xref: /dragonfly/sys/vm/swap_pager.c (revision 0dace59e)
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 1998-2010 The DragonFly Project.  All rights reserved.
5  *
6  * This code is derived from software contributed to The DragonFly Project
7  * by Matthew Dillon <dillon@backplane.com>
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  *
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in
17  *    the documentation and/or other materials provided with the
18  *    distribution.
19  * 3. Neither the name of The DragonFly Project nor the names of its
20  *    contributors may be used to endorse or promote products derived
21  *    from this software without specific, prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
27  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
29  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
31  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
32  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
33  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  * Copyright (c) 1994 John S. Dyson
37  * Copyright (c) 1990 University of Utah.
38  * Copyright (c) 1991, 1993
39  *	The Regents of the University of California.  All rights reserved.
40  *
41  * This code is derived from software contributed to Berkeley by
42  * the Systems Programming Group of the University of Utah Computer
43  * Science Department.
44  *
45  * Redistribution and use in source and binary forms, with or without
46  * modification, are permitted provided that the following conditions
47  * are met:
48  * 1. Redistributions of source code must retain the above copyright
49  *    notice, this list of conditions and the following disclaimer.
50  * 2. Redistributions in binary form must reproduce the above copyright
51  *    notice, this list of conditions and the following disclaimer in the
52  *    documentation and/or other materials provided with the distribution.
53  * 3. Neither the name of the University nor the names of its contributors
54  *    may be used to endorse or promote products derived from this software
55  *    without specific prior written permission.
56  *
57  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
58  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
59  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
60  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
61  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
62  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
63  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
64  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
65  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
66  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
67  * SUCH DAMAGE.
68  *
69  *				New Swap System
70  *				Matthew Dillon
71  *
72  * Radix Bitmap 'blists'.
73  *
74  *	- The new swapper uses the new radix bitmap code.  This should scale
75  *	  to arbitrarily small or arbitrarily large swap spaces and an almost
76  *	  arbitrary degree of fragmentation.
77  *
78  * Features:
79  *
80  *	- on the fly reallocation of swap during putpages.  The new system
81  *	  does not try to keep previously allocated swap blocks for dirty
82  *	  pages.
83  *
84  *	- on the fly deallocation of swap
85  *
86  *	- No more garbage collection required.  Unnecessarily allocated swap
87  *	  blocks only exist for dirty vm_page_t's now and these are already
88  *	  cycled (in a high-load system) by the pager.  We also do on-the-fly
89  *	  removal of invalidated swap blocks when a page is destroyed
90  *	  or renamed.
91  *
92  * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
93  * @(#)swap_pager.c	8.9 (Berkeley) 3/21/94
94  * $FreeBSD: src/sys/vm/swap_pager.c,v 1.130.2.12 2002/08/31 21:15:55 dillon Exp $
95  */
96 
97 #include <sys/param.h>
98 #include <sys/systm.h>
99 #include <sys/conf.h>
100 #include <sys/kernel.h>
101 #include <sys/proc.h>
102 #include <sys/buf.h>
103 #include <sys/vnode.h>
104 #include <sys/malloc.h>
105 #include <sys/vmmeter.h>
106 #include <sys/sysctl.h>
107 #include <sys/blist.h>
108 #include <sys/lock.h>
109 #include <sys/thread2.h>
110 
111 #include "opt_swap.h"
112 #include <vm/vm.h>
113 #include <vm/vm_object.h>
114 #include <vm/vm_page.h>
115 #include <vm/vm_pager.h>
116 #include <vm/vm_pageout.h>
117 #include <vm/swap_pager.h>
118 #include <vm/vm_extern.h>
119 #include <vm/vm_zone.h>
120 #include <vm/vnode_pager.h>
121 
122 #include <sys/buf2.h>
123 #include <vm/vm_page2.h>
124 
125 #ifndef MAX_PAGEOUT_CLUSTER
126 #define MAX_PAGEOUT_CLUSTER	SWB_NPAGES
127 #endif
128 
129 #define SWM_FREE	0x02	/* free, period			*/
130 #define SWM_POP		0x04	/* pop out			*/
131 
132 #define SWBIO_READ	0x01
133 #define SWBIO_WRITE	0x02
134 #define SWBIO_SYNC	0x04
135 
136 struct swfreeinfo {
137 	vm_object_t	object;
138 	vm_pindex_t	basei;
139 	vm_pindex_t	begi;
140 	vm_pindex_t	endi;	/* inclusive */
141 };
142 
143 struct swswapoffinfo {
144 	vm_object_t	object;
145 	int		devidx;
146 };
147 
148 /*
149  * vm_swap_size is in page-sized chunks now.  It was DEV_BSIZE'd chunks
150  * in the old system.
151  */
152 
153 int swap_pager_full;		/* swap space exhaustion (task killing) */
154 int vm_swap_cache_use;
155 int vm_swap_anon_use;
156 static int vm_report_swap_allocs;
157 
158 static int swap_pager_almost_full; /* swap space exhaustion (w/ hysteresis)*/
159 static int nsw_rcount;		/* free read buffers			*/
160 static int nsw_wcount_sync;	/* limit write buffers / synchronous	*/
161 static int nsw_wcount_async;	/* limit write buffers / asynchronous	*/
162 static int nsw_wcount_async_max;/* assigned maximum			*/
163 static int nsw_cluster_max;	/* maximum VOP I/O allowed		*/
164 
165 struct blist *swapblist;
166 static int swap_async_max = 4;	/* maximum in-progress async I/O's	*/
167 static int swap_burst_read = 0;	/* allow burst reading */
168 static swblk_t swapiterator;	/* linearize allocations */
169 
170 /* from vm_swap.c */
171 extern struct vnode *swapdev_vp;
172 extern struct swdevt *swdevt;
173 extern int nswdev;
174 
175 #define BLK2DEVIDX(blk) (nswdev > 1 ? blk / dmmax % nswdev : 0)
176 
177 SYSCTL_INT(_vm, OID_AUTO, swap_async_max,
178         CTLFLAG_RW, &swap_async_max, 0, "Maximum running async swap ops");
179 SYSCTL_INT(_vm, OID_AUTO, swap_burst_read,
180         CTLFLAG_RW, &swap_burst_read, 0, "Allow burst reads for pageins");
181 
182 SYSCTL_INT(_vm, OID_AUTO, swap_cache_use,
183         CTLFLAG_RD, &vm_swap_cache_use, 0, "");
184 SYSCTL_INT(_vm, OID_AUTO, swap_anon_use,
185         CTLFLAG_RD, &vm_swap_anon_use, 0, "");
186 SYSCTL_INT(_vm, OID_AUTO, swap_size,
187         CTLFLAG_RD, &vm_swap_size, 0, "");
188 SYSCTL_INT(_vm, OID_AUTO, report_swap_allocs,
189         CTLFLAG_RW, &vm_report_swap_allocs, 0, "");
190 
191 vm_zone_t		swap_zone;
192 
193 /*
194  * Red-Black tree for swblock entries
195  *
196  * The caller must hold vm_token
197  */
198 RB_GENERATE2(swblock_rb_tree, swblock, swb_entry, rb_swblock_compare,
199 	     vm_pindex_t, swb_index);
200 
201 int
202 rb_swblock_compare(struct swblock *swb1, struct swblock *swb2)
203 {
204 	if (swb1->swb_index < swb2->swb_index)
205 		return(-1);
206 	if (swb1->swb_index > swb2->swb_index)
207 		return(1);
208 	return(0);
209 }
210 
211 static
212 int
213 rb_swblock_scancmp(struct swblock *swb, void *data)
214 {
215 	struct swfreeinfo *info = data;
216 
217 	if (swb->swb_index < info->basei)
218 		return(-1);
219 	if (swb->swb_index > info->endi)
220 		return(1);
221 	return(0);
222 }
223 
224 static
225 int
226 rb_swblock_condcmp(struct swblock *swb, void *data)
227 {
228 	struct swfreeinfo *info = data;
229 
230 	if (swb->swb_index < info->basei)
231 		return(-1);
232 	return(0);
233 }
234 
235 /*
236  * pagerops for OBJT_SWAP - "swap pager".  Some ops are also global procedure
237  * calls hooked from other parts of the VM system and do not appear here.
238  * (see vm/swap_pager.h).
239  */
240 
241 static void	swap_pager_dealloc (vm_object_t object);
242 static int	swap_pager_getpage (vm_object_t, vm_page_t *, int);
243 static void	swap_chain_iodone(struct bio *biox);
244 
245 struct pagerops swappagerops = {
246 	swap_pager_dealloc,	/* deallocate an OBJT_SWAP object	*/
247 	swap_pager_getpage,	/* pagein				*/
248 	swap_pager_putpages,	/* pageout				*/
249 	swap_pager_haspage	/* get backing store status for page	*/
250 };
251 
252 /*
253  * dmmax is in page-sized chunks with the new swap system.  It was
254  * dev-bsized chunks in the old.  dmmax is always a power of 2.
255  *
256  * swap_*() routines are externally accessible.  swp_*() routines are
257  * internal.
258  */
259 
260 int dmmax;
261 static int dmmax_mask;
262 int nswap_lowat = 128;		/* in pages, swap_pager_almost_full warn */
263 int nswap_hiwat = 512;		/* in pages, swap_pager_almost_full warn */
264 
265 static __inline void	swp_sizecheck (void);
266 static void	swp_pager_async_iodone (struct bio *bio);
267 
268 /*
269  * Swap bitmap functions
270  */
271 
272 static __inline void	swp_pager_freeswapspace(vm_object_t object,
273 						swblk_t blk, int npages);
274 static __inline swblk_t	swp_pager_getswapspace(vm_object_t object, int npages);
275 
276 /*
277  * Metadata functions
278  */
279 
280 static void swp_pager_meta_convert(vm_object_t);
281 static void swp_pager_meta_build(vm_object_t, vm_pindex_t, swblk_t);
282 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, vm_pindex_t);
283 static void swp_pager_meta_free_all(vm_object_t);
284 static swblk_t swp_pager_meta_ctl(vm_object_t, vm_pindex_t, int);
285 
286 /*
287  * SWP_SIZECHECK() -	update swap_pager_full indication
288  *
289  *	update the swap_pager_almost_full indication and warn when we are
290  *	about to run out of swap space, using lowat/hiwat hysteresis.
291  *
292  *	Clear swap_pager_full ( task killing ) indication when lowat is met.
293  *
294  * No restrictions on call
295  * This routine may not block.
296  * SMP races are ok.
297  */
298 static __inline void
299 swp_sizecheck(void)
300 {
301 	if (vm_swap_size < nswap_lowat) {
302 		if (swap_pager_almost_full == 0) {
303 			kprintf("swap_pager: out of swap space\n");
304 			swap_pager_almost_full = 1;
305 		}
306 	} else {
307 		swap_pager_full = 0;
308 		if (vm_swap_size > nswap_hiwat)
309 			swap_pager_almost_full = 0;
310 	}
311 }
312 
313 /*
314  * SWAP_PAGER_INIT() -	initialize the swap pager!
