xref: /dragonfly/sys/vm/swap_pager.c (revision 235099c3)
1 /*
2  * Copyright (c) 1998,2004 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * Copyright (c) 1994 John S. Dyson
35  * Copyright (c) 1990 University of Utah.
36  * Copyright (c) 1991, 1993
37  *	The Regents of the University of California.  All rights reserved.
38  *
39  * This code is derived from software contributed to Berkeley by
40  * the Systems Programming Group of the University of Utah Computer
41  * Science Department.
42  *
43  * Redistribution and use in source and binary forms, with or without
44  * modification, are permitted provided that the following conditions
45  * are met:
46  * 1. Redistributions of source code must retain the above copyright
47  *    notice, this list of conditions and the following disclaimer.
48  * 2. Redistributions in binary form must reproduce the above copyright
49  *    notice, this list of conditions and the following disclaimer in the
50  *    documentation and/or other materials provided with the distribution.
51  * 3. All advertising materials mentioning features or use of this software
52  *    must display the following acknowledgement:
53  *	This product includes software developed by the University of
54  *	California, Berkeley and its contributors.
55  * 4. Neither the name of the University nor the names of its contributors
56  *    may be used to endorse or promote products derived from this software
57  *    without specific prior written permission.
58  *
59  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69  * SUCH DAMAGE.
70  *
71  *				New Swap System
72  *				Matthew Dillon
73  *
74  * Radix Bitmap 'blists'.
75  *
76  *	- The new swapper uses the new radix bitmap code.  This should scale
77  *	  to arbitrarily small or arbitrarily large swap spaces and an almost
78  *	  arbitrary degree of fragmentation.
79  *
80  * Features:
81  *
82  *	- on the fly reallocation of swap during putpages.  The new system
83  *	  does not try to keep previously allocated swap blocks for dirty
84  *	  pages.
85  *
86  *	- on the fly deallocation of swap
87  *
88  *	- No more garbage collection required.  Unnecessarily allocated swap
89  *	  blocks only exist for dirty vm_page_t's now and these are already
90  *	  cycled (in a high-load system) by the pager.  We also do on-the-fly
91  *	  removal of invalidated swap blocks when a page is destroyed
92  *	  or renamed.
93  *
94  * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
95  *
96  *	@(#)swap_pager.c	8.9 (Berkeley) 3/21/94
97  *
98  * $FreeBSD: src/sys/vm/swap_pager.c,v 1.130.2.12 2002/08/31 21:15:55 dillon Exp $
99  * $DragonFly: src/sys/vm/swap_pager.c,v 1.32 2008/07/01 02:02:56 dillon Exp $
100  */
101 
102 #include <sys/param.h>
103 #include <sys/systm.h>
104 #include <sys/conf.h>
105 #include <sys/kernel.h>
106 #include <sys/proc.h>
107 #include <sys/buf.h>
108 #include <sys/vnode.h>
109 #include <sys/malloc.h>
110 #include <sys/vmmeter.h>
111 #include <sys/sysctl.h>
112 #include <sys/blist.h>
113 #include <sys/lock.h>
114 #include <sys/thread2.h>
115 
116 #ifndef MAX_PAGEOUT_CLUSTER
117 #define MAX_PAGEOUT_CLUSTER 16
118 #endif
119 
120 #define SWB_NPAGES	MAX_PAGEOUT_CLUSTER
121 
122 #include "opt_swap.h"
123 #include <vm/vm.h>
124 #include <vm/vm_object.h>
125 #include <vm/vm_page.h>
126 #include <vm/vm_pager.h>
127 #include <vm/vm_pageout.h>
128 #include <vm/swap_pager.h>
129 #include <vm/vm_extern.h>
130 #include <vm/vm_zone.h>
131 
132 #include <sys/buf2.h>
133 #include <vm/vm_page2.h>
134 
135 #define SWM_FREE	0x02	/* free, period			*/
136 #define SWM_POP		0x04	/* pop out			*/
137 
138 /*
139  * vm_swap_size is in page-sized chunks now.  It was DEV_BSIZE'd chunks
140  * in the old system.
141  */
142 
143 extern int vm_swap_size;	/* number of free swap blocks, in pages */
144 
145 int swap_pager_full;		/* swap space exhaustion (task killing) */
146 static int swap_pager_almost_full; /* swap space exhaustion (w/ hysteresis)*/
147 static int nsw_rcount;		/* free read buffers			*/
148 static int nsw_wcount_sync;	/* limit write buffers / synchronous	*/
149 static int nsw_wcount_async;	/* limit write buffers / asynchronous	*/
150 static int nsw_wcount_async_max;/* assigned maximum			*/
151 static int nsw_cluster_max;	/* maximum VOP I/O allowed		*/
152 static int sw_alloc_interlock;	/* swap pager allocation interlock	*/
153 
154 struct blist *swapblist;
155 static struct swblock **swhash;
156 static int swhash_mask;
157 static int swap_async_max = 4;	/* maximum in-progress async I/O's	*/
158 
159 extern struct vnode *swapdev_vp;	/* from vm_swap.c */
160 
161 SYSCTL_INT(_vm, OID_AUTO, swap_async_max,
162         CTLFLAG_RW, &swap_async_max, 0, "Maximum running async swap ops");
163 
164 /*
165  * "named" and "unnamed" anon region objects.  Try to reduce the overhead
166  * of searching a named list by hashing it just a little.
167  */
168 
169 #define NOBJLISTS		8
170 
171 #define NOBJLIST(handle)	\
172 	(&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)])
173 
174 static struct pagerlst	swap_pager_object_list[NOBJLISTS];
175 struct pagerlst		swap_pager_un_object_list;
176 vm_zone_t		swap_zone;
177 
178 /*
179  * pagerops for OBJT_SWAP - "swap pager".  Some ops are also global procedure
180  * calls hooked from other parts of the VM system and do not appear here.
181  * (see vm/swap_pager.h).
182  */
183 
184 static vm_object_t
185 		swap_pager_alloc (void *handle, off_t size,
186 				  vm_prot_t prot, off_t offset);
187 static void	swap_pager_dealloc (vm_object_t object);
188 static int	swap_pager_getpages (vm_object_t, vm_page_t *, int, int);
189 static void	swap_pager_init (void);
190 static void	swap_pager_unswapped (vm_page_t);
191 static void	swap_pager_strategy (vm_object_t, struct bio *);
192 static void	swap_chain_iodone(struct bio *biox);
193 
194 struct pagerops swappagerops = {
195 	swap_pager_init,	/* early system initialization of pager	*/
196 	swap_pager_alloc,	/* allocate an OBJT_SWAP object		*/
197 	swap_pager_dealloc,	/* deallocate an OBJT_SWAP object	*/
198 	swap_pager_getpages,	/* pagein				*/
199 	swap_pager_putpages,	/* pageout				*/
200 	swap_pager_haspage,	/* get backing store status for page	*/
201 	swap_pager_unswapped,	/* remove swap related to page		*/
202 	swap_pager_strategy	/* pager strategy call			*/
203 };
204 
205 /*
206  * dmmax is in page-sized chunks with the new swap system.  It was
207  * dev-bsized chunks in the old.  dmmax is always a power of 2.
208  *
209  * swap_*() routines are externally accessible.  swp_*() routines are
210  * internal.
211  */
212 
213 int dmmax;
214 static int dmmax_mask;
215 int nswap_lowat = 128;		/* in pages, swap_pager_almost_full warn */
216 int nswap_hiwat = 512;		/* in pages, swap_pager_almost_full warn */
217 
218 static __inline void	swp_sizecheck (void);
219 static void	swp_pager_async_iodone (struct bio *bio);
220 
221 /*
222  * Swap bitmap functions
223  */
224 
225 static __inline void	swp_pager_freeswapspace (daddr_t blk, int npages);
226 static __inline daddr_t	swp_pager_getswapspace (int npages);
227 
228 /*
229  * Metadata functions
230  */
231 
232 static void swp_pager_meta_build (vm_object_t, vm_pindex_t, daddr_t);
233 static void swp_pager_meta_free (vm_object_t, vm_pindex_t, daddr_t);
234 static void swp_pager_meta_free_all (vm_object_t);
235 static daddr_t swp_pager_meta_ctl (vm_object_t, vm_pindex_t, int);
236 
237 /*
238  * SWP_SIZECHECK() -	update swap_pager_full indication
239  *
240  *	update the swap_pager_almost_full indication and warn when we are
241  *	about to run out of swap space, using lowat/hiwat hysteresis.
242  *
243  *	Clear swap_pager_full ( task killing ) indication when lowat is met.
244  *
245  *	No restrictions on call
246  *	This routine may not block.
247  *	This routine must be called at splvm()
248  */
249 
250 static __inline void
251 swp_sizecheck(void)
252 {
253 	if (vm_swap_size < nswap_lowat) {
254 		if (swap_pager_almost_full == 0) {
255 			kprintf("swap_pager: out of swap space\n");
256 			swap_pager_almost_full = 1;
257 		}
258 	} else {
259 		swap_pager_full = 0;
260 		if (vm_swap_size > nswap_hiwat)
261 			swap_pager_almost_full = 0;
262 	}
263 }
264 
265 /*
266  * SWAP_PAGER_INIT() -	initialize the swap pager!
