xref: /dragonfly/sys/vm/swap_pager.c (revision 49781055)
1 /*
2  * Copyright (c) 1998,2004 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * Copyright (c) 1994 John S. Dyson
35  * Copyright (c) 1990 University of Utah.
36  * Copyright (c) 1991, 1993
37  *	The Regents of the University of California.  All rights reserved.
38  *
39  * This code is derived from software contributed to Berkeley by
40  * the Systems Programming Group of the University of Utah Computer
41  * Science Department.
42  *
43  * Redistribution and use in source and binary forms, with or without
44  * modification, are permitted provided that the following conditions
45  * are met:
46  * 1. Redistributions of source code must retain the above copyright
47  *    notice, this list of conditions and the following disclaimer.
48  * 2. Redistributions in binary form must reproduce the above copyright
49  *    notice, this list of conditions and the following disclaimer in the
50  *    documentation and/or other materials provided with the distribution.
51  * 3. All advertising materials mentioning features or use of this software
52  *    must display the following acknowledgement:
53  *	This product includes software developed by the University of
54  *	California, Berkeley and its contributors.
55  * 4. Neither the name of the University nor the names of its contributors
56  *    may be used to endorse or promote products derived from this software
57  *    without specific prior written permission.
58  *
59  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69  * SUCH DAMAGE.
70  *
71  *				New Swap System
72  *				Matthew Dillon
73  *
74  * Radix Bitmap 'blists'.
75  *
76  *	- The new swapper uses the new radix bitmap code.  This should scale
77  *	  to arbitrarily small or arbitrarily large swap spaces and an almost
78  *	  arbitrary degree of fragmentation.
79  *
80  * Features:
81  *
82  *	- on the fly reallocation of swap during putpages.  The new system
83  *	  does not try to keep previously allocated swap blocks for dirty
84  *	  pages.
85  *
86  *	- on the fly deallocation of swap
87  *
88  *	- No more garbage collection required.  Unnecessarily allocated swap
89  *	  blocks only exist for dirty vm_page_t's now and these are already
90  *	  cycled (in a high-load system) by the pager.  We also do on-the-fly
91  *	  removal of invalidated swap blocks when a page is destroyed
92  *	  or renamed.
93  *
94  * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
95  *
96  *	@(#)swap_pager.c	8.9 (Berkeley) 3/21/94
97  *
98  * $FreeBSD: src/sys/vm/swap_pager.c,v 1.130.2.12 2002/08/31 21:15:55 dillon Exp $
99  * $DragonFly: src/sys/vm/swap_pager.c,v 1.18 2006/02/17 19:18:08 dillon Exp $
100  */
101 
102 #include <sys/param.h>
103 #include <sys/systm.h>
104 #include <sys/conf.h>
105 #include <sys/kernel.h>
106 #include <sys/proc.h>
107 #include <sys/buf.h>
108 #include <sys/vnode.h>
109 #include <sys/malloc.h>
110 #include <sys/vmmeter.h>
111 #include <sys/sysctl.h>
112 #include <sys/blist.h>
113 #include <sys/lock.h>
114 #include <sys/thread2.h>
115 
116 #ifndef MAX_PAGEOUT_CLUSTER
117 #define MAX_PAGEOUT_CLUSTER 16
118 #endif
119 
120 #define SWB_NPAGES	MAX_PAGEOUT_CLUSTER
121 
122 #include "opt_swap.h"
123 #include <vm/vm.h>
124 #include <vm/vm_object.h>
125 #include <vm/vm_page.h>
126 #include <vm/vm_pager.h>
127 #include <vm/vm_pageout.h>
128 #include <vm/swap_pager.h>
129 #include <vm/vm_extern.h>
130 #include <vm/vm_zone.h>
131 
132 #include <sys/buf2.h>
133 #include <vm/vm_page2.h>
134 
135 #define SWM_FREE	0x02	/* free, period			*/
136 #define SWM_POP		0x04	/* pop out			*/
137 
138 /*
139  * vm_swap_size is in page-sized chunks now.  It was DEV_BSIZE'd chunks
140  * in the old system.
141  */
142 
143 extern int vm_swap_size;	/* number of free swap blocks, in pages */
144 
145 int swap_pager_full;		/* swap space exhaustion (task killing) */
146 static int swap_pager_almost_full; /* swap space exhaustion (w/ hysteresis)*/
147 static int nsw_rcount;		/* free read buffers			*/
148 static int nsw_wcount_sync;	/* limit write buffers / synchronous	*/
149 static int nsw_wcount_async;	/* limit write buffers / asynchronous	*/
150 static int nsw_wcount_async_max;/* assigned maximum			*/
151 static int nsw_cluster_max;	/* maximum VOP I/O allowed		*/
152 static int sw_alloc_interlock;	/* swap pager allocation interlock	*/
153 
154 struct blist *swapblist;
155 static struct swblock **swhash;
156 static int swhash_mask;
157 static int swap_async_max = 4;	/* maximum in-progress async I/O's	*/
158 
159 extern struct vnode *swapdev_vp;	/* from vm_swap.c */
160 
161 SYSCTL_INT(_vm, OID_AUTO, swap_async_max,
162         CTLFLAG_RW, &swap_async_max, 0, "Maximum running async swap ops");
163 
164 /*
165  * "named" and "unnamed" anon region objects.  Try to reduce the overhead
166  * of searching a named list by hashing it just a little.
167  */
168 
169 #define NOBJLISTS		8
170 
171 #define NOBJLIST(handle)	\
172 	(&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)])
173 
174 static struct pagerlst	swap_pager_object_list[NOBJLISTS];
175 struct pagerlst		swap_pager_un_object_list;
176 vm_zone_t		swap_zone;
177 
178 /*
179  * pagerops for OBJT_SWAP - "swap pager".  Some ops are also global procedure
180  * calls hooked from other parts of the VM system and do not appear here.
181  * (see vm/swap_pager.h).
182  */
183 
184 static vm_object_t
185 		swap_pager_alloc (void *handle, vm_ooffset_t size,
186 				      vm_prot_t prot, vm_ooffset_t offset);
187 static void	swap_pager_dealloc (vm_object_t object);
188 static int	swap_pager_getpages (vm_object_t, vm_page_t *, int, int);
189 static void	swap_pager_init (void);
190 static void	swap_pager_unswapped (vm_page_t);
191 static void	swap_pager_strategy (vm_object_t, struct bio *);
192 static void	swap_chain_iodone(struct bio *biox);
193 
194 struct pagerops swappagerops = {
195 	swap_pager_init,	/* early system initialization of pager	*/
196 	swap_pager_alloc,	/* allocate an OBJT_SWAP object		*/
197 	swap_pager_dealloc,	/* deallocate an OBJT_SWAP object	*/
198 	swap_pager_getpages,	/* pagein				*/
199 	swap_pager_putpages,	/* pageout				*/
200 	swap_pager_haspage,	/* get backing store status for page	*/
201 	swap_pager_unswapped,	/* remove swap related to page		*/
202 	swap_pager_strategy	/* pager strategy call			*/
203 };
204 
205 /*
206  * dmmax is in page-sized chunks with the new swap system.  It was
207  * dev-bsized chunks in the old.  dmmax is always a power of 2.
208  *
209  * swap_*() routines are externally accessible.  swp_*() routines are
210  * internal.
211  */
212 
213 int dmmax;
214 static int dmmax_mask;
215 int nswap_lowat = 128;		/* in pages, swap_pager_almost_full warn */
216 int nswap_hiwat = 512;		/* in pages, swap_pager_almost_full warn */
217 
218 static __inline void	swp_sizecheck (void);
219 static void	swp_pager_sync_iodone (struct bio *bio);
220 static void	swp_pager_async_iodone (struct bio *bio);
221 
222 /*
223  * Swap bitmap functions
224  */
225 
226 static __inline void	swp_pager_freeswapspace (daddr_t blk, int npages);
227 static __inline daddr_t	swp_pager_getswapspace (int npages);
228 
229 /*
230  * Metadata functions
231  */
232 
233 static void swp_pager_meta_build (vm_object_t, vm_pindex_t, daddr_t);
234 static void swp_pager_meta_free (vm_object_t, vm_pindex_t, daddr_t);
235 static void swp_pager_meta_free_all (vm_object_t);
236 static daddr_t swp_pager_meta_ctl (vm_object_t, vm_pindex_t, int);
237 
238 /*
239  * SWP_SIZECHECK() -	update swap_pager_full indication
240  *
241  *	update the swap_pager_almost_full indication and warn when we are
242  *	about to run out of swap space, using lowat/hiwat hysteresis.
243  *
244  *	Clear swap_pager_full ( task killing ) indication when lowat is met.
245  *
246  *	No restrictions on call
247  *	This routine may not block.
248  *	This routine must be called at splvm()
249  */
250 
251 static __inline void
252 swp_sizecheck(void)
253 {
254 	if (vm_swap_size < nswap_lowat) {
255 		if (swap_pager_almost_full == 0) {
256 			printf("swap_pager: out of swap space\n");
257 			swap_pager_almost_full = 1;
258 		}
259 	} else {
260 		swap_pager_full = 0;
261 		if (vm_swap_size > nswap_hiwat)
262 			swap_pager_almost_full = 0;
263 	}
264 }
265 
266 /*
267  * SWAP_PAGER_INIT() -	initialize the swap pager!
