRI) == 0) {
4282 		BUF_UNLOCK(bp);
4283 		kprintf("softdep_fsync_mountdev_bp: warning, buffer %p ripped out from under vnode %p\n", bp, vp);
4284 		return(0);
4285 	}
4286 	/*
4287 	 * We are only interested in bitmaps with outstanding
4288 	 * dependencies.
4289 	 */
4290 	if ((wk = LIST_FIRST(&bp->b_dep)) == NULL ||
4291 	    wk->wk_type != D_BMSAFEMAP) {
4292 		BUF_UNLOCK(bp);
4293 		return(0);
4294 	}
4295 	bremfree(bp);
4296 	FREE_LOCK(&lk);
4297 	(void) bawrite(bp);
4298 	ACQUIRE_LOCK(&lk);
4299 	return(0);
4300 }
4301 
4302 /*
4303  * This routine is called when we are trying to synchronously flush a
4304  * file. This routine must eliminate any filesystem metadata dependencies
4305  * so that the syncing routine can succeed by pushing the dirty blocks
4306  * associated with the file. If any I/O errors occur, they are returned.
4307  */
4308 struct softdep_sync_metadata_info {
4309 	struct vnode *vp;
4310 	int waitfor;
4311 };
4312 
4313 static int softdep_sync_metadata_bp(struct buf *bp, void *data);
4314 
4315 int
4316 softdep_sync_metadata(struct vnode *vp, struct thread *td)
4317 {
4318 	struct softdep_sync_metadata_info info;
4319 	int error, waitfor;
4320 
4321 	/*
4322 	 * Check whether this vnode is involved in a filesystem
4323 	 * that is doing soft dependency processing.
4324 	 */
4325 	if (!vn_isdisk(vp, NULL)) {
4326 		if (!DOINGSOFTDEP(vp))
4327 			return (0);
4328 	} else
4329 		if (vp->v_rdev->si_mountpoint == NULL ||
4330 		    (vp->v_rdev->si_mountpoint->mnt_flag & MNT_SOFTDEP) == 0)
4331 			return (0);
4332 	/*
4333 	 * Ensure that any direct block dependencies have been cleared.
4334 	 */
4335 	ACQUIRE_LOCK(&lk);
4336 	if ((error = flush_inodedep_deps(VTOI(vp)->i_fs, VTOI(vp)->i_number))) {
4337 		FREE_LOCK(&lk);
4338 		return (error);
4339 	}
4340 	/*
4341 	 * For most files, the only metadata dependencies are the
4342 	 * cylinder group maps that allocate their inode or blocks.
4343 	 * The block allocation dependencies can be found by traversing
4344 	 * the dependency lists for any buffers that remain on their
4345 	 * dirty buffer list. The inode allocation dependency will
4346 	 * be resolved when the inode is updated with MNT_WAIT.
4347 	 * This work is done in two passes. The first pass grabs most
4348 	 * of the buffers and begins asynchronously writing them. The
4349 	 * only way to wait for these asynchronous writes is to sleep
4350 	 * on the filesystem vnode which may stay busy for a long time
4351 	 * if the filesystem is active. So, instead, we make a second
4352 	 * pass over the dependencies blocking on each write. In the
4353 	 * usual case we will be blocking against a write that we
4354 	 * initiated, so when it is done the dependency will have been
4355 	 * resolved. Thus the second pass is expected to end quickly.
4356 	 */
4357 	waitfor = MNT_NOWAIT;
4358 top:
4359 	/*
4360 	 * We must wait for any I/O in progress to finish so that
4361 	 * all potential buffers on the dirty list will be visible.
4362 	 */
4363 	drain_output(vp, 1);
4364 
4365 	info.vp = vp;
4366 	info.waitfor = waitfor;
4367 	lwkt_gettoken(&vp->v_token);
4368 	error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
4369 			softdep_sync_metadata_bp, &info);
4370 	lwkt_reltoken(&vp->v_token);
4371 	if (error < 0) {
4372 		FREE_LOCK(&lk);
4373 		return(-error);	/* error code */
4374 	}
4375 
4376 	/*
4377 	 * The brief unlock is to allow any pent up dependency
4378 	 * processing to be done.  Then proceed with the second pass.
4379 	 */
4380 	if (waitfor & MNT_NOWAIT) {
4381 		waitfor = MNT_WAIT;
4382 		FREE_LOCK(&lk);
4383 		ACQUIRE_LOCK(&lk);
4384 		goto top;
4385 	}
4386 
4387 	/*
4388 	 * If we have managed to get rid of all the dirty buffers,
4389 	 * then we are done. For certain directories and block
4390 	 * devices, we may need to do further work.