267  *
268  *	Expected to be started from system init.  NOTE:  This code is run
269  *	before much else so be careful what you depend on.  Most of the VM
270  *	system has yet to be initialized at this point.
271  */
272 
273 static void
274 swap_pager_init(void)
275 {
276 	/*
277 	 * Initialize object lists
278 	 */
279 	int i;
280 
281 	for (i = 0; i < NOBJLISTS; ++i)
282 		TAILQ_INIT(&swap_pager_object_list[i]);
283 	TAILQ_INIT(&swap_pager_un_object_list);
284 
285 	/*
286 	 * Device Stripe, in PAGE_SIZE'd blocks
287 	 */
288 
289 	dmmax = SWB_NPAGES * 2;
290 	dmmax_mask = ~(dmmax - 1);
291 }
292 
293 /*
294  * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
295  *
296  *	Expected to be started from pageout process once, prior to entering
297  *	its main loop.
298  */
299 
300 void
301 swap_pager_swap_init(void)
302 {
303 	int n, n2;
304 
305 	/*
306 	 * Number of in-transit swap bp operations.  Don't
307 	 * exhaust the pbufs completely.  Make sure we
308 	 * initialize workable values (0 will work for hysteresis
309 	 * but it isn't very efficient).
310 	 *
311 	 * The nsw_cluster_max is constrained by the number of pages an XIO
312 	 * holds, i.e., (MAXPHYS/PAGE_SIZE) and our locally defined
313 	 * MAX_PAGEOUT_CLUSTER.   Also be aware that swap ops are
314 	 * constrained by the swap device interleave stripe size.
315 	 *
316 	 * Currently we hardwire nsw_wcount_async to 4.  This limit is
317 	 * designed to prevent other I/O from having high latencies due to
318 	 * our pageout I/O.  The value 4 works well for one or two active swap
319 	 * devices but is probably a little low if you have more.  Even so,
320 	 * a higher value would probably generate only a limited improvement
321 	 * with three or four active swap devices since the system does not
322 	 * typically have to pageout at extreme bandwidths.   We will want
323 	 * at least 2 per swap devices, and 4 is a pretty good value if you
324 	 * have one NFS swap device due to the command/ack latency over NFS.
325 	 * So it all works out pretty well.
326 	 */
327 
328 	nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER);
329 
330 	nsw_rcount = (nswbuf + 1) / 2;
331 	nsw_wcount_sync = (nswbuf + 3) / 4;
332 	nsw_wcount_async = 4;
333 	nsw_wcount_async_max = nsw_wcount_async;
334 
335 	/*
336 	 * The zone is dynamically allocated so generally size it to
337 	 * maxswzone (32MB to 512MB of KVM).  Set a minimum size based
338 	 * on physical memory of around 8x (each swblock can hold 16 pages).
339 	 *
340 	 * With the advent of SSDs (vs HDs) the practical (swap:memory) ratio
341 	 * has increased dramatically.
342 	 */
343 	n = vmstats.v_page_count / 2;
344 	if (maxswzone && n < maxswzone / sizeof(struct swblock))
345 		n = maxswzone / sizeof(struct swblock);
346 	n2 = n;
347 
348 	do {
349 		swap_zone = zinit(
350 			"SWAPMETA",
351 			sizeof(struct swblock),
352 			n,
353 			ZONE_INTERRUPT,
354 			1);
355 		if (swap_zone != NULL)
356 			break;
357 		/*
358 		 * if the allocation failed, try a zone two thirds the
359 		 * size of the previous attempt.
360 		 */
361 		n -= ((n + 2) / 3);
362 	} while (n > 0);
363 
364 	if (swap_zone == NULL)
365 		panic("swap_pager_swap_init: swap_zone == NULL");
366 	if (n2 != n)
367 		kprintf("Swap zone entries reduced from %d to %d.\n", n2, n);
368 	n2 = n;
369 
370 	/*
371 	 * Initialize our meta-data hash table.  The swapper does not need to
372 	 * be quite as efficient as the VM system, so we do not use an
373 	 * oversized hash table.
374 	 *
375 	 * 	n: 		size of hash table, must be power of 2
376 	 *	swhash_mask:	hash table index mask
377 	 */
378 
379 	for (n = 1; n < n2 / 8; n *= 2)
380 		;
381 
382 	swhash = kmalloc(sizeof(struct swblock *) * n, M_VMPGDATA,
383 	    M_WAITOK | M_ZERO);
384 
385 	swhash_mask = n - 1;
386 }
387 
388 /*
389  * SWAP_PAGER_ALLOC() -	allocate a new OBJT_SWAP VM object and instantiate
390  *			its metadata structures.
391  *
392  *	This routine is called from the mmap and fork code to create a new
393  *	OBJT_SWAP object.  We do this by creating an OBJT_DEFAULT object
394  *	and then converting it with swp_pager_meta_build().
395  *
396  *	This routine may block in vm_object_allocate() and create a named
397  *	object lookup race, so we must interlock.   We must also run at
398  *	splvm() for the object lookup to handle races with interrupts, but
399  *	we do not have to maintain splvm() in between the lookup and the
400  *	add because (I believe) it is not possible to attempt to create
401  *	a new swap object w/handle when a default object with that handle
402  *	already exists.
403  */
404 
405 static vm_object_t
406 swap_pager_alloc(void *handle, off_t size, vm_prot_t prot, off_t offset)
407 {
408 	vm_object_t object;
409 
410 	if (handle) {
411 		/*
412 		 * Reference existing named region or allocate new one.  There
413 		 * should not be a race here against swp_pager_meta_build()
414 		 * as called from vm_page_remove() in regards to the lookup
415 		 * of the handle.
416 		 */
417 
418 		while (sw_alloc_interlock) {
419 			sw_alloc_interlock = -1;
420 			tsleep(&sw_alloc_interlock, 0, "swpalc", 0);
421 		}
422 		sw_alloc_interlock = 1;
423 
424 		object = vm_pager_object_lookup(NOBJLIST(handle), handle);
425 
426 		if (object != NULL) {
427 			vm_object_reference(object);
428 		} else {
429 			object = vm_object_allocate(OBJT_DEFAULT,
430 				OFF_TO_IDX(offset + PAGE_MASK + size));
431 			object->handle = handle;
432 
433 			swp_pager_meta_build(object, 0, SWAPBLK_NONE);
434 		}
435 
436 		if (sw_alloc_interlock < 0)
437 			wakeup(&sw_alloc_interlock);
438 
439 		sw_alloc_interlock = 0;
440 	} else {
441 		object = vm_object_allocate(OBJT_DEFAULT,
442 			OFF_TO_IDX(offset + PAGE_MASK + size));
443 
444 		swp_pager_meta_build(object, 0, SWAPBLK_NONE);
445 	}
446 
447 	return (object);
448 }
449 
450 /*
451  * SWAP_PAGER_DEALLOC() -	remove swap metadata from object
452  *
453  *	The swap backing for the object is destroyed.  The code is
454  *	designed such that we can reinstantiate it later, but this
455  *	routine is typically called only when the entire object is
456  *	about to be destroyed.
457  *
458  *	This routine may block, but no longer does.
459  *
460  *	The object must be locked or unreferenceable.
461  */
462 
463 static void
464 swap_pager_dealloc(vm_object_t object)
465 {
466 	/*
467 	 * Remove from list right away so lookups will fail if we block for
468 	 * pageout completion.
469 	 */
470 
471 	if (object->handle == NULL) {
472 		TAILQ_REMOVE(&swap_pager_un_object_list, object, pager_object_list);
473 	} else {
474 		TAILQ_REMOVE(NOBJLIST(object->handle), object, pager_object_list);
475 	}
476 
477 	vm_object_pip_wait(object, "swpdea");
478 
479 	/*
480 	 * Free all remaining metadata.  We only bother to free it from
481 	 * the swap meta data.  We do not attempt to free swapblk's still
482 	 * associated with vm_page_t's for this object.  We do not care
483 	 * if paging is still in progress on some objects.
484 	 */
485 	crit_enter();
486 	swp_pager_meta_free_all(object);
487 	crit_exit();
488 }
489 
490 /************************************************************************
491  *			SWAP PAGER BITMAP ROUTINES			*
492  ************************************************************************/
493 
494 /*
495  * SWP_PAGER_GETSWAPSPACE() -	allocate raw swap space
496  *
497  *	Allocate swap for the requested number of pages.  The starting
498  *	swap block number (a page index) is returned or SWAPBLK_NONE
499  *	if the allocation failed.
500  *
501  *	Also has the side effect of advising that somebody made a mistake
502  *	when they configured swap and didn't configure enough.
503  *
504  *	Must be called at splvm() to avoid races with bitmap frees from
505  *	vm_page_remove() aka swap_pager_page_removed().
506  *
507  *	This routine may not block
508  *	This routine must be called at splvm().
