xref: /dragonfly/sys/vm/swap_pager.c (revision 277350a0)
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 1998-2010 The DragonFly Project.  All rights reserved.
5  *
6  * This code is derived from software contributed to The DragonFly Project
7  * by Matthew Dillon <dillon@backplane.com>
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  *
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in
17  *    the documentation and/or other materials provided with the
18  *    distribution.
19  * 3. Neither the name of The DragonFly Project nor the names of its
20  *    contributors may be used to endorse or promote products derived
21  *    from this software without specific, prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
27  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
29  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
31  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
32  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
33  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  * Copyright (c) 1994 John S. Dyson
37  * Copyright (c) 1990 University of Utah.
38  * Copyright (c) 1991, 1993
39  *	The Regents of the University of California.  All rights reserved.
40  *
41  * This code is derived from software contributed to Berkeley by
42  * the Systems Programming Group of the University of Utah Computer
43  * Science Department.
44  *
45  * Redistribution and use in source and binary forms, with or without
46  * modification, are permitted provided that the following conditions
47  * are met:
48  * 1. Redistributions of source code must retain the above copyright
49  *    notice, this list of conditions and the following disclaimer.
50  * 2. Redistributions in binary form must reproduce the above copyright
51  *    notice, this list of conditions and the following disclaimer in the
52  *    documentation and/or other materials provided with the distribution.
53  * 3. Neither the name of the University nor the names of its contributors
54  *    may be used to endorse or promote products derived from this software
55  *    without specific prior written permission.
56  *
57  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
58  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
59  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
60  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
61  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
62  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
63  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
64  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
65  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
66  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
67  * SUCH DAMAGE.
68  *
69  *				New Swap System
70  *				Matthew Dillon
71  *
72  * Radix Bitmap 'blists'.
73  *
74  *	- The new swapper uses the new radix bitmap code.  This should scale
75  *	  to arbitrarily small or arbitrarily large swap spaces and an almost
76  *	  arbitrary degree of fragmentation.
77  *
78  * Features:
79  *
80  *	- on the fly reallocation of swap during putpages.  The new system
81  *	  does not try to keep previously allocated swap blocks for dirty
82  *	  pages.
83  *
84  *	- on the fly deallocation of swap
85  *
86  *	- No more garbage collection required.  Unnecessarily allocated swap
87  *	  blocks only exist for dirty vm_page_t's now and these are already
88  *	  cycled (in a high-load system) by the pager.  We also do on-the-fly
89  *	  removal of invalidated swap blocks when a page is destroyed
90  *	  or renamed.
91  *
92  * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
93  * @(#)swap_pager.c	8.9 (Berkeley) 3/21/94
94  * $FreeBSD: src/sys/vm/swap_pager.c,v 1.130.2.12 2002/08/31 21:15:55 dillon Exp $
95  */
96 
97 #include <sys/param.h>
98 #include <sys/systm.h>
99 #include <sys/conf.h>
100 #include <sys/kernel.h>
101 #include <sys/proc.h>
102 #include <sys/buf.h>
103 #include <sys/vnode.h>
104 #include <sys/malloc.h>
105 #include <sys/vmmeter.h>
106 #include <sys/sysctl.h>
107 #include <sys/blist.h>
108 #include <sys/lock.h>
109 #include <sys/thread2.h>
110 
111 #include "opt_swap.h"
112 #include <vm/vm.h>
113 #include <vm/vm_object.h>
114 #include <vm/vm_page.h>
115 #include <vm/vm_pager.h>
116 #include <vm/vm_pageout.h>
117 #include <vm/swap_pager.h>
118 #include <vm/vm_extern.h>
119 #include <vm/vm_zone.h>
120 #include <vm/vnode_pager.h>
121 
122 #include <sys/buf2.h>
123 #include <vm/vm_page2.h>
124 
125 #ifndef MAX_PAGEOUT_CLUSTER
126 #define MAX_PAGEOUT_CLUSTER	SWB_NPAGES
127 #endif
128 
129 #define SWM_FREE	0x02	/* free, period			*/
130 #define SWM_POP		0x04	/* pop out			*/
131 
132 #define SWBIO_READ	0x01
133 #define SWBIO_WRITE	0x02
134 #define SWBIO_SYNC	0x04
135 
136 struct swfreeinfo {
137 	vm_object_t	object;
138 	vm_pindex_t	basei;
139 	vm_pindex_t	begi;
140 	vm_pindex_t	endi;	/* inclusive */
141 };
142 
143 struct swswapoffinfo {
144 	vm_object_t	object;
145 	int		devidx;
146 	int		shared;
147 };
148 
149 /*
150  * vm_swap_size is in page-sized chunks now.  It was DEV_BSIZE'd chunks
151  * in the old system.
152  */
153 
154 int swap_pager_full;		/* swap space exhaustion (task killing) */
155 int swap_fail_ticks;		/* when we became exhausted */
156 int swap_pager_almost_full;	/* swap space exhaustion (w/ hysteresis)*/
157 int vm_swap_cache_use;
158 int vm_swap_anon_use;
159 static int vm_report_swap_allocs;
160 
161 static int nsw_rcount;		/* free read buffers			*/
162 static int nsw_wcount_sync;	/* limit write buffers / synchronous	*/
163 static int nsw_wcount_async;	/* limit write buffers / asynchronous	*/
164 static int nsw_wcount_async_max;/* assigned maximum			*/
165 static int nsw_cluster_max;	/* maximum VOP I/O allowed		*/
166 
167 struct blist *swapblist;
168 static int swap_async_max = 4;	/* maximum in-progress async I/O's	*/
169 static int swap_burst_read = 0;	/* allow burst reading */
170 static swblk_t swapiterator;	/* linearize allocations */
171 
172 static struct spinlock swapbp_spin = SPINLOCK_INITIALIZER(&swapbp_spin, "swapbp_spin");
173 
174 /* from vm_swap.c */
175 extern struct vnode *swapdev_vp;
176 extern struct swdevt *swdevt;
177 extern int nswdev;
178 
179 #define BLK2DEVIDX(blk) (nswdev > 1 ? blk / dmmax % nswdev : 0)
180 
181 SYSCTL_INT(_vm, OID_AUTO, swap_async_max,
182         CTLFLAG_RW, &swap_async_max, 0, "Maximum running async swap ops");
183 SYSCTL_INT(_vm, OID_AUTO, swap_burst_read,
184         CTLFLAG_RW, &swap_burst_read, 0, "Allow burst reads for pageins");
185 
186 SYSCTL_INT(_vm, OID_AUTO, swap_cache_use,
187         CTLFLAG_RD, &vm_swap_cache_use, 0, "");
188 SYSCTL_INT(_vm, OID_AUTO, swap_anon_use,
189         CTLFLAG_RD, &vm_swap_anon_use, 0, "");
190 SYSCTL_INT(_vm, OID_AUTO, swap_size,
191         CTLFLAG_RD, &vm_swap_size, 0, "");
192 SYSCTL_INT(_vm, OID_AUTO, report_swap_allocs,
193         CTLFLAG_RW, &vm_report_swap_allocs, 0, "");
194 
195 vm_zone_t		swap_zone;
196 
197 /*
198  * Red-Black tree for swblock entries
199  *
200  * The caller must hold vm_token
201  */
202 RB_GENERATE2(swblock_rb_tree, swblock, swb_entry, rb_swblock_compare,
203 	     vm_pindex_t, swb_index);
204 
205 int
206 rb_swblock_compare(struct swblock *swb1, struct swblock *swb2)
207 {
208 	if (swb1->swb_index < swb2->swb_index)
209 		return(-1);
210 	if (swb1->swb_index > swb2->swb_index)
211 		return(1);
212 	return(0);
213 }
214 
215 static
216 int
217 rb_swblock_scancmp(struct swblock *swb, void *data)
218 {
219 	struct swfreeinfo *info = data;
220 
221 	if (swb->swb_index < info->basei)
222 		return(-1);
223 	if (swb->swb_index > info->endi)
224 		return(1);
225 	return(0);
226 }
227 
228 static
229 int
230 rb_swblock_condcmp(struct swblock *swb, void *data)
231 {
232 	struct swfreeinfo *info = data;
233 
234 	if (swb->swb_index < info->basei)
235 		return(-1);
236 	return(0);
237 }
238 
239 /*
240  * pagerops for OBJT_SWAP - "swap pager".  Some ops are also global procedure
241  * calls hooked from other parts of the VM system and do not appear here.
242  * (see vm/swap_pager.h).
243  */
244 
245 static void	swap_pager_dealloc (vm_object_t object);
246 static int	swap_pager_getpage (vm_object_t, vm_page_t *, int);
247 static void	swap_chain_iodone(struct bio *biox);
248 
249 struct pagerops swappagerops = {
250 	swap_pager_dealloc,	/* deallocate an OBJT_SWAP object	*/
251 	swap_pager_getpage,	/* pagein				*/
252 	swap_pager_putpages,	/* pageout				*/
253 	swap_pager_haspage	/* get backing store status for page	*/
254 };
255 
256 /*
257  * dmmax is in page-sized chunks with the new swap system.  It was
258  * dev-bsized chunks in the old.  dmmax is always a power of 2.
259  *
260  * swap_*() routines are externally accessible.  swp_*() routines are
261  * internal.
262  */
263 
264 int dmmax;
265 static int dmmax_mask;
266 int nswap_lowat = 128;		/* in pages, swap_pager_almost_full warn */
267 int nswap_hiwat = 512;		/* in pages, swap_pager_almost_full warn */
268 
269 static __inline void	swp_sizecheck (void);
270 static void	swp_pager_async_iodone (struct bio *bio);
271 
272 /*
273  * Swap bitmap functions
274  */
275 
276 static __inline void	swp_pager_freeswapspace(vm_object_t object,
277 						swblk_t blk, int npages);
278 static __inline swblk_t	swp_pager_getswapspace(vm_object_t object, int npages);
279 
280 /*
281  * Metadata functions
282  */
283 
284 static void swp_pager_meta_convert(vm_object_t);
285 static void swp_pager_meta_build(vm_object_t, vm_pindex_t, swblk_t);
286 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, vm_pindex_t);
287 static void swp_pager_meta_free_all(vm_object_t);
288 static swblk_t swp_pager_meta_ctl(vm_object_t, vm_pindex_t, int);
289 
290 /*
291  * SWP_SIZECHECK() -	update swap_pager_full indication
292  *
293  *	update the swap_pager_almost_full indication and warn when we are
294  *	about to run out of swap space, using lowat/hiwat hysteresis.
295  *
296  *	Clear swap_pager_full ( task killing ) indication when lowat is met.
297  *
298  * No restrictions on call
299  * This routine may not block.
300  * SMP races are ok.
301  */
302 static __inline void
303 swp_sizecheck(void)
304 {
305 	if (vm_swap_size < nswap_lowat) {
306 		if (swap_pager_almost_full == 0) {
307 			kprintf("swap_pager: out of swap space\n");
308 			swap_pager_almost_full = 1;
309 			swap_fail_ticks = ticks;
310 		}
311 	} else {
312 		swap_pager_full = 0;
313 		if (vm_swap_size > nswap_hiwat)
314 			swap_pager_almost_full = 0;
315 	}
316 }
317 
318 /*
319  * SWAP_PAGER_INIT() -	initialize the swap pager!