4391 	 *
4392 	 * We must wait for any I/O in progress to finish so that
4393 	 * all potential buffers on the dirty list will be visible.
4394 	 */
4395 	drain_output(vp, 1);
4396 	if (RB_EMPTY(&vp->v_rbdirty_tree)) {
4397 		FREE_LOCK(&lk);
4398 		return (0);
4399 	}
4400 
4401 	FREE_LOCK(&lk);
4402 	/*
4403 	 * If we are trying to sync a block device, some of its buffers may
4404 	 * contain metadata that cannot be written until the contents of some
4405 	 * partially written files have been written to disk. The only easy
4406 	 * way to accomplish this is to sync the entire filesystem (luckily
4407 	 * this happens rarely).
4408 	 */
4409 	if (vn_isdisk(vp, NULL) &&
4410 	    vp->v_rdev &&
4411 	    vp->v_rdev->si_mountpoint && !vn_islocked(vp) &&
4412 	    (error = VFS_SYNC(vp->v_rdev->si_mountpoint, MNT_WAIT)) != 0)
4413 		return (error);
4414 	return (0);
4415 }
4416 
4417 static int
4418 softdep_sync_metadata_bp(struct buf *bp, void *data)
4419 {
4420 	struct softdep_sync_metadata_info *info = data;
4421 	struct pagedep *pagedep;
4422 	struct allocdirect *adp;
4423 	struct allocindir *aip;
4424 	struct worklist *wk;
4425 	struct buf *nbp;
4426 	int error;
4427 	int i;
4428 
4429 	if (getdirtybuf(&bp, MNT_WAIT) == 0) {
4430 		kprintf("softdep_sync_metadata_bp(1): caught buf %p going away\n", bp);
4431 		return (1);
4432 	}
4433 	if (bp->b_vp != info->vp || (bp->b_flags & B_DELWRI) == 0) {
4434 		kprintf("softdep_sync_metadata_bp(2): caught buf %p going away vp %p\n", bp, info->vp);
4435 		BUF_UNLOCK(bp);
4436 		return(1);
4437 	}
4438 
4439 	/*
4440 	 * As we hold the buffer locked, none of its dependencies
4441 	 * will disappear.
4442 	 */
4443 	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
4444 		switch (wk->wk_type) {
4445 
4446 		case D_ALLOCDIRECT:
4447 			adp = WK_ALLOCDIRECT(wk);
4448 			if (adp->ad_state & DEPCOMPLETE)
4449 				break;
4450 			nbp = adp->ad_buf;
4451 			if (getdirtybuf(&nbp, info->waitfor) == 0)
4452 				break;
4453 			FREE_LOCK(&lk);
4454 			if (info->waitfor & MNT_NOWAIT) {
4455 				bawrite(nbp);
4456 			} else if ((error = bwrite(nbp)) != 0) {
4457 				bawrite(bp);
4458 				ACQUIRE_LOCK(&lk);
4459 				return (-error);
4460 			}
4461 			ACQUIRE_LOCK(&lk);
4462 			break;
4463 
4464 		case D_ALLOCINDIR:
4465 			aip = WK_ALLOCINDIR(wk);
4466 			if (aip->ai_state & DEPCOMPLETE)
4467 				break;
4468 			nbp = aip->ai_buf;
4469 			if (getdirtybuf(&nbp, info->waitfor) == 0)
4470 				break;
4471 			FREE_LOCK(&lk);
4472 			if (info->waitfor & MNT_NOWAIT) {
4473 				bawrite(nbp);
4474 			} else if ((error = bwrite(nbp)) != 0) {
4475 				bawrite(bp);
4476 				ACQUIRE_LOCK(&lk);
4477 				return (-error);
4478 			}
4479 			ACQUIRE_LOCK(&lk);
4480 			break;
4481 
4482 		case D_INDIRDEP:
4483 		restart:
4484 
4485 			LIST_FOREACH(aip, &WK_INDIRDEP(wk)->ir_deplisthd, ai_next) {
4486 				if (aip->ai_state & DEPCOMPLETE)
4487 					continue;
4488 				nbp = aip->ai_buf;
4489 				if (getdirtybuf(&nbp, MNT_WAIT) == 0)
4490 					goto restart;
4491 				FREE_LOCK(&lk);
4492 				if ((error = bwrite(nbp)) != 0) {
4493 					bawrite(bp);
4494 					ACQUIRE_LOCK(&lk);
4495 					return (-error);
4496 				}
4497 				ACQUIRE_LOCK(&lk);
4498 				goto restart;
4499 			}
4500 			break;
4501 
4502 		case D_INODEDEP:
4503 			if ((error = flush_inodedep_deps(WK_INODEDEP(wk)->id_fs,
4504 			    WK_INODEDEP(wk)->id_ino)) != 0) {
4505 				FREE_LOCK(&lk);
4506 				bawrite(bp);
4507 				ACQUIRE_LOCK(&lk);
4508 				return (-error);
4509 			}
4510 			break;
4511 
4512 		case D_PAGEDEP:
4513 			/*
4514 			 * We are trying to sync a directory that may
4515 			 * have dependencies on both its own metadata
4516 			 * and/or dependencies on the inodes of any
4517 			 * recently allocated files. We walk its diradd
4518 			 * lists pushing out the associated inode.
