xref: /dragonfly/sys/vfs/ufs/ufs_bmap.c (revision 0ca59c34)
1 /*
2  * Copyright (c) 1989, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)ufs_bmap.c	8.7 (Berkeley) 3/21/95
35  * $FreeBSD: src/sys/ufs/ufs/ufs_bmap.c,v 1.34.2.1 2000/03/17 10:12:14 ps Exp $
36  */
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/buf.h>
41 #include <sys/proc.h>
42 #include <sys/vnode.h>
43 #include <sys/mount.h>
44 #include <sys/resourcevar.h>
45 #include <sys/conf.h>
46 
47 #include "quota.h"
48 #include "inode.h"
49 #include "ufsmount.h"
50 #include "ufs_extern.h"
51 #include "fs.h"
52 
53 /*
54  * Bmap converts the logical block number of a file to its physical block
55  * number on the disk. The conversion is done by using the logical block
56  * number to index into the array of block pointers described by the dinode.
57  *
58  * BMAP must return the contiguous before and after run in bytes, inclusive
59  * of the returned block.
60  *
61  * ufs_bmap(struct vnode *a_vp, off_t a_loffset,
62  *	    off_t *a_doffsetp, int *a_runp, int *a_runb)
63  */
64 int
65 ufs_bmap(struct vop_bmap_args *ap)
66 {
67 	struct fs *fs;
68 	ufs_daddr_t lbn;
69 	ufs_daddr_t dbn;
70 	int error;
71 
72 	/*
73 	 * Check for underlying vnode requests and ensure that logical
74 	 * to physical mapping is requested.
75 	 */
76 	if (ap->a_doffsetp == NULL)
77 		return (0);
78 
79 	fs = VTOI(ap->a_vp)->i_fs;
80 	KKASSERT(((int)ap->a_loffset & ((1 << fs->fs_bshift) - 1)) == 0);
81 	lbn = ap->a_loffset >> fs->fs_bshift;
82 
83 	error = ufs_bmaparray(ap->a_vp, lbn, &dbn, NULL, NULL,
84 			      ap->a_runp, ap->a_runb);
85 
86 	if (error || dbn == (ufs_daddr_t)-1) {
87 		*ap->a_doffsetp = NOOFFSET;
88 	} else {
89 		*ap->a_doffsetp = dbtodoff(fs, dbn);
90 		if (ap->a_runp)
91 			*ap->a_runp = (*ap->a_runp + 1) << fs->fs_bshift;
92 		if (ap->a_runb)
93 			*ap->a_runb = *ap->a_runb << fs->fs_bshift;
94 	}
95 	return (error);
96 }
97 
98 /*
99  * Indirect blocks are now on the vnode for the file.  They are given negative
100  * logical block numbers.  Indirect blocks are addressed by the negative
101  * address of the first data block to which they point.  Double indirect blocks
102  * are addressed by one less than the address of the first indirect block to
103  * which they point.  Triple indirect blocks are addressed by one less than
104  * the address of the first double indirect block to which they point.
105  *
106  * ufs_bmaparray does the bmap conversion, and if requested returns the
107  * array of logical blocks which must be traversed to get to a block.
108  * Each entry contains the offset into that block that gets you to the
109  * next block and the disk address of the block (if it is assigned).
