xref: /dragonfly/sys/vm/swap_pager.c (revision 6052a76a)
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 1998-2010 The DragonFly Project.  All rights reserved.
5  *
6  * This code is derived from software contributed to The DragonFly Project
7  * by Matthew Dillon <dillon@backplane.com>
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  *
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in
17  *    the documentation and/or other materials provided with the
18  *    distribution.
19  * 3. Neither the name of The DragonFly Project nor the names of its
20  *    contributors may be used to endorse or promote products derived
21  *    from this software without specific, prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
27  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
29  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
31  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
32  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
33  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  * Copyright (c) 1994 John S. Dyson
37  * Copyright (c) 1990 University of Utah.
38  * Copyright (c) 1991, 1993
39  *	The Regents of the University of California.  All rights reserved.
40  *
41  * This code is derived from software contributed to Berkeley by
42  * the Systems Programming Group of the University of Utah Computer
43  * Science Department.
44  *
45  * Redistribution and use in source and binary forms, with or without
46  * modification, are permitted provided that the following conditions
47  * are met:
48  * 1. Redistributions of source code must retain the above copyright
49  *    notice, this list of conditions and the following disclaimer.
50  * 2. Redistributions in binary form must reproduce the above copyright
51  *    notice, this list of conditions and the following disclaimer in the
52  *    documentation and/or other materials provided with the distribution.
53  * 3. Neither the name of the University nor the names of its contributors
54  *    may be used to endorse or promote products derived from this software
55  *    without specific prior written permission.
56  *
57  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
58  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
59  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
60  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
61  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
62  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
63  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
64  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
65  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
66  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
67  * SUCH DAMAGE.
68  *
69  *				New Swap System
70  *				Matthew Dillon
71  *
72  * Radix Bitmap 'blists'.
73  *
74  *	- The new swapper uses the new radix bitmap code.  This should scale
75  *	  to arbitrarily small or arbitrarily large swap spaces and an almost
76  *	  arbitrary degree of fragmentation.
77  *
78  * Features:
79  *
80  *	- on the fly reallocation of swap during putpages.  The new system
81  *	  does not try to keep previously allocated swap blocks for dirty
82  *	  pages.
83  *
84  *	- on the fly deallocation of swap
85  *
86  *	- No more garbage collection required.  Unnecessarily allocated swap
87  *	  blocks only exist for dirty vm_page_t's now and these are already
88  *	  cycled (in a high-load system) by the pager.  We also do on-the-fly
89  *	  removal of invalidated swap blocks when a page is destroyed
90  *	  or renamed.
91  *
92  * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
93  * @(#)swap_pager.c	8.9 (Berkeley) 3/21/94
94  * $FreeBSD: src/sys/vm/swap_pager.c,v 1.130.2.12 2002/08/31 21:15:55 dillon Exp $
95  */
96 
97 #include <sys/param.h>
98 #include <sys/systm.h>
99 #include <sys/conf.h>
100 #include <sys/kernel.h>
101 #include <sys/proc.h>
102 #include <sys/buf.h>
103 #include <sys/vnode.h>
104 #include <sys/malloc.h>
105 #include <sys/vmmeter.h>
106 #include <sys/sysctl.h>
107 #include <sys/blist.h>
108 #include <sys/lock.h>
109 #include <sys/thread2.h>
110 
111 #include "opt_swap.h"
112 #include <vm/vm.h>
113 #include <vm/vm_object.h>
114 #include <vm/vm_page.h>
115 #include <vm/vm_pager.h>
116 #include <vm/vm_pageout.h>
117 #include <vm/swap_pager.h>
118 #include <vm/vm_extern.h>
119 #include <vm/vm_zone.h>
120 #include <vm/vnode_pager.h>
121 
122 #include <sys/buf2.h>
123 #include <vm/vm_page2.h>
124 
125 #ifndef MAX_PAGEOUT_CLUSTER
126 #define MAX_PAGEOUT_CLUSTER	SWB_NPAGES
127 #endif
128 
129 #define SWM_FREE	0x02	/* free, period			*/
130 #define SWM_POP		0x04	/* pop out			*/
131 
132 #define SWBIO_READ	0x01
133 #define SWBIO_WRITE	0x02
134 #define SWBIO_SYNC	0x04
135 
136 struct swfreeinfo {
137 	vm_object_t	object;
138 	vm_pindex_t	basei;
139 	vm_pindex_t	begi;
140 	vm_pindex_t	endi;	/* inclusive */
141 };
142 
143 struct swswapoffinfo {
144 	vm_object_t	object;
145 	int		devidx;
146 	int		shared;
147 };
148 
149 /*
150  * vm_swap_size is in page-sized chunks now.  It was DEV_BSIZE'd chunks
151  * in the old system.
152  */
153 
154 int swap_pager_full;		/* swap space exhaustion (task killing) */
155 int swap_fail_ticks;		/* when we became exhausted */
156 int swap_pager_almost_full;	/* swap space exhaustion (w/ hysteresis)*/
157 int vm_swap_cache_use;
158 int vm_swap_anon_use;
159 static int vm_report_swap_allocs;
160 
161 static int nsw_rcount;		/* free read buffers			*/
162 static int nsw_wcount_sync;	/* limit write buffers / synchronous	*/
163 static int nsw_wcount_async;	/* limit write buffers / asynchronous	*/
164 static int nsw_wcount_async_max;/* assigned maximum			*/
165 static int nsw_cluster_max;	/* maximum VOP I/O allowed		*/
166 
167 struct blist *swapblist;
168 static int swap_async_max = 4;	/* maximum in-progress async I/O's	*/
169 static int swap_burst_read = 0;	/* allow burst reading */
170 static swblk_t swapiterator;	/* linearize allocations */
171 
172 static struct spinlock swapbp_spin = SPINLOCK_INITIALIZER(&swapbp_spin, "swapbp_spin");
173 
174 /* from vm_swap.c */
175 extern struct vnode *swapdev_vp;
176 extern struct swdevt *swdevt;
177 extern int nswdev;
178 
179 #define BLK2DEVIDX(blk) (nswdev > 1 ? blk / dmmax % nswdev : 0)
180 
181 SYSCTL_INT(_vm, OID_AUTO, swap_async_max,
182         CTLFLAG_RW, &swap_async_max, 0, "Maximum running async swap ops");
183 SYSCTL_INT(_vm, OID_AUTO, swap_burst_read,
184         CTLFLAG_RW, &swap_burst_read, 0, "Allow burst reads for pageins");
185 
186 SYSCTL_INT(_vm, OID_AUTO, swap_cache_use,
187         CTLFLAG_RD, &vm_swap_cache_use, 0, "");
188 SYSCTL_INT(_vm, OID_AUTO, swap_anon_use,
189         CTLFLAG_RD, &vm_swap_anon_use, 0, "");
190 SYSCTL_INT(_vm, OID_AUTO, swap_size,
191         CTLFLAG_RD, &vm_swap_size, 0, "");
192 SYSCTL_INT(_vm, OID_AUTO, report_swap_allocs,
193         CTLFLAG_RW, &vm_report_swap_allocs, 0, "");
194 
195 vm_zone_t		swap_zone;
196 
197 /*
198  * Red-Black tree for swblock entries
199  *
200  * The caller must hold vm_token
201  */
202 RB_GENERATE2(swblock_rb_tree, swblock, swb_entry, rb_swblock_compare,
203 	     vm_pindex_t, swb_index);
204 
205 int
206 rb_swblock_compare(struct swblock *swb1, struct swblock *swb2)
207 {
208 	if (swb1->swb_index < swb2->swb_index)
209 		return(-1);
210 	if (swb1->swb_index > swb2->swb_index)
211 		return(1);
212 	return(0);
213 }
214 
215 static
216 int
217 rb_swblock_scancmp(struct swblock *swb, void *data)
218 {
219 	struct swfreeinfo *info = data;
220 
221 	if (swb->swb_index < info->basei)
222 		return(-1);
223 	if (swb->swb_index > info->endi)
224 		return(1);
225 	return(0);
226 }
227 
228 static
229 int
230 rb_swblock_condcmp(struct swblock *swb, void *data)
231 {
232 	struct swfreeinfo *info = data;
233 
234 	if (swb->swb_index < info->basei)
235 		return(-1);
236 	return(0);
237 }
238 
239 /*
240  * pagerops for OBJT_SWAP - "swap pager".  Some ops are also global procedure
241  * calls hooked from other parts of the VM system and do not appear here.
242  * (see vm/swap_pager.h).
243  */
244 
245 static void	swap_pager_dealloc (vm_object_t object);
246 static int	swap_pager_getpage (vm_object_t, vm_page_t *, int);
247 static void	swap_chain_iodone(struct bio *biox);
248 
249 struct pagerops swappagerops = {
250 	swap_pager_dealloc,	/* deallocate an OBJT_SWAP object	*/
251 	swap_pager_getpage,	/* pagein				*/
252 	swap_pager_putpages,	/* pageout				*/
253 	swap_pager_haspage	/* get backing store status for page	*/
254 };
255 
256 /*
257  * dmmax is in page-sized chunks with the new swap system.  It was
258  * dev-bsized chunks in the old.  dmmax is always a power of 2.
259  *
260  * swap_*() routines are externally accessible.  swp_*() routines are
261  * internal.
262  */
263 
264 int dmmax;
265 static int dmmax_mask;
266 int nswap_lowat = 128;		/* in pages, swap_pager_almost_full warn */
267 int nswap_hiwat = 512;		/* in pages, swap_pager_almost_full warn */
268 
269 static __inline void	swp_sizecheck (void);
270 static void	swp_pager_async_iodone (struct bio *bio);
271 
272 /*
273  * Swap bitmap functions
274  */
275 
276 static __inline void	swp_pager_freeswapspace(vm_object_t object,
277 						swblk_t blk, int npages);
278 static __inline swblk_t	swp_pager_getswapspace(vm_object_t object, int npages);
279 
280 /*
281  * Metadata functions
282  */
283 
284 static void swp_pager_meta_convert(vm_object_t);
285 static void swp_pager_meta_build(vm_object_t, vm_pindex_t, swblk_t);
286 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, vm_pindex_t);
287 static void swp_pager_meta_free_all(vm_object_t);
288 static swblk_t swp_pager_meta_ctl(vm_object_t, vm_pindex_t, int);
289 
290 /*
291  * SWP_SIZECHECK() -	update swap_pager_full indication
292  *
293  *	update the swap_pager_almost_full indication and warn when we are
294  *	about to run out of swap space, using lowat/hiwat hysteresis.
295  *
296  *	Clear swap_pager_full ( task killing ) indication when lowat is met.
297  *
298  * No restrictions on call
299  * This routine may not block.
300  * SMP races are ok.
301  */
302 static __inline void
303 swp_sizecheck(void)
304 {
305 	if (vm_swap_size < nswap_lowat) {
306 		if (swap_pager_almost_full == 0) {
307 			kprintf("swap_pager: out of swap space\n");
308 			swap_pager_almost_full = 1;
309 			swap_fail_ticks = ticks;
310 		}
311 	} else {
312 		swap_pager_full = 0;
313 		if (vm_swap_size > nswap_hiwat)
314 			swap_pager_almost_full = 0;
315 	}
316 }
317 
318 /*
319  * SWAP_PAGER_INIT() -	initialize the swap pager!