4519 			 */
4520 			pagedep = WK_PAGEDEP(wk);
4521 			for (i = 0; i < DAHASHSZ; i++) {
4522 				if (LIST_FIRST(&pagedep->pd_diraddhd[i]) == 0)
4523 					continue;
4524 				if ((error =
4525 				    flush_pagedep_deps(info->vp,
4526 						pagedep->pd_mnt,
4527 						&pagedep->pd_diraddhd[i]))) {
4528 					FREE_LOCK(&lk);
4529 					bawrite(bp);
4530 					ACQUIRE_LOCK(&lk);
4531 					return (-error);
4532 				}
4533 			}
4534 			break;
4535 
4536 		case D_MKDIR:
4537 			/*
4538 			 * This case should never happen if the vnode has
4539 			 * been properly sync'ed. However, if this function
4540 			 * is used at a place where the vnode has not yet
4541 			 * been sync'ed, this dependency can show up. So,
4542 			 * rather than panic, just flush it.
4543 			 */
4544 			nbp = WK_MKDIR(wk)->md_buf;
4545 			if (getdirtybuf(&nbp, info->waitfor) == 0)
4546 				break;
4547 			FREE_LOCK(&lk);
4548 			if (info->waitfor & MNT_NOWAIT) {
4549 				bawrite(nbp);
4550 			} else if ((error = bwrite(nbp)) != 0) {
4551 				bawrite(bp);
4552 				ACQUIRE_LOCK(&lk);
4553 				return (-error);
4554 			}
4555 			ACQUIRE_LOCK(&lk);
4556 			break;
4557 
4558 		case D_BMSAFEMAP:
4559 			/*
4560 			 * This case should never happen if the vnode has
4561 			 * been properly sync'ed. However, if this function
4562 			 * is used at a place where the vnode has not yet
4563 			 * been sync'ed, this dependency can show up. So,
4564 			 * rather than panic, just flush it.
4565 			 *
4566 			 * nbp can wind up == bp if a device node for the
4567 			 * same filesystem is being fsynced at the same time,
4568 			 * leading to a panic if we don't catch the case.
4569 			 */
4570 			nbp = WK_BMSAFEMAP(wk)->sm_buf;
4571 			if (nbp == bp)
4572 				break;
4573 			if (getdirtybuf(&nbp, info->waitfor) == 0)
4574 				break;
4575 			FREE_LOCK(&lk);
4576 			if (info->waitfor & MNT_NOWAIT) {
4577 				bawrite(nbp);
4578 			} else if ((error = bwrite(nbp)) != 0) {
4579 				bawrite(bp);
4580 				ACQUIRE_LOCK(&lk);
4581 				return (-error);
4582 			}
4583 			ACQUIRE_LOCK(&lk);
4584 			break;
4585 
4586 		default:
4587 			FREE_LOCK(&lk);
4588 			panic("softdep_sync_metadata: Unknown type %s",
4589 			    TYPENAME(wk->wk_type));
4590 			/* NOTREACHED */
4591 		}
4592 	}
4593 	FREE_LOCK(&lk);
4594 	bawrite(bp);
4595 	ACQUIRE_LOCK(&lk);
4596 	return(0);
4597 }
4598 
4599 /*
4600  * Flush the dependencies associated with an inodedep.
4601  * Called with splbio blocked.
4602  */
4603 static int
4604 flush_inodedep_deps(struct fs *fs, ino_t ino)
4605 {
4606 	struct inodedep *inodedep;
4607 	struct allocdirect *adp;
4608 	int error, waitfor;
4609 	struct buf *bp;
4610 
4611 	/*
4612 	 * This work is done in two passes. The first pass grabs most
4613 	 * of the buffers and begins asynchronously writing them. The
4614 	 * only way to wait for these asynchronous writes is to sleep
4615 	 * on the filesystem vnode which may stay busy for a long time
4616 	 * if the filesystem is active. So, instead, we make a second
4617 	 * pass over the dependencies blocking on each write. In the
4618 	 * usual case we will be blocking against a write that we
4619 	 * initiated, so when it is done the dependency will have been
4620 	 * resolved. Thus the second pass is expected to end quickly.
4621 	 * We give a brief window at the top of the loop to allow
4622 	 * any pending I/O to complete.
