xref: /dragonfly/sys/vm/swap_pager.c (revision 1ab20d67)
1 /*
2  * Copyright (c) 1998 Matthew Dillon,
3  * Copyright (c) 1994 John S. Dyson
4  * Copyright (c) 1990 University of Utah.
5  * Copyright (c) 1991, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * the Systems Programming Group of the University of Utah Computer
10  * Science Department.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *	This product includes software developed by the University of
23  *	California, Berkeley and its contributors.
24  * 4. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *				New Swap System
41  *				Matthew Dillon
42  *
43  * Radix Bitmap 'blists'.
44  *
45  *	- The new swapper uses the new radix bitmap code.  This should scale
46  *	  to arbitrarily small or arbitrarily large swap spaces and an almost
47  *	  arbitrary degree of fragmentation.
48  *
49  * Features:
50  *
51  *	- on the fly reallocation of swap during putpages.  The new system
52  *	  does not try to keep previously allocated swap blocks for dirty
53  *	  pages.
54  *
55  *	- on the fly deallocation of swap
56  *
57  *	- No more garbage collection required.  Unnecessarily allocated swap
58  *	  blocks only exist for dirty vm_page_t's now and these are already
59  *	  cycled (in a high-load system) by the pager.  We also do on-the-fly
60  *	  removal of invalidated swap blocks when a page is destroyed
61  *	  or renamed.
62  *
63  * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
64  *
65  *	@(#)swap_pager.c	8.9 (Berkeley) 3/21/94
66  *
67  * $FreeBSD: src/sys/vm/swap_pager.c,v 1.130.2.12 2002/08/31 21:15:55 dillon Exp $
68  * $DragonFly: src/sys/vm/swap_pager.c,v 1.11 2004/03/23 22:54:32 dillon Exp $
69  */
70 
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/conf.h>
74 #include <sys/kernel.h>
75 #include <sys/proc.h>
76 #include <sys/buf.h>
77 #include <sys/vnode.h>
78 #include <sys/malloc.h>
79 #include <sys/vmmeter.h>
80 #include <sys/sysctl.h>
81 #include <sys/blist.h>
82 #include <sys/lock.h>
83 #include <sys/vmmeter.h>
84 
85 #ifndef MAX_PAGEOUT_CLUSTER
86 #define MAX_PAGEOUT_CLUSTER 16
87 #endif
88 
89 #define SWB_NPAGES	MAX_PAGEOUT_CLUSTER
90 
91 #include "opt_swap.h"
92 #include <vm/vm.h>
93 #include <vm/vm_object.h>
94 #include <vm/vm_page.h>
95 #include <vm/vm_pager.h>
96 #include <vm/vm_pageout.h>
97 #include <vm/swap_pager.h>
98 #include <vm/vm_extern.h>
99 #include <vm/vm_zone.h>
100 
101 #include <sys/buf2.h>
102 #include <vm/vm_page2.h>
103 
104 #define SWM_FREE	0x02	/* free, period			*/
105 #define SWM_POP		0x04	/* pop out			*/
106 
107 /*
108  * vm_swap_size is in page-sized chunks now.  It was DEV_BSIZE'd chunks
109  * in the old system.
110  */
111 
112 extern int vm_swap_size;	/* number of free swap blocks, in pages */
113 
114 int swap_pager_full;		/* swap space exhaustion (task killing) */
115 static int swap_pager_almost_full; /* swap space exhaustion (w/ hysteresis)*/
116 static int nsw_rcount;		/* free read buffers			*/
117 static int nsw_wcount_sync;	/* limit write buffers / synchronous	*/
118 static int nsw_wcount_async;	/* limit write buffers / asynchronous	*/
119 static int nsw_wcount_async_max;/* assigned maximum			*/
120 static int nsw_cluster_max;	/* maximum VOP I/O allowed		*/
121 static int sw_alloc_interlock;	/* swap pager allocation interlock	*/
122 
123 struct blist *swapblist;
124 static struct swblock **swhash;
125 static int swhash_mask;
126 static int swap_async_max = 4;	/* maximum in-progress async I/O's	*/
127 
128 extern struct vnode *swapdev_vp;	/* from vm_swap.c */
129 
130 SYSCTL_INT(_vm, OID_AUTO, swap_async_max,
131         CTLFLAG_RW, &swap_async_max, 0, "Maximum running async swap ops");
132 
133 /*
134  * "named" and "unnamed" anon region objects.  Try to reduce the overhead
135  * of searching a named list by hashing it just a little.
136  */
137 
138 #define NOBJLISTS		8
139 
140 #define NOBJLIST(handle)	\
141 	(&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)])
142 
143 static struct pagerlst	swap_pager_object_list[NOBJLISTS];
144 struct pagerlst		swap_pager_un_object_list;
145 vm_zone_t		swap_zone;
146 
147 /*
148  * pagerops for OBJT_SWAP - "swap pager".  Some ops are also global procedure
149  * calls hooked from other parts of the VM system and do not appear here.
150  * (see vm/swap_pager.h).
151  */
152 
153 static vm_object_t
154 		swap_pager_alloc (void *handle, vm_ooffset_t size,
155 				      vm_prot_t prot, vm_ooffset_t offset);
156 static void	swap_pager_dealloc (vm_object_t object);
157 static int	swap_pager_getpages (vm_object_t, vm_page_t *, int, int);
158 static void	swap_pager_init (void);
159 static void	swap_pager_unswapped (vm_page_t);
160 static void	swap_pager_strategy (vm_object_t, struct buf *);
161 
162 struct pagerops swappagerops = {
163 	swap_pager_init,	/* early system initialization of pager	*/
164 	swap_pager_alloc,	/* allocate an OBJT_SWAP object		*/
165 	swap_pager_dealloc,	/* deallocate an OBJT_SWAP object	*/
166 	swap_pager_getpages,	/* pagein				*/
167 	swap_pager_putpages,	/* pageout				*/
168 	swap_pager_haspage,	/* get backing store status for page	*/
169 	swap_pager_unswapped,	/* remove swap related to page		*/
170 	swap_pager_strategy	/* pager strategy call			*/
171 };
172 
173 /*
174  * dmmax is in page-sized chunks with the new swap system.  It was
175  * dev-bsized chunks in the old.  dmmax is always a power of 2.
176  *
177  * swap_*() routines are externally accessible.  swp_*() routines are
178  * internal.
179  */
180 
181 int dmmax;
182 static int dmmax_mask;
183 int nswap_lowat = 128;		/* in pages, swap_pager_almost_full warn */
184 int nswap_hiwat = 512;		/* in pages, swap_pager_almost_full warn */
185 
186 static __inline void	swp_sizecheck (void);
187 static void	swp_pager_sync_iodone (struct buf *bp);
188 static void	swp_pager_async_iodone (struct buf *bp);
189 
190 /*
191  * Swap bitmap functions
192  */
193 
194 static __inline void	swp_pager_freeswapspace (daddr_t blk, int npages);
195 static __inline daddr_t	swp_pager_getswapspace (int npages);
196 
197 /*
198  * Metadata functions
199  */
200 
201 static void swp_pager_meta_build (vm_object_t, vm_pindex_t, daddr_t);
202 static void swp_pager_meta_free (vm_object_t, vm_pindex_t, daddr_t);
203 static void swp_pager_meta_free_all (vm_object_t);
204 static daddr_t swp_pager_meta_ctl (vm_object_t, vm_pindex_t, int);
205 
206 /*
207  * SWP_SIZECHECK() -	update swap_pager_full indication
208  *
209  *	update the swap_pager_almost_full indication and warn when we are
210  *	about to run out of swap space, using lowat/hiwat hysteresis.
211  *
212  *	Clear swap_pager_full ( task killing ) indication when lowat is met.
213  *
214  *	No restrictions on call
215  *	This routine may not block.
216  *	This routine must be called at splvm()
217  */
218 
219 static __inline void
220 swp_sizecheck(void)
221 {
222 	if (vm_swap_size < nswap_lowat) {
223 		if (swap_pager_almost_full == 0) {
224 			printf("swap_pager: out of swap space\n");
225 			swap_pager_almost_full = 1;
226 		}
227 	} else {
228 		swap_pager_full = 0;
229 		if (vm_swap_size > nswap_hiwat)
230 			swap_pager_almost_full = 0;
231 	}
232 }
233 
234 /*
235  * SWAP_PAGER_INIT() -	initialize the swap pager!
236  *
237  *	Expected to be started from system init.  NOTE:  This code is run
238  *	before much else so be careful what you depend on.  Most of the VM
239  *	system has yet to be initialized at this point.