320  *
321  *	Expected to be started from system init.  NOTE:  This code is run
322  *	before much else so be careful what you depend on.  Most of the VM
323  *	system has yet to be initialized at this point.
324  *
325  * Called from the low level boot code only.
326  */
327 static void
328 swap_pager_init(void *arg __unused)
329 {
330 	/*
331 	 * Device Stripe, in PAGE_SIZE'd blocks
332 	 */
333 	dmmax = SWB_NPAGES * 2;
334 	dmmax_mask = ~(dmmax - 1);
335 }
336 SYSINIT(vm_mem, SI_BOOT1_VM, SI_ORDER_THIRD, swap_pager_init, NULL);
337 
338 /*
339  * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
340  *
341  *	Expected to be started from pageout process once, prior to entering
342  *	its main loop.
343  *
344  * Called from the low level boot code only.
345  */
346 void
347 swap_pager_swap_init(void)
348 {
349 	int n, n2;
350 
351 	/*
352 	 * Number of in-transit swap bp operations.  Don't
353 	 * exhaust the pbufs completely.  Make sure we
354 	 * initialize workable values (0 will work for hysteresis
355 	 * but it isn't very efficient).
356 	 *
357 	 * The nsw_cluster_max is constrained by the number of pages an XIO
358 	 * holds, i.e., (MAXPHYS/PAGE_SIZE) and our locally defined
359 	 * MAX_PAGEOUT_CLUSTER.   Also be aware that swap ops are
360 	 * constrained by the swap device interleave stripe size.
361 	 *
362 	 * Currently we hardwire nsw_wcount_async to 4.  This limit is
363 	 * designed to prevent other I/O from having high latencies due to
364 	 * our pageout I/O.  The value 4 works well for one or two active swap
365 	 * devices but is probably a little low if you have more.  Even so,
366 	 * a higher value would probably generate only a limited improvement
367 	 * with three or four active swap devices since the system does not
368 	 * typically have to pageout at extreme bandwidths.   We will want
369 	 * at least 2 per swap devices, and 4 is a pretty good value if you
370 	 * have one NFS swap device due to the command/ack latency over NFS.
371 	 * So it all works out pretty well.
372 	 */
373 
374 	nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER);
375 
376 	nsw_rcount = (nswbuf_kva + 1) / 2;
377 	nsw_wcount_sync = (nswbuf_kva + 3) / 4;
378 	nsw_wcount_async = 4;
379 	nsw_wcount_async_max = nsw_wcount_async;
380 
381 	/*
382 	 * The zone is dynamically allocated so generally size it to
383 	 * maxswzone (32MB to 512MB of KVM).  Set a minimum size based
384 	 * on physical memory of around 8x (each swblock can hold 16 pages).
385 	 *
386 	 * With the advent of SSDs (vs HDs) the practical (swap:memory) ratio
387 	 * has increased dramatically.
388 	 */
389 	n = vmstats.v_page_count / 2;
390 	if (maxswzone && n < maxswzone / sizeof(struct swblock))
391 		n = maxswzone / sizeof(struct swblock);
392 	n2 = n;
393 
394 	do {
395 		swap_zone = zinit(
396 			"SWAPMETA",
397 			sizeof(struct swblock),
398 			n,
399 			ZONE_INTERRUPT,
400 			1);
401 		if (swap_zone != NULL)
402 			break;
403 		/*
404 		 * if the allocation failed, try a zone two thirds the
405 		 * size of the previous attempt.
406 		 */
407 		n -= ((n + 2) / 3);
408 	} while (n > 0);
409 
410 	if (swap_zone == NULL)
411 		panic("swap_pager_swap_init: swap_zone == NULL");
412 	if (n2 != n)
413 		kprintf("Swap zone entries reduced from %d to %d.\n", n2, n);
414 }
415 
416 /*
417  * SWAP_PAGER_ALLOC() -	allocate a new OBJT_SWAP VM object and instantiate
418  *			its metadata structures.
419  *
420  *	This routine is called from the mmap and fork code to create a new
421  *	OBJT_SWAP object.  We do this by creating an OBJT_DEFAULT object
422  *	and then converting it with swp_pager_meta_convert().
423  *
424  *	We only support unnamed objects.
425  *
426  * No restrictions.
427  */
428 vm_object_t
429 swap_pager_alloc(void *handle, off_t size, vm_prot_t prot, off_t offset)
430 {
431 	vm_object_t object;
432 
433 	KKASSERT(handle == NULL);
434 	object = vm_object_allocate_hold(OBJT_DEFAULT,
435 					 OFF_TO_IDX(offset + PAGE_MASK + size));
436 	swp_pager_meta_convert(object);
437 	vm_object_drop(object);
438 
439 	return (object);
440 }
441 
442 /*
443  * SWAP_PAGER_DEALLOC() -	remove swap metadata from object
444  *
445  *	The swap backing for the object is destroyed.  The code is
446  *	designed such that we can reinstantiate it later, but this
447  *	routine is typically called only when the entire object is
448  *	about to be destroyed.
449  *
450  * The object must be locked or unreferenceable.
451  * No other requirements.
452  */
453 static void
454 swap_pager_dealloc(vm_object_t object)
455 {
456 	vm_object_hold(object);
457 	vm_object_pip_wait(object, "swpdea");
458 
459 	/*
460 	 * Free all remaining metadata.  We only bother to free it from
461 	 * the swap meta data.  We do not attempt to free swapblk's still
462 	 * associated with vm_page_t's for this object.  We do not care
463 	 * if paging is still in progress on some objects.
464 	 */
465 	swp_pager_meta_free_all(object);
466 	vm_object_drop(object);
467 }
468 
469 /************************************************************************
470  *			SWAP PAGER BITMAP ROUTINES			*
471  ************************************************************************/
472 
473 /*
474  * SWP_PAGER_GETSWAPSPACE() -	allocate raw swap space
475  *
476  *	Allocate swap for the requested number of pages.  The starting
477  *	swap block number (a page index) is returned or SWAPBLK_NONE
478  *	if the allocation failed.
479  *
480  *	Also has the side effect of advising that somebody made a mistake
481  *	when they configured swap and didn't configure enough.
482  *
483  * The caller must hold the object.
484  * This routine may not block.
485  */
486 static __inline swblk_t
487 swp_pager_getswapspace(vm_object_t object, int npages)
488 {
489 	swblk_t blk;
490 
491 	lwkt_gettoken(&vm_token);
492 	blk = blist_allocat(swapblist, npages, swapiterator);
493 	if (blk == SWAPBLK_NONE)
494 		blk = blist_allocat(swapblist, npages, 0);
495 	if (blk == SWAPBLK_NONE) {
496 		if (swap_pager_full != 2) {
497 			if (vm_swap_size == 0)
498 				kprintf("Warning: The system would like to "
499 					"page to swap but no swap space "
500 					"is configured!\n");
501 			else
502 				kprintf("swap_pager_getswapspace: "
503 					"unable to allocate=%d pages\n",
504 					npages);
505 			swap_pager_full = 2;
506 			if (swap_pager_almost_full == 0)
507 				swap_fail_ticks = ticks;
508 			swap_pager_almost_full = 1;
509 		}
510 	} else {
511 		/* swapiterator = blk; disable for now, doesn't work well */
512 		swapacctspace(blk, -npages);
513 		if (object->type == OBJT_SWAP)
514 			vm_swap_anon_use += npages;
515 		else
516 			vm_swap_cache_use += npages;
517 		swp_sizecheck();
518 	}
519 	lwkt_reltoken(&vm_token);
520 	return(blk);
521 }
522 
523 /*
524  * SWP_PAGER_FREESWAPSPACE() -	free raw swap space
525  *
526  *	This routine returns the specified swap blocks back to the bitmap.
527  *
528  *	Note:  This routine may not block (it could in the old swap code),
529  *	and through the use of the new blist routines it does not block.
530  *
531  *	We must be called at splvm() to avoid races with bitmap frees from
532  *	vm_page_remove() aka swap_pager_page_removed().
533  *
534  * This routine may not block.
535  */
536 
537 static __inline void
538 swp_pager_freeswapspace(vm_object_t object, swblk_t blk, int npages)
539 {
540 	struct swdevt *sp = &swdevt[BLK2DEVIDX(blk)];
541 
542 	lwkt_gettoken(&vm_token);
543 	sp->sw_nused -= npages;
544 	if (object->type == OBJT_SWAP)
545 		vm_swap_anon_use -= npages;
546 	else
547 		vm_swap_cache_use -= npages;
548 
549 	if (sp->sw_flags & SW_CLOSING) {
550 		lwkt_reltoken(&vm_token);
551 		return;
552 	}
553 
554 	blist_free(swapblist, blk, npages);
555 	vm_swap_size += npages;
556 	swp_sizecheck();
557 	lwkt_reltoken(&vm_token);
558 }
559 
560 /*
561  * SWAP_PAGER_FREESPACE() -	frees swap blocks associated with a page
562  *				range within an object.
563  *
564  *	This is a globally accessible routine.
565  *
566  *	This routine removes swapblk assignments from swap metadata.
567  *
568  *	The external callers of this routine typically have already destroyed
569  *	or renamed vm_page_t's associated with this range in the object so
570  *	we should be ok.
571  *
572  * No requirements.
573  */
574 void
575 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_pindex_t size)
576 {
577 	vm_object_hold(object);
578 	swp_pager_meta_free(object, start, size);
579 	vm_object_drop(object);
580 }
581 
582 /*
583  * No requirements.
584  */
585 void
586 swap_pager_freespace_all(vm_object_t object)
587 {
588 	vm_object_hold(object);
589 	swp_pager_meta_free_all(object);
590 	vm_object_drop(object);
591 }
592 
593 /*
594  * This function conditionally frees swap cache swap starting at
595  * (*basei) in the object.  (count) swap blocks will be nominally freed.
596  * The actual number of blocks freed can be more or less than the
597  * requested number.
598  *
599  * This function nominally returns the number of blocks freed.  However,
600  * the actual number of blocks freed may be less then the returned value.
601  * If the function is unable to exhaust the object or if it is able to
602  * free (approximately) the requested number of blocks it returns
603  * a value n > count.
604  *
605  * If we exhaust the object we will return a value n <= count.
606  *
607  * The caller must hold the object.
608  *
609  * WARNING!  If count == 0 then -1 can be returned as a degenerate case,
610  *	     callers should always pass a count value > 0.
611  */
612 static int swap_pager_condfree_callback(struct swblock *swap, void *data);
613 
614 int
615 swap_pager_condfree(vm_object_t object, vm_pindex_t *basei, int count)
616 {
617 	struct swfreeinfo info;
618 	int n;
619 	int t;
620 
621 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
622 
623 	info.object = object;
624 	info.basei = *basei;	/* skip up to this page index */
625 	info.begi = count;	/* max swap pages to destroy */
626 	info.endi = count * 8;	/* max swblocks to scan */
627 
628 	swblock_rb_tree_RB_SCAN(&object->swblock_root, rb_swblock_condcmp,
629 				swap_pager_condfree_callback, &info);
630 	*basei = info.basei;
631 
632 	/*
633 	 * Take the higher difference swblocks vs pages
634 	 */
635 	n = count - (int)info.begi;
636 	t = count * 8 - (int)info.endi;
637 	if (n < t)
638 		n = t;
639 	if (n < 1)
640 		n = 1;
641 	return(n);
642 }
643 
644 /*
645  * The idea is to free whole meta-block to avoid fragmenting
646  * the swap space or disk I/O.  We only do this if NO VM pages
647  * are present.
