xref: /dragonfly/sys/vm/swap_pager.c (revision 106728aa)
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 1998-2010 The DragonFly Project.  All rights reserved.
5  *
6  * This code is derived from software contributed to The DragonFly Project
7  * by Matthew Dillon <dillon@backplane.com>
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  *
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in
17  *    the documentation and/or other materials provided with the
18  *    distribution.
19  * 3. Neither the name of The DragonFly Project nor the names of its
20  *    contributors may be used to endorse or promote products derived
21  *    from this software without specific, prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
27  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
29  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
31  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
32  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
33  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  * Copyright (c) 1994 John S. Dyson
37  * Copyright (c) 1990 University of Utah.
38  * Copyright (c) 1991, 1993
39  *	The Regents of the University of California.  All rights reserved.
40  *
41  * This code is derived from software contributed to Berkeley by
42  * the Systems Programming Group of the University of Utah Computer
43  * Science Department.
44  *
45  * Redistribution and use in source and binary forms, with or without
46  * modification, are permitted provided that the following conditions
47  * are met:
48  * 1. Redistributions of source code must retain the above copyright
49  *    notice, this list of conditions and the following disclaimer.
50  * 2. Redistributions in binary form must reproduce the above copyright
51  *    notice, this list of conditions and the following disclaimer in the
52  *    documentation and/or other materials provided with the distribution.
53  * 3. Neither the name of the University nor the names of its contributors
54  *    may be used to endorse or promote products derived from this software
55  *    without specific prior written permission.
56  *
57  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
58  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
59  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
60  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
61  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
62  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
63  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
64  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
65  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
66  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
67  * SUCH DAMAGE.
68  *
69  *				New Swap System
70  *				Matthew Dillon
71  *
72  * Radix Bitmap 'blists'.
73  *
74  *	- The new swapper uses the new radix bitmap code.  This should scale
75  *	  to arbitrarily small or arbitrarily large swap spaces and an almost
76  *	  arbitrary degree of fragmentation.
77  *
78  * Features:
79  *
80  *	- on the fly reallocation of swap during putpages.  The new system
81  *	  does not try to keep previously allocated swap blocks for dirty
82  *	  pages.
83  *
84  *	- on the fly deallocation of swap
85  *
86  *	- No more garbage collection required.  Unnecessarily allocated swap
87  *	  blocks only exist for dirty vm_page_t's now and these are already
88  *	  cycled (in a high-load system) by the pager.  We also do on-the-fly
89  *	  removal of invalidated swap blocks when a page is destroyed
90  *	  or renamed.
91  *
92  * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
93  * @(#)swap_pager.c	8.9 (Berkeley) 3/21/94
94  * $FreeBSD: src/sys/vm/swap_pager.c,v 1.130.2.12 2002/08/31 21:15:55 dillon Exp $
95  */
96 
97 #include <sys/param.h>
98 #include <sys/systm.h>
99 #include <sys/conf.h>
100 #include <sys/kernel.h>
101 #include <sys/proc.h>
102 #include <sys/buf.h>
103 #include <sys/vnode.h>
104 #include <sys/malloc.h>
105 #include <sys/vmmeter.h>
106 #include <sys/sysctl.h>
107 #include <sys/blist.h>
108 #include <sys/lock.h>
109 #include <sys/kcollect.h>
110 
111 #include <unistd.h>
112 #include "opt_swap.h"
113 #include <vm/vm.h>
114 #include <vm/vm_object.h>
115 #include <vm/vm_page.h>
116 #include <vm/vm_pager.h>
117 #include <vm/vm_pageout.h>
118 #include <vm/swap_pager.h>
119 #include <vm/vm_extern.h>
120 #include <vm/vm_zone.h>
121 #include <vm/vnode_pager.h>
122 
123 #include <sys/thread2.h>
124 #include <sys/buf2.h>
125 #include <vm/vm_page2.h>
126 
127 #ifndef MAX_PAGEOUT_CLUSTER
128 #define MAX_PAGEOUT_CLUSTER	SWB_NPAGES
129 #endif
130 
131 #define SWM_FREE	0x02	/* free, period			*/
132 #define SWM_POP		0x04	/* pop out			*/
133 
134 #define SWBIO_READ	0x01
135 #define SWBIO_WRITE	0x02
136 #define SWBIO_SYNC	0x04
137 #define SWBIO_TTC	0x08	/* for VM_PAGER_TRY_TO_CACHE */
138 
139 struct swfreeinfo {
140 	vm_object_t	object;
141 	vm_pindex_t	basei;
142 	vm_pindex_t	begi;
143 	vm_pindex_t	endi;	/* inclusive */
144 };
145 
146 struct swswapoffinfo {
147 	vm_object_t	object;
148 	int		devidx;
149 	int		shared;
150 };
151 
152 /*
153  * vm_swap_size is in page-sized chunks now.  It was DEV_BSIZE'd chunks
154  * in the old system.
155  */
156 
157 int swap_pager_full;		/* swap space exhaustion (task killing) */
158 int swap_fail_ticks;		/* when we became exhausted */
159 int swap_pager_almost_full;	/* swap space exhaustion (w/ hysteresis)*/
160 swblk_t vm_swap_cache_use;
161 swblk_t vm_swap_anon_use;
162 static int vm_report_swap_allocs;
163 
164 static int nsw_rcount;		/* free read buffers			*/
165 static int nsw_wcount_sync;	/* limit write buffers / synchronous	*/
166 static int nsw_wcount_async;	/* limit write buffers / asynchronous	*/
167 static int nsw_wcount_async_max;/* assigned maximum			*/
168 static int nsw_cluster_max;	/* maximum VOP I/O allowed		*/
169 
170 struct blist *swapblist;
171 static int swap_async_max = 4;	/* maximum in-progress async I/O's	*/
172 static int swap_burst_read = 0;	/* allow burst reading */
173 static swblk_t swapiterator;	/* linearize allocations */
174 int swap_user_async = 0;	/* user swap pager operation can be async */
175 
176 static struct spinlock swapbp_spin = SPINLOCK_INITIALIZER(&swapbp_spin, "swapbp_spin");
177 
178 /* from vm_swap.c */
179 extern struct vnode *swapdev_vp;
180 extern struct swdevt *swdevt;
181 extern int nswdev;
182 
183 #define BLK2DEVIDX(blk) (nswdev > 1 ? blk / SWB_DMMAX % nswdev : 0)
184 
185 SYSCTL_INT(_vm, OID_AUTO, swap_async_max,
186         CTLFLAG_RW, &swap_async_max, 0, "Maximum running async swap ops");
187 SYSCTL_INT(_vm, OID_AUTO, swap_burst_read,
188         CTLFLAG_RW, &swap_burst_read, 0, "Allow burst reads for pageins");
189 SYSCTL_INT(_vm, OID_AUTO, swap_user_async,
190         CTLFLAG_RW, &swap_user_async, 0, "Allow async uuser swap write I/O");
191 
192 #if SWBLK_BITS == 64
193 SYSCTL_LONG(_vm, OID_AUTO, swap_cache_use,
194         CTLFLAG_RD, &vm_swap_cache_use, 0, "");
195 SYSCTL_LONG(_vm, OID_AUTO, swap_anon_use,
196         CTLFLAG_RD, &vm_swap_anon_use, 0, "");
197 SYSCTL_LONG(_vm, OID_AUTO, swap_size,
198         CTLFLAG_RD, &vm_swap_size, 0, "");
199 #else
200 SYSCTL_INT(_vm, OID_AUTO, swap_cache_use,
201         CTLFLAG_RD, &vm_swap_cache_use, 0, "");
202 SYSCTL_INT(_vm, OID_AUTO, swap_anon_use,
203         CTLFLAG_RD, &vm_swap_anon_use, 0, "");
204 SYSCTL_INT(_vm, OID_AUTO, swap_size,
205         CTLFLAG_RD, &vm_swap_size, 0, "");
206 #endif
207 SYSCTL_INT(_vm, OID_AUTO, report_swap_allocs,
208         CTLFLAG_RW, &vm_report_swap_allocs, 0, "");
209 
210 vm_zone_t		swap_zone;
211 
212 /*
213  * Red-Black tree for swblock entries
214  *
215  * The caller must hold vm_token
216  */
217 RB_GENERATE2(swblock_rb_tree, swblock, swb_entry, rb_swblock_compare,
218 	     vm_pindex_t, swb_index);
219 
220 int
221 rb_swblock_compare(struct swblock *swb1, struct swblock *swb2)
222 {
223 	if (swb1->swb_index < swb2->swb_index)
224 		return(-1);
225 	if (swb1->swb_index > swb2->swb_index)
226 		return(1);
227 	return(0);
228 }
229 
230 static
231 int
232 rb_swblock_scancmp(struct swblock *swb, void *data)
233 {
234 	struct swfreeinfo *info = data;
235 
236 	if (swb->swb_index < info->basei)
237 		return(-1);
238 	if (swb->swb_index > info->endi)
239 		return(1);
240 	return(0);
241 }
242 
243 static
244 int
245 rb_swblock_condcmp(struct swblock *swb, void *data)
246 {
247 	struct swfreeinfo *info = data;
248 
249 	if (swb->swb_index < info->basei)
250 		return(-1);
251 	return(0);
252 }
253 
254 /*
255  * pagerops for OBJT_SWAP - "swap pager".  Some ops are also global procedure
256  * calls hooked from other parts of the VM system and do not appear here.
257  * (see vm/swap_pager.h).
258  */
259 
260 static void	swap_pager_dealloc (vm_object_t object);
261 static int	swap_pager_getpage (vm_object_t, vm_page_t *, int);
262 static void	swap_chain_iodone(struct bio *biox);
263 
264 struct pagerops swappagerops = {
265 	swap_pager_dealloc,	/* deallocate an OBJT_SWAP object	*/
266 	swap_pager_getpage,	/* pagein				*/
267 	swap_pager_putpages,	/* pageout				*/
268 	swap_pager_haspage	/* get backing store status for page	*/
269 };
270 
271 /*
272  * SWB_DMMAX is in page-sized chunks with the new swap system.  It was
273  * dev-bsized chunks in the old.  SWB_DMMAX is always a power of 2.
274  *
275  * swap_*() routines are externally accessible.  swp_*() routines are
276  * internal.
277  */
278 
279 int nswap_lowat = 128;		/* in pages, swap_pager_almost_full warn */
280 int nswap_hiwat = 512;		/* in pages, swap_pager_almost_full warn */
281 
282 static __inline void	swp_sizecheck (void);
283 static void	swp_pager_async_iodone (struct bio *bio);
284 
285 /*
286  * Swap bitmap functions
287  */
288 
289 static __inline void	swp_pager_freeswapspace(vm_object_t object,
290 						swblk_t blk, int npages);
291 static __inline swblk_t	swp_pager_getswapspace(vm_object_t object, int npages);
292 
293 /*
294  * Metadata functions
295  */
296 
297 static void swp_pager_meta_convert(vm_object_t);
298 static void swp_pager_meta_build(vm_object_t, vm_pindex_t, swblk_t);
299 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, vm_pindex_t);
300 static void swp_pager_meta_free_all(vm_object_t);
301 static swblk_t swp_pager_meta_ctl(vm_object_t, vm_pindex_t, int);
302 
303 /*
304  * SWP_SIZECHECK() -	update swap_pager_full indication
305  *
306  *	update the swap_pager_almost_full indication and warn when we are
307  *	about to run out of swap space, using lowat/hiwat hysteresis.
308  *
309  *	Clear swap_pager_full ( task killing ) indication when lowat is met.
310  *
311  * No restrictions on call
312  * This routine may not block.
313  * SMP races are ok.
314  */
315 static __inline void
316 swp_sizecheck(void)
317 {
318 	if (vm_swap_size < nswap_lowat) {
319 		if (swap_pager_almost_full == 0) {
320 			kprintf("swap_pager: out of swap space\n");
321 			swap_pager_almost_full = 1;
322 			swap_fail_ticks = ticks;
323 		}
324 	} else {
325 		swap_pager_full = 0;
326 		if (vm_swap_size > nswap_hiwat)
327 			swap_pager_almost_full = 0;
328 	}
329 }
330 
331 /*
332  * Long-term data collection on 10-second interval.  Return the value
333  * for KCOLLECT_SWAPPCT and set the values for SWAPANO and SWAPCCAC.