110  */
111 int
112 ufs_bmaparray(struct vnode *vp, ufs_daddr_t bn, ufs_daddr_t *bnp,
113 	      struct indir *ap, int *nump, int *runp, int *runb)
114 {
115 	struct inode *ip;
116 	struct buf *bp;
117 	struct ufsmount *ump;
118 	struct mount *mp;
119 	struct fs *fs;
120 	struct indir a[NIADDR+1], *xap;
121 	ufs_daddr_t daddr;
122 	long metalbn;
123 	int error, maxrun, num;
124 
125 	ip = VTOI(vp);
126 	mp = vp->v_mount;
127 	ump = VFSTOUFS(mp);
128 	fs = ip->i_fs;
129 #ifdef DIAGNOSTIC
130 	if ((ap != NULL && nump == NULL) || (ap == NULL && nump != NULL))
131 		panic("ufs_bmaparray: invalid arguments");
132 #endif
133 
134 	if (runp) {
135 		*runp = 0;
136 	}
137 
138 	if (runb) {
139 		*runb = 0;
140 	}
141 
142 	maxrun = mp->mnt_iosize_max / mp->mnt_stat.f_iosize - 1;
143 
144 	xap = ap == NULL ? a : ap;
145 	if (!nump)
146 		nump = &num;
147 	error = ufs_getlbns(vp, bn, xap, nump);
148 	if (error)
149 		return (error);
150 
151 	num = *nump;
152 	if (num == 0) {
153 		*bnp = blkptrtodb(ump, ip->i_db[bn]);
154 		if (*bnp == 0)
155 			*bnp = -1;
156 		else if (runp) {
157 			daddr_t bnb = bn;
158 			for (++bn; bn < NDADDR && *runp < maxrun &&
159 			    is_sequential(ump, ip->i_db[bn - 1], ip->i_db[bn]);
160 			    ++bn, ++*runp);
161 			bn = bnb;
162 			if (runb && (bn > 0)) {
163 				for (--bn; (bn >= 0) && (*runb < maxrun) &&
164 					is_sequential(ump, ip->i_db[bn],
165 						ip->i_db[bn+1]);
166 						--bn, ++*runb);
167 			}
168 		}
169 		return (0);
170 	}
171 
172 
173 	/* Get disk address out of indirect block array */
174 	daddr = ip->i_ib[xap->in_off];
175 
176 	for (bp = NULL, ++xap; --num; ++xap) {
177 		/*
178 		 * Exit the loop if there is no disk address assigned yet and
179 		 * the indirect block isn't in the cache, or if we were
180 		 * looking for an indirect block and we've found it.
181 		 */
182 		metalbn = xap->in_lbn;
183 		if ((daddr == 0 &&
184 		     !findblk(vp, dbtodoff(fs, metalbn), FINDBLK_TEST)) ||
185 		    metalbn == bn) {
186 			break;
187 		}
188 		/*
189 		 * If we get here, we've either got the block in the cache
190 		 * or we have a disk address for it, go fetch it.
191 		 */
192 		if (bp)
193 			bqrelse(bp);
194 
195 		xap->in_exists = 1;
196 		bp = getblk(vp, lblktodoff(fs, metalbn),
197 			    mp->mnt_stat.f_iosize, 0, 0);
198 		if ((bp->b_flags & B_CACHE) == 0) {
199 #ifdef DIAGNOSTIC
200 			if (!daddr)
201 				panic("ufs_bmaparray: indirect block not in cache");
202 #endif
203 			/*
204 			 * cached disk addr in bio2, do I/O on bio1.  It
205 			 * will probably hit the vfs's strategy function
206 			 * which will then use the cached offset in bio2.
207 			 */
208 			bp->b_bio1.bio_done = biodone_sync;
209 			bp->b_bio1.bio_flags |= BIO_SYNC;
210 			bp->b_bio2.bio_offset = fsbtodoff(fs, daddr);
211 			bp->b_flags &= ~(B_INVAL|B_ERROR);
212 			bp->b_cmd = BUF_CMD_READ;
213 			vfs_busy_pages(bp->b_vp, bp);
214 			vn_strategy(bp->b_vp, &bp->b_bio1);
215 			error = biowait(&bp->b_bio1, "biord");
216 			if (error) {
217 				brelse(bp);
218 				return (error);
219 			}
220 		}
221 
222 		daddr = ((ufs_daddr_t *)bp->b_data)[xap->in_off];
223 		if (num == 1 && daddr && runp) {
224 			for (bn = xap->in_off + 1;
225 			    bn < MNINDIR(ump) && *runp < maxrun &&
226 			    is_sequential(ump,
227 			    ((ufs_daddr_t *)bp->b_data)[bn - 1],
228 			    ((ufs_daddr_t *)bp->b_data)[bn]);
229 			    ++bn, ++*runp);
230 			bn = xap->in_off;
231 			if (runb && bn) {
232 				for(--bn; bn >= 0 && *runb < maxrun &&
233 			    		is_sequential(ump, ((daddr_t *)bp->b_data)[bn],
234 					    ((daddr_t *)bp->b_data)[bn+1]);
235 			    		--bn, ++*runb);
236 			}
237 		}
238 	}
239 	if (bp)
240 		bqrelse(bp);
241 
242 	daddr = blkptrtodb(ump, daddr);
243 	*bnp = daddr == 0 ? -1 : daddr;
244 	return (0);
245 }
246 
247 /*
248  * Create an array of logical block number/offset pairs which represent the
249  * path of indirect blocks required to access a data block.  The first "pair"
250  * contains the logical block number of the appropriate single, double or
251  * triple indirect block and the offset into the inode indirect block array.