240  */
241 
242 static void
243 swap_pager_init(void)
244 {
245 	/*
246 	 * Initialize object lists
247 	 */
248 	int i;
249 
250 	for (i = 0; i < NOBJLISTS; ++i)
251 		TAILQ_INIT(&swap_pager_object_list[i]);
252 	TAILQ_INIT(&swap_pager_un_object_list);
253 
254 	/*
255 	 * Device Stripe, in PAGE_SIZE'd blocks
256 	 */
257 
258 	dmmax = SWB_NPAGES * 2;
259 	dmmax_mask = ~(dmmax - 1);
260 }
261 
262 /*
263  * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
264  *
265  *	Expected to be started from pageout process once, prior to entering
266  *	its main loop.
267  */
268 
269 void
270 swap_pager_swap_init(void)
271 {
272 	int n, n2;
273 
274 	/*
275 	 * Number of in-transit swap bp operations.  Don't
276 	 * exhaust the pbufs completely.  Make sure we
277 	 * initialize workable values (0 will work for hysteresis
278 	 * but it isn't very efficient).
279 	 *
280 	 * The nsw_cluster_max is constrained by the bp->b_pages[]
281 	 * array (MAXPHYS/PAGE_SIZE) and our locally defined
282 	 * MAX_PAGEOUT_CLUSTER.   Also be aware that swap ops are
283 	 * constrained by the swap device interleave stripe size.
284 	 *
285 	 * Currently we hardwire nsw_wcount_async to 4.  This limit is
286 	 * designed to prevent other I/O from having high latencies due to
287 	 * our pageout I/O.  The value 4 works well for one or two active swap
288 	 * devices but is probably a little low if you have more.  Even so,
289 	 * a higher value would probably generate only a limited improvement
290 	 * with three or four active swap devices since the system does not
291 	 * typically have to pageout at extreme bandwidths.   We will want
292 	 * at least 2 per swap devices, and 4 is a pretty good value if you
293 	 * have one NFS swap device due to the command/ack latency over NFS.
294 	 * So it all works out pretty well.
295 	 */
296 
297 	nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER);
298 
299 	nsw_rcount = (nswbuf + 1) / 2;
300 	nsw_wcount_sync = (nswbuf + 3) / 4;
301 	nsw_wcount_async = 4;
302 	nsw_wcount_async_max = nsw_wcount_async;
303 
304 	/*
305 	 * Initialize our zone.  Right now I'm just guessing on the number
306 	 * we need based on the number of pages in the system.  Each swblock
307 	 * can hold 16 pages, so this is probably overkill.  This reservation
308 	 * is typically limited to around 32MB by default.
309 	 */
310 	n = vmstats.v_page_count / 2;
311 	if (maxswzone && n > maxswzone / sizeof(struct swblock))
312 		n = maxswzone / sizeof(struct swblock);
313 	n2 = n;
314 
315 	do {
316 		swap_zone = zinit(
317 			"SWAPMETA",
318 			sizeof(struct swblock),
319 			n,
320 			ZONE_INTERRUPT,
321 			1);
322 		if (swap_zone != NULL)
323 			break;
324 		/*
325 		 * if the allocation failed, try a zone two thirds the
326 		 * size of the previous attempt.
327 		 */
328 		n -= ((n + 2) / 3);
329 	} while (n > 0);
330 
331 	if (swap_zone == NULL)
332 		panic("swap_pager_swap_init: swap_zone == NULL");
333 	if (n2 != n)
334 		printf("Swap zone entries reduced from %d to %d.\n", n2, n);
335 	n2 = n;
336 
337 	/*
338 	 * Initialize our meta-data hash table.  The swapper does not need to
339 	 * be quite as efficient as the VM system, so we do not use an
340 	 * oversized hash table.
341 	 *
342 	 * 	n: 		size of hash table, must be power of 2
343 	 *	swhash_mask:	hash table index mask
344 	 */
345 
346 	for (n = 1; n < n2 / 8; n *= 2)
347 		;
348 
349 	swhash = malloc(sizeof(struct swblock *) * n, M_VMPGDATA, M_WAITOK);
350 	bzero(swhash, sizeof(struct swblock *) * n);
351 
352 	swhash_mask = n - 1;
353 }
354 
355 /*
356  * SWAP_PAGER_ALLOC() -	allocate a new OBJT_SWAP VM object and instantiate
357  *			its metadata structures.
358  *
359  *	This routine is called from the mmap and fork code to create a new
360  *	OBJT_SWAP object.  We do this by creating an OBJT_DEFAULT object
361  *	and then converting it with swp_pager_meta_build().
362  *
363  *	This routine may block in vm_object_allocate() and create a named
364  *	object lookup race, so we must interlock.   We must also run at
365  *	splvm() for the object lookup to handle races with interrupts, but
366  *	we do not have to maintain splvm() in between the lookup and the
367  *	add because (I believe) it is not possible to attempt to create
368  *	a new swap object w/handle when a default object with that handle
369  *	already exists.
370  */
371 
372 static vm_object_t
373 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
374 		 vm_ooffset_t offset)
375 {
376 	vm_object_t object;
377 
378 	if (handle) {
379 		/*
380 		 * Reference existing named region or allocate new one.  There
381 		 * should not be a race here against swp_pager_meta_build()
382 		 * as called from vm_page_remove() in regards to the lookup
383 		 * of the handle.
384 		 */
385 
386 		while (sw_alloc_interlock) {
387 			sw_alloc_interlock = -1;
388 			tsleep(&sw_alloc_interlock, 0, "swpalc", 0);
389 		}
390 		sw_alloc_interlock = 1;
391 
392 		object = vm_pager_object_lookup(NOBJLIST(handle), handle);
393 
394 		if (object != NULL) {
395 			vm_object_reference(object);
396 		} else {
397 			object = vm_object_allocate(OBJT_DEFAULT,
398 				OFF_TO_IDX(offset + PAGE_MASK + size));
399 			object->handle = handle;
400 
401 			swp_pager_meta_build(object, 0, SWAPBLK_NONE);
402 		}
403 
404 		if (sw_alloc_interlock < 0)
405 			wakeup(&sw_alloc_interlock);
406 
407 		sw_alloc_interlock = 0;
408 	} else {
409 		object = vm_object_allocate(OBJT_DEFAULT,
410 			OFF_TO_IDX(offset + PAGE_MASK + size));
411 
412 		swp_pager_meta_build(object, 0, SWAPBLK_NONE);
413 	}
414 
415 	return (object);
416 }
417 
418 /*
419  * SWAP_PAGER_DEALLOC() -	remove swap metadata from object
420  *
421  *	The swap backing for the object is destroyed.  The code is
422  *	designed such that we can reinstantiate it later, but this
423  *	routine is typically called only when the entire object is
424  *	about to be destroyed.
425  *
426  *	This routine may block, but no longer does.
427  *
428  *	The object must be locked or unreferenceable.
429  */
430 
431 static void
432 swap_pager_dealloc(vm_object_t object)
433 {
434 	int s;
435 
436 	/*
437 	 * Remove from list right away so lookups will fail if we block for
438 	 * pageout completion.
439 	 */
440 
441 	if (object->handle == NULL) {
442 		TAILQ_REMOVE(&swap_pager_un_object_list, object, pager_object_list);
443 	} else {
444 		TAILQ_REMOVE(NOBJLIST(object->handle), object, pager_object_list);
445 	}
446 
447 	vm_object_pip_wait(object, "swpdea");
448 
449 	/*
450 	 * Free all remaining metadata.  We only bother to free it from
451 	 * the swap meta data.  We do not attempt to free swapblk's still
452 	 * associated with vm_page_t's for this object.  We do not care
453 	 * if paging is still in progress on some objects.
454 	 */
455 	s = splvm();
456 	swp_pager_meta_free_all(object);
457 	splx(s);
458 }
459 
460 /************************************************************************
461  *			SWAP PAGER BITMAP ROUTINES			*
462  ************************************************************************/
463 
464 /*
465  * SWP_PAGER_GETSWAPSPACE() -	allocate raw swap space
466  *
467  *	Allocate swap for the requested number of pages.  The starting
468  *	swap block number (a page index) is returned or SWAPBLK_NONE
469  *	if the allocation failed.
470  *
471  *	Also has the side effect of advising that somebody made a mistake
472  *	when they configured swap and didn't configure enough.
473  *
474  *	Must be called at splvm() to avoid races with bitmap frees from
475  *	vm_page_remove() aka swap_pager_page_removed().