334  *
335  * Return total swap in the scale field.  This can change if swap is
336  * regularly added or removed and may cause some historical confusion
337  * in that case, but SWAPPCT will always be historically accurate.
338  */
339 
340 #define PTOB(value)	((uint64_t)(value) << PAGE_SHIFT)
341 
342 static uint64_t
343 collect_swap_callback(int n)
344 {
345 	uint64_t total = vm_swap_max;
346 	uint64_t anon = vm_swap_anon_use;
347 	uint64_t cache = vm_swap_cache_use;
348 
349 	if (total == 0)		/* avoid divide by zero */
350 		total = 1;
351 	kcollect_setvalue(KCOLLECT_SWAPANO, PTOB(anon));
352 	kcollect_setvalue(KCOLLECT_SWAPCAC, PTOB(cache));
353 	kcollect_setscale(KCOLLECT_SWAPANO,
354 			  KCOLLECT_SCALE(KCOLLECT_SWAPANO_FORMAT, PTOB(total)));
355 	kcollect_setscale(KCOLLECT_SWAPCAC,
356 			  KCOLLECT_SCALE(KCOLLECT_SWAPCAC_FORMAT, PTOB(total)));
357 	return (((anon + cache) * 10000 + (total >> 1)) / total);
358 }
359 
360 /*
361  * SWAP_PAGER_INIT() -	initialize the swap pager!
362  *
363  *	Expected to be started from system init.  NOTE:  This code is run
364  *	before much else so be careful what you depend on.  Most of the VM
365  *	system has yet to be initialized at this point.
366  *
367  * Called from the low level boot code only.
368  */
369 static void
370 swap_pager_init(void *arg __unused)
371 {
372 	kcollect_register(KCOLLECT_SWAPPCT, "swapuse", collect_swap_callback,
373 			  KCOLLECT_SCALE(KCOLLECT_SWAPPCT_FORMAT, 0));
374 	kcollect_register(KCOLLECT_SWAPANO, "swapano", NULL,
375 			  KCOLLECT_SCALE(KCOLLECT_SWAPANO_FORMAT, 0));
376 	kcollect_register(KCOLLECT_SWAPCAC, "swapcac", NULL,
377 			  KCOLLECT_SCALE(KCOLLECT_SWAPCAC_FORMAT, 0));
378 }
379 SYSINIT(vm_mem, SI_BOOT1_VM, SI_ORDER_THIRD, swap_pager_init, NULL);
380 
381 /*
382  * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
383  *
384  *	Expected to be started from pageout process once, prior to entering
385  *	its main loop.
386  *
387  * Called from the low level boot code only.
388  */
389 void
390 swap_pager_swap_init(void)
391 {
392 	int n, n2;
393 
394 	/*
395 	 * Number of in-transit swap bp operations.  Don't
396 	 * exhaust the pbufs completely.  Make sure we
397 	 * initialize workable values (0 will work for hysteresis
398 	 * but it isn't very efficient).
399 	 *
400 	 * The nsw_cluster_max is constrained by the number of pages an XIO
401 	 * holds, i.e., (MAXPHYS/PAGE_SIZE) and our locally defined
402 	 * MAX_PAGEOUT_CLUSTER.   Also be aware that swap ops are
403 	 * constrained by the swap device interleave stripe size.
404 	 *
405 	 * Currently we hardwire nsw_wcount_async to 4.  This limit is
406 	 * designed to prevent other I/O from having high latencies due to
407 	 * our pageout I/O.  The value 4 works well for one or two active swap
408 	 * devices but is probably a little low if you have more.  Even so,
409 	 * a higher value would probably generate only a limited improvement
410 	 * with three or four active swap devices since the system does not
411 	 * typically have to pageout at extreme bandwidths.   We will want
412 	 * at least 2 per swap devices, and 4 is a pretty good value if you
413 	 * have one NFS swap device due to the command/ack latency over NFS.
414 	 * So it all works out pretty well.
415 	 */
416 
417 	nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER);
418 
419 	nsw_rcount = (nswbuf_kva + 1) / 2;
420 	nsw_wcount_sync = (nswbuf_kva + 3) / 4;
421 	nsw_wcount_async = 4;
422 	nsw_wcount_async_max = nsw_wcount_async;
423 
424 	/*
425 	 * The zone is dynamically allocated so generally size it to
426 	 * maxswzone (32MB to 256GB of KVM).  Set a minimum size based
427 	 * on physical memory of around 8x (each swblock can hold 16 pages).
428 	 *
429 	 * With the advent of SSDs (vs HDs) the practical (swap:memory) ratio
430 	 * has increased dramatically.
431 	 */
432 	n = vmstats.v_page_count / 2;
433 	if (maxswzone && n < maxswzone / sizeof(struct swblock))
434 		n = maxswzone / sizeof(struct swblock);
435 	n2 = n;
436 
437 	do {
438 		swap_zone = zinit(
439 			"SWAPMETA",
440 			sizeof(struct swblock),
441 			n,
442 			ZONE_INTERRUPT);
443 		if (swap_zone != NULL)
444 			break;
445 		/*
446 		 * if the allocation failed, try a zone two thirds the
447 		 * size of the previous attempt.
448 		 */
449 		n -= ((n + 2) / 3);
450 	} while (n > 0);
451 
452 	if (swap_zone == NULL)
453 		panic("swap_pager_swap_init: swap_zone == NULL");
454 	if (n2 != n)
455 		kprintf("Swap zone entries reduced from %d to %d.\n", n2, n);
456 }
457 
458 /*
459  * SWAP_PAGER_ALLOC() -	allocate a new OBJT_SWAP VM object and instantiate
460  *			its metadata structures.
461  *
462  *	This routine is called from the mmap and fork code to create a new
463  *	OBJT_SWAP object.  We do this by creating an OBJT_DEFAULT object
464  *	and then converting it with swp_pager_meta_convert().
465  *
466  *	We only support unnamed objects.
467  *
468  * No restrictions.
469  */
470 vm_object_t
471 swap_pager_alloc(void *handle, off_t size, vm_prot_t prot, off_t offset)
472 {
473 	vm_object_t object;
474 
475 	KKASSERT(handle == NULL);
476 	object = vm_object_allocate_hold(OBJT_DEFAULT,
477 					 OFF_TO_IDX(offset + PAGE_MASK + size));
478 	swp_pager_meta_convert(object);
479 	vm_object_drop(object);
480 
481 	return (object);
482 }
483 
484 /*
485  * SWAP_PAGER_DEALLOC() -	remove swap metadata from object
486  *
487  *	The swap backing for the object is destroyed.  The code is
488  *	designed such that we can reinstantiate it later, but this
489  *	routine is typically called only when the entire object is
490  *	about to be destroyed.
491  *
492  * The object must be locked or unreferenceable.
493  * No other requirements.
494  */
495 static void
496 swap_pager_dealloc(vm_object_t object)
497 {
498 	vm_object_hold(object);
499 	vm_object_pip_wait(object, "swpdea");
500 
501 	/*
502 	 * Free all remaining metadata.  We only bother to free it from
503 	 * the swap meta data.  We do not attempt to free swapblk's still
504 	 * associated with vm_page_t's for this object.  We do not care
505 	 * if paging is still in progress on some objects.
506 	 */
507 	swp_pager_meta_free_all(object);
508 	vm_object_drop(object);
509 }
510 
511 /************************************************************************
512  *			SWAP PAGER BITMAP ROUTINES			*
513  ************************************************************************/
514 
515 /*
516  * SWP_PAGER_GETSWAPSPACE() -	allocate raw swap space
517  *
518  *	Allocate swap for the requested number of pages.  The starting
519  *	swap block number (a page index) is returned or SWAPBLK_NONE
520  *	if the allocation failed.
521  *
522  *	Also has the side effect of advising that somebody made a mistake
523  *	when they configured swap and didn't configure enough.
524  *
525  * The caller must hold the object.
526  * This routine may not block.
527  */
528 static __inline swblk_t
529 swp_pager_getswapspace(vm_object_t object, int npages)
530 {
531 	swblk_t blk;
532 
533 	lwkt_gettoken(&vm_token);
534 	blk = blist_allocat(swapblist, npages, swapiterator);
535 	if (blk == SWAPBLK_NONE)
536 		blk = blist_allocat(swapblist, npages, 0);
537 	if (blk == SWAPBLK_NONE) {
538 		if (swap_pager_full != 2) {
539 			if (vm_swap_max == 0)
540 				kprintf("Warning: The system would like to "
541 					"page to swap but no swap space "
542 					"is configured!\n");
543 			else
544 				kprintf("swap_pager_getswapspace: "
545 					"swap full allocating %d pages\n",
546 					npages);
547 			swap_pager_full = 2;
548 			if (swap_pager_almost_full == 0)
549 				swap_fail_ticks = ticks;
550 			swap_pager_almost_full = 1;
551 		}
552 	} else {
553 		/* swapiterator = blk; disable for now, doesn't work well */
554 		swapacctspace(blk, -npages);
555 		if (object->type == OBJT_SWAP)
556 			vm_swap_anon_use += npages;
557 		else
558 			vm_swap_cache_use += npages;
559 		swp_sizecheck();
560 	}
561 	lwkt_reltoken(&vm_token);
562 	return(blk);
563 }
564 
565 /*
566  * SWP_PAGER_FREESWAPSPACE() -	free raw swap space
567  *
568  *	This routine returns the specified swap blocks back to the bitmap.
569  *
570  *	Note:  This routine may not block (it could in the old swap code),
571  *	and through the use of the new blist routines it does not block.
572  *
573  * This routine may not block.
574  */
575 
576 static __inline void
577 swp_pager_freeswapspace(vm_object_t object, swblk_t blk, int npages)
578 {
579 	struct swdevt *sp = &swdevt[BLK2DEVIDX(blk)];
580 
581 	lwkt_gettoken(&vm_token);
582 	sp->sw_nused -= npages;
583 	if (object->type == OBJT_SWAP)
584 		vm_swap_anon_use -= npages;
585 	else
586 		vm_swap_cache_use -= npages;
587 
588 	if (sp->sw_flags & SW_CLOSING) {
589 		lwkt_reltoken(&vm_token);
590 		return;
591 	}
592 
593 	blist_free(swapblist, blk, npages);
594 	vm_swap_size += npages;
595 	swp_sizecheck();
596 	lwkt_reltoken(&vm_token);
597 }
598 
599 /*
600  * SWAP_PAGER_FREESPACE() -	frees swap blocks associated with a page
601  *				range within an object.
602  *
603  *	This is a globally accessible routine.
604  *
605  *	This routine removes swapblk assignments from swap metadata.
606  *
607  *	The external callers of this routine typically have already destroyed
608  *	or renamed vm_page_t's associated with this range in the object so
609  *	we should be ok.
610  *
611  * No requirements.
612  */
613 void
614 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_pindex_t size)
615 {
616 	vm_object_hold(object);
617 	swp_pager_meta_free(object, start, size);
618 	vm_object_drop(object);
619 }
620 
621 /*
622  * No requirements.
623  */
624 void
625 swap_pager_freespace_all(vm_object_t object)
626 {
627 	vm_object_hold(object);
628 	swp_pager_meta_free_all(object);
629 	vm_object_drop(object);
630 }
631 
632 /*
633  * This function conditionally frees swap cache swap starting at
634  * (*basei) in the object.  (count) swap blocks will be nominally freed.
635  * The actual number of blocks freed can be more or less than the
636  * requested number.
637  *
638  * This function nominally returns the number of blocks freed.  However,
639  * the actual number of blocks freed may be less then the returned value.
640  * If the function is unable to exhaust the object or if it is able to
641  * free (approximately) the requested number of blocks it returns
642  * a value n > count.
643  *
644  * If we exhaust the object we will return a value n <= count.
645  *
646  * The caller must hold the object.
647  *
648  * WARNING!  If count == 0 then -1 can be returned as a degenerate case,
649  *	     callers should always pass a count value > 0.