315  *
316  *	Expected to be started from system init.  NOTE:  This code is run
317  *	before much else so be careful what you depend on.  Most of the VM
318  *	system has yet to be initialized at this point.
319  *
320  * Called from the low level boot code only.
321  */
322 static void
323 swap_pager_init(void *arg __unused)
324 {
325 	/*
326 	 * Device Stripe, in PAGE_SIZE'd blocks
327 	 */
328 	dmmax = SWB_NPAGES * 2;
329 	dmmax_mask = ~(dmmax - 1);
330 }
331 SYSINIT(vm_mem, SI_BOOT1_VM, SI_ORDER_THIRD, swap_pager_init, NULL)
332 
333 /*
334  * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
335  *
336  *	Expected to be started from pageout process once, prior to entering
337  *	its main loop.
338  *
339  * Called from the low level boot code only.
340  */
341 void
342 swap_pager_swap_init(void)
343 {
344 	int n, n2;
345 
346 	/*
347 	 * Number of in-transit swap bp operations.  Don't
348 	 * exhaust the pbufs completely.  Make sure we
349 	 * initialize workable values (0 will work for hysteresis
350 	 * but it isn't very efficient).
351 	 *
352 	 * The nsw_cluster_max is constrained by the number of pages an XIO
353 	 * holds, i.e., (MAXPHYS/PAGE_SIZE) and our locally defined
354 	 * MAX_PAGEOUT_CLUSTER.   Also be aware that swap ops are
355 	 * constrained by the swap device interleave stripe size.
356 	 *
357 	 * Currently we hardwire nsw_wcount_async to 4.  This limit is
358 	 * designed to prevent other I/O from having high latencies due to
359 	 * our pageout I/O.  The value 4 works well for one or two active swap
360 	 * devices but is probably a little low if you have more.  Even so,
361 	 * a higher value would probably generate only a limited improvement
362 	 * with three or four active swap devices since the system does not
363 	 * typically have to pageout at extreme bandwidths.   We will want
364 	 * at least 2 per swap devices, and 4 is a pretty good value if you
365 	 * have one NFS swap device due to the command/ack latency over NFS.
366 	 * So it all works out pretty well.
367 	 */
368 
369 	nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER);
370 
371 	nsw_rcount = (nswbuf + 1) / 2;
372 	nsw_wcount_sync = (nswbuf + 3) / 4;
373 	nsw_wcount_async = 4;
374 	nsw_wcount_async_max = nsw_wcount_async;
375 
376 	/*
377 	 * The zone is dynamically allocated so generally size it to
378 	 * maxswzone (32MB to 512MB of KVM).  Set a minimum size based
379 	 * on physical memory of around 8x (each swblock can hold 16 pages).
380 	 *
381 	 * With the advent of SSDs (vs HDs) the practical (swap:memory) ratio
382 	 * has increased dramatically.
383 	 */
384 	n = vmstats.v_page_count / 2;
385 	if (maxswzone && n < maxswzone / sizeof(struct swblock))
386 		n = maxswzone / sizeof(struct swblock);
387 	n2 = n;
388 
389 	do {
390 		swap_zone = zinit(
391 			"SWAPMETA",
392 			sizeof(struct swblock),
393 			n,
394 			ZONE_INTERRUPT,
395 			1);
396 		if (swap_zone != NULL)
397 			break;
398 		/*
399 		 * if the allocation failed, try a zone two thirds the
400 		 * size of the previous attempt.
401 		 */
402 		n -= ((n + 2) / 3);
403 	} while (n > 0);
404 
405 	if (swap_zone == NULL)
406 		panic("swap_pager_swap_init: swap_zone == NULL");
407 	if (n2 != n)
408 		kprintf("Swap zone entries reduced from %d to %d.\n", n2, n);
409 }
410 
411 /*
412  * SWAP_PAGER_ALLOC() -	allocate a new OBJT_SWAP VM object and instantiate
413  *			its metadata structures.
414  *
415  *	This routine is called from the mmap and fork code to create a new
416  *	OBJT_SWAP object.  We do this by creating an OBJT_DEFAULT object
417  *	and then converting it with swp_pager_meta_convert().
418  *
419  *	We only support unnamed objects.
420  *
421  * No restrictions.
422  */
423 vm_object_t
424 swap_pager_alloc(void *handle, off_t size, vm_prot_t prot, off_t offset)
425 {
426 	vm_object_t object;
427 
428 	KKASSERT(handle == NULL);
429 	object = vm_object_allocate_hold(OBJT_DEFAULT,
430 					 OFF_TO_IDX(offset + PAGE_MASK + size));
431 	swp_pager_meta_convert(object);
432 	vm_object_drop(object);
433 
434 	return (object);
435 }
436 
437 /*
438  * SWAP_PAGER_DEALLOC() -	remove swap metadata from object
439  *
440  *	The swap backing for the object is destroyed.  The code is
441  *	designed such that we can reinstantiate it later, but this
442  *	routine is typically called only when the entire object is
443  *	about to be destroyed.
444  *
445  * The object must be locked or unreferenceable.
446  * No other requirements.
447  */
448 static void
449 swap_pager_dealloc(vm_object_t object)
450 {
451 	vm_object_hold(object);
452 	vm_object_pip_wait(object, "swpdea");
453 
454 	/*
455 	 * Free all remaining metadata.  We only bother to free it from
456 	 * the swap meta data.  We do not attempt to free swapblk's still
457 	 * associated with vm_page_t's for this object.  We do not care
458 	 * if paging is still in progress on some objects.
459 	 */
460 	swp_pager_meta_free_all(object);
461 	vm_object_drop(object);
462 }
463 
464 /************************************************************************
465  *			SWAP PAGER BITMAP ROUTINES			*
466  ************************************************************************/
467 
468 /*
469  * SWP_PAGER_GETSWAPSPACE() -	allocate raw swap space
470  *
471  *	Allocate swap for the requested number of pages.  The starting
472  *	swap block number (a page index) is returned or SWAPBLK_NONE
473  *	if the allocation failed.
474  *
475  *	Also has the side effect of advising that somebody made a mistake
476  *	when they configured swap and didn't configure enough.
477  *
478  * The caller must hold the object.
479  * This routine may not block.
480  */
481 static __inline swblk_t
482 swp_pager_getswapspace(vm_object_t object, int npages)
483 {
484 	swblk_t blk;
485 
486 	lwkt_gettoken(&vm_token);
487 	blk = blist_allocat(swapblist, npages, swapiterator);
488 	if (blk == SWAPBLK_NONE)
489 		blk = blist_allocat(swapblist, npages, 0);
490 	if (blk == SWAPBLK_NONE) {
491 		if (swap_pager_full != 2) {
492 			kprintf("swap_pager_getswapspace: failed alloc=%d\n",
493 				npages);
494 			swap_pager_full = 2;
495 			swap_pager_almost_full = 1;
496 		}
497 	} else {
498 		/* swapiterator = blk; disable for now, doesn't work well */
499 		swapacctspace(blk, -npages);
500 		if (object->type == OBJT_SWAP)
501 			vm_swap_anon_use += npages;
502 		else
503 			vm_swap_cache_use += npages;
504 		swp_sizecheck();
505 	}
506 	lwkt_reltoken(&vm_token);
507 	return(blk);
508 }
509 
510 /*
511  * SWP_PAGER_FREESWAPSPACE() -	free raw swap space
512  *
513  *	This routine returns the specified swap blocks back to the bitmap.
514  *
515  *	Note:  This routine may not block (it could in the old swap code),
516  *	and through the use of the new blist routines it does not block.
517  *
518  *	We must be called at splvm() to avoid races with bitmap frees from
519  *	vm_page_remove() aka swap_pager_page_removed().
520  *
521  * This routine may not block.
522  */
523 
524 static __inline void
525 swp_pager_freeswapspace(vm_object_t object, swblk_t blk, int npages)
526 {
527 	struct swdevt *sp = &swdevt[BLK2DEVIDX(blk)];
528 
529 	lwkt_gettoken(&vm_token);
530 	sp->sw_nused -= npages;
531 	if (object->type == OBJT_SWAP)
532 		vm_swap_anon_use -= npages;
533 	else
534 		vm_swap_cache_use -= npages;
535 
536 	if (sp->sw_flags & SW_CLOSING) {
537 		lwkt_reltoken(&vm_token);
538 		return;
539 	}
540 
541 	blist_free(swapblist, blk, npages);
542 	vm_swap_size += npages;
543 	swp_sizecheck();
544 	lwkt_reltoken(&vm_token);
545 }
546 
547 /*
548  * SWAP_PAGER_FREESPACE() -	frees swap blocks associated with a page
549  *				range within an object.
550  *
551  *	This is a globally accessible routine.
552  *
553  *	This routine removes swapblk assignments from swap metadata.
554  *
555  *	The external callers of this routine typically have already destroyed
556  *	or renamed vm_page_t's associated with this range in the object so
557  *	we should be ok.
558  *
559  * No requirements.
560  */
561 void
562 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_pindex_t size)
563 {
564 	vm_object_hold(object);
565 	swp_pager_meta_free(object, start, size);
566 	vm_object_drop(object);
567 }
568 
569 /*
570  * No requirements.
571  */
572 void
573 swap_pager_freespace_all(vm_object_t object)
574 {
575 	vm_object_hold(object);
576 	swp_pager_meta_free_all(object);
577 	vm_object_drop(object);
578 }
579 
580 /*
581  * This function conditionally frees swap cache swap starting at
582  * (*basei) in the object.  (count) swap blocks will be nominally freed.
583  * The actual number of blocks freed can be more or less than the
584  * requested number.
585  *
586  * This function nominally returns the number of blocks freed.  However,
587  * the actual number of blocks freed may be less then the returned value.
588  * If the function is unable to exhaust the object or if it is able to
589  * free (approximately) the requested number of blocks it returns
590  * a value n > count.
591  *
592  * If we exhaust the object we will return a value n <= count.
593  *
594  * The caller must hold the object.
595  *
596  * WARNING!  If count == 0 then -1 can be returned as a degenerate case,
597  *	     callers should always pass a count value > 0.
598  */
599 static int swap_pager_condfree_callback(struct swblock *swap, void *data);
600 
601 int
602 swap_pager_condfree(vm_object_t object, vm_pindex_t *basei, int count)
603 {
604 	struct swfreeinfo info;
605 	int n;
606 	int t;
607 
608 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
609 
610 	info.object = object;
611 	info.basei = *basei;	/* skip up to this page index */
612 	info.begi = count;	/* max swap pages to destroy */
613 	info.endi = count * 8;	/* max swblocks to scan */
614 
615 	swblock_rb_tree_RB_SCAN(&object->swblock_root, rb_swblock_condcmp,
616 				swap_pager_condfree_callback, &info);
617 	*basei = info.basei;
618 
619 	/*
620 	 * Take the higher difference swblocks vs pages
621 	 */
622 	n = count - (int)info.begi;
623 	t = count * 8 - (int)info.endi;
624 	if (n < t)
625 		n = t;
626 	if (n < 1)
627 		n = 1;
628 	return(n);
629 }
630 
631 /*
632  * The idea is to free whole meta-block to avoid fragmenting
633  * the swap space or disk I/O.  We only do this if NO VM pages
634  * are present.