509  */
510 
511 static __inline daddr_t
512 swp_pager_getswapspace(int npages)
513 {
514 	daddr_t blk;
515 
516 	if ((blk = blist_alloc(swapblist, npages)) == SWAPBLK_NONE) {
517 		if (swap_pager_full != 2) {
518 			kprintf("swap_pager_getswapspace: failed\n");
519 			swap_pager_full = 2;
520 			swap_pager_almost_full = 1;
521 		}
522 	} else {
523 		vm_swap_size -= npages;
524 		swp_sizecheck();
525 	}
526 	return(blk);
527 }
528 
529 /*
530  * SWP_PAGER_FREESWAPSPACE() -	free raw swap space
531  *
532  *	This routine returns the specified swap blocks back to the bitmap.
533  *
534  *	Note:  This routine may not block (it could in the old swap code),
535  *	and through the use of the new blist routines it does not block.
536  *
537  *	We must be called at splvm() to avoid races with bitmap frees from
538  *	vm_page_remove() aka swap_pager_page_removed().
539  *
540  *	This routine may not block
541  *	This routine must be called at splvm().
542  */
543 
544 static __inline void
545 swp_pager_freeswapspace(daddr_t blk, int npages)
546 {
547 	blist_free(swapblist, blk, npages);
548 	vm_swap_size += npages;
549 	swp_sizecheck();
550 }
551 
552 /*
553  * SWAP_PAGER_FREESPACE() -	frees swap blocks associated with a page
554  *				range within an object.
555  *
556  *	This is a globally accessible routine.
557  *
558  *	This routine removes swapblk assignments from swap metadata.
559  *
560  *	The external callers of this routine typically have already destroyed
561  *	or renamed vm_page_t's associated with this range in the object so
562  *	we should be ok.
563  *
564  *	This routine may be called at any spl.  We up our spl to splvm temporarily
565  *	in order to perform the metadata removal.
566  */
567 
568 void
569 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_size_t size)
570 {
571 	crit_enter();
572 	swp_pager_meta_free(object, start, size);
573 	crit_exit();
574 }
575 
576 /*
577  * SWAP_PAGER_RESERVE() - reserve swap blocks in object
578  *
579  *	Assigns swap blocks to the specified range within the object.  The
580  *	swap blocks are not zerod.  Any previous swap assignment is destroyed.
581  *
582  *	Returns 0 on success, -1 on failure.
583  */
584 
585 int
586 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
587 {
588 	int n = 0;
589 	daddr_t blk = SWAPBLK_NONE;
590 	vm_pindex_t beg = start;	/* save start index */
591 
592 	crit_enter();
593 	while (size) {
594 		if (n == 0) {
595 			n = BLIST_MAX_ALLOC;
596 			while ((blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE) {
597 				n >>= 1;
598 				if (n == 0) {
599 					swp_pager_meta_free(object, beg, start - beg);
600 					crit_exit();
601 					return(-1);
602 				}
603 			}
604 		}
605 		swp_pager_meta_build(object, start, blk);
606 		--size;
607 		++start;
608 		++blk;
609 		--n;
610 	}
611 	swp_pager_meta_free(object, start, n);
612 	crit_exit();
613 	return(0);
614 }
615 
616 /*
617  * SWAP_PAGER_COPY() -  copy blocks from source pager to destination pager
618  *			and destroy the source.
619  *
620  *	Copy any valid swapblks from the source to the destination.  In
621  *	cases where both the source and destination have a valid swapblk,
622  *	we keep the destination's.
623  *
624  *	This routine is allowed to block.  It may block allocating metadata
625  *	indirectly through swp_pager_meta_build() or if paging is still in
626  *	progress on the source.
627  *
628  *	This routine can be called at any spl
629  *
630  *	XXX vm_page_collapse() kinda expects us not to block because we
631  *	supposedly do not need to allocate memory, but for the moment we
632  *	*may* have to get a little memory from the zone allocator, but
633  *	it is taken from the interrupt memory.  We should be ok.
634  *
635  *	The source object contains no vm_page_t's (which is just as well)
636  *
637  *	The source object is of type OBJT_SWAP.
638  *
639  *	The source and destination objects must be locked or
640  *	inaccessible (XXX are they ?)
641  */
642 
643 void
644 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject,
645     vm_pindex_t offset, int destroysource)
646 {
647 	vm_pindex_t i;
648 
649 	crit_enter();
650 
651 	/*
652 	 * If destroysource is set, we remove the source object from the
653 	 * swap_pager internal queue now.
654 	 */
655 
656 	if (destroysource) {
657 		if (srcobject->handle == NULL) {
658 			TAILQ_REMOVE(
659 			    &swap_pager_un_object_list,
660 			    srcobject,
661 			    pager_object_list
662 			);
663 		} else {
664 			TAILQ_REMOVE(
665 			    NOBJLIST(srcobject->handle),
666 			    srcobject,
667 			    pager_object_list
668 			);
669 		}
670 	}
671 
672 	/*
673 	 * transfer source to destination.
674 	 */
675 
676 	for (i = 0; i < dstobject->size; ++i) {
677 		daddr_t dstaddr;
678 
679 		/*
680 		 * Locate (without changing) the swapblk on the destination,
681 		 * unless it is invalid in which case free it silently, or
682 		 * if the destination is a resident page, in which case the
683 		 * source is thrown away.
684 		 */
685 
686 		dstaddr = swp_pager_meta_ctl(dstobject, i, 0);
687 
688 		if (dstaddr == SWAPBLK_NONE) {
689 			/*
690 			 * Destination has no swapblk and is not resident,
691 			 * copy source.
692 			 */
693 			daddr_t srcaddr;
694 
695 			srcaddr = swp_pager_meta_ctl(
696 			    srcobject,
697 			    i + offset,
698 			    SWM_POP
699 			);
700 
701 			if (srcaddr != SWAPBLK_NONE)
702 				swp_pager_meta_build(dstobject, i, srcaddr);
703 		} else {
704 			/*
705 			 * Destination has valid swapblk or it is represented
706 			 * by a resident page.  We destroy the sourceblock.
707 			 */
708 
709 			swp_pager_meta_ctl(srcobject, i + offset, SWM_FREE);
710 		}
711 	}
712 
713 	/*
714 	 * Free left over swap blocks in source.
715 	 *
716 	 * We have to revert the type to OBJT_DEFAULT so we do not accidently
717 	 * double-remove the object from the swap queues.
718 	 */
719 
720 	if (destroysource) {
721 		swp_pager_meta_free_all(srcobject);
722 		/*
723 		 * Reverting the type is not necessary, the caller is going
724 		 * to destroy srcobject directly, but I'm doing it here
725 		 * for consistency since we've removed the object from its
726 		 * queues.
727 		 */
728 		srcobject->type = OBJT_DEFAULT;
729 	}
730 	crit_exit();
731 }
732 
733 /*
734  * SWAP_PAGER_HASPAGE() -	determine if we have good backing store for
735  *				the requested page.
736  *
737  *	We determine whether good backing store exists for the requested
738  *	page and return TRUE if it does, FALSE if it doesn't.
739  *
740  *	If TRUE, we also try to determine how much valid, contiguous backing
741  *	store exists before and after the requested page within a reasonable
742  *	distance.  We do not try to restrict it to the swap device stripe
743  *	(that is handled in getpages/putpages).  It probably isn't worth
744  *	doing here.
745  */
746 
747 boolean_t
748 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before,
749     int *after)
750 {
751 	daddr_t blk0;
752 
753 	/*
754 	 * do we have good backing store at the requested index ?
755 	 */
756 
757 	crit_enter();
758 	blk0 = swp_pager_meta_ctl(object, pindex, 0);
759 
760 	if (blk0 == SWAPBLK_NONE) {
761 		crit_exit();
762 		if (before)
763 			*before = 0;
764 		if (after)
765 			*after = 0;
766 		return (FALSE);
767 	}
768 
769 	/*
770 	 * find backwards-looking contiguous good backing store
771 	 */
772 
773 	if (before != NULL) {
774 		int i;
775 
776 		for (i = 1; i < (SWB_NPAGES/2); ++i) {
777 			daddr_t blk;
778 
779 			if (i > pindex)
780 				break;
781 			blk = swp_pager_meta_ctl(object, pindex - i, 0);
782 			if (blk != blk0 - i)
783 				break;
784 		}
785 		*before = (i - 1);
786 	}
787 
788 	/*
789 	 * find forward-looking contiguous good backing store
790 	 */
791 
792 	if (after != NULL) {
793 		int i;
794 
795 		for (i = 1; i < (SWB_NPAGES/2); ++i) {
796 			daddr_t blk;
797 
798 			blk = swp_pager_meta_ctl(object, pindex + i, 0);
799 			if (blk != blk0 + i)
800 				break;
801 		}
802 		*after = (i - 1);
803 	}
804 	crit_exit();
805 	return (TRUE);
806 }
807 
808 /*
809  * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
810  *
811  *	This removes any associated swap backing store, whether valid or
812  *	not, from the page.
813  *
814  *	This routine is typically called when a page is made dirty, at
815  *	which point any associated swap can be freed.  MADV_FREE also
816  *	calls us in a special-case situation
817  *
818  *	NOTE!!!  If the page is clean and the swap was valid, the caller
819  *	should make the page dirty before calling this routine.  This routine
820  *	does NOT change the m->dirty status of the page.  Also: MADV_FREE
821  *	depends on it.