650  */
651 static int swap_pager_condfree_callback(struct swblock *swap, void *data);
652 
653 int
654 swap_pager_condfree(vm_object_t object, vm_pindex_t *basei, int count)
655 {
656 	struct swfreeinfo info;
657 	int n;
658 	int t;
659 
660 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
661 
662 	info.object = object;
663 	info.basei = *basei;	/* skip up to this page index */
664 	info.begi = count;	/* max swap pages to destroy */
665 	info.endi = count * 8;	/* max swblocks to scan */
666 
667 	swblock_rb_tree_RB_SCAN(&object->swblock_root, rb_swblock_condcmp,
668 				swap_pager_condfree_callback, &info);
669 	*basei = info.basei;
670 
671 	/*
672 	 * Take the higher difference swblocks vs pages
673 	 */
674 	n = count - (int)info.begi;
675 	t = count * 8 - (int)info.endi;
676 	if (n < t)
677 		n = t;
678 	if (n < 1)
679 		n = 1;
680 	return(n);
681 }
682 
683 /*
684  * The idea is to free whole meta-block to avoid fragmenting
685  * the swap space or disk I/O.  We only do this if NO VM pages
686  * are present.
687  *
688  * We do not have to deal with clearing PG_SWAPPED in related VM
689  * pages because there are no related VM pages.
690  *
691  * The caller must hold the object.
692  */
693 static int
694 swap_pager_condfree_callback(struct swblock *swap, void *data)
695 {
696 	struct swfreeinfo *info = data;
697 	vm_object_t object = info->object;
698 	int i;
699 
700 	for (i = 0; i < SWAP_META_PAGES; ++i) {
701 		if (vm_page_lookup(object, swap->swb_index + i))
702 			break;
703 	}
704 	info->basei = swap->swb_index + SWAP_META_PAGES;
705 	if (i == SWAP_META_PAGES) {
706 		info->begi -= swap->swb_count;
707 		swap_pager_freespace(object, swap->swb_index, SWAP_META_PAGES);
708 	}
709 	--info->endi;
710 	if ((int)info->begi < 0 || (int)info->endi < 0)
711 		return(-1);
712 	lwkt_yield();
713 	return(0);
714 }
715 
716 /*
717  * Called by vm_page_alloc() when a new VM page is inserted
718  * into a VM object.  Checks whether swap has been assigned to
719  * the page and sets PG_SWAPPED as necessary.
720  *
721  * (m) must be busied by caller and remains busied on return.
722  */
723 void
724 swap_pager_page_inserted(vm_page_t m)
725 {
726 	if (m->object->swblock_count) {
727 		vm_object_hold(m->object);
728 		if (swp_pager_meta_ctl(m->object, m->pindex, 0) != SWAPBLK_NONE)
729 			vm_page_flag_set(m, PG_SWAPPED);
730 		vm_object_drop(m->object);
731 	}
732 }
733 
734 /*
735  * SWAP_PAGER_RESERVE() - reserve swap blocks in object
736  *
737  *	Assigns swap blocks to the specified range within the object.  The
738  *	swap blocks are not zerod.  Any previous swap assignment is destroyed.
739  *
740  *	Returns 0 on success, -1 on failure.
741  *
742  * The caller is responsible for avoiding races in the specified range.
743  * No other requirements.
744  */
745 int
746 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
747 {
748 	int n = 0;
749 	swblk_t blk = SWAPBLK_NONE;
750 	vm_pindex_t beg = start;	/* save start index */
751 
752 	vm_object_hold(object);
753 
754 	while (size) {
755 		if (n == 0) {
756 			n = BLIST_MAX_ALLOC;
757 			while ((blk = swp_pager_getswapspace(object, n)) ==
758 			       SWAPBLK_NONE)
759 			{
760 				n >>= 1;
761 				if (n == 0) {
762 					swp_pager_meta_free(object, beg,
763 							    start - beg);
764 					vm_object_drop(object);
765 					return(-1);
766 				}
767 			}
768 		}
769 		swp_pager_meta_build(object, start, blk);
770 		--size;
771 		++start;
772 		++blk;
773 		--n;
774 	}
775 	swp_pager_meta_free(object, start, n);
776 	vm_object_drop(object);
777 	return(0);
778 }
779 
780 /*
781  * SWAP_PAGER_COPY() -  copy blocks from source pager to destination pager
782  *			and destroy the source.
783  *
784  *	Copy any valid swapblks from the source to the destination.  In
785  *	cases where both the source and destination have a valid swapblk,
786  *	we keep the destination's.
787  *
788  *	This routine is allowed to block.  It may block allocating metadata
789  *	indirectly through swp_pager_meta_build() or if paging is still in
790  *	progress on the source.
791  *
792  *	XXX vm_page_collapse() kinda expects us not to block because we
793  *	supposedly do not need to allocate memory, but for the moment we
794  *	*may* have to get a little memory from the zone allocator, but
795  *	it is taken from the interrupt memory.  We should be ok.
796  *
797  *	The source object contains no vm_page_t's (which is just as well)
798  *	The source object is of type OBJT_SWAP.
799  *
800  *	The source and destination objects must be held by the caller.
801  */
802 void
803 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject,
804 		vm_pindex_t base_index, int destroysource)
805 {
806 	vm_pindex_t i;
807 
808 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(srcobject));
809 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(dstobject));
810 
811 	/*
812 	 * transfer source to destination.
813 	 */
814 	for (i = 0; i < dstobject->size; ++i) {
815 		swblk_t dstaddr;
816 
817 		/*
818 		 * Locate (without changing) the swapblk on the destination,
819 		 * unless it is invalid in which case free it silently, or
820 		 * if the destination is a resident page, in which case the
821 		 * source is thrown away.
822 		 */
823 		dstaddr = swp_pager_meta_ctl(dstobject, i, 0);
824 
825 		if (dstaddr == SWAPBLK_NONE) {
826 			/*
827 			 * Destination has no swapblk and is not resident,
828 			 * copy source.
829 			 */
830 			swblk_t srcaddr;
831 
832 			srcaddr = swp_pager_meta_ctl(srcobject,
833 						     base_index + i, SWM_POP);
834 
835 			if (srcaddr != SWAPBLK_NONE)
836 				swp_pager_meta_build(dstobject, i, srcaddr);
837 		} else {
838 			/*
839 			 * Destination has valid swapblk or it is represented
840 			 * by a resident page.  We destroy the sourceblock.
841 			 */
842 			swp_pager_meta_ctl(srcobject, base_index + i, SWM_FREE);
843 		}
844 	}
845 
846 	/*
847 	 * Free left over swap blocks in source.
848 	 *
849 	 * We have to revert the type to OBJT_DEFAULT so we do not accidently
850 	 * double-remove the object from the swap queues.
851 	 */
852 	if (destroysource) {
853 		/*
854 		 * Reverting the type is not necessary, the caller is going
855 		 * to destroy srcobject directly, but I'm doing it here
856 		 * for consistency since we've removed the object from its
857 		 * queues.
858 		 */
859 		swp_pager_meta_free_all(srcobject);
860 		if (srcobject->type == OBJT_SWAP)
861 			srcobject->type = OBJT_DEFAULT;
862 	}
863 }
864 
865 /*
866  * SWAP_PAGER_HASPAGE() -	determine if we have good backing store for
867  *				the requested page.
868  *
869  *	We determine whether good backing store exists for the requested
870  *	page and return TRUE if it does, FALSE if it doesn't.
871  *
872  *	If TRUE, we also try to determine how much valid, contiguous backing
873  *	store exists before and after the requested page within a reasonable
874  *	distance.  We do not try to restrict it to the swap device stripe
875  *	(that is handled in getpages/putpages).  It probably isn't worth
876  *	doing here.
877  *
878  * No requirements.
879  */
880 boolean_t
881 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex)
882 {
883 	swblk_t blk0;
884 
885 	/*
886 	 * do we have good backing store at the requested index ?
887 	 */
888 	vm_object_hold(object);
889 	blk0 = swp_pager_meta_ctl(object, pindex, 0);
890 
891 	if (blk0 == SWAPBLK_NONE) {
892 		vm_object_drop(object);
893 		return (FALSE);
894 	}
895 	vm_object_drop(object);
896 	return (TRUE);
897 }
898 
899 /*
900  * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
901  *
902  * This removes any associated swap backing store, whether valid or
903  * not, from the page.  This operates on any VM object, not just OBJT_SWAP
904  * objects.
905  *
906  * This routine is typically called when a page is made dirty, at
907  * which point any associated swap can be freed.  MADV_FREE also
908  * calls us in a special-case situation
909  *
910  * NOTE!!!  If the page is clean and the swap was valid, the caller
911  *	    should make the page dirty before calling this routine.
912  *	    This routine does NOT change the m->dirty status of the page.
913  *	    Also: MADV_FREE depends on it.
914  *
915  * The page must be busied.
916  * The caller can hold the object to avoid blocking, else we might block.
917  * No other requirements.
918  */
919 void
920 swap_pager_unswapped(vm_page_t m)
921 {
922 	if (m->flags & PG_SWAPPED) {
923 		vm_object_hold(m->object);
924 		KKASSERT(m->flags & PG_SWAPPED);
925 		swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE);
926 		vm_page_flag_clear(m, PG_SWAPPED);
927 		vm_object_drop(m->object);
928 	}
929 }
930 
931 /*
932  * SWAP_PAGER_STRATEGY() - read, write, free blocks
933  *
934  * This implements a VM OBJECT strategy function using swap backing store.
935  * This can operate on any VM OBJECT type, not necessarily just OBJT_SWAP
936  * types.  Only BUF_CMD_{READ,WRITE,FREEBLKS} is supported, any other
937  * requests will return EINVAL.
938  *
939  * This is intended to be a cacheless interface (i.e. caching occurs at
940  * higher levels), and is also used as a swap-based SSD cache for vnode
941  * and device objects.
942  *
943  * All I/O goes directly to and from the swap device.
944  *
945  * We currently attempt to run I/O synchronously or asynchronously as
946  * the caller requests.  This isn't perfect because we loose error
947  * sequencing when we run multiple ops in parallel to satisfy a request.
948  * But this is swap, so we let it all hang out.
949  *
950  * NOTE: This function supports the KVABIO API wherein bp->b_data might
951  *	 not be synchronized to the current cpu.
952  *
953  * No requirements.
954  */
955 void
956 swap_pager_strategy(vm_object_t object, struct bio *bio)
957 {
958 	struct buf *bp = bio->bio_buf;
959 	struct bio *nbio;
960 	vm_pindex_t start;
961 	vm_pindex_t biox_blkno = 0;
962 	int count;
963 	char *data;
964 	struct bio *biox;
965 	struct buf *bufx;
966 #if 0
967 	struct bio_track *track;
968 #endif
969 
970 #if 0
971 	/*
972 	 * tracking for swapdev vnode I/Os
973 	 */
974 	if (bp->b_cmd == BUF_CMD_READ)
975 		track = &swapdev_vp->v_track_read;
976 	else
977 		track = &swapdev_vp->v_track_write;
978 #endif
979 
980 	/*
981 	 * Only supported commands
982 	 */
983 	if (bp->b_cmd != BUF_CMD_FREEBLKS &&
984 	    bp->b_cmd != BUF_CMD_READ &&
985 	    bp->b_cmd != BUF_CMD_WRITE) {
986 		bp->b_error = EINVAL;
987 		bp->b_flags |= B_ERROR | B_INVAL;
988 		biodone(bio);
989 		return;
990 	}
991 
992 	/*
993 	 * bcount must be an integral number of pages.
994 	 */
995 	if (bp->b_bcount & PAGE_MASK) {
996 		bp->b_error = EINVAL;
997 		bp->b_flags |= B_ERROR | B_INVAL;
998 		biodone(bio);
999 		kprintf("swap_pager_strategy: bp %p offset %lld size %d, "
1000 			"not page bounded\n",
1001 			bp, (long long)bio->bio_offset, (int)bp->b_bcount);
1002 		return;
1003 	}
1004 
1005 	/*
1006 	 * Clear error indication, initialize page index, count, data pointer.