268  *
269  *	Expected to be started from system init.  NOTE:  This code is run
270  *	before much else so be careful what you depend on.  Most of the VM
271  *	system has yet to be initialized at this point.
272  */
273 
274 static void
275 swap_pager_init(void)
276 {
277 	/*
278 	 * Initialize object lists
279 	 */
280 	int i;
281 
282 	for (i = 0; i < NOBJLISTS; ++i)
283 		TAILQ_INIT(&swap_pager_object_list[i]);
284 	TAILQ_INIT(&swap_pager_un_object_list);
285 
286 	/*
287 	 * Device Stripe, in PAGE_SIZE'd blocks
288 	 */
289 
290 	dmmax = SWB_NPAGES * 2;
291 	dmmax_mask = ~(dmmax - 1);
292 }
293 
294 /*
295  * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
296  *
297  *	Expected to be started from pageout process once, prior to entering
298  *	its main loop.
299  */
300 
301 void
302 swap_pager_swap_init(void)
303 {
304 	int n, n2;
305 
306 	/*
307 	 * Number of in-transit swap bp operations.  Don't
308 	 * exhaust the pbufs completely.  Make sure we
309 	 * initialize workable values (0 will work for hysteresis
310 	 * but it isn't very efficient).
311 	 *
312 	 * The nsw_cluster_max is constrained by the number of pages an XIO
313 	 * holds, i.e., (MAXPHYS/PAGE_SIZE) and our locally defined
314 	 * MAX_PAGEOUT_CLUSTER.   Also be aware that swap ops are
315 	 * constrained by the swap device interleave stripe size.
316 	 *
317 	 * Currently we hardwire nsw_wcount_async to 4.  This limit is
318 	 * designed to prevent other I/O from having high latencies due to
319 	 * our pageout I/O.  The value 4 works well for one or two active swap
320 	 * devices but is probably a little low if you have more.  Even so,
321 	 * a higher value would probably generate only a limited improvement
322 	 * with three or four active swap devices since the system does not
323 	 * typically have to pageout at extreme bandwidths.   We will want
324 	 * at least 2 per swap devices, and 4 is a pretty good value if you
325 	 * have one NFS swap device due to the command/ack latency over NFS.
326 	 * So it all works out pretty well.
327 	 */
328 
329 	nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER);
330 
331 	nsw_rcount = (nswbuf + 1) / 2;
332 	nsw_wcount_sync = (nswbuf + 3) / 4;
333 	nsw_wcount_async = 4;
334 	nsw_wcount_async_max = nsw_wcount_async;
335 
336 	/*
337 	 * Initialize our zone.  Right now I'm just guessing on the number
338 	 * we need based on the number of pages in the system.  Each swblock
339 	 * can hold 16 pages, so this is probably overkill.  This reservation
340 	 * is typically limited to around 32MB by default.
341 	 */
342 	n = vmstats.v_page_count / 2;
343 	if (maxswzone && n > maxswzone / sizeof(struct swblock))
344 		n = maxswzone / sizeof(struct swblock);
345 	n2 = n;
346 
347 	do {
348 		swap_zone = zinit(
349 			"SWAPMETA",
350 			sizeof(struct swblock),
351 			n,
352 			ZONE_INTERRUPT,
353 			1);
354 		if (swap_zone != NULL)
355 			break;
356 		/*
357 		 * if the allocation failed, try a zone two thirds the
358 		 * size of the previous attempt.
359 		 */
360 		n -= ((n + 2) / 3);
361 	} while (n > 0);
362 
363 	if (swap_zone == NULL)
364 		panic("swap_pager_swap_init: swap_zone == NULL");
365 	if (n2 != n)
366 		printf("Swap zone entries reduced from %d to %d.\n", n2, n);
367 	n2 = n;
368 
369 	/*
370 	 * Initialize our meta-data hash table.  The swapper does not need to
371 	 * be quite as efficient as the VM system, so we do not use an
372 	 * oversized hash table.
373 	 *
374 	 * 	n: 		size of hash table, must be power of 2
375 	 *	swhash_mask:	hash table index mask
376 	 */
377 
378 	for (n = 1; n < n2 / 8; n *= 2)
379 		;
380 
381 	swhash = malloc(sizeof(struct swblock *) * n, M_VMPGDATA, M_WAITOK);
382 	bzero(swhash, sizeof(struct swblock *) * n);
383 
384 	swhash_mask = n - 1;
385 }
386 
387 /*
388  * SWAP_PAGER_ALLOC() -	allocate a new OBJT_SWAP VM object and instantiate
389  *			its metadata structures.
390  *
391  *	This routine is called from the mmap and fork code to create a new
392  *	OBJT_SWAP object.  We do this by creating an OBJT_DEFAULT object
393  *	and then converting it with swp_pager_meta_build().
394  *
395  *	This routine may block in vm_object_allocate() and create a named
396  *	object lookup race, so we must interlock.   We must also run at
397  *	splvm() for the object lookup to handle races with interrupts, but
398  *	we do not have to maintain splvm() in between the lookup and the
399  *	add because (I believe) it is not possible to attempt to create
400  *	a new swap object w/handle when a default object with that handle
401  *	already exists.
402  */
403 
404 static vm_object_t
405 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
406 		 vm_ooffset_t offset)
407 {
408 	vm_object_t object;
409 
410 	if (handle) {
411 		/*
412 		 * Reference existing named region or allocate new one.  There
413 		 * should not be a race here against swp_pager_meta_build()
414 		 * as called from vm_page_remove() in regards to the lookup
415 		 * of the handle.
416 		 */
417 
418 		while (sw_alloc_interlock) {
419 			sw_alloc_interlock = -1;
420 			tsleep(&sw_alloc_interlock, 0, "swpalc", 0);
421 		}
422 		sw_alloc_interlock = 1;
423 
424 		object = vm_pager_object_lookup(NOBJLIST(handle), handle);
425 
426 		if (object != NULL) {
427 			vm_object_reference(object);
428 		} else {
429 			object = vm_object_allocate(OBJT_DEFAULT,
430 				OFF_TO_IDX(offset + PAGE_MASK + size));
431 			object->handle = handle;
432 
433 			swp_pager_meta_build(object, 0, SWAPBLK_NONE);
434 		}
435 
436 		if (sw_alloc_interlock < 0)
437 			wakeup(&sw_alloc_interlock);
438 
439 		sw_alloc_interlock = 0;
440 	} else {
441 		object = vm_object_allocate(OBJT_DEFAULT,
442 			OFF_TO_IDX(offset + PAGE_MASK + size));
443 
444 		swp_pager_meta_build(object, 0, SWAPBLK_NONE);
445 	}
446 
447 	return (object);
448 }
449 
450 /*
451  * SWAP_PAGER_DEALLOC() -	remove swap metadata from object
452  *
453  *	The swap backing for the object is destroyed.  The code is
454  *	designed such that we can reinstantiate it later, but this
455  *	routine is typically called only when the entire object is
456  *	about to be destroyed.
457  *
458  *	This routine may block, but no longer does.
459  *
460  *	The object must be locked or unreferenceable.
461  */
462 
463 static void
464 swap_pager_dealloc(vm_object_t object)
465 {
466 	/*
467 	 * Remove from list right away so lookups will fail if we block for
468 	 * pageout completion.
469 	 */
470 
471 	if (object->handle == NULL) {
472 		TAILQ_REMOVE(&swap_pager_un_object_list, object, pager_object_list);
473 	} else {
474 		TAILQ_REMOVE(NOBJLIST(object->handle), object, pager_object_list);
475 	}
476 
477 	vm_object_pip_wait(object, "swpdea");
478 
479 	/*
480 	 * Free all remaining metadata.  We only bother to free it from
481 	 * the swap meta data.  We do not attempt to free swapblk's still
482 	 * associated with vm_page_t's for this object.  We do not care
483 	 * if paging is still in progress on some objects.
484 	 */
485 	crit_enter();
486 	swp_pager_meta_free_all(object);
487 	crit_exit();
488 }
489 
490 /************************************************************************
491  *			SWAP PAGER BITMAP ROUTINES			*
492  ************************************************************************/
493 
494 /*
495  * SWP_PAGER_GETSWAPSPACE() -	allocate raw swap space
496  *
497  *	Allocate swap for the requested number of pages.  The starting
498  *	swap block number (a page index) is returned or SWAPBLK_NONE
499  *	if the allocation failed.
500  *
501  *	Also has the side effect of advising that somebody made a mistake
502  *	when they configured swap and didn't configure enough.
503  *
504  *	Must be called at splvm() to avoid races with bitmap frees from
505  *	vm_page_remove() aka swap_pager_page_removed().
506  *
507  *	This routine may not block
508  *	This routine must be called at splvm().
509  */
510 
511 static __inline daddr_t
512 swp_pager_getswapspace(int npages)
513 {
514 	daddr_t blk;
515 
516 	if ((blk = blist_alloc(swapblist, npages)) == SWAPBLK_NONE) {
517 		if (swap_pager_full != 2) {
518 			printf("swap_pager_getswapspace: failed\n");
519 			swap_pager_full = 2;
520 			swap_pager_almost_full = 1;
521 		}
522 	} else {
523 		vm_swap_size -= npages;
524 		swp_sizecheck();
525 	}
526 	return(blk);
527 }
528 
529 /*
530  * SWP_PAGER_FREESWAPSPACE() -	free raw swap space
531  *
532  *	This routine returns the specified swap blocks back to the bitmap.