648  *
649  * We do not have to deal with clearing PG_SWAPPED in related VM
650  * pages because there are no related VM pages.
651  *
652  * The caller must hold the object.
653  */
654 static int
655 swap_pager_condfree_callback(struct swblock *swap, void *data)
656 {
657 	struct swfreeinfo *info = data;
658 	vm_object_t object = info->object;
659 	int i;
660 
661 	for (i = 0; i < SWAP_META_PAGES; ++i) {
662 		if (vm_page_lookup(object, swap->swb_index + i))
663 			break;
664 	}
665 	info->basei = swap->swb_index + SWAP_META_PAGES;
666 	if (i == SWAP_META_PAGES) {
667 		info->begi -= swap->swb_count;
668 		swap_pager_freespace(object, swap->swb_index, SWAP_META_PAGES);
669 	}
670 	--info->endi;
671 	if ((int)info->begi < 0 || (int)info->endi < 0)
672 		return(-1);
673 	lwkt_yield();
674 	return(0);
675 }
676 
677 /*
678  * Called by vm_page_alloc() when a new VM page is inserted
679  * into a VM object.  Checks whether swap has been assigned to
680  * the page and sets PG_SWAPPED as necessary.
681  *
682  * No requirements.
683  */
684 void
685 swap_pager_page_inserted(vm_page_t m)
686 {
687 	if (m->object->swblock_count) {
688 		vm_object_hold(m->object);
689 		if (swp_pager_meta_ctl(m->object, m->pindex, 0) != SWAPBLK_NONE)
690 			vm_page_flag_set(m, PG_SWAPPED);
691 		vm_object_drop(m->object);
692 	}
693 }
694 
695 /*
696  * SWAP_PAGER_RESERVE() - reserve swap blocks in object
697  *
698  *	Assigns swap blocks to the specified range within the object.  The
699  *	swap blocks are not zerod.  Any previous swap assignment is destroyed.
700  *
701  *	Returns 0 on success, -1 on failure.
702  *
703  * The caller is responsible for avoiding races in the specified range.
704  * No other requirements.
705  */
706 int
707 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
708 {
709 	int n = 0;
710 	swblk_t blk = SWAPBLK_NONE;
711 	vm_pindex_t beg = start;	/* save start index */
712 
713 	vm_object_hold(object);
714 
715 	while (size) {
716 		if (n == 0) {
717 			n = BLIST_MAX_ALLOC;
718 			while ((blk = swp_pager_getswapspace(object, n)) ==
719 			       SWAPBLK_NONE)
720 			{
721 				n >>= 1;
722 				if (n == 0) {
723 					swp_pager_meta_free(object, beg,
724 							    start - beg);
725 					vm_object_drop(object);
726 					return(-1);
727 				}
728 			}
729 		}
730 		swp_pager_meta_build(object, start, blk);
731 		--size;
732 		++start;
733 		++blk;
734 		--n;
735 	}
736 	swp_pager_meta_free(object, start, n);
737 	vm_object_drop(object);
738 	return(0);
739 }
740 
741 /*
742  * SWAP_PAGER_COPY() -  copy blocks from source pager to destination pager
743  *			and destroy the source.
744  *
745  *	Copy any valid swapblks from the source to the destination.  In
746  *	cases where both the source and destination have a valid swapblk,
747  *	we keep the destination's.
748  *
749  *	This routine is allowed to block.  It may block allocating metadata
750  *	indirectly through swp_pager_meta_build() or if paging is still in
751  *	progress on the source.
752  *
753  *	XXX vm_page_collapse() kinda expects us not to block because we
754  *	supposedly do not need to allocate memory, but for the moment we
755  *	*may* have to get a little memory from the zone allocator, but
756  *	it is taken from the interrupt memory.  We should be ok.
757  *
758  *	The source object contains no vm_page_t's (which is just as well)
759  *	The source object is of type OBJT_SWAP.
760  *
761  *	The source and destination objects must be held by the caller.
762  */
763 void
764 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject,
765 		vm_pindex_t base_index, int destroysource)
766 {
767 	vm_pindex_t i;
768 
769 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(srcobject));
770 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(dstobject));
771 
772 	/*
773 	 * transfer source to destination.
774 	 */
775 	for (i = 0; i < dstobject->size; ++i) {
776 		swblk_t dstaddr;
777 
778 		/*
779 		 * Locate (without changing) the swapblk on the destination,
780 		 * unless it is invalid in which case free it silently, or
781 		 * if the destination is a resident page, in which case the
782 		 * source is thrown away.
783 		 */
784 		dstaddr = swp_pager_meta_ctl(dstobject, i, 0);
785 
786 		if (dstaddr == SWAPBLK_NONE) {
787 			/*
788 			 * Destination has no swapblk and is not resident,
789 			 * copy source.
790 			 */
791 			swblk_t srcaddr;
792 
793 			srcaddr = swp_pager_meta_ctl(srcobject,
794 						     base_index + i, SWM_POP);
795 
796 			if (srcaddr != SWAPBLK_NONE)
797 				swp_pager_meta_build(dstobject, i, srcaddr);
798 		} else {
799 			/*
800 			 * Destination has valid swapblk or it is represented
801 			 * by a resident page.  We destroy the sourceblock.
802 			 */
803 			swp_pager_meta_ctl(srcobject, base_index + i, SWM_FREE);
804 		}
805 	}
806 
807 	/*
808 	 * Free left over swap blocks in source.
809 	 *
810 	 * We have to revert the type to OBJT_DEFAULT so we do not accidently
811 	 * double-remove the object from the swap queues.
812 	 */
813 	if (destroysource) {
814 		/*
815 		 * Reverting the type is not necessary, the caller is going
816 		 * to destroy srcobject directly, but I'm doing it here
817 		 * for consistency since we've removed the object from its
818 		 * queues.
819 		 */
820 		swp_pager_meta_free_all(srcobject);
821 		if (srcobject->type == OBJT_SWAP)
822 			srcobject->type = OBJT_DEFAULT;
823 	}
824 }
825 
826 /*
827  * SWAP_PAGER_HASPAGE() -	determine if we have good backing store for
828  *				the requested page.
829  *
830  *	We determine whether good backing store exists for the requested
831  *	page and return TRUE if it does, FALSE if it doesn't.
832  *
833  *	If TRUE, we also try to determine how much valid, contiguous backing
834  *	store exists before and after the requested page within a reasonable
835  *	distance.  We do not try to restrict it to the swap device stripe
836  *	(that is handled in getpages/putpages).  It probably isn't worth
837  *	doing here.
838  *
839  * No requirements.
840  */
841 boolean_t
842 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex)
843 {
844 	swblk_t blk0;
845 
846 	/*
847 	 * do we have good backing store at the requested index ?
848 	 */
849 	vm_object_hold(object);
850 	blk0 = swp_pager_meta_ctl(object, pindex, 0);
851 
852 	if (blk0 == SWAPBLK_NONE) {
853 		vm_object_drop(object);
854 		return (FALSE);
855 	}
856 	vm_object_drop(object);
857 	return (TRUE);
858 }
859 
860 /*
861  * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
862  *
863  * This removes any associated swap backing store, whether valid or
864  * not, from the page.  This operates on any VM object, not just OBJT_SWAP
865  * objects.
866  *
867  * This routine is typically called when a page is made dirty, at
868  * which point any associated swap can be freed.  MADV_FREE also
869  * calls us in a special-case situation
870  *
871  * NOTE!!!  If the page is clean and the swap was valid, the caller
872  * should make the page dirty before calling this routine.  This routine
873  * does NOT change the m->dirty status of the page.  Also: MADV_FREE
874  * depends on it.
875  *
876  * The page must be busied or soft-busied.
877  * The caller can hold the object to avoid blocking, else we might block.
878  * No other requirements.
879  */
880 void
881 swap_pager_unswapped(vm_page_t m)
882 {
883 	if (m->flags & PG_SWAPPED) {
884 		vm_object_hold(m->object);
885 		KKASSERT(m->flags & PG_SWAPPED);
886 		swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE);
887 		vm_page_flag_clear(m, PG_SWAPPED);
888 		vm_object_drop(m->object);
889 	}
890 }
891 
892 /*
893  * SWAP_PAGER_STRATEGY() - read, write, free blocks
894  *
895  * This implements a VM OBJECT strategy function using swap backing store.
896  * This can operate on any VM OBJECT type, not necessarily just OBJT_SWAP
897  * types.
898  *
899  * This is intended to be a cacheless interface (i.e. caching occurs at
900  * higher levels), and is also used as a swap-based SSD cache for vnode
901  * and device objects.
902  *
903  * All I/O goes directly to and from the swap device.
904  *
905  * We currently attempt to run I/O synchronously or asynchronously as
906  * the caller requests.  This isn't perfect because we loose error
907  * sequencing when we run multiple ops in parallel to satisfy a request.
908  * But this is swap, so we let it all hang out.
909  *
910  * No requirements.
911  */
912 void
913 swap_pager_strategy(vm_object_t object, struct bio *bio)
914 {
915 	struct buf *bp = bio->bio_buf;
916 	struct bio *nbio;
917 	vm_pindex_t start;
918 	vm_pindex_t biox_blkno = 0;
919 	int count;
920 	char *data;
921 	struct bio *biox;
922 	struct buf *bufx;
923 #if 0
924 	struct bio_track *track;
925 #endif
926 
927 #if 0
928 	/*
929 	 * tracking for swapdev vnode I/Os
930 	 */
931 	if (bp->b_cmd == BUF_CMD_READ)
932 		track = &swapdev_vp->v_track_read;
933 	else
934 		track = &swapdev_vp->v_track_write;
935 #endif
936 
937 	if (bp->b_bcount & PAGE_MASK) {
938 		bp->b_error = EINVAL;
939 		bp->b_flags |= B_ERROR | B_INVAL;
940 		biodone(bio);
941 		kprintf("swap_pager_strategy: bp %p offset %lld size %d, "
942 			"not page bounded\n",
943 			bp, (long long)bio->bio_offset, (int)bp->b_bcount);
944 		return;
945 	}
946 
947 	/*
948 	 * Clear error indication, initialize page index, count, data pointer.
949 	 */
950 	bp->b_error = 0;
951 	bp->b_flags &= ~B_ERROR;
952 	bp->b_resid = bp->b_bcount;
953 
954 	start = (vm_pindex_t)(bio->bio_offset >> PAGE_SHIFT);
955 	count = howmany(bp->b_bcount, PAGE_SIZE);
956 	data = bp->b_data;
957 
958 	/*
959 	 * Deal with BUF_CMD_FREEBLKS
960 	 */
961 	if (bp->b_cmd == BUF_CMD_FREEBLKS) {
962 		/*
963 		 * FREE PAGE(s) - destroy underlying swap that is no longer
964 		 *		  needed.
965 		 */
966 		vm_object_hold(object);
967 		swp_pager_meta_free(object, start, count);
968 		vm_object_drop(object);
969 		bp->b_resid = 0;
970 		biodone(bio);
971 		return;
972 	}
973 
974 	/*
975 	 * We need to be able to create a new cluster of I/O's.  We cannot
976 	 * use the caller fields of the passed bio so push a new one.