635  *
636  * We do not have to deal with clearing PG_SWAPPED in related VM
637  * pages because there are no related VM pages.
638  *
639  * The caller must hold the object.
640  */
641 static int
642 swap_pager_condfree_callback(struct swblock *swap, void *data)
643 {
644 	struct swfreeinfo *info = data;
645 	vm_object_t object = info->object;
646 	int i;
647 
648 	for (i = 0; i < SWAP_META_PAGES; ++i) {
649 		if (vm_page_lookup(object, swap->swb_index + i))
650 			break;
651 	}
652 	info->basei = swap->swb_index + SWAP_META_PAGES;
653 	if (i == SWAP_META_PAGES) {
654 		info->begi -= swap->swb_count;
655 		swap_pager_freespace(object, swap->swb_index, SWAP_META_PAGES);
656 	}
657 	--info->endi;
658 	if ((int)info->begi < 0 || (int)info->endi < 0)
659 		return(-1);
660 	lwkt_yield();
661 	return(0);
662 }
663 
664 /*
665  * Called by vm_page_alloc() when a new VM page is inserted
666  * into a VM object.  Checks whether swap has been assigned to
667  * the page and sets PG_SWAPPED as necessary.
668  *
669  * No requirements.
670  */
671 void
672 swap_pager_page_inserted(vm_page_t m)
673 {
674 	if (m->object->swblock_count) {
675 		vm_object_hold(m->object);
676 		if (swp_pager_meta_ctl(m->object, m->pindex, 0) != SWAPBLK_NONE)
677 			vm_page_flag_set(m, PG_SWAPPED);
678 		vm_object_drop(m->object);
679 	}
680 }
681 
682 /*
683  * SWAP_PAGER_RESERVE() - reserve swap blocks in object
684  *
685  *	Assigns swap blocks to the specified range within the object.  The
686  *	swap blocks are not zerod.  Any previous swap assignment is destroyed.
687  *
688  *	Returns 0 on success, -1 on failure.
689  *
690  * The caller is responsible for avoiding races in the specified range.
691  * No other requirements.
692  */
693 int
694 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
695 {
696 	int n = 0;
697 	swblk_t blk = SWAPBLK_NONE;
698 	vm_pindex_t beg = start;	/* save start index */
699 
700 	vm_object_hold(object);
701 
702 	while (size) {
703 		if (n == 0) {
704 			n = BLIST_MAX_ALLOC;
705 			while ((blk = swp_pager_getswapspace(object, n)) ==
706 			       SWAPBLK_NONE)
707 			{
708 				n >>= 1;
709 				if (n == 0) {
710 					swp_pager_meta_free(object, beg,
711 							    start - beg);
712 					vm_object_drop(object);
713 					return(-1);
714 				}
715 			}
716 		}
717 		swp_pager_meta_build(object, start, blk);
718 		--size;
719 		++start;
720 		++blk;
721 		--n;
722 	}
723 	swp_pager_meta_free(object, start, n);
724 	vm_object_drop(object);
725 	return(0);
726 }
727 
728 /*
729  * SWAP_PAGER_COPY() -  copy blocks from source pager to destination pager
730  *			and destroy the source.
731  *
732  *	Copy any valid swapblks from the source to the destination.  In
733  *	cases where both the source and destination have a valid swapblk,
734  *	we keep the destination's.
735  *
736  *	This routine is allowed to block.  It may block allocating metadata
737  *	indirectly through swp_pager_meta_build() or if paging is still in
738  *	progress on the source.
739  *
740  *	XXX vm_page_collapse() kinda expects us not to block because we
741  *	supposedly do not need to allocate memory, but for the moment we
742  *	*may* have to get a little memory from the zone allocator, but
743  *	it is taken from the interrupt memory.  We should be ok.
744  *
745  *	The source object contains no vm_page_t's (which is just as well)
746  *	The source object is of type OBJT_SWAP.
747  *
748  *	The source and destination objects must be held by the caller.
749  */
750 void
751 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject,
752 		vm_pindex_t base_index, int destroysource)
753 {
754 	vm_pindex_t i;
755 
756 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(srcobject));
757 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(dstobject));
758 
759 	/*
760 	 * transfer source to destination.
761 	 */
762 	for (i = 0; i < dstobject->size; ++i) {
763 		swblk_t dstaddr;
764 
765 		/*
766 		 * Locate (without changing) the swapblk on the destination,
767 		 * unless it is invalid in which case free it silently, or
768 		 * if the destination is a resident page, in which case the
769 		 * source is thrown away.
770 		 */
771 		dstaddr = swp_pager_meta_ctl(dstobject, i, 0);
772 
773 		if (dstaddr == SWAPBLK_NONE) {
774 			/*
775 			 * Destination has no swapblk and is not resident,
776 			 * copy source.
777 			 */
778 			swblk_t srcaddr;
779 
780 			srcaddr = swp_pager_meta_ctl(srcobject,
781 						     base_index + i, SWM_POP);
782 
783 			if (srcaddr != SWAPBLK_NONE)
784 				swp_pager_meta_build(dstobject, i, srcaddr);
785 		} else {
786 			/*
787 			 * Destination has valid swapblk or it is represented
788 			 * by a resident page.  We destroy the sourceblock.
789 			 */
790 			swp_pager_meta_ctl(srcobject, base_index + i, SWM_FREE);
791 		}
792 	}
793 
794 	/*
795 	 * Free left over swap blocks in source.
796 	 *
797 	 * We have to revert the type to OBJT_DEFAULT so we do not accidently
798 	 * double-remove the object from the swap queues.
799 	 */
800 	if (destroysource) {
801 		/*
802 		 * Reverting the type is not necessary, the caller is going
803 		 * to destroy srcobject directly, but I'm doing it here
804 		 * for consistency since we've removed the object from its
805 		 * queues.
806 		 */
807 		swp_pager_meta_free_all(srcobject);
808 		if (srcobject->type == OBJT_SWAP)
809 			srcobject->type = OBJT_DEFAULT;
810 	}
811 }
812 
813 /*
814  * SWAP_PAGER_HASPAGE() -	determine if we have good backing store for
815  *				the requested page.
816  *
817  *	We determine whether good backing store exists for the requested
818  *	page and return TRUE if it does, FALSE if it doesn't.
819  *
820  *	If TRUE, we also try to determine how much valid, contiguous backing
821  *	store exists before and after the requested page within a reasonable
822  *	distance.  We do not try to restrict it to the swap device stripe
823  *	(that is handled in getpages/putpages).  It probably isn't worth
824  *	doing here.
825  *
826  * No requirements.
827  */
828 boolean_t
829 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex)
830 {
831 	swblk_t blk0;
832 
833 	/*
834 	 * do we have good backing store at the requested index ?
835 	 */
836 	vm_object_hold(object);
837 	blk0 = swp_pager_meta_ctl(object, pindex, 0);
838 
839 	if (blk0 == SWAPBLK_NONE) {
840 		vm_object_drop(object);
841 		return (FALSE);
842 	}
843 	vm_object_drop(object);
844 	return (TRUE);
845 }
846 
847 /*
848  * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
849  *
850  * This removes any associated swap backing store, whether valid or
851  * not, from the page.  This operates on any VM object, not just OBJT_SWAP
852  * objects.
853  *
854  * This routine is typically called when a page is made dirty, at
855  * which point any associated swap can be freed.  MADV_FREE also
856  * calls us in a special-case situation
857  *
858  * NOTE!!!  If the page is clean and the swap was valid, the caller
859  * should make the page dirty before calling this routine.  This routine
860  * does NOT change the m->dirty status of the page.  Also: MADV_FREE
861  * depends on it.
862  *
863  * The page must be busied or soft-busied.
864  * The caller can hold the object to avoid blocking, else we might block.
865  * No other requirements.
866  */
867 void
868 swap_pager_unswapped(vm_page_t m)
869 {
870 	if (m->flags & PG_SWAPPED) {
871 		vm_object_hold(m->object);
872 		KKASSERT(m->flags & PG_SWAPPED);
873 		swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE);
874 		vm_page_flag_clear(m, PG_SWAPPED);
875 		vm_object_drop(m->object);
876 	}
877 }
878 
879 /*
880  * SWAP_PAGER_STRATEGY() - read, write, free blocks
881  *
882  * This implements a VM OBJECT strategy function using swap backing store.
883  * This can operate on any VM OBJECT type, not necessarily just OBJT_SWAP
884  * types.
885  *
886  * This is intended to be a cacheless interface (i.e. caching occurs at
887  * higher levels), and is also used as a swap-based SSD cache for vnode
888  * and device objects.
889  *
890  * All I/O goes directly to and from the swap device.
891  *
892  * We currently attempt to run I/O synchronously or asynchronously as
893  * the caller requests.  This isn't perfect because we loose error
894  * sequencing when we run multiple ops in parallel to satisfy a request.
895  * But this is swap, so we let it all hang out.
896  *
897  * No requirements.
898  */
899 void
900 swap_pager_strategy(vm_object_t object, struct bio *bio)
901 {
902 	struct buf *bp = bio->bio_buf;
903 	struct bio *nbio;
904 	vm_pindex_t start;
905 	vm_pindex_t biox_blkno = 0;
906 	int count;
907 	char *data;
908 	struct bio *biox;
909 	struct buf *bufx;
910 #if 0
911 	struct bio_track *track;
912 #endif
913 
914 #if 0
915 	/*
916 	 * tracking for swapdev vnode I/Os
917 	 */
918 	if (bp->b_cmd == BUF_CMD_READ)
919 		track = &swapdev_vp->v_track_read;
920 	else
921 		track = &swapdev_vp->v_track_write;
922 #endif
923 
924 	if (bp->b_bcount & PAGE_MASK) {
925 		bp->b_error = EINVAL;
926 		bp->b_flags |= B_ERROR | B_INVAL;
927 		biodone(bio);
928 		kprintf("swap_pager_strategy: bp %p offset %lld size %d, "
929 			"not page bounded\n",
930 			bp, (long long)bio->bio_offset, (int)bp->b_bcount);
931 		return;
932 	}
933 
934 	/*
935 	 * Clear error indication, initialize page index, count, data pointer.
936 	 */
937 	bp->b_error = 0;
938 	bp->b_flags &= ~B_ERROR;
939 	bp->b_resid = bp->b_bcount;
940 
941 	start = (vm_pindex_t)(bio->bio_offset >> PAGE_SHIFT);
942 	count = howmany(bp->b_bcount, PAGE_SIZE);
943 	data = bp->b_data;
944 
945 	/*
946 	 * Deal with BUF_CMD_FREEBLKS
947 	 */
948 	if (bp->b_cmd == BUF_CMD_FREEBLKS) {
949 		/*
950 		 * FREE PAGE(s) - destroy underlying swap that is no longer
951 		 *		  needed.
952 		 */
953 		vm_object_hold(object);
954 		swp_pager_meta_free(object, start, count);
955 		vm_object_drop(object);
956 		bp->b_resid = 0;
957 		biodone(bio);
958 		return;
959 	}
960 
961 	/*
962 	 * We need to be able to create a new cluster of I/O's.  We cannot
963 	 * use the caller fields of the passed bio so push a new one.