1007 	 */
1008 	bp->b_error = 0;
1009 	bp->b_flags &= ~B_ERROR;
1010 	bp->b_resid = bp->b_bcount;
1011 
1012 	start = (vm_pindex_t)(bio->bio_offset >> PAGE_SHIFT);
1013 	count = howmany(bp->b_bcount, PAGE_SIZE);
1014 
1015 	/*
1016 	 * WARNING!  Do not dereference *data without issuing a bkvasync()
1017 	 */
1018 	data = bp->b_data;
1019 
1020 	/*
1021 	 * Deal with BUF_CMD_FREEBLKS
1022 	 */
1023 	if (bp->b_cmd == BUF_CMD_FREEBLKS) {
1024 		/*
1025 		 * FREE PAGE(s) - destroy underlying swap that is no longer
1026 		 *		  needed.
1027 		 */
1028 		vm_object_hold(object);
1029 		swp_pager_meta_free(object, start, count);
1030 		vm_object_drop(object);
1031 		bp->b_resid = 0;
1032 		biodone(bio);
1033 		return;
1034 	}
1035 
1036 	/*
1037 	 * We need to be able to create a new cluster of I/O's.  We cannot
1038 	 * use the caller fields of the passed bio so push a new one.
1039 	 *
1040 	 * Because nbio is just a placeholder for the cluster links,
1041 	 * we can biodone() the original bio instead of nbio to make
1042 	 * things a bit more efficient.
1043 	 */
1044 	nbio = push_bio(bio);
1045 	nbio->bio_offset = bio->bio_offset;
1046 	nbio->bio_caller_info1.cluster_head = NULL;
1047 	nbio->bio_caller_info2.cluster_tail = NULL;
1048 
1049 	biox = NULL;
1050 	bufx = NULL;
1051 
1052 	/*
1053 	 * Execute read or write
1054 	 */
1055 	vm_object_hold(object);
1056 
1057 	while (count > 0) {
1058 		swblk_t blk;
1059 
1060 		/*
1061 		 * Obtain block.  If block not found and writing, allocate a
1062 		 * new block and build it into the object.
1063 		 */
1064 		blk = swp_pager_meta_ctl(object, start, 0);
1065 		if ((blk == SWAPBLK_NONE) && bp->b_cmd == BUF_CMD_WRITE) {
1066 			blk = swp_pager_getswapspace(object, 1);
1067 			if (blk == SWAPBLK_NONE) {
1068 				bp->b_error = ENOMEM;
1069 				bp->b_flags |= B_ERROR;
1070 				break;
1071 			}
1072 			swp_pager_meta_build(object, start, blk);
1073 		}
1074 
1075 		/*
1076 		 * Do we have to flush our current collection?  Yes if:
1077 		 *
1078 		 *	- no swap block at this index
1079 		 *	- swap block is not contiguous
1080 		 *	- we cross a physical disk boundry in the
1081 		 *	  stripe.
1082 		 */
1083 		if (biox &&
1084 		    (biox_blkno + btoc(bufx->b_bcount) != blk ||
1085 		     ((biox_blkno ^ blk) & ~SWB_DMMASK))) {
1086 			switch(bp->b_cmd) {
1087 			case BUF_CMD_READ:
1088 				++mycpu->gd_cnt.v_swapin;
1089 				mycpu->gd_cnt.v_swappgsin +=
1090 					btoc(bufx->b_bcount);
1091 				break;
1092 			case BUF_CMD_WRITE:
1093 				++mycpu->gd_cnt.v_swapout;
1094 				mycpu->gd_cnt.v_swappgsout +=
1095 					btoc(bufx->b_bcount);
1096 				bufx->b_dirtyend = bufx->b_bcount;
1097 				break;
1098 			default:
1099 				/* NOT REACHED */
1100 				break;
1101 			}
1102 
1103 			/*
1104 			 * Finished with this buf.
1105 			 */
1106 			KKASSERT(bufx->b_bcount != 0);
1107 			if (bufx->b_cmd != BUF_CMD_READ)
1108 				bufx->b_dirtyend = bufx->b_bcount;
1109 			biox = NULL;
1110 			bufx = NULL;
1111 		}
1112 
1113 		/*
1114 		 * Add new swapblk to biox, instantiating biox if necessary.
1115 		 * Zero-fill reads are able to take a shortcut.
1116 		 */
1117 		if (blk == SWAPBLK_NONE) {
1118 			/*
1119 			 * We can only get here if we are reading.
1120 			 */
1121 			bkvasync(bp);
1122 			bzero(data, PAGE_SIZE);
1123 			bp->b_resid -= PAGE_SIZE;
1124 		} else {
1125 			if (biox == NULL) {
1126 				/* XXX chain count > 4, wait to <= 4 */
1127 
1128 				bufx = getpbuf(NULL);
1129 				bufx->b_flags |= B_KVABIO;
1130 				biox = &bufx->b_bio1;
1131 				cluster_append(nbio, bufx);
1132 				bufx->b_cmd = bp->b_cmd;
1133 				biox->bio_done = swap_chain_iodone;
1134 				biox->bio_offset = (off_t)blk << PAGE_SHIFT;
1135 				biox->bio_caller_info1.cluster_parent = nbio;
1136 				biox_blkno = blk;
1137 				bufx->b_bcount = 0;
1138 				bufx->b_data = data;
1139 			}
1140 			bufx->b_bcount += PAGE_SIZE;
1141 		}
1142 		--count;
1143 		++start;
1144 		data += PAGE_SIZE;
1145 	}
1146 
1147 	vm_object_drop(object);
1148 
1149 	/*
1150 	 *  Flush out last buffer
1151 	 */
1152 	if (biox) {
1153 		if (bufx->b_cmd == BUF_CMD_READ) {
1154 			++mycpu->gd_cnt.v_swapin;
1155 			mycpu->gd_cnt.v_swappgsin += btoc(bufx->b_bcount);
1156 		} else {
1157 			++mycpu->gd_cnt.v_swapout;
1158 			mycpu->gd_cnt.v_swappgsout += btoc(bufx->b_bcount);
1159 			bufx->b_dirtyend = bufx->b_bcount;
1160 		}
1161 		KKASSERT(bufx->b_bcount);
1162 		if (bufx->b_cmd != BUF_CMD_READ)
1163 			bufx->b_dirtyend = bufx->b_bcount;
1164 		/* biox, bufx = NULL */
1165 	}
1166 
1167 	/*
1168 	 * Now initiate all the I/O.  Be careful looping on our chain as
1169 	 * I/O's may complete while we are still initiating them.
1170 	 *
1171 	 * If the request is a 100% sparse read no bios will be present
1172 	 * and we just biodone() the buffer.
1173 	 */
1174 	nbio->bio_caller_info2.cluster_tail = NULL;
1175 	bufx = nbio->bio_caller_info1.cluster_head;
1176 
1177 	if (bufx) {
1178 		while (bufx) {
1179 			biox = &bufx->b_bio1;
1180 			BUF_KERNPROC(bufx);
1181 			bufx = bufx->b_cluster_next;
1182 			vn_strategy(swapdev_vp, biox);
1183 		}
1184 	} else {
1185 		biodone(bio);
1186 	}
1187 
1188 	/*
1189 	 * Completion of the cluster will also call biodone_chain(nbio).
1190 	 * We never call biodone(nbio) so we don't have to worry about
1191 	 * setting up a bio_done callback.  It's handled in the sub-IO.
1192 	 */
1193 	/**/
1194 }
1195 
1196 /*
1197  * biodone callback
1198  *
1199  * No requirements.
1200  */
1201 static void
1202 swap_chain_iodone(struct bio *biox)
1203 {
1204 	struct buf **nextp;
1205 	struct buf *bufx;	/* chained sub-buffer */
1206 	struct bio *nbio;	/* parent nbio with chain glue */
1207 	struct buf *bp;		/* original bp associated with nbio */
1208 	int chain_empty;
1209 
1210 	bufx = biox->bio_buf;
1211 	nbio = biox->bio_caller_info1.cluster_parent;
1212 	bp = nbio->bio_buf;
1213 
1214 	/*
1215 	 * Update the original buffer
1216 	 */
1217         KKASSERT(bp != NULL);
1218 	if (bufx->b_flags & B_ERROR) {
1219 		atomic_set_int(&bufx->b_flags, B_ERROR);
1220 		bp->b_error = bufx->b_error;	/* race ok */
1221 	} else if (bufx->b_resid != 0) {
1222 		atomic_set_int(&bufx->b_flags, B_ERROR);
1223 		bp->b_error = EINVAL;		/* race ok */
1224 	} else {
1225 		atomic_subtract_int(&bp->b_resid, bufx->b_bcount);
1226 	}
1227 
1228 	/*
1229 	 * Remove us from the chain.
1230 	 */
1231 	spin_lock(&swapbp_spin);
1232 	nextp = &nbio->bio_caller_info1.cluster_head;
1233 	while (*nextp != bufx) {
1234 		KKASSERT(*nextp != NULL);
1235 		nextp = &(*nextp)->b_cluster_next;
1236 	}
1237 	*nextp = bufx->b_cluster_next;
1238 	chain_empty = (nbio->bio_caller_info1.cluster_head == NULL);
1239 	spin_unlock(&swapbp_spin);
1240 
1241 	/*
1242 	 * Clean up bufx.  If the chain is now empty we finish out
1243 	 * the parent.  Note that we may be racing other completions
1244 	 * so we must use the chain_empty status from above.
1245 	 */
1246 	if (chain_empty) {
1247 		if (bp->b_resid != 0 && !(bp->b_flags & B_ERROR)) {
1248 			atomic_set_int(&bp->b_flags, B_ERROR);
1249 			bp->b_error = EINVAL;
1250 		}
1251 		biodone_chain(nbio);
1252         }
1253         relpbuf(bufx, NULL);
1254 }
1255 
1256 /*
1257  * SWAP_PAGER_GETPAGES() - bring page in from swap
1258  *
1259  * The requested page may have to be brought in from swap.  Calculate the
1260  * swap block and bring in additional pages if possible.  All pages must
1261  * have contiguous swap block assignments and reside in the same object.
1262  *
1263  * The caller has a single vm_object_pip_add() reference prior to
1264  * calling us and we should return with the same.
1265  *
1266  * The caller has BUSY'd the page.  We should return with (*mpp) left busy,
1267  * and any additinal pages unbusied.
1268  *
1269  * If the caller encounters a PG_RAM page it will pass it to us even though
1270  * it may be valid and dirty.  We cannot overwrite the page in this case!
1271  * The case is used to allow us to issue pure read-aheads.
1272  *
1273  * NOTE! XXX This code does not entirely pipeline yet due to the fact that
1274  *       the PG_RAM page is validated at the same time as mreq.  What we
1275  *	 really need to do is issue a separate read-ahead pbuf.
1276  *
1277  * No requirements.
1278  */
1279 static int
1280 swap_pager_getpage(vm_object_t object, vm_page_t *mpp, int seqaccess)
1281 {
1282 	struct buf *bp;
1283 	struct bio *bio;
1284 	vm_page_t mreq;
1285 	vm_page_t m;
1286 	vm_offset_t kva;
1287 	swblk_t blk;
1288 	int i;
1289 	int j;
1290 	int raonly;
1291 	int error;
1292 	u_int32_t busy_count;
1293 	vm_page_t marray[XIO_INTERNAL_PAGES];
1294 
1295 	mreq = *mpp;
1296 
1297 	vm_object_hold(object);
1298 	if (mreq->object != object) {
1299 		panic("swap_pager_getpages: object mismatch %p/%p",
1300 		    object,
1301 		    mreq->object
1302 		);
1303 	}
1304 
1305 	/*
1306 	 * We don't want to overwrite a fully valid page as it might be
1307 	 * dirty.  This case can occur when e.g. vm_fault hits a perfectly
1308 	 * valid page with PG_RAM set.
1309 	 *
1310 	 * In this case we see if the next page is a suitable page-in
1311 	 * candidate and if it is we issue read-ahead.  PG_RAM will be
1312 	 * set on the last page of the read-ahead to continue the pipeline.