977 	 *
978 	 * Because nbio is just a placeholder for the cluster links,
979 	 * we can biodone() the original bio instead of nbio to make
980 	 * things a bit more efficient.
981 	 */
982 	nbio = push_bio(bio);
983 	nbio->bio_offset = bio->bio_offset;
984 	nbio->bio_caller_info1.cluster_head = NULL;
985 	nbio->bio_caller_info2.cluster_tail = NULL;
986 
987 	biox = NULL;
988 	bufx = NULL;
989 
990 	/*
991 	 * Execute read or write
992 	 */
993 	vm_object_hold(object);
994 
995 	while (count > 0) {
996 		swblk_t blk;
997 
998 		/*
999 		 * Obtain block.  If block not found and writing, allocate a
1000 		 * new block and build it into the object.
1001 		 */
1002 		blk = swp_pager_meta_ctl(object, start, 0);
1003 		if ((blk == SWAPBLK_NONE) && bp->b_cmd != BUF_CMD_READ) {
1004 			blk = swp_pager_getswapspace(object, 1);
1005 			if (blk == SWAPBLK_NONE) {
1006 				bp->b_error = ENOMEM;
1007 				bp->b_flags |= B_ERROR;
1008 				break;
1009 			}
1010 			swp_pager_meta_build(object, start, blk);
1011 		}
1012 
1013 		/*
1014 		 * Do we have to flush our current collection?  Yes if:
1015 		 *
1016 		 *	- no swap block at this index
1017 		 *	- swap block is not contiguous
1018 		 *	- we cross a physical disk boundry in the
1019 		 *	  stripe.
1020 		 */
1021 		if (
1022 		    biox && (biox_blkno + btoc(bufx->b_bcount) != blk ||
1023 		     ((biox_blkno ^ blk) & dmmax_mask)
1024 		    )
1025 		) {
1026 			if (bp->b_cmd == BUF_CMD_READ) {
1027 				++mycpu->gd_cnt.v_swapin;
1028 				mycpu->gd_cnt.v_swappgsin += btoc(bufx->b_bcount);
1029 			} else {
1030 				++mycpu->gd_cnt.v_swapout;
1031 				mycpu->gd_cnt.v_swappgsout += btoc(bufx->b_bcount);
1032 				bufx->b_dirtyend = bufx->b_bcount;
1033 			}
1034 
1035 			/*
1036 			 * Finished with this buf.
1037 			 */
1038 			KKASSERT(bufx->b_bcount != 0);
1039 			if (bufx->b_cmd != BUF_CMD_READ)
1040 				bufx->b_dirtyend = bufx->b_bcount;
1041 			biox = NULL;
1042 			bufx = NULL;
1043 		}
1044 
1045 		/*
1046 		 * Add new swapblk to biox, instantiating biox if necessary.
1047 		 * Zero-fill reads are able to take a shortcut.
1048 		 */
1049 		if (blk == SWAPBLK_NONE) {
1050 			/*
1051 			 * We can only get here if we are reading.  Since
1052 			 * we are at splvm() we can safely modify b_resid,
1053 			 * even if chain ops are in progress.
1054 			 */
1055 			bzero(data, PAGE_SIZE);
1056 			bp->b_resid -= PAGE_SIZE;
1057 		} else {
1058 			if (biox == NULL) {
1059 				/* XXX chain count > 4, wait to <= 4 */
1060 
1061 				bufx = getpbuf(NULL);
1062 				biox = &bufx->b_bio1;
1063 				cluster_append(nbio, bufx);
1064 				bufx->b_flags |= (bp->b_flags & B_ORDERED);
1065 				bufx->b_cmd = bp->b_cmd;
1066 				biox->bio_done = swap_chain_iodone;
1067 				biox->bio_offset = (off_t)blk << PAGE_SHIFT;
1068 				biox->bio_caller_info1.cluster_parent = nbio;
1069 				biox_blkno = blk;
1070 				bufx->b_bcount = 0;
1071 				bufx->b_data = data;
1072 			}
1073 			bufx->b_bcount += PAGE_SIZE;
1074 		}
1075 		--count;
1076 		++start;
1077 		data += PAGE_SIZE;
1078 	}
1079 
1080 	vm_object_drop(object);
1081 
1082 	/*
1083 	 *  Flush out last buffer
1084 	 */
1085 	if (biox) {
1086 		if (bufx->b_cmd == BUF_CMD_READ) {
1087 			++mycpu->gd_cnt.v_swapin;
1088 			mycpu->gd_cnt.v_swappgsin += btoc(bufx->b_bcount);
1089 		} else {
1090 			++mycpu->gd_cnt.v_swapout;
1091 			mycpu->gd_cnt.v_swappgsout += btoc(bufx->b_bcount);
1092 			bufx->b_dirtyend = bufx->b_bcount;
1093 		}
1094 		KKASSERT(bufx->b_bcount);
1095 		if (bufx->b_cmd != BUF_CMD_READ)
1096 			bufx->b_dirtyend = bufx->b_bcount;
1097 		/* biox, bufx = NULL */
1098 	}
1099 
1100 	/*
1101 	 * Now initiate all the I/O.  Be careful looping on our chain as
1102 	 * I/O's may complete while we are still initiating them.
1103 	 *
1104 	 * If the request is a 100% sparse read no bios will be present
1105 	 * and we just biodone() the buffer.
1106 	 */
1107 	nbio->bio_caller_info2.cluster_tail = NULL;
1108 	bufx = nbio->bio_caller_info1.cluster_head;
1109 
1110 	if (bufx) {
1111 		while (bufx) {
1112 			biox = &bufx->b_bio1;
1113 			BUF_KERNPROC(bufx);
1114 			bufx = bufx->b_cluster_next;
1115 			vn_strategy(swapdev_vp, biox);
1116 		}
1117 	} else {
1118 		biodone(bio);
1119 	}
1120 
1121 	/*
1122 	 * Completion of the cluster will also call biodone_chain(nbio).
1123 	 * We never call biodone(nbio) so we don't have to worry about
1124 	 * setting up a bio_done callback.  It's handled in the sub-IO.
1125 	 */
1126 	/**/
1127 }
1128 
1129 /*
1130  * biodone callback
1131  *
1132  * No requirements.
1133  */
1134 static void
1135 swap_chain_iodone(struct bio *biox)
1136 {
1137 	struct buf **nextp;
1138 	struct buf *bufx;	/* chained sub-buffer */
1139 	struct bio *nbio;	/* parent nbio with chain glue */
1140 	struct buf *bp;		/* original bp associated with nbio */
1141 	int chain_empty;
1142 
1143 	bufx = biox->bio_buf;
1144 	nbio = biox->bio_caller_info1.cluster_parent;
1145 	bp = nbio->bio_buf;
1146 
1147 	/*
1148 	 * Update the original buffer
1149 	 */
1150         KKASSERT(bp != NULL);
1151 	if (bufx->b_flags & B_ERROR) {
1152 		atomic_set_int(&bufx->b_flags, B_ERROR);
1153 		bp->b_error = bufx->b_error;	/* race ok */
1154 	} else if (bufx->b_resid != 0) {
1155 		atomic_set_int(&bufx->b_flags, B_ERROR);
1156 		bp->b_error = EINVAL;		/* race ok */
1157 	} else {
1158 		atomic_subtract_int(&bp->b_resid, bufx->b_bcount);
1159 	}
1160 
1161 	/*
1162 	 * Remove us from the chain.
1163 	 */
1164 	spin_lock(&swapbp_spin);
1165 	nextp = &nbio->bio_caller_info1.cluster_head;
1166 	while (*nextp != bufx) {
1167 		KKASSERT(*nextp != NULL);
1168 		nextp = &(*nextp)->b_cluster_next;
1169 	}
1170 	*nextp = bufx->b_cluster_next;
1171 	chain_empty = (nbio->bio_caller_info1.cluster_head == NULL);
1172 	spin_unlock(&swapbp_spin);
1173 
1174 	/*
1175 	 * Clean up bufx.  If the chain is now empty we finish out
1176 	 * the parent.  Note that we may be racing other completions
1177 	 * so we must use the chain_empty status from above.
1178 	 */
1179 	if (chain_empty) {
1180 		if (bp->b_resid != 0 && !(bp->b_flags & B_ERROR)) {
1181 			atomic_set_int(&bp->b_flags, B_ERROR);
1182 			bp->b_error = EINVAL;
1183 		}
1184 		biodone_chain(nbio);
1185         }
1186         relpbuf(bufx, NULL);
1187 }
1188 
1189 /*
1190  * SWAP_PAGER_GETPAGES() - bring page in from swap
1191  *
1192  * The requested page may have to be brought in from swap.  Calculate the
1193  * swap block and bring in additional pages if possible.  All pages must
1194  * have contiguous swap block assignments and reside in the same object.
1195  *
1196  * The caller has a single vm_object_pip_add() reference prior to
1197  * calling us and we should return with the same.
1198  *
1199  * The caller has BUSY'd the page.  We should return with (*mpp) left busy,
1200  * and any additinal pages unbusied.
1201  *
1202  * If the caller encounters a PG_RAM page it will pass it to us even though
1203  * it may be valid and dirty.  We cannot overwrite the page in this case!
1204  * The case is used to allow us to issue pure read-aheads.
1205  *
1206  * NOTE! XXX This code does not entirely pipeline yet due to the fact that
1207  *       the PG_RAM page is validated at the same time as mreq.  What we
1208  *	 really need to do is issue a separate read-ahead pbuf.
1209  *
1210  * No requirements.
1211  */
1212 static int
1213 swap_pager_getpage(vm_object_t object, vm_page_t *mpp, int seqaccess)
1214 {
1215 	struct buf *bp;
1216 	struct bio *bio;
1217 	vm_page_t mreq;
1218 	vm_page_t m;
1219 	vm_offset_t kva;
1220 	swblk_t blk;
1221 	int i;
1222 	int j;
1223 	int raonly;
1224 	int error;
1225 	u_int32_t flags;
1226 	vm_page_t marray[XIO_INTERNAL_PAGES];
1227 
1228 	mreq = *mpp;
1229 
1230 	vm_object_hold(object);
1231 	if (mreq->object != object) {
1232 		panic("swap_pager_getpages: object mismatch %p/%p",
1233 		    object,
1234 		    mreq->object
1235 		);
1236 	}
1237 
1238 	/*
1239 	 * We don't want to overwrite a fully valid page as it might be
1240 	 * dirty.  This case can occur when e.g. vm_fault hits a perfectly
1241 	 * valid page with PG_RAM set.
1242 	 *
1243 	 * In this case we see if the next page is a suitable page-in
1244 	 * candidate and if it is we issue read-ahead.  PG_RAM will be
1245 	 * set on the last page of the read-ahead to continue the pipeline.
1246 	 */
1247 	if (mreq->valid == VM_PAGE_BITS_ALL) {
1248 		if (swap_burst_read == 0 || mreq->pindex + 1 >= object->size) {
1249 			vm_object_drop(object);
1250 			return(VM_PAGER_OK);
1251 		}
1252 		blk = swp_pager_meta_ctl(object, mreq->pindex + 1, 0);
1253 		if (blk == SWAPBLK_NONE) {
1254 			vm_object_drop(object);
1255 			return(VM_PAGER_OK);
1256 		}
1257 		m = vm_page_lookup_busy_try(object, mreq->pindex + 1,
1258 					    TRUE, &error);
1259 		if (error) {
1260 			vm_object_drop(object);
1261 			return(VM_PAGER_OK);
1262 		} else if (m == NULL) {
1263 			/*
1264 			 * Use VM_ALLOC_QUICK to avoid blocking on cache
1265 			 * page reuse.