320  *
321  *	Expected to be started from system init.  NOTE:  This code is run
322  *	before much else so be careful what you depend on.  Most of the VM
323  *	system has yet to be initialized at this point.
324  *
325  * Called from the low level boot code only.
326  */
327 static void
328 swap_pager_init(void *arg __unused)
329 {
330 	/*
331 	 * Device Stripe, in PAGE_SIZE'd blocks
332 	 */
333 	dmmax = SWB_NPAGES * 2;
334 	dmmax_mask = ~(dmmax - 1);
335 }
336 SYSINIT(vm_mem, SI_BOOT1_VM, SI_ORDER_THIRD, swap_pager_init, NULL);
337 
338 /*
339  * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
340  *
341  *	Expected to be started from pageout process once, prior to entering
342  *	its main loop.
343  *
344  * Called from the low level boot code only.
345  */
346 void
347 swap_pager_swap_init(void)
348 {
349 	int n, n2;
350 
351 	/*
352 	 * Number of in-transit swap bp operations.  Don't
353 	 * exhaust the pbufs completely.  Make sure we
354 	 * initialize workable values (0 will work for hysteresis
355 	 * but it isn't very efficient).
356 	 *
357 	 * The nsw_cluster_max is constrained by the number of pages an XIO
358 	 * holds, i.e., (MAXPHYS/PAGE_SIZE) and our locally defined
359 	 * MAX_PAGEOUT_CLUSTER.   Also be aware that swap ops are
360 	 * constrained by the swap device interleave stripe size.
361 	 *
362 	 * Currently we hardwire nsw_wcount_async to 4.  This limit is
363 	 * designed to prevent other I/O from having high latencies due to
364 	 * our pageout I/O.  The value 4 works well for one or two active swap
365 	 * devices but is probably a little low if you have more.  Even so,
366 	 * a higher value would probably generate only a limited improvement
367 	 * with three or four active swap devices since the system does not
368 	 * typically have to pageout at extreme bandwidths.   We will want
369 	 * at least 2 per swap devices, and 4 is a pretty good value if you
370 	 * have one NFS swap device due to the command/ack latency over NFS.
371 	 * So it all works out pretty well.
372 	 */
373 
374 	nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER);
375 
376 	nsw_rcount = (nswbuf_kva + 1) / 2;
377 	nsw_wcount_sync = (nswbuf_kva + 3) / 4;
378 	nsw_wcount_async = 4;
379 	nsw_wcount_async_max = nsw_wcount_async;
380 
381 	/*
382 	 * The zone is dynamically allocated so generally size it to
383 	 * maxswzone (32MB to 512MB of KVM).  Set a minimum size based
384 	 * on physical memory of around 8x (each swblock can hold 16 pages).
385 	 *
386 	 * With the advent of SSDs (vs HDs) the practical (swap:memory) ratio
387 	 * has increased dramatically.
388 	 */
389 	n = vmstats.v_page_count / 2;
390 	if (maxswzone && n < maxswzone / sizeof(struct swblock))
391 		n = maxswzone / sizeof(struct swblock);
392 	n2 = n;
393 
394 	do {
395 		swap_zone = zinit(
396 			"SWAPMETA",
397 			sizeof(struct swblock),
398 			n,
399 			ZONE_INTERRUPT);
400 		if (swap_zone != NULL)
401 			break;
402 		/*
403 		 * if the allocation failed, try a zone two thirds the
404 		 * size of the previous attempt.
405 		 */
406 		n -= ((n + 2) / 3);
407 	} while (n > 0);
408 
409 	if (swap_zone == NULL)
410 		panic("swap_pager_swap_init: swap_zone == NULL");
411 	if (n2 != n)
412 		kprintf("Swap zone entries reduced from %d to %d.\n", n2, n);
413 }
414 
415 /*
416  * SWAP_PAGER_ALLOC() -	allocate a new OBJT_SWAP VM object and instantiate
417  *			its metadata structures.
418  *
419  *	This routine is called from the mmap and fork code to create a new
420  *	OBJT_SWAP object.  We do this by creating an OBJT_DEFAULT object
421  *	and then converting it with swp_pager_meta_convert().
422  *
423  *	We only support unnamed objects.
424  *
425  * No restrictions.
426  */
427 vm_object_t
428 swap_pager_alloc(void *handle, off_t size, vm_prot_t prot, off_t offset)
429 {
430 	vm_object_t object;
431 
432 	KKASSERT(handle == NULL);
433 	object = vm_object_allocate_hold(OBJT_DEFAULT,
434 					 OFF_TO_IDX(offset + PAGE_MASK + size));
435 	swp_pager_meta_convert(object);
436 	vm_object_drop(object);
437 
438 	return (object);
439 }
440 
441 /*
442  * SWAP_PAGER_DEALLOC() -	remove swap metadata from object
443  *
444  *	The swap backing for the object is destroyed.  The code is
445  *	designed such that we can reinstantiate it later, but this
446  *	routine is typically called only when the entire object is
447  *	about to be destroyed.
448  *
449  * The object must be locked or unreferenceable.
450  * No other requirements.
451  */
452 static void
453 swap_pager_dealloc(vm_object_t object)
454 {
455 	vm_object_hold(object);
456 	vm_object_pip_wait(object, "swpdea");
457 
458 	/*
459 	 * Free all remaining metadata.  We only bother to free it from
460 	 * the swap meta data.  We do not attempt to free swapblk's still
461 	 * associated with vm_page_t's for this object.  We do not care
462 	 * if paging is still in progress on some objects.
463 	 */
464 	swp_pager_meta_free_all(object);
465 	vm_object_drop(object);
466 }
467 
468 /************************************************************************
469  *			SWAP PAGER BITMAP ROUTINES			*
470  ************************************************************************/
471 
472 /*
473  * SWP_PAGER_GETSWAPSPACE() -	allocate raw swap space
474  *
475  *	Allocate swap for the requested number of pages.  The starting
476  *	swap block number (a page index) is returned or SWAPBLK_NONE
477  *	if the allocation failed.
478  *
479  *	Also has the side effect of advising that somebody made a mistake
480  *	when they configured swap and didn't configure enough.
481  *
482  * The caller must hold the object.
483  * This routine may not block.
484  */
485 static __inline swblk_t
486 swp_pager_getswapspace(vm_object_t object, int npages)
487 {
488 	swblk_t blk;
489 
490 	lwkt_gettoken(&vm_token);
491 	blk = blist_allocat(swapblist, npages, swapiterator);
492 	if (blk == SWAPBLK_NONE)
493 		blk = blist_allocat(swapblist, npages, 0);
494 	if (blk == SWAPBLK_NONE) {
495 		if (swap_pager_full != 2) {
496 			if (vm_swap_max == 0)
497 				kprintf("Warning: The system would like to "
498 					"page to swap but no swap space "
499 					"is configured!\n");
500 			else
501 				kprintf("swap_pager_getswapspace: "
502 					"swap full allocating %d pages\n",
503 					npages);
504 			swap_pager_full = 2;
505 			if (swap_pager_almost_full == 0)
506 				swap_fail_ticks = ticks;
507 			swap_pager_almost_full = 1;
508 		}
509 	} else {
510 		/* swapiterator = blk; disable for now, doesn't work well */
511 		swapacctspace(blk, -npages);
512 		if (object->type == OBJT_SWAP)
513 			vm_swap_anon_use += npages;
514 		else
515 			vm_swap_cache_use += npages;
516 		swp_sizecheck();
517 	}
518 	lwkt_reltoken(&vm_token);
519 	return(blk);
520 }
521 
522 /*
523  * SWP_PAGER_FREESWAPSPACE() -	free raw swap space
524  *
525  *	This routine returns the specified swap blocks back to the bitmap.
526  *
527  *	Note:  This routine may not block (it could in the old swap code),
528  *	and through the use of the new blist routines it does not block.
529  *
530  *	We must be called at splvm() to avoid races with bitmap frees from
531  *	vm_page_remove() aka swap_pager_page_removed().
532  *
533  * This routine may not block.
534  */
535 
536 static __inline void
537 swp_pager_freeswapspace(vm_object_t object, swblk_t blk, int npages)
538 {
539 	struct swdevt *sp = &swdevt[BLK2DEVIDX(blk)];
540 
541 	lwkt_gettoken(&vm_token);
542 	sp->sw_nused -= npages;
543 	if (object->type == OBJT_SWAP)
544 		vm_swap_anon_use -= npages;
545 	else
546 		vm_swap_cache_use -= npages;
547 
548 	if (sp->sw_flags & SW_CLOSING) {
549 		lwkt_reltoken(&vm_token);
550 		return;
551 	}
552 
553 	blist_free(swapblist, blk, npages);
554 	vm_swap_size += npages;
555 	swp_sizecheck();
556 	lwkt_reltoken(&vm_token);
557 }
558 
559 /*
560  * SWAP_PAGER_FREESPACE() -	frees swap blocks associated with a page
561  *				range within an object.
562  *
563  *	This is a globally accessible routine.
564  *
565  *	This routine removes swapblk assignments from swap metadata.
566  *
567  *	The external callers of this routine typically have already destroyed
568  *	or renamed vm_page_t's associated with this range in the object so
569  *	we should be ok.
570  *
571  * No requirements.
572  */
573 void
574 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_pindex_t size)
575 {
576 	vm_object_hold(object);
577 	swp_pager_meta_free(object, start, size);
578 	vm_object_drop(object);
579 }
580 
581 /*
582  * No requirements.
583  */
584 void
585 swap_pager_freespace_all(vm_object_t object)
586 {
587 	vm_object_hold(object);
588 	swp_pager_meta_free_all(object);
589 	vm_object_drop(object);
590 }
591 
592 /*
593  * This function conditionally frees swap cache swap starting at
594  * (*basei) in the object.  (count) swap blocks will be nominally freed.
595  * The actual number of blocks freed can be more or less than the
596  * requested number.
597  *
598  * This function nominally returns the number of blocks freed.  However,
599  * the actual number of blocks freed may be less then the returned value.
600  * If the function is unable to exhaust the object or if it is able to
601  * free (approximately) the requested number of blocks it returns
602  * a value n > count.
603  *
604  * If we exhaust the object we will return a value n <= count.
605  *
606  * The caller must hold the object.
607  *
608  * WARNING!  If count == 0 then -1 can be returned as a degenerate case,
609  *	     callers should always pass a count value > 0.
610  */
611 static int swap_pager_condfree_callback(struct swblock *swap, void *data);
612 
613 int
614 swap_pager_condfree(vm_object_t object, vm_pindex_t *basei, int count)
615 {
616 	struct swfreeinfo info;
617 	int n;
618 	int t;
619 
620 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
621 
622 	info.object = object;
623 	info.basei = *basei;	/* skip up to this page index */
624 	info.begi = count;	/* max swap pages to destroy */
625 	info.endi = count * 8;	/* max swblocks to scan */
626 
627 	swblock_rb_tree_RB_SCAN(&object->swblock_root, rb_swblock_condcmp,
628 				swap_pager_condfree_callback, &info);
629 	*basei = info.basei;
630 
631 	/*
632 	 * Take the higher difference swblocks vs pages
633 	 */
634 	n = count - (int)info.begi;
635 	t = count * 8 - (int)info.endi;
636 	if (n < t)
637 		n = t;
638 	if (n < 1)
639 		n = 1;
640 	return(n);
641 }
642 
643 /*
644  * The idea is to free whole meta-block to avoid fragmenting
645  * the swap space or disk I/O.  We only do this if NO VM pages
646  * are present.