822  *
823  *	This routine may not block
824  *	This routine must be called at splvm()
825  */
826 
827 static void
828 swap_pager_unswapped(vm_page_t m)
829 {
830 	swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE);
831 }
832 
833 /*
834  * SWAP_PAGER_STRATEGY() - read, write, free blocks
835  *
836  *	This implements the vm_pager_strategy() interface to swap and allows
837  *	other parts of the system to directly access swap as backing store
838  *	through vm_objects of type OBJT_SWAP.  This is intended to be a
839  *	cacheless interface ( i.e. caching occurs at higher levels ).
840  *	Therefore we do not maintain any resident pages.  All I/O goes
841  *	directly to and from the swap device.
842  *
843  *	We currently attempt to run I/O synchronously or asynchronously as
844  *	the caller requests.  This isn't perfect because we loose error
845  *	sequencing when we run multiple ops in parallel to satisfy a request.
846  *	But this is swap, so we let it all hang out.
847  */
848 
849 static void
850 swap_pager_strategy(vm_object_t object, struct bio *bio)
851 {
852 	struct buf *bp = bio->bio_buf;
853 	struct bio *nbio;
854 	vm_pindex_t start;
855 	vm_pindex_t biox_blkno = 0;
856 	int count;
857 	char *data;
858 	struct bio *biox;
859 	struct buf *bufx;
860 	struct bio_track *track;
861 
862 	/*
863 	 * tracking for swapdev vnode I/Os
864 	 */
865 	if (bp->b_cmd == BUF_CMD_READ)
866 		track = &swapdev_vp->v_track_read;
867 	else
868 		track = &swapdev_vp->v_track_write;
869 
870 	if (bp->b_bcount & PAGE_MASK) {
871 		bp->b_error = EINVAL;
872 		bp->b_flags |= B_ERROR | B_INVAL;
873 		biodone(bio);
874 		kprintf("swap_pager_strategy: bp %p offset %lld size %d, "
875 			"not page bounded\n",
876 			bp, (long long)bio->bio_offset, (int)bp->b_bcount);
877 		return;
878 	}
879 
880 	/*
881 	 * Clear error indication, initialize page index, count, data pointer.
882 	 */
883 	bp->b_error = 0;
884 	bp->b_flags &= ~B_ERROR;
885 	bp->b_resid = bp->b_bcount;
886 
887 	start = (vm_pindex_t)(bio->bio_offset >> PAGE_SHIFT);
888 	count = howmany(bp->b_bcount, PAGE_SIZE);
889 	data = bp->b_data;
890 
891 	/*
892 	 * Deal with BUF_CMD_FREEBLKS
893 	 */
894 	if (bp->b_cmd == BUF_CMD_FREEBLKS) {
895 		/*
896 		 * FREE PAGE(s) - destroy underlying swap that is no longer
897 		 *		  needed.
898 		 */
899 		swp_pager_meta_free(object, start, count);
900 		bp->b_resid = 0;
901 		biodone(bio);
902 		return;
903 	}
904 
905 	/*
906 	 * We need to be able to create a new cluster of I/O's.  We cannot
907 	 * use the caller fields of the passed bio so push a new one.
908 	 *
909 	 * Because nbio is just a placeholder for the cluster links,
910 	 * we can biodone() the original bio instead of nbio to make
911 	 * things a bit more efficient.
912 	 */
913 	nbio = push_bio(bio);
914 	nbio->bio_offset = bio->bio_offset;
915 	nbio->bio_caller_info1.cluster_head = NULL;
916 	nbio->bio_caller_info2.cluster_tail = NULL;
917 
918 	biox = NULL;
919 	bufx = NULL;
920 
921 	/*
922 	 * Execute read or write
923 	 */
924 	while (count > 0) {
925 		daddr_t blk;
926 
927 		/*
928 		 * Obtain block.  If block not found and writing, allocate a
929 		 * new block and build it into the object.
930 		 */
931 		blk = swp_pager_meta_ctl(object, start, 0);
932 		if ((blk == SWAPBLK_NONE) && bp->b_cmd != BUF_CMD_READ) {
933 			blk = swp_pager_getswapspace(1);
934 			if (blk == SWAPBLK_NONE) {
935 				bp->b_error = ENOMEM;
936 				bp->b_flags |= B_ERROR;
937 				break;
938 			}
939 			swp_pager_meta_build(object, start, blk);
940 		}
941 
942 		/*
943 		 * Do we have to flush our current collection?  Yes if:
944 		 *
945 		 *	- no swap block at this index
946 		 *	- swap block is not contiguous
947 		 *	- we cross a physical disk boundry in the
948 		 *	  stripe.
949 		 */
950 		if (
951 		    biox && (biox_blkno + btoc(bufx->b_bcount) != blk ||
952 		     ((biox_blkno ^ blk) & dmmax_mask)
953 		    )
954 		) {
955 			if (bp->b_cmd == BUF_CMD_READ) {
956 				++mycpu->gd_cnt.v_swapin;
957 				mycpu->gd_cnt.v_swappgsin += btoc(bufx->b_bcount);
958 			} else {
959 				++mycpu->gd_cnt.v_swapout;
960 				mycpu->gd_cnt.v_swappgsout += btoc(bufx->b_bcount);
961 				bufx->b_dirtyend = bufx->b_bcount;
962 			}
963 
964 			/*
965 			 * Finished with this buf.
966 			 */
967 			KKASSERT(bufx->b_bcount != 0);
968 			if (bufx->b_cmd != BUF_CMD_READ)
969 				bufx->b_dirtyend = bufx->b_bcount;
970 			biox = NULL;
971 			bufx = NULL;
972 		}
973 
974 		/*
975 		 * Add new swapblk to biox, instantiating biox if necessary.
976 		 * Zero-fill reads are able to take a shortcut.
977 		 */
978 		if (blk == SWAPBLK_NONE) {
979 			/*
980 			 * We can only get here if we are reading.  Since
981 			 * we are at splvm() we can safely modify b_resid,
982 			 * even if chain ops are in progress.
983 			 */
984 			bzero(data, PAGE_SIZE);
985 			bp->b_resid -= PAGE_SIZE;
986 		} else {
987 			if (biox == NULL) {
988 				/* XXX chain count > 4, wait to <= 4 */
989 
990 				bufx = getpbuf(NULL);
991 				biox = &bufx->b_bio1;
992 				cluster_append(nbio, bufx);
993 				bufx->b_flags |= (bufx->b_flags & B_ORDERED);
994 				bufx->b_cmd = bp->b_cmd;
995 				biox->bio_done = swap_chain_iodone;
996 				biox->bio_offset = (off_t)blk << PAGE_SHIFT;
997 				biox->bio_caller_info1.cluster_parent = nbio;
998 				biox_blkno = blk;
999 				bufx->b_bcount = 0;
1000 				bufx->b_data = data;
1001 			}
1002 			bufx->b_bcount += PAGE_SIZE;
1003 		}
1004 		--count;
1005 		++start;
1006 		data += PAGE_SIZE;
1007 	}
1008 
1009 	/*
1010 	 *  Flush out last buffer
1011 	 */
1012 	if (biox) {
1013 		if (bufx->b_cmd == BUF_CMD_READ) {
1014 			++mycpu->gd_cnt.v_swapin;
1015 			mycpu->gd_cnt.v_swappgsin += btoc(bufx->b_bcount);
1016 		} else {
1017 			++mycpu->gd_cnt.v_swapout;
1018 			mycpu->gd_cnt.v_swappgsout += btoc(bufx->b_bcount);
1019 			bufx->b_dirtyend = bufx->b_bcount;
1020 		}
1021 		KKASSERT(bufx->b_bcount);
1022 		if (bufx->b_cmd != BUF_CMD_READ)
1023 			bufx->b_dirtyend = bufx->b_bcount;
1024 		/* biox, bufx = NULL */
1025 	}
1026 
1027 	/*
1028 	 * Now initiate all the I/O.  Be careful looping on our chain as
1029 	 * I/O's may complete while we are still initiating them.
1030 	 */
1031 	nbio->bio_caller_info2.cluster_tail = NULL;
1032 	bufx = nbio->bio_caller_info1.cluster_head;
1033 
1034 	while (bufx) {
1035 		biox = &bufx->b_bio1;
1036 		BUF_KERNPROC(bufx);
1037 		bufx = bufx->b_cluster_next;
1038 		vn_strategy(swapdev_vp, biox);
1039 	}
1040 
1041 	/*
1042 	 * Completion of the cluster will also call biodone_chain(nbio).
1043 	 * We never call biodone(nbio) so we don't have to worry about
1044 	 * setting up a bio_done callback.  It's handled in the sub-IO.