1313 	 */
1314 	if (mreq->valid == VM_PAGE_BITS_ALL) {
1315 		if (swap_burst_read == 0 || mreq->pindex + 1 >= object->size) {
1316 			vm_object_drop(object);
1317 			return(VM_PAGER_OK);
1318 		}
1319 		blk = swp_pager_meta_ctl(object, mreq->pindex + 1, 0);
1320 		if (blk == SWAPBLK_NONE) {
1321 			vm_object_drop(object);
1322 			return(VM_PAGER_OK);
1323 		}
1324 		m = vm_page_lookup_busy_try(object, mreq->pindex + 1,
1325 					    TRUE, &error);
1326 		if (error) {
1327 			vm_object_drop(object);
1328 			return(VM_PAGER_OK);
1329 		} else if (m == NULL) {
1330 			/*
1331 			 * Use VM_ALLOC_QUICK to avoid blocking on cache
1332 			 * page reuse.
1333 			 */
1334 			m = vm_page_alloc(object, mreq->pindex + 1,
1335 					  VM_ALLOC_QUICK);
1336 			if (m == NULL) {
1337 				vm_object_drop(object);
1338 				return(VM_PAGER_OK);
1339 			}
1340 		} else {
1341 			if (m->valid) {
1342 				vm_page_wakeup(m);
1343 				vm_object_drop(object);
1344 				return(VM_PAGER_OK);
1345 			}
1346 			vm_page_unqueue_nowakeup(m);
1347 		}
1348 		/* page is busy */
1349 		mreq = m;
1350 		raonly = 1;
1351 	} else {
1352 		raonly = 0;
1353 	}
1354 
1355 	/*
1356 	 * Try to block-read contiguous pages from swap if sequential,
1357 	 * otherwise just read one page.  Contiguous pages from swap must
1358 	 * reside within a single device stripe because the I/O cannot be
1359 	 * broken up across multiple stripes.
1360 	 *
1361 	 * Note that blk and iblk can be SWAPBLK_NONE but the loop is
1362 	 * set up such that the case(s) are handled implicitly.
1363 	 */
1364 	blk = swp_pager_meta_ctl(mreq->object, mreq->pindex, 0);
1365 	marray[0] = mreq;
1366 
1367 	for (i = 1; i <= swap_burst_read &&
1368 		    i < XIO_INTERNAL_PAGES &&
1369 		    mreq->pindex + i < object->size; ++i) {
1370 		swblk_t iblk;
1371 
1372 		iblk = swp_pager_meta_ctl(object, mreq->pindex + i, 0);
1373 		if (iblk != blk + i)
1374 			break;
1375 		if ((blk ^ iblk) & ~SWB_DMMASK)
1376 			break;
1377 		m = vm_page_lookup_busy_try(object, mreq->pindex + i,
1378 					    TRUE, &error);
1379 		if (error) {
1380 			break;
1381 		} else if (m == NULL) {
1382 			/*
1383 			 * Use VM_ALLOC_QUICK to avoid blocking on cache
1384 			 * page reuse.
1385 			 */
1386 			m = vm_page_alloc(object, mreq->pindex + i,
1387 					  VM_ALLOC_QUICK);
1388 			if (m == NULL)
1389 				break;
1390 		} else {
1391 			if (m->valid) {
1392 				vm_page_wakeup(m);
1393 				break;
1394 			}
1395 			vm_page_unqueue_nowakeup(m);
1396 		}
1397 		/* page is busy */
1398 		marray[i] = m;
1399 	}
1400 	if (i > 1)
1401 		vm_page_flag_set(marray[i - 1], PG_RAM);
1402 
1403 	/*
1404 	 * If mreq is the requested page and we have nothing to do return
1405 	 * VM_PAGER_FAIL.  If raonly is set mreq is just another read-ahead
1406 	 * page and must be cleaned up.
1407 	 */
1408 	if (blk == SWAPBLK_NONE) {
1409 		KKASSERT(i == 1);
1410 		if (raonly) {
1411 			vnode_pager_freepage(mreq);
1412 			vm_object_drop(object);
1413 			return(VM_PAGER_OK);
1414 		} else {
1415 			vm_object_drop(object);
1416 			return(VM_PAGER_FAIL);
1417 		}
1418 	}
1419 
1420 	/*
1421 	 * Map our page(s) into kva for input
1422 	 *
1423 	 * Use the KVABIO API to avoid synchronizing the pmap.
1424 	 */
1425 	bp = getpbuf_kva(&nsw_rcount);
1426 	bio = &bp->b_bio1;
1427 	kva = (vm_offset_t) bp->b_kvabase;
1428 	bcopy(marray, bp->b_xio.xio_pages, i * sizeof(vm_page_t));
1429 	pmap_qenter_noinval(kva, bp->b_xio.xio_pages, i);
1430 
1431 	bp->b_data = (caddr_t)kva;
1432 	bp->b_bcount = PAGE_SIZE * i;
1433 	bp->b_xio.xio_npages = i;
1434 	bp->b_flags |= B_KVABIO;
1435 	bio->bio_done = swp_pager_async_iodone;
1436 	bio->bio_offset = (off_t)blk << PAGE_SHIFT;
1437 	bio->bio_caller_info1.index = SWBIO_READ;
1438 
1439 	/*
1440 	 * Set index.  If raonly set the index beyond the array so all
1441 	 * the pages are treated the same, otherwise the original mreq is
1442 	 * at index 0.
1443 	 */
1444 	if (raonly)
1445 		bio->bio_driver_info = (void *)(intptr_t)i;
1446 	else
1447 		bio->bio_driver_info = (void *)(intptr_t)0;
1448 
1449 	for (j = 0; j < i; ++j) {
1450 		atomic_set_int(&bp->b_xio.xio_pages[j]->busy_count,
1451 			       PBUSY_SWAPINPROG);
1452 	}
1453 
1454 	mycpu->gd_cnt.v_swapin++;
1455 	mycpu->gd_cnt.v_swappgsin += bp->b_xio.xio_npages;
1456 
1457 	/*
1458 	 * We still hold the lock on mreq, and our automatic completion routine
1459 	 * does not remove it.
1460 	 */
1461 	vm_object_pip_add(object, bp->b_xio.xio_npages);
1462 
1463 	/*
1464 	 * perform the I/O.  NOTE!!!  bp cannot be considered valid after
1465 	 * this point because we automatically release it on completion.
1466 	 * Instead, we look at the one page we are interested in which we
1467 	 * still hold a lock on even through the I/O completion.
1468 	 *
1469 	 * The other pages in our m[] array are also released on completion,
1470 	 * so we cannot assume they are valid anymore either.
1471 	 */
1472 	bp->b_cmd = BUF_CMD_READ;
1473 	BUF_KERNPROC(bp);
1474 	vn_strategy(swapdev_vp, bio);
1475 
1476 	/*
1477 	 * Wait for the page we want to complete.  PBUSY_SWAPINPROG is always
1478 	 * cleared on completion.  If an I/O error occurs, SWAPBLK_NONE
1479 	 * is set in the meta-data.
1480 	 *
1481 	 * If this is a read-ahead only we return immediately without
1482 	 * waiting for I/O.
1483 	 */
1484 	if (raonly) {
1485 		vm_object_drop(object);
1486 		return(VM_PAGER_OK);
1487 	}
1488 
1489 	/*
1490 	 * Read-ahead includes originally requested page case.
1491 	 */
1492 	for (;;) {
1493 		busy_count = mreq->busy_count;
1494 		cpu_ccfence();
1495 		if ((busy_count & PBUSY_SWAPINPROG) == 0)
1496 			break;
1497 		tsleep_interlock(mreq, 0);
1498 		if (!atomic_cmpset_int(&mreq->busy_count, busy_count,
1499 				       busy_count |
1500 				        PBUSY_SWAPINPROG | PBUSY_WANTED)) {
1501 			continue;
1502 		}
1503 		atomic_set_int(&mreq->flags, PG_REFERENCED);
1504 		mycpu->gd_cnt.v_intrans++;
1505 		if (tsleep(mreq, PINTERLOCKED, "swread", hz*20)) {
1506 			kprintf(
1507 			    "swap_pager: indefinite wait buffer: "
1508 				" bp %p offset: %lld, size: %ld\n",
1509 			    bp,
1510 			    (long long)bio->bio_offset,
1511 			    (long)bp->b_bcount
1512 			);
1513 		}
1514 	}
1515 
1516 	/*
1517 	 * Disallow speculative reads prior to the SWAPINPROG test.
1518 	 */
1519 	cpu_lfence();
1520 
1521 	/*
1522 	 * mreq is left busied after completion, but all the other pages
1523 	 * are freed.  If we had an unrecoverable read error the page will
1524 	 * not be valid.
1525 	 */
1526 	vm_object_drop(object);
1527 	if (mreq->valid != VM_PAGE_BITS_ALL)
1528 		return(VM_PAGER_ERROR);
1529 	else
1530 		return(VM_PAGER_OK);
1531 
1532 	/*
1533 	 * A final note: in a low swap situation, we cannot deallocate swap
1534 	 * and mark a page dirty here because the caller is likely to mark
1535 	 * the page clean when we return, causing the page to possibly revert
1536 	 * to all-zero's later.
1537 	 */
1538 }
1539 
1540 /*
1541  *	swap_pager_putpages:
1542  *
1543  *	Assign swap (if necessary) and initiate I/O on the specified pages.
1544  *
1545  *	We support both OBJT_DEFAULT and OBJT_SWAP objects.  DEFAULT objects
1546  *	are automatically converted to SWAP objects.
1547  *
1548  *	In a low memory situation we may block in vn_strategy(), but the new
1549  *	vm_page reservation system coupled with properly written VFS devices
1550  *	should ensure that no low-memory deadlock occurs.  This is an area
1551  *	which needs work.
1552  *
1553  *	The parent has N vm_object_pip_add() references prior to
1554  *	calling us and will remove references for rtvals[] that are
1555  *	not set to VM_PAGER_PEND.  We need to remove the rest on I/O
1556  *	completion.
1557  *
1558  *	The parent has soft-busy'd the pages it passes us and will unbusy
1559  *	those whos rtvals[] entry is not set to VM_PAGER_PEND on return.
1560  *	We need to unbusy the rest on I/O completion.
1561  *
1562  * No requirements.
1563  */
1564 void
1565 swap_pager_putpages(vm_object_t object, vm_page_t *m, int count,
1566 		    int flags, int *rtvals)
1567 {
1568 	int i;
1569 	int n = 0;
1570 
1571 	vm_object_hold(object);
1572 
1573 	if (count && m[0]->object != object) {
1574 		panic("swap_pager_getpages: object mismatch %p/%p",
1575 		    object,
1576 		    m[0]->object
1577 		);
1578 	}
1579 
1580 	/*
1581 	 * Step 1
1582 	 *
1583 	 * Turn object into OBJT_SWAP
1584 	 * Check for bogus sysops
1585 	 *
1586 	 * Force sync if not pageout process, we don't want any single
1587 	 * non-pageout process to be able to hog the I/O subsystem!  This
1588 	 * can be overridden by setting.
1589 	 */
1590 	if (object->type == OBJT_DEFAULT) {
1591 		if (object->type == OBJT_DEFAULT)
1592 			swp_pager_meta_convert(object);
1593 	}
1594 
1595 	/*
1596 	 * Normally we force synchronous swap I/O if this is not the
1597 	 * pageout daemon to prevent any single user process limited
1598 	 * via RLIMIT_RSS from hogging swap write bandwidth.
1599 	 */
1600 	if (curthread != pagethread &&
1601 	    curthread != emergpager &&
1602 	    swap_user_async == 0) {
1603 		flags |= VM_PAGER_PUT_SYNC;
1604 	}
1605 
1606 	/*
1607 	 * Step 2
1608 	 *
1609 	 * Update nsw parameters from swap_async_max sysctl values.
1610 	 * Do not let the sysop crash the machine with bogus numbers.
1611 	 */
1612 	if (swap_async_max != nsw_wcount_async_max) {
1613 		int n;
1614 
1615 		/*
1616 		 * limit range
1617 		 */
1618 		if ((n = swap_async_max) > nswbuf_kva / 2)
1619 			n = nswbuf_kva / 2;
1620 		if (n < 1)
1621 			n = 1;
1622 		swap_async_max = n;
1623 
1624 		/*
1625 		 * Adjust difference ( if possible ).  If the current async
1626 		 * count is too low, we may not be able to make the adjustment
1627 		 * at this time.