252  * Note, the logical block number of the inode single/double/triple indirect
253  * block appears twice in the array, once with the offset into the i_ib and
254  * once with the offset into the page itself.
255  */
256 int
257 ufs_getlbns(struct vnode *vp, ufs_daddr_t bn, struct indir *ap, int *nump)
258 {
259 	long blockcnt, metalbn, realbn;
260 	struct ufsmount *ump;
261 	int i, numlevels, off;
262 	int64_t qblockcnt;
263 
264 	ump = VFSTOUFS(vp->v_mount);
265 	if (nump)
266 		*nump = 0;
267 	numlevels = 0;
268 	realbn = bn;
269 	if ((long)bn < 0)
270 		bn = -(long)bn;
271 
272 	/* The first NDADDR blocks are direct blocks. */
273 	if (bn < NDADDR)
274 		return (0);
275 
276 	/*
277 	 * Determine the number of levels of indirection.  After this loop
278 	 * is done, blockcnt indicates the number of data blocks possible
279 	 * at the previous level of indirection, and NIADDR - i is the number
280 	 * of levels of indirection needed to locate the requested block.
281 	 */
282 	for (blockcnt = 1, i = NIADDR, bn -= NDADDR;; i--, bn -= blockcnt) {
283 		if (i == 0)
284 			return (EFBIG);
285 		/*
286 		 * Use int64_t's here to avoid overflow for triple indirect
287 		 * blocks when longs have 32 bits and the block size is more
288 		 * than 4K.
289 		 */
290 		qblockcnt = (int64_t)blockcnt * MNINDIR(ump);
291 		if (bn < qblockcnt)
292 			break;
293 		blockcnt = qblockcnt;
294 	}
295 
296 	/* Calculate the address of the first meta-block. */
297 	if (realbn >= 0)
298 		metalbn = -(realbn - bn + NIADDR - i);
299 	else
300 		metalbn = -(-realbn - bn + NIADDR - i);
301 
302 	/*
303 	 * At each iteration, off is the offset into the bap array which is
304 	 * an array of disk addresses at the current level of indirection.
305 	 * The logical block number and the offset in that block are stored
306 	 * into the argument array.
307 	 */
308 	ap->in_lbn = metalbn;
309 	ap->in_off = off = NIADDR - i;
310 	ap->in_exists = 0;
311 	ap++;
312 	for (++numlevels; i <= NIADDR; i++) {
313 		/* If searching for a meta-data block, quit when found. */
314 		if (metalbn == realbn)
315 			break;
316 
317 		off = (bn / blockcnt) % MNINDIR(ump);
318 
319 		++numlevels;
320 		ap->in_lbn = metalbn;
321 		ap->in_off = off;
322 		ap->in_exists = 0;
323 		++ap;
324 
325 		metalbn -= -1 + off * blockcnt;
326 		blockcnt /= MNINDIR(ump);
327 	}
328 	if (nump)
329 		*nump = numlevels;
330 	return (0);
331 }
332