1045 	 */
1046 	/**/
1047 }
1048 
1049 static void
1050 swap_chain_iodone(struct bio *biox)
1051 {
1052 	struct buf **nextp;
1053 	struct buf *bufx;	/* chained sub-buffer */
1054 	struct bio *nbio;	/* parent nbio with chain glue */
1055 	struct buf *bp;		/* original bp associated with nbio */
1056 	int chain_empty;
1057 
1058 	bufx = biox->bio_buf;
1059 	nbio = biox->bio_caller_info1.cluster_parent;
1060 	bp = nbio->bio_buf;
1061 
1062 	/*
1063 	 * Update the original buffer
1064 	 */
1065         KKASSERT(bp != NULL);
1066 	if (bufx->b_flags & B_ERROR) {
1067 		atomic_set_int(&bufx->b_flags, B_ERROR);
1068 		bp->b_error = bufx->b_error;
1069 	} else if (bufx->b_resid != 0) {
1070 		atomic_set_int(&bufx->b_flags, B_ERROR);
1071 		bp->b_error = EINVAL;
1072 	} else {
1073 		atomic_subtract_int(&bp->b_resid, bufx->b_bcount);
1074 	}
1075 
1076 	/*
1077 	 * Remove us from the chain.
1078 	 */
1079 	spin_lock_wr(&bp->b_lock.lk_spinlock);
1080 	nextp = &nbio->bio_caller_info1.cluster_head;
1081 	while (*nextp != bufx) {
1082 		KKASSERT(*nextp != NULL);
1083 		nextp = &(*nextp)->b_cluster_next;
1084 	}
1085 	*nextp = bufx->b_cluster_next;
1086 	chain_empty = (nbio->bio_caller_info1.cluster_head == NULL);
1087 	spin_unlock_wr(&bp->b_lock.lk_spinlock);
1088 
1089 	/*
1090 	 * Clean up bufx.  If the chain is now empty we finish out
1091 	 * the parent.  Note that we may be racing other completions
1092 	 * so we must use the chain_empty status from above.
1093 	 */
1094 	if (chain_empty) {
1095 		if (bp->b_resid != 0 && !(bp->b_flags & B_ERROR)) {
1096 			atomic_set_int(&bp->b_flags, B_ERROR);
1097 			bp->b_error = EINVAL;
1098 		}
1099 		biodone_chain(nbio);
1100         }
1101         relpbuf(bufx, NULL);
1102 }
1103 
1104 /*
1105  * SWAP_PAGER_GETPAGES() - bring pages in from swap
1106  *
1107  *	Attempt to retrieve (m, count) pages from backing store, but make
1108  *	sure we retrieve at least m[reqpage].  We try to load in as large
1109  *	a chunk surrounding m[reqpage] as is contiguous in swap and which
1110  *	belongs to the same object.
1111  *
1112  *	The code is designed for asynchronous operation and
1113  *	immediate-notification of 'reqpage' but tends not to be
1114  *	used that way.  Please do not optimize-out this algorithmic
1115  *	feature, I intend to improve on it in the future.
1116  *
1117  *	The parent has a single vm_object_pip_add() reference prior to
1118  *	calling us and we should return with the same.
1119  *
1120  *	The parent has BUSY'd the pages.  We should return with 'm'
1121  *	left busy, but the others adjusted.
1122  */
1123 
1124 static int
1125 swap_pager_getpages(vm_object_t object, vm_page_t *m, int count, int reqpage)
1126 {
1127 	struct buf *bp;
1128 	struct bio *bio;
1129 	vm_page_t mreq;
1130 	int i;
1131 	int j;
1132 	daddr_t blk;
1133 	vm_offset_t kva;
1134 	vm_pindex_t lastpindex;
1135 
1136 	mreq = m[reqpage];
1137 
1138 	if (mreq->object != object) {
1139 		panic("swap_pager_getpages: object mismatch %p/%p",
1140 		    object,
1141 		    mreq->object
1142 		);
1143 	}
1144 
1145 	/*
1146 	 * Calculate range to retrieve.  The pages have already been assigned
1147 	 * their swapblks.  We require a *contiguous* range that falls entirely
1148 	 * within a single device stripe.   If we do not supply it, bad things
1149 	 * happen.  Note that blk, iblk & jblk can be SWAPBLK_NONE, but the
1150 	 * loops are set up such that the case(s) are handled implicitly.
1151 	 *
1152 	 * The swp_*() calls must be made at splvm().  vm_page_free() does
1153 	 * not need to be, but it will go a little faster if it is.
1154 	 */
1155 	crit_enter();
1156 	blk = swp_pager_meta_ctl(mreq->object, mreq->pindex, 0);
1157 
1158 	for (i = reqpage - 1; i >= 0; --i) {
1159 		daddr_t iblk;
1160 
1161 		iblk = swp_pager_meta_ctl(m[i]->object, m[i]->pindex, 0);
1162 		if (blk != iblk + (reqpage - i))
1163 			break;
1164 		if ((blk ^ iblk) & dmmax_mask)
1165 			break;
1166 	}
1167 	++i;
1168 
1169 	for (j = reqpage + 1; j < count; ++j) {
1170 		daddr_t jblk;
1171 
1172 		jblk = swp_pager_meta_ctl(m[j]->object, m[j]->pindex, 0);
1173 		if (blk != jblk - (j - reqpage))
1174 			break;
1175 		if ((blk ^ jblk) & dmmax_mask)
1176 			break;
1177 	}
1178 
1179 	/*
1180 	 * free pages outside our collection range.   Note: we never free
1181 	 * mreq, it must remain busy throughout.
1182 	 */
1183 
1184 	{
1185 		int k;
1186 
1187 		for (k = 0; k < i; ++k)
1188 			vm_page_free(m[k]);
1189 		for (k = j; k < count; ++k)
1190 			vm_page_free(m[k]);
1191 	}
1192 	crit_exit();
1193 
1194 
1195 	/*
1196 	 * Return VM_PAGER_FAIL if we have nothing to do.  Return mreq
1197 	 * still busy, but the others unbusied.
1198 	 */
1199 
1200 	if (blk == SWAPBLK_NONE)
1201 		return(VM_PAGER_FAIL);
1202 
1203 	/*
1204 	 * Get a swap buffer header to perform the IO
1205 	 */
1206 
1207 	bp = getpbuf(&nsw_rcount);
1208 	bio = &bp->b_bio1;
1209 	kva = (vm_offset_t) bp->b_data;
1210 
1211 	/*
1212 	 * map our page(s) into kva for input
1213 	 */
1214 
1215 	pmap_qenter(kva, m + i, j - i);
1216 
1217 	bp->b_data = (caddr_t) kva;
1218 	bp->b_bcount = PAGE_SIZE * (j - i);
1219 	bio->bio_done = swp_pager_async_iodone;
1220 	bio->bio_offset = (off_t)(blk - (reqpage - i)) << PAGE_SHIFT;
1221 	bio->bio_driver_info = (void *)(intptr_t)(reqpage - i);
1222 
1223 	{
1224 		int k;
1225 
1226 		for (k = i; k < j; ++k) {
1227 			bp->b_xio.xio_pages[k - i] = m[k];
1228 			vm_page_flag_set(m[k], PG_SWAPINPROG);
1229 		}
1230 	}
1231 	bp->b_xio.xio_npages = j - i;
1232 
1233 	mycpu->gd_cnt.v_swapin++;
1234 	mycpu->gd_cnt.v_swappgsin += bp->b_xio.xio_npages;
1235 
1236 	/*
1237 	 * We still hold the lock on mreq, and our automatic completion routine
1238 	 * does not remove it.
1239 	 */
1240 
1241 	vm_object_pip_add(mreq->object, bp->b_xio.xio_npages);
1242 	lastpindex = m[j-1]->pindex;
1243 
1244 	/*
1245 	 * perform the I/O.  NOTE!!!  bp cannot be considered valid after
1246 	 * this point because we automatically release it on completion.
1247 	 * Instead, we look at the one page we are interested in which we
1248 	 * still hold a lock on even through the I/O completion.
1249 	 *
1250 	 * The other pages in our m[] array are also released on completion,
1251 	 * so we cannot assume they are valid anymore either.
1252 	 */
1253 
1254 	bp->b_cmd = BUF_CMD_READ;
1255 	BUF_KERNPROC(bp);
1256 	vn_strategy(swapdev_vp, bio);
1257 
1258 	/*
1259 	 * wait for the page we want to complete.  PG_SWAPINPROG is always
1260 	 * cleared on completion.  If an I/O error occurs, SWAPBLK_NONE
1261 	 * is set in the meta-data.
1262 	 */
1263 
1264 	crit_enter();
1265 
1266 	while ((mreq->flags & PG_SWAPINPROG) != 0) {
1267 		vm_page_flag_set(mreq, PG_WANTED | PG_REFERENCED);
1268 		mycpu->gd_cnt.v_intrans++;
1269 		if (tsleep(mreq, 0, "swread", hz*20)) {
1270 			kprintf(
1271 			    "swap_pager: indefinite wait buffer: "
1272 				" offset: %lld, size: %ld\n",
1273 			    (long long)bio->bio_offset,
1274 			    (long)bp->b_bcount
1275 			);
1276 		}
1277 	}
1278 
1279 	crit_exit();
1280 
1281 	/*
1282 	 * mreq is left bussied after completion, but all the other pages
1283 	 * are freed.  If we had an unrecoverable read error the page will
1284 	 * not be valid.