964 	 *
965 	 * Because nbio is just a placeholder for the cluster links,
966 	 * we can biodone() the original bio instead of nbio to make
967 	 * things a bit more efficient.
968 	 */
969 	nbio = push_bio(bio);
970 	nbio->bio_offset = bio->bio_offset;
971 	nbio->bio_caller_info1.cluster_head = NULL;
972 	nbio->bio_caller_info2.cluster_tail = NULL;
973 
974 	biox = NULL;
975 	bufx = NULL;
976 
977 	/*
978 	 * Execute read or write
979 	 */
980 	vm_object_hold(object);
981 
982 	while (count > 0) {
983 		swblk_t blk;
984 
985 		/*
986 		 * Obtain block.  If block not found and writing, allocate a
987 		 * new block and build it into the object.
988 		 */
989 		blk = swp_pager_meta_ctl(object, start, 0);
990 		if ((blk == SWAPBLK_NONE) && bp->b_cmd != BUF_CMD_READ) {
991 			blk = swp_pager_getswapspace(object, 1);
992 			if (blk == SWAPBLK_NONE) {
993 				bp->b_error = ENOMEM;
994 				bp->b_flags |= B_ERROR;
995 				break;
996 			}
997 			swp_pager_meta_build(object, start, blk);
998 		}
999 
1000 		/*
1001 		 * Do we have to flush our current collection?  Yes if:
1002 		 *
1003 		 *	- no swap block at this index
1004 		 *	- swap block is not contiguous
1005 		 *	- we cross a physical disk boundry in the
1006 		 *	  stripe.
1007 		 */
1008 		if (
1009 		    biox && (biox_blkno + btoc(bufx->b_bcount) != blk ||
1010 		     ((biox_blkno ^ blk) & dmmax_mask)
1011 		    )
1012 		) {
1013 			if (bp->b_cmd == BUF_CMD_READ) {
1014 				++mycpu->gd_cnt.v_swapin;
1015 				mycpu->gd_cnt.v_swappgsin += btoc(bufx->b_bcount);
1016 			} else {
1017 				++mycpu->gd_cnt.v_swapout;
1018 				mycpu->gd_cnt.v_swappgsout += btoc(bufx->b_bcount);
1019 				bufx->b_dirtyend = bufx->b_bcount;
1020 			}
1021 
1022 			/*
1023 			 * Finished with this buf.
1024 			 */
1025 			KKASSERT(bufx->b_bcount != 0);
1026 			if (bufx->b_cmd != BUF_CMD_READ)
1027 				bufx->b_dirtyend = bufx->b_bcount;
1028 			biox = NULL;
1029 			bufx = NULL;
1030 		}
1031 
1032 		/*
1033 		 * Add new swapblk to biox, instantiating biox if necessary.
1034 		 * Zero-fill reads are able to take a shortcut.
1035 		 */
1036 		if (blk == SWAPBLK_NONE) {
1037 			/*
1038 			 * We can only get here if we are reading.  Since
1039 			 * we are at splvm() we can safely modify b_resid,
1040 			 * even if chain ops are in progress.
1041 			 */
1042 			bzero(data, PAGE_SIZE);
1043 			bp->b_resid -= PAGE_SIZE;
1044 		} else {
1045 			if (biox == NULL) {
1046 				/* XXX chain count > 4, wait to <= 4 */
1047 
1048 				bufx = getpbuf(NULL);
1049 				biox = &bufx->b_bio1;
1050 				cluster_append(nbio, bufx);
1051 				bufx->b_flags |= (bp->b_flags & B_ORDERED);
1052 				bufx->b_cmd = bp->b_cmd;
1053 				biox->bio_done = swap_chain_iodone;
1054 				biox->bio_offset = (off_t)blk << PAGE_SHIFT;
1055 				biox->bio_caller_info1.cluster_parent = nbio;
1056 				biox_blkno = blk;
1057 				bufx->b_bcount = 0;
1058 				bufx->b_data = data;
1059 			}
1060 			bufx->b_bcount += PAGE_SIZE;
1061 		}
1062 		--count;
1063 		++start;
1064 		data += PAGE_SIZE;
1065 	}
1066 
1067 	vm_object_drop(object);
1068 
1069 	/*
1070 	 *  Flush out last buffer
1071 	 */
1072 	if (biox) {
1073 		if (bufx->b_cmd == BUF_CMD_READ) {
1074 			++mycpu->gd_cnt.v_swapin;
1075 			mycpu->gd_cnt.v_swappgsin += btoc(bufx->b_bcount);
1076 		} else {
1077 			++mycpu->gd_cnt.v_swapout;
1078 			mycpu->gd_cnt.v_swappgsout += btoc(bufx->b_bcount);
1079 			bufx->b_dirtyend = bufx->b_bcount;
1080 		}
1081 		KKASSERT(bufx->b_bcount);
1082 		if (bufx->b_cmd != BUF_CMD_READ)
1083 			bufx->b_dirtyend = bufx->b_bcount;
1084 		/* biox, bufx = NULL */
1085 	}
1086 
1087 	/*
1088 	 * Now initiate all the I/O.  Be careful looping on our chain as
1089 	 * I/O's may complete while we are still initiating them.
1090 	 *
1091 	 * If the request is a 100% sparse read no bios will be present
1092 	 * and we just biodone() the buffer.
1093 	 */
1094 	nbio->bio_caller_info2.cluster_tail = NULL;
1095 	bufx = nbio->bio_caller_info1.cluster_head;
1096 
1097 	if (bufx) {
1098 		while (bufx) {
1099 			biox = &bufx->b_bio1;
1100 			BUF_KERNPROC(bufx);
1101 			bufx = bufx->b_cluster_next;
1102 			vn_strategy(swapdev_vp, biox);
1103 		}
1104 	} else {
1105 		biodone(bio);
1106 	}
1107 
1108 	/*
1109 	 * Completion of the cluster will also call biodone_chain(nbio).
1110 	 * We never call biodone(nbio) so we don't have to worry about
1111 	 * setting up a bio_done callback.  It's handled in the sub-IO.
1112 	 */
1113 	/**/
1114 }
1115 
1116 /*
1117  * biodone callback
1118  *
1119  * No requirements.
1120  */
1121 static void
1122 swap_chain_iodone(struct bio *biox)
1123 {
1124 	struct buf **nextp;
1125 	struct buf *bufx;	/* chained sub-buffer */
1126 	struct bio *nbio;	/* parent nbio with chain glue */
1127 	struct buf *bp;		/* original bp associated with nbio */
1128 	int chain_empty;
1129 
1130 	bufx = biox->bio_buf;
1131 	nbio = biox->bio_caller_info1.cluster_parent;
1132 	bp = nbio->bio_buf;
1133 
1134 	/*
1135 	 * Update the original buffer
1136 	 */
1137         KKASSERT(bp != NULL);
1138 	if (bufx->b_flags & B_ERROR) {
1139 		atomic_set_int(&bufx->b_flags, B_ERROR);
1140 		bp->b_error = bufx->b_error;	/* race ok */
1141 	} else if (bufx->b_resid != 0) {
1142 		atomic_set_int(&bufx->b_flags, B_ERROR);
1143 		bp->b_error = EINVAL;		/* race ok */
1144 	} else {
1145 		atomic_subtract_int(&bp->b_resid, bufx->b_bcount);
1146 	}
1147 
1148 	/*
1149 	 * Remove us from the chain.
1150 	 */
1151 	spin_lock(&bp->b_lock.lk_spinlock);
1152 	nextp = &nbio->bio_caller_info1.cluster_head;
1153 	while (*nextp != bufx) {
1154 		KKASSERT(*nextp != NULL);
1155 		nextp = &(*nextp)->b_cluster_next;
1156 	}
1157 	*nextp = bufx->b_cluster_next;
1158 	chain_empty = (nbio->bio_caller_info1.cluster_head == NULL);
1159 	spin_unlock(&bp->b_lock.lk_spinlock);
1160 
1161 	/*
1162 	 * Clean up bufx.  If the chain is now empty we finish out
1163 	 * the parent.  Note that we may be racing other completions
1164 	 * so we must use the chain_empty status from above.
1165 	 */
1166 	if (chain_empty) {
1167 		if (bp->b_resid != 0 && !(bp->b_flags & B_ERROR)) {
1168 			atomic_set_int(&bp->b_flags, B_ERROR);
1169 			bp->b_error = EINVAL;
1170 		}
1171 		biodone_chain(nbio);
1172         }
1173         relpbuf(bufx, NULL);
1174 }
1175 
1176 /*
1177  * SWAP_PAGER_GETPAGES() - bring page in from swap
1178  *
1179  * The requested page may have to be brought in from swap.  Calculate the
1180  * swap block and bring in additional pages if possible.  All pages must
1181  * have contiguous swap block assignments and reside in the same object.
1182  *
1183  * The caller has a single vm_object_pip_add() reference prior to
1184  * calling us and we should return with the same.
1185  *
1186  * The caller has BUSY'd the page.  We should return with (*mpp) left busy,
1187  * and any additinal pages unbusied.
1188  *
1189  * If the caller encounters a PG_RAM page it will pass it to us even though
1190  * it may be valid and dirty.  We cannot overwrite the page in this case!
1191  * The case is used to allow us to issue pure read-aheads.
1192  *
1193  * NOTE! XXX This code does not entirely pipeline yet due to the fact that
1194  *       the PG_RAM page is validated at the same time as mreq.  What we
1195  *	 really need to do is issue a separate read-ahead pbuf.
1196  *
1197  * No requirements.
1198  */
1199 static int
1200 swap_pager_getpage(vm_object_t object, vm_page_t *mpp, int seqaccess)
1201 {
1202 	struct buf *bp;
1203 	struct bio *bio;
1204 	vm_page_t mreq;
1205 	vm_page_t m;
1206 	vm_offset_t kva;
1207 	swblk_t blk;
1208 	int i;
1209 	int j;
1210 	int raonly;
1211 	int error;
1212 	u_int32_t flags;
1213 	vm_page_t marray[XIO_INTERNAL_PAGES];
1214 
1215 	mreq = *mpp;
1216 
1217 	vm_object_hold(object);
1218 	if (mreq->object != object) {
1219 		panic("swap_pager_getpages: object mismatch %p/%p",
1220 		    object,
1221 		    mreq->object
1222 		);
1223 	}
1224 
1225 	/*
1226 	 * We don't want to overwrite a fully valid page as it might be
1227 	 * dirty.  This case can occur when e.g. vm_fault hits a perfectly
1228 	 * valid page with PG_RAM set.
1229 	 *
1230 	 * In this case we see if the next page is a suitable page-in
1231 	 * candidate and if it is we issue read-ahead.  PG_RAM will be
1232 	 * set on the last page of the read-ahead to continue the pipeline.