647  *
648  * We do not have to deal with clearing PG_SWAPPED in related VM
649  * pages because there are no related VM pages.
650  *
651  * The caller must hold the object.
652  */
653 static int
654 swap_pager_condfree_callback(struct swblock *swap, void *data)
655 {
656 	struct swfreeinfo *info = data;
657 	vm_object_t object = info->object;
658 	int i;
659 
660 	for (i = 0; i < SWAP_META_PAGES; ++i) {
661 		if (vm_page_lookup(object, swap->swb_index + i))
662 			break;
663 	}
664 	info->basei = swap->swb_index + SWAP_META_PAGES;
665 	if (i == SWAP_META_PAGES) {
666 		info->begi -= swap->swb_count;
667 		swap_pager_freespace(object, swap->swb_index, SWAP_META_PAGES);
668 	}
669 	--info->endi;
670 	if ((int)info->begi < 0 || (int)info->endi < 0)
671 		return(-1);
672 	lwkt_yield();
673 	return(0);
674 }
675 
676 /*
677  * Called by vm_page_alloc() when a new VM page is inserted
678  * into a VM object.  Checks whether swap has been assigned to
679  * the page and sets PG_SWAPPED as necessary.
680  *
681  * No requirements.
682  */
683 void
684 swap_pager_page_inserted(vm_page_t m)
685 {
686 	if (m->object->swblock_count) {
687 		vm_object_hold(m->object);
688 		if (swp_pager_meta_ctl(m->object, m->pindex, 0) != SWAPBLK_NONE)
689 			vm_page_flag_set(m, PG_SWAPPED);
690 		vm_object_drop(m->object);
691 	}
692 }
693 
694 /*
695  * SWAP_PAGER_RESERVE() - reserve swap blocks in object
696  *
697  *	Assigns swap blocks to the specified range within the object.  The
698  *	swap blocks are not zerod.  Any previous swap assignment is destroyed.
699  *
700  *	Returns 0 on success, -1 on failure.
701  *
702  * The caller is responsible for avoiding races in the specified range.
703  * No other requirements.
704  */
705 int
706 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
707 {
708 	int n = 0;
709 	swblk_t blk = SWAPBLK_NONE;
710 	vm_pindex_t beg = start;	/* save start index */
711 
712 	vm_object_hold(object);
713 
714 	while (size) {
715 		if (n == 0) {
716 			n = BLIST_MAX_ALLOC;
717 			while ((blk = swp_pager_getswapspace(object, n)) ==
718 			       SWAPBLK_NONE)
719 			{
720 				n >>= 1;
721 				if (n == 0) {
722 					swp_pager_meta_free(object, beg,
723 							    start - beg);
724 					vm_object_drop(object);
725 					return(-1);
726 				}
727 			}
728 		}
729 		swp_pager_meta_build(object, start, blk);
730 		--size;
731 		++start;
732 		++blk;
733 		--n;
734 	}
735 	swp_pager_meta_free(object, start, n);
736 	vm_object_drop(object);
737 	return(0);
738 }
739 
740 /*
741  * SWAP_PAGER_COPY() -  copy blocks from source pager to destination pager
742  *			and destroy the source.
743  *
744  *	Copy any valid swapblks from the source to the destination.  In
745  *	cases where both the source and destination have a valid swapblk,
746  *	we keep the destination's.
747  *
748  *	This routine is allowed to block.  It may block allocating metadata
749  *	indirectly through swp_pager_meta_build() or if paging is still in
750  *	progress on the source.
751  *
752  *	XXX vm_page_collapse() kinda expects us not to block because we
753  *	supposedly do not need to allocate memory, but for the moment we
754  *	*may* have to get a little memory from the zone allocator, but
755  *	it is taken from the interrupt memory.  We should be ok.
756  *
757  *	The source object contains no vm_page_t's (which is just as well)
758  *	The source object is of type OBJT_SWAP.
759  *
760  *	The source and destination objects must be held by the caller.
761  */
762 void
763 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject,
764 		vm_pindex_t base_index, int destroysource)
765 {
766 	vm_pindex_t i;
767 
768 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(srcobject));
769 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(dstobject));
770 
771 	/*
772 	 * transfer source to destination.
773 	 */
774 	for (i = 0; i < dstobject->size; ++i) {
775 		swblk_t dstaddr;
776 
777 		/*
778 		 * Locate (without changing) the swapblk on the destination,
779 		 * unless it is invalid in which case free it silently, or
780 		 * if the destination is a resident page, in which case the
781 		 * source is thrown away.
782 		 */
783 		dstaddr = swp_pager_meta_ctl(dstobject, i, 0);
784 
785 		if (dstaddr == SWAPBLK_NONE) {
786 			/*
787 			 * Destination has no swapblk and is not resident,
788 			 * copy source.
789 			 */
790 			swblk_t srcaddr;
791 
792 			srcaddr = swp_pager_meta_ctl(srcobject,
793 						     base_index + i, SWM_POP);
794 
795 			if (srcaddr != SWAPBLK_NONE)
796 				swp_pager_meta_build(dstobject, i, srcaddr);
797 		} else {
798 			/*
799 			 * Destination has valid swapblk or it is represented
800 			 * by a resident page.  We destroy the sourceblock.
801 			 */
802 			swp_pager_meta_ctl(srcobject, base_index + i, SWM_FREE);
803 		}
804 	}
805 
806 	/*
807 	 * Free left over swap blocks in source.
808 	 *
809 	 * We have to revert the type to OBJT_DEFAULT so we do not accidently
810 	 * double-remove the object from the swap queues.
811 	 */
812 	if (destroysource) {
813 		/*
814 		 * Reverting the type is not necessary, the caller is going
815 		 * to destroy srcobject directly, but I'm doing it here
816 		 * for consistency since we've removed the object from its
817 		 * queues.
818 		 */
819 		swp_pager_meta_free_all(srcobject);
820 		if (srcobject->type == OBJT_SWAP)
821 			srcobject->type = OBJT_DEFAULT;
822 	}
823 }
824 
825 /*
826  * SWAP_PAGER_HASPAGE() -	determine if we have good backing store for
827  *				the requested page.
828  *
829  *	We determine whether good backing store exists for the requested
830  *	page and return TRUE if it does, FALSE if it doesn't.
831  *
832  *	If TRUE, we also try to determine how much valid, contiguous backing
833  *	store exists before and after the requested page within a reasonable
834  *	distance.  We do not try to restrict it to the swap device stripe
835  *	(that is handled in getpages/putpages).  It probably isn't worth
836  *	doing here.
837  *
838  * No requirements.
839  */
840 boolean_t
841 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex)
842 {
843 	swblk_t blk0;
844 
845 	/*
846 	 * do we have good backing store at the requested index ?
847 	 */
848 	vm_object_hold(object);
849 	blk0 = swp_pager_meta_ctl(object, pindex, 0);
850 
851 	if (blk0 == SWAPBLK_NONE) {
852 		vm_object_drop(object);
853 		return (FALSE);
854 	}
855 	vm_object_drop(object);
856 	return (TRUE);
857 }
858 
859 /*
860  * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
861  *
862  * This removes any associated swap backing store, whether valid or
863  * not, from the page.  This operates on any VM object, not just OBJT_SWAP
864  * objects.
865  *
866  * This routine is typically called when a page is made dirty, at
867  * which point any associated swap can be freed.  MADV_FREE also
868  * calls us in a special-case situation
869  *
870  * NOTE!!!  If the page is clean and the swap was valid, the caller
871  * should make the page dirty before calling this routine.  This routine
872  * does NOT change the m->dirty status of the page.  Also: MADV_FREE
873  * depends on it.
874  *
875  * The page must be busied or soft-busied.
876  * The caller can hold the object to avoid blocking, else we might block.
877  * No other requirements.
878  */
879 void
880 swap_pager_unswapped(vm_page_t m)
881 {
882 	if (m->flags & PG_SWAPPED) {
883 		vm_object_hold(m->object);
884 		KKASSERT(m->flags & PG_SWAPPED);
885 		swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE);
886 		vm_page_flag_clear(m, PG_SWAPPED);
887 		vm_object_drop(m->object);
888 	}
889 }
890 
891 /*
892  * SWAP_PAGER_STRATEGY() - read, write, free blocks
893  *
894  * This implements a VM OBJECT strategy function using swap backing store.
895  * This can operate on any VM OBJECT type, not necessarily just OBJT_SWAP
896  * types.
897  *
898  * This is intended to be a cacheless interface (i.e. caching occurs at
899  * higher levels), and is also used as a swap-based SSD cache for vnode
900  * and device objects.
901  *
902  * All I/O goes directly to and from the swap device.
903  *
904  * We currently attempt to run I/O synchronously or asynchronously as
905  * the caller requests.  This isn't perfect because we loose error
906  * sequencing when we run multiple ops in parallel to satisfy a request.
907  * But this is swap, so we let it all hang out.
908  *
909  * No requirements.
910  */
911 void
912 swap_pager_strategy(vm_object_t object, struct bio *bio)
913 {
914 	struct buf *bp = bio->bio_buf;
915 	struct bio *nbio;
916 	vm_pindex_t start;
917 	vm_pindex_t biox_blkno = 0;
918 	int count;
919 	char *data;
920 	struct bio *biox;
921 	struct buf *bufx;
922 #if 0
923 	struct bio_track *track;
924 #endif
925 
926 #if 0
927 	/*
928 	 * tracking for swapdev vnode I/Os
929 	 */
930 	if (bp->b_cmd == BUF_CMD_READ)
931 		track = &swapdev_vp->v_track_read;
932 	else
933 		track = &swapdev_vp->v_track_write;
934 #endif
935 
936 	if (bp->b_bcount & PAGE_MASK) {
937 		bp->b_error = EINVAL;
938 		bp->b_flags |= B_ERROR | B_INVAL;
939 		biodone(bio);
940 		kprintf("swap_pager_strategy: bp %p offset %lld size %d, "
941 			"not page bounded\n",
942 			bp, (long long)bio->bio_offset, (int)bp->b_bcount);
943 		return;
944 	}
945 
946 	/*
947 	 * Clear error indication, initialize page index, count, data pointer.
948 	 */
949 	bp->b_error = 0;
950 	bp->b_flags &= ~B_ERROR;
951 	bp->b_resid = bp->b_bcount;
952 
953 	start = (vm_pindex_t)(bio->bio_offset >> PAGE_SHIFT);
954 	count = howmany(bp->b_bcount, PAGE_SIZE);
955 	data = bp->b_data;
956 
957 	/*
958 	 * Deal with BUF_CMD_FREEBLKS
959 	 */
960 	if (bp->b_cmd == BUF_CMD_FREEBLKS) {
961 		/*
962 		 * FREE PAGE(s) - destroy underlying swap that is no longer
963 		 *		  needed.
964 		 */
965 		vm_object_hold(object);
966 		swp_pager_meta_free(object, start, count);
967 		vm_object_drop(object);
968 		bp->b_resid = 0;
969 		biodone(bio);
970 		return;
971 	}
972 
973 	/*
974 	 * We need to be able to create a new cluster of I/O's.  We cannot
975 	 * use the caller fields of the passed bio so push a new one.