476  *
477  *	This routine may not block
478  *	This routine must be called at splvm().
479  */
480 
481 static __inline daddr_t
482 swp_pager_getswapspace(int npages)
483 {
484 	daddr_t blk;
485 
486 	if ((blk = blist_alloc(swapblist, npages)) == SWAPBLK_NONE) {
487 		if (swap_pager_full != 2) {
488 			printf("swap_pager_getswapspace: failed\n");
489 			swap_pager_full = 2;
490 			swap_pager_almost_full = 1;
491 		}
492 	} else {
493 		vm_swap_size -= npages;
494 		swp_sizecheck();
495 	}
496 	return(blk);
497 }
498 
499 /*
500  * SWP_PAGER_FREESWAPSPACE() -	free raw swap space
501  *
502  *	This routine returns the specified swap blocks back to the bitmap.
503  *
504  *	Note:  This routine may not block (it could in the old swap code),
505  *	and through the use of the new blist routines it does not block.
506  *
507  *	We must be called at splvm() to avoid races with bitmap frees from
508  *	vm_page_remove() aka swap_pager_page_removed().
509  *
510  *	This routine may not block
511  *	This routine must be called at splvm().
512  */
513 
514 static __inline void
515 swp_pager_freeswapspace(daddr_t blk, int npages)
516 {
517 	blist_free(swapblist, blk, npages);
518 	vm_swap_size += npages;
519 	swp_sizecheck();
520 }
521 
522 /*
523  * SWAP_PAGER_FREESPACE() -	frees swap blocks associated with a page
524  *				range within an object.
525  *
526  *	This is a globally accessible routine.
527  *
528  *	This routine removes swapblk assignments from swap metadata.
529  *
530  *	The external callers of this routine typically have already destroyed
531  *	or renamed vm_page_t's associated with this range in the object so
532  *	we should be ok.
533  *
534  *	This routine may be called at any spl.  We up our spl to splvm temporarily
535  *	in order to perform the metadata removal.
536  */
537 
538 void
539 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_size_t size)
540 {
541 	int s = splvm();
542 	swp_pager_meta_free(object, start, size);
543 	splx(s);
544 }
545 
546 /*
547  * SWAP_PAGER_RESERVE() - reserve swap blocks in object
548  *
549  *	Assigns swap blocks to the specified range within the object.  The
550  *	swap blocks are not zerod.  Any previous swap assignment is destroyed.
551  *
552  *	Returns 0 on success, -1 on failure.
553  */
554 
555 int
556 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
557 {
558 	int s;
559 	int n = 0;
560 	daddr_t blk = SWAPBLK_NONE;
561 	vm_pindex_t beg = start;	/* save start index */
562 
563 	s = splvm();
564 	while (size) {
565 		if (n == 0) {
566 			n = BLIST_MAX_ALLOC;
567 			while ((blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE) {
568 				n >>= 1;
569 				if (n == 0) {
570 					swp_pager_meta_free(object, beg, start - beg);
571 					splx(s);
572 					return(-1);
573 				}
574 			}
575 		}
576 		swp_pager_meta_build(object, start, blk);
577 		--size;
578 		++start;
579 		++blk;
580 		--n;
581 	}
582 	swp_pager_meta_free(object, start, n);
583 	splx(s);
584 	return(0);
585 }
586 
587 /*
588  * SWAP_PAGER_COPY() -  copy blocks from source pager to destination pager
589  *			and destroy the source.
590  *
591  *	Copy any valid swapblks from the source to the destination.  In
592  *	cases where both the source and destination have a valid swapblk,
593  *	we keep the destination's.
594  *
595  *	This routine is allowed to block.  It may block allocating metadata
596  *	indirectly through swp_pager_meta_build() or if paging is still in
597  *	progress on the source.
598  *
599  *	This routine can be called at any spl
600  *
601  *	XXX vm_page_collapse() kinda expects us not to block because we
602  *	supposedly do not need to allocate memory, but for the moment we
603  *	*may* have to get a little memory from the zone allocator, but
604  *	it is taken from the interrupt memory.  We should be ok.
605  *
606  *	The source object contains no vm_page_t's (which is just as well)
607  *
608  *	The source object is of type OBJT_SWAP.
609  *
610  *	The source and destination objects must be locked or
611  *	inaccessible (XXX are they ?)
612  */
613 
614 void
615 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject,
616     vm_pindex_t offset, int destroysource)
617 {
618 	vm_pindex_t i;
619 	int s;
620 
621 	s = splvm();
622 
623 	/*
624 	 * If destroysource is set, we remove the source object from the
625 	 * swap_pager internal queue now.
626 	 */
627 
628 	if (destroysource) {
629 		if (srcobject->handle == NULL) {
630 			TAILQ_REMOVE(
631 			    &swap_pager_un_object_list,
632 			    srcobject,
633 			    pager_object_list
634 			);
635 		} else {
636 			TAILQ_REMOVE(
637 			    NOBJLIST(srcobject->handle),
638 			    srcobject,
639 			    pager_object_list
640 			);
641 		}
642 	}
643 
644 	/*
645 	 * transfer source to destination.
646 	 */
647 
648 	for (i = 0; i < dstobject->size; ++i) {
649 		daddr_t dstaddr;
650 
651 		/*
652 		 * Locate (without changing) the swapblk on the destination,
653 		 * unless it is invalid in which case free it silently, or
654 		 * if the destination is a resident page, in which case the
655 		 * source is thrown away.
656 		 */
657 
658 		dstaddr = swp_pager_meta_ctl(dstobject, i, 0);
659 
660 		if (dstaddr == SWAPBLK_NONE) {
661 			/*
662 			 * Destination has no swapblk and is not resident,
663 			 * copy source.
664 			 */
665 			daddr_t srcaddr;
666 
667 			srcaddr = swp_pager_meta_ctl(
668 			    srcobject,
669 			    i + offset,
670 			    SWM_POP
671 			);
672 
673 			if (srcaddr != SWAPBLK_NONE)
674 				swp_pager_meta_build(dstobject, i, srcaddr);
675 		} else {
676 			/*
677 			 * Destination has valid swapblk or it is represented
678 			 * by a resident page.  We destroy the sourceblock.
679 			 */
680 
681 			swp_pager_meta_ctl(srcobject, i + offset, SWM_FREE);
682 		}
683 	}
684 
685 	/*
686 	 * Free left over swap blocks in source.
687 	 *
688 	 * We have to revert the type to OBJT_DEFAULT so we do not accidently
689 	 * double-remove the object from the swap queues.
690 	 */
691 
692 	if (destroysource) {
693 		swp_pager_meta_free_all(srcobject);
694 		/*
695 		 * Reverting the type is not necessary, the caller is going
696 		 * to destroy srcobject directly, but I'm doing it here
697 		 * for consistency since we've removed the object from its
698 		 * queues.
699 		 */
700 		srcobject->type = OBJT_DEFAULT;
701 	}
702 	splx(s);
703 }
704 
705 /*
706  * SWAP_PAGER_HASPAGE() -	determine if we have good backing store for
707  *				the requested page.
708  *
709  *	We determine whether good backing store exists for the requested
710  *	page and return TRUE if it does, FALSE if it doesn't.
711  *
712  *	If TRUE, we also try to determine how much valid, contiguous backing
713  *	store exists before and after the requested page within a reasonable
714  *	distance.  We do not try to restrict it to the swap device stripe
715  *	(that is handled in getpages/putpages).  It probably isn't worth
716  *	doing here.
717  */
718 
719 boolean_t
720 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before,
721     int *after)
722 {
723 	daddr_t blk0;
724 	int s;
725 
726 	/*
727 	 * do we have good backing store at the requested index ?
728 	 */
729 
730 	s = splvm();
731 	blk0 = swp_pager_meta_ctl(object, pindex, 0);
732 
733 	if (blk0 == SWAPBLK_NONE) {
734 		splx(s);
735 		if (before)
736 			*before = 0;
737 		if (after)
738 			*after = 0;
739 		return (FALSE);
740 	}
741 
742 	/*
743 	 * find backwards-looking contiguous good backing store
744 	 */
745 
746 	if (before != NULL) {
747 		int i;
748 
749 		for (i = 1; i < (SWB_NPAGES/2); ++i) {
750 			daddr_t blk;
751 
752 			if (i > pindex)
753 				break;
754 			blk = swp_pager_meta_ctl(object, pindex - i, 0);
755 			if (blk != blk0 - i)
756 				break;
757 		}
758 		*before = (i - 1);
759 	}
760 
761 	/*
762 	 * find forward-looking contiguous good backing store
763 	 */
764 
765 	if (after != NULL) {
766 		int i;
767 
768 		for (i = 1; i < (SWB_NPAGES/2); ++i) {
769 			daddr_t blk;
770 
771 			blk = swp_pager_meta_ctl(object, pindex + i, 0);
772 			if (blk != blk0 + i)
773 				break;
774 		}
775 		*after = (i - 1);
776 	}
777 	splx(s);
778 	return (TRUE);
779 }
780 
781 /*
782  * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
783  *
784  *	This removes any associated swap backing store, whether valid or
785  *	not, from the page.