1233 	 */
1234 	if (mreq->valid == VM_PAGE_BITS_ALL) {
1235 		if (swap_burst_read == 0 || mreq->pindex + 1 >= object->size) {
1236 			vm_object_drop(object);
1237 			return(VM_PAGER_OK);
1238 		}
1239 		blk = swp_pager_meta_ctl(object, mreq->pindex + 1, 0);
1240 		if (blk == SWAPBLK_NONE) {
1241 			vm_object_drop(object);
1242 			return(VM_PAGER_OK);
1243 		}
1244 		m = vm_page_lookup_busy_try(object, mreq->pindex + 1,
1245 					    TRUE, &error);
1246 		if (error) {
1247 			vm_object_drop(object);
1248 			return(VM_PAGER_OK);
1249 		} else if (m == NULL) {
1250 			/*
1251 			 * Use VM_ALLOC_QUICK to avoid blocking on cache
1252 			 * page reuse.
1253 			 */
1254 			m = vm_page_alloc(object, mreq->pindex + 1,
1255 					  VM_ALLOC_QUICK);
1256 			if (m == NULL) {
1257 				vm_object_drop(object);
1258 				return(VM_PAGER_OK);
1259 			}
1260 		} else {
1261 			if (m->valid) {
1262 				vm_page_wakeup(m);
1263 				vm_object_drop(object);
1264 				return(VM_PAGER_OK);
1265 			}
1266 			vm_page_unqueue_nowakeup(m);
1267 		}
1268 		/* page is busy */
1269 		mreq = m;
1270 		raonly = 1;
1271 	} else {
1272 		raonly = 0;
1273 	}
1274 
1275 	/*
1276 	 * Try to block-read contiguous pages from swap if sequential,
1277 	 * otherwise just read one page.  Contiguous pages from swap must
1278 	 * reside within a single device stripe because the I/O cannot be
1279 	 * broken up across multiple stripes.
1280 	 *
1281 	 * Note that blk and iblk can be SWAPBLK_NONE but the loop is
1282 	 * set up such that the case(s) are handled implicitly.
1283 	 */
1284 	blk = swp_pager_meta_ctl(mreq->object, mreq->pindex, 0);
1285 	marray[0] = mreq;
1286 
1287 	for (i = 1; swap_burst_read &&
1288 		    i < XIO_INTERNAL_PAGES &&
1289 		    mreq->pindex + i < object->size; ++i) {
1290 		swblk_t iblk;
1291 
1292 		iblk = swp_pager_meta_ctl(object, mreq->pindex + i, 0);
1293 		if (iblk != blk + i)
1294 			break;
1295 		if ((blk ^ iblk) & dmmax_mask)
1296 			break;
1297 		m = vm_page_lookup_busy_try(object, mreq->pindex + i,
1298 					    TRUE, &error);
1299 		if (error) {
1300 			break;
1301 		} else if (m == NULL) {
1302 			/*
1303 			 * Use VM_ALLOC_QUICK to avoid blocking on cache
1304 			 * page reuse.
1305 			 */
1306 			m = vm_page_alloc(object, mreq->pindex + i,
1307 					  VM_ALLOC_QUICK);
1308 			if (m == NULL)
1309 				break;
1310 		} else {
1311 			if (m->valid) {
1312 				vm_page_wakeup(m);
1313 				break;
1314 			}
1315 			vm_page_unqueue_nowakeup(m);
1316 		}
1317 		/* page is busy */
1318 		marray[i] = m;
1319 	}
1320 	if (i > 1)
1321 		vm_page_flag_set(marray[i - 1], PG_RAM);
1322 
1323 	/*
1324 	 * If mreq is the requested page and we have nothing to do return
1325 	 * VM_PAGER_FAIL.  If raonly is set mreq is just another read-ahead
1326 	 * page and must be cleaned up.
1327 	 */
1328 	if (blk == SWAPBLK_NONE) {
1329 		KKASSERT(i == 1);
1330 		if (raonly) {
1331 			vnode_pager_freepage(mreq);
1332 			vm_object_drop(object);
1333 			return(VM_PAGER_OK);
1334 		} else {
1335 			vm_object_drop(object);
1336 			return(VM_PAGER_FAIL);
1337 		}
1338 	}
1339 
1340 	/*
1341 	 * map our page(s) into kva for input
1342 	 */
1343 	bp = getpbuf_kva(&nsw_rcount);
1344 	bio = &bp->b_bio1;
1345 	kva = (vm_offset_t) bp->b_kvabase;
1346 	bcopy(marray, bp->b_xio.xio_pages, i * sizeof(vm_page_t));
1347 	pmap_qenter(kva, bp->b_xio.xio_pages, i);
1348 
1349 	bp->b_data = (caddr_t)kva;
1350 	bp->b_bcount = PAGE_SIZE * i;
1351 	bp->b_xio.xio_npages = i;
1352 	bio->bio_done = swp_pager_async_iodone;
1353 	bio->bio_offset = (off_t)blk << PAGE_SHIFT;
1354 	bio->bio_caller_info1.index = SWBIO_READ;
1355 
1356 	/*
1357 	 * Set index.  If raonly set the index beyond the array so all
1358 	 * the pages are treated the same, otherwise the original mreq is
1359 	 * at index 0.
1360 	 */
1361 	if (raonly)
1362 		bio->bio_driver_info = (void *)(intptr_t)i;
1363 	else
1364 		bio->bio_driver_info = (void *)(intptr_t)0;
1365 
1366 	for (j = 0; j < i; ++j)
1367 		vm_page_flag_set(bp->b_xio.xio_pages[j], PG_SWAPINPROG);
1368 
1369 	mycpu->gd_cnt.v_swapin++;
1370 	mycpu->gd_cnt.v_swappgsin += bp->b_xio.xio_npages;
1371 
1372 	/*
1373 	 * We still hold the lock on mreq, and our automatic completion routine
1374 	 * does not remove it.
1375 	 */
1376 	vm_object_pip_add(object, bp->b_xio.xio_npages);
1377 
1378 	/*
1379 	 * perform the I/O.  NOTE!!!  bp cannot be considered valid after
1380 	 * this point because we automatically release it on completion.
1381 	 * Instead, we look at the one page we are interested in which we
1382 	 * still hold a lock on even through the I/O completion.
1383 	 *
1384 	 * The other pages in our m[] array are also released on completion,
1385 	 * so we cannot assume they are valid anymore either.
1386 	 */
1387 	bp->b_cmd = BUF_CMD_READ;
1388 	BUF_KERNPROC(bp);
1389 	vn_strategy(swapdev_vp, bio);
1390 
1391 	/*
1392 	 * Wait for the page we want to complete.  PG_SWAPINPROG is always
1393 	 * cleared on completion.  If an I/O error occurs, SWAPBLK_NONE
1394 	 * is set in the meta-data.
1395 	 *
1396 	 * If this is a read-ahead only we return immediately without
1397 	 * waiting for I/O.
1398 	 */
1399 	if (raonly) {
1400 		vm_object_drop(object);
1401 		return(VM_PAGER_OK);
1402 	}
1403 
1404 	/*
1405 	 * Read-ahead includes originally requested page case.
1406 	 */
1407 	for (;;) {
1408 		flags = mreq->flags;
1409 		cpu_ccfence();
1410 		if ((flags & PG_SWAPINPROG) == 0)
1411 			break;
1412 		tsleep_interlock(mreq, 0);
1413 		if (!atomic_cmpset_int(&mreq->flags, flags,
1414 				       flags | PG_WANTED | PG_REFERENCED)) {
1415 			continue;
1416 		}
1417 		mycpu->gd_cnt.v_intrans++;
1418 		if (tsleep(mreq, PINTERLOCKED, "swread", hz*20)) {
1419 			kprintf(
1420 			    "swap_pager: indefinite wait buffer: "
1421 				" offset: %lld, size: %ld\n",
1422 			    (long long)bio->bio_offset,
1423 			    (long)bp->b_bcount
1424 			);
1425 		}
1426 	}
1427 
1428 	/*
1429 	 * mreq is left bussied after completion, but all the other pages
1430 	 * are freed.  If we had an unrecoverable read error the page will
1431 	 * not be valid.
1432 	 */
1433 	vm_object_drop(object);
1434 	if (mreq->valid != VM_PAGE_BITS_ALL)
1435 		return(VM_PAGER_ERROR);
1436 	else
1437 		return(VM_PAGER_OK);
1438 
1439 	/*
1440 	 * A final note: in a low swap situation, we cannot deallocate swap
1441 	 * and mark a page dirty here because the caller is likely to mark
1442 	 * the page clean when we return, causing the page to possibly revert
1443 	 * to all-zero's later.
1444 	 */
1445 }
1446 
1447 /*
1448  *	swap_pager_putpages:
1449  *
1450  *	Assign swap (if necessary) and initiate I/O on the specified pages.
1451  *
1452  *	We support both OBJT_DEFAULT and OBJT_SWAP objects.  DEFAULT objects
1453  *	are automatically converted to SWAP objects.
1454  *
1455  *	In a low memory situation we may block in vn_strategy(), but the new
1456  *	vm_page reservation system coupled with properly written VFS devices
1457  *	should ensure that no low-memory deadlock occurs.  This is an area
1458  *	which needs work.
1459  *
1460  *	The parent has N vm_object_pip_add() references prior to
1461  *	calling us and will remove references for rtvals[] that are
1462  *	not set to VM_PAGER_PEND.  We need to remove the rest on I/O
1463  *	completion.
1464  *
1465  *	The parent has soft-busy'd the pages it passes us and will unbusy
1466  *	those whos rtvals[] entry is not set to VM_PAGER_PEND on return.
1467  *	We need to unbusy the rest on I/O completion.
1468  *
1469  * No requirements.
1470  */
1471 void
1472 swap_pager_putpages(vm_object_t object, vm_page_t *m, int count,
1473 		    boolean_t sync, int *rtvals)
1474 {
1475 	int i;
1476 	int n = 0;
1477 
1478 	vm_object_hold(object);
1479 
1480 	if (count && m[0]->object != object) {
1481 		panic("swap_pager_getpages: object mismatch %p/%p",
1482 		    object,
1483 		    m[0]->object
1484 		);
1485 	}
1486 
1487 	/*
1488 	 * Step 1
1489 	 *
1490 	 * Turn object into OBJT_SWAP
1491 	 * check for bogus sysops
1492 	 * force sync if not pageout process
1493 	 */
1494 	if (object->type == OBJT_DEFAULT) {
1495 		if (object->type == OBJT_DEFAULT)
1496 			swp_pager_meta_convert(object);
1497 	}
1498 
1499 	if (curthread != pagethread)
1500 		sync = TRUE;
1501 
1502 	/*
1503 	 * Step 2
1504 	 *
1505 	 * Update nsw parameters from swap_async_max sysctl values.
1506 	 * Do not let the sysop crash the machine with bogus numbers.
1507 	 */
1508 	if (swap_async_max != nsw_wcount_async_max) {
1509 		int n;
1510 
1511 		/*
1512 		 * limit range
1513 		 */
1514 		if ((n = swap_async_max) > nswbuf / 2)
1515 			n = nswbuf / 2;
1516 		if (n < 1)
1517 			n = 1;
1518 		swap_async_max = n;
1519 
1520 		/*
1521 		 * Adjust difference ( if possible ).  If the current async
1522 		 * count is too low, we may not be able to make the adjustment
1523 		 * at this time.