533  *
534  *	Note:  This routine may not block (it could in the old swap code),
535  *	and through the use of the new blist routines it does not block.
536  *
537  *	We must be called at splvm() to avoid races with bitmap frees from
538  *	vm_page_remove() aka swap_pager_page_removed().
539  *
540  *	This routine may not block
541  *	This routine must be called at splvm().
542  */
543 
544 static __inline void
545 swp_pager_freeswapspace(daddr_t blk, int npages)
546 {
547 	blist_free(swapblist, blk, npages);
548 	vm_swap_size += npages;
549 	swp_sizecheck();
550 }
551 
552 /*
553  * SWAP_PAGER_FREESPACE() -	frees swap blocks associated with a page
554  *				range within an object.
555  *
556  *	This is a globally accessible routine.
557  *
558  *	This routine removes swapblk assignments from swap metadata.
559  *
560  *	The external callers of this routine typically have already destroyed
561  *	or renamed vm_page_t's associated with this range in the object so
562  *	we should be ok.
563  *
564  *	This routine may be called at any spl.  We up our spl to splvm temporarily
565  *	in order to perform the metadata removal.
566  */
567 
568 void
569 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_size_t size)
570 {
571 	crit_enter();
572 	swp_pager_meta_free(object, start, size);
573 	crit_exit();
574 }
575 
576 /*
577  * SWAP_PAGER_RESERVE() - reserve swap blocks in object
578  *
579  *	Assigns swap blocks to the specified range within the object.  The
580  *	swap blocks are not zerod.  Any previous swap assignment is destroyed.
581  *
582  *	Returns 0 on success, -1 on failure.
583  */
584 
585 int
586 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
587 {
588 	int n = 0;
589 	daddr_t blk = SWAPBLK_NONE;
590 	vm_pindex_t beg = start;	/* save start index */
591 
592 	crit_enter();
593 	while (size) {
594 		if (n == 0) {
595 			n = BLIST_MAX_ALLOC;
596 			while ((blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE) {
597 				n >>= 1;
598 				if (n == 0) {
599 					swp_pager_meta_free(object, beg, start - beg);
600 					crit_exit();
601 					return(-1);
602 				}
603 			}
604 		}
605 		swp_pager_meta_build(object, start, blk);
606 		--size;
607 		++start;
608 		++blk;
609 		--n;
610 	}
611 	swp_pager_meta_free(object, start, n);
612 	crit_exit();
613 	return(0);
614 }
615 
616 /*
617  * SWAP_PAGER_COPY() -  copy blocks from source pager to destination pager
618  *			and destroy the source.
619  *
620  *	Copy any valid swapblks from the source to the destination.  In
621  *	cases where both the source and destination have a valid swapblk,
622  *	we keep the destination's.
623  *
624  *	This routine is allowed to block.  It may block allocating metadata
625  *	indirectly through swp_pager_meta_build() or if paging is still in
626  *	progress on the source.
627  *
628  *	This routine can be called at any spl
629  *
630  *	XXX vm_page_collapse() kinda expects us not to block because we
631  *	supposedly do not need to allocate memory, but for the moment we
632  *	*may* have to get a little memory from the zone allocator, but
633  *	it is taken from the interrupt memory.  We should be ok.
634  *
635  *	The source object contains no vm_page_t's (which is just as well)
636  *
637  *	The source object is of type OBJT_SWAP.
638  *
639  *	The source and destination objects must be locked or
640  *	inaccessible (XXX are they ?)
641  */
642 
643 void
644 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject,
645     vm_pindex_t offset, int destroysource)
646 {
647 	vm_pindex_t i;
648 
649 	crit_enter();
650 
651 	/*
652 	 * If destroysource is set, we remove the source object from the
653 	 * swap_pager internal queue now.
654 	 */
655 
656 	if (destroysource) {
657 		if (srcobject->handle == NULL) {
658 			TAILQ_REMOVE(
659 			    &swap_pager_un_object_list,
660 			    srcobject,
661 			    pager_object_list
662 			);
663 		} else {
664 			TAILQ_REMOVE(
665 			    NOBJLIST(srcobject->handle),
666 			    srcobject,
667 			    pager_object_list
668 			);
669 		}
670 	}
671 
672 	/*
673 	 * transfer source to destination.
674 	 */
675 
676 	for (i = 0; i < dstobject->size; ++i) {
677 		daddr_t dstaddr;
678 
679 		/*
680 		 * Locate (without changing) the swapblk on the destination,
681 		 * unless it is invalid in which case free it silently, or
682 		 * if the destination is a resident page, in which case the
683 		 * source is thrown away.
684 		 */
685 
686 		dstaddr = swp_pager_meta_ctl(dstobject, i, 0);
687 
688 		if (dstaddr == SWAPBLK_NONE) {
689 			/*
690 			 * Destination has no swapblk and is not resident,
691 			 * copy source.
692 			 */
693 			daddr_t srcaddr;
694 
695 			srcaddr = swp_pager_meta_ctl(
696 			    srcobject,
697 			    i + offset,
698 			    SWM_POP
699 			);
700 
701 			if (srcaddr != SWAPBLK_NONE)
702 				swp_pager_meta_build(dstobject, i, srcaddr);
703 		} else {
704 			/*
705 			 * Destination has valid swapblk or it is represented
706 			 * by a resident page.  We destroy the sourceblock.
707 			 */
708 
709 			swp_pager_meta_ctl(srcobject, i + offset, SWM_FREE);
710 		}
711 	}
712 
713 	/*
714 	 * Free left over swap blocks in source.
715 	 *
716 	 * We have to revert the type to OBJT_DEFAULT so we do not accidently
717 	 * double-remove the object from the swap queues.
718 	 */
719 
720 	if (destroysource) {
721 		swp_pager_meta_free_all(srcobject);
722 		/*
723 		 * Reverting the type is not necessary, the caller is going
724 		 * to destroy srcobject directly, but I'm doing it here
725 		 * for consistency since we've removed the object from its
726 		 * queues.
727 		 */
728 		srcobject->type = OBJT_DEFAULT;
729 	}
730 	crit_exit();
731 }
732 
733 /*
734  * SWAP_PAGER_HASPAGE() -	determine if we have good backing store for
735  *				the requested page.
736  *
737  *	We determine whether good backing store exists for the requested
738  *	page and return TRUE if it does, FALSE if it doesn't.
739  *
740  *	If TRUE, we also try to determine how much valid, contiguous backing
741  *	store exists before and after the requested page within a reasonable
742  *	distance.  We do not try to restrict it to the swap device stripe
743  *	(that is handled in getpages/putpages).  It probably isn't worth
744  *	doing here.
745  */
746 
747 boolean_t
748 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before,
749     int *after)
750 {
751 	daddr_t blk0;
752 
753 	/*
754 	 * do we have good backing store at the requested index ?
755 	 */
756 
757 	crit_enter();
758 	blk0 = swp_pager_meta_ctl(object, pindex, 0);
759 
760 	if (blk0 == SWAPBLK_NONE) {
761 		crit_exit();
762 		if (before)
763 			*before = 0;
764 		if (after)
765 			*after = 0;
766 		return (FALSE);
767 	}
768 
769 	/*
770 	 * find backwards-looking contiguous good backing store
771 	 */
772 
773 	if (before != NULL) {
774 		int i;
775 
776 		for (i = 1; i < (SWB_NPAGES/2); ++i) {
777 			daddr_t blk;
778 
779 			if (i > pindex)
780 				break;
781 			blk = swp_pager_meta_ctl(object, pindex - i, 0);
782 			if (blk != blk0 - i)
783 				break;
784 		}
785 		*before = (i - 1);
786 	}
787 
788 	/*
789 	 * find forward-looking contiguous good backing store
790 	 */
791 
792 	if (after != NULL) {
793 		int i;
794 
795 		for (i = 1; i < (SWB_NPAGES/2); ++i) {
796 			daddr_t blk;
797 
798 			blk = swp_pager_meta_ctl(object, pindex + i, 0);
799 			if (blk != blk0 + i)
800 				break;
801 		}
802 		*after = (i - 1);
803 	}
804 	crit_exit();
805 	return (TRUE);
806 }
807 
808 /*
809  * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
810  *
811  *	This removes any associated swap backing store, whether valid or
812  *	not, from the page.
813  *
814  *	This routine is typically called when a page is made dirty, at
815  *	which point any associated swap can be freed.  MADV_FREE also
816  *	calls us in a special-case situation
817  *
818  *	NOTE!!!  If the page is clean and the swap was valid, the caller
819  *	should make the page dirty before calling this routine.  This routine
820  *	does NOT change the m->dirty status of the page.  Also: MADV_FREE
821  *	depends on it.
822  *
823  *	This routine may not block
824  *	This routine must be called at splvm()
825  */
826 
827 static void
828 swap_pager_unswapped(vm_page_t m)
829 {
830 	swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE);
831 }
832 
833 /*
834  * SWAP_PAGER_STRATEGY() - read, write, free blocks
835  *
836  *	This implements the vm_pager_strategy() interface to swap and allows
837  *	other parts of the system to directly access swap as backing store
838  *	through vm_objects of type OBJT_SWAP.  This is intended to be a
839  *	cacheless interface ( i.e. caching occurs at higher levels ).
840  *	Therefore we do not maintain any resident pages.  All I/O goes
841  *	directly to and from the swap device.