1285 	 */
1286 
1287 	if (mreq->valid != VM_PAGE_BITS_ALL) {
1288 		return(VM_PAGER_ERROR);
1289 	} else {
1290 		return(VM_PAGER_OK);
1291 	}
1292 
1293 	/*
1294 	 * A final note: in a low swap situation, we cannot deallocate swap
1295 	 * and mark a page dirty here because the caller is likely to mark
1296 	 * the page clean when we return, causing the page to possibly revert
1297 	 * to all-zero's later.
1298 	 */
1299 }
1300 
1301 /*
1302  *	swap_pager_putpages:
1303  *
1304  *	Assign swap (if necessary) and initiate I/O on the specified pages.
1305  *
1306  *	We support both OBJT_DEFAULT and OBJT_SWAP objects.  DEFAULT objects
1307  *	are automatically converted to SWAP objects.
1308  *
1309  *	In a low memory situation we may block in vn_strategy(), but the new
1310  *	vm_page reservation system coupled with properly written VFS devices
1311  *	should ensure that no low-memory deadlock occurs.  This is an area
1312  *	which needs work.
1313  *
1314  *	The parent has N vm_object_pip_add() references prior to
1315  *	calling us and will remove references for rtvals[] that are
1316  *	not set to VM_PAGER_PEND.  We need to remove the rest on I/O
1317  *	completion.
1318  *
1319  *	The parent has soft-busy'd the pages it passes us and will unbusy
1320  *	those whos rtvals[] entry is not set to VM_PAGER_PEND on return.
1321  *	We need to unbusy the rest on I/O completion.
1322  */
1323 void
1324 swap_pager_putpages(vm_object_t object, vm_page_t *m, int count,
1325 		    boolean_t sync, int *rtvals)
1326 {
1327 	int i;
1328 	int n = 0;
1329 
1330 	if (count && m[0]->object != object) {
1331 		panic("swap_pager_getpages: object mismatch %p/%p",
1332 		    object,
1333 		    m[0]->object
1334 		);
1335 	}
1336 
1337 	/*
1338 	 * Step 1
1339 	 *
1340 	 * Turn object into OBJT_SWAP
1341 	 * check for bogus sysops
1342 	 * force sync if not pageout process
1343 	 */
1344 
1345 	if (object->type != OBJT_SWAP)
1346 		swp_pager_meta_build(object, 0, SWAPBLK_NONE);
1347 
1348 	if (curthread != pagethread)
1349 		sync = TRUE;
1350 
1351 	/*
1352 	 * Step 2
1353 	 *
1354 	 * Update nsw parameters from swap_async_max sysctl values.
1355 	 * Do not let the sysop crash the machine with bogus numbers.
1356 	 */
1357 
1358 	if (swap_async_max != nsw_wcount_async_max) {
1359 		int n;
1360 
1361 		/*
1362 		 * limit range
1363 		 */
1364 		if ((n = swap_async_max) > nswbuf / 2)
1365 			n = nswbuf / 2;
1366 		if (n < 1)
1367 			n = 1;
1368 		swap_async_max = n;
1369 
1370 		/*
1371 		 * Adjust difference ( if possible ).  If the current async
1372 		 * count is too low, we may not be able to make the adjustment
1373 		 * at this time.
1374 		 */
1375 		crit_enter();
1376 		n -= nsw_wcount_async_max;
1377 		if (nsw_wcount_async + n >= 0) {
1378 			nsw_wcount_async += n;
1379 			nsw_wcount_async_max += n;
1380 			wakeup(&nsw_wcount_async);
1381 		}
1382 		crit_exit();
1383 	}
1384 
1385 	/*
1386 	 * Step 3
1387 	 *
1388 	 * Assign swap blocks and issue I/O.  We reallocate swap on the fly.
1389 	 * The page is left dirty until the pageout operation completes
1390 	 * successfully.
1391 	 */
1392 
1393 	for (i = 0; i < count; i += n) {
1394 		struct buf *bp;
1395 		struct bio *bio;
1396 		daddr_t blk;
1397 		int j;
1398 
1399 		/*
1400 		 * Maximum I/O size is limited by a number of factors.
1401 		 */
1402 
1403 		n = min(BLIST_MAX_ALLOC, count - i);
1404 		n = min(n, nsw_cluster_max);
1405 
1406 		crit_enter();
1407 
1408 		/*
1409 		 * Get biggest block of swap we can.  If we fail, fall
1410 		 * back and try to allocate a smaller block.  Don't go
1411 		 * overboard trying to allocate space if it would overly
1412 		 * fragment swap.
1413 		 */
1414 		while (
1415 		    (blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE &&
1416 		    n > 4
1417 		) {
1418 			n >>= 1;
1419 		}
1420 		if (blk == SWAPBLK_NONE) {
1421 			for (j = 0; j < n; ++j)
1422 				rtvals[i+j] = VM_PAGER_FAIL;
1423 			crit_exit();
1424 			continue;
1425 		}
1426 
1427 		/*
1428 		 * The I/O we are constructing cannot cross a physical
1429 		 * disk boundry in the swap stripe.  Note: we are still
1430 		 * at splvm().
1431 		 */
1432 		if ((blk ^ (blk + n)) & dmmax_mask) {
1433 			j = ((blk + dmmax) & dmmax_mask) - blk;
1434 			swp_pager_freeswapspace(blk + j, n - j);
1435 			n = j;
1436 		}
1437 
1438 		/*
1439 		 * All I/O parameters have been satisfied, build the I/O
1440 		 * request and assign the swap space.
1441 		 */
1442 
1443 		if (sync == TRUE)
1444 			bp = getpbuf(&nsw_wcount_sync);
1445 		else
1446 			bp = getpbuf(&nsw_wcount_async);
1447 		bio = &bp->b_bio1;
1448 
1449 		pmap_qenter((vm_offset_t)bp->b_data, &m[i], n);
1450 
1451 		bp->b_bcount = PAGE_SIZE * n;
1452 		bio->bio_offset = (off_t)blk << PAGE_SHIFT;
1453 
1454 		for (j = 0; j < n; ++j) {
1455 			vm_page_t mreq = m[i+j];
1456 
1457 			swp_pager_meta_build(
1458 			    mreq->object,
1459 			    mreq->pindex,
1460 			    blk + j
1461 			);
1462 			vm_page_dirty(mreq);
1463 			rtvals[i+j] = VM_PAGER_OK;
1464 
1465 			vm_page_flag_set(mreq, PG_SWAPINPROG);
1466 			bp->b_xio.xio_pages[j] = mreq;
1467 		}
1468 		bp->b_xio.xio_npages = n;
1469 
1470 		mycpu->gd_cnt.v_swapout++;
1471 		mycpu->gd_cnt.v_swappgsout += bp->b_xio.xio_npages;
1472 
1473 		crit_exit();
1474 
1475 		bp->b_dirtyoff = 0;		/* req'd for NFS */
1476 		bp->b_dirtyend = bp->b_bcount;	/* req'd for NFS */
1477 		bp->b_cmd = BUF_CMD_WRITE;
1478 
1479 		/*
1480 		 * asynchronous
1481 		 */
1482 		if (sync == FALSE) {
1483 			bio->bio_done = swp_pager_async_iodone;
1484 			BUF_KERNPROC(bp);
1485 			vn_strategy(swapdev_vp, bio);
1486 
1487 			for (j = 0; j < n; ++j)
1488 				rtvals[i+j] = VM_PAGER_PEND;
1489 			continue;
1490 		}
1491 
1492 		/*
1493 		 * Issue synchrnously.
1494 		 *
1495 		 * Wait for the sync I/O to complete, then update rtvals.
1496 		 * We just set the rtvals[] to VM_PAGER_PEND so we can call
1497 		 * our async completion routine at the end, thus avoiding a
1498 		 * double-free.
1499 		 */
1500 		bio->bio_done = biodone_sync;
1501 		bio->bio_flags |= BIO_SYNC;
1502 		vn_strategy(swapdev_vp, bio);
1503 		biowait(bio, "swwrt");
1504 
1505 		for (j = 0; j < n; ++j)
1506 			rtvals[i+j] = VM_PAGER_PEND;
1507 
1508 		/*
1509 		 * Now that we are through with the bp, we can call the
1510 		 * normal async completion, which frees everything up.
1511 		 */
1512 		swp_pager_async_iodone(bio);
1513 	}
1514 }
1515 
1516 void
1517 swap_pager_newswap(void)
1518 {
1519 	swp_sizecheck();
1520 }
1521 
1522 /*
1523  *	swp_pager_async_iodone:
1524  *
1525  *	Completion routine for asynchronous reads and writes from/to swap.
1526  *	Also called manually by synchronous code to finish up a bp.
1527  *
1528  *	For READ operations, the pages are PG_BUSY'd.  For WRITE operations,
1529  *	the pages are vm_page_t->busy'd.  For READ operations, we PG_BUSY
1530  *	unbusy all pages except the 'main' request page.  For WRITE
1531  *	operations, we vm_page_t->busy'd unbusy all pages ( we can do this
1532  *	because we marked them all VM_PAGER_PEND on return from putpages ).
1533  *
1534  *	This routine may not block.