1266 			 */
1267 			m = vm_page_alloc(object, mreq->pindex + 1,
1268 					  VM_ALLOC_QUICK);
1269 			if (m == NULL) {
1270 				vm_object_drop(object);
1271 				return(VM_PAGER_OK);
1272 			}
1273 		} else {
1274 			if (m->valid) {
1275 				vm_page_wakeup(m);
1276 				vm_object_drop(object);
1277 				return(VM_PAGER_OK);
1278 			}
1279 			vm_page_unqueue_nowakeup(m);
1280 		}
1281 		/* page is busy */
1282 		mreq = m;
1283 		raonly = 1;
1284 	} else {
1285 		raonly = 0;
1286 	}
1287 
1288 	/*
1289 	 * Try to block-read contiguous pages from swap if sequential,
1290 	 * otherwise just read one page.  Contiguous pages from swap must
1291 	 * reside within a single device stripe because the I/O cannot be
1292 	 * broken up across multiple stripes.
1293 	 *
1294 	 * Note that blk and iblk can be SWAPBLK_NONE but the loop is
1295 	 * set up such that the case(s) are handled implicitly.
1296 	 */
1297 	blk = swp_pager_meta_ctl(mreq->object, mreq->pindex, 0);
1298 	marray[0] = mreq;
1299 
1300 	for (i = 1; swap_burst_read &&
1301 		    i < XIO_INTERNAL_PAGES &&
1302 		    mreq->pindex + i < object->size; ++i) {
1303 		swblk_t iblk;
1304 
1305 		iblk = swp_pager_meta_ctl(object, mreq->pindex + i, 0);
1306 		if (iblk != blk + i)
1307 			break;
1308 		if ((blk ^ iblk) & dmmax_mask)
1309 			break;
1310 		m = vm_page_lookup_busy_try(object, mreq->pindex + i,
1311 					    TRUE, &error);
1312 		if (error) {
1313 			break;
1314 		} else if (m == NULL) {
1315 			/*
1316 			 * Use VM_ALLOC_QUICK to avoid blocking on cache
1317 			 * page reuse.
1318 			 */
1319 			m = vm_page_alloc(object, mreq->pindex + i,
1320 					  VM_ALLOC_QUICK);
1321 			if (m == NULL)
1322 				break;
1323 		} else {
1324 			if (m->valid) {
1325 				vm_page_wakeup(m);
1326 				break;
1327 			}
1328 			vm_page_unqueue_nowakeup(m);
1329 		}
1330 		/* page is busy */
1331 		marray[i] = m;
1332 	}
1333 	if (i > 1)
1334 		vm_page_flag_set(marray[i - 1], PG_RAM);
1335 
1336 	/*
1337 	 * If mreq is the requested page and we have nothing to do return
1338 	 * VM_PAGER_FAIL.  If raonly is set mreq is just another read-ahead
1339 	 * page and must be cleaned up.
1340 	 */
1341 	if (blk == SWAPBLK_NONE) {
1342 		KKASSERT(i == 1);
1343 		if (raonly) {
1344 			vnode_pager_freepage(mreq);
1345 			vm_object_drop(object);
1346 			return(VM_PAGER_OK);
1347 		} else {
1348 			vm_object_drop(object);
1349 			return(VM_PAGER_FAIL);
1350 		}
1351 	}
1352 
1353 	/*
1354 	 * map our page(s) into kva for input
1355 	 */
1356 	bp = getpbuf_kva(&nsw_rcount);
1357 	bio = &bp->b_bio1;
1358 	kva = (vm_offset_t) bp->b_kvabase;
1359 	bcopy(marray, bp->b_xio.xio_pages, i * sizeof(vm_page_t));
1360 	pmap_qenter(kva, bp->b_xio.xio_pages, i);
1361 
1362 	bp->b_data = (caddr_t)kva;
1363 	bp->b_bcount = PAGE_SIZE * i;
1364 	bp->b_xio.xio_npages = i;
1365 	bio->bio_done = swp_pager_async_iodone;
1366 	bio->bio_offset = (off_t)blk << PAGE_SHIFT;
1367 	bio->bio_caller_info1.index = SWBIO_READ;
1368 
1369 	/*
1370 	 * Set index.  If raonly set the index beyond the array so all
1371 	 * the pages are treated the same, otherwise the original mreq is
1372 	 * at index 0.
1373 	 */
1374 	if (raonly)
1375 		bio->bio_driver_info = (void *)(intptr_t)i;
1376 	else
1377 		bio->bio_driver_info = (void *)(intptr_t)0;
1378 
1379 	for (j = 0; j < i; ++j)
1380 		vm_page_flag_set(bp->b_xio.xio_pages[j], PG_SWAPINPROG);
1381 
1382 	mycpu->gd_cnt.v_swapin++;
1383 	mycpu->gd_cnt.v_swappgsin += bp->b_xio.xio_npages;
1384 
1385 	/*
1386 	 * We still hold the lock on mreq, and our automatic completion routine
1387 	 * does not remove it.
1388 	 */
1389 	vm_object_pip_add(object, bp->b_xio.xio_npages);
1390 
1391 	/*
1392 	 * perform the I/O.  NOTE!!!  bp cannot be considered valid after
1393 	 * this point because we automatically release it on completion.
1394 	 * Instead, we look at the one page we are interested in which we
1395 	 * still hold a lock on even through the I/O completion.
1396 	 *
1397 	 * The other pages in our m[] array are also released on completion,
1398 	 * so we cannot assume they are valid anymore either.
1399 	 */
1400 	bp->b_cmd = BUF_CMD_READ;
1401 	BUF_KERNPROC(bp);
1402 	vn_strategy(swapdev_vp, bio);
1403 
1404 	/*
1405 	 * Wait for the page we want to complete.  PG_SWAPINPROG is always
1406 	 * cleared on completion.  If an I/O error occurs, SWAPBLK_NONE
1407 	 * is set in the meta-data.
1408 	 *
1409 	 * If this is a read-ahead only we return immediately without
1410 	 * waiting for I/O.
1411 	 */
1412 	if (raonly) {
1413 		vm_object_drop(object);
1414 		return(VM_PAGER_OK);
1415 	}
1416 
1417 	/*
1418 	 * Read-ahead includes originally requested page case.
1419 	 */
1420 	for (;;) {
1421 		flags = mreq->flags;
1422 		cpu_ccfence();
1423 		if ((flags & PG_SWAPINPROG) == 0)
1424 			break;
1425 		tsleep_interlock(mreq, 0);
1426 		if (!atomic_cmpset_int(&mreq->flags, flags,
1427 				       flags | PG_WANTED | PG_REFERENCED)) {
1428 			continue;
1429 		}
1430 		mycpu->gd_cnt.v_intrans++;
1431 		if (tsleep(mreq, PINTERLOCKED, "swread", hz*20)) {
1432 			kprintf(
1433 			    "swap_pager: indefinite wait buffer: "
1434 				" bp %p offset: %lld, size: %ld\n",
1435 			    bp,
1436 			    (long long)bio->bio_offset,
1437 			    (long)bp->b_bcount
1438 			);
1439 		}
1440 	}
1441 
1442 	/*
1443 	 * mreq is left bussied after completion, but all the other pages
1444 	 * are freed.  If we had an unrecoverable read error the page will
1445 	 * not be valid.
1446 	 */
1447 	vm_object_drop(object);
1448 	if (mreq->valid != VM_PAGE_BITS_ALL)
1449 		return(VM_PAGER_ERROR);
1450 	else
1451 		return(VM_PAGER_OK);
1452 
1453 	/*
1454 	 * A final note: in a low swap situation, we cannot deallocate swap
1455 	 * and mark a page dirty here because the caller is likely to mark
1456 	 * the page clean when we return, causing the page to possibly revert
1457 	 * to all-zero's later.
1458 	 */
1459 }
1460 
1461 /*
1462  *	swap_pager_putpages:
1463  *
1464  *	Assign swap (if necessary) and initiate I/O on the specified pages.
1465  *
1466  *	We support both OBJT_DEFAULT and OBJT_SWAP objects.  DEFAULT objects
1467  *	are automatically converted to SWAP objects.
1468  *
1469  *	In a low memory situation we may block in vn_strategy(), but the new
1470  *	vm_page reservation system coupled with properly written VFS devices
1471  *	should ensure that no low-memory deadlock occurs.  This is an area
1472  *	which needs work.
1473  *
1474  *	The parent has N vm_object_pip_add() references prior to
1475  *	calling us and will remove references for rtvals[] that are
1476  *	not set to VM_PAGER_PEND.  We need to remove the rest on I/O
1477  *	completion.
1478  *
1479  *	The parent has soft-busy'd the pages it passes us and will unbusy
1480  *	those whos rtvals[] entry is not set to VM_PAGER_PEND on return.
1481  *	We need to unbusy the rest on I/O completion.
1482  *
1483  * No requirements.
1484  */
1485 void
1486 swap_pager_putpages(vm_object_t object, vm_page_t *m, int count,
1487 		    int sync, int *rtvals)
1488 {
1489 	int i;
1490 	int n = 0;
1491 
1492 	vm_object_hold(object);
1493 
1494 	if (count && m[0]->object != object) {
1495 		panic("swap_pager_getpages: object mismatch %p/%p",
1496 		    object,
1497 		    m[0]->object
1498 		);
1499 	}
1500 
1501 	/*
1502 	 * Step 1
1503 	 *
1504 	 * Turn object into OBJT_SWAP
1505 	 * check for bogus sysops
1506 	 * force sync if not pageout process
1507 	 */
1508 	if (object->type == OBJT_DEFAULT) {
1509 		if (object->type == OBJT_DEFAULT)
1510 			swp_pager_meta_convert(object);
1511 	}
1512 
1513 	if (curthread != pagethread)
1514 		sync = TRUE;
1515 
1516 	/*
1517 	 * Step 2
1518 	 *
1519 	 * Update nsw parameters from swap_async_max sysctl values.
1520 	 * Do not let the sysop crash the machine with bogus numbers.
1521 	 */
1522 	if (swap_async_max != nsw_wcount_async_max) {
1523 		int n;
1524 
1525 		/*
1526 		 * limit range
1527 		 */
1528 		if ((n = swap_async_max) > nswbuf_kva / 2)
1529 			n = nswbuf_kva / 2;
1530 		if (n < 1)
1531 			n = 1;
1532 		swap_async_max = n;
1533 
1534 		/*
1535 		 * Adjust difference ( if possible ).  If the current async
1536 		 * count is too low, we may not be able to make the adjustment
1537 		 * at this time.
1538 		 *
1539 		 * vm_token needed for nsw_wcount sleep interlock
1540 		 */
1541 		lwkt_gettoken(&vm_token);
1542 		n -= nsw_wcount_async_max;
1543 		if (nsw_wcount_async + n >= 0) {
1544 			nsw_wcount_async_max += n;
1545 			pbuf_adjcount(&nsw_wcount_async, n);
1546 		}
1547 		lwkt_reltoken(&vm_token);
1548 	}
1549 
1550 	/*
1551 	 * Step 3
1552 	 *
1553 	 * Assign swap blocks and issue I/O.  We reallocate swap on the fly.