842  *
843  *	Note that bio_blkno is scaled for PAGE_SIZE
844  *
845  *	We currently attempt to run I/O synchronously or asynchronously as
846  *	the caller requests.  This isn't perfect because we loose error
847  *	sequencing when we run multiple ops in parallel to satisfy a request.
848  *	But this is swap, so we let it all hang out.
849  */
850 
851 static void
852 swap_pager_strategy(vm_object_t object, struct bio *bio)
853 {
854 	struct buf *bp = bio->bio_buf;
855 	struct bio *nbio;
856 	vm_pindex_t start;
857 	int count;
858 	char *data;
859 	struct bio *biox = NULL;
860 	struct buf *bufx = NULL;
861 	struct bio_track *track;
862 
863 	/*
864 	 * tracking for swapdev vnode I/Os
865 	 */
866 	if (bp->b_flags & B_READ)
867 		track = &swapdev_vp->v_track_read;
868 	else
869 		track = &swapdev_vp->v_track_write;
870 
871 	if (bp->b_bcount & PAGE_MASK) {
872 		bp->b_error = EINVAL;
873 		bp->b_flags |= B_ERROR | B_INVAL;
874 		biodone(bio);
875 		printf("swap_pager_strategy: bp %p b_vp %p blk %d size %d, not page bounded\n", bp, bp->b_vp, (int)bio->bio_blkno, (int)bp->b_bcount);
876 		return;
877 	}
878 
879 	/*
880 	 * Clear error indication, initialize page index, count, data pointer.
881 	 */
882 	bp->b_error = 0;
883 	bp->b_flags &= ~B_ERROR;
884 	bp->b_resid = bp->b_bcount;
885 
886 	start = bio->bio_blkno;
887 	count = howmany(bp->b_bcount, PAGE_SIZE);
888 	data = bp->b_data;
889 
890 	crit_enter();
891 
892 	/*
893 	 * Deal with B_FREEBUF
894 	 */
895 	if (bp->b_flags & B_FREEBUF) {
896 		/*
897 		 * FREE PAGE(s) - destroy underlying swap that is no longer
898 		 *		  needed.
899 		 */
900 		swp_pager_meta_free(object, start, count);
901 		crit_exit();
902 		bp->b_resid = 0;
903 		biodone(bio);
904 		return;
905 	}
906 
907 	/*
908 	 * We need to be able to create a new cluster of I/O's.  We cannot
909 	 * use the caller fields of the passed bio so push a new one.
910 	 *
911 	 * Because nbio is just a placeholder for the cluster links,
912 	 * we can biodone() the original bio instead of nbio to make
913 	 * things a bit more efficient.
914 	 */
915 	nbio = push_bio(bio);
916 	nbio->bio_blkno = bio->bio_blkno;
917 	nbio->bio_caller_info1.cluster_head = NULL;
918 	nbio->bio_caller_info2.cluster_tail = NULL;
919 
920 	/*
921 	 * Execute read or write
922 	 */
923 
924 	while (count > 0) {
925 		daddr_t blk;
926 
927 		/*
928 		 * Obtain block.  If block not found and writing, allocate a
929 		 * new block and build it into the object.
930 		 */
931 
932 		blk = swp_pager_meta_ctl(object, start, 0);
933 		if ((blk == SWAPBLK_NONE) && (bp->b_flags & B_READ) == 0) {
934 			blk = swp_pager_getswapspace(1);
935 			if (blk == SWAPBLK_NONE) {
936 				bp->b_error = ENOMEM;
937 				bp->b_flags |= B_ERROR;
938 				break;
939 			}
940 			swp_pager_meta_build(object, start, blk);
941 		}
942 
943 		/*
944 		 * Do we have to flush our current collection?  Yes if:
945 		 *
946 		 *	- no swap block at this index
947 		 *	- swap block is not contiguous
948 		 *	- we cross a physical disk boundry in the
949 		 *	  stripe.
950 		 */
951 
952 		if (
953 		    biox && (biox->bio_blkno + btoc(bufx->b_bcount) != blk ||
954 		     ((biox->bio_blkno ^ blk) & dmmax_mask)
955 		    )
956 		) {
957 			crit_exit();
958 			if (bp->b_flags & B_READ) {
959 				++mycpu->gd_cnt.v_swapin;
960 				mycpu->gd_cnt.v_swappgsin += btoc(bufx->b_bcount);
961 			} else {
962 				++mycpu->gd_cnt.v_swapout;
963 				mycpu->gd_cnt.v_swappgsout += btoc(bufx->b_bcount);
964 				bufx->b_dirtyend = bufx->b_bcount;
965 			}
966 
967 			/*
968 			 * Flush the biox to the swap device.
969 			 */
970 			if (bufx->b_bcount) {
971 				bufx->b_bufsize = bufx->b_bcount;
972 				if ((bufx->b_flags & B_READ) == 0)
973 					bufx->b_dirtyend = bufx->b_bcount;
974 				BUF_KERNPROC(bufx);
975 				vn_strategy(bufx->b_vp, biox);
976 			} else {
977 				biodone(biox);
978 			}
979 			crit_enter();
980 			biox = NULL;
981 			bufx = NULL;
982 		}
983 
984 		/*
985 		 * Add new swapblk to biox, instantiating biox if necessary.
986 		 * Zero-fill reads are able to take a shortcut.
987 		 */
988 		if (blk == SWAPBLK_NONE) {
989 			/*
990 			 * We can only get here if we are reading.  Since
991 			 * we are at splvm() we can safely modify b_resid,
992 			 * even if chain ops are in progress.
993 			 */
994 			bzero(data, PAGE_SIZE);
995 			bp->b_resid -= PAGE_SIZE;
996 		} else {
997 			if (biox == NULL) {
998 				/* XXX chain count > 4, wait to <= 4 */
999 
1000 				bufx = getpbuf(NULL);
1001 				biox = &bufx->b_bio1;
1002 				cluster_append(nbio, bufx);
1003 				bufx->b_flags = (bufx->b_flags & B_ORDERED) |
1004 						(bp->b_flags & B_READ) |
1005 						B_ASYNC;
1006 				pbgetvp(swapdev_vp, bufx);
1007 				biox->bio_done = swap_chain_iodone;
1008 				biox->bio_blkno = blk;
1009 				biox->bio_caller_info1.cluster_parent = nbio;
1010 				bufx->b_bcount = 0;
1011 				bufx->b_data = data;
1012 			}
1013 			bufx->b_bcount += PAGE_SIZE;
1014 		}
1015 		--count;
1016 		++start;
1017 		data += PAGE_SIZE;
1018 	}
1019 
1020 	/*
1021 	 *  Flush out last buffer
1022 	 */
1023 	crit_exit();
1024 
1025 	if (biox) {
1026 		if ((bp->b_flags & B_ASYNC) == 0)
1027 			bufx->b_flags &= ~B_ASYNC;
1028 		if (bufx->b_flags & B_READ) {
1029 			++mycpu->gd_cnt.v_swapin;
1030 			mycpu->gd_cnt.v_swappgsin += btoc(bufx->b_bcount);
1031 		} else {
1032 			++mycpu->gd_cnt.v_swapout;
1033 			mycpu->gd_cnt.v_swappgsout += btoc(bufx->b_bcount);
1034 			bufx->b_dirtyend = bufx->b_bcount;
1035 		}
1036 		if (bufx->b_bcount) {
1037 			bufx->b_bufsize = bufx->b_bcount;
1038 			if ((bufx->b_flags & B_READ) == 0)
1039 				bufx->b_dirtyend = bufx->b_bcount;
1040 			BUF_KERNPROC(bufx);
1041 			vn_strategy(bufx->b_vp, biox);
1042 		} else {
1043 			biodone(biox);
1044 		}
1045 		/* biox, bufx = NULL */
1046 	}
1047 
1048 	/*
1049 	 * Wait for completion.
1050 	 */
1051 	if (bp->b_flags & B_ASYNC) {
1052 		crit_enter();
1053 		if (nbio->bio_caller_info1.cluster_head == NULL) {
1054 			biodone(bio);
1055 		} else {
1056 			bp->b_xflags |= BX_AUTOCHAINDONE;
1057 		}
1058 		crit_exit();
1059 	} else {
1060 		crit_enter();
1061 		while (nbio->bio_caller_info1.cluster_head != NULL) {
1062 			bp->b_flags |= B_WANT;
1063 			tsleep(bp, 0, "bpchain", 0);
1064 		}
1065 		if (bp->b_resid != 0 && !(bp->b_flags & B_ERROR)) {
1066 			bp->b_flags |= B_ERROR;
1067 			bp->b_error = EINVAL;
1068 		}
1069 		biodone(bio);
1070 		crit_exit();
1071 	}
1072 }
1073 
1074 static void
1075 swap_chain_iodone(struct bio *biox)
1076 {
1077 	struct buf **nextp;
1078 	struct buf *bufx;	/* chained sub-buffer */
1079 	struct bio *nbio;	/* parent nbio with chain glue */
1080 	struct buf *bp;		/* original bp associated with nbio */
1081 
1082 	bufx = biox->bio_buf;
1083 	nbio = biox->bio_caller_info1.cluster_parent;
1084 	bp = nbio->bio_buf;
1085 
1086 	/*
1087 	 * Update the original buffer
1088 	 */
1089         KKASSERT(bp != NULL);
1090 	if (bufx->b_flags & B_ERROR) {
1091 		bp->b_flags |= B_ERROR;
1092 		bp->b_error = bufx->b_error;
1093 	} else if (bufx->b_resid != 0) {
1094 		bp->b_flags |= B_ERROR;
1095 		bp->b_error = EINVAL;
1096 	} else {
1097 		bp->b_resid -= bufx->b_bcount;
1098 	}
1099 
1100 	/*
1101 	 * Remove us from the chain.  It is sufficient to clean up
1102 	 * cluster_head.  We do not have to clean up cluster_tail.