976 	 *
977 	 * Because nbio is just a placeholder for the cluster links,
978 	 * we can biodone() the original bio instead of nbio to make
979 	 * things a bit more efficient.
980 	 */
981 	nbio = push_bio(bio);
982 	nbio->bio_offset = bio->bio_offset;
983 	nbio->bio_caller_info1.cluster_head = NULL;
984 	nbio->bio_caller_info2.cluster_tail = NULL;
985 
986 	biox = NULL;
987 	bufx = NULL;
988 
989 	/*
990 	 * Execute read or write
991 	 */
992 	vm_object_hold(object);
993 
994 	while (count > 0) {
995 		swblk_t blk;
996 
997 		/*
998 		 * Obtain block.  If block not found and writing, allocate a
999 		 * new block and build it into the object.
1000 		 */
1001 		blk = swp_pager_meta_ctl(object, start, 0);
1002 		if ((blk == SWAPBLK_NONE) && bp->b_cmd != BUF_CMD_READ) {
1003 			blk = swp_pager_getswapspace(object, 1);
1004 			if (blk == SWAPBLK_NONE) {
1005 				bp->b_error = ENOMEM;
1006 				bp->b_flags |= B_ERROR;
1007 				break;
1008 			}
1009 			swp_pager_meta_build(object, start, blk);
1010 		}
1011 
1012 		/*
1013 		 * Do we have to flush our current collection?  Yes if:
1014 		 *
1015 		 *	- no swap block at this index
1016 		 *	- swap block is not contiguous
1017 		 *	- we cross a physical disk boundry in the
1018 		 *	  stripe.
1019 		 */
1020 		if (
1021 		    biox && (biox_blkno + btoc(bufx->b_bcount) != blk ||
1022 		     ((biox_blkno ^ blk) & dmmax_mask)
1023 		    )
1024 		) {
1025 			if (bp->b_cmd == BUF_CMD_READ) {
1026 				++mycpu->gd_cnt.v_swapin;
1027 				mycpu->gd_cnt.v_swappgsin += btoc(bufx->b_bcount);
1028 			} else {
1029 				++mycpu->gd_cnt.v_swapout;
1030 				mycpu->gd_cnt.v_swappgsout += btoc(bufx->b_bcount);
1031 				bufx->b_dirtyend = bufx->b_bcount;
1032 			}
1033 
1034 			/*
1035 			 * Finished with this buf.
1036 			 */
1037 			KKASSERT(bufx->b_bcount != 0);
1038 			if (bufx->b_cmd != BUF_CMD_READ)
1039 				bufx->b_dirtyend = bufx->b_bcount;
1040 			biox = NULL;
1041 			bufx = NULL;
1042 		}
1043 
1044 		/*
1045 		 * Add new swapblk to biox, instantiating biox if necessary.
1046 		 * Zero-fill reads are able to take a shortcut.
1047 		 */
1048 		if (blk == SWAPBLK_NONE) {
1049 			/*
1050 			 * We can only get here if we are reading.  Since
1051 			 * we are at splvm() we can safely modify b_resid,
1052 			 * even if chain ops are in progress.
1053 			 */
1054 			bzero(data, PAGE_SIZE);
1055 			bp->b_resid -= PAGE_SIZE;
1056 		} else {
1057 			if (biox == NULL) {
1058 				/* XXX chain count > 4, wait to <= 4 */
1059 
1060 				bufx = getpbuf(NULL);
1061 				biox = &bufx->b_bio1;
1062 				cluster_append(nbio, bufx);
1063 				bufx->b_flags |= (bp->b_flags & B_ORDERED);
1064 				bufx->b_cmd = bp->b_cmd;
1065 				biox->bio_done = swap_chain_iodone;
1066 				biox->bio_offset = (off_t)blk << PAGE_SHIFT;
1067 				biox->bio_caller_info1.cluster_parent = nbio;
1068 				biox_blkno = blk;
1069 				bufx->b_bcount = 0;
1070 				bufx->b_data = data;
1071 			}
1072 			bufx->b_bcount += PAGE_SIZE;
1073 		}
1074 		--count;
1075 		++start;
1076 		data += PAGE_SIZE;
1077 	}
1078 
1079 	vm_object_drop(object);
1080 
1081 	/*
1082 	 *  Flush out last buffer
1083 	 */
1084 	if (biox) {
1085 		if (bufx->b_cmd == BUF_CMD_READ) {
1086 			++mycpu->gd_cnt.v_swapin;
1087 			mycpu->gd_cnt.v_swappgsin += btoc(bufx->b_bcount);
1088 		} else {
1089 			++mycpu->gd_cnt.v_swapout;
1090 			mycpu->gd_cnt.v_swappgsout += btoc(bufx->b_bcount);
1091 			bufx->b_dirtyend = bufx->b_bcount;
1092 		}
1093 		KKASSERT(bufx->b_bcount);
1094 		if (bufx->b_cmd != BUF_CMD_READ)
1095 			bufx->b_dirtyend = bufx->b_bcount;
1096 		/* biox, bufx = NULL */
1097 	}
1098 
1099 	/*
1100 	 * Now initiate all the I/O.  Be careful looping on our chain as
1101 	 * I/O's may complete while we are still initiating them.
1102 	 *
1103 	 * If the request is a 100% sparse read no bios will be present
1104 	 * and we just biodone() the buffer.
1105 	 */
1106 	nbio->bio_caller_info2.cluster_tail = NULL;
1107 	bufx = nbio->bio_caller_info1.cluster_head;
1108 
1109 	if (bufx) {
1110 		while (bufx) {
1111 			biox = &bufx->b_bio1;
1112 			BUF_KERNPROC(bufx);
1113 			bufx = bufx->b_cluster_next;
1114 			vn_strategy(swapdev_vp, biox);
1115 		}
1116 	} else {
1117 		biodone(bio);
1118 	}
1119 
1120 	/*
1121 	 * Completion of the cluster will also call biodone_chain(nbio).
1122 	 * We never call biodone(nbio) so we don't have to worry about
1123 	 * setting up a bio_done callback.  It's handled in the sub-IO.
1124 	 */
1125 	/**/
1126 }
1127 
1128 /*
1129  * biodone callback
1130  *
1131  * No requirements.
1132  */
1133 static void
1134 swap_chain_iodone(struct bio *biox)
1135 {
1136 	struct buf **nextp;
1137 	struct buf *bufx;	/* chained sub-buffer */
1138 	struct bio *nbio;	/* parent nbio with chain glue */
1139 	struct buf *bp;		/* original bp associated with nbio */
1140 	int chain_empty;
1141 
1142 	bufx = biox->bio_buf;
1143 	nbio = biox->bio_caller_info1.cluster_parent;
1144 	bp = nbio->bio_buf;
1145 
1146 	/*
1147 	 * Update the original buffer
1148 	 */
1149         KKASSERT(bp != NULL);
1150 	if (bufx->b_flags & B_ERROR) {
1151 		atomic_set_int(&bufx->b_flags, B_ERROR);
1152 		bp->b_error = bufx->b_error;	/* race ok */
1153 	} else if (bufx->b_resid != 0) {
1154 		atomic_set_int(&bufx->b_flags, B_ERROR);
1155 		bp->b_error = EINVAL;		/* race ok */
1156 	} else {
1157 		atomic_subtract_int(&bp->b_resid, bufx->b_bcount);
1158 	}
1159 
1160 	/*
1161 	 * Remove us from the chain.
1162 	 */
1163 	spin_lock(&swapbp_spin);
1164 	nextp = &nbio->bio_caller_info1.cluster_head;
1165 	while (*nextp != bufx) {
1166 		KKASSERT(*nextp != NULL);
1167 		nextp = &(*nextp)->b_cluster_next;
1168 	}
1169 	*nextp = bufx->b_cluster_next;
1170 	chain_empty = (nbio->bio_caller_info1.cluster_head == NULL);
1171 	spin_unlock(&swapbp_spin);
1172 
1173 	/*
1174 	 * Clean up bufx.  If the chain is now empty we finish out
1175 	 * the parent.  Note that we may be racing other completions
1176 	 * so we must use the chain_empty status from above.
1177 	 */
1178 	if (chain_empty) {
1179 		if (bp->b_resid != 0 && !(bp->b_flags & B_ERROR)) {
1180 			atomic_set_int(&bp->b_flags, B_ERROR);
1181 			bp->b_error = EINVAL;
1182 		}
1183 		biodone_chain(nbio);
1184         }
1185         relpbuf(bufx, NULL);
1186 }
1187 
1188 /*
1189  * SWAP_PAGER_GETPAGES() - bring page in from swap
1190  *
1191  * The requested page may have to be brought in from swap.  Calculate the
1192  * swap block and bring in additional pages if possible.  All pages must
1193  * have contiguous swap block assignments and reside in the same object.
1194  *
1195  * The caller has a single vm_object_pip_add() reference prior to
1196  * calling us and we should return with the same.
1197  *
1198  * The caller has BUSY'd the page.  We should return with (*mpp) left busy,
1199  * and any additinal pages unbusied.
1200  *
1201  * If the caller encounters a PG_RAM page it will pass it to us even though
1202  * it may be valid and dirty.  We cannot overwrite the page in this case!
1203  * The case is used to allow us to issue pure read-aheads.
1204  *
1205  * NOTE! XXX This code does not entirely pipeline yet due to the fact that
1206  *       the PG_RAM page is validated at the same time as mreq.  What we
1207  *	 really need to do is issue a separate read-ahead pbuf.
1208  *
1209  * No requirements.
1210  */
1211 static int
1212 swap_pager_getpage(vm_object_t object, vm_page_t *mpp, int seqaccess)
1213 {
1214 	struct buf *bp;
1215 	struct bio *bio;
1216 	vm_page_t mreq;
1217 	vm_page_t m;
1218 	vm_offset_t kva;
1219 	swblk_t blk;
1220 	int i;
1221 	int j;
1222 	int raonly;
1223 	int error;
1224 	u_int32_t flags;
1225 	vm_page_t marray[XIO_INTERNAL_PAGES];
1226 
1227 	mreq = *mpp;
1228 
1229 	vm_object_hold(object);
1230 	if (mreq->object != object) {
1231 		panic("swap_pager_getpages: object mismatch %p/%p",
1232 		    object,
1233 		    mreq->object
1234 		);
1235 	}
1236 
1237 	/*
1238 	 * We don't want to overwrite a fully valid page as it might be
1239 	 * dirty.  This case can occur when e.g. vm_fault hits a perfectly
1240 	 * valid page with PG_RAM set.
1241 	 *
1242 	 * In this case we see if the next page is a suitable page-in
1243 	 * candidate and if it is we issue read-ahead.  PG_RAM will be
1244 	 * set on the last page of the read-ahead to continue the pipeline.