4623 	 */
4624 	for (waitfor = MNT_NOWAIT; ; ) {
4625 		FREE_LOCK(&lk);
4626 		ACQUIRE_LOCK(&lk);
4627 		if (inodedep_lookup(fs, ino, 0, &inodedep) == 0)
4628 			return (0);
4629 		TAILQ_FOREACH(adp, &inodedep->id_inoupdt, ad_next) {
4630 			if (adp->ad_state & DEPCOMPLETE)
4631 				continue;
4632 			bp = adp->ad_buf;
4633 			if (getdirtybuf(&bp, waitfor) == 0) {
4634 				if (waitfor & MNT_NOWAIT)
4635 					continue;
4636 				break;
4637 			}
4638 			FREE_LOCK(&lk);
4639 			if (waitfor & MNT_NOWAIT) {
4640 				bawrite(bp);
4641 			} else if ((error = bwrite(bp)) != 0) {
4642 				ACQUIRE_LOCK(&lk);
4643 				return (error);
4644 			}
4645 			ACQUIRE_LOCK(&lk);
4646 			break;
4647 		}
4648 		if (adp != NULL)
4649 			continue;
4650 		TAILQ_FOREACH(adp, &inodedep->id_newinoupdt, ad_next) {
4651 			if (adp->ad_state & DEPCOMPLETE)
4652 				continue;
4653 			bp = adp->ad_buf;
4654 			if (getdirtybuf(&bp, waitfor) == 0) {
4655 				if (waitfor & MNT_NOWAIT)
4656 					continue;
4657 				break;
4658 			}
4659 			FREE_LOCK(&lk);
4660 			if (waitfor & MNT_NOWAIT) {
4661 				bawrite(bp);
4662 			} else if ((error = bwrite(bp)) != 0) {
4663 				ACQUIRE_LOCK(&lk);
4664 				return (error);
4665 			}
4666 			ACQUIRE_LOCK(&lk);
4667 			break;
4668 		}
4669 		if (adp != NULL)
4670 			continue;
4671 		/*
4672 		 * If pass2, we are done, otherwise do pass 2.
4673 		 */
4674 		if (waitfor == MNT_WAIT)
4675 			break;
4676 		waitfor = MNT_WAIT;
4677 	}
4678 	/*
4679 	 * Try freeing inodedep in case all dependencies have been removed.
4680 	 */
4681 	if (inodedep_lookup(fs, ino, 0, &inodedep) != 0)
4682 		(void) free_inodedep(inodedep);
4683 	return (0);
4684 }
4685 
4686 /*
4687  * Eliminate a pagedep dependency by flushing out all its diradd dependencies.
4688  * Called with splbio blocked.
4689  */
4690 static int
4691 flush_pagedep_deps(struct vnode *pvp, struct mount *mp,
4692 		   struct diraddhd *diraddhdp)
4693 {
4694 	struct inodedep *inodedep;
4695 	struct ufsmount *ump;
4696 	struct diradd *dap;
4697 	struct vnode *vp;
4698 	int gotit, error = 0;
4699 	struct buf *bp;
4700 	ino_t inum;
4701 
4702 	ump = VFSTOUFS(mp);
4703 	while ((dap = LIST_FIRST(diraddhdp)) != NULL) {
4704 		/*
4705 		 * Flush ourselves if this directory entry
4706 		 * has a MKDIR_PARENT dependency.
4707 		 */
4708 		if (dap->da_state & MKDIR_PARENT) {
4709 			FREE_LOCK(&lk);
4710 			if ((error = ffs_update(pvp, 1)) != 0)
4711 				break;
4712 			ACQUIRE_LOCK(&lk);
4713 			/*
4714 			 * If that cleared dependencies, go on to next.
4715 			 */
4716 			if (dap != LIST_FIRST(diraddhdp))
4717 				continue;
4718 			if (dap->da_state & MKDIR_PARENT) {
4719 				FREE_LOCK(&lk);
4720 				panic("flush_pagedep_deps: MKDIR_PARENT");
4721 			}
4722 		}
4723 		/*
4724 		 * A newly allocated directory must have its "." and
4725 		 * ".." entries written out before its name can be
4726 		 * committed in its parent. We do not want or need
4727 		 * the full semantics of a synchronous VOP_FSYNC as
4728 		 * that may end up here again, once for each directory
4729 		 * level in the filesystem. Instead, we push the blocks
4730 		 * and wait for them to clear. We have to fsync twice
4731 		 * because the first call may choose to defer blocks
4732 		 * that still have dependencies, but deferral will
4733 		 * happen at most once.