1103 	 */
1104 	nextp = &nbio->bio_caller_info1.cluster_head;
1105 	while (*nextp != bufx) {
1106 		KKASSERT(*nextp != NULL);
1107 		nextp = &(*nextp)->b_cluster_next;
1108 	}
1109 	*nextp = bufx->b_cluster_next;
1110 	if (bp->b_flags & B_WANT) {
1111 		bp->b_flags &= ~B_WANT;
1112 		wakeup(bp);
1113 	}
1114 
1115 	/*
1116 	 * Clean up bufx.  If this was the last buffer in the chain
1117 	 * and BX_AUTOCHAINDONE was set, finish off the original I/O
1118 	 * as well.
1119 	 *
1120 	 * nbio was just a fake BIO layer to hold the cluster links,
1121 	 * we can issue the biodone() on the layer above it.
1122 	 */
1123 	if (nbio->bio_caller_info1.cluster_head == NULL &&
1124 	    (bp->b_xflags & BX_AUTOCHAINDONE)) {
1125 		bp->b_xflags &= ~BX_AUTOCHAINDONE;
1126 		if (bp->b_resid != 0 && !(bp->b_flags & B_ERROR)) {
1127 			bp->b_flags |= B_ERROR;
1128 			bp->b_error = EINVAL;
1129 		}
1130 		biodone(nbio->bio_prev);
1131         }
1132         bufx->b_flags |= B_DONE;
1133         bufx->b_flags &= ~B_ASYNC;
1134         relpbuf(bufx, NULL);
1135 }
1136 
1137 /*
1138  * SWAP_PAGER_GETPAGES() - bring pages in from swap
1139  *
1140  *	Attempt to retrieve (m, count) pages from backing store, but make
1141  *	sure we retrieve at least m[reqpage].  We try to load in as large
1142  *	a chunk surrounding m[reqpage] as is contiguous in swap and which
1143  *	belongs to the same object.
1144  *
1145  *	The code is designed for asynchronous operation and
1146  *	immediate-notification of 'reqpage' but tends not to be
1147  *	used that way.  Please do not optimize-out this algorithmic
1148  *	feature, I intend to improve on it in the future.
1149  *
1150  *	The parent has a single vm_object_pip_add() reference prior to
1151  *	calling us and we should return with the same.
1152  *
1153  *	The parent has BUSY'd the pages.  We should return with 'm'
1154  *	left busy, but the others adjusted.
1155  */
1156 
1157 static int
1158 swap_pager_getpages(vm_object_t object, vm_page_t *m, int count, int reqpage)
1159 {
1160 	struct buf *bp;
1161 	struct bio *bio;
1162 	vm_page_t mreq;
1163 	int i;
1164 	int j;
1165 	daddr_t blk;
1166 	vm_offset_t kva;
1167 	vm_pindex_t lastpindex;
1168 
1169 	mreq = m[reqpage];
1170 
1171 	if (mreq->object != object) {
1172 		panic("swap_pager_getpages: object mismatch %p/%p",
1173 		    object,
1174 		    mreq->object
1175 		);
1176 	}
1177 	/*
1178 	 * Calculate range to retrieve.  The pages have already been assigned
1179 	 * their swapblks.  We require a *contiguous* range that falls entirely
1180 	 * within a single device stripe.   If we do not supply it, bad things
1181 	 * happen.  Note that blk, iblk & jblk can be SWAPBLK_NONE, but the
1182 	 * loops are set up such that the case(s) are handled implicitly.
1183 	 *
1184 	 * The swp_*() calls must be made at splvm().  vm_page_free() does
1185 	 * not need to be, but it will go a little faster if it is.
1186 	 */
1187 
1188 	crit_enter();
1189 	blk = swp_pager_meta_ctl(mreq->object, mreq->pindex, 0);
1190 
1191 	for (i = reqpage - 1; i >= 0; --i) {
1192 		daddr_t iblk;
1193 
1194 		iblk = swp_pager_meta_ctl(m[i]->object, m[i]->pindex, 0);
1195 		if (blk != iblk + (reqpage - i))
1196 			break;
1197 		if ((blk ^ iblk) & dmmax_mask)
1198 			break;
1199 	}
1200 	++i;
1201 
1202 	for (j = reqpage + 1; j < count; ++j) {
1203 		daddr_t jblk;
1204 
1205 		jblk = swp_pager_meta_ctl(m[j]->object, m[j]->pindex, 0);
1206 		if (blk != jblk - (j - reqpage))
1207 			break;
1208 		if ((blk ^ jblk) & dmmax_mask)
1209 			break;
1210 	}
1211 
1212 	/*
1213 	 * free pages outside our collection range.   Note: we never free
1214 	 * mreq, it must remain busy throughout.
1215 	 */
1216 
1217 	{
1218 		int k;
1219 
1220 		for (k = 0; k < i; ++k)
1221 			vm_page_free(m[k]);
1222 		for (k = j; k < count; ++k)
1223 			vm_page_free(m[k]);
1224 	}
1225 	crit_exit();
1226 
1227 
1228 	/*
1229 	 * Return VM_PAGER_FAIL if we have nothing to do.  Return mreq
1230 	 * still busy, but the others unbusied.
1231 	 */
1232 
1233 	if (blk == SWAPBLK_NONE)
1234 		return(VM_PAGER_FAIL);
1235 
1236 	/*
1237 	 * Get a swap buffer header to perform the IO
1238 	 */
1239 
1240 	bp = getpbuf(&nsw_rcount);
1241 	bio = &bp->b_bio1;
1242 	kva = (vm_offset_t) bp->b_data;
1243 
1244 	/*
1245 	 * map our page(s) into kva for input
1246 	 *
1247 	 * NOTE: B_PAGING is set by pbgetvp()
1248 	 */
1249 
1250 	pmap_qenter(kva, m + i, j - i);
1251 
1252 	bp->b_flags = B_READ;
1253 	bp->b_data = (caddr_t) kva;
1254 	bp->b_bcount = PAGE_SIZE * (j - i);
1255 	bp->b_bufsize = PAGE_SIZE * (j - i);
1256 	bio->bio_done = swp_pager_async_iodone;
1257 	bio->bio_blkno = blk - (reqpage - i);
1258 	bio->bio_driver_info = (void *)(reqpage - i);
1259 
1260 	{
1261 		int k;
1262 
1263 		for (k = i; k < j; ++k) {
1264 			bp->b_xio.xio_pages[k - i] = m[k];
1265 			vm_page_flag_set(m[k], PG_SWAPINPROG);
1266 		}
1267 	}
1268 	bp->b_xio.xio_npages = j - i;
1269 
1270 	pbgetvp(swapdev_vp, bp);
1271 
1272 	mycpu->gd_cnt.v_swapin++;
1273 	mycpu->gd_cnt.v_swappgsin += bp->b_xio.xio_npages;
1274 
1275 	/*
1276 	 * We still hold the lock on mreq, and our automatic completion routine
1277 	 * does not remove it.
1278 	 */
1279 
1280 	vm_object_pip_add(mreq->object, bp->b_xio.xio_npages);
1281 	lastpindex = m[j-1]->pindex;
1282 
1283 	/*
1284 	 * perform the I/O.  NOTE!!!  bp cannot be considered valid after
1285 	 * this point because we automatically release it on completion.
1286 	 * Instead, we look at the one page we are interested in which we
1287 	 * still hold a lock on even through the I/O completion.
1288 	 *
1289 	 * The other pages in our m[] array are also released on completion,
1290 	 * so we cannot assume they are valid anymore either.
1291 	 *
1292 	 * NOTE: bio_blkno may be destroyed by the call to vn_strategy()
1293 	 * XXX should not be, any more.
1294 	 */
1295 
1296 	BUF_KERNPROC(bp);
1297 	vn_strategy(swapdev_vp, bio);
1298 
1299 	/*
1300 	 * wait for the page we want to complete.  PG_SWAPINPROG is always
1301 	 * cleared on completion.  If an I/O error occurs, SWAPBLK_NONE
1302 	 * is set in the meta-data.
1303 	 */
1304 
1305 	crit_enter();
1306 
1307 	while ((mreq->flags & PG_SWAPINPROG) != 0) {
1308 		vm_page_flag_set(mreq, PG_WANTED | PG_REFERENCED);
1309 		mycpu->gd_cnt.v_intrans++;
1310 		if (tsleep(mreq, 0, "swread", hz*20)) {
1311 			printf(
1312 			    "swap_pager: indefinite wait buffer: "
1313 				" blkno: %ld, size: %ld\n",
1314 			    (long)bio->bio_blkno, bp->b_bcount
1315 			);
1316 		}
1317 	}
1318 
1319 	crit_exit();
1320 
1321 	/*
1322 	 * mreq is left bussied after completion, but all the other pages
1323 	 * are freed.  If we had an unrecoverable read error the page will
1324 	 * not be valid.