1245 	 */
1246 	if (mreq->valid == VM_PAGE_BITS_ALL) {
1247 		if (swap_burst_read == 0 || mreq->pindex + 1 >= object->size) {
1248 			vm_object_drop(object);
1249 			return(VM_PAGER_OK);
1250 		}
1251 		blk = swp_pager_meta_ctl(object, mreq->pindex + 1, 0);
1252 		if (blk == SWAPBLK_NONE) {
1253 			vm_object_drop(object);
1254 			return(VM_PAGER_OK);
1255 		}
1256 		m = vm_page_lookup_busy_try(object, mreq->pindex + 1,
1257 					    TRUE, &error);
1258 		if (error) {
1259 			vm_object_drop(object);
1260 			return(VM_PAGER_OK);
1261 		} else if (m == NULL) {
1262 			/*
1263 			 * Use VM_ALLOC_QUICK to avoid blocking on cache
1264 			 * page reuse.
1265 			 */
1266 			m = vm_page_alloc(object, mreq->pindex + 1,
1267 					  VM_ALLOC_QUICK);
1268 			if (m == NULL) {
1269 				vm_object_drop(object);
1270 				return(VM_PAGER_OK);
1271 			}
1272 		} else {
1273 			if (m->valid) {
1274 				vm_page_wakeup(m);
1275 				vm_object_drop(object);
1276 				return(VM_PAGER_OK);
1277 			}
1278 			vm_page_unqueue_nowakeup(m);
1279 		}
1280 		/* page is busy */
1281 		mreq = m;
1282 		raonly = 1;
1283 	} else {
1284 		raonly = 0;
1285 	}
1286 
1287 	/*
1288 	 * Try to block-read contiguous pages from swap if sequential,
1289 	 * otherwise just read one page.  Contiguous pages from swap must
1290 	 * reside within a single device stripe because the I/O cannot be
1291 	 * broken up across multiple stripes.
1292 	 *
1293 	 * Note that blk and iblk can be SWAPBLK_NONE but the loop is
1294 	 * set up such that the case(s) are handled implicitly.
1295 	 */
1296 	blk = swp_pager_meta_ctl(mreq->object, mreq->pindex, 0);
1297 	marray[0] = mreq;
1298 
1299 	for (i = 1; swap_burst_read &&
1300 		    i < XIO_INTERNAL_PAGES &&
1301 		    mreq->pindex + i < object->size; ++i) {
1302 		swblk_t iblk;
1303 
1304 		iblk = swp_pager_meta_ctl(object, mreq->pindex + i, 0);
1305 		if (iblk != blk + i)
1306 			break;
1307 		if ((blk ^ iblk) & dmmax_mask)
1308 			break;
1309 		m = vm_page_lookup_busy_try(object, mreq->pindex + i,
1310 					    TRUE, &error);
1311 		if (error) {
1312 			break;
1313 		} else if (m == NULL) {
1314 			/*
1315 			 * Use VM_ALLOC_QUICK to avoid blocking on cache
1316 			 * page reuse.
1317 			 */
1318 			m = vm_page_alloc(object, mreq->pindex + i,
1319 					  VM_ALLOC_QUICK);
1320 			if (m == NULL)
1321 				break;
1322 		} else {
1323 			if (m->valid) {
1324 				vm_page_wakeup(m);
1325 				break;
1326 			}
1327 			vm_page_unqueue_nowakeup(m);
1328 		}
1329 		/* page is busy */
1330 		marray[i] = m;
1331 	}
1332 	if (i > 1)
1333 		vm_page_flag_set(marray[i - 1], PG_RAM);
1334 
1335 	/*
1336 	 * If mreq is the requested page and we have nothing to do return
1337 	 * VM_PAGER_FAIL.  If raonly is set mreq is just another read-ahead
1338 	 * page and must be cleaned up.
1339 	 */
1340 	if (blk == SWAPBLK_NONE) {
1341 		KKASSERT(i == 1);
1342 		if (raonly) {
1343 			vnode_pager_freepage(mreq);
1344 			vm_object_drop(object);
1345 			return(VM_PAGER_OK);
1346 		} else {
1347 			vm_object_drop(object);
1348 			return(VM_PAGER_FAIL);
1349 		}
1350 	}
1351 
1352 	/*
1353 	 * map our page(s) into kva for input
1354 	 */
1355 	bp = getpbuf_kva(&nsw_rcount);
1356 	bio = &bp->b_bio1;
1357 	kva = (vm_offset_t) bp->b_kvabase;
1358 	bcopy(marray, bp->b_xio.xio_pages, i * sizeof(vm_page_t));
1359 	pmap_qenter(kva, bp->b_xio.xio_pages, i);
1360 
1361 	bp->b_data = (caddr_t)kva;
1362 	bp->b_bcount = PAGE_SIZE * i;
1363 	bp->b_xio.xio_npages = i;
1364 	bio->bio_done = swp_pager_async_iodone;
1365 	bio->bio_offset = (off_t)blk << PAGE_SHIFT;
1366 	bio->bio_caller_info1.index = SWBIO_READ;
1367 
1368 	/*
1369 	 * Set index.  If raonly set the index beyond the array so all
1370 	 * the pages are treated the same, otherwise the original mreq is
1371 	 * at index 0.
1372 	 */
1373 	if (raonly)
1374 		bio->bio_driver_info = (void *)(intptr_t)i;
1375 	else
1376 		bio->bio_driver_info = (void *)(intptr_t)0;
1377 
1378 	for (j = 0; j < i; ++j)
1379 		vm_page_flag_set(bp->b_xio.xio_pages[j], PG_SWAPINPROG);
1380 
1381 	mycpu->gd_cnt.v_swapin++;
1382 	mycpu->gd_cnt.v_swappgsin += bp->b_xio.xio_npages;
1383 
1384 	/*
1385 	 * We still hold the lock on mreq, and our automatic completion routine
1386 	 * does not remove it.
1387 	 */
1388 	vm_object_pip_add(object, bp->b_xio.xio_npages);
1389 
1390 	/*
1391 	 * perform the I/O.  NOTE!!!  bp cannot be considered valid after
1392 	 * this point because we automatically release it on completion.
1393 	 * Instead, we look at the one page we are interested in which we
1394 	 * still hold a lock on even through the I/O completion.
1395 	 *
1396 	 * The other pages in our m[] array are also released on completion,
1397 	 * so we cannot assume they are valid anymore either.
1398 	 */
1399 	bp->b_cmd = BUF_CMD_READ;
1400 	BUF_KERNPROC(bp);
1401 	vn_strategy(swapdev_vp, bio);
1402 
1403 	/*
1404 	 * Wait for the page we want to complete.  PG_SWAPINPROG is always
1405 	 * cleared on completion.  If an I/O error occurs, SWAPBLK_NONE
1406 	 * is set in the meta-data.
1407 	 *
1408 	 * If this is a read-ahead only we return immediately without
1409 	 * waiting for I/O.
1410 	 */
1411 	if (raonly) {
1412 		vm_object_drop(object);
1413 		return(VM_PAGER_OK);
1414 	}
1415 
1416 	/*
1417 	 * Read-ahead includes originally requested page case.
1418 	 */
1419 	for (;;) {
1420 		flags = mreq->flags;
1421 		cpu_ccfence();
1422 		if ((flags & PG_SWAPINPROG) == 0)
1423 			break;
1424 		tsleep_interlock(mreq, 0);
1425 		if (!atomic_cmpset_int(&mreq->flags, flags,
1426 				       flags | PG_WANTED | PG_REFERENCED)) {
1427 			continue;
1428 		}
1429 		mycpu->gd_cnt.v_intrans++;
1430 		if (tsleep(mreq, PINTERLOCKED, "swread", hz*20)) {
1431 			kprintf(
1432 			    "swap_pager: indefinite wait buffer: "
1433 				" bp %p offset: %lld, size: %ld\n",
1434 			    bp,
1435 			    (long long)bio->bio_offset,
1436 			    (long)bp->b_bcount
1437 			);
1438 		}
1439 	}
1440 
1441 	/*
1442 	 * mreq is left bussied after completion, but all the other pages
1443 	 * are freed.  If we had an unrecoverable read error the page will
1444 	 * not be valid.
1445 	 */
1446 	vm_object_drop(object);
1447 	if (mreq->valid != VM_PAGE_BITS_ALL)
1448 		return(VM_PAGER_ERROR);
1449 	else
1450 		return(VM_PAGER_OK);
1451 
1452 	/*
1453 	 * A final note: in a low swap situation, we cannot deallocate swap
1454 	 * and mark a page dirty here because the caller is likely to mark
1455 	 * the page clean when we return, causing the page to possibly revert
1456 	 * to all-zero's later.
1457 	 */
1458 }
1459 
1460 /*
1461  *	swap_pager_putpages:
1462  *
1463  *	Assign swap (if necessary) and initiate I/O on the specified pages.
1464  *
1465  *	We support both OBJT_DEFAULT and OBJT_SWAP objects.  DEFAULT objects
1466  *	are automatically converted to SWAP objects.
1467  *
1468  *	In a low memory situation we may block in vn_strategy(), but the new
1469  *	vm_page reservation system coupled with properly written VFS devices
1470  *	should ensure that no low-memory deadlock occurs.  This is an area
1471  *	which needs work.
1472  *
1473  *	The parent has N vm_object_pip_add() references prior to
1474  *	calling us and will remove references for rtvals[] that are
1475  *	not set to VM_PAGER_PEND.  We need to remove the rest on I/O
1476  *	completion.
1477  *
1478  *	The parent has soft-busy'd the pages it passes us and will unbusy
1479  *	those whos rtvals[] entry is not set to VM_PAGER_PEND on return.
1480  *	We need to unbusy the rest on I/O completion.
1481  *
1482  * No requirements.
1483  */
1484 void
1485 swap_pager_putpages(vm_object_t object, vm_page_t *m, int count,
1486 		    int sync, int *rtvals)
1487 {
1488 	int i;
1489 	int n = 0;
1490 
1491 	vm_object_hold(object);
1492 
1493 	if (count && m[0]->object != object) {
1494 		panic("swap_pager_getpages: object mismatch %p/%p",
1495 		    object,
1496 		    m[0]->object
1497 		);
1498 	}
1499 
1500 	/*
1501 	 * Step 1
1502 	 *
1503 	 * Turn object into OBJT_SWAP
1504 	 * check for bogus sysops
1505 	 * force sync if not pageout process
1506 	 */
1507 	if (object->type == OBJT_DEFAULT) {
1508 		if (object->type == OBJT_DEFAULT)
1509 			swp_pager_meta_convert(object);
1510 	}
1511 
1512 	if (curthread != pagethread)
1513 		sync = TRUE;
1514 
1515 	/*
1516 	 * Step 2
1517 	 *
1518 	 * Update nsw parameters from swap_async_max sysctl values.
1519 	 * Do not let the sysop crash the machine with bogus numbers.
1520 	 */
1521 	if (swap_async_max != nsw_wcount_async_max) {
1522 		int n;
1523 
1524 		/*
1525 		 * limit range
1526 		 */
1527 		if ((n = swap_async_max) > nswbuf_kva / 2)
1528 			n = nswbuf_kva / 2;
1529 		if (n < 1)
1530 			n = 1;
1531 		swap_async_max = n;
1532 
1533 		/*
1534 		 * Adjust difference ( if possible ).  If the current async
1535 		 * count is too low, we may not be able to make the adjustment
1536 		 * at this time.
