xref: /dragonfly/sys/vm/swap_pager.c (revision 59a92d18)
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 1998-2010 The DragonFly Project.  All rights reserved.
5  *
6  * This code is derived from software contributed to The DragonFly Project
7  * by Matthew Dillon <dillon@backplane.com>
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  *
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in
17  *    the documentation and/or other materials provided with the
18  *    distribution.
19  * 3. Neither the name of The DragonFly Project nor the names of its
20  *    contributors may be used to endorse or promote products derived
21  *    from this software without specific, prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
27  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
29  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
31  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
32  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
33  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  * Copyright (c) 1994 John S. Dyson
37  * Copyright (c) 1990 University of Utah.
38  * Copyright (c) 1991, 1993
39  *	The Regents of the University of California.  All rights reserved.
40  *
41  * This code is derived from software contributed to Berkeley by
42  * the Systems Programming Group of the University of Utah Computer
43  * Science Department.
44  *
45  * Redistribution and use in source and binary forms, with or without
46  * modification, are permitted provided that the following conditions
47  * are met:
48  * 1. Redistributions of source code must retain the above copyright
49  *    notice, this list of conditions and the following disclaimer.
50  * 2. Redistributions in binary form must reproduce the above copyright
51  *    notice, this list of conditions and the following disclaimer in the
52  *    documentation and/or other materials provided with the distribution.
53  * 3. All advertising materials mentioning features or use of this software
54  *    must display the following acknowledgement:
55  *	This product includes software developed by the University of
56  *	California, Berkeley and its contributors.
57  * 4. Neither the name of the University nor the names of its contributors
58  *    may be used to endorse or promote products derived from this software
59  *    without specific prior written permission.
60  *
61  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
62  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
63  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
64  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
65  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
66  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
67  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
68  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
69  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
70  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
71  * SUCH DAMAGE.
72  *
73  *				New Swap System
74  *				Matthew Dillon
75  *
76  * Radix Bitmap 'blists'.
77  *
78  *	- The new swapper uses the new radix bitmap code.  This should scale
79  *	  to arbitrarily small or arbitrarily large swap spaces and an almost
80  *	  arbitrary degree of fragmentation.
81  *
82  * Features:
83  *
84  *	- on the fly reallocation of swap during putpages.  The new system
85  *	  does not try to keep previously allocated swap blocks for dirty
86  *	  pages.
87  *
88  *	- on the fly deallocation of swap
89  *
90  *	- No more garbage collection required.  Unnecessarily allocated swap
91  *	  blocks only exist for dirty vm_page_t's now and these are already
92  *	  cycled (in a high-load system) by the pager.  We also do on-the-fly
93  *	  removal of invalidated swap blocks when a page is destroyed
94  *	  or renamed.
95  *
96  * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
97  * @(#)swap_pager.c	8.9 (Berkeley) 3/21/94
98  * $FreeBSD: src/sys/vm/swap_pager.c,v 1.130.2.12 2002/08/31 21:15:55 dillon Exp $
99  */
100 
101 #include <sys/param.h>
102 #include <sys/systm.h>
103 #include <sys/conf.h>
104 #include <sys/kernel.h>
105 #include <sys/proc.h>
106 #include <sys/buf.h>
107 #include <sys/vnode.h>
108 #include <sys/malloc.h>
109 #include <sys/vmmeter.h>
110 #include <sys/sysctl.h>
111 #include <sys/blist.h>
112 #include <sys/lock.h>
113 #include <sys/thread2.h>
114 
115 #ifndef MAX_PAGEOUT_CLUSTER
116 #define MAX_PAGEOUT_CLUSTER 16
117 #endif
118 
119 #define SWB_NPAGES	MAX_PAGEOUT_CLUSTER
120 
121 #include "opt_swap.h"
122 #include <vm/vm.h>
123 #include <vm/vm_object.h>
124 #include <vm/vm_page.h>
125 #include <vm/vm_pager.h>
126 #include <vm/vm_pageout.h>
127 #include <vm/swap_pager.h>
128 #include <vm/vm_extern.h>
129 #include <vm/vm_zone.h>
130 #include <vm/vnode_pager.h>
131 
132 #include <sys/buf2.h>
133 #include <vm/vm_page2.h>
134 
135 #define SWM_FREE	0x02	/* free, period			*/
136 #define SWM_POP		0x04	/* pop out			*/
137 
138 #define SWBIO_READ	0x01
139 #define SWBIO_WRITE	0x02
140 #define SWBIO_SYNC	0x04
141 
142 struct swfreeinfo {
143 	vm_object_t	object;
144 	vm_pindex_t	basei;
145 	vm_pindex_t	begi;
146 	vm_pindex_t	endi;	/* inclusive */
147 };
148 
149 /*
150  * vm_swap_size is in page-sized chunks now.  It was DEV_BSIZE'd chunks
151  * in the old system.
152  */
153 
154 int swap_pager_full;		/* swap space exhaustion (task killing) */
155 int vm_swap_cache_use;
156 int vm_swap_anon_use;
157 
158 static int swap_pager_almost_full; /* swap space exhaustion (w/ hysteresis)*/
159 static int nsw_rcount;		/* free read buffers			*/
160 static int nsw_wcount_sync;	/* limit write buffers / synchronous	*/
161 static int nsw_wcount_async;	/* limit write buffers / asynchronous	*/
162 static int nsw_wcount_async_max;/* assigned maximum			*/
163 static int nsw_cluster_max;	/* maximum VOP I/O allowed		*/
164 
165 struct blist *swapblist;
166 static int swap_async_max = 4;	/* maximum in-progress async I/O's	*/
167 static int swap_burst_read = 0;	/* allow burst reading */
168 
169 /* from vm_swap.c */
170 extern struct vnode *swapdev_vp;
171 extern struct swdevt *swdevt;
172 extern int nswdev;
173 
174 #define BLK2DEVIDX(blk) (nswdev > 1 ? blk / dmmax % nswdev : 0)
175 
176 SYSCTL_INT(_vm, OID_AUTO, swap_async_max,
177         CTLFLAG_RW, &swap_async_max, 0, "Maximum running async swap ops");
178 SYSCTL_INT(_vm, OID_AUTO, swap_burst_read,
179         CTLFLAG_RW, &swap_burst_read, 0, "Allow burst reads for pageins");
180 
181 SYSCTL_INT(_vm, OID_AUTO, swap_cache_use,
182         CTLFLAG_RD, &vm_swap_cache_use, 0, "");
183 SYSCTL_INT(_vm, OID_AUTO, swap_anon_use,
184         CTLFLAG_RD, &vm_swap_anon_use, 0, "");
185 SYSCTL_INT(_vm, OID_AUTO, swap_size,
186         CTLFLAG_RD, &vm_swap_size, 0, "");
187 
188 vm_zone_t		swap_zone;
189 
190 /*
191  * Red-Black tree for swblock entries
192  *
193  * The caller must hold vm_token
194  */
195 RB_GENERATE2(swblock_rb_tree, swblock, swb_entry, rb_swblock_compare,
196 	     vm_pindex_t, swb_index);
197 
198 int
199 rb_swblock_compare(struct swblock *swb1, struct swblock *swb2)
200 {
201 	if (swb1->swb_index < swb2->swb_index)
202 		return(-1);
203 	if (swb1->swb_index > swb2->swb_index)
204 		return(1);
205 	return(0);
206 }
207 
208 static
209 int
210 rb_swblock_scancmp(struct swblock *swb, void *data)
211 {
212 	struct swfreeinfo *info = data;
213 
214 	if (swb->swb_index < info->basei)
215 		return(-1);
216 	if (swb->swb_index > info->endi)
217 		return(1);
218 	return(0);
219 }
220 
221 static
222 int
223 rb_swblock_condcmp(struct swblock *swb, void *data)
224 {
225 	struct swfreeinfo *info = data;
226 
227 	if (swb->swb_index < info->basei)
228 		return(-1);
229 	return(0);
230 }
231 
232 /*
233  * pagerops for OBJT_SWAP - "swap pager".  Some ops are also global procedure
234  * calls hooked from other parts of the VM system and do not appear here.
235  * (see vm/swap_pager.h).
236  */
237 
238 static void	swap_pager_dealloc (vm_object_t object);
239 static int	swap_pager_getpage (vm_object_t, vm_page_t *, int);
240 static void	swap_chain_iodone(struct bio *biox);
241 
242 struct pagerops swappagerops = {
243 	swap_pager_dealloc,	/* deallocate an OBJT_SWAP object	*/
244 	swap_pager_getpage,	/* pagein				*/
245 	swap_pager_putpages,	/* pageout				*/
246 	swap_pager_haspage	/* get backing store status for page	*/
247 };
248 
249 /*
250  * dmmax is in page-sized chunks with the new swap system.  It was
251  * dev-bsized chunks in the old.  dmmax is always a power of 2.
252  *
253  * swap_*() routines are externally accessible.  swp_*() routines are
254  * internal.
255  */
256 
257 int dmmax;
258 static int dmmax_mask;
259 int nswap_lowat = 128;		/* in pages, swap_pager_almost_full warn */
260 int nswap_hiwat = 512;		/* in pages, swap_pager_almost_full warn */
261 
262 static __inline void	swp_sizecheck (void);
263 static void	swp_pager_async_iodone (struct bio *bio);
264 
265 /*
266  * Swap bitmap functions
267  */
268 
269 static __inline void	swp_pager_freeswapspace(vm_object_t object,
270 						swblk_t blk, int npages);
271 static __inline swblk_t	swp_pager_getswapspace(vm_object_t object, int npages);
272 
273 /*
274  * Metadata functions
275  */
276 
277 static void swp_pager_meta_convert(vm_object_t);
278 static void swp_pager_meta_build(vm_object_t, vm_pindex_t, swblk_t);
279 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, vm_pindex_t);
280 static void swp_pager_meta_free_all(vm_object_t);
281 static swblk_t swp_pager_meta_ctl(vm_object_t, vm_pindex_t, int);
282 
283 /*
284  * SWP_SIZECHECK() -	update swap_pager_full indication
285  *
286  *	update the swap_pager_almost_full indication and warn when we are
287  *	about to run out of swap space, using lowat/hiwat hysteresis.
288  *
289  *	Clear swap_pager_full ( task killing ) indication when lowat is met.
290  *
291  * No restrictions on call
292  * This routine may not block.
293  * SMP races are ok.
294  */
295 static __inline void
296 swp_sizecheck(void)
297 {
298 	if (vm_swap_size < nswap_lowat) {
299 		if (swap_pager_almost_full == 0) {
300 			kprintf("swap_pager: out of swap space\n");
301 			swap_pager_almost_full = 1;
302 		}
303 	} else {
304 		swap_pager_full = 0;
305 		if (vm_swap_size > nswap_hiwat)
306 			swap_pager_almost_full = 0;
307 	}
308 }
309 
310 /*
311  * SWAP_PAGER_INIT() -	initialize the swap pager!