1325 	 */
1326 
1327 	if (mreq->valid != VM_PAGE_BITS_ALL) {
1328 		return(VM_PAGER_ERROR);
1329 	} else {
1330 		return(VM_PAGER_OK);
1331 	}
1332 
1333 	/*
1334 	 * A final note: in a low swap situation, we cannot deallocate swap
1335 	 * and mark a page dirty here because the caller is likely to mark
1336 	 * the page clean when we return, causing the page to possibly revert
1337 	 * to all-zero's later.
1338 	 */
1339 }
1340 
1341 /*
1342  *	swap_pager_putpages:
1343  *
1344  *	Assign swap (if necessary) and initiate I/O on the specified pages.
1345  *
1346  *	We support both OBJT_DEFAULT and OBJT_SWAP objects.  DEFAULT objects
1347  *	are automatically converted to SWAP objects.
1348  *
1349  *	In a low memory situation we may block in vn_strategy(), but the new
1350  *	vm_page reservation system coupled with properly written VFS devices
1351  *	should ensure that no low-memory deadlock occurs.  This is an area
1352  *	which needs work.
1353  *
1354  *	The parent has N vm_object_pip_add() references prior to
1355  *	calling us and will remove references for rtvals[] that are
1356  *	not set to VM_PAGER_PEND.  We need to remove the rest on I/O
1357  *	completion.
1358  *
1359  *	The parent has soft-busy'd the pages it passes us and will unbusy
1360  *	those whos rtvals[] entry is not set to VM_PAGER_PEND on return.
1361  *	We need to unbusy the rest on I/O completion.
1362  */
1363 
1364 void
1365 swap_pager_putpages(vm_object_t object, vm_page_t *m, int count, boolean_t sync,
1366     int *rtvals)
1367 {
1368 	int i;
1369 	int n = 0;
1370 
1371 	if (count && m[0]->object != object) {
1372 		panic("swap_pager_getpages: object mismatch %p/%p",
1373 		    object,
1374 		    m[0]->object
1375 		);
1376 	}
1377 	/*
1378 	 * Step 1
1379 	 *
1380 	 * Turn object into OBJT_SWAP
1381 	 * check for bogus sysops
1382 	 * force sync if not pageout process
1383 	 */
1384 
1385 	if (object->type != OBJT_SWAP)
1386 		swp_pager_meta_build(object, 0, SWAPBLK_NONE);
1387 
1388 	if (curthread != pagethread)
1389 		sync = TRUE;
1390 
1391 	/*
1392 	 * Step 2
1393 	 *
1394 	 * Update nsw parameters from swap_async_max sysctl values.
1395 	 * Do not let the sysop crash the machine with bogus numbers.
1396 	 */
1397 
1398 	if (swap_async_max != nsw_wcount_async_max) {
1399 		int n;
1400 
1401 		/*
1402 		 * limit range
1403 		 */
1404 		if ((n = swap_async_max) > nswbuf / 2)
1405 			n = nswbuf / 2;
1406 		if (n < 1)
1407 			n = 1;
1408 		swap_async_max = n;
1409 
1410 		/*
1411 		 * Adjust difference ( if possible ).  If the current async
1412 		 * count is too low, we may not be able to make the adjustment
1413 		 * at this time.
1414 		 */
1415 		crit_enter();
1416 		n -= nsw_wcount_async_max;
1417 		if (nsw_wcount_async + n >= 0) {
1418 			nsw_wcount_async += n;
1419 			nsw_wcount_async_max += n;
1420 			wakeup(&nsw_wcount_async);
1421 		}
1422 		crit_exit();
1423 	}
1424 
1425 	/*
1426 	 * Step 3
1427 	 *
1428 	 * Assign swap blocks and issue I/O.  We reallocate swap on the fly.
1429 	 * The page is left dirty until the pageout operation completes
1430 	 * successfully.
1431 	 */
1432 
1433 	for (i = 0; i < count; i += n) {
1434 		struct buf *bp;
1435 		struct bio *bio;
1436 		daddr_t blk;
1437 		int j;
1438 
1439 		/*
1440 		 * Maximum I/O size is limited by a number of factors.
1441 		 */
1442 
1443 		n = min(BLIST_MAX_ALLOC, count - i);
1444 		n = min(n, nsw_cluster_max);
1445 
1446 		crit_enter();
1447 
1448 		/*
1449 		 * Get biggest block of swap we can.  If we fail, fall
1450 		 * back and try to allocate a smaller block.  Don't go
1451 		 * overboard trying to allocate space if it would overly
1452 		 * fragment swap.
1453 		 */
1454 		while (
1455 		    (blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE &&
1456 		    n > 4
1457 		) {
1458 			n >>= 1;
1459 		}
1460 		if (blk == SWAPBLK_NONE) {
1461 			for (j = 0; j < n; ++j)
1462 				rtvals[i+j] = VM_PAGER_FAIL;
1463 			crit_exit();
1464 			continue;
1465 		}
1466 
1467 		/*
1468 		 * The I/O we are constructing cannot cross a physical
1469 		 * disk boundry in the swap stripe.  Note: we are still
1470 		 * at splvm().
1471 		 */
1472 		if ((blk ^ (blk + n)) & dmmax_mask) {
1473 			j = ((blk + dmmax) & dmmax_mask) - blk;
1474 			swp_pager_freeswapspace(blk + j, n - j);
1475 			n = j;
1476 		}
1477 
1478 		/*
1479 		 * All I/O parameters have been satisfied, build the I/O
1480 		 * request and assign the swap space.
1481 		 *
1482 		 * NOTE: B_PAGING is set by pbgetvp()
1483 		 */
1484 
1485 		if (sync == TRUE) {
1486 			bp = getpbuf(&nsw_wcount_sync);
1487 		} else {
1488 			bp = getpbuf(&nsw_wcount_async);
1489 			bp->b_flags = B_ASYNC;
1490 		}
1491 		bio = &bp->b_bio1;
1492 
1493 		pmap_qenter((vm_offset_t)bp->b_data, &m[i], n);
1494 
1495 		bp->b_bcount = PAGE_SIZE * n;
1496 		bp->b_bufsize = PAGE_SIZE * n;
1497 		bio->bio_blkno = blk;
1498 
1499 		pbgetvp(swapdev_vp, bp);
1500 
1501 		for (j = 0; j < n; ++j) {
1502 			vm_page_t mreq = m[i+j];
1503 
1504 			swp_pager_meta_build(
1505 			    mreq->object,
1506 			    mreq->pindex,
1507 			    blk + j
1508 			);
1509 			vm_page_dirty(mreq);
1510 			rtvals[i+j] = VM_PAGER_OK;
1511 
1512 			vm_page_flag_set(mreq, PG_SWAPINPROG);
1513 			bp->b_xio.xio_pages[j] = mreq;
1514 		}
1515 		bp->b_xio.xio_npages = n;
1516 		/*
1517 		 * Must set dirty range for NFS to work.
1518 		 */
1519 		bp->b_dirtyoff = 0;
1520 		bp->b_dirtyend = bp->b_bcount;
1521 
1522 		mycpu->gd_cnt.v_swapout++;
1523 		mycpu->gd_cnt.v_swappgsout += bp->b_xio.xio_npages;
1524 
1525 		crit_exit();
1526 
1527 		/*
1528 		 * asynchronous
1529 		 *
1530 		 * NOTE: bio_blkno is destroyed by the call to vn_strategy()
1531 		 * XXX it should not be destroyed any more
1532 		 */
1533 
1534 		if (sync == FALSE) {
1535 			bio->bio_done = swp_pager_async_iodone;
1536 			BUF_KERNPROC(bp);
1537 			vn_strategy(swapdev_vp, bio);
1538 
1539 			for (j = 0; j < n; ++j)
1540 				rtvals[i+j] = VM_PAGER_PEND;
1541 			continue;
1542 		}
1543 
1544 		/*
1545 		 * synchronous
1546 		 *
1547 		 * NOTE: bio_blkno is destroyed by the call to vn_strategy()
1548 		 * XXX it should not be destroyed any more
1549 		 */
1550 
1551 		bio->bio_done = swp_pager_sync_iodone;
1552 		vn_strategy(swapdev_vp, bio);
1553 
1554 		/*
1555 		 * Wait for the sync I/O to complete, then update rtvals.
1556 		 * We just set the rtvals[] to VM_PAGER_PEND so we can call
1557 		 * our async completion routine at the end, thus avoiding a
1558 		 * double-free.
1559 		 */
1560 		crit_enter();
1561 
1562 		while ((bp->b_flags & B_DONE) == 0) {
1563 			tsleep(bp, 0, "swwrt", 0);
1564 		}
1565 
1566 		for (j = 0; j < n; ++j)
1567 			rtvals[i+j] = VM_PAGER_PEND;
1568 
1569 		/*
1570 		 * Now that we are through with the bp, we can call the
1571 		 * normal async completion, which frees everything up.
1572 		 */
1573 
1574 		swp_pager_async_iodone(bio);
1575 
1576 		crit_exit();
1577 	}
1578 }
1579 
1580 /*
1581  *	swap_pager_sync_iodone:
1582  *
1583  *	Completion routine for synchronous reads and writes from/to swap.
1584  *	We just mark the bp is complete and wake up anyone waiting on it.
1585  *
1586  *	This routine may not block.  This routine is called at splbio() or better.