1524 		 *
1525 		 * vm_token needed for nsw_wcount sleep interlock
1526 		 */
1527 		lwkt_gettoken(&vm_token);
1528 		n -= nsw_wcount_async_max;
1529 		if (nsw_wcount_async + n >= 0) {
1530 			nsw_wcount_async_max += n;
1531 			pbuf_adjcount(&nsw_wcount_async, n);
1532 		}
1533 		lwkt_reltoken(&vm_token);
1534 	}
1535 
1536 	/*
1537 	 * Step 3
1538 	 *
1539 	 * Assign swap blocks and issue I/O.  We reallocate swap on the fly.
1540 	 * The page is left dirty until the pageout operation completes
1541 	 * successfully.
1542 	 */
1543 
1544 	for (i = 0; i < count; i += n) {
1545 		struct buf *bp;
1546 		struct bio *bio;
1547 		swblk_t blk;
1548 		int j;
1549 
1550 		/*
1551 		 * Maximum I/O size is limited by a number of factors.
1552 		 */
1553 
1554 		n = min(BLIST_MAX_ALLOC, count - i);
1555 		n = min(n, nsw_cluster_max);
1556 
1557 		lwkt_gettoken(&vm_token);
1558 
1559 		/*
1560 		 * Get biggest block of swap we can.  If we fail, fall
1561 		 * back and try to allocate a smaller block.  Don't go
1562 		 * overboard trying to allocate space if it would overly
1563 		 * fragment swap.
1564 		 */
1565 		while (
1566 		    (blk = swp_pager_getswapspace(object, n)) == SWAPBLK_NONE &&
1567 		    n > 4
1568 		) {
1569 			n >>= 1;
1570 		}
1571 		if (blk == SWAPBLK_NONE) {
1572 			for (j = 0; j < n; ++j)
1573 				rtvals[i+j] = VM_PAGER_FAIL;
1574 			lwkt_reltoken(&vm_token);
1575 			continue;
1576 		}
1577 		if (vm_report_swap_allocs > 0) {
1578 			kprintf("swap_alloc %08jx,%d\n", (intmax_t)blk, n);
1579 			--vm_report_swap_allocs;
1580 		}
1581 
1582 		/*
1583 		 * The I/O we are constructing cannot cross a physical
1584 		 * disk boundry in the swap stripe.  Note: we are still
1585 		 * at splvm().
1586 		 */
1587 		if ((blk ^ (blk + n)) & dmmax_mask) {
1588 			j = ((blk + dmmax) & dmmax_mask) - blk;
1589 			swp_pager_freeswapspace(object, blk + j, n - j);
1590 			n = j;
1591 		}
1592 
1593 		/*
1594 		 * All I/O parameters have been satisfied, build the I/O
1595 		 * request and assign the swap space.
1596 		 */
1597 		if (sync == TRUE)
1598 			bp = getpbuf_kva(&nsw_wcount_sync);
1599 		else
1600 			bp = getpbuf_kva(&nsw_wcount_async);
1601 		bio = &bp->b_bio1;
1602 
1603 		lwkt_reltoken(&vm_token);
1604 
1605 		pmap_qenter((vm_offset_t)bp->b_data, &m[i], n);
1606 
1607 		bp->b_bcount = PAGE_SIZE * n;
1608 		bio->bio_offset = (off_t)blk << PAGE_SHIFT;
1609 
1610 		for (j = 0; j < n; ++j) {
1611 			vm_page_t mreq = m[i+j];
1612 
1613 			swp_pager_meta_build(mreq->object, mreq->pindex,
1614 					     blk + j);
1615 			if (object->type == OBJT_SWAP)
1616 				vm_page_dirty(mreq);
1617 			rtvals[i+j] = VM_PAGER_OK;
1618 
1619 			vm_page_flag_set(mreq, PG_SWAPINPROG);
1620 			bp->b_xio.xio_pages[j] = mreq;
1621 		}
1622 		bp->b_xio.xio_npages = n;
1623 
1624 		mycpu->gd_cnt.v_swapout++;
1625 		mycpu->gd_cnt.v_swappgsout += bp->b_xio.xio_npages;
1626 
1627 		bp->b_dirtyoff = 0;		/* req'd for NFS */
1628 		bp->b_dirtyend = bp->b_bcount;	/* req'd for NFS */
1629 		bp->b_cmd = BUF_CMD_WRITE;
1630 		bio->bio_caller_info1.index = SWBIO_WRITE;
1631 
1632 		/*
1633 		 * asynchronous
1634 		 */
1635 		if (sync == FALSE) {
1636 			bio->bio_done = swp_pager_async_iodone;
1637 			BUF_KERNPROC(bp);
1638 			vn_strategy(swapdev_vp, bio);
1639 
1640 			for (j = 0; j < n; ++j)
1641 				rtvals[i+j] = VM_PAGER_PEND;
1642 			continue;
1643 		}
1644 
1645 		/*
1646 		 * Issue synchrnously.
1647 		 *
1648 		 * Wait for the sync I/O to complete, then update rtvals.
1649 		 * We just set the rtvals[] to VM_PAGER_PEND so we can call
1650 		 * our async completion routine at the end, thus avoiding a
1651 		 * double-free.
1652 		 */
1653 		bio->bio_caller_info1.index |= SWBIO_SYNC;
1654 		bio->bio_done = biodone_sync;
1655 		bio->bio_flags |= BIO_SYNC;
1656 		vn_strategy(swapdev_vp, bio);
1657 		biowait(bio, "swwrt");
1658 
1659 		for (j = 0; j < n; ++j)
1660 			rtvals[i+j] = VM_PAGER_PEND;
1661 
1662 		/*
1663 		 * Now that we are through with the bp, we can call the
1664 		 * normal async completion, which frees everything up.
1665 		 */
1666 		swp_pager_async_iodone(bio);
1667 	}
1668 	vm_object_drop(object);
1669 }
1670 
1671 /*
1672  * No requirements.
1673  */
1674 void
1675 swap_pager_newswap(void)
1676 {
1677 	swp_sizecheck();
1678 }
1679 
1680 /*
1681  *	swp_pager_async_iodone:
1682  *
1683  *	Completion routine for asynchronous reads and writes from/to swap.
1684  *	Also called manually by synchronous code to finish up a bp.
1685  *
1686  *	For READ operations, the pages are PG_BUSY'd.  For WRITE operations,
1687  *	the pages are vm_page_t->busy'd.  For READ operations, we PG_BUSY
1688  *	unbusy all pages except the 'main' request page.  For WRITE
1689  *	operations, we vm_page_t->busy'd unbusy all pages ( we can do this
1690  *	because we marked them all VM_PAGER_PEND on return from putpages ).
1691  *
1692  *	This routine may not block.
1693  *
1694  * No requirements.
1695  */
1696 static void
1697 swp_pager_async_iodone(struct bio *bio)
1698 {
1699 	struct buf *bp = bio->bio_buf;
1700 	vm_object_t object = NULL;
1701 	int i;
1702 	int *nswptr;
1703 
1704 	/*
1705 	 * report error
1706 	 */
1707 	if (bp->b_flags & B_ERROR) {
1708 		kprintf(
1709 		    "swap_pager: I/O error - %s failed; offset %lld,"
1710 			"size %ld, error %d\n",
1711 		    ((bio->bio_caller_info1.index & SWBIO_READ) ?
1712 			"pagein" : "pageout"),
1713 		    (long long)bio->bio_offset,
1714 		    (long)bp->b_bcount,
1715 		    bp->b_error
1716 		);
1717 	}
1718 
1719 	/*
1720 	 * set object, raise to splvm().
1721 	 */
1722 	if (bp->b_xio.xio_npages)
1723 		object = bp->b_xio.xio_pages[0]->object;
1724 
1725 	/*
1726 	 * remove the mapping for kernel virtual
1727 	 */
1728 	pmap_qremove((vm_offset_t)bp->b_data, bp->b_xio.xio_npages);
1729 
1730 	/*
1731 	 * cleanup pages.  If an error occurs writing to swap, we are in
1732 	 * very serious trouble.  If it happens to be a disk error, though,
1733 	 * we may be able to recover by reassigning the swap later on.  So
1734 	 * in this case we remove the m->swapblk assignment for the page
1735 	 * but do not free it in the rlist.  The errornous block(s) are thus
1736 	 * never reallocated as swap.  Redirty the page and continue.
1737 	 */
1738 	for (i = 0; i < bp->b_xio.xio_npages; ++i) {
1739 		vm_page_t m = bp->b_xio.xio_pages[i];
1740 
1741 		if (bp->b_flags & B_ERROR) {
1742 			/*
1743 			 * If an error occurs I'd love to throw the swapblk
1744 			 * away without freeing it back to swapspace, so it
1745 			 * can never be used again.  But I can't from an
1746 			 * interrupt.
1747 			 */
1748 
1749 			if (bio->bio_caller_info1.index & SWBIO_READ) {
1750 				/*
1751 				 * When reading, reqpage needs to stay
1752 				 * locked for the parent, but all other
1753 				 * pages can be freed.  We still want to
1754 				 * wakeup the parent waiting on the page,
1755 				 * though.  ( also: pg_reqpage can be -1 and
1756 				 * not match anything ).
1757 				 *
1758 				 * We have to wake specifically requested pages
1759 				 * up too because we cleared PG_SWAPINPROG and
1760 				 * someone may be waiting for that.
1761 				 *
1762 				 * NOTE: for reads, m->dirty will probably
1763 				 * be overridden by the original caller of
1764 				 * getpages so don't play cute tricks here.
1765 				 *
1766 				 * NOTE: We can't actually free the page from
1767 				 * here, because this is an interrupt.  It
1768 				 * is not legal to mess with object->memq
1769 				 * from an interrupt.  Deactivate the page
1770 				 * instead.
1771 				 */
1772 
1773 				m->valid = 0;
1774 				vm_page_flag_clear(m, PG_ZERO);
1775 				vm_page_flag_clear(m, PG_SWAPINPROG);
1776 
1777 				/*
1778 				 * bio_driver_info holds the requested page
1779 				 * index.
1780 				 */
1781 				if (i != (int)(intptr_t)bio->bio_driver_info) {
1782 					vm_page_deactivate(m);
1783 					vm_page_wakeup(m);
1784 				} else {
1785 					vm_page_flash(m);
1786 				}
1787 				/*
1788 				 * If i == bp->b_pager.pg_reqpage, do not wake
1789 				 * the page up.  The caller needs to.
1790 				 */
1791 			} else {
1792 				/*
1793 				 * If a write error occurs remove the swap
1794 				 * assignment (note that PG_SWAPPED may or
1795 				 * may not be set depending on prior activity).
1796 				 *
1797 				 * Re-dirty OBJT_SWAP pages as there is no
1798 				 * other backing store, we can't throw the
1799 				 * page away.
1800 				 *
1801 				 * Non-OBJT_SWAP pages (aka swapcache) must
1802 				 * not be dirtied since they may not have
1803 				 * been dirty in the first place, and they
1804 				 * do have backing store (the vnode).