4734 		 */
4735 		inum = dap->da_newinum;
4736 		if (dap->da_state & MKDIR_BODY) {
4737 			FREE_LOCK(&lk);
4738 			if ((error = VFS_VGET(mp, NULL, inum, &vp)) != 0)
4739 				break;
4740 			if ((error=VOP_FSYNC(vp, MNT_NOWAIT, 0)) ||
4741 			    (error=VOP_FSYNC(vp, MNT_NOWAIT, 0))) {
4742 				vput(vp);
4743 				break;
4744 			}
4745 			drain_output(vp, 0);
4746 			vput(vp);
4747 			ACQUIRE_LOCK(&lk);
4748 			/*
4749 			 * If that cleared dependencies, go on to next.
4750 			 */
4751 			if (dap != LIST_FIRST(diraddhdp))
4752 				continue;
4753 			if (dap->da_state & MKDIR_BODY) {
4754 				FREE_LOCK(&lk);
4755 				panic("flush_pagedep_deps: MKDIR_BODY");
4756 			}
4757 		}
4758 		/*
4759 		 * Flush the inode on which the directory entry depends.
4760 		 * Having accounted for MKDIR_PARENT and MKDIR_BODY above,
4761 		 * the only remaining dependency is that the updated inode
4762 		 * count must get pushed to disk. The inode has already
4763 		 * been pushed into its inode buffer (via VOP_UPDATE) at
4764 		 * the time of the reference count change. So we need only
4765 		 * locate that buffer, ensure that there will be no rollback
4766 		 * caused by a bitmap dependency, then write the inode buffer.
4767 		 */
4768 		if (inodedep_lookup(ump->um_fs, inum, 0, &inodedep) == 0) {
4769 			FREE_LOCK(&lk);
4770 			panic("flush_pagedep_deps: lost inode");
4771 		}
4772 		/*
4773 		 * If the inode still has bitmap dependencies,
4774 		 * push them to disk.
4775 		 */
4776 		if ((inodedep->id_state & DEPCOMPLETE) == 0) {
4777 			gotit = getdirtybuf(&inodedep->id_buf, MNT_WAIT);
4778 			FREE_LOCK(&lk);
4779 			if (gotit && (error = bwrite(inodedep->id_buf)) != 0)
4780 				break;
4781 			ACQUIRE_LOCK(&lk);
4782 			if (dap != LIST_FIRST(diraddhdp))
4783 				continue;
4784 		}
4785 		/*
4786 		 * If the inode is still sitting in a buffer waiting
4787 		 * to be written, push it to disk.
4788 		 */
4789 		FREE_LOCK(&lk);
4790 		if ((error = bread(ump->um_devvp,
4791 			fsbtodoff(ump->um_fs, ino_to_fsba(ump->um_fs, inum)),
4792 		    (int)ump->um_fs->fs_bsize, &bp)) != 0)
4793 			break;
4794 		if ((error = bwrite(bp)) != 0)
4795 			break;
4796 		ACQUIRE_LOCK(&lk);
4797 		/*
4798 		 * If we have failed to get rid of all the dependencies
4799 		 * then something is seriously wrong.
4800 		 */
4801 		if (dap == LIST_FIRST(diraddhdp)) {
4802 			FREE_LOCK(&lk);
4803 			panic("flush_pagedep_deps: flush failed");
4804 		}
4805 	}
4806 	if (error)
4807 		ACQUIRE_LOCK(&lk);
4808 	return (error);
4809 }
4810 
4811 /*
4812  * A large burst of file addition or deletion activity can drive the
4813  * memory load excessively high. First attempt to slow things down
4814  * using the techniques below. If that fails, this routine requests
4815  * the offending operations to fall back to running synchronously
4816  * until the memory load returns to a reasonable level.
4817  */
4818 int
4819 softdep_slowdown(struct vnode *vp)
4820 {
4821 	int max_softdeps_hard;
4822 
4823 	max_softdeps_hard = max_softdeps * 11 / 10;
4824 	if (num_dirrem < max_softdeps_hard / 2 &&
4825 	    num_inodedep < max_softdeps_hard)
4826 		return (0);
4827 	stat_sync_limit_hit += 1;
4828 	return (1);
4829 }
4830 
4831 /*
4832  * If memory utilization has gotten too high, deliberately slow things
4833  * down and speed up the I/O processing.
4834  */
4835 static int
4836 request_cleanup(int resource, int islocked)
4837 {
4838 	struct thread *td = curthread;		/* XXX */
4839 
4840 	/*
4841 	 * We never hold up the filesystem syncer process.
4842 	 */
4843 	if (td == filesys_syncer)
4844 		return (0);
4845 	/*
4846 	 * First check to see if the work list has gotten backlogged.
4847 	 * If it has, co-opt this process to help clean up two entries.