786  *
787  *	This routine is typically called when a page is made dirty, at
788  *	which point any associated swap can be freed.  MADV_FREE also
789  *	calls us in a special-case situation
790  *
791  *	NOTE!!!  If the page is clean and the swap was valid, the caller
792  *	should make the page dirty before calling this routine.  This routine
793  *	does NOT change the m->dirty status of the page.  Also: MADV_FREE
794  *	depends on it.
795  *
796  *	This routine may not block
797  *	This routine must be called at splvm()
798  */
799 
800 static void
801 swap_pager_unswapped(vm_page_t m)
802 {
803 	swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE);
804 }
805 
806 /*
807  * SWAP_PAGER_STRATEGY() - read, write, free blocks
808  *
809  *	This implements the vm_pager_strategy() interface to swap and allows
810  *	other parts of the system to directly access swap as backing store
811  *	through vm_objects of type OBJT_SWAP.  This is intended to be a
812  *	cacheless interface ( i.e. caching occurs at higher levels ).
813  *	Therefore we do not maintain any resident pages.  All I/O goes
814  *	directly to and from the swap device.
815  *
816  *	Note that b_blkno is scaled for PAGE_SIZE
817  *
818  *	We currently attempt to run I/O synchronously or asynchronously as
819  *	the caller requests.  This isn't perfect because we loose error
820  *	sequencing when we run multiple ops in parallel to satisfy a request.
821  *	But this is swap, so we let it all hang out.
822  */
823 
824 static void
825 swap_pager_strategy(vm_object_t object, struct buf *bp)
826 {
827 	vm_pindex_t start;
828 	int count;
829 	int s;
830 	char *data;
831 	struct buf *nbp = NULL;
832 
833 	if (bp->b_bcount & PAGE_MASK) {
834 		bp->b_error = EINVAL;
835 		bp->b_flags |= B_ERROR | B_INVAL;
836 		biodone(bp);
837 		printf("swap_pager_strategy: bp %p b_vp %p blk %d size %d, not page bounded\n", bp, bp->b_vp, (int)bp->b_pblkno, (int)bp->b_bcount);
838 		return;
839 	}
840 
841 	/*
842 	 * Clear error indication, initialize page index, count, data pointer.
843 	 */
844 
845 	bp->b_error = 0;
846 	bp->b_flags &= ~B_ERROR;
847 	bp->b_resid = bp->b_bcount;
848 
849 	start = bp->b_pblkno;
850 	count = howmany(bp->b_bcount, PAGE_SIZE);
851 	data = bp->b_data;
852 
853 	s = splvm();
854 
855 	/*
856 	 * Deal with B_FREEBUF
857 	 */
858 
859 	if (bp->b_flags & B_FREEBUF) {
860 		/*
861 		 * FREE PAGE(s) - destroy underlying swap that is no longer
862 		 *		  needed.
863 		 */
864 		swp_pager_meta_free(object, start, count);
865 		splx(s);
866 		bp->b_resid = 0;
867 		biodone(bp);
868 		return;
869 	}
870 
871 	/*
872 	 * Execute read or write
873 	 */
874 
875 	while (count > 0) {
876 		daddr_t blk;
877 
878 		/*
879 		 * Obtain block.  If block not found and writing, allocate a
880 		 * new block and build it into the object.
881 		 */
882 
883 		blk = swp_pager_meta_ctl(object, start, 0);
884 		if ((blk == SWAPBLK_NONE) && (bp->b_flags & B_READ) == 0) {
885 			blk = swp_pager_getswapspace(1);
886 			if (blk == SWAPBLK_NONE) {
887 				bp->b_error = ENOMEM;
888 				bp->b_flags |= B_ERROR;
889 				break;
890 			}
891 			swp_pager_meta_build(object, start, blk);
892 		}
893 
894 		/*
895 		 * Do we have to flush our current collection?  Yes if:
896 		 *
897 		 *	- no swap block at this index
898 		 *	- swap block is not contiguous
899 		 *	- we cross a physical disk boundry in the
900 		 *	  stripe.
901 		 */
902 
903 		if (
904 		    nbp && (nbp->b_blkno + btoc(nbp->b_bcount) != blk ||
905 		     ((nbp->b_blkno ^ blk) & dmmax_mask)
906 		    )
907 		) {
908 			splx(s);
909 			if (bp->b_flags & B_READ) {
910 				++mycpu->gd_cnt.v_swapin;
911 				mycpu->gd_cnt.v_swappgsin += btoc(nbp->b_bcount);
912 			} else {
913 				++mycpu->gd_cnt.v_swapout;
914 				mycpu->gd_cnt.v_swappgsout += btoc(nbp->b_bcount);
915 				nbp->b_dirtyend = nbp->b_bcount;
916 			}
917 			flushchainbuf(nbp);
918 			s = splvm();
919 			nbp = NULL;
920 		}
921 
922 		/*
923 		 * Add new swapblk to nbp, instantiating nbp if necessary.
924 		 * Zero-fill reads are able to take a shortcut.
925 		 */
926 
927 		if (blk == SWAPBLK_NONE) {
928 			/*
929 			 * We can only get here if we are reading.  Since
930 			 * we are at splvm() we can safely modify b_resid,
931 			 * even if chain ops are in progress.
932 			 */
933 			bzero(data, PAGE_SIZE);
934 			bp->b_resid -= PAGE_SIZE;
935 		} else {
936 			if (nbp == NULL) {
937 				nbp = getchainbuf(bp, swapdev_vp, (bp->b_flags & B_READ) | B_ASYNC);
938 				nbp->b_blkno = blk;
939 				nbp->b_bcount = 0;
940 				nbp->b_data = data;
941 			}
942 			nbp->b_bcount += PAGE_SIZE;
943 		}
944 		--count;
945 		++start;
946 		data += PAGE_SIZE;
947 	}
948 
949 	/*
950 	 *  Flush out last buffer
951 	 */
952 
953 	splx(s);
954 
955 	if (nbp) {
956 		if ((bp->b_flags & B_ASYNC) == 0)
957 			nbp->b_flags &= ~B_ASYNC;
958 		if (nbp->b_flags & B_READ) {
959 			++mycpu->gd_cnt.v_swapin;
960 			mycpu->gd_cnt.v_swappgsin += btoc(nbp->b_bcount);
961 		} else {
962 			++mycpu->gd_cnt.v_swapout;
963 			mycpu->gd_cnt.v_swappgsout += btoc(nbp->b_bcount);
964 			nbp->b_dirtyend = nbp->b_bcount;
965 		}
966 		flushchainbuf(nbp);
967 		/* nbp = NULL; */
968 	}
969 
970 	/*
971 	 * Wait for completion.
972 	 */
973 
974 	if (bp->b_flags & B_ASYNC) {
975 		autochaindone(bp);
976 	} else {
977 		waitchainbuf(bp, 0, 1);
978 	}
979 }
980 
981 /*
982  * SWAP_PAGER_GETPAGES() - bring pages in from swap
983  *
984  *	Attempt to retrieve (m, count) pages from backing store, but make
985  *	sure we retrieve at least m[reqpage].  We try to load in as large
986  *	a chunk surrounding m[reqpage] as is contiguous in swap and which
987  *	belongs to the same object.
988  *
989  *	The code is designed for asynchronous operation and
990  *	immediate-notification of 'reqpage' but tends not to be
991  *	used that way.  Please do not optimize-out this algorithmic
992  *	feature, I intend to improve on it in the future.
993  *
994  *	The parent has a single vm_object_pip_add() reference prior to
995  *	calling us and we should return with the same.
996  *
997  *	The parent has BUSY'd the pages.  We should return with 'm'
998  *	left busy, but the others adjusted.