312  *
313  *	Expected to be started from system init.  NOTE:  This code is run
314  *	before much else so be careful what you depend on.  Most of the VM
315  *	system has yet to be initialized at this point.
316  *
317  * Called from the low level boot code only.
318  */
319 static void
320 swap_pager_init(void *arg __unused)
321 {
322 	/*
323 	 * Device Stripe, in PAGE_SIZE'd blocks
324 	 */
325 	dmmax = SWB_NPAGES * 2;
326 	dmmax_mask = ~(dmmax - 1);
327 }
328 SYSINIT(vm_mem, SI_BOOT1_VM, SI_ORDER_THIRD, swap_pager_init, NULL)
329 
330 /*
331  * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
332  *
333  *	Expected to be started from pageout process once, prior to entering
334  *	its main loop.
335  *
336  * Called from the low level boot code only.
337  */
338 void
339 swap_pager_swap_init(void)
340 {
341 	int n, n2;
342 
343 	/*
344 	 * Number of in-transit swap bp operations.  Don't
345 	 * exhaust the pbufs completely.  Make sure we
346 	 * initialize workable values (0 will work for hysteresis
347 	 * but it isn't very efficient).
348 	 *
349 	 * The nsw_cluster_max is constrained by the number of pages an XIO
350 	 * holds, i.e., (MAXPHYS/PAGE_SIZE) and our locally defined
351 	 * MAX_PAGEOUT_CLUSTER.   Also be aware that swap ops are
352 	 * constrained by the swap device interleave stripe size.
353 	 *
354 	 * Currently we hardwire nsw_wcount_async to 4.  This limit is
355 	 * designed to prevent other I/O from having high latencies due to
356 	 * our pageout I/O.  The value 4 works well for one or two active swap
357 	 * devices but is probably a little low if you have more.  Even so,
358 	 * a higher value would probably generate only a limited improvement
359 	 * with three or four active swap devices since the system does not
360 	 * typically have to pageout at extreme bandwidths.   We will want
361 	 * at least 2 per swap devices, and 4 is a pretty good value if you
362 	 * have one NFS swap device due to the command/ack latency over NFS.
363 	 * So it all works out pretty well.
364 	 */
365 
366 	nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER);
367 
368 	nsw_rcount = (nswbuf + 1) / 2;
369 	nsw_wcount_sync = (nswbuf + 3) / 4;
370 	nsw_wcount_async = 4;
371 	nsw_wcount_async_max = nsw_wcount_async;
372 
373 	/*
374 	 * The zone is dynamically allocated so generally size it to
375 	 * maxswzone (32MB to 512MB of KVM).  Set a minimum size based
376 	 * on physical memory of around 8x (each swblock can hold 16 pages).
377 	 *
378 	 * With the advent of SSDs (vs HDs) the practical (swap:memory) ratio
379 	 * has increased dramatically.
380 	 */
381 	n = vmstats.v_page_count / 2;
382 	if (maxswzone && n < maxswzone / sizeof(struct swblock))
383 		n = maxswzone / sizeof(struct swblock);
384 	n2 = n;
385 
386 	do {
387 		swap_zone = zinit(
388 			"SWAPMETA",
389 			sizeof(struct swblock),
390 			n,
391 			ZONE_INTERRUPT,
392 			1);
393 		if (swap_zone != NULL)
394 			break;
395 		/*
396 		 * if the allocation failed, try a zone two thirds the
397 		 * size of the previous attempt.
398 		 */
399 		n -= ((n + 2) / 3);
400 	} while (n > 0);
401 
402 	if (swap_zone == NULL)
403 		panic("swap_pager_swap_init: swap_zone == NULL");
404 	if (n2 != n)
405 		kprintf("Swap zone entries reduced from %d to %d.\n", n2, n);
406 }
407 
408 /*
409  * SWAP_PAGER_ALLOC() -	allocate a new OBJT_SWAP VM object and instantiate
410  *			its metadata structures.
411  *
412  *	This routine is called from the mmap and fork code to create a new
413  *	OBJT_SWAP object.  We do this by creating an OBJT_DEFAULT object
414  *	and then converting it with swp_pager_meta_convert().
415  *
416  *	We only support unnamed objects.
417  *
418  * No restrictions.
419  */
420 vm_object_t
421 swap_pager_alloc(void *handle, off_t size, vm_prot_t prot, off_t offset)
422 {
423 	vm_object_t object;
424 
425 	KKASSERT(handle == NULL);
426 	lwkt_gettoken(&vm_token);
427 	object = vm_object_allocate(OBJT_DEFAULT,
428 				    OFF_TO_IDX(offset + PAGE_MASK + size));
429 	swp_pager_meta_convert(object);
430 	lwkt_reltoken(&vm_token);
431 
432 	return (object);
433 }
434 
435 /*
436  * SWAP_PAGER_DEALLOC() -	remove swap metadata from object
437  *
438  *	The swap backing for the object is destroyed.  The code is
439  *	designed such that we can reinstantiate it later, but this
440  *	routine is typically called only when the entire object is
441  *	about to be destroyed.
442  *
443  * The object must be locked or unreferenceable.
444  * No other requirements.
445  */
446 static void
447 swap_pager_dealloc(vm_object_t object)
448 {
449 	lwkt_gettoken(&vm_token);
450 	vm_object_pip_wait(object, "swpdea");
451 
452 	/*
453 	 * Free all remaining metadata.  We only bother to free it from
454 	 * the swap meta data.  We do not attempt to free swapblk's still
455 	 * associated with vm_page_t's for this object.  We do not care
456 	 * if paging is still in progress on some objects.
457 	 */
458 	crit_enter();
459 	swp_pager_meta_free_all(object);
460 	crit_exit();
461 	lwkt_reltoken(&vm_token);
462 }
463 
464 /************************************************************************
465  *			SWAP PAGER BITMAP ROUTINES			*
466  ************************************************************************/
467 
468 /*
469  * SWP_PAGER_GETSWAPSPACE() -	allocate raw swap space
470  *
471  *	Allocate swap for the requested number of pages.  The starting
472  *	swap block number (a page index) is returned or SWAPBLK_NONE
473  *	if the allocation failed.
474  *
475  *	Also has the side effect of advising that somebody made a mistake
476  *	when they configured swap and didn't configure enough.
477  *
478  * The caller must hold vm_token.
479  * This routine may not block.
480  *
481  * NOTE: vm_token must be held to avoid races with bitmap frees from
482  *	 vm_page_remove() via swap_pager_page_removed().
483  */
484 static __inline swblk_t
485 swp_pager_getswapspace(vm_object_t object, int npages)
486 {
487 	swblk_t blk;
488 
489 	ASSERT_LWKT_TOKEN_HELD(&vm_token);
490 
491 	if ((blk = blist_alloc(swapblist, npages)) == SWAPBLK_NONE) {
492 		if (swap_pager_full != 2) {
493 			kprintf("swap_pager_getswapspace: failed\n");
494 			swap_pager_full = 2;
495 			swap_pager_almost_full = 1;
496 		}
497 	} else {
498 		swapacctspace(blk, -npages);
499 		if (object->type == OBJT_SWAP)
500 			vm_swap_anon_use += npages;
501 		else
502 			vm_swap_cache_use += npages;
503 		swp_sizecheck();
504 	}
505 	return(blk);
506 }
507 
508 /*
509  * SWP_PAGER_FREESWAPSPACE() -	free raw swap space
510  *
511  *	This routine returns the specified swap blocks back to the bitmap.
512  *
513  *	Note:  This routine may not block (it could in the old swap code),
514  *	and through the use of the new blist routines it does not block.
515  *
516  *	We must be called at splvm() to avoid races with bitmap frees from
517  *	vm_page_remove() aka swap_pager_page_removed().
518  *
519  * The caller must hold vm_token.
520  * This routine may not block.
521  */
522 
523 static __inline void
524 swp_pager_freeswapspace(vm_object_t object, swblk_t blk, int npages)
525 {
526 	struct swdevt *sp = &swdevt[BLK2DEVIDX(blk)];
527 
528 	sp->sw_nused -= npages;
529 	if (object->type == OBJT_SWAP)
530 		vm_swap_anon_use -= npages;
531 	else
532 		vm_swap_cache_use -= npages;
533 
534 	if (sp->sw_flags & SW_CLOSING)
535 		return;
536 
537 	blist_free(swapblist, blk, npages);
538 	vm_swap_size += npages;
539 	swp_sizecheck();
540 }
541 
542 /*
543  * SWAP_PAGER_FREESPACE() -	frees swap blocks associated with a page
544  *				range within an object.
545  *
546  *	This is a globally accessible routine.
547  *
548  *	This routine removes swapblk assignments from swap metadata.
549  *
550  *	The external callers of this routine typically have already destroyed
551  *	or renamed vm_page_t's associated with this range in the object so
552  *	we should be ok.
553  *
554  * No requirements.
555  */
556 void
557 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_pindex_t size)
558 {
559 	crit_enter();
560 	lwkt_gettoken(&vm_token);
561 	swp_pager_meta_free(object, start, size);
562 	lwkt_reltoken(&vm_token);
563 	crit_exit();
564 }
565 
566 /*
567  * No requirements.
568  */
569 void
570 swap_pager_freespace_all(vm_object_t object)
571 {
572 	crit_enter();
573 	lwkt_gettoken(&vm_token);
574 	swp_pager_meta_free_all(object);
575 	lwkt_reltoken(&vm_token);
576 	crit_exit();
577 }
578 
579 /*
580  * This function conditionally frees swap cache swap starting at
581  * (*basei) in the object.  (count) swap blocks will be nominally freed.
582  * The actual number of blocks freed can be more or less than the
583  * requested number.
584  *
585  * This function nominally returns the number of blocks freed.  However,
586  * the actual number of blocks freed may be less then the returned value.
587  * If the function is unable to exhaust the object or if it is able to
588  * free (approximately) the requested number of blocks it returns
589  * a value n > count.
590  *
591  * If we exhaust the object we will return a value n <= count.
592  *
593  * The caller must hold vm_token.