1554 	 * The page is left dirty until the pageout operation completes
1555 	 * successfully.
1556 	 */
1557 
1558 	for (i = 0; i < count; i += n) {
1559 		struct buf *bp;
1560 		struct bio *bio;
1561 		swblk_t blk;
1562 		int j;
1563 
1564 		/*
1565 		 * Maximum I/O size is limited by a number of factors.
1566 		 */
1567 
1568 		n = min(BLIST_MAX_ALLOC, count - i);
1569 		n = min(n, nsw_cluster_max);
1570 
1571 		lwkt_gettoken(&vm_token);
1572 
1573 		/*
1574 		 * Get biggest block of swap we can.  If we fail, fall
1575 		 * back and try to allocate a smaller block.  Don't go
1576 		 * overboard trying to allocate space if it would overly
1577 		 * fragment swap.
1578 		 */
1579 		while (
1580 		    (blk = swp_pager_getswapspace(object, n)) == SWAPBLK_NONE &&
1581 		    n > 4
1582 		) {
1583 			n >>= 1;
1584 		}
1585 		if (blk == SWAPBLK_NONE) {
1586 			for (j = 0; j < n; ++j)
1587 				rtvals[i+j] = VM_PAGER_FAIL;
1588 			lwkt_reltoken(&vm_token);
1589 			continue;
1590 		}
1591 		if (vm_report_swap_allocs > 0) {
1592 			kprintf("swap_alloc %08jx,%d\n", (intmax_t)blk, n);
1593 			--vm_report_swap_allocs;
1594 		}
1595 
1596 		/*
1597 		 * The I/O we are constructing cannot cross a physical
1598 		 * disk boundry in the swap stripe.  Note: we are still
1599 		 * at splvm().
1600 		 */
1601 		if ((blk ^ (blk + n)) & dmmax_mask) {
1602 			j = ((blk + dmmax) & dmmax_mask) - blk;
1603 			swp_pager_freeswapspace(object, blk + j, n - j);
1604 			n = j;
1605 		}
1606 
1607 		/*
1608 		 * All I/O parameters have been satisfied, build the I/O
1609 		 * request and assign the swap space.
1610 		 */
1611 		if (sync == TRUE)
1612 			bp = getpbuf_kva(&nsw_wcount_sync);
1613 		else
1614 			bp = getpbuf_kva(&nsw_wcount_async);
1615 		bio = &bp->b_bio1;
1616 
1617 		lwkt_reltoken(&vm_token);
1618 
1619 		pmap_qenter((vm_offset_t)bp->b_data, &m[i], n);
1620 
1621 		bp->b_bcount = PAGE_SIZE * n;
1622 		bio->bio_offset = (off_t)blk << PAGE_SHIFT;
1623 
1624 		for (j = 0; j < n; ++j) {
1625 			vm_page_t mreq = m[i+j];
1626 
1627 			swp_pager_meta_build(mreq->object, mreq->pindex,
1628 					     blk + j);
1629 			if (object->type == OBJT_SWAP)
1630 				vm_page_dirty(mreq);
1631 			rtvals[i+j] = VM_PAGER_OK;
1632 
1633 			vm_page_flag_set(mreq, PG_SWAPINPROG);
1634 			bp->b_xio.xio_pages[j] = mreq;
1635 		}
1636 		bp->b_xio.xio_npages = n;
1637 
1638 		mycpu->gd_cnt.v_swapout++;
1639 		mycpu->gd_cnt.v_swappgsout += bp->b_xio.xio_npages;
1640 
1641 		bp->b_dirtyoff = 0;		/* req'd for NFS */
1642 		bp->b_dirtyend = bp->b_bcount;	/* req'd for NFS */
1643 		bp->b_cmd = BUF_CMD_WRITE;
1644 		bio->bio_caller_info1.index = SWBIO_WRITE;
1645 
1646 		/*
1647 		 * asynchronous
1648 		 */
1649 		if (sync == FALSE) {
1650 			bio->bio_done = swp_pager_async_iodone;
1651 			BUF_KERNPROC(bp);
1652 			vn_strategy(swapdev_vp, bio);
1653 
1654 			for (j = 0; j < n; ++j)
1655 				rtvals[i+j] = VM_PAGER_PEND;
1656 			continue;
1657 		}
1658 
1659 		/*
1660 		 * Issue synchrnously.
1661 		 *
1662 		 * Wait for the sync I/O to complete, then update rtvals.
1663 		 * We just set the rtvals[] to VM_PAGER_PEND so we can call
1664 		 * our async completion routine at the end, thus avoiding a
1665 		 * double-free.
1666 		 */
1667 		bio->bio_caller_info1.index |= SWBIO_SYNC;
1668 		bio->bio_done = biodone_sync;
1669 		bio->bio_flags |= BIO_SYNC;
1670 		vn_strategy(swapdev_vp, bio);
1671 		biowait(bio, "swwrt");
1672 
1673 		for (j = 0; j < n; ++j)
1674 			rtvals[i+j] = VM_PAGER_PEND;
1675 
1676 		/*
1677 		 * Now that we are through with the bp, we can call the
1678 		 * normal async completion, which frees everything up.
1679 		 */
1680 		swp_pager_async_iodone(bio);
1681 	}
1682 	vm_object_drop(object);
1683 }
1684 
1685 /*
1686  * No requirements.
1687  *
1688  * Recalculate the low and high-water marks.
1689  */
1690 void
1691 swap_pager_newswap(void)
1692 {
1693 	if (vm_swap_max) {
1694 		nswap_lowat = vm_swap_max * 4 / 100;	/* 4% left */
1695 		nswap_hiwat = vm_swap_max * 6 / 100;	/* 6% left */
1696 		kprintf("swap low/high-water marks set to %d/%d\n",
1697 			nswap_lowat, nswap_hiwat);
1698 	} else {
1699 		nswap_lowat = 128;
1700 		nswap_hiwat = 512;
1701 	}
1702 	swp_sizecheck();
1703 }
1704 
1705 /*
1706  *	swp_pager_async_iodone:
1707  *
1708  *	Completion routine for asynchronous reads and writes from/to swap.
1709  *	Also called manually by synchronous code to finish up a bp.
1710  *
1711  *	For READ operations, the pages are PG_BUSY'd.  For WRITE operations,
1712  *	the pages are vm_page_t->busy'd.  For READ operations, we PG_BUSY
1713  *	unbusy all pages except the 'main' request page.  For WRITE
1714  *	operations, we vm_page_t->busy'd unbusy all pages ( we can do this
1715  *	because we marked them all VM_PAGER_PEND on return from putpages ).
1716  *
1717  *	This routine may not block.
1718  *
1719  * No requirements.
1720  */
1721 static void
1722 swp_pager_async_iodone(struct bio *bio)
1723 {
1724 	struct buf *bp = bio->bio_buf;
1725 	vm_object_t object = NULL;
1726 	int i;
1727 	int *nswptr;
1728 
1729 	/*
1730 	 * report error
1731 	 */
1732 	if (bp->b_flags & B_ERROR) {
1733 		kprintf(
1734 		    "swap_pager: I/O error - %s failed; offset %lld,"
1735 			"size %ld, error %d\n",
1736 		    ((bio->bio_caller_info1.index & SWBIO_READ) ?
1737 			"pagein" : "pageout"),
1738 		    (long long)bio->bio_offset,
1739 		    (long)bp->b_bcount,
1740 		    bp->b_error
1741 		);
1742 	}
1743 
1744 	/*
1745 	 * set object, raise to splvm().
1746 	 */
1747 	if (bp->b_xio.xio_npages)
1748 		object = bp->b_xio.xio_pages[0]->object;
1749 
1750 	/*
1751 	 * remove the mapping for kernel virtual
1752 	 */
1753 	pmap_qremove((vm_offset_t)bp->b_data, bp->b_xio.xio_npages);
1754 
1755 	/*
1756 	 * cleanup pages.  If an error occurs writing to swap, we are in
1757 	 * very serious trouble.  If it happens to be a disk error, though,
1758 	 * we may be able to recover by reassigning the swap later on.  So
1759 	 * in this case we remove the m->swapblk assignment for the page
1760 	 * but do not free it in the rlist.  The errornous block(s) are thus
1761 	 * never reallocated as swap.  Redirty the page and continue.
1762 	 */
1763 	for (i = 0; i < bp->b_xio.xio_npages; ++i) {
1764 		vm_page_t m = bp->b_xio.xio_pages[i];
1765 
1766 		if (bp->b_flags & B_ERROR) {
1767 			/*
1768 			 * If an error occurs I'd love to throw the swapblk
1769 			 * away without freeing it back to swapspace, so it
1770 			 * can never be used again.  But I can't from an
1771 			 * interrupt.
1772 			 */
1773 
1774 			if (bio->bio_caller_info1.index & SWBIO_READ) {
1775 				/*
1776 				 * When reading, reqpage needs to stay
1777 				 * locked for the parent, but all other
1778 				 * pages can be freed.  We still want to
1779 				 * wakeup the parent waiting on the page,
1780 				 * though.  ( also: pg_reqpage can be -1 and
1781 				 * not match anything ).
1782 				 *
1783 				 * We have to wake specifically requested pages
1784 				 * up too because we cleared PG_SWAPINPROG and
1785 				 * someone may be waiting for that.
1786 				 *
1787 				 * NOTE: for reads, m->dirty will probably
1788 				 * be overridden by the original caller of
1789 				 * getpages so don't play cute tricks here.
1790 				 *
1791 				 * NOTE: We can't actually free the page from
1792 				 * here, because this is an interrupt.  It
1793 				 * is not legal to mess with object->memq
1794 				 * from an interrupt.  Deactivate the page
1795 				 * instead.
1796 				 */
1797 
1798 				m->valid = 0;
1799 				vm_page_flag_clear(m, PG_ZERO);
1800 				vm_page_flag_clear(m, PG_SWAPINPROG);
1801 
1802 				/*
1803 				 * bio_driver_info holds the requested page
1804 				 * index.
1805 				 */
1806 				if (i != (int)(intptr_t)bio->bio_driver_info) {
1807 					vm_page_deactivate(m);
1808 					vm_page_wakeup(m);
1809 				} else {
1810 					vm_page_flash(m);
1811 				}
1812 				/*
1813 				 * If i == bp->b_pager.pg_reqpage, do not wake
1814 				 * the page up.  The caller needs to.
1815 				 */
1816 			} else {
1817 				/*
1818 				 * If a write error occurs remove the swap
1819 				 * assignment (note that PG_SWAPPED may or
1820 				 * may not be set depending on prior activity).
1821 				 *
1822 				 * Re-dirty OBJT_SWAP pages as there is no
1823 				 * other backing store, we can't throw the
1824 				 * page away.
1825 				 *
1826 				 * Non-OBJT_SWAP pages (aka swapcache) must
1827 				 * not be dirtied since they may not have
1828 				 * been dirty in the first place, and they
1829 				 * do have backing store (the vnode).