999  */
1000 
1001 static int
1002 swap_pager_getpages(vm_object_t object, vm_page_t *m, int count, int reqpage)
1003 {
1004 	struct buf *bp;
1005 	vm_page_t mreq;
1006 	int s;
1007 	int i;
1008 	int j;
1009 	daddr_t blk;
1010 	vm_offset_t kva;
1011 	vm_pindex_t lastpindex;
1012 
1013 	mreq = m[reqpage];
1014 
1015 	if (mreq->object != object) {
1016 		panic("swap_pager_getpages: object mismatch %p/%p",
1017 		    object,
1018 		    mreq->object
1019 		);
1020 	}
1021 	/*
1022 	 * Calculate range to retrieve.  The pages have already been assigned
1023 	 * their swapblks.  We require a *contiguous* range that falls entirely
1024 	 * within a single device stripe.   If we do not supply it, bad things
1025 	 * happen.  Note that blk, iblk & jblk can be SWAPBLK_NONE, but the
1026 	 * loops are set up such that the case(s) are handled implicitly.
1027 	 *
1028 	 * The swp_*() calls must be made at splvm().  vm_page_free() does
1029 	 * not need to be, but it will go a little faster if it is.
1030 	 */
1031 
1032 	s = splvm();
1033 	blk = swp_pager_meta_ctl(mreq->object, mreq->pindex, 0);
1034 
1035 	for (i = reqpage - 1; i >= 0; --i) {
1036 		daddr_t iblk;
1037 
1038 		iblk = swp_pager_meta_ctl(m[i]->object, m[i]->pindex, 0);
1039 		if (blk != iblk + (reqpage - i))
1040 			break;
1041 		if ((blk ^ iblk) & dmmax_mask)
1042 			break;
1043 	}
1044 	++i;
1045 
1046 	for (j = reqpage + 1; j < count; ++j) {
1047 		daddr_t jblk;
1048 
1049 		jblk = swp_pager_meta_ctl(m[j]->object, m[j]->pindex, 0);
1050 		if (blk != jblk - (j - reqpage))
1051 			break;
1052 		if ((blk ^ jblk) & dmmax_mask)
1053 			break;
1054 	}
1055 
1056 	/*
1057 	 * free pages outside our collection range.   Note: we never free
1058 	 * mreq, it must remain busy throughout.
1059 	 */
1060 
1061 	{
1062 		int k;
1063 
1064 		for (k = 0; k < i; ++k)
1065 			vm_page_free(m[k]);
1066 		for (k = j; k < count; ++k)
1067 			vm_page_free(m[k]);
1068 	}
1069 	splx(s);
1070 
1071 
1072 	/*
1073 	 * Return VM_PAGER_FAIL if we have nothing to do.  Return mreq
1074 	 * still busy, but the others unbusied.
1075 	 */
1076 
1077 	if (blk == SWAPBLK_NONE)
1078 		return(VM_PAGER_FAIL);
1079 
1080 	/*
1081 	 * Get a swap buffer header to perform the IO
1082 	 */
1083 
1084 	bp = getpbuf(&nsw_rcount);
1085 	kva = (vm_offset_t) bp->b_data;
1086 
1087 	/*
1088 	 * map our page(s) into kva for input
1089 	 *
1090 	 * NOTE: B_PAGING is set by pbgetvp()
1091 	 */
1092 
1093 	pmap_qenter(kva, m + i, j - i);
1094 
1095 	bp->b_flags = B_READ | B_CALL;
1096 	bp->b_iodone = swp_pager_async_iodone;
1097 	bp->b_data = (caddr_t) kva;
1098 	bp->b_blkno = blk - (reqpage - i);
1099 	bp->b_bcount = PAGE_SIZE * (j - i);
1100 	bp->b_bufsize = PAGE_SIZE * (j - i);
1101 	bp->b_pager.pg_reqpage = reqpage - i;
1102 
1103 	{
1104 		int k;
1105 
1106 		for (k = i; k < j; ++k) {
1107 			bp->b_pages[k - i] = m[k];
1108 			vm_page_flag_set(m[k], PG_SWAPINPROG);
1109 		}
1110 	}
1111 	bp->b_npages = j - i;
1112 
1113 	pbgetvp(swapdev_vp, bp);
1114 
1115 	mycpu->gd_cnt.v_swapin++;
1116 	mycpu->gd_cnt.v_swappgsin += bp->b_npages;
1117 
1118 	/*
1119 	 * We still hold the lock on mreq, and our automatic completion routine
1120 	 * does not remove it.
1121 	 */
1122 
1123 	vm_object_pip_add(mreq->object, bp->b_npages);
1124 	lastpindex = m[j-1]->pindex;
1125 
1126 	/*
1127 	 * perform the I/O.  NOTE!!!  bp cannot be considered valid after
1128 	 * this point because we automatically release it on completion.
1129 	 * Instead, we look at the one page we are interested in which we
1130 	 * still hold a lock on even through the I/O completion.
1131 	 *
1132 	 * The other pages in our m[] array are also released on completion,
1133 	 * so we cannot assume they are valid anymore either.
1134 	 *
1135 	 * NOTE: b_blkno is destroyed by the call to VOP_STRATEGY
1136 	 */
1137 
1138 	BUF_KERNPROC(bp);
1139 	VOP_STRATEGY(bp->b_vp, bp);
1140 
1141 	/*
1142 	 * wait for the page we want to complete.  PG_SWAPINPROG is always
1143 	 * cleared on completion.  If an I/O error occurs, SWAPBLK_NONE
1144 	 * is set in the meta-data.
1145 	 */
1146 
1147 	s = splvm();
1148 
1149 	while ((mreq->flags & PG_SWAPINPROG) != 0) {
1150 		vm_page_flag_set(mreq, PG_WANTED | PG_REFERENCED);
1151 		mycpu->gd_cnt.v_intrans++;
1152 		if (tsleep(mreq, 0, "swread", hz*20)) {
1153 			printf(
1154 			    "swap_pager: indefinite wait buffer: device:"
1155 				" %s, blkno: %ld, size: %ld\n",
1156 			    devtoname(bp->b_dev), (long)bp->b_blkno,
1157 			    bp->b_bcount
1158 			);
1159 		}
1160 	}
1161 
1162 	splx(s);
1163 
1164 	/*
1165 	 * mreq is left bussied after completion, but all the other pages
1166 	 * are freed.  If we had an unrecoverable read error the page will
1167 	 * not be valid.
1168 	 */
1169 
1170 	if (mreq->valid != VM_PAGE_BITS_ALL) {
1171 		return(VM_PAGER_ERROR);
1172 	} else {
1173 		return(VM_PAGER_OK);
1174 	}
1175 
1176 	/*
1177 	 * A final note: in a low swap situation, we cannot deallocate swap
1178 	 * and mark a page dirty here because the caller is likely to mark
1179 	 * the page clean when we return, causing the page to possibly revert
1180 	 * to all-zero's later.
1181 	 */
1182 }
1183 
1184 /*
1185  *	swap_pager_putpages:
1186  *
1187  *	Assign swap (if necessary) and initiate I/O on the specified pages.
1188  *
1189  *	We support both OBJT_DEFAULT and OBJT_SWAP objects.  DEFAULT objects
1190  *	are automatically converted to SWAP objects.
1191  *
1192  *	In a low memory situation we may block in VOP_STRATEGY(), but the new
1193  *	vm_page reservation system coupled with properly written VFS devices
1194  *	should ensure that no low-memory deadlock occurs.  This is an area
1195  *	which needs work.
1196  *
1197  *	The parent has N vm_object_pip_add() references prior to
1198  *	calling us and will remove references for rtvals[] that are
1199  *	not set to VM_PAGER_PEND.  We need to remove the rest on I/O
1200  *	completion.
1201  *
1202  *	The parent has soft-busy'd the pages it passes us and will unbusy
1203  *	those whos rtvals[] entry is not set to VM_PAGER_PEND on return.
1204  *	We need to unbusy the rest on I/O completion.
1205  */
1206 
1207 void
1208 swap_pager_putpages(vm_object_t object, vm_page_t *m, int count, boolean_t sync,
1209     int *rtvals)
1210 {
1211 	int i;
1212 	int n = 0;
1213 
1214 	if (count && m[0]->object != object) {
1215 		panic("swap_pager_getpages: object mismatch %p/%p",
1216 		    object,
1217 		    m[0]->object
1218 		);
1219 	}
1220 	/*
1221 	 * Step 1
1222 	 *
1223 	 * Turn object into OBJT_SWAP
1224 	 * check for bogus sysops
1225 	 * force sync if not pageout process
1226 	 */
1227 
1228 	if (object->type != OBJT_SWAP)
1229 		swp_pager_meta_build(object, 0, SWAPBLK_NONE);
1230 
1231 	if (curthread != pagethread)
1232 		sync = TRUE;
1233 
1234 	/*
1235 	 * Step 2
1236 	 *
1237 	 * Update nsw parameters from swap_async_max sysctl values.