594  */
595 static int swap_pager_condfree_callback(struct swblock *swap, void *data);
596 
597 int
598 swap_pager_condfree(vm_object_t object, vm_pindex_t *basei, int count)
599 {
600 	struct swfreeinfo info;
601 
602 	ASSERT_LWKT_TOKEN_HELD(&vm_token);
603 
604 	info.object = object;
605 	info.basei = *basei;	/* skip up to this page index */
606 	info.begi = count;	/* max swap pages to destroy */
607 	info.endi = count * 8;	/* max swblocks to scan */
608 
609 	swblock_rb_tree_RB_SCAN(&object->swblock_root, rb_swblock_condcmp,
610 				swap_pager_condfree_callback, &info);
611 	*basei = info.basei;
612 	if (info.endi < 0 && info.begi <= count)
613 		info.begi = count + 1;
614 	return(count - (int)info.begi);
615 }
616 
617 /*
618  * The idea is to free whole meta-block to avoid fragmenting
619  * the swap space or disk I/O.  We only do this if NO VM pages
620  * are present.
621  *
622  * We do not have to deal with clearing PG_SWAPPED in related VM
623  * pages because there are no related VM pages.
624  *
625  * The caller must hold vm_token.
626  */
627 static int
628 swap_pager_condfree_callback(struct swblock *swap, void *data)
629 {
630 	struct swfreeinfo *info = data;
631 	vm_object_t object = info->object;
632 	int i;
633 
634 	for (i = 0; i < SWAP_META_PAGES; ++i) {
635 		if (vm_page_lookup(object, swap->swb_index + i))
636 			break;
637 	}
638 	info->basei = swap->swb_index + SWAP_META_PAGES;
639 	if (i == SWAP_META_PAGES) {
640 		info->begi -= swap->swb_count;
641 		swap_pager_freespace(object, swap->swb_index, SWAP_META_PAGES);
642 	}
643 	--info->endi;
644 	if ((int)info->begi < 0 || (int)info->endi < 0)
645 		return(-1);
646 	return(0);
647 }
648 
649 /*
650  * Called by vm_page_alloc() when a new VM page is inserted
651  * into a VM object.  Checks whether swap has been assigned to
652  * the page and sets PG_SWAPPED as necessary.
653  *
654  * No requirements.
655  */
656 void
657 swap_pager_page_inserted(vm_page_t m)
658 {
659 	if (m->object->swblock_count) {
660 		crit_enter();
661 		lwkt_gettoken(&vm_token);
662 		if (swp_pager_meta_ctl(m->object, m->pindex, 0) != SWAPBLK_NONE)
663 			vm_page_flag_set(m, PG_SWAPPED);
664 		lwkt_reltoken(&vm_token);
665 		crit_exit();
666 	}
667 }
668 
669 /*
670  * SWAP_PAGER_RESERVE() - reserve swap blocks in object
671  *
672  *	Assigns swap blocks to the specified range within the object.  The
673  *	swap blocks are not zerod.  Any previous swap assignment is destroyed.
674  *
675  *	Returns 0 on success, -1 on failure.
676  *
677  * The caller is responsible for avoiding races in the specified range.
678  * No other requirements.
679  */
680 int
681 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
682 {
683 	int n = 0;
684 	swblk_t blk = SWAPBLK_NONE;
685 	vm_pindex_t beg = start;	/* save start index */
686 
687 	crit_enter();
688 	lwkt_gettoken(&vm_token);
689 	while (size) {
690 		if (n == 0) {
691 			n = BLIST_MAX_ALLOC;
692 			while ((blk = swp_pager_getswapspace(object, n)) ==
693 			       SWAPBLK_NONE)
694 			{
695 				n >>= 1;
696 				if (n == 0) {
697 					swp_pager_meta_free(object, beg,
698 							    start - beg);
699 					lwkt_reltoken(&vm_token);
700 					crit_exit();
701 					return(-1);
702 				}
703 			}
704 		}
705 		swp_pager_meta_build(object, start, blk);
706 		--size;
707 		++start;
708 		++blk;
709 		--n;
710 	}
711 	swp_pager_meta_free(object, start, n);
712 	lwkt_reltoken(&vm_token);
713 	crit_exit();
714 	return(0);
715 }
716 
717 /*
718  * SWAP_PAGER_COPY() -  copy blocks from source pager to destination pager
719  *			and destroy the source.
720  *
721  *	Copy any valid swapblks from the source to the destination.  In
722  *	cases where both the source and destination have a valid swapblk,
723  *	we keep the destination's.
724  *
725  *	This routine is allowed to block.  It may block allocating metadata
726  *	indirectly through swp_pager_meta_build() or if paging is still in
727  *	progress on the source.
728  *
729  *	This routine can be called at any spl
730  *
731  *	XXX vm_page_collapse() kinda expects us not to block because we
732  *	supposedly do not need to allocate memory, but for the moment we
733  *	*may* have to get a little memory from the zone allocator, but
734  *	it is taken from the interrupt memory.  We should be ok.
735  *
736  *	The source object contains no vm_page_t's (which is just as well)
737  *
738  *	The source object is of type OBJT_SWAP.
739  *
740  *	The source and destination objects must be locked or
741  *	inaccessible (XXX are they ?)
742  *
743  * The caller must hold vm_token.
744  */
745 void
746 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject,
747 		vm_pindex_t base_index, int destroysource)
748 {
749 	vm_pindex_t i;
750 
751 	ASSERT_LWKT_TOKEN_HELD(&vm_token);
752 	crit_enter();
753 
754 	/*
755 	 * transfer source to destination.
756 	 */
757 	for (i = 0; i < dstobject->size; ++i) {
758 		swblk_t dstaddr;
759 
760 		/*
761 		 * Locate (without changing) the swapblk on the destination,
762 		 * unless it is invalid in which case free it silently, or
763 		 * if the destination is a resident page, in which case the
764 		 * source is thrown away.
765 		 */
766 		dstaddr = swp_pager_meta_ctl(dstobject, i, 0);
767 
768 		if (dstaddr == SWAPBLK_NONE) {
769 			/*
770 			 * Destination has no swapblk and is not resident,
771 			 * copy source.
772 			 */
773 			swblk_t srcaddr;
774 
775 			srcaddr = swp_pager_meta_ctl(srcobject,
776 						     base_index + i, SWM_POP);
777 
778 			if (srcaddr != SWAPBLK_NONE)
779 				swp_pager_meta_build(dstobject, i, srcaddr);
780 		} else {
781 			/*
782 			 * Destination has valid swapblk or it is represented
783 			 * by a resident page.  We destroy the sourceblock.
784 			 */
785 			swp_pager_meta_ctl(srcobject, base_index + i, SWM_FREE);
786 		}
787 	}
788 
789 	/*
790 	 * Free left over swap blocks in source.
791 	 *
792 	 * We have to revert the type to OBJT_DEFAULT so we do not accidently
793 	 * double-remove the object from the swap queues.
794 	 */
795 	if (destroysource) {
796 		/*
797 		 * Reverting the type is not necessary, the caller is going
798 		 * to destroy srcobject directly, but I'm doing it here
799 		 * for consistency since we've removed the object from its
800 		 * queues.
801 		 */
802 		swp_pager_meta_free_all(srcobject);
803 		if (srcobject->type == OBJT_SWAP)
804 			srcobject->type = OBJT_DEFAULT;
805 	}
806 	crit_exit();
807 }
808 
809 /*
810  * SWAP_PAGER_HASPAGE() -	determine if we have good backing store for
811  *				the requested page.
812  *
813  *	We determine whether good backing store exists for the requested
814  *	page and return TRUE if it does, FALSE if it doesn't.
815  *
816  *	If TRUE, we also try to determine how much valid, contiguous backing
817  *	store exists before and after the requested page within a reasonable
818  *	distance.  We do not try to restrict it to the swap device stripe
819  *	(that is handled in getpages/putpages).  It probably isn't worth
820  *	doing here.
821  *
822  * No requirements.
823  */
824 boolean_t
825 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex)
826 {
827 	swblk_t blk0;
828 
829 	/*
830 	 * do we have good backing store at the requested index ?
831 	 */
832 
833 	crit_enter();
834 	lwkt_gettoken(&vm_token);
835 	blk0 = swp_pager_meta_ctl(object, pindex, 0);
836 
837 	if (blk0 == SWAPBLK_NONE) {
838 		lwkt_reltoken(&vm_token);
839 		crit_exit();
840 		return (FALSE);
841 	}
842 	lwkt_reltoken(&vm_token);
843 	crit_exit();
844 	return (TRUE);
845 }
846 
847 /*
848  * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
849  *
850  * This removes any associated swap backing store, whether valid or
851  * not, from the page.  This operates on any VM object, not just OBJT_SWAP
852  * objects.
853  *
854  * This routine is typically called when a page is made dirty, at
855  * which point any associated swap can be freed.  MADV_FREE also
856  * calls us in a special-case situation
857  *
858  * NOTE!!!  If the page is clean and the swap was valid, the caller
859  * should make the page dirty before calling this routine.  This routine
860  * does NOT change the m->dirty status of the page.  Also: MADV_FREE
861  * depends on it.
862  *
863  * The page must be busied or soft-busied.
864  * The caller must hold vm_token if the caller does not wish to block here.
865  * No other requirements.
866  */
867 void
868 swap_pager_unswapped(vm_page_t m)
869 {
870 	if (m->flags & PG_SWAPPED) {
871 		crit_enter();
872 		lwkt_gettoken(&vm_token);
873 		KKASSERT(m->flags & PG_SWAPPED);
874 		swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE);
875 		vm_page_flag_clear(m, PG_SWAPPED);
876 		lwkt_reltoken(&vm_token);
877 		crit_exit();
878 	}
879 }
880 
881 /*
882  * SWAP_PAGER_STRATEGY() - read, write, free blocks
883  *
884  * This implements a VM OBJECT strategy function using swap backing store.
885  * This can operate on any VM OBJECT type, not necessarily just OBJT_SWAP
886  * types.
887  *
888  * This is intended to be a cacheless interface (i.e. caching occurs at
889  * higher levels), and is also used as a swap-based SSD cache for vnode
890  * and device objects.
891  *
892  * All I/O goes directly to and from the swap device.
893  *
894  * We currently attempt to run I/O synchronously or asynchronously as
895  * the caller requests.  This isn't perfect because we loose error
896  * sequencing when we run multiple ops in parallel to satisfy a request.
897  * But this is swap, so we let it all hang out.
898  *
899  * No requirements.