1535  */
1536 static void
1537 swp_pager_async_iodone(struct bio *bio)
1538 {
1539 	struct buf *bp = bio->bio_buf;
1540 	vm_object_t object = NULL;
1541 	int i;
1542 	int *nswptr;
1543 
1544 	/*
1545 	 * report error
1546 	 */
1547 	if (bp->b_flags & B_ERROR) {
1548 		kprintf(
1549 		    "swap_pager: I/O error - %s failed; offset %lld,"
1550 			"size %ld, error %d\n",
1551 		    ((bp->b_cmd == BUF_CMD_READ) ? "pagein" : "pageout"),
1552 		    (long long)bio->bio_offset,
1553 		    (long)bp->b_bcount,
1554 		    bp->b_error
1555 		);
1556 	}
1557 
1558 	/*
1559 	 * set object, raise to splvm().
1560 	 */
1561 	if (bp->b_xio.xio_npages)
1562 		object = bp->b_xio.xio_pages[0]->object;
1563 	crit_enter();
1564 
1565 	/*
1566 	 * remove the mapping for kernel virtual
1567 	 */
1568 	pmap_qremove((vm_offset_t)bp->b_data, bp->b_xio.xio_npages);
1569 
1570 	/*
1571 	 * cleanup pages.  If an error occurs writing to swap, we are in
1572 	 * very serious trouble.  If it happens to be a disk error, though,
1573 	 * we may be able to recover by reassigning the swap later on.  So
1574 	 * in this case we remove the m->swapblk assignment for the page
1575 	 * but do not free it in the rlist.  The errornous block(s) are thus
1576 	 * never reallocated as swap.  Redirty the page and continue.
1577 	 */
1578 	for (i = 0; i < bp->b_xio.xio_npages; ++i) {
1579 		vm_page_t m = bp->b_xio.xio_pages[i];
1580 
1581 		vm_page_flag_clear(m, PG_SWAPINPROG);
1582 
1583 		if (bp->b_flags & B_ERROR) {
1584 			/*
1585 			 * If an error occurs I'd love to throw the swapblk
1586 			 * away without freeing it back to swapspace, so it
1587 			 * can never be used again.  But I can't from an
1588 			 * interrupt.
1589 			 */
1590 
1591 			if (bp->b_cmd == BUF_CMD_READ) {
1592 				/*
1593 				 * When reading, reqpage needs to stay
1594 				 * locked for the parent, but all other
1595 				 * pages can be freed.  We still want to
1596 				 * wakeup the parent waiting on the page,
1597 				 * though.  ( also: pg_reqpage can be -1 and
1598 				 * not match anything ).
1599 				 *
1600 				 * We have to wake specifically requested pages
1601 				 * up too because we cleared PG_SWAPINPROG and
1602 				 * someone may be waiting for that.
1603 				 *
1604 				 * NOTE: for reads, m->dirty will probably
1605 				 * be overridden by the original caller of
1606 				 * getpages so don't play cute tricks here.
1607 				 *
1608 				 * NOTE: We can't actually free the page from
1609 				 * here, because this is an interrupt.  It
1610 				 * is not legal to mess with object->memq
1611 				 * from an interrupt.  Deactivate the page
1612 				 * instead.
1613 				 */
1614 
1615 				m->valid = 0;
1616 				vm_page_flag_clear(m, PG_ZERO);
1617 
1618 				/*
1619 				 * bio_driver_info holds the requested page
1620 				 * index.
1621 				 */
1622 				if (i != (int)(intptr_t)bio->bio_driver_info) {
1623 					vm_page_deactivate(m);
1624 					vm_page_wakeup(m);
1625 				} else {
1626 					vm_page_flash(m);
1627 				}
1628 				/*
1629 				 * If i == bp->b_pager.pg_reqpage, do not wake
1630 				 * the page up.  The caller needs to.
1631 				 */
1632 			} else {
1633 				/*
1634 				 * If a write error occurs, reactivate page
1635 				 * so it doesn't clog the inactive list,
1636 				 * then finish the I/O.
1637 				 */
1638 				vm_page_dirty(m);
1639 				vm_page_activate(m);
1640 				vm_page_io_finish(m);
1641 			}
1642 		} else if (bp->b_cmd == BUF_CMD_READ) {
1643 			/*
1644 			 * NOTE: for reads, m->dirty will probably be
1645 			 * overridden by the original caller of getpages so
1646 			 * we cannot set them in order to free the underlying
1647 			 * swap in a low-swap situation.  I don't think we'd
1648 			 * want to do that anyway, but it was an optimization
1649 			 * that existed in the old swapper for a time before
1650 			 * it got ripped out due to precisely this problem.
1651 			 *
1652 			 * clear PG_ZERO in page.
1653 			 *
1654 			 * If not the requested page then deactivate it.
1655 			 *
1656 			 * Note that the requested page, reqpage, is left
1657 			 * busied, but we still have to wake it up.  The
1658 			 * other pages are released (unbusied) by
1659 			 * vm_page_wakeup().  We do not set reqpage's
1660 			 * valid bits here, it is up to the caller.
1661 			 */
1662 
1663 			/*
1664 			 * NOTE: can't call pmap_clear_modify(m) from an
1665 			 * interrupt thread, the pmap code may have to map
1666 			 * non-kernel pmaps and currently asserts the case.
1667 			 */
1668 			/*pmap_clear_modify(m);*/
1669 			m->valid = VM_PAGE_BITS_ALL;
1670 			vm_page_undirty(m);
1671 			vm_page_flag_clear(m, PG_ZERO);
1672 
1673 			/*
1674 			 * We have to wake specifically requested pages
1675 			 * up too because we cleared PG_SWAPINPROG and
1676 			 * could be waiting for it in getpages.  However,
1677 			 * be sure to not unbusy getpages specifically
1678 			 * requested page - getpages expects it to be
1679 			 * left busy.
1680 			 *
1681 			 * bio_driver_info holds the requested page
1682 			 */
1683 			if (i != (int)(intptr_t)bio->bio_driver_info) {
1684 				vm_page_deactivate(m);
1685 				vm_page_wakeup(m);
1686 			} else {
1687 				vm_page_flash(m);
1688 			}
1689 		} else {
1690 			/*
1691 			 * Mark the page clean but do not mess with the
1692 			 * pmap-layer's modified state.  That state should
1693 			 * also be clear since the caller protected the
1694 			 * page VM_PROT_READ, but allow the case.
1695 			 *
1696 			 * We are in an interrupt, avoid pmap operations.
1697 			 *
1698 			 * If we have a severe page deficit, deactivate the
1699 			 * page.  Do not try to cache it (which would also
1700 			 * involve a pmap op), because the page might still
1701 			 * be read-heavy.
1702 			 */
1703 			vm_page_undirty(m);
1704 			vm_page_io_finish(m);
1705 			if (vm_page_count_severe())
1706 				vm_page_deactivate(m);
1707 #if 0
1708 			if (!vm_page_count_severe() || !vm_page_try_to_cache(m))
1709 				vm_page_protect(m, VM_PROT_READ);
1710 #endif
1711 		}
1712 	}
1713 
1714 	/*
1715 	 * adjust pip.  NOTE: the original parent may still have its own
1716 	 * pip refs on the object.
1717 	 */
1718 
1719 	if (object)
1720 		vm_object_pip_wakeupn(object, bp->b_xio.xio_npages);
1721 
1722 	/*
1723 	 * release the physical I/O buffer
1724 	 */
1725 	if (bp->b_cmd == BUF_CMD_READ)
1726 		nswptr = &nsw_rcount;
1727 	else if (bio->bio_flags & BIO_SYNC)
1728 		nswptr = &nsw_wcount_sync;
1729 	else
1730 		nswptr = &nsw_wcount_async;
1731 	bp->b_cmd = BUF_CMD_DONE;
1732 	relpbuf(bp, nswptr);
1733 	crit_exit();
1734 }
1735 
1736 /************************************************************************
1737  *				SWAP META DATA 				*
1738  ************************************************************************
1739  *
1740  *	These routines manipulate the swap metadata stored in the
1741  *	OBJT_SWAP object.  All swp_*() routines must be called at
1742  *	splvm() because swap can be freed up by the low level vm_page
1743  *	code which might be called from interrupts beyond what splbio() covers.
1744  *
1745  *	Swap metadata is implemented with a global hash and not directly
1746  *	linked into the object.  Instead the object simply contains
1747  *	appropriate tracking counters.
1748  */
1749 
1750 /*
1751  * SWP_PAGER_HASH() -	hash swap meta data
1752  *
1753  *	This is an inline helper function which hashes the swapblk given
1754  *	the object and page index.  It returns a pointer to a pointer
1755  *	to the object, or a pointer to a NULL pointer if it could not
1756  *	find a swapblk.
1757  *
1758  *	This routine must be called at splvm().