4848 	 * Because this process may hold inodes locked, we cannot
4849 	 * handle any remove requests that might block on a locked
4850 	 * inode as that could lead to deadlock.
4851 	 */
4852 	if (num_on_worklist > max_softdeps / 10) {
4853 		if (islocked)
4854 			FREE_LOCK(&lk);
4855 		process_worklist_item(NULL, LK_NOWAIT);
4856 		process_worklist_item(NULL, LK_NOWAIT);
4857 		stat_worklist_push += 2;
4858 		if (islocked)
4859 			ACQUIRE_LOCK(&lk);
4860 		return(1);
4861 	}
4862 
4863 	/*
4864 	 * If we are resource constrained on inode dependencies, try
4865 	 * flushing some dirty inodes. Otherwise, we are constrained
4866 	 * by file deletions, so try accelerating flushes of directories
4867 	 * with removal dependencies. We would like to do the cleanup
4868 	 * here, but we probably hold an inode locked at this point and
4869 	 * that might deadlock against one that we try to clean. So,
4870 	 * the best that we can do is request the syncer daemon to do
4871 	 * the cleanup for us.
4872 	 */
4873 	switch (resource) {
4874 
4875 	case FLUSH_INODES:
4876 		stat_ino_limit_push += 1;
4877 		req_clear_inodedeps += 1;
4878 		stat_countp = &stat_ino_limit_hit;
4879 		break;
4880 
4881 	case FLUSH_REMOVE:
4882 		stat_blk_limit_push += 1;
4883 		req_clear_remove += 1;
4884 		stat_countp = &stat_blk_limit_hit;
4885 		break;
4886 
4887 	default:
4888 		if (islocked)
4889 			FREE_LOCK(&lk);
4890 		panic("request_cleanup: unknown type");
4891 	}
4892 	/*
4893 	 * Hopefully the syncer daemon will catch up and awaken us.
4894 	 * We wait at most tickdelay before proceeding in any case.
4895 	 */
4896 	if (islocked == 0)
4897 		ACQUIRE_LOCK(&lk);
4898 	proc_waiting += 1;
4899 	if (!callout_active(&handle))
4900 		callout_reset(&handle, tickdelay > 2 ? tickdelay : 2,
4901 			      pause_timer, NULL);
4902 	interlocked_sleep(&lk, SLEEP, (caddr_t)&proc_waiting, 0,
4903 	    "softupdate", 0);
4904 	proc_waiting -= 1;
4905 	if (islocked == 0)
4906 		FREE_LOCK(&lk);
4907 	return (1);
4908 }
4909 
4910 /*
4911  * Awaken processes pausing in request_cleanup and clear proc_waiting
4912  * to indicate that there is no longer a timer running.
4913  */
4914 void
4915 pause_timer(void *arg)
4916 {
4917 	*stat_countp += 1;
4918 	wakeup_one(&proc_waiting);
4919 	if (proc_waiting > 0)
4920 		callout_reset(&handle, tickdelay > 2 ? tickdelay : 2,
4921 			      pause_timer, NULL);
4922 	else
4923 		callout_deactivate(&handle);
4924 }
4925 
4926 /*
4927  * Flush out a directory with at least one removal dependency in an effort to
4928  * reduce the number of dirrem, freefile, and freeblks dependency structures.
4929  */
4930 static void
4931 clear_remove(struct thread *td)
4932 {
4933 	struct pagedep_hashhead *pagedephd;
4934 	struct pagedep *pagedep;
4935 	static int next = 0;
4936 	struct mount *mp;
4937 	struct vnode *vp;
4938 	int error, cnt;
4939 	ino_t ino;
4940 
4941 	ACQUIRE_LOCK(&lk);
4942 	for (cnt = 0; cnt < pagedep_hash; cnt++) {
4943 		pagedephd = &pagedep_hashtbl[next++];
4944 		if (next >= pagedep_hash)
4945 			next = 0;
4946 		LIST_FOREACH(pagedep, pagedephd, pd_hash) {
4947 			if (LIST_FIRST(&pagedep->pd_dirremhd) == NULL)
4948 				continue;
4949 			mp = pagedep->pd_mnt;
4950 			ino = pagedep->pd_ino;
4951 			FREE_LOCK(&lk);
4952 			if ((error = VFS_VGET(mp, NULL, ino, &vp)) != 0) {
4953 				softdep_error("clear_remove: vget", error);
4954 				return;
4955 			}
4956 			if ((error = VOP_FSYNC(vp, MNT_NOWAIT, 0)))
4957 				softdep_error("clear_remove: fsync", error);
4958 			drain_output(vp, 0);
4959 			vput(vp);
4960 			return;
4961 		}
4962 	}
4963 	FREE_LOCK(&lk);
4964 }
4965 
4966 /*
4967  * Clear out a block of dirty inodes in an effort to reduce
4968  * the number of inodedep dependency structures.