900  */
901 void
902 swap_pager_strategy(vm_object_t object, struct bio *bio)
903 {
904 	struct buf *bp = bio->bio_buf;
905 	struct bio *nbio;
906 	vm_pindex_t start;
907 	vm_pindex_t biox_blkno = 0;
908 	int count;
909 	char *data;
910 	struct bio *biox;
911 	struct buf *bufx;
912 	struct bio_track *track;
913 
914 	/*
915 	 * tracking for swapdev vnode I/Os
916 	 */
917 	if (bp->b_cmd == BUF_CMD_READ)
918 		track = &swapdev_vp->v_track_read;
919 	else
920 		track = &swapdev_vp->v_track_write;
921 
922 	if (bp->b_bcount & PAGE_MASK) {
923 		bp->b_error = EINVAL;
924 		bp->b_flags |= B_ERROR | B_INVAL;
925 		biodone(bio);
926 		kprintf("swap_pager_strategy: bp %p offset %lld size %d, "
927 			"not page bounded\n",
928 			bp, (long long)bio->bio_offset, (int)bp->b_bcount);
929 		return;
930 	}
931 
932 	/*
933 	 * Clear error indication, initialize page index, count, data pointer.
934 	 */
935 	bp->b_error = 0;
936 	bp->b_flags &= ~B_ERROR;
937 	bp->b_resid = bp->b_bcount;
938 
939 	start = (vm_pindex_t)(bio->bio_offset >> PAGE_SHIFT);
940 	count = howmany(bp->b_bcount, PAGE_SIZE);
941 	data = bp->b_data;
942 
943 	/*
944 	 * Deal with BUF_CMD_FREEBLKS
945 	 */
946 	if (bp->b_cmd == BUF_CMD_FREEBLKS) {
947 		/*
948 		 * FREE PAGE(s) - destroy underlying swap that is no longer
949 		 *		  needed.
950 		 */
951 		crit_enter();
952 		lwkt_gettoken(&vm_token);
953 		swp_pager_meta_free(object, start, count);
954 		lwkt_reltoken(&vm_token);
955 		crit_exit();
956 		bp->b_resid = 0;
957 		biodone(bio);
958 		return;
959 	}
960 
961 	/*
962 	 * We need to be able to create a new cluster of I/O's.  We cannot
963 	 * use the caller fields of the passed bio so push a new one.
964 	 *
965 	 * Because nbio is just a placeholder for the cluster links,
966 	 * we can biodone() the original bio instead of nbio to make
967 	 * things a bit more efficient.
968 	 */
969 	nbio = push_bio(bio);
970 	nbio->bio_offset = bio->bio_offset;
971 	nbio->bio_caller_info1.cluster_head = NULL;
972 	nbio->bio_caller_info2.cluster_tail = NULL;
973 
974 	biox = NULL;
975 	bufx = NULL;
976 
977 	/*
978 	 * Execute read or write
979 	 */
980 	crit_enter();
981 	lwkt_gettoken(&vm_token);
982 	while (count > 0) {
983 		swblk_t blk;
984 
985 		/*
986 		 * Obtain block.  If block not found and writing, allocate a
987 		 * new block and build it into the object.
988 		 */
989 		blk = swp_pager_meta_ctl(object, start, 0);
990 		if ((blk == SWAPBLK_NONE) && bp->b_cmd != BUF_CMD_READ) {
991 			blk = swp_pager_getswapspace(object, 1);
992 			if (blk == SWAPBLK_NONE) {
993 				bp->b_error = ENOMEM;
994 				bp->b_flags |= B_ERROR;
995 				break;
996 			}
997 			swp_pager_meta_build(object, start, blk);
998 		}
999 
1000 		/*
1001 		 * Do we have to flush our current collection?  Yes if:
1002 		 *
1003 		 *	- no swap block at this index
1004 		 *	- swap block is not contiguous
1005 		 *	- we cross a physical disk boundry in the
1006 		 *	  stripe.
1007 		 */
1008 		if (
1009 		    biox && (biox_blkno + btoc(bufx->b_bcount) != blk ||
1010 		     ((biox_blkno ^ blk) & dmmax_mask)
1011 		    )
1012 		) {
1013 			if (bp->b_cmd == BUF_CMD_READ) {
1014 				++mycpu->gd_cnt.v_swapin;
1015 				mycpu->gd_cnt.v_swappgsin += btoc(bufx->b_bcount);
1016 			} else {
1017 				++mycpu->gd_cnt.v_swapout;
1018 				mycpu->gd_cnt.v_swappgsout += btoc(bufx->b_bcount);
1019 				bufx->b_dirtyend = bufx->b_bcount;
1020 			}
1021 
1022 			/*
1023 			 * Finished with this buf.
1024 			 */
1025 			KKASSERT(bufx->b_bcount != 0);
1026 			if (bufx->b_cmd != BUF_CMD_READ)
1027 				bufx->b_dirtyend = bufx->b_bcount;
1028 			biox = NULL;
1029 			bufx = NULL;
1030 		}
1031 
1032 		/*
1033 		 * Add new swapblk to biox, instantiating biox if necessary.
1034 		 * Zero-fill reads are able to take a shortcut.
1035 		 */
1036 		if (blk == SWAPBLK_NONE) {
1037 			/*
1038 			 * We can only get here if we are reading.  Since
1039 			 * we are at splvm() we can safely modify b_resid,
1040 			 * even if chain ops are in progress.
1041 			 */
1042 			bzero(data, PAGE_SIZE);
1043 			bp->b_resid -= PAGE_SIZE;
1044 		} else {
1045 			if (biox == NULL) {
1046 				/* XXX chain count > 4, wait to <= 4 */
1047 
1048 				bufx = getpbuf(NULL);
1049 				biox = &bufx->b_bio1;
1050 				cluster_append(nbio, bufx);
1051 				bufx->b_flags |= (bufx->b_flags & B_ORDERED);
1052 				bufx->b_cmd = bp->b_cmd;
1053 				biox->bio_done = swap_chain_iodone;
1054 				biox->bio_offset = (off_t)blk << PAGE_SHIFT;
1055 				biox->bio_caller_info1.cluster_parent = nbio;
1056 				biox_blkno = blk;
1057 				bufx->b_bcount = 0;
1058 				bufx->b_data = data;
1059 			}
1060 			bufx->b_bcount += PAGE_SIZE;
1061 		}
1062 		--count;
1063 		++start;
1064 		data += PAGE_SIZE;
1065 	}
1066 	lwkt_reltoken(&vm_token);
1067 	crit_exit();
1068 
1069 	/*
1070 	 *  Flush out last buffer
1071 	 */
1072 	if (biox) {
1073 		if (bufx->b_cmd == BUF_CMD_READ) {
1074 			++mycpu->gd_cnt.v_swapin;
1075 			mycpu->gd_cnt.v_swappgsin += btoc(bufx->b_bcount);
1076 		} else {
1077 			++mycpu->gd_cnt.v_swapout;
1078 			mycpu->gd_cnt.v_swappgsout += btoc(bufx->b_bcount);
1079 			bufx->b_dirtyend = bufx->b_bcount;
1080 		}
1081 		KKASSERT(bufx->b_bcount);
1082 		if (bufx->b_cmd != BUF_CMD_READ)
1083 			bufx->b_dirtyend = bufx->b_bcount;
1084 		/* biox, bufx = NULL */
1085 	}
1086 
1087 	/*
1088 	 * Now initiate all the I/O.  Be careful looping on our chain as
1089 	 * I/O's may complete while we are still initiating them.
1090 	 *
1091 	 * If the request is a 100% sparse read no bios will be present
1092 	 * and we just biodone() the buffer.
1093 	 */
1094 	nbio->bio_caller_info2.cluster_tail = NULL;
1095 	bufx = nbio->bio_caller_info1.cluster_head;
1096 
1097 	if (bufx) {
1098 		while (bufx) {
1099 			biox = &bufx->b_bio1;
1100 			BUF_KERNPROC(bufx);
1101 			bufx = bufx->b_cluster_next;
1102 			vn_strategy(swapdev_vp, biox);
1103 		}
1104 	} else {
1105 		biodone(bio);
1106 	}
1107 
1108 	/*
1109 	 * Completion of the cluster will also call biodone_chain(nbio).
1110 	 * We never call biodone(nbio) so we don't have to worry about
1111 	 * setting up a bio_done callback.  It's handled in the sub-IO.
1112 	 */
1113 	/**/
1114 }
1115 
1116 /*
1117  * biodone callback
1118  *
1119  * No requirements.
1120  */
1121 static void
1122 swap_chain_iodone(struct bio *biox)
1123 {
1124 	struct buf **nextp;
1125 	struct buf *bufx;	/* chained sub-buffer */
1126 	struct bio *nbio;	/* parent nbio with chain glue */
1127 	struct buf *bp;		/* original bp associated with nbio */
1128 	int chain_empty;
1129 
1130 	bufx = biox->bio_buf;
1131 	nbio = biox->bio_caller_info1.cluster_parent;
1132 	bp = nbio->bio_buf;
1133 
1134 	/*
1135 	 * Update the original buffer
1136 	 */
1137         KKASSERT(bp != NULL);
1138 	if (bufx->b_flags & B_ERROR) {
1139 		atomic_set_int(&bufx->b_flags, B_ERROR);
1140 		bp->b_error = bufx->b_error;	/* race ok */
1141 	} else if (bufx->b_resid != 0) {
1142 		atomic_set_int(&bufx->b_flags, B_ERROR);
1143 		bp->b_error = EINVAL;		/* race ok */
1144 	} else {
1145 		atomic_subtract_int(&bp->b_resid, bufx->b_bcount);
1146 	}
1147 
1148 	/*
1149 	 * Remove us from the chain.
1150 	 */
1151 	spin_lock(&bp->b_lock.lk_spinlock);
1152 	nextp = &nbio->bio_caller_info1.cluster_head;
1153 	while (*nextp != bufx) {
1154 		KKASSERT(*nextp != NULL);
1155 		nextp = &(*nextp)->b_cluster_next;
1156 	}
1157 	*nextp = bufx->b_cluster_next;
1158 	chain_empty = (nbio->bio_caller_info1.cluster_head == NULL);
1159 	spin_unlock(&bp->b_lock.lk_spinlock);
1160 
1161 	/*
1162 	 * Clean up bufx.  If the chain is now empty we finish out
1163 	 * the parent.  Note that we may be racing other completions
1164 	 * so we must use the chain_empty status from above.
1165 	 */
1166 	if (chain_empty) {
1167 		if (bp->b_resid != 0 && !(bp->b_flags & B_ERROR)) {
1168 			atomic_set_int(&bp->b_flags, B_ERROR);
1169 			bp->b_error = EINVAL;
1170 		}
1171 		biodone_chain(nbio);
1172         }
1173         relpbuf(bufx, NULL);
1174 }
1175 
1176 /*
1177  * SWAP_PAGER_GETPAGES() - bring page in from swap
1178  *
1179  * The requested page may have to be brought in from swap.  Calculate the
1180  * swap block and bring in additional pages if possible.  All pages must
1181  * have contiguous swap block assignments and reside in the same object.
1182  *
1183  * The caller has a single vm_object_pip_add() reference prior to
1184  * calling us and we should return with the same.