1805 				 */
1806 				vm_page_busy_wait(m, FALSE, "swadpg");
1807 				swp_pager_meta_ctl(m->object, m->pindex,
1808 						   SWM_FREE);
1809 				vm_page_flag_clear(m, PG_SWAPPED);
1810 				if (m->object->type == OBJT_SWAP) {
1811 					vm_page_dirty(m);
1812 					vm_page_activate(m);
1813 				}
1814 				vm_page_flag_clear(m, PG_SWAPINPROG);
1815 				vm_page_io_finish(m);
1816 				vm_page_wakeup(m);
1817 			}
1818 		} else if (bio->bio_caller_info1.index & SWBIO_READ) {
1819 			/*
1820 			 * NOTE: for reads, m->dirty will probably be
1821 			 * overridden by the original caller of getpages so
1822 			 * we cannot set them in order to free the underlying
1823 			 * swap in a low-swap situation.  I don't think we'd
1824 			 * want to do that anyway, but it was an optimization
1825 			 * that existed in the old swapper for a time before
1826 			 * it got ripped out due to precisely this problem.
1827 			 *
1828 			 * clear PG_ZERO in page.
1829 			 *
1830 			 * If not the requested page then deactivate it.
1831 			 *
1832 			 * Note that the requested page, reqpage, is left
1833 			 * busied, but we still have to wake it up.  The
1834 			 * other pages are released (unbusied) by
1835 			 * vm_page_wakeup().  We do not set reqpage's
1836 			 * valid bits here, it is up to the caller.
1837 			 */
1838 
1839 			/*
1840 			 * NOTE: can't call pmap_clear_modify(m) from an
1841 			 * interrupt thread, the pmap code may have to map
1842 			 * non-kernel pmaps and currently asserts the case.
1843 			 */
1844 			/*pmap_clear_modify(m);*/
1845 			m->valid = VM_PAGE_BITS_ALL;
1846 			vm_page_undirty(m);
1847 			vm_page_flag_clear(m, PG_ZERO | PG_SWAPINPROG);
1848 			vm_page_flag_set(m, PG_SWAPPED);
1849 
1850 			/*
1851 			 * We have to wake specifically requested pages
1852 			 * up too because we cleared PG_SWAPINPROG and
1853 			 * could be waiting for it in getpages.  However,
1854 			 * be sure to not unbusy getpages specifically
1855 			 * requested page - getpages expects it to be
1856 			 * left busy.
1857 			 *
1858 			 * bio_driver_info holds the requested page
1859 			 */
1860 			if (i != (int)(intptr_t)bio->bio_driver_info) {
1861 				vm_page_deactivate(m);
1862 				vm_page_wakeup(m);
1863 			} else {
1864 				vm_page_flash(m);
1865 			}
1866 		} else {
1867 			/*
1868 			 * Mark the page clean but do not mess with the
1869 			 * pmap-layer's modified state.  That state should
1870 			 * also be clear since the caller protected the
1871 			 * page VM_PROT_READ, but allow the case.
1872 			 *
1873 			 * We are in an interrupt, avoid pmap operations.
1874 			 *
1875 			 * If we have a severe page deficit, deactivate the
1876 			 * page.  Do not try to cache it (which would also
1877 			 * involve a pmap op), because the page might still
1878 			 * be read-heavy.
1879 			 *
1880 			 * When using the swap to cache clean vnode pages
1881 			 * we do not mess with the page dirty bits.
1882 			 */
1883 			vm_page_busy_wait(m, FALSE, "swadpg");
1884 			if (m->object->type == OBJT_SWAP)
1885 				vm_page_undirty(m);
1886 			vm_page_flag_clear(m, PG_SWAPINPROG);
1887 			vm_page_flag_set(m, PG_SWAPPED);
1888 			if (vm_page_count_severe())
1889 				vm_page_deactivate(m);
1890 #if 0
1891 			if (!vm_page_count_severe() || !vm_page_try_to_cache(m))
1892 				vm_page_protect(m, VM_PROT_READ);
1893 #endif
1894 			vm_page_io_finish(m);
1895 			vm_page_wakeup(m);
1896 		}
1897 	}
1898 
1899 	/*
1900 	 * adjust pip.  NOTE: the original parent may still have its own
1901 	 * pip refs on the object.
1902 	 */
1903 
1904 	if (object)
1905 		vm_object_pip_wakeup_n(object, bp->b_xio.xio_npages);
1906 
1907 	/*
1908 	 * Release the physical I/O buffer.
1909 	 *
1910 	 * NOTE: Due to synchronous operations in the write case b_cmd may
1911 	 *	 already be set to BUF_CMD_DONE and BIO_SYNC may have already
1912 	 *	 been cleared.
1913 	 *
1914 	 * Use vm_token to interlock nsw_rcount/wcount wakeup?
1915 	 */
1916 	lwkt_gettoken(&vm_token);
1917 	if (bio->bio_caller_info1.index & SWBIO_READ)
1918 		nswptr = &nsw_rcount;
1919 	else if (bio->bio_caller_info1.index & SWBIO_SYNC)
1920 		nswptr = &nsw_wcount_sync;
1921 	else
1922 		nswptr = &nsw_wcount_async;
1923 	bp->b_cmd = BUF_CMD_DONE;
1924 	relpbuf(bp, nswptr);
1925 	lwkt_reltoken(&vm_token);
1926 }
1927 
1928 /*
1929  * Fault-in a potentially swapped page and remove the swap reference.
1930  * (used by swapoff code)
1931  *
1932  * object must be held.
1933  */
1934 static __inline void
1935 swp_pager_fault_page(vm_object_t object, vm_pindex_t pindex)
1936 {
1937 	struct vnode *vp;
1938 	vm_page_t m;
1939 	int error;
1940 
1941 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1942 
1943 	if (object->type == OBJT_VNODE) {
1944 		/*
1945 		 * Any swap related to a vnode is due to swapcache.  We must
1946 		 * vget() the vnode in case it is not active (otherwise
1947 		 * vref() will panic).  Calling vm_object_page_remove() will
1948 		 * ensure that any swap ref is removed interlocked with the
1949 		 * page.  clean_only is set to TRUE so we don't throw away
1950 		 * dirty pages.
1951 		 */
1952 		vp = object->handle;
1953 		error = vget(vp, LK_SHARED | LK_RETRY | LK_CANRECURSE);
1954 		if (error == 0) {
1955 			vm_object_page_remove(object, pindex, pindex + 1, TRUE);
1956 			vput(vp);
1957 		}
1958 	} else {
1959 		/*
1960 		 * Otherwise it is a normal OBJT_SWAP object and we can
1961 		 * fault the page in and remove the swap.
1962 		 */
1963 		m = vm_fault_object_page(object, IDX_TO_OFF(pindex),
1964 					 VM_PROT_NONE,
1965 					 VM_FAULT_DIRTY | VM_FAULT_UNSWAP,
1966 					 0, &error);
1967 		if (m)
1968 			vm_page_unhold(m);
1969 	}
1970 }
1971 
1972 /*
1973  * This removes all swap blocks related to a particular device.  We have
1974  * to be careful of ripups during the scan.
1975  */
1976 static int swp_pager_swapoff_callback(struct swblock *swap, void *data);
1977 
1978 int
1979 swap_pager_swapoff(int devidx)
1980 {
1981 	struct vm_object marker;
1982 	vm_object_t object;
1983 	struct swswapoffinfo info;
1984 
1985 	bzero(&marker, sizeof(marker));
1986 	marker.type = OBJT_MARKER;
1987 
1988 	lwkt_gettoken(&vmobj_token);
1989 	TAILQ_INSERT_HEAD(&vm_object_list, &marker, object_list);
1990 
1991 	while ((object = TAILQ_NEXT(&marker, object_list)) != NULL) {
1992 		if (object->type == OBJT_MARKER)
1993 			goto skip;
1994 		if (object->type != OBJT_SWAP && object->type != OBJT_VNODE)
1995 			goto skip;
1996 		vm_object_hold(object);
1997 		if (object->type != OBJT_SWAP && object->type != OBJT_VNODE) {
1998 			vm_object_drop(object);
1999 			goto skip;
2000 		}
2001 		info.object = object;
2002 		info.devidx = devidx;
2003 		swblock_rb_tree_RB_SCAN(&object->swblock_root,
2004 					NULL,
2005 					swp_pager_swapoff_callback,
2006 					&info);
2007 		vm_object_drop(object);
2008 skip:
2009 		if (object == TAILQ_NEXT(&marker, object_list)) {
2010 			TAILQ_REMOVE(&vm_object_list, &marker, object_list);
2011 			TAILQ_INSERT_AFTER(&vm_object_list, object,
2012 					   &marker, object_list);
2013 		}
2014 	}
2015 	TAILQ_REMOVE(&vm_object_list, &marker, object_list);
2016 	lwkt_reltoken(&vmobj_token);
2017 
2018 	/*
2019 	 * If we fail to locate all swblocks we just fail gracefully and
2020 	 * do not bother to restore paging on the swap device.  If the
2021 	 * user wants to retry the user can retry.
2022 	 */
2023 	if (swdevt[devidx].sw_nused)
2024 		return (1);
2025 	else
2026 		return (0);
2027 }
2028 
2029 static
2030 int
2031 swp_pager_swapoff_callback(struct swblock *swap, void *data)
2032 {
2033 	struct swswapoffinfo *info = data;
2034 	vm_object_t object = info->object;
2035 	vm_pindex_t index;
2036 	swblk_t v;
2037 	int i;
2038 
2039 	index = swap->swb_index;
2040 	for (i = 0; i < SWAP_META_PAGES; ++i) {
2041 		/*
2042 		 * Make sure we don't race a dying object.  This will
2043 		 * kill the scan of the object's swap blocks entirely.
2044 		 */
2045 		if (object->flags & OBJ_DEAD)
2046 			return(-1);
2047 
2048 		/*
2049 		 * Fault the page, which can obviously block.  If the swap
2050 		 * structure disappears break out.
2051 		 */
2052 		v = swap->swb_pages[i];
2053 		if (v != SWAPBLK_NONE && BLK2DEVIDX(v) == info->devidx) {
2054 			swp_pager_fault_page(object, swap->swb_index + i);
2055 			/* swap ptr might go away */
2056 			if (RB_LOOKUP(swblock_rb_tree,
2057 				      &object->swblock_root, index) != swap) {
2058 				break;
2059 			}
2060 		}
2061 	}
2062 	return(0);
2063 }
2064 
2065 /************************************************************************
2066  *				SWAP META DATA 				*
2067  ************************************************************************
2068  *
2069  *	These routines manipulate the swap metadata stored in the
2070  *	OBJT_SWAP object.  All swp_*() routines must be called at
2071  *	splvm() because swap can be freed up by the low level vm_page
2072  *	code which might be called from interrupts beyond what splbio() covers.
2073  *
2074  *	Swap metadata is implemented with a global hash and not directly
2075  *	linked into the object.  Instead the object simply contains
2076  *	appropriate tracking counters.
2077  */
2078 
2079 /*
2080  * Lookup the swblock containing the specified swap block index.
2081  *
2082  * The caller must hold the object.