1238 	 * Do not let the sysop crash the machine with bogus numbers.
1239 	 */
1240 
1241 	if (swap_async_max != nsw_wcount_async_max) {
1242 		int n;
1243 		int s;
1244 
1245 		/*
1246 		 * limit range
1247 		 */
1248 		if ((n = swap_async_max) > nswbuf / 2)
1249 			n = nswbuf / 2;
1250 		if (n < 1)
1251 			n = 1;
1252 		swap_async_max = n;
1253 
1254 		/*
1255 		 * Adjust difference ( if possible ).  If the current async
1256 		 * count is too low, we may not be able to make the adjustment
1257 		 * at this time.
1258 		 */
1259 		s = splvm();
1260 		n -= nsw_wcount_async_max;
1261 		if (nsw_wcount_async + n >= 0) {
1262 			nsw_wcount_async += n;
1263 			nsw_wcount_async_max += n;
1264 			wakeup(&nsw_wcount_async);
1265 		}
1266 		splx(s);
1267 	}
1268 
1269 	/*
1270 	 * Step 3
1271 	 *
1272 	 * Assign swap blocks and issue I/O.  We reallocate swap on the fly.
1273 	 * The page is left dirty until the pageout operation completes
1274 	 * successfully.
1275 	 */
1276 
1277 	for (i = 0; i < count; i += n) {
1278 		int s;
1279 		int j;
1280 		struct buf *bp;
1281 		daddr_t blk;
1282 
1283 		/*
1284 		 * Maximum I/O size is limited by a number of factors.
1285 		 */
1286 
1287 		n = min(BLIST_MAX_ALLOC, count - i);
1288 		n = min(n, nsw_cluster_max);
1289 
1290 		s = splvm();
1291 
1292 		/*
1293 		 * Get biggest block of swap we can.  If we fail, fall
1294 		 * back and try to allocate a smaller block.  Don't go
1295 		 * overboard trying to allocate space if it would overly
1296 		 * fragment swap.
1297 		 */
1298 		while (
1299 		    (blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE &&
1300 		    n > 4
1301 		) {
1302 			n >>= 1;
1303 		}
1304 		if (blk == SWAPBLK_NONE) {
1305 			for (j = 0; j < n; ++j)
1306 				rtvals[i+j] = VM_PAGER_FAIL;
1307 			splx(s);
1308 			continue;
1309 		}
1310 
1311 		/*
1312 		 * The I/O we are constructing cannot cross a physical
1313 		 * disk boundry in the swap stripe.  Note: we are still
1314 		 * at splvm().
1315 		 */
1316 		if ((blk ^ (blk + n)) & dmmax_mask) {
1317 			j = ((blk + dmmax) & dmmax_mask) - blk;
1318 			swp_pager_freeswapspace(blk + j, n - j);
1319 			n = j;
1320 		}
1321 
1322 		/*
1323 		 * All I/O parameters have been satisfied, build the I/O
1324 		 * request and assign the swap space.
1325 		 *
1326 		 * NOTE: B_PAGING is set by pbgetvp()
1327 		 */
1328 
1329 		if (sync == TRUE) {
1330 			bp = getpbuf(&nsw_wcount_sync);
1331 			bp->b_flags = B_CALL;
1332 		} else {
1333 			bp = getpbuf(&nsw_wcount_async);
1334 			bp->b_flags = B_CALL | B_ASYNC;
1335 		}
1336 		bp->b_spc = NULL;	/* not used, but NULL-out anyway */
1337 
1338 		pmap_qenter((vm_offset_t)bp->b_data, &m[i], n);
1339 
1340 		bp->b_bcount = PAGE_SIZE * n;
1341 		bp->b_bufsize = PAGE_SIZE * n;
1342 		bp->b_blkno = blk;
1343 
1344 		pbgetvp(swapdev_vp, bp);
1345 
1346 		for (j = 0; j < n; ++j) {
1347 			vm_page_t mreq = m[i+j];
1348 
1349 			swp_pager_meta_build(
1350 			    mreq->object,
1351 			    mreq->pindex,
1352 			    blk + j
1353 			);
1354 			vm_page_dirty(mreq);
1355 			rtvals[i+j] = VM_PAGER_OK;
1356 
1357 			vm_page_flag_set(mreq, PG_SWAPINPROG);
1358 			bp->b_pages[j] = mreq;
1359 		}
1360 		bp->b_npages = n;
1361 		/*
1362 		 * Must set dirty range for NFS to work.
1363 		 */
1364 		bp->b_dirtyoff = 0;
1365 		bp->b_dirtyend = bp->b_bcount;
1366 
1367 		mycpu->gd_cnt.v_swapout++;
1368 		mycpu->gd_cnt.v_swappgsout += bp->b_npages;
1369 		swapdev_vp->v_numoutput++;
1370 
1371 		splx(s);
1372 
1373 		/*
1374 		 * asynchronous
1375 		 *
1376 		 * NOTE: b_blkno is destroyed by the call to VOP_STRATEGY
1377 		 */
1378 
1379 		if (sync == FALSE) {
1380 			bp->b_iodone = swp_pager_async_iodone;
1381 			BUF_KERNPROC(bp);
1382 			VOP_STRATEGY(bp->b_vp, bp);
1383 
1384 			for (j = 0; j < n; ++j)
1385 				rtvals[i+j] = VM_PAGER_PEND;
1386 			continue;
1387 		}
1388 
1389 		/*
1390 		 * synchronous
1391 		 *
1392 		 * NOTE: b_blkno is destroyed by the call to VOP_STRATEGY
1393 		 */
1394 
1395 		bp->b_iodone = swp_pager_sync_iodone;
1396 		VOP_STRATEGY(bp->b_vp, bp);
1397 
1398 		/*
1399 		 * Wait for the sync I/O to complete, then update rtvals.
1400 		 * We just set the rtvals[] to VM_PAGER_PEND so we can call
1401 		 * our async completion routine at the end, thus avoiding a
1402 		 * double-free.
1403 		 */
1404 		s = splbio();
1405 
1406 		while ((bp->b_flags & B_DONE) == 0) {
1407 			tsleep(bp, 0, "swwrt", 0);
1408 		}
1409 
1410 		for (j = 0; j < n; ++j)
1411 			rtvals[i+j] = VM_PAGER_PEND;
1412 
1413 		/*
1414 		 * Now that we are through with the bp, we can call the
1415 		 * normal async completion, which frees everything up.
1416 		 */
1417 
1418 		swp_pager_async_iodone(bp);
1419 
1420 		splx(s);
1421 	}
1422 }
1423 
1424 /*
1425  *	swap_pager_sync_iodone:
1426  *
1427  *	Completion routine for synchronous reads and writes from/to swap.
1428  *	We just mark the bp is complete and wake up anyone waiting on it.
1429  *
1430  *	This routine may not block.  This routine is called at splbio() or better.
1431  */
1432 
1433 static void
1434 swp_pager_sync_iodone(struct buf *bp)
1435 {
1436 	bp->b_flags |= B_DONE;
1437 	bp->b_flags &= ~B_ASYNC;
1438 	wakeup(bp);
1439 }
1440 
1441 /*
1442  *	swp_pager_async_iodone:
1443  *
1444  *	Completion routine for asynchronous reads and writes from/to swap.
1445  *	Also called manually by synchronous code to finish up a bp.
1446  *
1447  *	For READ operations, the pages are PG_BUSY'd.  For WRITE operations,
1448  *	the pages are vm_page_t->busy'd.  For READ operations, we PG_BUSY
1449  *	unbusy all pages except the 'main' request page.  For WRITE
1450  *	operations, we vm_page_t->busy'd unbusy all pages ( we can do this
1451  *	because we marked them all VM_PAGER_PEND on return from putpages ).
1452  *
1453  *	This routine may not block.
1454  *	This routine is called at splbio() or better
1455  *
1456  *	We up ourselves to splvm() as required for various vm_page related
1457  *	calls.