1185  *
1186  * The caller has BUSY'd the page.  We should return with (*mpp) left busy,
1187  * and any additinal pages unbusied.
1188  *
1189  * If the caller encounters a PG_RAM page it will pass it to us even though
1190  * it may be valid and dirty.  We cannot overwrite the page in this case!
1191  * The case is used to allow us to issue pure read-aheads.
1192  *
1193  * NOTE! XXX This code does not entirely pipeline yet due to the fact that
1194  *       the PG_RAM page is validated at the same time as mreq.  What we
1195  *	 really need to do is issue a separate read-ahead pbuf.
1196  *
1197  * No requirements.
1198  */
1199 static int
1200 swap_pager_getpage(vm_object_t object, vm_page_t *mpp, int seqaccess)
1201 {
1202 	struct buf *bp;
1203 	struct bio *bio;
1204 	vm_page_t mreq;
1205 	vm_page_t m;
1206 	vm_offset_t kva;
1207 	swblk_t blk;
1208 	int i;
1209 	int j;
1210 	int raonly;
1211 	vm_page_t marray[XIO_INTERNAL_PAGES];
1212 
1213 	mreq = *mpp;
1214 
1215 	if (mreq->object != object) {
1216 		panic("swap_pager_getpages: object mismatch %p/%p",
1217 		    object,
1218 		    mreq->object
1219 		);
1220 	}
1221 
1222 	/*
1223 	 * We don't want to overwrite a fully valid page as it might be
1224 	 * dirty.  This case can occur when e.g. vm_fault hits a perfectly
1225 	 * valid page with PG_RAM set.
1226 	 *
1227 	 * In this case we see if the next page is a suitable page-in
1228 	 * candidate and if it is we issue read-ahead.  PG_RAM will be
1229 	 * set on the last page of the read-ahead to continue the pipeline.
1230 	 */
1231 	if (mreq->valid == VM_PAGE_BITS_ALL) {
1232 		if (swap_burst_read == 0 || mreq->pindex + 1 >= object->size)
1233 			return(VM_PAGER_OK);
1234 		crit_enter();
1235 		lwkt_gettoken(&vm_token);
1236 		blk = swp_pager_meta_ctl(object, mreq->pindex + 1, 0);
1237 		if (blk == SWAPBLK_NONE) {
1238 			lwkt_reltoken(&vm_token);
1239 			crit_exit();
1240 			return(VM_PAGER_OK);
1241 		}
1242 		m = vm_page_lookup(object, mreq->pindex + 1);
1243 		if (m == NULL) {
1244 			m = vm_page_alloc(object, mreq->pindex + 1,
1245 					  VM_ALLOC_QUICK);
1246 			if (m == NULL) {
1247 				lwkt_reltoken(&vm_token);
1248 				crit_exit();
1249 				return(VM_PAGER_OK);
1250 			}
1251 		} else {
1252 			if ((m->flags & PG_BUSY) || m->busy || m->valid) {
1253 				lwkt_reltoken(&vm_token);
1254 				crit_exit();
1255 				return(VM_PAGER_OK);
1256 			}
1257 			vm_page_unqueue_nowakeup(m);
1258 			vm_page_busy(m);
1259 		}
1260 		mreq = m;
1261 		raonly = 1;
1262 		lwkt_reltoken(&vm_token);
1263 		crit_exit();
1264 	} else {
1265 		raonly = 0;
1266 	}
1267 
1268 	/*
1269 	 * Try to block-read contiguous pages from swap if sequential,
1270 	 * otherwise just read one page.  Contiguous pages from swap must
1271 	 * reside within a single device stripe because the I/O cannot be
1272 	 * broken up across multiple stripes.
1273 	 *
1274 	 * Note that blk and iblk can be SWAPBLK_NONE but the loop is
1275 	 * set up such that the case(s) are handled implicitly.
1276 	 */
1277 	crit_enter();
1278 	lwkt_gettoken(&vm_token);
1279 	blk = swp_pager_meta_ctl(mreq->object, mreq->pindex, 0);
1280 	marray[0] = mreq;
1281 
1282 	for (i = 1; swap_burst_read &&
1283 		    i < XIO_INTERNAL_PAGES &&
1284 		    mreq->pindex + i < object->size; ++i) {
1285 		swblk_t iblk;
1286 
1287 		iblk = swp_pager_meta_ctl(object, mreq->pindex + i, 0);
1288 		if (iblk != blk + i)
1289 			break;
1290 		if ((blk ^ iblk) & dmmax_mask)
1291 			break;
1292 		m = vm_page_lookup(object, mreq->pindex + i);
1293 		if (m == NULL) {
1294 			m = vm_page_alloc(object, mreq->pindex + i,
1295 					  VM_ALLOC_QUICK);
1296 			if (m == NULL)
1297 				break;
1298 		} else {
1299 			if ((m->flags & PG_BUSY) || m->busy || m->valid)
1300 				break;
1301 			vm_page_unqueue_nowakeup(m);
1302 			vm_page_busy(m);
1303 		}
1304 		marray[i] = m;
1305 	}
1306 	if (i > 1)
1307 		vm_page_flag_set(marray[i - 1], PG_RAM);
1308 
1309 	lwkt_reltoken(&vm_token);
1310 	crit_exit();
1311 
1312 	/*
1313 	 * If mreq is the requested page and we have nothing to do return
1314 	 * VM_PAGER_FAIL.  If raonly is set mreq is just another read-ahead
1315 	 * page and must be cleaned up.
1316 	 */
1317 	if (blk == SWAPBLK_NONE) {
1318 		KKASSERT(i == 1);
1319 		if (raonly) {
1320 			vnode_pager_freepage(mreq);
1321 			return(VM_PAGER_OK);
1322 		} else {
1323 			return(VM_PAGER_FAIL);
1324 		}
1325 	}
1326 
1327 	/*
1328 	 * map our page(s) into kva for input
1329 	 */
1330 	bp = getpbuf_kva(&nsw_rcount);
1331 	bio = &bp->b_bio1;
1332 	kva = (vm_offset_t) bp->b_kvabase;
1333 	bcopy(marray, bp->b_xio.xio_pages, i * sizeof(vm_page_t));
1334 	pmap_qenter(kva, bp->b_xio.xio_pages, i);
1335 
1336 	bp->b_data = (caddr_t)kva;
1337 	bp->b_bcount = PAGE_SIZE * i;
1338 	bp->b_xio.xio_npages = i;
1339 	bio->bio_done = swp_pager_async_iodone;
1340 	bio->bio_offset = (off_t)blk << PAGE_SHIFT;
1341 	bio->bio_caller_info1.index = SWBIO_READ;
1342 
1343 	/*
1344 	 * Set index.  If raonly set the index beyond the array so all
1345 	 * the pages are treated the same, otherwise the original mreq is
1346 	 * at index 0.
1347 	 */
1348 	if (raonly)
1349 		bio->bio_driver_info = (void *)(intptr_t)i;
1350 	else
1351 		bio->bio_driver_info = (void *)(intptr_t)0;
1352 
1353 	for (j = 0; j < i; ++j)
1354 		vm_page_flag_set(bp->b_xio.xio_pages[j], PG_SWAPINPROG);
1355 
1356 	mycpu->gd_cnt.v_swapin++;
1357 	mycpu->gd_cnt.v_swappgsin += bp->b_xio.xio_npages;
1358 
1359 	/*
1360 	 * We still hold the lock on mreq, and our automatic completion routine
1361 	 * does not remove it.
1362 	 */
1363 	vm_object_pip_add(object, bp->b_xio.xio_npages);
1364 
1365 	/*
1366 	 * perform the I/O.  NOTE!!!  bp cannot be considered valid after
1367 	 * this point because we automatically release it on completion.
1368 	 * Instead, we look at the one page we are interested in which we
1369 	 * still hold a lock on even through the I/O completion.
1370 	 *
1371 	 * The other pages in our m[] array are also released on completion,
1372 	 * so we cannot assume they are valid anymore either.
1373 	 */
1374 	bp->b_cmd = BUF_CMD_READ;
1375 	BUF_KERNPROC(bp);
1376 	vn_strategy(swapdev_vp, bio);
1377 
1378 	/*
1379 	 * Wait for the page we want to complete.  PG_SWAPINPROG is always
1380 	 * cleared on completion.  If an I/O error occurs, SWAPBLK_NONE
1381 	 * is set in the meta-data.
1382 	 *
1383 	 * If this is a read-ahead only we return immediately without
1384 	 * waiting for I/O.
1385 	 */
1386 	if (raonly)
1387 		return(VM_PAGER_OK);
1388 
1389 	/*
1390 	 * Read-ahead includes originally requested page case.
1391 	 */
1392 	crit_enter();
1393 	lwkt_gettoken(&vm_token);
1394 	while ((mreq->flags & PG_SWAPINPROG) != 0) {
1395 		vm_page_flag_set(mreq, PG_WANTED | PG_REFERENCED);
1396 		mycpu->gd_cnt.v_intrans++;
1397 		if (tsleep(mreq, 0, "swread", hz*20)) {
1398 			kprintf(
1399 			    "swap_pager: indefinite wait buffer: "
1400 				" offset: %lld, size: %ld\n",
1401 			    (long long)bio->bio_offset,
1402 			    (long)bp->b_bcount
1403 			);
1404 		}
1405 	}
1406 	lwkt_reltoken(&vm_token);
1407 	crit_exit();
1408 
1409 	/*
1410 	 * mreq is left bussied after completion, but all the other pages
1411 	 * are freed.  If we had an unrecoverable read error the page will
1412 	 * not be valid.
1413 	 */
1414 	if (mreq->valid != VM_PAGE_BITS_ALL)
1415 		return(VM_PAGER_ERROR);
1416 	else
1417 		return(VM_PAGER_OK);
1418 
1419 	/*
1420 	 * A final note: in a low swap situation, we cannot deallocate swap
1421 	 * and mark a page dirty here because the caller is likely to mark
1422 	 * the page clean when we return, causing the page to possibly revert
1423 	 * to all-zero's later.
1424 	 */
1425 }
1426 
1427 /*
1428  *	swap_pager_putpages:
1429  *
1430  *	Assign swap (if necessary) and initiate I/O on the specified pages.
1431  *
1432  *	We support both OBJT_DEFAULT and OBJT_SWAP objects.  DEFAULT objects
1433  *	are automatically converted to SWAP objects.
1434  *
1435  *	In a low memory situation we may block in vn_strategy(), but the new
1436  *	vm_page reservation system coupled with properly written VFS devices
1437  *	should ensure that no low-memory deadlock occurs.  This is an area
1438  *	which needs work.