1628 		 *
1629 		 * vm_token needed for nsw_wcount sleep interlock
1630 		 */
1631 		lwkt_gettoken(&vm_token);
1632 		n -= nsw_wcount_async_max;
1633 		if (nsw_wcount_async + n >= 0) {
1634 			nsw_wcount_async_max += n;
1635 			pbuf_adjcount(&nsw_wcount_async, n);
1636 		}
1637 		lwkt_reltoken(&vm_token);
1638 	}
1639 
1640 	/*
1641 	 * Step 3
1642 	 *
1643 	 * Assign swap blocks and issue I/O.  We reallocate swap on the fly.
1644 	 * The page is left dirty until the pageout operation completes
1645 	 * successfully.
1646 	 */
1647 
1648 	for (i = 0; i < count; i += n) {
1649 		struct buf *bp;
1650 		struct bio *bio;
1651 		swblk_t blk;
1652 		int j;
1653 
1654 		/*
1655 		 * Maximum I/O size is limited by a number of factors.
1656 		 */
1657 
1658 		n = min(BLIST_MAX_ALLOC, count - i);
1659 		n = min(n, nsw_cluster_max);
1660 
1661 		lwkt_gettoken(&vm_token);
1662 
1663 		/*
1664 		 * Get biggest block of swap we can.  If we fail, fall
1665 		 * back and try to allocate a smaller block.  Don't go
1666 		 * overboard trying to allocate space if it would overly
1667 		 * fragment swap.
1668 		 */
1669 		while (
1670 		    (blk = swp_pager_getswapspace(object, n)) == SWAPBLK_NONE &&
1671 		    n > 4
1672 		) {
1673 			n >>= 1;
1674 		}
1675 		if (blk == SWAPBLK_NONE) {
1676 			for (j = 0; j < n; ++j)
1677 				rtvals[i+j] = VM_PAGER_FAIL;
1678 			lwkt_reltoken(&vm_token);
1679 			continue;
1680 		}
1681 		if (vm_report_swap_allocs > 0) {
1682 			kprintf("swap_alloc %08jx,%d\n", (intmax_t)blk, n);
1683 			--vm_report_swap_allocs;
1684 		}
1685 
1686 		/*
1687 		 * The I/O we are constructing cannot cross a physical
1688 		 * disk boundry in the swap stripe.
1689 		 */
1690 		if ((blk ^ (blk + n)) & ~SWB_DMMASK) {
1691 			j = ((blk + SWB_DMMAX) & ~SWB_DMMASK) - blk;
1692 			swp_pager_freeswapspace(object, blk + j, n - j);
1693 			n = j;
1694 		}
1695 
1696 		/*
1697 		 * All I/O parameters have been satisfied, build the I/O
1698 		 * request and assign the swap space.
1699 		 *
1700 		 * Use the KVABIO API to avoid synchronizing the pmap.
1701 		 */
1702 		if ((flags & VM_PAGER_PUT_SYNC))
1703 			bp = getpbuf_kva(&nsw_wcount_sync);
1704 		else
1705 			bp = getpbuf_kva(&nsw_wcount_async);
1706 		bio = &bp->b_bio1;
1707 
1708 		lwkt_reltoken(&vm_token);
1709 
1710 		pmap_qenter_noinval((vm_offset_t)bp->b_data, &m[i], n);
1711 
1712 		bp->b_flags |= B_KVABIO;
1713 		bp->b_bcount = PAGE_SIZE * n;
1714 		bio->bio_offset = (off_t)blk << PAGE_SHIFT;
1715 
1716 		for (j = 0; j < n; ++j) {
1717 			vm_page_t mreq = m[i+j];
1718 
1719 			swp_pager_meta_build(mreq->object, mreq->pindex,
1720 					     blk + j);
1721 			if (object->type == OBJT_SWAP)
1722 				vm_page_dirty(mreq);
1723 			rtvals[i+j] = VM_PAGER_OK;
1724 
1725 			atomic_set_int(&mreq->busy_count, PBUSY_SWAPINPROG);
1726 			bp->b_xio.xio_pages[j] = mreq;
1727 		}
1728 		bp->b_xio.xio_npages = n;
1729 
1730 		mycpu->gd_cnt.v_swapout++;
1731 		mycpu->gd_cnt.v_swappgsout += bp->b_xio.xio_npages;
1732 
1733 		bp->b_dirtyoff = 0;		/* req'd for NFS */
1734 		bp->b_dirtyend = bp->b_bcount;	/* req'd for NFS */
1735 		bp->b_cmd = BUF_CMD_WRITE;
1736 		bio->bio_caller_info1.index = SWBIO_WRITE;
1737 
1738 		/*
1739 		 * asynchronous
1740 		 */
1741 		if ((flags & VM_PAGER_PUT_SYNC) == 0) {
1742 			bio->bio_done = swp_pager_async_iodone;
1743 			BUF_KERNPROC(bp);
1744 			vn_strategy(swapdev_vp, bio);
1745 
1746 			for (j = 0; j < n; ++j)
1747 				rtvals[i+j] = VM_PAGER_PEND;
1748 			continue;
1749 		}
1750 
1751 		/*
1752 		 * Issue synchrnously.
1753 		 *
1754 		 * Wait for the sync I/O to complete, then update rtvals.
1755 		 * We just set the rtvals[] to VM_PAGER_PEND so we can call
1756 		 * our async completion routine at the end, thus avoiding a
1757 		 * double-free.
1758 		 */
1759 		bio->bio_caller_info1.index |= SWBIO_SYNC;
1760 		if (flags & VM_PAGER_TRY_TO_CACHE)
1761 			bio->bio_caller_info1.index |= SWBIO_TTC;
1762 		bio->bio_done = biodone_sync;
1763 		bio->bio_flags |= BIO_SYNC;
1764 		vn_strategy(swapdev_vp, bio);
1765 		biowait(bio, "swwrt");
1766 
1767 		for (j = 0; j < n; ++j)
1768 			rtvals[i+j] = VM_PAGER_PEND;
1769 
1770 		/*
1771 		 * Now that we are through with the bp, we can call the
1772 		 * normal async completion, which frees everything up.
1773 		 */
1774 		swp_pager_async_iodone(bio);
1775 	}
1776 	vm_object_drop(object);
1777 }
1778 
1779 /*
1780  * No requirements.
1781  *
1782  * Recalculate the low and high-water marks.
1783  */
1784 void
1785 swap_pager_newswap(void)
1786 {
1787 	/*
1788 	 * NOTE: vm_swap_max cannot exceed 1 billion blocks, which is the
1789 	 *	 limitation imposed by the blist code.  Remember that this
1790 	 *	 will be divided by NSWAP_MAX (4), so each swap device is
1791 	 *	 limited to around a terrabyte.
1792 	 */
1793 	if (vm_swap_max) {
1794 		nswap_lowat = (int64_t)vm_swap_max * 4 / 100;	/* 4% left */
1795 		nswap_hiwat = (int64_t)vm_swap_max * 6 / 100;	/* 6% left */
1796 		kprintf("swap low/high-water marks set to %d/%d\n",
1797 			nswap_lowat, nswap_hiwat);
1798 	} else {
1799 		nswap_lowat = 128;
1800 		nswap_hiwat = 512;
1801 	}
1802 	swp_sizecheck();
1803 }
1804 
1805 /*
1806  *	swp_pager_async_iodone:
1807  *
1808  *	Completion routine for asynchronous reads and writes from/to swap.
1809  *	Also called manually by synchronous code to finish up a bp.
1810  *
1811  *	For READ operations, the pages are BUSY'd.  For WRITE operations,
1812  *	the pages are vm_page_t->busy'd.  For READ operations, we BUSY
1813  *	unbusy all pages except the 'main' request page.  For WRITE
1814  *	operations, we vm_page_t->busy'd unbusy all pages ( we can do this
1815  *	because we marked them all VM_PAGER_PEND on return from putpages ).
1816  *
1817  *	This routine may not block.
1818  *
1819  * No requirements.
1820  */
1821 static void
1822 swp_pager_async_iodone(struct bio *bio)
1823 {
1824 	struct buf *bp = bio->bio_buf;
1825 	vm_object_t object = NULL;
1826 	int i;
1827 	int *nswptr;
1828 
1829 	/*
1830 	 * report error
1831 	 */
1832 	if (bp->b_flags & B_ERROR) {
1833 		kprintf(
1834 		    "swap_pager: I/O error - %s failed; offset %lld,"
1835 			"size %ld, error %d\n",
1836 		    ((bio->bio_caller_info1.index & SWBIO_READ) ?
1837 			"pagein" : "pageout"),
1838 		    (long long)bio->bio_offset,
1839 		    (long)bp->b_bcount,
1840 		    bp->b_error
1841 		);
1842 	}
1843 
1844 	/*
1845 	 * set object.
1846 	 */
1847 	if (bp->b_xio.xio_npages)
1848 		object = bp->b_xio.xio_pages[0]->object;
1849 
1850 #if 0
1851 	/* PMAP TESTING CODE (useful, keep it in but #if 0'd) */
1852 	if (bio->bio_caller_info1.index & SWBIO_WRITE) {
1853 		if (bio->bio_crc != iscsi_crc32(bp->b_data, bp->b_bcount)) {
1854 			kprintf("SWAPOUT: BADCRC %08x %08x\n",
1855 				bio->bio_crc,
1856 				iscsi_crc32(bp->b_data, bp->b_bcount));
1857 			for (i = 0; i < bp->b_xio.xio_npages; ++i) {
1858 				vm_page_t m = bp->b_xio.xio_pages[i];
1859 				if (m->flags & PG_WRITEABLE)
1860 					kprintf("SWAPOUT: "
1861 						"%d/%d %p writable\n",
1862 						i, bp->b_xio.xio_npages, m);
1863 			}
1864 		}
1865 	}
1866 #endif
1867 
1868 	/*
1869 	 * remove the mapping for kernel virtual
1870 	 */
1871 	pmap_qremove((vm_offset_t)bp->b_data, bp->b_xio.xio_npages);
1872 
1873 	/*
1874 	 * cleanup pages.  If an error occurs writing to swap, we are in
1875 	 * very serious trouble.  If it happens to be a disk error, though,
1876 	 * we may be able to recover by reassigning the swap later on.  So
1877 	 * in this case we remove the m->swapblk assignment for the page
1878 	 * but do not free it in the rlist.  The errornous block(s) are thus
1879 	 * never reallocated as swap.  Redirty the page and continue.
1880 	 */
1881 	for (i = 0; i < bp->b_xio.xio_npages; ++i) {
1882 		vm_page_t m = bp->b_xio.xio_pages[i];
1883 
1884 		if (bp->b_flags & B_ERROR) {
1885 			/*
1886 			 * If an error occurs I'd love to throw the swapblk
1887 			 * away without freeing it back to swapspace, so it
1888 			 * can never be used again.  But I can't from an
1889 			 * interrupt.
1890 			 */
1891 
1892 			if (bio->bio_caller_info1.index & SWBIO_READ) {
1893 				/*
1894 				 * When reading, reqpage needs to stay
1895 				 * locked for the parent, but all other
1896 				 * pages can be freed.  We still want to
1897 				 * wakeup the parent waiting on the page,
1898 				 * though.  ( also: pg_reqpage can be -1 and
1899 				 * not match anything ).
1900 				 *
1901 				 * We have to wake specifically requested pages
1902 				 * up too because we cleared SWAPINPROG and
1903 				 * someone may be waiting for that.
1904 				 *
1905 				 * NOTE: For reads, m->dirty will probably
1906 				 *	 be overridden by the original caller
1907 				 *	 of getpages so don't play cute tricks
1908 				 *	 here.
1909 				 *
1910 				 * NOTE: We can't actually free the page from
1911 				 *	 here, because this is an interrupt.
1912 				 *	 It is not legal to mess with
1913 				 *	 object->memq from an interrupt.
1914 				 *	 Deactivate the page instead.
1915 				 *
1916 				 * WARNING! The instant SWAPINPROG is
1917 				 *	    cleared another cpu may start
1918 				 *	    using the mreq page (it will
1919 				 *	    check m->valid immediately).
1920 				 */
1921 
1922 				m->valid = 0;
1923 				atomic_clear_int(&m->busy_count,
1924 						 PBUSY_SWAPINPROG);
1925 
1926 				/*
1927 				 * bio_driver_info holds the requested page
1928 				 * index.