1537 		 *
1538 		 * vm_token needed for nsw_wcount sleep interlock
1539 		 */
1540 		lwkt_gettoken(&vm_token);
1541 		n -= nsw_wcount_async_max;
1542 		if (nsw_wcount_async + n >= 0) {
1543 			nsw_wcount_async_max += n;
1544 			pbuf_adjcount(&nsw_wcount_async, n);
1545 		}
1546 		lwkt_reltoken(&vm_token);
1547 	}
1548 
1549 	/*
1550 	 * Step 3
1551 	 *
1552 	 * Assign swap blocks and issue I/O.  We reallocate swap on the fly.
1553 	 * The page is left dirty until the pageout operation completes
1554 	 * successfully.
1555 	 */
1556 
1557 	for (i = 0; i < count; i += n) {
1558 		struct buf *bp;
1559 		struct bio *bio;
1560 		swblk_t blk;
1561 		int j;
1562 
1563 		/*
1564 		 * Maximum I/O size is limited by a number of factors.
1565 		 */
1566 
1567 		n = min(BLIST_MAX_ALLOC, count - i);
1568 		n = min(n, nsw_cluster_max);
1569 
1570 		lwkt_gettoken(&vm_token);
1571 
1572 		/*
1573 		 * Get biggest block of swap we can.  If we fail, fall
1574 		 * back and try to allocate a smaller block.  Don't go
1575 		 * overboard trying to allocate space if it would overly
1576 		 * fragment swap.
1577 		 */
1578 		while (
1579 		    (blk = swp_pager_getswapspace(object, n)) == SWAPBLK_NONE &&
1580 		    n > 4
1581 		) {
1582 			n >>= 1;
1583 		}
1584 		if (blk == SWAPBLK_NONE) {
1585 			for (j = 0; j < n; ++j)
1586 				rtvals[i+j] = VM_PAGER_FAIL;
1587 			lwkt_reltoken(&vm_token);
1588 			continue;
1589 		}
1590 		if (vm_report_swap_allocs > 0) {
1591 			kprintf("swap_alloc %08jx,%d\n", (intmax_t)blk, n);
1592 			--vm_report_swap_allocs;
1593 		}
1594 
1595 		/*
1596 		 * The I/O we are constructing cannot cross a physical
1597 		 * disk boundry in the swap stripe.  Note: we are still
1598 		 * at splvm().
1599 		 */
1600 		if ((blk ^ (blk + n)) & dmmax_mask) {
1601 			j = ((blk + dmmax) & dmmax_mask) - blk;
1602 			swp_pager_freeswapspace(object, blk + j, n - j);
1603 			n = j;
1604 		}
1605 
1606 		/*
1607 		 * All I/O parameters have been satisfied, build the I/O
1608 		 * request and assign the swap space.
1609 		 */
1610 		if (sync == TRUE)
1611 			bp = getpbuf_kva(&nsw_wcount_sync);
1612 		else
1613 			bp = getpbuf_kva(&nsw_wcount_async);
1614 		bio = &bp->b_bio1;
1615 
1616 		lwkt_reltoken(&vm_token);
1617 
1618 		pmap_qenter((vm_offset_t)bp->b_data, &m[i], n);
1619 
1620 		bp->b_bcount = PAGE_SIZE * n;
1621 		bio->bio_offset = (off_t)blk << PAGE_SHIFT;
1622 
1623 		for (j = 0; j < n; ++j) {
1624 			vm_page_t mreq = m[i+j];
1625 
1626 			swp_pager_meta_build(mreq->object, mreq->pindex,
1627 					     blk + j);
1628 			if (object->type == OBJT_SWAP)
1629 				vm_page_dirty(mreq);
1630 			rtvals[i+j] = VM_PAGER_OK;
1631 
1632 			vm_page_flag_set(mreq, PG_SWAPINPROG);
1633 			bp->b_xio.xio_pages[j] = mreq;
1634 		}
1635 		bp->b_xio.xio_npages = n;
1636 
1637 		mycpu->gd_cnt.v_swapout++;
1638 		mycpu->gd_cnt.v_swappgsout += bp->b_xio.xio_npages;
1639 
1640 		bp->b_dirtyoff = 0;		/* req'd for NFS */
1641 		bp->b_dirtyend = bp->b_bcount;	/* req'd for NFS */
1642 		bp->b_cmd = BUF_CMD_WRITE;
1643 		bio->bio_caller_info1.index = SWBIO_WRITE;
1644 
1645 		/*
1646 		 * asynchronous
1647 		 */
1648 		if (sync == FALSE) {
1649 			bio->bio_done = swp_pager_async_iodone;
1650 			BUF_KERNPROC(bp);
1651 			vn_strategy(swapdev_vp, bio);
1652 
1653 			for (j = 0; j < n; ++j)
1654 				rtvals[i+j] = VM_PAGER_PEND;
1655 			continue;
1656 		}
1657 
1658 		/*
1659 		 * Issue synchrnously.
1660 		 *
1661 		 * Wait for the sync I/O to complete, then update rtvals.
1662 		 * We just set the rtvals[] to VM_PAGER_PEND so we can call
1663 		 * our async completion routine at the end, thus avoiding a
1664 		 * double-free.
1665 		 */
1666 		bio->bio_caller_info1.index |= SWBIO_SYNC;
1667 		bio->bio_done = biodone_sync;
1668 		bio->bio_flags |= BIO_SYNC;
1669 		vn_strategy(swapdev_vp, bio);
1670 		biowait(bio, "swwrt");
1671 
1672 		for (j = 0; j < n; ++j)
1673 			rtvals[i+j] = VM_PAGER_PEND;
1674 
1675 		/*
1676 		 * Now that we are through with the bp, we can call the
1677 		 * normal async completion, which frees everything up.
1678 		 */
1679 		swp_pager_async_iodone(bio);
1680 	}
1681 	vm_object_drop(object);
1682 }
1683 
1684 /*
1685  * No requirements.
1686  *
1687  * Recalculate the low and high-water marks.
1688  */
1689 void
1690 swap_pager_newswap(void)
1691 {
1692 	if (vm_swap_max) {
1693 		nswap_lowat = vm_swap_max * 4 / 100;	/* 4% left */
1694 		nswap_hiwat = vm_swap_max * 6 / 100;	/* 6% left */
1695 		kprintf("swap low/high-water marks set to %d/%d\n",
1696 			nswap_lowat, nswap_hiwat);
1697 	} else {
1698 		nswap_lowat = 128;
1699 		nswap_hiwat = 512;
1700 	}
1701 	swp_sizecheck();
1702 }
1703 
1704 /*
1705  *	swp_pager_async_iodone:
1706  *
1707  *	Completion routine for asynchronous reads and writes from/to swap.
1708  *	Also called manually by synchronous code to finish up a bp.
1709  *
1710  *	For READ operations, the pages are PG_BUSY'd.  For WRITE operations,
1711  *	the pages are vm_page_t->busy'd.  For READ operations, we PG_BUSY
1712  *	unbusy all pages except the 'main' request page.  For WRITE
1713  *	operations, we vm_page_t->busy'd unbusy all pages ( we can do this
1714  *	because we marked them all VM_PAGER_PEND on return from putpages ).
1715  *
1716  *	This routine may not block.
1717  *
1718  * No requirements.
1719  */
1720 static void
1721 swp_pager_async_iodone(struct bio *bio)
1722 {
1723 	struct buf *bp = bio->bio_buf;
1724 	vm_object_t object = NULL;
1725 	int i;
1726 	int *nswptr;
1727 
1728 	/*
1729 	 * report error
1730 	 */
1731 	if (bp->b_flags & B_ERROR) {
1732 		kprintf(
1733 		    "swap_pager: I/O error - %s failed; offset %lld,"
1734 			"size %ld, error %d\n",
1735 		    ((bio->bio_caller_info1.index & SWBIO_READ) ?
1736 			"pagein" : "pageout"),
1737 		    (long long)bio->bio_offset,
1738 		    (long)bp->b_bcount,
1739 		    bp->b_error
1740 		);
1741 	}
1742 
1743 	/*
1744 	 * set object, raise to splvm().
1745 	 */
1746 	if (bp->b_xio.xio_npages)
1747 		object = bp->b_xio.xio_pages[0]->object;
1748 
1749 	/*
1750 	 * remove the mapping for kernel virtual
1751 	 */
1752 	pmap_qremove((vm_offset_t)bp->b_data, bp->b_xio.xio_npages);
1753 
1754 	/*
1755 	 * cleanup pages.  If an error occurs writing to swap, we are in
1756 	 * very serious trouble.  If it happens to be a disk error, though,
1757 	 * we may be able to recover by reassigning the swap later on.  So
1758 	 * in this case we remove the m->swapblk assignment for the page
1759 	 * but do not free it in the rlist.  The errornous block(s) are thus
1760 	 * never reallocated as swap.  Redirty the page and continue.
1761 	 */
1762 	for (i = 0; i < bp->b_xio.xio_npages; ++i) {
1763 		vm_page_t m = bp->b_xio.xio_pages[i];
1764 
1765 		if (bp->b_flags & B_ERROR) {
1766 			/*
1767 			 * If an error occurs I'd love to throw the swapblk
1768 			 * away without freeing it back to swapspace, so it
1769 			 * can never be used again.  But I can't from an
1770 			 * interrupt.
1771 			 */
1772 
1773 			if (bio->bio_caller_info1.index & SWBIO_READ) {
1774 				/*
1775 				 * When reading, reqpage needs to stay
1776 				 * locked for the parent, but all other
1777 				 * pages can be freed.  We still want to
1778 				 * wakeup the parent waiting on the page,
1779 				 * though.  ( also: pg_reqpage can be -1 and
1780 				 * not match anything ).
1781 				 *
1782 				 * We have to wake specifically requested pages
1783 				 * up too because we cleared PG_SWAPINPROG and
1784 				 * someone may be waiting for that.
1785 				 *
1786 				 * NOTE: for reads, m->dirty will probably
1787 				 * be overridden by the original caller of
1788 				 * getpages so don't play cute tricks here.
1789 				 *
1790 				 * NOTE: We can't actually free the page from
1791 				 * here, because this is an interrupt.  It
1792 				 * is not legal to mess with object->memq
1793 				 * from an interrupt.  Deactivate the page
1794 				 * instead.
1795 				 */
1796 
1797 				m->valid = 0;
1798 				vm_page_flag_clear(m, PG_SWAPINPROG);
1799 
1800 				/*
1801 				 * bio_driver_info holds the requested page
1802 				 * index.
1803 				 */
1804 				if (i != (int)(intptr_t)bio->bio_driver_info) {
1805 					vm_page_deactivate(m);
1806 					vm_page_wakeup(m);
1807 				} else {
1808 					vm_page_flash(m);
1809 				}
1810 				/*
1811 				 * If i == bp->b_pager.pg_reqpage, do not wake
1812 				 * the page up.  The caller needs to.
1813 				 */
1814 			} else {
1815 				/*
1816 				 * If a write error occurs remove the swap
1817 				 * assignment (note that PG_SWAPPED may or
1818 				 * may not be set depending on prior activity).
1819 				 *
1820 				 * Re-dirty OBJT_SWAP pages as there is no
1821 				 * other backing store, we can't throw the
1822 				 * page away.
1823 				 *
1824 				 * Non-OBJT_SWAP pages (aka swapcache) must
1825 				 * not be dirtied since they may not have
1826 				 * been dirty in the first place, and they
1827 				 * do have backing store (the vnode).