4969  */
4970 struct clear_inodedeps_info {
4971 	struct fs *fs;
4972 	struct mount *mp;
4973 };
4974 
4975 static int
4976 clear_inodedeps_mountlist_callback(struct mount *mp, void *data)
4977 {
4978 	struct clear_inodedeps_info *info = data;
4979 
4980 	if ((mp->mnt_flag & MNT_SOFTDEP) && info->fs == VFSTOUFS(mp)->um_fs) {
4981 		info->mp = mp;
4982 		return(-1);
4983 	}
4984 	return(0);
4985 }
4986 
4987 static void
4988 clear_inodedeps(struct thread *td)
4989 {
4990 	struct clear_inodedeps_info info;
4991 	struct inodedep_hashhead *inodedephd;
4992 	struct inodedep *inodedep;
4993 	static int next = 0;
4994 	struct vnode *vp;
4995 	struct fs *fs;
4996 	int error, cnt;
4997 	ino_t firstino, lastino, ino;
4998 
4999 	ACQUIRE_LOCK(&lk);
5000 	/*
5001 	 * Pick a random inode dependency to be cleared.
5002 	 * We will then gather up all the inodes in its block
5003 	 * that have dependencies and flush them out.
5004 	 */
5005 	for (cnt = 0; cnt < inodedep_hash; cnt++) {
5006 		inodedephd = &inodedep_hashtbl[next++];
5007 		if (next >= inodedep_hash)
5008 			next = 0;
5009 		if ((inodedep = LIST_FIRST(inodedephd)) != NULL)
5010 			break;
5011 	}
5012 	if (inodedep == NULL) {
5013 		FREE_LOCK(&lk);
5014 		return;
5015 	}
5016 	/*
5017 	 * Ugly code to find mount point given pointer to superblock.
5018 	 */
5019 	fs = inodedep->id_fs;
5020 	info.mp = NULL;
5021 	info.fs = fs;
5022 	mountlist_scan(clear_inodedeps_mountlist_callback,
5023 			&info, MNTSCAN_FORWARD|MNTSCAN_NOBUSY);
5024 	/*
5025 	 * Find the last inode in the block with dependencies.
5026 	 */
5027 	firstino = inodedep->id_ino & ~(INOPB(fs) - 1);
5028 	for (lastino = firstino + INOPB(fs) - 1; lastino > firstino; lastino--)
5029 		if (inodedep_lookup(fs, lastino, 0, &inodedep) != 0)
5030 			break;
5031 	/*
5032 	 * Asynchronously push all but the last inode with dependencies.
5033 	 * Synchronously push the last inode with dependencies to ensure
5034 	 * that the inode block gets written to free up the inodedeps.
5035 	 */
5036 	for (ino = firstino; ino <= lastino; ino++) {
5037 		if (inodedep_lookup(fs, ino, 0, &inodedep) == 0)
5038 			continue;
5039 		FREE_LOCK(&lk);
5040 		if ((error = VFS_VGET(info.mp, NULL, ino, &vp)) != 0) {
5041 			softdep_error("clear_inodedeps: vget", error);
5042 			return;
5043 		}
5044 		if (ino == lastino) {
5045 			if ((error = VOP_FSYNC(vp, MNT_WAIT, 0)))
5046 				softdep_error("clear_inodedeps: fsync1", error);
5047 		} else {
5048 			if ((error = VOP_FSYNC(vp, MNT_NOWAIT, 0)))
5049 				softdep_error("clear_inodedeps: fsync2", error);
5050 			drain_output(vp, 0);
5051 		}
5052 		vput(vp);
5053 		ACQUIRE_LOCK(&lk);
5054 	}
5055 	FREE_LOCK(&lk);
5056 }
5057 
5058 /*
5059  * Function to determine if the buffer has outstanding dependencies
5060  * that will cause a roll-back if the buffer is written. If wantcount
5061  * is set, return number of dependencies, otherwise just yes or no.