1830 				 */
1831 				vm_page_busy_wait(m, FALSE, "swadpg");
1832 				swp_pager_meta_ctl(m->object, m->pindex,
1833 						   SWM_FREE);
1834 				vm_page_flag_clear(m, PG_SWAPPED);
1835 				if (m->object->type == OBJT_SWAP) {
1836 					vm_page_dirty(m);
1837 					vm_page_activate(m);
1838 				}
1839 				vm_page_flag_clear(m, PG_SWAPINPROG);
1840 				vm_page_io_finish(m);
1841 				vm_page_wakeup(m);
1842 			}
1843 		} else if (bio->bio_caller_info1.index & SWBIO_READ) {
1844 			/*
1845 			 * NOTE: for reads, m->dirty will probably be
1846 			 * overridden by the original caller of getpages so
1847 			 * we cannot set them in order to free the underlying
1848 			 * swap in a low-swap situation.  I don't think we'd
1849 			 * want to do that anyway, but it was an optimization
1850 			 * that existed in the old swapper for a time before
1851 			 * it got ripped out due to precisely this problem.
1852 			 *
1853 			 * clear PG_ZERO in page.
1854 			 *
1855 			 * If not the requested page then deactivate it.
1856 			 *
1857 			 * Note that the requested page, reqpage, is left
1858 			 * busied, but we still have to wake it up.  The
1859 			 * other pages are released (unbusied) by
1860 			 * vm_page_wakeup().  We do not set reqpage's
1861 			 * valid bits here, it is up to the caller.
1862 			 */
1863 
1864 			/*
1865 			 * NOTE: can't call pmap_clear_modify(m) from an
1866 			 * interrupt thread, the pmap code may have to map
1867 			 * non-kernel pmaps and currently asserts the case.
1868 			 */
1869 			/*pmap_clear_modify(m);*/
1870 			m->valid = VM_PAGE_BITS_ALL;
1871 			vm_page_undirty(m);
1872 			vm_page_flag_clear(m, PG_ZERO | PG_SWAPINPROG);
1873 			vm_page_flag_set(m, PG_SWAPPED);
1874 
1875 			/*
1876 			 * We have to wake specifically requested pages
1877 			 * up too because we cleared PG_SWAPINPROG and
1878 			 * could be waiting for it in getpages.  However,
1879 			 * be sure to not unbusy getpages specifically
1880 			 * requested page - getpages expects it to be
1881 			 * left busy.
1882 			 *
1883 			 * bio_driver_info holds the requested page
1884 			 */
1885 			if (i != (int)(intptr_t)bio->bio_driver_info) {
1886 				vm_page_deactivate(m);
1887 				vm_page_wakeup(m);
1888 			} else {
1889 				vm_page_flash(m);
1890 			}
1891 		} else {
1892 			/*
1893 			 * Mark the page clean but do not mess with the
1894 			 * pmap-layer's modified state.  That state should
1895 			 * also be clear since the caller protected the
1896 			 * page VM_PROT_READ, but allow the case.
1897 			 *
1898 			 * We are in an interrupt, avoid pmap operations.
1899 			 *
1900 			 * If we have a severe page deficit, deactivate the
1901 			 * page.  Do not try to cache it (which would also
1902 			 * involve a pmap op), because the page might still
1903 			 * be read-heavy.
1904 			 *
1905 			 * When using the swap to cache clean vnode pages
1906 			 * we do not mess with the page dirty bits.
1907 			 */
1908 			vm_page_busy_wait(m, FALSE, "swadpg");
1909 			if (m->object->type == OBJT_SWAP)
1910 				vm_page_undirty(m);
1911 			vm_page_flag_clear(m, PG_SWAPINPROG);
1912 			vm_page_flag_set(m, PG_SWAPPED);
1913 			if (vm_page_count_severe())
1914 				vm_page_deactivate(m);
1915 #if 0
1916 			if (!vm_page_count_severe() || !vm_page_try_to_cache(m))
1917 				vm_page_protect(m, VM_PROT_READ);
1918 #endif
1919 			vm_page_io_finish(m);
1920 			vm_page_wakeup(m);
1921 		}
1922 	}
1923 
1924 	/*
1925 	 * adjust pip.  NOTE: the original parent may still have its own
1926 	 * pip refs on the object.
1927 	 */
1928 
1929 	if (object)
1930 		vm_object_pip_wakeup_n(object, bp->b_xio.xio_npages);
1931 
1932 	/*
1933 	 * Release the physical I/O buffer.
1934 	 *
1935 	 * NOTE: Due to synchronous operations in the write case b_cmd may
1936 	 *	 already be set to BUF_CMD_DONE and BIO_SYNC may have already
1937 	 *	 been cleared.
1938 	 *
1939 	 * Use vm_token to interlock nsw_rcount/wcount wakeup?
1940 	 */
1941 	lwkt_gettoken(&vm_token);
1942 	if (bio->bio_caller_info1.index & SWBIO_READ)
1943 		nswptr = &nsw_rcount;
1944 	else if (bio->bio_caller_info1.index & SWBIO_SYNC)
1945 		nswptr = &nsw_wcount_sync;
1946 	else
1947 		nswptr = &nsw_wcount_async;
1948 	bp->b_cmd = BUF_CMD_DONE;
1949 	relpbuf(bp, nswptr);
1950 	lwkt_reltoken(&vm_token);
1951 }
1952 
1953 /*
1954  * Fault-in a potentially swapped page and remove the swap reference.
1955  * (used by swapoff code)
1956  *
1957  * object must be held.
1958  */
1959 static __inline void
1960 swp_pager_fault_page(vm_object_t object, int *sharedp, vm_pindex_t pindex)
1961 {
1962 	struct vnode *vp;
1963 	vm_page_t m;
1964 	int error;
1965 
1966 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1967 
1968 	if (object->type == OBJT_VNODE) {
1969 		/*
1970 		 * Any swap related to a vnode is due to swapcache.  We must
1971 		 * vget() the vnode in case it is not active (otherwise
1972 		 * vref() will panic).  Calling vm_object_page_remove() will
1973 		 * ensure that any swap ref is removed interlocked with the
1974 		 * page.  clean_only is set to TRUE so we don't throw away
1975 		 * dirty pages.
1976 		 */
1977 		vp = object->handle;
1978 		error = vget(vp, LK_SHARED | LK_RETRY | LK_CANRECURSE);
1979 		if (error == 0) {
1980 			vm_object_page_remove(object, pindex, pindex + 1, TRUE);
1981 			vput(vp);
1982 		}
1983 	} else {
1984 		/*
1985 		 * Otherwise it is a normal OBJT_SWAP object and we can
1986 		 * fault the page in and remove the swap.
1987 		 */
1988 		m = vm_fault_object_page(object, IDX_TO_OFF(pindex),
1989 					 VM_PROT_NONE,
1990 					 VM_FAULT_DIRTY | VM_FAULT_UNSWAP,
1991 					 sharedp, &error);
1992 		if (m)
1993 			vm_page_unhold(m);
1994 	}
1995 }
1996 
1997 /*
1998  * This removes all swap blocks related to a particular device.  We have
1999  * to be careful of ripups during the scan.
2000  */
2001 static int swp_pager_swapoff_callback(struct swblock *swap, void *data);
2002 
2003 int
2004 swap_pager_swapoff(int devidx)
2005 {
2006 	struct swswapoffinfo info;
2007 	struct vm_object marker;
2008 	vm_object_t object;
2009 	int n;
2010 
2011 	bzero(&marker, sizeof(marker));
2012 	marker.type = OBJT_MARKER;
2013 
2014 	for (n = 0; n < VMOBJ_HSIZE; ++n) {
2015 		lwkt_gettoken(&vmobj_tokens[n]);
2016 		TAILQ_INSERT_HEAD(&vm_object_lists[n], &marker, object_list);
2017 
2018 		while ((object = TAILQ_NEXT(&marker, object_list)) != NULL) {
2019 			if (object->type == OBJT_MARKER)
2020 				goto skip;
2021 			if (object->type != OBJT_SWAP &&
2022 			    object->type != OBJT_VNODE)
2023 				goto skip;
2024 			vm_object_hold(object);
2025 			if (object->type != OBJT_SWAP &&
2026 			    object->type != OBJT_VNODE) {
2027 				vm_object_drop(object);
2028 				goto skip;
2029 			}
2030 			info.object = object;
2031 			info.shared = 0;
2032 			info.devidx = devidx;
2033 			swblock_rb_tree_RB_SCAN(&object->swblock_root,
2034 					    NULL, swp_pager_swapoff_callback,
2035 					    &info);
2036 			vm_object_drop(object);
2037 skip:
2038 			if (object == TAILQ_NEXT(&marker, object_list)) {
2039 				TAILQ_REMOVE(&vm_object_lists[n],
2040 					     &marker, object_list);
2041 				TAILQ_INSERT_AFTER(&vm_object_lists[n], object,
2042 						   &marker, object_list);
2043 			}
2044 		}
2045 		TAILQ_REMOVE(&vm_object_lists[n], &marker, object_list);
2046 		lwkt_reltoken(&vmobj_tokens[n]);
2047 	}
2048 
2049 	/*
2050 	 * If we fail to locate all swblocks we just fail gracefully and
2051 	 * do not bother to restore paging on the swap device.  If the
2052 	 * user wants to retry the user can retry.
2053 	 */
2054 	if (swdevt[devidx].sw_nused)
2055 		return (1);
2056 	else
2057 		return (0);
2058 }
2059 
2060 static
2061 int
2062 swp_pager_swapoff_callback(struct swblock *swap, void *data)
2063 {
2064 	struct swswapoffinfo *info = data;
2065 	vm_object_t object = info->object;
2066 	vm_pindex_t index;
2067 	swblk_t v;
2068 	int i;
2069 
2070 	index = swap->swb_index;
2071 	for (i = 0; i < SWAP_META_PAGES; ++i) {
2072 		/*
2073 		 * Make sure we don't race a dying object.  This will
2074 		 * kill the scan of the object's swap blocks entirely.
2075 		 */
2076 		if (object->flags & OBJ_DEAD)
2077 			return(-1);
2078 
2079 		/*
2080 		 * Fault the page, which can obviously block.  If the swap
2081 		 * structure disappears break out.
2082 		 */
2083 		v = swap->swb_pages[i];
2084 		if (v != SWAPBLK_NONE && BLK2DEVIDX(v) == info->devidx) {
2085 			swp_pager_fault_page(object, &info->shared,
2086 					     swap->swb_index + i);
2087 			/* swap ptr might go away */
2088 			if (RB_LOOKUP(swblock_rb_tree,
2089 				      &object->swblock_root, index) != swap) {
2090 				break;
2091 			}
2092 		}
2093 	}
2094 	return(0);
2095 }
2096 
2097 /************************************************************************
2098  *				SWAP META DATA 				*
2099  ************************************************************************
2100  *
2101  *	These routines manipulate the swap metadata stored in the
2102  *	OBJT_SWAP object.  All swp_*() routines must be called at
2103  *	splvm() because swap can be freed up by the low level vm_page
2104  *	code which might be called from interrupts beyond what splbio() covers.
2105  *
2106  *	Swap metadata is implemented with a global hash and not directly
2107  *	linked into the object.  Instead the object simply contains
2108  *	appropriate tracking counters.
2109  */
2110 
2111 /*
2112  * Lookup the swblock containing the specified swap block index.
2113  *
2114  * The caller must hold the object.