1828 				 */
1829 				vm_page_busy_wait(m, FALSE, "swadpg");
1830 				swp_pager_meta_ctl(m->object, m->pindex,
1831 						   SWM_FREE);
1832 				vm_page_flag_clear(m, PG_SWAPPED);
1833 				if (m->object->type == OBJT_SWAP) {
1834 					vm_page_dirty(m);
1835 					vm_page_activate(m);
1836 				}
1837 				vm_page_flag_clear(m, PG_SWAPINPROG);
1838 				vm_page_io_finish(m);
1839 				vm_page_wakeup(m);
1840 			}
1841 		} else if (bio->bio_caller_info1.index & SWBIO_READ) {
1842 			/*
1843 			 * NOTE: for reads, m->dirty will probably be
1844 			 * overridden by the original caller of getpages so
1845 			 * we cannot set them in order to free the underlying
1846 			 * swap in a low-swap situation.  I don't think we'd
1847 			 * want to do that anyway, but it was an optimization
1848 			 * that existed in the old swapper for a time before
1849 			 * it got ripped out due to precisely this problem.
1850 			 *
1851 			 * If not the requested page then deactivate it.
1852 			 *
1853 			 * Note that the requested page, reqpage, is left
1854 			 * busied, but we still have to wake it up.  The
1855 			 * other pages are released (unbusied) by
1856 			 * vm_page_wakeup().  We do not set reqpage's
1857 			 * valid bits here, it is up to the caller.
1858 			 */
1859 
1860 			/*
1861 			 * NOTE: can't call pmap_clear_modify(m) from an
1862 			 * interrupt thread, the pmap code may have to map
1863 			 * non-kernel pmaps and currently asserts the case.
1864 			 */
1865 			/*pmap_clear_modify(m);*/
1866 			m->valid = VM_PAGE_BITS_ALL;
1867 			vm_page_undirty(m);
1868 			vm_page_flag_clear(m, PG_SWAPINPROG);
1869 			vm_page_flag_set(m, PG_SWAPPED);
1870 
1871 			/*
1872 			 * We have to wake specifically requested pages
1873 			 * up too because we cleared PG_SWAPINPROG and
1874 			 * could be waiting for it in getpages.  However,
1875 			 * be sure to not unbusy getpages specifically
1876 			 * requested page - getpages expects it to be
1877 			 * left busy.
1878 			 *
1879 			 * bio_driver_info holds the requested page
1880 			 */
1881 			if (i != (int)(intptr_t)bio->bio_driver_info) {
1882 				vm_page_deactivate(m);
1883 				vm_page_wakeup(m);
1884 			} else {
1885 				vm_page_flash(m);
1886 			}
1887 		} else {
1888 			/*
1889 			 * Mark the page clean but do not mess with the
1890 			 * pmap-layer's modified state.  That state should
1891 			 * also be clear since the caller protected the
1892 			 * page VM_PROT_READ, but allow the case.
1893 			 *
1894 			 * We are in an interrupt, avoid pmap operations.
1895 			 *
1896 			 * If we have a severe page deficit, deactivate the
1897 			 * page.  Do not try to cache it (which would also
1898 			 * involve a pmap op), because the page might still
1899 			 * be read-heavy.
1900 			 *
1901 			 * When using the swap to cache clean vnode pages
1902 			 * we do not mess with the page dirty bits.
1903 			 */
1904 			vm_page_busy_wait(m, FALSE, "swadpg");
1905 			if (m->object->type == OBJT_SWAP)
1906 				vm_page_undirty(m);
1907 			vm_page_flag_clear(m, PG_SWAPINPROG);
1908 			vm_page_flag_set(m, PG_SWAPPED);
1909 			if (vm_page_count_severe())
1910 				vm_page_deactivate(m);
1911 #if 0
1912 			if (!vm_page_count_severe() || !vm_page_try_to_cache(m))
1913 				vm_page_protect(m, VM_PROT_READ);
1914 #endif
1915 			vm_page_io_finish(m);
1916 			vm_page_wakeup(m);
1917 		}
1918 	}
1919 
1920 	/*
1921 	 * adjust pip.  NOTE: the original parent may still have its own
1922 	 * pip refs on the object.
1923 	 */
1924 
1925 	if (object)
1926 		vm_object_pip_wakeup_n(object, bp->b_xio.xio_npages);
1927 
1928 	/*
1929 	 * Release the physical I/O buffer.
1930 	 *
1931 	 * NOTE: Due to synchronous operations in the write case b_cmd may
1932 	 *	 already be set to BUF_CMD_DONE and BIO_SYNC may have already
1933 	 *	 been cleared.
1934 	 *
1935 	 * Use vm_token to interlock nsw_rcount/wcount wakeup?
1936 	 */
1937 	lwkt_gettoken(&vm_token);
1938 	if (bio->bio_caller_info1.index & SWBIO_READ)
1939 		nswptr = &nsw_rcount;
1940 	else if (bio->bio_caller_info1.index & SWBIO_SYNC)
1941 		nswptr = &nsw_wcount_sync;
1942 	else
1943 		nswptr = &nsw_wcount_async;
1944 	bp->b_cmd = BUF_CMD_DONE;
1945 	relpbuf(bp, nswptr);
1946 	lwkt_reltoken(&vm_token);
1947 }
1948 
1949 /*
1950  * Fault-in a potentially swapped page and remove the swap reference.
1951  * (used by swapoff code)
1952  *
1953  * object must be held.
1954  */
1955 static __inline void
1956 swp_pager_fault_page(vm_object_t object, int *sharedp, vm_pindex_t pindex)
1957 {
1958 	struct vnode *vp;
1959 	vm_page_t m;
1960 	int error;
1961 
1962 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1963 
1964 	if (object->type == OBJT_VNODE) {
1965 		/*
1966 		 * Any swap related to a vnode is due to swapcache.  We must
1967 		 * vget() the vnode in case it is not active (otherwise
1968 		 * vref() will panic).  Calling vm_object_page_remove() will
1969 		 * ensure that any swap ref is removed interlocked with the
1970 		 * page.  clean_only is set to TRUE so we don't throw away
1971 		 * dirty pages.
1972 		 */
1973 		vp = object->handle;
1974 		error = vget(vp, LK_SHARED | LK_RETRY | LK_CANRECURSE);
1975 		if (error == 0) {
1976 			vm_object_page_remove(object, pindex, pindex + 1, TRUE);
1977 			vput(vp);
1978 		}
1979 	} else {
1980 		/*
1981 		 * Otherwise it is a normal OBJT_SWAP object and we can
1982 		 * fault the page in and remove the swap.
1983 		 */
1984 		m = vm_fault_object_page(object, IDX_TO_OFF(pindex),
1985 					 VM_PROT_NONE,
1986 					 VM_FAULT_DIRTY | VM_FAULT_UNSWAP,
1987 					 sharedp, &error);
1988 		if (m)
1989 			vm_page_unhold(m);
1990 	}
1991 }
1992 
1993 /*
1994  * This removes all swap blocks related to a particular device.  We have
1995  * to be careful of ripups during the scan.
1996  */
1997 static int swp_pager_swapoff_callback(struct swblock *swap, void *data);
1998 
1999 int
2000 swap_pager_swapoff(int devidx)
2001 {
2002 	struct swswapoffinfo info;
2003 	struct vm_object marker;
2004 	vm_object_t object;
2005 	int n;
2006 
2007 	bzero(&marker, sizeof(marker));
2008 	marker.type = OBJT_MARKER;
2009 
2010 	for (n = 0; n < VMOBJ_HSIZE; ++n) {
2011 		lwkt_gettoken(&vmobj_tokens[n]);
2012 		TAILQ_INSERT_HEAD(&vm_object_lists[n], &marker, object_list);
2013 
2014 		while ((object = TAILQ_NEXT(&marker, object_list)) != NULL) {
2015 			if (object->type == OBJT_MARKER)
2016 				goto skip;
2017 			if (object->type != OBJT_SWAP &&
2018 			    object->type != OBJT_VNODE)
2019 				goto skip;
2020 			vm_object_hold(object);
2021 			if (object->type != OBJT_SWAP &&
2022 			    object->type != OBJT_VNODE) {
2023 				vm_object_drop(object);
2024 				goto skip;
2025 			}
2026 			info.object = object;
2027 			info.shared = 0;
2028 			info.devidx = devidx;
2029 			swblock_rb_tree_RB_SCAN(&object->swblock_root,
2030 					    NULL, swp_pager_swapoff_callback,
2031 					    &info);
2032 			vm_object_drop(object);
2033 skip:
2034 			if (object == TAILQ_NEXT(&marker, object_list)) {
2035 				TAILQ_REMOVE(&vm_object_lists[n],
2036 					     &marker, object_list);
2037 				TAILQ_INSERT_AFTER(&vm_object_lists[n], object,
2038 						   &marker, object_list);
2039 			}
2040 		}
2041 		TAILQ_REMOVE(&vm_object_lists[n], &marker, object_list);
2042 		lwkt_reltoken(&vmobj_tokens[n]);
2043 	}
2044 
2045 	/*
2046 	 * If we fail to locate all swblocks we just fail gracefully and
2047 	 * do not bother to restore paging on the swap device.  If the
2048 	 * user wants to retry the user can retry.
2049 	 */
2050 	if (swdevt[devidx].sw_nused)
2051 		return (1);
2052 	else
2053 		return (0);
2054 }
2055 
2056 static
2057 int
2058 swp_pager_swapoff_callback(struct swblock *swap, void *data)
2059 {
2060 	struct swswapoffinfo *info = data;
2061 	vm_object_t object = info->object;
2062 	vm_pindex_t index;
2063 	swblk_t v;
2064 	int i;
2065 
2066 	index = swap->swb_index;
2067 	for (i = 0; i < SWAP_META_PAGES; ++i) {
2068 		/*
2069 		 * Make sure we don't race a dying object.  This will
2070 		 * kill the scan of the object's swap blocks entirely.
2071 		 */
2072 		if (object->flags & OBJ_DEAD)
2073 			return(-1);
2074 
2075 		/*
2076 		 * Fault the page, which can obviously block.  If the swap
2077 		 * structure disappears break out.
2078 		 */
2079 		v = swap->swb_pages[i];
2080 		if (v != SWAPBLK_NONE && BLK2DEVIDX(v) == info->devidx) {
2081 			swp_pager_fault_page(object, &info->shared,
2082 					     swap->swb_index + i);
2083 			/* swap ptr might go away */
2084 			if (RB_LOOKUP(swblock_rb_tree,
2085 				      &object->swblock_root, index) != swap) {
2086 				break;
2087 			}
2088 		}
2089 	}
2090 	return(0);
2091 }
2092 
2093 /************************************************************************
2094  *				SWAP META DATA 				*
2095  ************************************************************************
2096  *
2097  *	These routines manipulate the swap metadata stored in the
2098  *	OBJT_SWAP object.  All swp_*() routines must be called at
2099  *	splvm() because swap can be freed up by the low level vm_page
2100  *	code which might be called from interrupts beyond what splbio() covers.
2101  *
2102  *	Swap metadata is implemented with a global hash and not directly
2103  *	linked into the object.  Instead the object simply contains
2104  *	appropriate tracking counters.
2105  */
2106 
2107 /*
2108  * Lookup the swblock containing the specified swap block index.
2109  *
2110  * The caller must hold the object.