1439  *
1440  *	The parent has N vm_object_pip_add() references prior to
1441  *	calling us and will remove references for rtvals[] that are
1442  *	not set to VM_PAGER_PEND.  We need to remove the rest on I/O
1443  *	completion.
1444  *
1445  *	The parent has soft-busy'd the pages it passes us and will unbusy
1446  *	those whos rtvals[] entry is not set to VM_PAGER_PEND on return.
1447  *	We need to unbusy the rest on I/O completion.
1448  *
1449  * No requirements.
1450  */
1451 void
1452 swap_pager_putpages(vm_object_t object, vm_page_t *m, int count,
1453 		    boolean_t sync, int *rtvals)
1454 {
1455 	int i;
1456 	int n = 0;
1457 
1458 	if (count && m[0]->object != object) {
1459 		panic("swap_pager_getpages: object mismatch %p/%p",
1460 		    object,
1461 		    m[0]->object
1462 		);
1463 	}
1464 
1465 	/*
1466 	 * Step 1
1467 	 *
1468 	 * Turn object into OBJT_SWAP
1469 	 * check for bogus sysops
1470 	 * force sync if not pageout process
1471 	 */
1472 	if (object->type == OBJT_DEFAULT) {
1473 		lwkt_gettoken(&vm_token);
1474 		if (object->type == OBJT_DEFAULT)
1475 			swp_pager_meta_convert(object);
1476 		lwkt_reltoken(&vm_token);
1477 	}
1478 
1479 	if (curthread != pagethread)
1480 		sync = TRUE;
1481 
1482 	/*
1483 	 * Step 2
1484 	 *
1485 	 * Update nsw parameters from swap_async_max sysctl values.
1486 	 * Do not let the sysop crash the machine with bogus numbers.
1487 	 */
1488 
1489 	if (swap_async_max != nsw_wcount_async_max) {
1490 		int n;
1491 
1492 		/*
1493 		 * limit range
1494 		 */
1495 		if ((n = swap_async_max) > nswbuf / 2)
1496 			n = nswbuf / 2;
1497 		if (n < 1)
1498 			n = 1;
1499 		swap_async_max = n;
1500 
1501 		/*
1502 		 * Adjust difference ( if possible ).  If the current async
1503 		 * count is too low, we may not be able to make the adjustment
1504 		 * at this time.
1505 		 */
1506 		crit_enter();
1507 		lwkt_gettoken(&vm_token);
1508 		n -= nsw_wcount_async_max;
1509 		if (nsw_wcount_async + n >= 0) {
1510 			nsw_wcount_async += n;
1511 			nsw_wcount_async_max += n;
1512 			wakeup(&nsw_wcount_async);
1513 		}
1514 		lwkt_reltoken(&vm_token);
1515 		crit_exit();
1516 	}
1517 
1518 	/*
1519 	 * Step 3
1520 	 *
1521 	 * Assign swap blocks and issue I/O.  We reallocate swap on the fly.
1522 	 * The page is left dirty until the pageout operation completes
1523 	 * successfully.
1524 	 */
1525 
1526 	for (i = 0; i < count; i += n) {
1527 		struct buf *bp;
1528 		struct bio *bio;
1529 		swblk_t blk;
1530 		int j;
1531 
1532 		/*
1533 		 * Maximum I/O size is limited by a number of factors.
1534 		 */
1535 
1536 		n = min(BLIST_MAX_ALLOC, count - i);
1537 		n = min(n, nsw_cluster_max);
1538 
1539 		crit_enter();
1540 		lwkt_gettoken(&vm_token);
1541 
1542 		/*
1543 		 * Get biggest block of swap we can.  If we fail, fall
1544 		 * back and try to allocate a smaller block.  Don't go
1545 		 * overboard trying to allocate space if it would overly
1546 		 * fragment swap.
1547 		 */
1548 		while (
1549 		    (blk = swp_pager_getswapspace(object, n)) == SWAPBLK_NONE &&
1550 		    n > 4
1551 		) {
1552 			n >>= 1;
1553 		}
1554 		if (blk == SWAPBLK_NONE) {
1555 			for (j = 0; j < n; ++j)
1556 				rtvals[i+j] = VM_PAGER_FAIL;
1557 			lwkt_reltoken(&vm_token);
1558 			crit_exit();
1559 			continue;
1560 		}
1561 
1562 		/*
1563 		 * The I/O we are constructing cannot cross a physical
1564 		 * disk boundry in the swap stripe.  Note: we are still
1565 		 * at splvm().
1566 		 */
1567 		if ((blk ^ (blk + n)) & dmmax_mask) {
1568 			j = ((blk + dmmax) & dmmax_mask) - blk;
1569 			swp_pager_freeswapspace(object, blk + j, n - j);
1570 			n = j;
1571 		}
1572 
1573 		/*
1574 		 * All I/O parameters have been satisfied, build the I/O
1575 		 * request and assign the swap space.
1576 		 */
1577 		if (sync == TRUE)
1578 			bp = getpbuf_kva(&nsw_wcount_sync);
1579 		else
1580 			bp = getpbuf_kva(&nsw_wcount_async);
1581 		bio = &bp->b_bio1;
1582 
1583 		pmap_qenter((vm_offset_t)bp->b_data, &m[i], n);
1584 
1585 		bp->b_bcount = PAGE_SIZE * n;
1586 		bio->bio_offset = (off_t)blk << PAGE_SHIFT;
1587 
1588 		for (j = 0; j < n; ++j) {
1589 			vm_page_t mreq = m[i+j];
1590 
1591 			swp_pager_meta_build(mreq->object, mreq->pindex,
1592 					     blk + j);
1593 			if (object->type == OBJT_SWAP)
1594 				vm_page_dirty(mreq);
1595 			rtvals[i+j] = VM_PAGER_OK;
1596 
1597 			vm_page_flag_set(mreq, PG_SWAPINPROG);
1598 			bp->b_xio.xio_pages[j] = mreq;
1599 		}
1600 		bp->b_xio.xio_npages = n;
1601 
1602 		mycpu->gd_cnt.v_swapout++;
1603 		mycpu->gd_cnt.v_swappgsout += bp->b_xio.xio_npages;
1604 
1605 		lwkt_reltoken(&vm_token);
1606 		crit_exit();
1607 
1608 		bp->b_dirtyoff = 0;		/* req'd for NFS */
1609 		bp->b_dirtyend = bp->b_bcount;	/* req'd for NFS */
1610 		bp->b_cmd = BUF_CMD_WRITE;
1611 		bio->bio_caller_info1.index = SWBIO_WRITE;
1612 
1613 		/*
1614 		 * asynchronous
1615 		 */
1616 		if (sync == FALSE) {
1617 			bio->bio_done = swp_pager_async_iodone;
1618 			BUF_KERNPROC(bp);
1619 			vn_strategy(swapdev_vp, bio);
1620 
1621 			for (j = 0; j < n; ++j)
1622 				rtvals[i+j] = VM_PAGER_PEND;
1623 			continue;
1624 		}
1625 
1626 		/*
1627 		 * Issue synchrnously.
1628 		 *
1629 		 * Wait for the sync I/O to complete, then update rtvals.
1630 		 * We just set the rtvals[] to VM_PAGER_PEND so we can call
1631 		 * our async completion routine at the end, thus avoiding a
1632 		 * double-free.
1633 		 */
1634 		bio->bio_caller_info1.index |= SWBIO_SYNC;
1635 		bio->bio_done = biodone_sync;
1636 		bio->bio_flags |= BIO_SYNC;
1637 		vn_strategy(swapdev_vp, bio);
1638 		biowait(bio, "swwrt");
1639 
1640 		for (j = 0; j < n; ++j)
1641 			rtvals[i+j] = VM_PAGER_PEND;
1642 
1643 		/*
1644 		 * Now that we are through with the bp, we can call the
1645 		 * normal async completion, which frees everything up.
1646 		 */
1647 		swp_pager_async_iodone(bio);
1648 	}
1649 }
1650 
1651 /*
1652  * No requirements.
1653  */
1654 void
1655 swap_pager_newswap(void)
1656 {
1657 	swp_sizecheck();
1658 }
1659 
1660 /*
1661  *	swp_pager_async_iodone:
1662  *
1663  *	Completion routine for asynchronous reads and writes from/to swap.
1664  *	Also called manually by synchronous code to finish up a bp.
1665  *
1666  *	For READ operations, the pages are PG_BUSY'd.  For WRITE operations,
1667  *	the pages are vm_page_t->busy'd.  For READ operations, we PG_BUSY
1668  *	unbusy all pages except the 'main' request page.  For WRITE
1669  *	operations, we vm_page_t->busy'd unbusy all pages ( we can do this
1670  *	because we marked them all VM_PAGER_PEND on return from putpages ).
1671  *
1672  *	This routine may not block.
1673  *
1674  * No requirements.
1675  */
1676 static void
1677 swp_pager_async_iodone(struct bio *bio)
1678 {
1679 	struct buf *bp = bio->bio_buf;
1680 	vm_object_t object = NULL;
1681 	int i;
1682 	int *nswptr;
1683 
1684 	/*
1685 	 * report error
1686 	 */
1687 	if (bp->b_flags & B_ERROR) {
1688 		kprintf(
1689 		    "swap_pager: I/O error - %s failed; offset %lld,"
1690 			"size %ld, error %d\n",
1691 		    ((bio->bio_caller_info1.index & SWBIO_READ) ?
1692 			"pagein" : "pageout"),
1693 		    (long long)bio->bio_offset,
1694 		    (long)bp->b_bcount,
1695 		    bp->b_error
1696 		);
1697 	}
1698 
1699 	/*
1700 	 * set object, raise to splvm().
1701 	 */
1702 	if (bp->b_xio.xio_npages)
1703 		object = bp->b_xio.xio_pages[0]->object;
1704 	crit_enter();
1705 	lwkt_gettoken(&vm_token);
1706 
1707 	/*
1708 	 * remove the mapping for kernel virtual
1709 	 */
1710 	pmap_qremove((vm_offset_t)bp->b_data, bp->b_xio.xio_npages);
1711 
1712 	/*
1713 	 * cleanup pages.  If an error occurs writing to swap, we are in
1714 	 * very serious trouble.  If it happens to be a disk error, though,
1715 	 * we may be able to recover by reassigning the swap later on.  So
1716 	 * in this case we remove the m->swapblk assignment for the page
1717 	 * but do not free it in the rlist.  The errornous block(s) are thus
1718 	 * never reallocated as swap.  Redirty the page and continue.