1458  */
1459 
1460 static void
1461 swp_pager_async_iodone(struct buf *bp)
1462 {
1463 	int s;
1464 	int i;
1465 	vm_object_t object = NULL;
1466 
1467 	bp->b_flags |= B_DONE;
1468 
1469 	/*
1470 	 * report error
1471 	 */
1472 
1473 	if (bp->b_flags & B_ERROR) {
1474 		printf(
1475 		    "swap_pager: I/O error - %s failed; blkno %ld,"
1476 			"size %ld, error %d\n",
1477 		    ((bp->b_flags & B_READ) ? "pagein" : "pageout"),
1478 		    (long)bp->b_blkno,
1479 		    (long)bp->b_bcount,
1480 		    bp->b_error
1481 		);
1482 	}
1483 
1484 	/*
1485 	 * set object, raise to splvm().
1486 	 */
1487 
1488 	if (bp->b_npages)
1489 		object = bp->b_pages[0]->object;
1490 	s = splvm();
1491 
1492 	/*
1493 	 * remove the mapping for kernel virtual
1494 	 */
1495 
1496 	pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages);
1497 
1498 	/*
1499 	 * cleanup pages.  If an error occurs writing to swap, we are in
1500 	 * very serious trouble.  If it happens to be a disk error, though,
1501 	 * we may be able to recover by reassigning the swap later on.  So
1502 	 * in this case we remove the m->swapblk assignment for the page
1503 	 * but do not free it in the rlist.  The errornous block(s) are thus
1504 	 * never reallocated as swap.  Redirty the page and continue.
1505 	 */
1506 
1507 	for (i = 0; i < bp->b_npages; ++i) {
1508 		vm_page_t m = bp->b_pages[i];
1509 
1510 		vm_page_flag_clear(m, PG_SWAPINPROG);
1511 
1512 		if (bp->b_flags & B_ERROR) {
1513 			/*
1514 			 * If an error occurs I'd love to throw the swapblk
1515 			 * away without freeing it back to swapspace, so it
1516 			 * can never be used again.  But I can't from an
1517 			 * interrupt.
1518 			 */
1519 
1520 			if (bp->b_flags & B_READ) {
1521 				/*
1522 				 * When reading, reqpage needs to stay
1523 				 * locked for the parent, but all other
1524 				 * pages can be freed.  We still want to
1525 				 * wakeup the parent waiting on the page,
1526 				 * though.  ( also: pg_reqpage can be -1 and
1527 				 * not match anything ).
1528 				 *
1529 				 * We have to wake specifically requested pages
1530 				 * up too because we cleared PG_SWAPINPROG and
1531 				 * someone may be waiting for that.
1532 				 *
1533 				 * NOTE: for reads, m->dirty will probably
1534 				 * be overridden by the original caller of
1535 				 * getpages so don't play cute tricks here.
1536 				 *
1537 				 * XXX IT IS NOT LEGAL TO FREE THE PAGE HERE
1538 				 * AS THIS MESSES WITH object->memq, and it is
1539 				 * not legal to mess with object->memq from an
1540 				 * interrupt.
1541 				 */
1542 
1543 				m->valid = 0;
1544 				vm_page_flag_clear(m, PG_ZERO);
1545 
1546 				if (i != bp->b_pager.pg_reqpage)
1547 					vm_page_free(m);
1548 				else
1549 					vm_page_flash(m);
1550 				/*
1551 				 * If i == bp->b_pager.pg_reqpage, do not wake
1552 				 * the page up.  The caller needs to.
1553 				 */
1554 			} else {
1555 				/*
1556 				 * If a write error occurs, reactivate page
1557 				 * so it doesn't clog the inactive list,
1558 				 * then finish the I/O.
1559 				 */
1560 				vm_page_dirty(m);
1561 				vm_page_activate(m);
1562 				vm_page_io_finish(m);
1563 			}
1564 		} else if (bp->b_flags & B_READ) {
1565 			/*
1566 			 * For read success, clear dirty bits.  Nobody should
1567 			 * have this page mapped but don't take any chances,
1568 			 * make sure the pmap modify bits are also cleared.
1569 			 *
1570 			 * NOTE: for reads, m->dirty will probably be
1571 			 * overridden by the original caller of getpages so
1572 			 * we cannot set them in order to free the underlying
1573 			 * swap in a low-swap situation.  I don't think we'd
1574 			 * want to do that anyway, but it was an optimization
1575 			 * that existed in the old swapper for a time before
1576 			 * it got ripped out due to precisely this problem.
1577 			 *
1578 			 * clear PG_ZERO in page.
1579 			 *
1580 			 * If not the requested page then deactivate it.
1581 			 *
1582 			 * Note that the requested page, reqpage, is left
1583 			 * busied, but we still have to wake it up.  The
1584 			 * other pages are released (unbusied) by
1585 			 * vm_page_wakeup().  We do not set reqpage's
1586 			 * valid bits here, it is up to the caller.
1587 			 */
1588 
1589 			pmap_clear_modify(m);
1590 			m->valid = VM_PAGE_BITS_ALL;
1591 			vm_page_undirty(m);
1592 			vm_page_flag_clear(m, PG_ZERO);
1593 
1594 			/*
1595 			 * We have to wake specifically requested pages
1596 			 * up too because we cleared PG_SWAPINPROG and
1597 			 * could be waiting for it in getpages.  However,
1598 			 * be sure to not unbusy getpages specifically
1599 			 * requested page - getpages expects it to be
1600 			 * left busy.
1601 			 */
1602 			if (i != bp->b_pager.pg_reqpage) {
1603 				vm_page_deactivate(m);
1604 				vm_page_wakeup(m);
1605 			} else {
1606 				vm_page_flash(m);
1607 			}
1608 		} else {
1609 			/*
1610 			 * For write success, clear the modify and dirty
1611 			 * status, then finish the I/O ( which decrements the
1612 			 * busy count and possibly wakes waiter's up ).
1613 			 */
1614 			pmap_clear_modify(m);
1615 			vm_page_undirty(m);
1616 			vm_page_io_finish(m);
1617 			if (!vm_page_count_severe() || !vm_page_try_to_cache(m))
1618 				vm_page_protect(m, VM_PROT_READ);
1619 		}
1620 	}
1621 
1622 	/*
1623 	 * adjust pip.  NOTE: the original parent may still have its own
1624 	 * pip refs on the object.
1625 	 */
1626 
1627 	if (object)
1628 		vm_object_pip_wakeupn(object, bp->b_npages);
1629 
1630 	/*
1631 	 * release the physical I/O buffer
1632 	 */
1633 
1634 	relpbuf(
1635 	    bp,
1636 	    ((bp->b_flags & B_READ) ? &nsw_rcount :
1637 		((bp->b_flags & B_ASYNC) ?
1638 		    &nsw_wcount_async :
1639 		    &nsw_wcount_sync
1640 		)
1641 	    )
1642 	);
1643 	splx(s);
1644 }
1645 
1646 /************************************************************************
1647  *				SWAP META DATA 				*
1648  ************************************************************************
1649  *
1650  *	These routines manipulate the swap metadata stored in the
1651  *	OBJT_SWAP object.  All swp_*() routines must be called at
1652  *	splvm() because swap can be freed up by the low level vm_page
1653  *	code which might be called from interrupts beyond what splbio() covers.
1654  *
1655  *	Swap metadata is implemented with a global hash and not directly
1656  *	linked into the object.  Instead the object simply contains
1657  *	appropriate tracking counters.
1658  */
1659 
1660 /*
1661  * SWP_PAGER_HASH() -	hash swap meta data
1662  *
1663  *	This is an inline helper function which hashes the swapblk given
1664  *	the object and page index.  It returns a pointer to a pointer
1665  *	to the object, or a pointer to a NULL pointer if it could not
1666  *	find a swapblk.
1667  *
1668  *	This routine must be called at splvm().
1669  */
1670 
1671 static __inline struct swblock **
1672 swp_pager_hash(vm_object_t object, vm_pindex_t index)
1673 {
1674 	struct swblock **pswap;
1675 	struct swblock *swap;
1676 
1677 	index &= ~SWAP_META_MASK;
1678 	pswap = &swhash[(index ^ (int)(intptr_t)object) & swhash_mask];
1679 
1680 	while ((swap = *pswap) != NULL) {
1681 		if (swap->swb_object == object &&
1682 		    swap->swb_index == index
1683 		) {
1684 			break;
1685 		}
1686 		pswap = &swap->swb_hnext;
1687 	}
1688 	return(pswap);
1689 }
1690 
1691 /*
1692  * SWP_PAGER_META_BUILD() -	add swap block to swap meta data for object
1693  *
1694  *	We first convert the object to a swap object if it is a default
1695  *	object.
1696  *
1697  *	The specified swapblk is added to the object's swap metadata.  If
1698  *	the swapblk is not valid, it is freed instead.  Any previously
1699  *	assigned swapblk is freed.