1587  */
1588 
1589 static void
1590 swp_pager_sync_iodone(struct bio *bio)
1591 {
1592 	struct buf *bp = bio->bio_buf;
1593 
1594 	bp->b_flags |= B_DONE;
1595 	bp->b_flags &= ~B_ASYNC;
1596 	wakeup(bp);
1597 }
1598 
1599 /*
1600  *	swp_pager_async_iodone:
1601  *
1602  *	Completion routine for asynchronous reads and writes from/to swap.
1603  *	Also called manually by synchronous code to finish up a bp.
1604  *
1605  *	For READ operations, the pages are PG_BUSY'd.  For WRITE operations,
1606  *	the pages are vm_page_t->busy'd.  For READ operations, we PG_BUSY
1607  *	unbusy all pages except the 'main' request page.  For WRITE
1608  *	operations, we vm_page_t->busy'd unbusy all pages ( we can do this
1609  *	because we marked them all VM_PAGER_PEND on return from putpages ).
1610  *
1611  *	This routine may not block.
1612  */
1613 
1614 static void
1615 swp_pager_async_iodone(struct bio *bio)
1616 {
1617 	struct buf *bp = bio->bio_buf;
1618 	vm_object_t object = NULL;
1619 	int i;
1620 
1621 	bp->b_flags |= B_DONE;
1622 
1623 	/*
1624 	 * report error
1625 	 */
1626 
1627 	if (bp->b_flags & B_ERROR) {
1628 		printf(
1629 		    "swap_pager: I/O error - %s failed; blkno %ld,"
1630 			"size %ld, error %d\n",
1631 		    ((bp->b_flags & B_READ) ? "pagein" : "pageout"),
1632 		    (long)bio->bio_blkno,
1633 		    (long)bp->b_bcount,
1634 		    bp->b_error
1635 		);
1636 	}
1637 
1638 	/*
1639 	 * set object, raise to splvm().
1640 	 */
1641 
1642 	if (bp->b_xio.xio_npages)
1643 		object = bp->b_xio.xio_pages[0]->object;
1644 	crit_enter();
1645 
1646 	/*
1647 	 * remove the mapping for kernel virtual
1648 	 */
1649 
1650 	pmap_qremove((vm_offset_t)bp->b_data, bp->b_xio.xio_npages);
1651 
1652 	/*
1653 	 * cleanup pages.  If an error occurs writing to swap, we are in
1654 	 * very serious trouble.  If it happens to be a disk error, though,
1655 	 * we may be able to recover by reassigning the swap later on.  So
1656 	 * in this case we remove the m->swapblk assignment for the page
1657 	 * but do not free it in the rlist.  The errornous block(s) are thus
1658 	 * never reallocated as swap.  Redirty the page and continue.
1659 	 */
1660 
1661 	for (i = 0; i < bp->b_xio.xio_npages; ++i) {
1662 		vm_page_t m = bp->b_xio.xio_pages[i];
1663 
1664 		vm_page_flag_clear(m, PG_SWAPINPROG);
1665 
1666 		if (bp->b_flags & B_ERROR) {
1667 			/*
1668 			 * If an error occurs I'd love to throw the swapblk
1669 			 * away without freeing it back to swapspace, so it
1670 			 * can never be used again.  But I can't from an
1671 			 * interrupt.
1672 			 */
1673 
1674 			if (bp->b_flags & B_READ) {
1675 				/*
1676 				 * When reading, reqpage needs to stay
1677 				 * locked for the parent, but all other
1678 				 * pages can be freed.  We still want to
1679 				 * wakeup the parent waiting on the page,
1680 				 * though.  ( also: pg_reqpage can be -1 and
1681 				 * not match anything ).
1682 				 *
1683 				 * We have to wake specifically requested pages
1684 				 * up too because we cleared PG_SWAPINPROG and
1685 				 * someone may be waiting for that.
1686 				 *
1687 				 * NOTE: for reads, m->dirty will probably
1688 				 * be overridden by the original caller of
1689 				 * getpages so don't play cute tricks here.
1690 				 *
1691 				 * XXX IT IS NOT LEGAL TO FREE THE PAGE HERE
1692 				 * AS THIS MESSES WITH object->memq, and it is
1693 				 * not legal to mess with object->memq from an
1694 				 * interrupt.
1695 				 */
1696 
1697 				m->valid = 0;
1698 				vm_page_flag_clear(m, PG_ZERO);
1699 
1700 				/*
1701 				 * bio_driver_info holds the requested page
1702 				 * index.
1703 				 */
1704 				if (i != (int)bio->bio_driver_info)
1705 					vm_page_free(m);
1706 				else
1707 					vm_page_flash(m);
1708 				/*
1709 				 * If i == bp->b_pager.pg_reqpage, do not wake
1710 				 * the page up.  The caller needs to.
1711 				 */
1712 			} else {
1713 				/*
1714 				 * If a write error occurs, reactivate page
1715 				 * so it doesn't clog the inactive list,
1716 				 * then finish the I/O.
1717 				 */
1718 				vm_page_dirty(m);
1719 				vm_page_activate(m);
1720 				vm_page_io_finish(m);
1721 			}
1722 		} else if (bp->b_flags & B_READ) {
1723 			/*
1724 			 * For read success, clear dirty bits.  Nobody should
1725 			 * have this page mapped but don't take any chances,
1726 			 * make sure the pmap modify bits are also cleared.
1727 			 *
1728 			 * NOTE: for reads, m->dirty will probably be
1729 			 * overridden by the original caller of getpages so
1730 			 * we cannot set them in order to free the underlying
1731 			 * swap in a low-swap situation.  I don't think we'd
1732 			 * want to do that anyway, but it was an optimization
1733 			 * that existed in the old swapper for a time before
1734 			 * it got ripped out due to precisely this problem.
1735 			 *
1736 			 * clear PG_ZERO in page.
1737 			 *
1738 			 * If not the requested page then deactivate it.
1739 			 *
1740 			 * Note that the requested page, reqpage, is left
1741 			 * busied, but we still have to wake it up.  The
1742 			 * other pages are released (unbusied) by
1743 			 * vm_page_wakeup().  We do not set reqpage's
1744 			 * valid bits here, it is up to the caller.
1745 			 */
1746 
1747 			pmap_clear_modify(m);
1748 			m->valid = VM_PAGE_BITS_ALL;
1749 			vm_page_undirty(m);
1750 			vm_page_flag_clear(m, PG_ZERO);
1751 
1752 			/*
1753 			 * We have to wake specifically requested pages
1754 			 * up too because we cleared PG_SWAPINPROG and
1755 			 * could be waiting for it in getpages.  However,
1756 			 * be sure to not unbusy getpages specifically
1757 			 * requested page - getpages expects it to be
1758 			 * left busy.
1759 			 *
1760 			 * bio_driver_info holds the requested page
1761 			 */
1762 			if (i != (int)bio->bio_driver_info) {
1763 				vm_page_deactivate(m);
1764 				vm_page_wakeup(m);
1765 			} else {
1766 				vm_page_flash(m);
1767 			}
1768 		} else {
1769 			/*
1770 			 * For write success, clear the modify and dirty
1771 			 * status, then finish the I/O ( which decrements the
1772 			 * busy count and possibly wakes waiter's up ).
1773 			 */
1774 			pmap_clear_modify(m);
1775 			vm_page_undirty(m);
1776 			vm_page_io_finish(m);
1777 			if (!vm_page_count_severe() || !vm_page_try_to_cache(m))
1778 				vm_page_protect(m, VM_PROT_READ);
1779 		}
1780 	}
1781 
1782 	/*
1783 	 * adjust pip.  NOTE: the original parent may still have its own
1784 	 * pip refs on the object.
1785 	 */
1786 
1787 	if (object)
1788 		vm_object_pip_wakeupn(object, bp->b_xio.xio_npages);
1789 
1790 	/*
1791 	 * release the physical I/O buffer
1792 	 */
1793 
1794 	relpbuf(
1795 	    bp,
1796 	    ((bp->b_flags & B_READ) ? &nsw_rcount :
1797 		((bp->b_flags & B_ASYNC) ?
1798 		    &nsw_wcount_async :
1799 		    &nsw_wcount_sync
1800 		)
1801 	    )
1802 	);
1803 	crit_exit();
1804 }
1805 
1806 /************************************************************************
1807  *				SWAP META DATA 				*
1808  ************************************************************************
1809  *
1810  *	These routines manipulate the swap metadata stored in the
1811  *	OBJT_SWAP object.  All swp_*() routines must be called at
1812  *	splvm() because swap can be freed up by the low level vm_page
1813  *	code which might be called from interrupts beyond what splbio() covers.
1814  *
1815  *	Swap metadata is implemented with a global hash and not directly
1816  *	linked into the object.  Instead the object simply contains
1817  *	appropriate tracking counters.
1818  */
1819 
1820 /*
1821  * SWP_PAGER_HASH() -	hash swap meta data
1822  *
1823  *	This is an inline helper function which hashes the swapblk given
1824  *	the object and page index.  It returns a pointer to a pointer
1825  *	to the object, or a pointer to a NULL pointer if it could not
1826  *	find a swapblk.
1827  *
1828  *	This routine must be called at splvm().