5062  *
5063  * bioops callback - hold io_token
5064  */
5065 static int
5066 softdep_count_dependencies(struct buf *bp, int wantcount)
5067 {
5068 	struct worklist *wk;
5069 	struct inodedep *inodedep;
5070 	struct indirdep *indirdep;
5071 	struct allocindir *aip;
5072 	struct pagedep *pagedep;
5073 	struct diradd *dap;
5074 	int i, retval;
5075 
5076 	get_mplock();
5077 
5078 	retval = 0;
5079 	ACQUIRE_LOCK(&lk);
5080 
5081 	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
5082 		switch (wk->wk_type) {
5083 
5084 		case D_INODEDEP:
5085 			inodedep = WK_INODEDEP(wk);
5086 			if ((inodedep->id_state & DEPCOMPLETE) == 0) {
5087 				/* bitmap allocation dependency */
5088 				retval += 1;
5089 				if (!wantcount)
5090 					goto out;
5091 			}
5092 			if (TAILQ_FIRST(&inodedep->id_inoupdt)) {
5093 				/* direct block pointer dependency */
5094 				retval += 1;
5095 				if (!wantcount)
5096 					goto out;
5097 			}
5098 			continue;
5099 
5100 		case D_INDIRDEP:
5101 			indirdep = WK_INDIRDEP(wk);
5102 
5103 			LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) {
5104 				/* indirect block pointer dependency */
5105 				retval += 1;
5106 				if (!wantcount)
5107 					goto out;
5108 			}
5109 			continue;
5110 
5111 		case D_PAGEDEP:
5112 			pagedep = WK_PAGEDEP(wk);
5113 			for (i = 0; i < DAHASHSZ; i++) {
5114 
5115 				LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
5116 					/* directory entry dependency */
5117 					retval += 1;
5118 					if (!wantcount)
5119 						goto out;
5120 				}
5121 			}
5122 			continue;
5123 
5124 		case D_BMSAFEMAP:
5125 		case D_ALLOCDIRECT:
5126 		case D_ALLOCINDIR:
5127 		case D_MKDIR:
5128 			/* never a dependency on these blocks */
5129 			continue;
5130 
5131 		default:
5132 			FREE_LOCK(&lk);
5133 			panic("softdep_check_for_rollback: Unexpected type %s",
5134 			    TYPENAME(wk->wk_type));
5135 			/* NOTREACHED */
5136 		}
5137 	}
5138 out:
5139 	FREE_LOCK(&lk);
5140 	rel_mplock();
5141 
5142 	return retval;
5143 }
5144 
5145 /*
5146  * Acquire exclusive access to a buffer.
5147  * Must be called with splbio blocked.
5148  * Return 1 if buffer was acquired.
5149  */
5150 static int
5151 getdirtybuf(struct buf **bpp, int waitfor)
5152 {
5153 	struct buf *bp;
5154 	int error;
5155 
5156 	for (;;) {
5157 		if ((bp = *bpp) == NULL)
5158 			return (0);
5159 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) == 0)
5160 			break;
5161 		if (waitfor != MNT_WAIT)
5162 			return (0);
5163 		error = interlocked_sleep(&lk, LOCKBUF, bp,
5164 		    LK_EXCLUSIVE | LK_SLEEPFAIL, 0, 0);
5165 		if (error != ENOLCK) {
5166 			FREE_LOCK(&lk);
5167 			panic("getdirtybuf: inconsistent lock");
5168 		}
5169 	}
5170 	if ((bp->b_flags & B_DELWRI) == 0) {
5171 		BUF_UNLOCK(bp);
5172 		return (0);
5173 	}
5174 	bremfree(bp);
5175 	return (1);
5176 }
5177 
5178 /*
5179  * Wait for pending output on a vnode to complete.
5180  * Must be called with vnode locked.
5181  */
5182 static void
5183 drain_output(struct vnode *vp, int islocked)
5184 {
5185 
5186 	if (!islocked)
5187 		ACQUIRE_LOCK(&lk);
5188 	while (bio_track_active(&vp->v_track_write)) {
5189 		FREE_LOCK(&lk);
5190 		bio_track_wait(&vp->v_track_write, 0, 0);
5191 		ACQUIRE_LOCK(&lk);
5192 	}
5193 	if (!islocked)
5194 		FREE_LOCK(&lk);
5195 }
5196 
5197 /*
5198  * Called whenever a buffer that is being invalidated or reallocated
5199  * contains dependencies. This should only happen if an I/O error has
5200  * occurred. The routine is called with the buffer locked.
5201  *
5202  * bioops callback - hold io_token
5203  */
5204 static void
5205 softdep_deallocate_dependencies(struct buf *bp)
5206 {
5207 	/* nothing to do, mp lock not needed */
5208 	if ((bp->b_flags & B_ERROR) == 0)
5209 		panic("softdep_deallocate_dependencies: dangling deps");
5210 	softdep_error(bp->b_vp->v_mount->mnt_stat.f_mntfromname, bp->b_error);
5211 	panic("softdep_deallocate_dependencies: unrecovered I/O error");
5212 }
5213 
5214 /*
5215  * Function to handle asynchronous write errors in the filesystem.
5216  */
5217 void
5218 softdep_error(char *func, int error)
5219 {
5220 
5221 	/* XXX should do something better! */
5222 	kprintf("%s: got error %d while accessing filesystem\n", func, error);
5223 }
5224