1700  *
1701  *	This routine must be called at splvm(), except when used to convert
1702  *	an OBJT_DEFAULT object into an OBJT_SWAP object.
1703 
1704  */
1705 
1706 static void
1707 swp_pager_meta_build(
1708 	vm_object_t object,
1709 	vm_pindex_t index,
1710 	daddr_t swapblk
1711 ) {
1712 	struct swblock *swap;
1713 	struct swblock **pswap;
1714 
1715 	/*
1716 	 * Convert default object to swap object if necessary
1717 	 */
1718 
1719 	if (object->type != OBJT_SWAP) {
1720 		object->type = OBJT_SWAP;
1721 		object->un_pager.swp.swp_bcount = 0;
1722 
1723 		if (object->handle != NULL) {
1724 			TAILQ_INSERT_TAIL(
1725 			    NOBJLIST(object->handle),
1726 			    object,
1727 			    pager_object_list
1728 			);
1729 		} else {
1730 			TAILQ_INSERT_TAIL(
1731 			    &swap_pager_un_object_list,
1732 			    object,
1733 			    pager_object_list
1734 			);
1735 		}
1736 	}
1737 
1738 	/*
1739 	 * Locate hash entry.  If not found create, but if we aren't adding
1740 	 * anything just return.  If we run out of space in the map we wait
1741 	 * and, since the hash table may have changed, retry.
1742 	 */
1743 
1744 retry:
1745 	pswap = swp_pager_hash(object, index);
1746 
1747 	if ((swap = *pswap) == NULL) {
1748 		int i;
1749 
1750 		if (swapblk == SWAPBLK_NONE)
1751 			return;
1752 
1753 		swap = *pswap = zalloc(swap_zone);
1754 		if (swap == NULL) {
1755 			VM_WAIT;
1756 			goto retry;
1757 		}
1758 		swap->swb_hnext = NULL;
1759 		swap->swb_object = object;
1760 		swap->swb_index = index & ~SWAP_META_MASK;
1761 		swap->swb_count = 0;
1762 
1763 		++object->un_pager.swp.swp_bcount;
1764 
1765 		for (i = 0; i < SWAP_META_PAGES; ++i)
1766 			swap->swb_pages[i] = SWAPBLK_NONE;
1767 	}
1768 
1769 	/*
1770 	 * Delete prior contents of metadata
1771 	 */
1772 
1773 	index &= SWAP_META_MASK;
1774 
1775 	if (swap->swb_pages[index] != SWAPBLK_NONE) {
1776 		swp_pager_freeswapspace(swap->swb_pages[index], 1);
1777 		--swap->swb_count;
1778 	}
1779 
1780 	/*
1781 	 * Enter block into metadata
1782 	 */
1783 
1784 	swap->swb_pages[index] = swapblk;
1785 	if (swapblk != SWAPBLK_NONE)
1786 		++swap->swb_count;
1787 }
1788 
1789 /*
1790  * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
1791  *
1792  *	The requested range of blocks is freed, with any associated swap
1793  *	returned to the swap bitmap.
1794  *
1795  *	This routine will free swap metadata structures as they are cleaned
1796  *	out.  This routine does *NOT* operate on swap metadata associated
1797  *	with resident pages.
1798  *
1799  *	This routine must be called at splvm()
1800  */
1801 
1802 static void
1803 swp_pager_meta_free(vm_object_t object, vm_pindex_t index, daddr_t count)
1804 {
1805 	if (object->type != OBJT_SWAP)
1806 		return;
1807 
1808 	while (count > 0) {
1809 		struct swblock **pswap;
1810 		struct swblock *swap;
1811 
1812 		pswap = swp_pager_hash(object, index);
1813 
1814 		if ((swap = *pswap) != NULL) {
1815 			daddr_t v = swap->swb_pages[index & SWAP_META_MASK];
1816 
1817 			if (v != SWAPBLK_NONE) {
1818 				swp_pager_freeswapspace(v, 1);
1819 				swap->swb_pages[index & SWAP_META_MASK] =
1820 					SWAPBLK_NONE;
1821 				if (--swap->swb_count == 0) {
1822 					*pswap = swap->swb_hnext;
1823 					zfree(swap_zone, swap);
1824 					--object->un_pager.swp.swp_bcount;
1825 				}
1826 			}
1827 			--count;
1828 			++index;
1829 		} else {
1830 			int n = SWAP_META_PAGES - (index & SWAP_META_MASK);
1831 			count -= n;
1832 			index += n;
1833 		}
1834 	}
1835 }
1836 
1837 /*
1838  * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
1839  *
1840  *	This routine locates and destroys all swap metadata associated with
1841  *	an object.
1842  *
1843  *	This routine must be called at splvm()
1844  */
1845 
1846 static void
1847 swp_pager_meta_free_all(vm_object_t object)
1848 {
1849 	daddr_t index = 0;
1850 
1851 	if (object->type != OBJT_SWAP)
1852 		return;
1853 
1854 	while (object->un_pager.swp.swp_bcount) {
1855 		struct swblock **pswap;
1856 		struct swblock *swap;
1857 
1858 		pswap = swp_pager_hash(object, index);
1859 		if ((swap = *pswap) != NULL) {
1860 			int i;
1861 
1862 			for (i = 0; i < SWAP_META_PAGES; ++i) {
1863 				daddr_t v = swap->swb_pages[i];
1864 				if (v != SWAPBLK_NONE) {
1865 					--swap->swb_count;
1866 					swp_pager_freeswapspace(v, 1);
1867 				}
1868 			}
1869 			if (swap->swb_count != 0)
1870 				panic("swap_pager_meta_free_all: swb_count != 0");
1871 			*pswap = swap->swb_hnext;
1872 			zfree(swap_zone, swap);
1873 			--object->un_pager.swp.swp_bcount;
1874 		}
1875 		index += SWAP_META_PAGES;
1876 		if (index > 0x20000000)
1877 			panic("swp_pager_meta_free_all: failed to locate all swap meta blocks");
1878 	}
1879 }
1880 
1881 /*
1882  * SWP_PAGER_METACTL() -  misc control of swap and vm_page_t meta data.
1883  *
1884  *	This routine is capable of looking up, popping, or freeing
1885  *	swapblk assignments in the swap meta data or in the vm_page_t.
1886  *	The routine typically returns the swapblk being looked-up, or popped,
1887  *	or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block
1888  *	was invalid.  This routine will automatically free any invalid
1889  *	meta-data swapblks.
1890  *
1891  *	It is not possible to store invalid swapblks in the swap meta data
1892  *	(other then a literal 'SWAPBLK_NONE'), so we don't bother checking.
1893  *
1894  *	When acting on a busy resident page and paging is in progress, we
1895  *	have to wait until paging is complete but otherwise can act on the
1896  *	busy page.
1897  *
1898  *	This routine must be called at splvm().
1899  *
1900  *	SWM_FREE	remove and free swap block from metadata
1901  *	SWM_POP		remove from meta data but do not free.. pop it out
1902  */
1903 
1904 static daddr_t
1905 swp_pager_meta_ctl(
1906 	vm_object_t object,
1907 	vm_pindex_t index,
1908 	int flags
1909 ) {
1910 	struct swblock **pswap;
1911 	struct swblock *swap;
1912 	daddr_t r1;
1913 
1914 	/*
1915 	 * The meta data only exists of the object is OBJT_SWAP
1916 	 * and even then might not be allocated yet.
1917 	 */
1918 
1919 	if (object->type != OBJT_SWAP)
1920 		return(SWAPBLK_NONE);
1921 
1922 	r1 = SWAPBLK_NONE;
1923 	pswap = swp_pager_hash(object, index);
1924 
1925 	if ((swap = *pswap) != NULL) {
1926 		index &= SWAP_META_MASK;
1927 		r1 = swap->swb_pages[index];
1928 
1929 		if (r1 != SWAPBLK_NONE) {
1930 			if (flags & SWM_FREE) {
1931 				swp_pager_freeswapspace(r1, 1);
1932 				r1 = SWAPBLK_NONE;
1933 			}
1934 			if (flags & (SWM_FREE|SWM_POP)) {
1935 				swap->swb_pages[index] = SWAPBLK_NONE;
1936 				if (--swap->swb_count == 0) {
1937 					*pswap = swap->swb_hnext;
1938 					zfree(swap_zone, swap);
1939 					--object->un_pager.swp.swp_bcount;
1940 				}
1941 			}
1942 		}
1943 	}
1944 	return(r1);
1945 }
1946