1719 	 */
1720 	for (i = 0; i < bp->b_xio.xio_npages; ++i) {
1721 		vm_page_t m = bp->b_xio.xio_pages[i];
1722 
1723 		if (bp->b_flags & B_ERROR) {
1724 			/*
1725 			 * If an error occurs I'd love to throw the swapblk
1726 			 * away without freeing it back to swapspace, so it
1727 			 * can never be used again.  But I can't from an
1728 			 * interrupt.
1729 			 */
1730 
1731 			if (bio->bio_caller_info1.index & SWBIO_READ) {
1732 				/*
1733 				 * When reading, reqpage needs to stay
1734 				 * locked for the parent, but all other
1735 				 * pages can be freed.  We still want to
1736 				 * wakeup the parent waiting on the page,
1737 				 * though.  ( also: pg_reqpage can be -1 and
1738 				 * not match anything ).
1739 				 *
1740 				 * We have to wake specifically requested pages
1741 				 * up too because we cleared PG_SWAPINPROG and
1742 				 * someone may be waiting for that.
1743 				 *
1744 				 * NOTE: for reads, m->dirty will probably
1745 				 * be overridden by the original caller of
1746 				 * getpages so don't play cute tricks here.
1747 				 *
1748 				 * NOTE: We can't actually free the page from
1749 				 * here, because this is an interrupt.  It
1750 				 * is not legal to mess with object->memq
1751 				 * from an interrupt.  Deactivate the page
1752 				 * instead.
1753 				 */
1754 
1755 				m->valid = 0;
1756 				vm_page_flag_clear(m, PG_ZERO);
1757 				vm_page_flag_clear(m, PG_SWAPINPROG);
1758 
1759 				/*
1760 				 * bio_driver_info holds the requested page
1761 				 * index.
1762 				 */
1763 				if (i != (int)(intptr_t)bio->bio_driver_info) {
1764 					vm_page_deactivate(m);
1765 					vm_page_wakeup(m);
1766 				} else {
1767 					vm_page_flash(m);
1768 				}
1769 				/*
1770 				 * If i == bp->b_pager.pg_reqpage, do not wake
1771 				 * the page up.  The caller needs to.
1772 				 */
1773 			} else {
1774 				/*
1775 				 * If a write error occurs remove the swap
1776 				 * assignment (note that PG_SWAPPED may or
1777 				 * may not be set depending on prior activity).
1778 				 *
1779 				 * Re-dirty OBJT_SWAP pages as there is no
1780 				 * other backing store, we can't throw the
1781 				 * page away.
1782 				 *
1783 				 * Non-OBJT_SWAP pages (aka swapcache) must
1784 				 * not be dirtied since they may not have
1785 				 * been dirty in the first place, and they
1786 				 * do have backing store (the vnode).
1787 				 */
1788 				swp_pager_meta_ctl(m->object, m->pindex,
1789 						   SWM_FREE);
1790 				vm_page_flag_clear(m, PG_SWAPPED);
1791 				if (m->object->type == OBJT_SWAP) {
1792 					vm_page_dirty(m);
1793 					vm_page_activate(m);
1794 				}
1795 				vm_page_flag_clear(m, PG_SWAPINPROG);
1796 				vm_page_io_finish(m);
1797 			}
1798 		} else if (bio->bio_caller_info1.index & SWBIO_READ) {
1799 			/*
1800 			 * NOTE: for reads, m->dirty will probably be
1801 			 * overridden by the original caller of getpages so
1802 			 * we cannot set them in order to free the underlying
1803 			 * swap in a low-swap situation.  I don't think we'd
1804 			 * want to do that anyway, but it was an optimization
1805 			 * that existed in the old swapper for a time before
1806 			 * it got ripped out due to precisely this problem.
1807 			 *
1808 			 * clear PG_ZERO in page.
1809 			 *
1810 			 * If not the requested page then deactivate it.
1811 			 *
1812 			 * Note that the requested page, reqpage, is left
1813 			 * busied, but we still have to wake it up.  The
1814 			 * other pages are released (unbusied) by
1815 			 * vm_page_wakeup().  We do not set reqpage's
1816 			 * valid bits here, it is up to the caller.
1817 			 */
1818 
1819 			/*
1820 			 * NOTE: can't call pmap_clear_modify(m) from an
1821 			 * interrupt thread, the pmap code may have to map
1822 			 * non-kernel pmaps and currently asserts the case.
1823 			 */
1824 			/*pmap_clear_modify(m);*/
1825 			m->valid = VM_PAGE_BITS_ALL;
1826 			vm_page_undirty(m);
1827 			vm_page_flag_clear(m, PG_ZERO | PG_SWAPINPROG);
1828 			vm_page_flag_set(m, PG_SWAPPED);
1829 
1830 			/*
1831 			 * We have to wake specifically requested pages
1832 			 * up too because we cleared PG_SWAPINPROG and
1833 			 * could be waiting for it in getpages.  However,
1834 			 * be sure to not unbusy getpages specifically
1835 			 * requested page - getpages expects it to be
1836 			 * left busy.
1837 			 *
1838 			 * bio_driver_info holds the requested page
1839 			 */
1840 			if (i != (int)(intptr_t)bio->bio_driver_info) {
1841 				vm_page_deactivate(m);
1842 				vm_page_wakeup(m);
1843 			} else {
1844 				vm_page_flash(m);
1845 			}
1846 		} else {
1847 			/*
1848 			 * Mark the page clean but do not mess with the
1849 			 * pmap-layer's modified state.  That state should
1850 			 * also be clear since the caller protected the
1851 			 * page VM_PROT_READ, but allow the case.
1852 			 *
1853 			 * We are in an interrupt, avoid pmap operations.
1854 			 *
1855 			 * If we have a severe page deficit, deactivate the
1856 			 * page.  Do not try to cache it (which would also
1857 			 * involve a pmap op), because the page might still
1858 			 * be read-heavy.
1859 			 *
1860 			 * When using the swap to cache clean vnode pages
1861 			 * we do not mess with the page dirty bits.
1862 			 */
1863 			if (m->object->type == OBJT_SWAP)
1864 				vm_page_undirty(m);
1865 			vm_page_flag_clear(m, PG_SWAPINPROG);
1866 			vm_page_flag_set(m, PG_SWAPPED);
1867 			vm_page_io_finish(m);
1868 			if (vm_page_count_severe())
1869 				vm_page_deactivate(m);
1870 #if 0
1871 			if (!vm_page_count_severe() || !vm_page_try_to_cache(m))
1872 				vm_page_protect(m, VM_PROT_READ);
1873 #endif
1874 		}
1875 	}
1876 
1877 	/*
1878 	 * adjust pip.  NOTE: the original parent may still have its own
1879 	 * pip refs on the object.
1880 	 */
1881 
1882 	if (object)
1883 		vm_object_pip_wakeupn(object, bp->b_xio.xio_npages);
1884 
1885 	/*
1886 	 * Release the physical I/O buffer.
1887 	 *
1888 	 * NOTE: Due to synchronous operations in the write case b_cmd may
1889 	 *	 already be set to BUF_CMD_DONE and BIO_SYNC may have already
1890 	 *	 been cleared.
1891 	 */
1892 	if (bio->bio_caller_info1.index & SWBIO_READ)
1893 		nswptr = &nsw_rcount;
1894 	else if (bio->bio_caller_info1.index & SWBIO_SYNC)
1895 		nswptr = &nsw_wcount_sync;
1896 	else
1897 		nswptr = &nsw_wcount_async;
1898 	bp->b_cmd = BUF_CMD_DONE;
1899 	relpbuf(bp, nswptr);
1900 	lwkt_reltoken(&vm_token);
1901 	crit_exit();
1902 }
1903 
1904 /*
1905  * Fault-in a potentially swapped page and remove the swap reference.
1906  */
1907 static __inline void
1908 swp_pager_fault_page(vm_object_t object, vm_pindex_t pindex)
1909 {
1910 	struct vnode *vp;
1911 	vm_page_t m;
1912 	int error;
1913 
1914 	if (object->type == OBJT_VNODE) {
1915 		/*
1916 		 * Any swap related to a vnode is due to swapcache.  We must
1917 		 * vget() the vnode in case it is not active (otherwise
1918 		 * vref() will panic).  Calling vm_object_page_remove() will
1919 		 * ensure that any swap ref is removed interlocked with the
1920 		 * page.  clean_only is set to TRUE so we don't throw away
1921 		 * dirty pages.
1922 		 */
1923 		vp = object->handle;
1924 		error = vget(vp, LK_SHARED | LK_RETRY | LK_CANRECURSE);
1925 		if (error == 0) {
1926 			vm_object_page_remove(object, pindex, pindex + 1, TRUE);
1927 			vput(vp);
1928 		}
1929 	} else {
1930 		/*
1931 		 * Otherwise it is a normal OBJT_SWAP object and we can
1932 		 * fault the page in and remove the swap.
1933 		 */
1934 		m = vm_fault_object_page(object, IDX_TO_OFF(pindex),
1935 					 VM_PROT_NONE,
1936 					 VM_FAULT_DIRTY | VM_FAULT_UNSWAP,
1937 					 &error);
1938 		if (m)
1939 			vm_page_unhold(m);
1940 	}
1941 }
1942 
1943 int
1944 swap_pager_swapoff(int devidx)
1945 {
1946 	vm_object_t object;
1947 	struct swblock *swap;
1948 	swblk_t v;
1949 	int i;
1950 
1951 	lwkt_gettoken(&vm_token);
1952 	lwkt_gettoken(&vmobj_token);
1953 rescan:
1954 	TAILQ_FOREACH(object, &vm_object_list, object_list) {
1955 		if (object->type == OBJT_SWAP || object->type == OBJT_VNODE) {
1956 			RB_FOREACH(swap, swblock_rb_tree, &object->swblock_root) {
1957 				for (i = 0; i < SWAP_META_PAGES; ++i) {
1958 					v = swap->swb_pages[i];
1959 					if (v != SWAPBLK_NONE &&
1960 					    BLK2DEVIDX(v) == devidx) {
1961 						swp_pager_fault_page(
1962 						    object,
1963 						    swap->swb_index + i);
1964 						goto rescan;
1965 					}
1966 				}
1967 			}
1968 		}
1969 	}
1970 	lwkt_reltoken(&vmobj_token);
1971 	lwkt_reltoken(&vm_token);
1972 
1973 	/*
1974 	 * If we fail to locate all swblocks we just fail gracefully and
1975 	 * do not bother to restore paging on the swap device.  If the
1976 	 * user wants to retry the user can retry.
1977 	 */
1978 	if (swdevt[devidx].sw_nused)
1979 		return (1);
1980 	else
1981 		return (0);
1982 }
1983 
1984 /************************************************************************
1985  *				SWAP META DATA 				*
1986  ************************************************************************
1987  *
1988  *	These routines manipulate the swap metadata stored in the
1989  *	OBJT_SWAP object.  All swp_*() routines must be called at
1990  *	splvm() because swap can be freed up by the low level vm_page
1991  *	code which might be called from interrupts beyond what splbio() covers.