2083  */
2084 static __inline
2085 struct swblock *
2086 swp_pager_lookup(vm_object_t object, vm_pindex_t index)
2087 {
2088 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2089 	index &= ~(vm_pindex_t)SWAP_META_MASK;
2090 	return (RB_LOOKUP(swblock_rb_tree, &object->swblock_root, index));
2091 }
2092 
2093 /*
2094  * Remove a swblock from the RB tree.
2095  *
2096  * The caller must hold the object.
2097  */
2098 static __inline
2099 void
2100 swp_pager_remove(vm_object_t object, struct swblock *swap)
2101 {
2102 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2103 	RB_REMOVE(swblock_rb_tree, &object->swblock_root, swap);
2104 }
2105 
2106 /*
2107  * Convert default object to swap object if necessary
2108  *
2109  * The caller must hold the object.
2110  */
2111 static void
2112 swp_pager_meta_convert(vm_object_t object)
2113 {
2114 	if (object->type == OBJT_DEFAULT) {
2115 		object->type = OBJT_SWAP;
2116 		KKASSERT(object->swblock_count == 0);
2117 	}
2118 }
2119 
2120 /*
2121  * SWP_PAGER_META_BUILD() -	add swap block to swap meta data for object
2122  *
2123  *	We first convert the object to a swap object if it is a default
2124  *	object.  Vnode objects do not need to be converted.
2125  *
2126  *	The specified swapblk is added to the object's swap metadata.  If
2127  *	the swapblk is not valid, it is freed instead.  Any previously
2128  *	assigned swapblk is freed.
2129  *
2130  * The caller must hold the object.
2131  */
2132 static void
2133 swp_pager_meta_build(vm_object_t object, vm_pindex_t index, swblk_t swapblk)
2134 {
2135 	struct swblock *swap;
2136 	struct swblock *oswap;
2137 	vm_pindex_t v;
2138 
2139 	KKASSERT(swapblk != SWAPBLK_NONE);
2140 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2141 
2142 	/*
2143 	 * Convert object if necessary
2144 	 */
2145 	if (object->type == OBJT_DEFAULT)
2146 		swp_pager_meta_convert(object);
2147 
2148 	/*
2149 	 * Locate swblock.  If not found create, but if we aren't adding
2150 	 * anything just return.  If we run out of space in the map we wait
2151 	 * and, since the hash table may have changed, retry.
2152 	 */
2153 retry:
2154 	swap = swp_pager_lookup(object, index);
2155 
2156 	if (swap == NULL) {
2157 		int i;
2158 
2159 		swap = zalloc(swap_zone);
2160 		if (swap == NULL) {
2161 			vm_wait(0);
2162 			goto retry;
2163 		}
2164 		swap->swb_index = index & ~(vm_pindex_t)SWAP_META_MASK;
2165 		swap->swb_count = 0;
2166 
2167 		++object->swblock_count;
2168 
2169 		for (i = 0; i < SWAP_META_PAGES; ++i)
2170 			swap->swb_pages[i] = SWAPBLK_NONE;
2171 		oswap = RB_INSERT(swblock_rb_tree, &object->swblock_root, swap);
2172 		KKASSERT(oswap == NULL);
2173 	}
2174 
2175 	/*
2176 	 * Delete prior contents of metadata.
2177 	 *
2178 	 * NOTE: Decrement swb_count after the freeing operation (which
2179 	 *	 might block) to prevent racing destruction of the swblock.
2180 	 */
2181 	index &= SWAP_META_MASK;
2182 
2183 	while ((v = swap->swb_pages[index]) != SWAPBLK_NONE) {
2184 		swap->swb_pages[index] = SWAPBLK_NONE;
2185 		/* can block */
2186 		swp_pager_freeswapspace(object, v, 1);
2187 		--swap->swb_count;
2188 		--mycpu->gd_vmtotal.t_vm;
2189 	}
2190 
2191 	/*
2192 	 * Enter block into metadata
2193 	 */
2194 	swap->swb_pages[index] = swapblk;
2195 	if (swapblk != SWAPBLK_NONE) {
2196 		++swap->swb_count;
2197 		++mycpu->gd_vmtotal.t_vm;
2198 	}
2199 }
2200 
2201 /*
2202  * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
2203  *
2204  *	The requested range of blocks is freed, with any associated swap
2205  *	returned to the swap bitmap.
2206  *
2207  *	This routine will free swap metadata structures as they are cleaned
2208  *	out.  This routine does *NOT* operate on swap metadata associated
2209  *	with resident pages.
2210  *
2211  * The caller must hold the object.
2212  */
2213 static int swp_pager_meta_free_callback(struct swblock *swb, void *data);
2214 
2215 static void
2216 swp_pager_meta_free(vm_object_t object, vm_pindex_t index, vm_pindex_t count)
2217 {
2218 	struct swfreeinfo info;
2219 
2220 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2221 
2222 	/*
2223 	 * Nothing to do
2224 	 */
2225 	if (object->swblock_count == 0) {
2226 		KKASSERT(RB_EMPTY(&object->swblock_root));
2227 		return;
2228 	}
2229 	if (count == 0)
2230 		return;
2231 
2232 	/*
2233 	 * Setup for RB tree scan.  Note that the pindex range can be huge
2234 	 * due to the 64 bit page index space so we cannot safely iterate.
2235 	 */
2236 	info.object = object;
2237 	info.basei = index & ~(vm_pindex_t)SWAP_META_MASK;
2238 	info.begi = index;
2239 	info.endi = index + count - 1;
2240 	swblock_rb_tree_RB_SCAN(&object->swblock_root, rb_swblock_scancmp,
2241 				swp_pager_meta_free_callback, &info);
2242 }
2243 
2244 /*
2245  * The caller must hold the object.
2246  */
2247 static
2248 int
2249 swp_pager_meta_free_callback(struct swblock *swap, void *data)
2250 {
2251 	struct swfreeinfo *info = data;
2252 	vm_object_t object = info->object;
2253 	int index;
2254 	int eindex;
2255 
2256 	/*
2257 	 * Figure out the range within the swblock.  The wider scan may
2258 	 * return edge-case swap blocks when the start and/or end points
2259 	 * are in the middle of a block.
2260 	 */
2261 	if (swap->swb_index < info->begi)
2262 		index = (int)info->begi & SWAP_META_MASK;
2263 	else
2264 		index = 0;
2265 
2266 	if (swap->swb_index + SWAP_META_PAGES > info->endi)
2267 		eindex = (int)info->endi & SWAP_META_MASK;
2268 	else
2269 		eindex = SWAP_META_MASK;
2270 
2271 	/*
2272 	 * Scan and free the blocks.  The loop terminates early
2273 	 * if (swap) runs out of blocks and could be freed.
2274 	 *
2275 	 * NOTE: Decrement swb_count after swp_pager_freeswapspace()
2276 	 *	 to deal with a zfree race.
2277 	 */
2278 	while (index <= eindex) {
2279 		swblk_t v = swap->swb_pages[index];
2280 
2281 		if (v != SWAPBLK_NONE) {
2282 			swap->swb_pages[index] = SWAPBLK_NONE;
2283 			/* can block */
2284 			swp_pager_freeswapspace(object, v, 1);
2285 			--mycpu->gd_vmtotal.t_vm;
2286 			if (--swap->swb_count == 0) {
2287 				swp_pager_remove(object, swap);
2288 				zfree(swap_zone, swap);
2289 				--object->swblock_count;
2290 				break;
2291 			}
2292 		}
2293 		++index;
2294 	}
2295 
2296 	/* swap may be invalid here due to zfree above */
2297 	lwkt_yield();
2298 
2299 	return(0);
2300 }
2301 
2302 /*
2303  * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
2304  *
2305  *	This routine locates and destroys all swap metadata associated with
2306  *	an object.
2307  *
2308  * NOTE: Decrement swb_count after the freeing operation (which
2309  *	 might block) to prevent racing destruction of the swblock.
2310  *
2311  * The caller must hold the object.
2312  */
2313 static void
2314 swp_pager_meta_free_all(vm_object_t object)
2315 {
2316 	struct swblock *swap;
2317 	int i;
2318 
2319 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2320 
2321 	while ((swap = RB_ROOT(&object->swblock_root)) != NULL) {
2322 		swp_pager_remove(object, swap);
2323 		for (i = 0; i < SWAP_META_PAGES; ++i) {
2324 			swblk_t v = swap->swb_pages[i];
2325 			if (v != SWAPBLK_NONE) {
2326 				/* can block */
2327 				swp_pager_freeswapspace(object, v, 1);
2328 				--swap->swb_count;
2329 				--mycpu->gd_vmtotal.t_vm;
2330 			}
2331 		}
2332 		if (swap->swb_count != 0)
2333 			panic("swap_pager_meta_free_all: swb_count != 0");
2334 		zfree(swap_zone, swap);
2335 		--object->swblock_count;
2336 		lwkt_yield();
2337 	}
2338 	KKASSERT(object->swblock_count == 0);
2339 }
2340 
2341 /*
2342  * SWP_PAGER_METACTL() -  misc control of swap and vm_page_t meta data.
2343  *
2344  *	This routine is capable of looking up, popping, or freeing
2345  *	swapblk assignments in the swap meta data or in the vm_page_t.
2346  *	The routine typically returns the swapblk being looked-up, or popped,
2347  *	or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block
2348  *	was invalid.  This routine will automatically free any invalid
2349  *	meta-data swapblks.
2350  *
2351  *	It is not possible to store invalid swapblks in the swap meta data
2352  *	(other then a literal 'SWAPBLK_NONE'), so we don't bother checking.
2353  *
2354  *	When acting on a busy resident page and paging is in progress, we
2355  *	have to wait until paging is complete but otherwise can act on the
2356  *	busy page.
2357  *
2358  *	SWM_FREE	remove and free swap block from metadata
2359  *	SWM_POP		remove from meta data but do not free.. pop it out
2360  *
2361  * The caller must hold the object.
2362  */
2363 static swblk_t
2364 swp_pager_meta_ctl(vm_object_t object, vm_pindex_t index, int flags)
2365 {
2366 	struct swblock *swap;
2367 	swblk_t r1;
2368 
2369 	if (object->swblock_count == 0)
2370 		return(SWAPBLK_NONE);
2371 
2372 	r1 = SWAPBLK_NONE;
2373 	swap = swp_pager_lookup(object, index);
2374 
2375 	if (swap != NULL) {
2376 		index &= SWAP_META_MASK;
2377 		r1 = swap->swb_pages[index];
2378 
2379 		if (r1 != SWAPBLK_NONE) {
2380 			if (flags & (SWM_FREE|SWM_POP)) {
2381 				swap->swb_pages[index] = SWAPBLK_NONE;
2382 				--mycpu->gd_vmtotal.t_vm;
2383 				if (--swap->swb_count == 0) {
2384 					swp_pager_remove(object, swap);
2385 					zfree(swap_zone, swap);
2386 					--object->swblock_count;
2387 				}
2388 			}
2389 			/* swap ptr may be invalid */
2390 			if (flags & SWM_FREE) {
2391 				swp_pager_freeswapspace(object, r1, 1);
2392 				r1 = SWAPBLK_NONE;
2393 			}
2394 		}
2395 		/* swap ptr may be invalid */
2396 	}
2397 	return(r1);
2398 }
2399