1929 				 */
1930 				if (i != (int)(intptr_t)bio->bio_driver_info) {
1931 					vm_page_deactivate(m);
1932 					vm_page_wakeup(m);
1933 				} else {
1934 					vm_page_flash(m);
1935 				}
1936 				/*
1937 				 * If i == bp->b_pager.pg_reqpage, do not wake
1938 				 * the page up.  The caller needs to.
1939 				 */
1940 			} else {
1941 				/*
1942 				 * If a write error occurs remove the swap
1943 				 * assignment (note that PG_SWAPPED may or
1944 				 * may not be set depending on prior activity).
1945 				 *
1946 				 * Re-dirty OBJT_SWAP pages as there is no
1947 				 * other backing store, we can't throw the
1948 				 * page away.
1949 				 *
1950 				 * Non-OBJT_SWAP pages (aka swapcache) must
1951 				 * not be dirtied since they may not have
1952 				 * been dirty in the first place, and they
1953 				 * do have backing store (the vnode).
1954 				 */
1955 				vm_page_busy_wait(m, FALSE, "swadpg");
1956 				vm_object_hold(m->object);
1957 				swp_pager_meta_ctl(m->object, m->pindex,
1958 						   SWM_FREE);
1959 				vm_page_flag_clear(m, PG_SWAPPED);
1960 				vm_object_drop(m->object);
1961 				if (m->object->type == OBJT_SWAP) {
1962 					vm_page_dirty(m);
1963 					vm_page_activate(m);
1964 				}
1965 				vm_page_io_finish(m);
1966 				atomic_clear_int(&m->busy_count,
1967 						 PBUSY_SWAPINPROG);
1968 				vm_page_wakeup(m);
1969 			}
1970 		} else if (bio->bio_caller_info1.index & SWBIO_READ) {
1971 			/*
1972 			 * NOTE: for reads, m->dirty will probably be
1973 			 * overridden by the original caller of getpages so
1974 			 * we cannot set them in order to free the underlying
1975 			 * swap in a low-swap situation.  I don't think we'd
1976 			 * want to do that anyway, but it was an optimization
1977 			 * that existed in the old swapper for a time before
1978 			 * it got ripped out due to precisely this problem.
1979 			 *
1980 			 * If not the requested page then deactivate it.
1981 			 *
1982 			 * Note that the requested page, reqpage, is left
1983 			 * busied, but we still have to wake it up.  The
1984 			 * other pages are released (unbusied) by
1985 			 * vm_page_wakeup().  We do not set reqpage's
1986 			 * valid bits here, it is up to the caller.
1987 			 */
1988 
1989 			/*
1990 			 * NOTE: Can't call pmap_clear_modify(m) from an
1991 			 *	 interrupt thread, the pmap code may have to
1992 			 *	 map non-kernel pmaps and currently asserts
1993 			 *	 the case.
1994 			 *
1995 			 * WARNING! The instant SWAPINPROG is
1996 			 *	    cleared another cpu may start
1997 			 *	    using the mreq page (it will
1998 			 *	    check m->valid immediately).
1999 			 */
2000 			/*pmap_clear_modify(m);*/
2001 			m->valid = VM_PAGE_BITS_ALL;
2002 			vm_page_undirty(m);
2003 			vm_page_flag_set(m, PG_SWAPPED);
2004 			atomic_clear_int(&m->busy_count, PBUSY_SWAPINPROG);
2005 
2006 			/*
2007 			 * We have to wake specifically requested pages
2008 			 * up too because we cleared SWAPINPROG and
2009 			 * could be waiting for it in getpages.  However,
2010 			 * be sure to not unbusy getpages specifically
2011 			 * requested page - getpages expects it to be
2012 			 * left busy.
2013 			 *
2014 			 * bio_driver_info holds the requested page
2015 			 */
2016 			if (i != (int)(intptr_t)bio->bio_driver_info) {
2017 				vm_page_deactivate(m);
2018 				vm_page_wakeup(m);
2019 			} else {
2020 				vm_page_flash(m);
2021 			}
2022 		} else {
2023 			/*
2024 			 * Mark the page clean but do not mess with the
2025 			 * pmap-layer's modified state.  That state should
2026 			 * also be clear since the caller protected the
2027 			 * page VM_PROT_READ, but allow the case.
2028 			 *
2029 			 * We are in an interrupt, avoid pmap operations.
2030 			 *
2031 			 * If we have a severe page deficit, deactivate the
2032 			 * page.  Do not try to cache it (which would also
2033 			 * involve a pmap op), because the page might still
2034 			 * be read-heavy.
2035 			 *
2036 			 * When using the swap to cache clean vnode pages
2037 			 * we do not mess with the page dirty bits.
2038 			 *
2039 			 * NOTE! Nobody is waiting for the key mreq page
2040 			 *	 on write completion.
2041 			 */
2042 			vm_page_busy_wait(m, FALSE, "swadpg");
2043 			if (m->object->type == OBJT_SWAP)
2044 				vm_page_undirty(m);
2045 			vm_page_flag_set(m, PG_SWAPPED);
2046 			atomic_clear_int(&m->busy_count, PBUSY_SWAPINPROG);
2047 			if (vm_page_count_severe())
2048 				vm_page_deactivate(m);
2049 			vm_page_io_finish(m);
2050 			if (bio->bio_caller_info1.index & SWBIO_TTC)
2051 				vm_page_try_to_cache(m);
2052 			else
2053 				vm_page_wakeup(m);
2054 		}
2055 	}
2056 
2057 	/*
2058 	 * adjust pip.  NOTE: the original parent may still have its own
2059 	 * pip refs on the object.
2060 	 */
2061 
2062 	if (object)
2063 		vm_object_pip_wakeup_n(object, bp->b_xio.xio_npages);
2064 
2065 	/*
2066 	 * Release the physical I/O buffer.
2067 	 *
2068 	 * NOTE: Due to synchronous operations in the write case b_cmd may
2069 	 *	 already be set to BUF_CMD_DONE and BIO_SYNC may have already
2070 	 *	 been cleared.
2071 	 *
2072 	 * Use vm_token to interlock nsw_rcount/wcount wakeup?
2073 	 */
2074 	lwkt_gettoken(&vm_token);
2075 	if (bio->bio_caller_info1.index & SWBIO_READ)
2076 		nswptr = &nsw_rcount;
2077 	else if (bio->bio_caller_info1.index & SWBIO_SYNC)
2078 		nswptr = &nsw_wcount_sync;
2079 	else
2080 		nswptr = &nsw_wcount_async;
2081 	bp->b_cmd = BUF_CMD_DONE;
2082 	relpbuf(bp, nswptr);
2083 	lwkt_reltoken(&vm_token);
2084 }
2085 
2086 /*
2087  * Fault-in a potentially swapped page and remove the swap reference.
2088  * (used by swapoff code)
2089  *
2090  * object must be held.
2091  */
2092 static __inline void
2093 swp_pager_fault_page(vm_object_t object, int *sharedp, vm_pindex_t pindex)
2094 {
2095 	struct vnode *vp;
2096 	vm_page_t m;
2097 	int error;
2098 
2099 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2100 
2101 	if (object->type == OBJT_VNODE) {
2102 		/*
2103 		 * Any swap related to a vnode is due to swapcache.  We must
2104 		 * vget() the vnode in case it is not active (otherwise
2105 		 * vref() will panic).  Calling vm_object_page_remove() will
2106 		 * ensure that any swap ref is removed interlocked with the
2107 		 * page.  clean_only is set to TRUE so we don't throw away
2108 		 * dirty pages.
2109 		 */
2110 		vp = object->handle;
2111 		error = vget(vp, LK_SHARED | LK_RETRY | LK_CANRECURSE);
2112 		if (error == 0) {
2113 			vm_object_page_remove(object, pindex, pindex + 1, TRUE);
2114 			vput(vp);
2115 		}
2116 	} else {
2117 		/*
2118 		 * Otherwise it is a normal OBJT_SWAP object and we can
2119 		 * fault the page in and remove the swap.
2120 		 */
2121 		m = vm_fault_object_page(object, IDX_TO_OFF(pindex),
2122 					 VM_PROT_NONE,
2123 					 VM_FAULT_DIRTY | VM_FAULT_UNSWAP,
2124 					 sharedp, &error);
2125 		if (m)
2126 			vm_page_unhold(m);
2127 	}
2128 }
2129 
2130 /*
2131  * This removes all swap blocks related to a particular device.  We have
2132  * to be careful of ripups during the scan.
2133  */
2134 static int swp_pager_swapoff_callback(struct swblock *swap, void *data);
2135 
2136 int
2137 swap_pager_swapoff(int devidx)
2138 {
2139 	struct vm_object_hash *hash;
2140 	struct swswapoffinfo info;
2141 	struct vm_object marker;
2142 	vm_object_t object;
2143 	int n;
2144 
2145 	bzero(&marker, sizeof(marker));
2146 	marker.type = OBJT_MARKER;
2147 
2148 	for (n = 0; n < VMOBJ_HSIZE; ++n) {
2149 		hash = &vm_object_hash[n];
2150 
2151 		lwkt_gettoken(&hash->token);
2152 		TAILQ_INSERT_HEAD(&hash->list, &marker, object_list);
2153 
2154 		while ((object = TAILQ_NEXT(&marker, object_list)) != NULL) {
2155 			if (object->type == OBJT_MARKER)
2156 				goto skip;
2157 			if (object->type != OBJT_SWAP &&
2158 			    object->type != OBJT_VNODE)
2159 				goto skip;
2160 			vm_object_hold(object);
2161 			if (object->type != OBJT_SWAP &&
2162 			    object->type != OBJT_VNODE) {
2163 				vm_object_drop(object);
2164 				goto skip;
2165 			}
2166 
2167 			/*
2168 			 * Object is special in that we can't just pagein
2169 			 * into vm_page's in it (tmpfs, vn).
2170 			 */
2171 			if ((object->flags & OBJ_NOPAGEIN) &&
2172 			    RB_ROOT(&object->swblock_root)) {
2173 				vm_object_drop(object);
2174 				goto skip;
2175 			}
2176 
2177 			info.object = object;
2178 			info.shared = 0;
2179 			info.devidx = devidx;
2180 			swblock_rb_tree_RB_SCAN(&object->swblock_root,
2181 					    NULL, swp_pager_swapoff_callback,
2182 					    &info);
2183 			vm_object_drop(object);
2184 skip:
2185 			if (object == TAILQ_NEXT(&marker, object_list)) {
2186 				TAILQ_REMOVE(&hash->list, &marker, object_list);
2187 				TAILQ_INSERT_AFTER(&hash->list, object,
2188 						   &marker, object_list);
2189 			}
2190 		}
2191 		TAILQ_REMOVE(&hash->list, &marker, object_list);
2192 		lwkt_reltoken(&hash->token);
2193 	}
2194 
2195 	/*
2196 	 * If we fail to locate all swblocks we just fail gracefully and
2197 	 * do not bother to restore paging on the swap device.  If the
2198 	 * user wants to retry the user can retry.
2199 	 */
2200 	if (swdevt[devidx].sw_nused)
2201 		return (1);
2202 	else
2203 		return (0);
2204 }
2205 
2206 static
2207 int
2208 swp_pager_swapoff_callback(struct swblock *swap, void *data)
2209 {
2210 	struct swswapoffinfo *info = data;
2211 	vm_object_t object = info->object;
2212 	vm_pindex_t index;
2213 	swblk_t v;
2214 	int i;
2215 
2216 	index = swap->swb_index;
2217 	for (i = 0; i < SWAP_META_PAGES; ++i) {
2218 		/*
2219 		 * Make sure we don't race a dying object.  This will
2220 		 * kill the scan of the object's swap blocks entirely.
2221 		 */
2222 		if (object->flags & OBJ_DEAD)
2223 			return(-1);
2224 
2225 		/*
2226 		 * Fault the page, which can obviously block.  If the swap
2227 		 * structure disappears break out.