1992  *
1993  *	Swap metadata is implemented with a global hash and not directly
1994  *	linked into the object.  Instead the object simply contains
1995  *	appropriate tracking counters.
1996  */
1997 
1998 /*
1999  * Lookup the swblock containing the specified swap block index.
2000  *
2001  * The caller must hold vm_token.
2002  */
2003 static __inline
2004 struct swblock *
2005 swp_pager_lookup(vm_object_t object, vm_pindex_t index)
2006 {
2007 	index &= ~SWAP_META_MASK;
2008 	return (RB_LOOKUP(swblock_rb_tree, &object->swblock_root, index));
2009 }
2010 
2011 /*
2012  * Remove a swblock from the RB tree.
2013  *
2014  * The caller must hold vm_token.
2015  */
2016 static __inline
2017 void
2018 swp_pager_remove(vm_object_t object, struct swblock *swap)
2019 {
2020 	RB_REMOVE(swblock_rb_tree, &object->swblock_root, swap);
2021 }
2022 
2023 /*
2024  * Convert default object to swap object if necessary
2025  *
2026  * The caller must hold vm_token.
2027  */
2028 static void
2029 swp_pager_meta_convert(vm_object_t object)
2030 {
2031 	if (object->type == OBJT_DEFAULT) {
2032 		object->type = OBJT_SWAP;
2033 		KKASSERT(object->swblock_count == 0);
2034 	}
2035 }
2036 
2037 /*
2038  * SWP_PAGER_META_BUILD() -	add swap block to swap meta data for object
2039  *
2040  *	We first convert the object to a swap object if it is a default
2041  *	object.  Vnode objects do not need to be converted.
2042  *
2043  *	The specified swapblk is added to the object's swap metadata.  If
2044  *	the swapblk is not valid, it is freed instead.  Any previously
2045  *	assigned swapblk is freed.
2046  *
2047  * The caller must hold vm_token.
2048  */
2049 static void
2050 swp_pager_meta_build(vm_object_t object, vm_pindex_t index, swblk_t swapblk)
2051 {
2052 	struct swblock *swap;
2053 	struct swblock *oswap;
2054 
2055 	KKASSERT(swapblk != SWAPBLK_NONE);
2056 
2057 	/*
2058 	 * Convert object if necessary
2059 	 */
2060 	if (object->type == OBJT_DEFAULT)
2061 		swp_pager_meta_convert(object);
2062 
2063 	/*
2064 	 * Locate swblock.  If not found create, but if we aren't adding
2065 	 * anything just return.  If we run out of space in the map we wait
2066 	 * and, since the hash table may have changed, retry.
2067 	 */
2068 retry:
2069 	swap = swp_pager_lookup(object, index);
2070 
2071 	if (swap == NULL) {
2072 		int i;
2073 
2074 		swap = zalloc(swap_zone);
2075 		if (swap == NULL) {
2076 			vm_wait(0);
2077 			goto retry;
2078 		}
2079 		swap->swb_index = index & ~SWAP_META_MASK;
2080 		swap->swb_count = 0;
2081 
2082 		++object->swblock_count;
2083 
2084 		for (i = 0; i < SWAP_META_PAGES; ++i)
2085 			swap->swb_pages[i] = SWAPBLK_NONE;
2086 		oswap = RB_INSERT(swblock_rb_tree, &object->swblock_root, swap);
2087 		KKASSERT(oswap == NULL);
2088 	}
2089 
2090 	/*
2091 	 * Delete prior contents of metadata
2092 	 */
2093 
2094 	index &= SWAP_META_MASK;
2095 
2096 	if (swap->swb_pages[index] != SWAPBLK_NONE) {
2097 		swp_pager_freeswapspace(object, swap->swb_pages[index], 1);
2098 		--swap->swb_count;
2099 	}
2100 
2101 	/*
2102 	 * Enter block into metadata
2103 	 */
2104 	swap->swb_pages[index] = swapblk;
2105 	if (swapblk != SWAPBLK_NONE)
2106 		++swap->swb_count;
2107 }
2108 
2109 /*
2110  * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
2111  *
2112  *	The requested range of blocks is freed, with any associated swap
2113  *	returned to the swap bitmap.
2114  *
2115  *	This routine will free swap metadata structures as they are cleaned
2116  *	out.  This routine does *NOT* operate on swap metadata associated
2117  *	with resident pages.
2118  *
2119  * The caller must hold vm_token.
2120  */
2121 static int swp_pager_meta_free_callback(struct swblock *swb, void *data);
2122 
2123 static void
2124 swp_pager_meta_free(vm_object_t object, vm_pindex_t index, vm_pindex_t count)
2125 {
2126 	struct swfreeinfo info;
2127 
2128 	/*
2129 	 * Nothing to do
2130 	 */
2131 	if (object->swblock_count == 0) {
2132 		KKASSERT(RB_EMPTY(&object->swblock_root));
2133 		return;
2134 	}
2135 	if (count == 0)
2136 		return;
2137 
2138 	/*
2139 	 * Setup for RB tree scan.  Note that the pindex range can be huge
2140 	 * due to the 64 bit page index space so we cannot safely iterate.
2141 	 */
2142 	info.object = object;
2143 	info.basei = index & ~SWAP_META_MASK;
2144 	info.begi = index;
2145 	info.endi = index + count - 1;
2146 	swblock_rb_tree_RB_SCAN(&object->swblock_root, rb_swblock_scancmp,
2147 				swp_pager_meta_free_callback, &info);
2148 }
2149 
2150 /*
2151  * The caller must hold vm_token.
2152  */
2153 static
2154 int
2155 swp_pager_meta_free_callback(struct swblock *swap, void *data)
2156 {
2157 	struct swfreeinfo *info = data;
2158 	vm_object_t object = info->object;
2159 	int index;
2160 	int eindex;
2161 
2162 	/*
2163 	 * Figure out the range within the swblock.  The wider scan may
2164 	 * return edge-case swap blocks when the start and/or end points
2165 	 * are in the middle of a block.
2166 	 */
2167 	if (swap->swb_index < info->begi)
2168 		index = (int)info->begi & SWAP_META_MASK;
2169 	else
2170 		index = 0;
2171 
2172 	if (swap->swb_index + SWAP_META_PAGES > info->endi)
2173 		eindex = (int)info->endi & SWAP_META_MASK;
2174 	else
2175 		eindex = SWAP_META_MASK;
2176 
2177 	/*
2178 	 * Scan and free the blocks.  The loop terminates early
2179 	 * if (swap) runs out of blocks and could be freed.
2180 	 */
2181 	while (index <= eindex) {
2182 		swblk_t v = swap->swb_pages[index];
2183 
2184 		if (v != SWAPBLK_NONE) {
2185 			swp_pager_freeswapspace(object, v, 1);
2186 			swap->swb_pages[index] = SWAPBLK_NONE;
2187 			if (--swap->swb_count == 0) {
2188 				swp_pager_remove(object, swap);
2189 				zfree(swap_zone, swap);
2190 				--object->swblock_count;
2191 				break;
2192 			}
2193 		}
2194 		++index;
2195 	}
2196 	/* swap may be invalid here due to zfree above */
2197 	return(0);
2198 }
2199 
2200 /*
2201  * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
2202  *
2203  *	This routine locates and destroys all swap metadata associated with
2204  *	an object.
2205  *
2206  * The caller must hold vm_token.
2207  */
2208 static void
2209 swp_pager_meta_free_all(vm_object_t object)
2210 {
2211 	struct swblock *swap;
2212 	int i;
2213 
2214 	while ((swap = RB_ROOT(&object->swblock_root)) != NULL) {
2215 		swp_pager_remove(object, swap);
2216 		for (i = 0; i < SWAP_META_PAGES; ++i) {
2217 			swblk_t v = swap->swb_pages[i];
2218 			if (v != SWAPBLK_NONE) {
2219 				--swap->swb_count;
2220 				swp_pager_freeswapspace(object, v, 1);
2221 			}
2222 		}
2223 		if (swap->swb_count != 0)
2224 			panic("swap_pager_meta_free_all: swb_count != 0");
2225 		zfree(swap_zone, swap);
2226 		--object->swblock_count;
2227 	}
2228 	KKASSERT(object->swblock_count == 0);
2229 }
2230 
2231 /*
2232  * SWP_PAGER_METACTL() -  misc control of swap and vm_page_t meta data.
2233  *
2234  *	This routine is capable of looking up, popping, or freeing
2235  *	swapblk assignments in the swap meta data or in the vm_page_t.
2236  *	The routine typically returns the swapblk being looked-up, or popped,
2237  *	or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block
2238  *	was invalid.  This routine will automatically free any invalid
2239  *	meta-data swapblks.
2240  *
2241  *	It is not possible to store invalid swapblks in the swap meta data
2242  *	(other then a literal 'SWAPBLK_NONE'), so we don't bother checking.
2243  *
2244  *	When acting on a busy resident page and paging is in progress, we
2245  *	have to wait until paging is complete but otherwise can act on the
2246  *	busy page.
2247  *
2248  *	SWM_FREE	remove and free swap block from metadata
2249  *	SWM_POP		remove from meta data but do not free.. pop it out
2250  *
2251  * The caller must hold vm_token.
2252  */
2253 static swblk_t
2254 swp_pager_meta_ctl(vm_object_t object, vm_pindex_t index, int flags)
2255 {
2256 	struct swblock *swap;
2257 	swblk_t r1;
2258 
2259 	if (object->swblock_count == 0)
2260 		return(SWAPBLK_NONE);
2261 
2262 	r1 = SWAPBLK_NONE;
2263 	swap = swp_pager_lookup(object, index);
2264 
2265 	if (swap != NULL) {
2266 		index &= SWAP_META_MASK;
2267 		r1 = swap->swb_pages[index];
2268 
2269 		if (r1 != SWAPBLK_NONE) {
2270 			if (flags & SWM_FREE) {
2271 				swp_pager_freeswapspace(object, r1, 1);
2272 				r1 = SWAPBLK_NONE;
2273 			}
2274 			if (flags & (SWM_FREE|SWM_POP)) {
2275 				swap->swb_pages[index] = SWAPBLK_NONE;
2276 				if (--swap->swb_count == 0) {
2277 					swp_pager_remove(object, swap);
2278 					zfree(swap_zone, swap);
2279 					--object->swblock_count;
2280 				}
2281 			}
2282 		}
2283 	}
2284 	return(r1);
2285 }
2286