2111  */
2112 static __inline
2113 struct swblock *
2114 swp_pager_lookup(vm_object_t object, vm_pindex_t index)
2115 {
2116 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2117 	index &= ~(vm_pindex_t)SWAP_META_MASK;
2118 	return (RB_LOOKUP(swblock_rb_tree, &object->swblock_root, index));
2119 }
2120 
2121 /*
2122  * Remove a swblock from the RB tree.
2123  *
2124  * The caller must hold the object.
2125  */
2126 static __inline
2127 void
2128 swp_pager_remove(vm_object_t object, struct swblock *swap)
2129 {
2130 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2131 	RB_REMOVE(swblock_rb_tree, &object->swblock_root, swap);
2132 }
2133 
2134 /*
2135  * Convert default object to swap object if necessary
2136  *
2137  * The caller must hold the object.
2138  */
2139 static void
2140 swp_pager_meta_convert(vm_object_t object)
2141 {
2142 	if (object->type == OBJT_DEFAULT) {
2143 		object->type = OBJT_SWAP;
2144 		KKASSERT(object->swblock_count == 0);
2145 	}
2146 }
2147 
2148 /*
2149  * SWP_PAGER_META_BUILD() -	add swap block to swap meta data for object
2150  *
2151  *	We first convert the object to a swap object if it is a default
2152  *	object.  Vnode objects do not need to be converted.
2153  *
2154  *	The specified swapblk is added to the object's swap metadata.  If
2155  *	the swapblk is not valid, it is freed instead.  Any previously
2156  *	assigned swapblk is freed.
2157  *
2158  * The caller must hold the object.
2159  */
2160 static void
2161 swp_pager_meta_build(vm_object_t object, vm_pindex_t index, swblk_t swapblk)
2162 {
2163 	struct swblock *swap;
2164 	struct swblock *oswap;
2165 	vm_pindex_t v;
2166 
2167 	KKASSERT(swapblk != SWAPBLK_NONE);
2168 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2169 
2170 	/*
2171 	 * Convert object if necessary
2172 	 */
2173 	if (object->type == OBJT_DEFAULT)
2174 		swp_pager_meta_convert(object);
2175 
2176 	/*
2177 	 * Locate swblock.  If not found create, but if we aren't adding
2178 	 * anything just return.  If we run out of space in the map we wait
2179 	 * and, since the hash table may have changed, retry.
2180 	 */
2181 retry:
2182 	swap = swp_pager_lookup(object, index);
2183 
2184 	if (swap == NULL) {
2185 		int i;
2186 
2187 		swap = zalloc(swap_zone);
2188 		if (swap == NULL) {
2189 			vm_wait(0);
2190 			goto retry;
2191 		}
2192 		swap->swb_index = index & ~(vm_pindex_t)SWAP_META_MASK;
2193 		swap->swb_count = 0;
2194 
2195 		++object->swblock_count;
2196 
2197 		for (i = 0; i < SWAP_META_PAGES; ++i)
2198 			swap->swb_pages[i] = SWAPBLK_NONE;
2199 		oswap = RB_INSERT(swblock_rb_tree, &object->swblock_root, swap);
2200 		KKASSERT(oswap == NULL);
2201 	}
2202 
2203 	/*
2204 	 * Delete prior contents of metadata.
2205 	 *
2206 	 * NOTE: Decrement swb_count after the freeing operation (which
2207 	 *	 might block) to prevent racing destruction of the swblock.
2208 	 */
2209 	index &= SWAP_META_MASK;
2210 
2211 	while ((v = swap->swb_pages[index]) != SWAPBLK_NONE) {
2212 		swap->swb_pages[index] = SWAPBLK_NONE;
2213 		/* can block */
2214 		swp_pager_freeswapspace(object, v, 1);
2215 		--swap->swb_count;
2216 		--mycpu->gd_vmtotal.t_vm;
2217 	}
2218 
2219 	/*
2220 	 * Enter block into metadata
2221 	 */
2222 	swap->swb_pages[index] = swapblk;
2223 	if (swapblk != SWAPBLK_NONE) {
2224 		++swap->swb_count;
2225 		++mycpu->gd_vmtotal.t_vm;
2226 	}
2227 }
2228 
2229 /*
2230  * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
2231  *
2232  *	The requested range of blocks is freed, with any associated swap
2233  *	returned to the swap bitmap.
2234  *
2235  *	This routine will free swap metadata structures as they are cleaned
2236  *	out.  This routine does *NOT* operate on swap metadata associated
2237  *	with resident pages.
2238  *
2239  * The caller must hold the object.
2240  */
2241 static int swp_pager_meta_free_callback(struct swblock *swb, void *data);
2242 
2243 static void
2244 swp_pager_meta_free(vm_object_t object, vm_pindex_t index, vm_pindex_t count)
2245 {
2246 	struct swfreeinfo info;
2247 
2248 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2249 
2250 	/*
2251 	 * Nothing to do
2252 	 */
2253 	if (object->swblock_count == 0) {
2254 		KKASSERT(RB_EMPTY(&object->swblock_root));
2255 		return;
2256 	}
2257 	if (count == 0)
2258 		return;
2259 
2260 	/*
2261 	 * Setup for RB tree scan.  Note that the pindex range can be huge
2262 	 * due to the 64 bit page index space so we cannot safely iterate.
2263 	 */
2264 	info.object = object;
2265 	info.basei = index & ~(vm_pindex_t)SWAP_META_MASK;
2266 	info.begi = index;
2267 	info.endi = index + count - 1;
2268 	swblock_rb_tree_RB_SCAN(&object->swblock_root, rb_swblock_scancmp,
2269 				swp_pager_meta_free_callback, &info);
2270 }
2271 
2272 /*
2273  * The caller must hold the object.
2274  */
2275 static
2276 int
2277 swp_pager_meta_free_callback(struct swblock *swap, void *data)
2278 {
2279 	struct swfreeinfo *info = data;
2280 	vm_object_t object = info->object;
2281 	int index;
2282 	int eindex;
2283 
2284 	/*
2285 	 * Figure out the range within the swblock.  The wider scan may
2286 	 * return edge-case swap blocks when the start and/or end points
2287 	 * are in the middle of a block.
2288 	 */
2289 	if (swap->swb_index < info->begi)
2290 		index = (int)info->begi & SWAP_META_MASK;
2291 	else
2292 		index = 0;
2293 
2294 	if (swap->swb_index + SWAP_META_PAGES > info->endi)
2295 		eindex = (int)info->endi & SWAP_META_MASK;
2296 	else
2297 		eindex = SWAP_META_MASK;
2298 
2299 	/*
2300 	 * Scan and free the blocks.  The loop terminates early
2301 	 * if (swap) runs out of blocks and could be freed.
2302 	 *
2303 	 * NOTE: Decrement swb_count after swp_pager_freeswapspace()
2304 	 *	 to deal with a zfree race.
2305 	 */
2306 	while (index <= eindex) {
2307 		swblk_t v = swap->swb_pages[index];
2308 
2309 		if (v != SWAPBLK_NONE) {
2310 			swap->swb_pages[index] = SWAPBLK_NONE;
2311 			/* can block */
2312 			swp_pager_freeswapspace(object, v, 1);
2313 			--mycpu->gd_vmtotal.t_vm;
2314 			if (--swap->swb_count == 0) {
2315 				swp_pager_remove(object, swap);
2316 				zfree(swap_zone, swap);
2317 				--object->swblock_count;
2318 				break;
2319 			}
2320 		}
2321 		++index;
2322 	}
2323 
2324 	/* swap may be invalid here due to zfree above */
2325 	lwkt_yield();
2326 
2327 	return(0);
2328 }
2329 
2330 /*
2331  * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
2332  *
2333  *	This routine locates and destroys all swap metadata associated with
2334  *	an object.
2335  *
2336  * NOTE: Decrement swb_count after the freeing operation (which
2337  *	 might block) to prevent racing destruction of the swblock.
2338  *
2339  * The caller must hold the object.
2340  */
2341 static void
2342 swp_pager_meta_free_all(vm_object_t object)
2343 {
2344 	struct swblock *swap;
2345 	int i;
2346 
2347 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2348 
2349 	while ((swap = RB_ROOT(&object->swblock_root)) != NULL) {
2350 		swp_pager_remove(object, swap);
2351 		for (i = 0; i < SWAP_META_PAGES; ++i) {
2352 			swblk_t v = swap->swb_pages[i];
2353 			if (v != SWAPBLK_NONE) {
2354 				/* can block */
2355 				swp_pager_freeswapspace(object, v, 1);
2356 				--swap->swb_count;
2357 				--mycpu->gd_vmtotal.t_vm;
2358 			}
2359 		}
2360 		if (swap->swb_count != 0)
2361 			panic("swap_pager_meta_free_all: swb_count != 0");
2362 		zfree(swap_zone, swap);
2363 		--object->swblock_count;
2364 		lwkt_yield();
2365 	}
2366 	KKASSERT(object->swblock_count == 0);
2367 }
2368 
2369 /*
2370  * SWP_PAGER_METACTL() -  misc control of swap and vm_page_t meta data.
2371  *
2372  *	This routine is capable of looking up, popping, or freeing
2373  *	swapblk assignments in the swap meta data or in the vm_page_t.
2374  *	The routine typically returns the swapblk being looked-up, or popped,
2375  *	or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block
2376  *	was invalid.  This routine will automatically free any invalid
2377  *	meta-data swapblks.
2378  *
2379  *	It is not possible to store invalid swapblks in the swap meta data
2380  *	(other then a literal 'SWAPBLK_NONE'), so we don't bother checking.
2381  *
2382  *	When acting on a busy resident page and paging is in progress, we
2383  *	have to wait until paging is complete but otherwise can act on the
2384  *	busy page.
2385  *
2386  *	SWM_FREE	remove and free swap block from metadata
2387  *	SWM_POP		remove from meta data but do not free.. pop it out
2388  *
2389  * The caller must hold the object.
2390  */
2391 static swblk_t
2392 swp_pager_meta_ctl(vm_object_t object, vm_pindex_t index, int flags)
2393 {
2394 	struct swblock *swap;
2395 	swblk_t r1;
2396 
2397 	if (object->swblock_count == 0)
2398 		return(SWAPBLK_NONE);
2399 
2400 	r1 = SWAPBLK_NONE;
2401 	swap = swp_pager_lookup(object, index);
2402 
2403 	if (swap != NULL) {
2404 		index &= SWAP_META_MASK;
2405 		r1 = swap->swb_pages[index];
2406 
2407 		if (r1 != SWAPBLK_NONE) {
2408 			if (flags & (SWM_FREE|SWM_POP)) {
2409 				swap->swb_pages[index] = SWAPBLK_NONE;
2410 				--mycpu->gd_vmtotal.t_vm;
2411 				if (--swap->swb_count == 0) {
2412 					swp_pager_remove(object, swap);
2413 					zfree(swap_zone, swap);
2414 					--object->swblock_count;
2415 				}
2416 			}
2417 			/* swap ptr may be invalid */
2418 			if (flags & SWM_FREE) {
2419 				swp_pager_freeswapspace(object, r1, 1);
2420 				r1 = SWAPBLK_NONE;
2421 			}
2422 		}
2423 		/* swap ptr may be invalid */
2424 	}
2425 	return(r1);
2426 }
2427