1759  */
1760 
1761 static __inline struct swblock **
1762 swp_pager_hash(vm_object_t object, vm_pindex_t index)
1763 {
1764 	struct swblock **pswap;
1765 	struct swblock *swap;
1766 
1767 	index &= ~SWAP_META_MASK;
1768 	pswap = &swhash[(index ^ (int)(intptr_t)object) & swhash_mask];
1769 
1770 	while ((swap = *pswap) != NULL) {
1771 		if (swap->swb_object == object &&
1772 		    swap->swb_index == index
1773 		) {
1774 			break;
1775 		}
1776 		pswap = &swap->swb_hnext;
1777 	}
1778 	return(pswap);
1779 }
1780 
1781 /*
1782  * SWP_PAGER_META_BUILD() -	add swap block to swap meta data for object
1783  *
1784  *	We first convert the object to a swap object if it is a default
1785  *	object.
1786  *
1787  *	The specified swapblk is added to the object's swap metadata.  If
1788  *	the swapblk is not valid, it is freed instead.  Any previously
1789  *	assigned swapblk is freed.
1790  *
1791  *	This routine must be called at splvm(), except when used to convert
1792  *	an OBJT_DEFAULT object into an OBJT_SWAP object.
1793 
1794  */
1795 
1796 static void
1797 swp_pager_meta_build(
1798 	vm_object_t object,
1799 	vm_pindex_t index,
1800 	daddr_t swapblk
1801 ) {
1802 	struct swblock *swap;
1803 	struct swblock **pswap;
1804 
1805 	/*
1806 	 * Convert default object to swap object if necessary
1807 	 */
1808 
1809 	if (object->type != OBJT_SWAP) {
1810 		object->type = OBJT_SWAP;
1811 		object->un_pager.swp.swp_bcount = 0;
1812 
1813 		if (object->handle != NULL) {
1814 			TAILQ_INSERT_TAIL(
1815 			    NOBJLIST(object->handle),
1816 			    object,
1817 			    pager_object_list
1818 			);
1819 		} else {
1820 			TAILQ_INSERT_TAIL(
1821 			    &swap_pager_un_object_list,
1822 			    object,
1823 			    pager_object_list
1824 			);
1825 		}
1826 	}
1827 
1828 	/*
1829 	 * Locate hash entry.  If not found create, but if we aren't adding
1830 	 * anything just return.  If we run out of space in the map we wait
1831 	 * and, since the hash table may have changed, retry.
1832 	 */
1833 
1834 retry:
1835 	pswap = swp_pager_hash(object, index);
1836 
1837 	if ((swap = *pswap) == NULL) {
1838 		int i;
1839 
1840 		if (swapblk == SWAPBLK_NONE)
1841 			return;
1842 
1843 		swap = *pswap = zalloc(swap_zone);
1844 		if (swap == NULL) {
1845 			vm_wait(0);
1846 			goto retry;
1847 		}
1848 		swap->swb_hnext = NULL;
1849 		swap->swb_object = object;
1850 		swap->swb_index = index & ~SWAP_META_MASK;
1851 		swap->swb_count = 0;
1852 
1853 		++object->un_pager.swp.swp_bcount;
1854 
1855 		for (i = 0; i < SWAP_META_PAGES; ++i)
1856 			swap->swb_pages[i] = SWAPBLK_NONE;
1857 	}
1858 
1859 	/*
1860 	 * Delete prior contents of metadata
1861 	 */
1862 
1863 	index &= SWAP_META_MASK;
1864 
1865 	if (swap->swb_pages[index] != SWAPBLK_NONE) {
1866 		swp_pager_freeswapspace(swap->swb_pages[index], 1);
1867 		--swap->swb_count;
1868 	}
1869 
1870 	/*
1871 	 * Enter block into metadata
1872 	 */
1873 
1874 	swap->swb_pages[index] = swapblk;
1875 	if (swapblk != SWAPBLK_NONE)
1876 		++swap->swb_count;
1877 }
1878 
1879 /*
1880  * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
1881  *
1882  *	The requested range of blocks is freed, with any associated swap
1883  *	returned to the swap bitmap.
1884  *
1885  *	This routine will free swap metadata structures as they are cleaned
1886  *	out.  This routine does *NOT* operate on swap metadata associated
1887  *	with resident pages.
1888  *
1889  *	This routine must be called at splvm()
1890  */
1891 
1892 static void
1893 swp_pager_meta_free(vm_object_t object, vm_pindex_t index, daddr_t count)
1894 {
1895 	if (object->type != OBJT_SWAP)
1896 		return;
1897 
1898 	while (count > 0) {
1899 		struct swblock **pswap;
1900 		struct swblock *swap;
1901 
1902 		pswap = swp_pager_hash(object, index);
1903 
1904 		if ((swap = *pswap) != NULL) {
1905 			daddr_t v = swap->swb_pages[index & SWAP_META_MASK];
1906 
1907 			if (v != SWAPBLK_NONE) {
1908 				swp_pager_freeswapspace(v, 1);
1909 				swap->swb_pages[index & SWAP_META_MASK] =
1910 					SWAPBLK_NONE;
1911 				if (--swap->swb_count == 0) {
1912 					*pswap = swap->swb_hnext;
1913 					zfree(swap_zone, swap);
1914 					--object->un_pager.swp.swp_bcount;
1915 				}
1916 			}
1917 			--count;
1918 			++index;
1919 		} else {
1920 			int n = SWAP_META_PAGES - (index & SWAP_META_MASK);
1921 			count -= n;
1922 			index += n;
1923 		}
1924 	}
1925 }
1926 
1927 /*
1928  * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
1929  *
1930  *	This routine locates and destroys all swap metadata associated with
1931  *	an object.
1932  *
1933  *	This routine must be called at splvm()
1934  */
1935 
1936 static void
1937 swp_pager_meta_free_all(vm_object_t object)
1938 {
1939 	daddr_t index = 0;
1940 
1941 	if (object->type != OBJT_SWAP)
1942 		return;
1943 
1944 	while (object->un_pager.swp.swp_bcount) {
1945 		struct swblock **pswap;
1946 		struct swblock *swap;
1947 
1948 		pswap = swp_pager_hash(object, index);
1949 		if ((swap = *pswap) != NULL) {
1950 			int i;
1951 
1952 			for (i = 0; i < SWAP_META_PAGES; ++i) {
1953 				daddr_t v = swap->swb_pages[i];
1954 				if (v != SWAPBLK_NONE) {
1955 					--swap->swb_count;
1956 					swp_pager_freeswapspace(v, 1);
1957 				}
1958 			}
1959 			if (swap->swb_count != 0)
1960 				panic("swap_pager_meta_free_all: swb_count != 0");
1961 			*pswap = swap->swb_hnext;
1962 			zfree(swap_zone, swap);
1963 			--object->un_pager.swp.swp_bcount;
1964 		}
1965 		index += SWAP_META_PAGES;
1966 		if (index > 0x20000000)
1967 			panic("swp_pager_meta_free_all: failed to locate all swap meta blocks");
1968 	}
1969 }
1970 
1971 /*
1972  * SWP_PAGER_METACTL() -  misc control of swap and vm_page_t meta data.
1973  *
1974  *	This routine is capable of looking up, popping, or freeing
1975  *	swapblk assignments in the swap meta data or in the vm_page_t.
1976  *	The routine typically returns the swapblk being looked-up, or popped,
1977  *	or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block
1978  *	was invalid.  This routine will automatically free any invalid
1979  *	meta-data swapblks.
1980  *
1981  *	It is not possible to store invalid swapblks in the swap meta data
1982  *	(other then a literal 'SWAPBLK_NONE'), so we don't bother checking.
1983  *
1984  *	When acting on a busy resident page and paging is in progress, we
1985  *	have to wait until paging is complete but otherwise can act on the
1986  *	busy page.
1987  *
1988  *	This routine must be called at splvm().
1989  *
1990  *	SWM_FREE	remove and free swap block from metadata
1991  *	SWM_POP		remove from meta data but do not free.. pop it out
1992  */
1993 
1994 static daddr_t
1995 swp_pager_meta_ctl(
1996 	vm_object_t object,
1997 	vm_pindex_t index,
1998 	int flags
1999 ) {
2000 	struct swblock **pswap;
2001 	struct swblock *swap;
2002 	daddr_t r1;
2003 
2004 	/*
2005 	 * The meta data only exists of the object is OBJT_SWAP
2006 	 * and even then might not be allocated yet.
2007 	 */
2008 
2009 	if (object->type != OBJT_SWAP)
2010 		return(SWAPBLK_NONE);
2011 
2012 	r1 = SWAPBLK_NONE;
2013 	pswap = swp_pager_hash(object, index);
2014 
2015 	if ((swap = *pswap) != NULL) {
2016 		index &= SWAP_META_MASK;
2017 		r1 = swap->swb_pages[index];
2018 
2019 		if (r1 != SWAPBLK_NONE) {
2020 			if (flags & SWM_FREE) {
2021 				swp_pager_freeswapspace(r1, 1);
2022 				r1 = SWAPBLK_NONE;
2023 			}
2024 			if (flags & (SWM_FREE|SWM_POP)) {
2025 				swap->swb_pages[index] = SWAPBLK_NONE;
2026 				if (--swap->swb_count == 0) {
2027 					*pswap = swap->swb_hnext;
2028 					zfree(swap_zone, swap);
2029 					--object->un_pager.swp.swp_bcount;
2030 				}
2031 			}
2032 		}
2033 	}
2034 	return(r1);
2035 }
2036