2115  */
2116 static __inline
2117 struct swblock *
2118 swp_pager_lookup(vm_object_t object, vm_pindex_t index)
2119 {
2120 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2121 	index &= ~(vm_pindex_t)SWAP_META_MASK;
2122 	return (RB_LOOKUP(swblock_rb_tree, &object->swblock_root, index));
2123 }
2124 
2125 /*
2126  * Remove a swblock from the RB tree.
2127  *
2128  * The caller must hold the object.
2129  */
2130 static __inline
2131 void
2132 swp_pager_remove(vm_object_t object, struct swblock *swap)
2133 {
2134 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2135 	RB_REMOVE(swblock_rb_tree, &object->swblock_root, swap);
2136 }
2137 
2138 /*
2139  * Convert default object to swap object if necessary
2140  *
2141  * The caller must hold the object.
2142  */
2143 static void
2144 swp_pager_meta_convert(vm_object_t object)
2145 {
2146 	if (object->type == OBJT_DEFAULT) {
2147 		object->type = OBJT_SWAP;
2148 		KKASSERT(object->swblock_count == 0);
2149 	}
2150 }
2151 
2152 /*
2153  * SWP_PAGER_META_BUILD() -	add swap block to swap meta data for object
2154  *
2155  *	We first convert the object to a swap object if it is a default
2156  *	object.  Vnode objects do not need to be converted.
2157  *
2158  *	The specified swapblk is added to the object's swap metadata.  If
2159  *	the swapblk is not valid, it is freed instead.  Any previously
2160  *	assigned swapblk is freed.
2161  *
2162  * The caller must hold the object.
2163  */
2164 static void
2165 swp_pager_meta_build(vm_object_t object, vm_pindex_t index, swblk_t swapblk)
2166 {
2167 	struct swblock *swap;
2168 	struct swblock *oswap;
2169 	vm_pindex_t v;
2170 
2171 	KKASSERT(swapblk != SWAPBLK_NONE);
2172 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2173 
2174 	/*
2175 	 * Convert object if necessary
2176 	 */
2177 	if (object->type == OBJT_DEFAULT)
2178 		swp_pager_meta_convert(object);
2179 
2180 	/*
2181 	 * Locate swblock.  If not found create, but if we aren't adding
2182 	 * anything just return.  If we run out of space in the map we wait
2183 	 * and, since the hash table may have changed, retry.
2184 	 */
2185 retry:
2186 	swap = swp_pager_lookup(object, index);
2187 
2188 	if (swap == NULL) {
2189 		int i;
2190 
2191 		swap = zalloc(swap_zone);
2192 		if (swap == NULL) {
2193 			vm_wait(0);
2194 			goto retry;
2195 		}
2196 		swap->swb_index = index & ~(vm_pindex_t)SWAP_META_MASK;
2197 		swap->swb_count = 0;
2198 
2199 		++object->swblock_count;
2200 
2201 		for (i = 0; i < SWAP_META_PAGES; ++i)
2202 			swap->swb_pages[i] = SWAPBLK_NONE;
2203 		oswap = RB_INSERT(swblock_rb_tree, &object->swblock_root, swap);
2204 		KKASSERT(oswap == NULL);
2205 	}
2206 
2207 	/*
2208 	 * Delete prior contents of metadata.
2209 	 *
2210 	 * NOTE: Decrement swb_count after the freeing operation (which
2211 	 *	 might block) to prevent racing destruction of the swblock.
2212 	 */
2213 	index &= SWAP_META_MASK;
2214 
2215 	while ((v = swap->swb_pages[index]) != SWAPBLK_NONE) {
2216 		swap->swb_pages[index] = SWAPBLK_NONE;
2217 		/* can block */
2218 		swp_pager_freeswapspace(object, v, 1);
2219 		--swap->swb_count;
2220 		--mycpu->gd_vmtotal.t_vm;
2221 	}
2222 
2223 	/*
2224 	 * Enter block into metadata
2225 	 */
2226 	swap->swb_pages[index] = swapblk;
2227 	if (swapblk != SWAPBLK_NONE) {
2228 		++swap->swb_count;
2229 		++mycpu->gd_vmtotal.t_vm;
2230 	}
2231 }
2232 
2233 /*
2234  * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
2235  *
2236  *	The requested range of blocks is freed, with any associated swap
2237  *	returned to the swap bitmap.
2238  *
2239  *	This routine will free swap metadata structures as they are cleaned
2240  *	out.  This routine does *NOT* operate on swap metadata associated
2241  *	with resident pages.
2242  *
2243  * The caller must hold the object.
2244  */
2245 static int swp_pager_meta_free_callback(struct swblock *swb, void *data);
2246 
2247 static void
2248 swp_pager_meta_free(vm_object_t object, vm_pindex_t index, vm_pindex_t count)
2249 {
2250 	struct swfreeinfo info;
2251 
2252 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2253 
2254 	/*
2255 	 * Nothing to do
2256 	 */
2257 	if (object->swblock_count == 0) {
2258 		KKASSERT(RB_EMPTY(&object->swblock_root));
2259 		return;
2260 	}
2261 	if (count == 0)
2262 		return;
2263 
2264 	/*
2265 	 * Setup for RB tree scan.  Note that the pindex range can be huge
2266 	 * due to the 64 bit page index space so we cannot safely iterate.
2267 	 */
2268 	info.object = object;
2269 	info.basei = index & ~(vm_pindex_t)SWAP_META_MASK;
2270 	info.begi = index;
2271 	info.endi = index + count - 1;
2272 	swblock_rb_tree_RB_SCAN(&object->swblock_root, rb_swblock_scancmp,
2273 				swp_pager_meta_free_callback, &info);
2274 }
2275 
2276 /*
2277  * The caller must hold the object.
2278  */
2279 static
2280 int
2281 swp_pager_meta_free_callback(struct swblock *swap, void *data)
2282 {
2283 	struct swfreeinfo *info = data;
2284 	vm_object_t object = info->object;
2285 	int index;
2286 	int eindex;
2287 
2288 	/*
2289 	 * Figure out the range within the swblock.  The wider scan may
2290 	 * return edge-case swap blocks when the start and/or end points
2291 	 * are in the middle of a block.
2292 	 */
2293 	if (swap->swb_index < info->begi)
2294 		index = (int)info->begi & SWAP_META_MASK;
2295 	else
2296 		index = 0;
2297 
2298 	if (swap->swb_index + SWAP_META_PAGES > info->endi)
2299 		eindex = (int)info->endi & SWAP_META_MASK;
2300 	else
2301 		eindex = SWAP_META_MASK;
2302 
2303 	/*
2304 	 * Scan and free the blocks.  The loop terminates early
2305 	 * if (swap) runs out of blocks and could be freed.
2306 	 *
2307 	 * NOTE: Decrement swb_count after swp_pager_freeswapspace()
2308 	 *	 to deal with a zfree race.
2309 	 */
2310 	while (index <= eindex) {
2311 		swblk_t v = swap->swb_pages[index];
2312 
2313 		if (v != SWAPBLK_NONE) {
2314 			swap->swb_pages[index] = SWAPBLK_NONE;
2315 			/* can block */
2316 			swp_pager_freeswapspace(object, v, 1);
2317 			--mycpu->gd_vmtotal.t_vm;
2318 			if (--swap->swb_count == 0) {
2319 				swp_pager_remove(object, swap);
2320 				zfree(swap_zone, swap);
2321 				--object->swblock_count;
2322 				break;
2323 			}
2324 		}
2325 		++index;
2326 	}
2327 
2328 	/* swap may be invalid here due to zfree above */
2329 	lwkt_yield();
2330 
2331 	return(0);
2332 }
2333 
2334 /*
2335  * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
2336  *
2337  *	This routine locates and destroys all swap metadata associated with
2338  *	an object.
2339  *
2340  * NOTE: Decrement swb_count after the freeing operation (which
2341  *	 might block) to prevent racing destruction of the swblock.
2342  *
2343  * The caller must hold the object.
2344  */
2345 static void
2346 swp_pager_meta_free_all(vm_object_t object)
2347 {
2348 	struct swblock *swap;
2349 	int i;
2350 
2351 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2352 
2353 	while ((swap = RB_ROOT(&object->swblock_root)) != NULL) {
2354 		swp_pager_remove(object, swap);
2355 		for (i = 0; i < SWAP_META_PAGES; ++i) {
2356 			swblk_t v = swap->swb_pages[i];
2357 			if (v != SWAPBLK_NONE) {
2358 				/* can block */
2359 				swp_pager_freeswapspace(object, v, 1);
2360 				--swap->swb_count;
2361 				--mycpu->gd_vmtotal.t_vm;
2362 			}
2363 		}
2364 		if (swap->swb_count != 0)
2365 			panic("swap_pager_meta_free_all: swb_count != 0");
2366 		zfree(swap_zone, swap);
2367 		--object->swblock_count;
2368 		lwkt_yield();
2369 	}
2370 	KKASSERT(object->swblock_count == 0);
2371 }
2372 
2373 /*
2374  * SWP_PAGER_METACTL() -  misc control of swap and vm_page_t meta data.
2375  *
2376  *	This routine is capable of looking up, popping, or freeing
2377  *	swapblk assignments in the swap meta data or in the vm_page_t.
2378  *	The routine typically returns the swapblk being looked-up, or popped,
2379  *	or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block
2380  *	was invalid.  This routine will automatically free any invalid
2381  *	meta-data swapblks.
2382  *
2383  *	It is not possible to store invalid swapblks in the swap meta data
2384  *	(other then a literal 'SWAPBLK_NONE'), so we don't bother checking.
2385  *
2386  *	When acting on a busy resident page and paging is in progress, we
2387  *	have to wait until paging is complete but otherwise can act on the
2388  *	busy page.
2389  *
2390  *	SWM_FREE	remove and free swap block from metadata
2391  *	SWM_POP		remove from meta data but do not free.. pop it out
2392  *
2393  * The caller must hold the object.
2394  */
2395 static swblk_t
2396 swp_pager_meta_ctl(vm_object_t object, vm_pindex_t index, int flags)
2397 {
2398 	struct swblock *swap;
2399 	swblk_t r1;
2400 
2401 	if (object->swblock_count == 0)
2402 		return(SWAPBLK_NONE);
2403 
2404 	r1 = SWAPBLK_NONE;
2405 	swap = swp_pager_lookup(object, index);
2406 
2407 	if (swap != NULL) {
2408 		index &= SWAP_META_MASK;
2409 		r1 = swap->swb_pages[index];
2410 
2411 		if (r1 != SWAPBLK_NONE) {
2412 			if (flags & (SWM_FREE|SWM_POP)) {
2413 				swap->swb_pages[index] = SWAPBLK_NONE;
2414 				--mycpu->gd_vmtotal.t_vm;
2415 				if (--swap->swb_count == 0) {
2416 					swp_pager_remove(object, swap);
2417 					zfree(swap_zone, swap);
2418 					--object->swblock_count;
2419 				}
2420 			}
2421 			/* swap ptr may be invalid */
2422 			if (flags & SWM_FREE) {
2423 				swp_pager_freeswapspace(object, r1, 1);
2424 				r1 = SWAPBLK_NONE;
2425 			}
2426 		}
2427 		/* swap ptr may be invalid */
2428 	}
2429 	return(r1);
2430 }
2431