2228 		 */
2229 		v = swap->swb_pages[i];
2230 		if (v != SWAPBLK_NONE && BLK2DEVIDX(v) == info->devidx) {
2231 			swp_pager_fault_page(object, &info->shared,
2232 					     swap->swb_index + i);
2233 			/* swap ptr might go away */
2234 			if (RB_LOOKUP(swblock_rb_tree,
2235 				      &object->swblock_root, index) != swap) {
2236 				break;
2237 			}
2238 		}
2239 	}
2240 	return(0);
2241 }
2242 
2243 /************************************************************************
2244  *				SWAP META DATA 				*
2245  ************************************************************************
2246  *
2247  *	These routines manipulate the swap metadata stored in the
2248  *	OBJT_SWAP object.
2249  *
2250  *	Swap metadata is implemented with a global hash and not directly
2251  *	linked into the object.  Instead the object simply contains
2252  *	appropriate tracking counters.
2253  */
2254 
2255 /*
2256  * Lookup the swblock containing the specified swap block index.
2257  *
2258  * The caller must hold the object.
2259  */
2260 static __inline
2261 struct swblock *
2262 swp_pager_lookup(vm_object_t object, vm_pindex_t index)
2263 {
2264 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2265 	index &= ~(vm_pindex_t)SWAP_META_MASK;
2266 	return (RB_LOOKUP(swblock_rb_tree, &object->swblock_root, index));
2267 }
2268 
2269 /*
2270  * Remove a swblock from the RB tree.
2271  *
2272  * The caller must hold the object.
2273  */
2274 static __inline
2275 void
2276 swp_pager_remove(vm_object_t object, struct swblock *swap)
2277 {
2278 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2279 	RB_REMOVE(swblock_rb_tree, &object->swblock_root, swap);
2280 }
2281 
2282 /*
2283  * Convert default object to swap object if necessary
2284  *
2285  * The caller must hold the object.
2286  */
2287 static void
2288 swp_pager_meta_convert(vm_object_t object)
2289 {
2290 	if (object->type == OBJT_DEFAULT) {
2291 		object->type = OBJT_SWAP;
2292 		KKASSERT(object->swblock_count == 0);
2293 	}
2294 }
2295 
2296 /*
2297  * SWP_PAGER_META_BUILD() -	add swap block to swap meta data for object
2298  *
2299  *	We first convert the object to a swap object if it is a default
2300  *	object.  Vnode objects do not need to be converted.
2301  *
2302  *	The specified swapblk is added to the object's swap metadata.  If
2303  *	the swapblk is not valid, it is freed instead.  Any previously
2304  *	assigned swapblk is freed.
2305  *
2306  * The caller must hold the object.
2307  */
2308 static void
2309 swp_pager_meta_build(vm_object_t object, vm_pindex_t index, swblk_t swapblk)
2310 {
2311 	struct swblock *swap;
2312 	struct swblock *oswap;
2313 	vm_pindex_t v;
2314 
2315 	KKASSERT(swapblk != SWAPBLK_NONE);
2316 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2317 
2318 	/*
2319 	 * Convert object if necessary
2320 	 */
2321 	if (object->type == OBJT_DEFAULT)
2322 		swp_pager_meta_convert(object);
2323 
2324 	/*
2325 	 * Locate swblock.  If not found create, but if we aren't adding
2326 	 * anything just return.  If we run out of space in the map we wait
2327 	 * and, since the hash table may have changed, retry.
2328 	 */
2329 retry:
2330 	swap = swp_pager_lookup(object, index);
2331 
2332 	if (swap == NULL) {
2333 		int i;
2334 
2335 		swap = zalloc(swap_zone);
2336 		if (swap == NULL) {
2337 			vm_wait(0);
2338 			goto retry;
2339 		}
2340 		swap->swb_index = index & ~(vm_pindex_t)SWAP_META_MASK;
2341 		swap->swb_count = 0;
2342 
2343 		++object->swblock_count;
2344 
2345 		for (i = 0; i < SWAP_META_PAGES; ++i)
2346 			swap->swb_pages[i] = SWAPBLK_NONE;
2347 		oswap = RB_INSERT(swblock_rb_tree, &object->swblock_root, swap);
2348 		KKASSERT(oswap == NULL);
2349 	}
2350 
2351 	/*
2352 	 * Delete prior contents of metadata.
2353 	 *
2354 	 * NOTE: Decrement swb_count after the freeing operation (which
2355 	 *	 might block) to prevent racing destruction of the swblock.
2356 	 */
2357 	index &= SWAP_META_MASK;
2358 
2359 	while ((v = swap->swb_pages[index]) != SWAPBLK_NONE) {
2360 		swap->swb_pages[index] = SWAPBLK_NONE;
2361 		/* can block */
2362 		swp_pager_freeswapspace(object, v, 1);
2363 		--swap->swb_count;
2364 		--mycpu->gd_vmtotal.t_vm;
2365 	}
2366 
2367 	/*
2368 	 * Enter block into metadata
2369 	 */
2370 	swap->swb_pages[index] = swapblk;
2371 	if (swapblk != SWAPBLK_NONE) {
2372 		++swap->swb_count;
2373 		++mycpu->gd_vmtotal.t_vm;
2374 	}
2375 }
2376 
2377 /*
2378  * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
2379  *
2380  *	The requested range of blocks is freed, with any associated swap
2381  *	returned to the swap bitmap.
2382  *
2383  *	This routine will free swap metadata structures as they are cleaned
2384  *	out.  This routine does *NOT* operate on swap metadata associated
2385  *	with resident pages.
2386  *
2387  * The caller must hold the object.
2388  */
2389 static int swp_pager_meta_free_callback(struct swblock *swb, void *data);
2390 
2391 static void
2392 swp_pager_meta_free(vm_object_t object, vm_pindex_t index, vm_pindex_t count)
2393 {
2394 	struct swfreeinfo info;
2395 
2396 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2397 
2398 	/*
2399 	 * Nothing to do
2400 	 */
2401 	if (object->swblock_count == 0) {
2402 		KKASSERT(RB_EMPTY(&object->swblock_root));
2403 		return;
2404 	}
2405 	if (count == 0)
2406 		return;
2407 
2408 	/*
2409 	 * Setup for RB tree scan.  Note that the pindex range can be huge
2410 	 * due to the 64 bit page index space so we cannot safely iterate.
2411 	 */
2412 	info.object = object;
2413 	info.basei = index & ~(vm_pindex_t)SWAP_META_MASK;
2414 	info.begi = index;
2415 	info.endi = index + count - 1;
2416 	swblock_rb_tree_RB_SCAN(&object->swblock_root, rb_swblock_scancmp,
2417 				swp_pager_meta_free_callback, &info);
2418 }
2419 
2420 /*
2421  * The caller must hold the object.
2422  */
2423 static
2424 int
2425 swp_pager_meta_free_callback(struct swblock *swap, void *data)
2426 {
2427 	struct swfreeinfo *info = data;
2428 	vm_object_t object = info->object;
2429 	int index;
2430 	int eindex;
2431 
2432 	/*
2433 	 * Figure out the range within the swblock.  The wider scan may
2434 	 * return edge-case swap blocks when the start and/or end points
2435 	 * are in the middle of a block.
2436 	 */
2437 	if (swap->swb_index < info->begi)
2438 		index = (int)info->begi & SWAP_META_MASK;
2439 	else
2440 		index = 0;
2441 
2442 	if (swap->swb_index + SWAP_META_PAGES > info->endi)
2443 		eindex = (int)info->endi & SWAP_META_MASK;
2444 	else
2445 		eindex = SWAP_META_MASK;
2446 
2447 	/*
2448 	 * Scan and free the blocks.  The loop terminates early
2449 	 * if (swap) runs out of blocks and could be freed.
2450 	 *
2451 	 * NOTE: Decrement swb_count after swp_pager_freeswapspace()
2452 	 *	 to deal with a zfree race.
2453 	 */
2454 	while (index <= eindex) {
2455 		swblk_t v = swap->swb_pages[index];
2456 
2457 		if (v != SWAPBLK_NONE) {
2458 			swap->swb_pages[index] = SWAPBLK_NONE;
2459 			/* can block */
2460 			swp_pager_freeswapspace(object, v, 1);
2461 			--mycpu->gd_vmtotal.t_vm;
2462 			if (--swap->swb_count == 0) {
2463 				swp_pager_remove(object, swap);
2464 				zfree(swap_zone, swap);
2465 				--object->swblock_count;
2466 				break;
2467 			}
2468 		}
2469 		++index;
2470 	}
2471 
2472 	/* swap may be invalid here due to zfree above */
2473 	lwkt_yield();
2474 
2475 	return(0);
2476 }
2477 
2478 /*
2479  * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
2480  *
2481  *	This routine locates and destroys all swap metadata associated with
2482  *	an object.
2483  *
2484  * NOTE: Decrement swb_count after the freeing operation (which
2485  *	 might block) to prevent racing destruction of the swblock.
2486  *
2487  * The caller must hold the object.
2488  */
2489 static void
2490 swp_pager_meta_free_all(vm_object_t object)
2491 {
2492 	struct swblock *swap;
2493 	int i;
2494 
2495 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2496 
2497 	while ((swap = RB_ROOT(&object->swblock_root)) != NULL) {
2498 		swp_pager_remove(object, swap);
2499 		for (i = 0; i < SWAP_META_PAGES; ++i) {
2500 			swblk_t v = swap->swb_pages[i];
2501 			if (v != SWAPBLK_NONE) {
2502 				/* can block */
2503 				swp_pager_freeswapspace(object, v, 1);
2504 				--swap->swb_count;
2505 				--mycpu->gd_vmtotal.t_vm;
2506 			}
2507 		}
2508 		if (swap->swb_count != 0)
2509 			panic("swap_pager_meta_free_all: swb_count != 0");
2510 		zfree(swap_zone, swap);
2511 		--object->swblock_count;
2512 		lwkt_yield();
2513 	}
2514 	KKASSERT(object->swblock_count == 0);
2515 }
2516 
2517 /*
2518  * SWP_PAGER_METACTL() -  misc control of swap and vm_page_t meta data.
2519  *
2520  *	This routine is capable of looking up, popping, or freeing
2521  *	swapblk assignments in the swap meta data or in the vm_page_t.
2522  *	The routine typically returns the swapblk being looked-up, or popped,
2523  *	or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block
2524  *	was invalid.  This routine will automatically free any invalid
2525  *	meta-data swapblks.
2526  *
2527  *	It is not possible to store invalid swapblks in the swap meta data
2528  *	(other then a literal 'SWAPBLK_NONE'), so we don't bother checking.
2529  *
2530  *	When acting on a busy resident page and paging is in progress, we
2531  *	have to wait until paging is complete but otherwise can act on the
2532  *	busy page.
2533  *
2534  *	SWM_FREE	remove and free swap block from metadata
2535  *	SWM_POP		remove from meta data but do not free.. pop it out
2536  *
2537  * The caller must hold the object.
2538  */
2539 static swblk_t
2540 swp_pager_meta_ctl(vm_object_t object, vm_pindex_t index, int flags)
2541 {
2542 	struct swblock *swap;
2543 	swblk_t r1;
2544 
2545 	if (object->swblock_count == 0)
2546 		return(SWAPBLK_NONE);
2547 
2548 	r1 = SWAPBLK_NONE;
2549 	swap = swp_pager_lookup(object, index);
2550 
2551 	if (swap != NULL) {
2552 		index &= SWAP_META_MASK;
2553 		r1 = swap->swb_pages[index];
2554 
2555 		if (r1 != SWAPBLK_NONE) {
2556 			if (flags & (SWM_FREE|SWM_POP)) {
2557 				swap->swb_pages[index] = SWAPBLK_NONE;
2558 				--mycpu->gd_vmtotal.t_vm;
2559 				if (--swap->swb_count == 0) {
2560 					swp_pager_remove(object, swap);
2561 					zfree(swap_zone, swap);
2562 					--object->swblock_count;
2563 				}
2564 			}
2565 			/* swap ptr may be invalid */
2566 			if (flags & SWM_FREE) {
2567 				swp_pager_freeswapspace(object, r1, 1);
2568 				r1 = SWAPBLK_NONE;
2569 			}
2570 		}
2571 		/* swap ptr may be invalid */
2572 	}
2573 	return(r1);
2574 }
2575