1829  */
1830 
1831 static __inline struct swblock **
1832 swp_pager_hash(vm_object_t object, vm_pindex_t index)
1833 {
1834 	struct swblock **pswap;
1835 	struct swblock *swap;
1836 
1837 	index &= ~SWAP_META_MASK;
1838 	pswap = &swhash[(index ^ (int)(intptr_t)object) & swhash_mask];
1839 
1840 	while ((swap = *pswap) != NULL) {
1841 		if (swap->swb_object == object &&
1842 		    swap->swb_index == index
1843 		) {
1844 			break;
1845 		}
1846 		pswap = &swap->swb_hnext;
1847 	}
1848 	return(pswap);
1849 }
1850 
1851 /*
1852  * SWP_PAGER_META_BUILD() -	add swap block to swap meta data for object
1853  *
1854  *	We first convert the object to a swap object if it is a default
1855  *	object.
1856  *
1857  *	The specified swapblk is added to the object's swap metadata.  If
1858  *	the swapblk is not valid, it is freed instead.  Any previously
1859  *	assigned swapblk is freed.
1860  *
1861  *	This routine must be called at splvm(), except when used to convert
1862  *	an OBJT_DEFAULT object into an OBJT_SWAP object.
1863 
1864  */
1865 
1866 static void
1867 swp_pager_meta_build(
1868 	vm_object_t object,
1869 	vm_pindex_t index,
1870 	daddr_t swapblk
1871 ) {
1872 	struct swblock *swap;
1873 	struct swblock **pswap;
1874 
1875 	/*
1876 	 * Convert default object to swap object if necessary
1877 	 */
1878 
1879 	if (object->type != OBJT_SWAP) {
1880 		object->type = OBJT_SWAP;
1881 		object->un_pager.swp.swp_bcount = 0;
1882 
1883 		if (object->handle != NULL) {
1884 			TAILQ_INSERT_TAIL(
1885 			    NOBJLIST(object->handle),
1886 			    object,
1887 			    pager_object_list
1888 			);
1889 		} else {
1890 			TAILQ_INSERT_TAIL(
1891 			    &swap_pager_un_object_list,
1892 			    object,
1893 			    pager_object_list
1894 			);
1895 		}
1896 	}
1897 
1898 	/*
1899 	 * Locate hash entry.  If not found create, but if we aren't adding
1900 	 * anything just return.  If we run out of space in the map we wait
1901 	 * and, since the hash table may have changed, retry.
1902 	 */
1903 
1904 retry:
1905 	pswap = swp_pager_hash(object, index);
1906 
1907 	if ((swap = *pswap) == NULL) {
1908 		int i;
1909 
1910 		if (swapblk == SWAPBLK_NONE)
1911 			return;
1912 
1913 		swap = *pswap = zalloc(swap_zone);
1914 		if (swap == NULL) {
1915 			vm_wait();
1916 			goto retry;
1917 		}
1918 		swap->swb_hnext = NULL;
1919 		swap->swb_object = object;
1920 		swap->swb_index = index & ~SWAP_META_MASK;
1921 		swap->swb_count = 0;
1922 
1923 		++object->un_pager.swp.swp_bcount;
1924 
1925 		for (i = 0; i < SWAP_META_PAGES; ++i)
1926 			swap->swb_pages[i] = SWAPBLK_NONE;
1927 	}
1928 
1929 	/*
1930 	 * Delete prior contents of metadata
1931 	 */
1932 
1933 	index &= SWAP_META_MASK;
1934 
1935 	if (swap->swb_pages[index] != SWAPBLK_NONE) {
1936 		swp_pager_freeswapspace(swap->swb_pages[index], 1);
1937 		--swap->swb_count;
1938 	}
1939 
1940 	/*
1941 	 * Enter block into metadata
1942 	 */
1943 
1944 	swap->swb_pages[index] = swapblk;
1945 	if (swapblk != SWAPBLK_NONE)
1946 		++swap->swb_count;
1947 }
1948 
1949 /*
1950  * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
1951  *
1952  *	The requested range of blocks is freed, with any associated swap
1953  *	returned to the swap bitmap.
1954  *
1955  *	This routine will free swap metadata structures as they are cleaned
1956  *	out.  This routine does *NOT* operate on swap metadata associated
1957  *	with resident pages.
1958  *
1959  *	This routine must be called at splvm()
1960  */
1961 
1962 static void
1963 swp_pager_meta_free(vm_object_t object, vm_pindex_t index, daddr_t count)
1964 {
1965 	if (object->type != OBJT_SWAP)
1966 		return;
1967 
1968 	while (count > 0) {
1969 		struct swblock **pswap;
1970 		struct swblock *swap;
1971 
1972 		pswap = swp_pager_hash(object, index);
1973 
1974 		if ((swap = *pswap) != NULL) {
1975 			daddr_t v = swap->swb_pages[index & SWAP_META_MASK];
1976 
1977 			if (v != SWAPBLK_NONE) {
1978 				swp_pager_freeswapspace(v, 1);
1979 				swap->swb_pages[index & SWAP_META_MASK] =
1980 					SWAPBLK_NONE;
1981 				if (--swap->swb_count == 0) {
1982 					*pswap = swap->swb_hnext;
1983 					zfree(swap_zone, swap);
1984 					--object->un_pager.swp.swp_bcount;
1985 				}
1986 			}
1987 			--count;
1988 			++index;
1989 		} else {
1990 			int n = SWAP_META_PAGES - (index & SWAP_META_MASK);
1991 			count -= n;
1992 			index += n;
1993 		}
1994 	}
1995 }
1996 
1997 /*
1998  * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
1999  *
2000  *	This routine locates and destroys all swap metadata associated with
2001  *	an object.
2002  *
2003  *	This routine must be called at splvm()
2004  */
2005 
2006 static void
2007 swp_pager_meta_free_all(vm_object_t object)
2008 {
2009 	daddr_t index = 0;
2010 
2011 	if (object->type != OBJT_SWAP)
2012 		return;
2013 
2014 	while (object->un_pager.swp.swp_bcount) {
2015 		struct swblock **pswap;
2016 		struct swblock *swap;
2017 
2018 		pswap = swp_pager_hash(object, index);
2019 		if ((swap = *pswap) != NULL) {
2020 			int i;
2021 
2022 			for (i = 0; i < SWAP_META_PAGES; ++i) {
2023 				daddr_t v = swap->swb_pages[i];
2024 				if (v != SWAPBLK_NONE) {
2025 					--swap->swb_count;
2026 					swp_pager_freeswapspace(v, 1);
2027 				}
2028 			}
2029 			if (swap->swb_count != 0)
2030 				panic("swap_pager_meta_free_all: swb_count != 0");
2031 			*pswap = swap->swb_hnext;
2032 			zfree(swap_zone, swap);
2033 			--object->un_pager.swp.swp_bcount;
2034 		}
2035 		index += SWAP_META_PAGES;
2036 		if (index > 0x20000000)
2037 			panic("swp_pager_meta_free_all: failed to locate all swap meta blocks");
2038 	}
2039 }
2040 
2041 /*
2042  * SWP_PAGER_METACTL() -  misc control of swap and vm_page_t meta data.
2043  *
2044  *	This routine is capable of looking up, popping, or freeing
2045  *	swapblk assignments in the swap meta data or in the vm_page_t.
2046  *	The routine typically returns the swapblk being looked-up, or popped,
2047  *	or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block
2048  *	was invalid.  This routine will automatically free any invalid
2049  *	meta-data swapblks.
2050  *
2051  *	It is not possible to store invalid swapblks in the swap meta data
2052  *	(other then a literal 'SWAPBLK_NONE'), so we don't bother checking.
2053  *
2054  *	When acting on a busy resident page and paging is in progress, we
2055  *	have to wait until paging is complete but otherwise can act on the
2056  *	busy page.
2057  *
2058  *	This routine must be called at splvm().
2059  *
2060  *	SWM_FREE	remove and free swap block from metadata
2061  *	SWM_POP		remove from meta data but do not free.. pop it out
2062  */
2063 
2064 static daddr_t
2065 swp_pager_meta_ctl(
2066 	vm_object_t object,
2067 	vm_pindex_t index,
2068 	int flags
2069 ) {
2070 	struct swblock **pswap;
2071 	struct swblock *swap;
2072 	daddr_t r1;
2073 
2074 	/*
2075 	 * The meta data only exists of the object is OBJT_SWAP
2076 	 * and even then might not be allocated yet.
2077 	 */
2078 
2079 	if (object->type != OBJT_SWAP)
2080 		return(SWAPBLK_NONE);
2081 
2082 	r1 = SWAPBLK_NONE;
2083 	pswap = swp_pager_hash(object, index);
2084 
2085 	if ((swap = *pswap) != NULL) {
2086 		index &= SWAP_META_MASK;
2087 		r1 = swap->swb_pages[index];
2088 
2089 		if (r1 != SWAPBLK_NONE) {
2090 			if (flags & SWM_FREE) {
2091 				swp_pager_freeswapspace(r1, 1);
2092 				r1 = SWAPBLK_NONE;
2093 			}
2094 			if (flags & (SWM_FREE|SWM_POP)) {
2095 				swap->swb_pages[index] = SWAPBLK_NONE;
2096 				if (--swap->swb_count == 0) {
2097 					*pswap = swap->swb_hnext;
2098 					zfree(swap_zone, swap);
2099 					--object->un_pager.swp.swp_bcount;
2100 				}
2101 			}
2102 		}
2103 	}
2104 	return(r1);
2105 }
2106