xref: /dragonfly/sys/vm/swap_pager.c (revision 77b0c609)
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 1998-2010 The DragonFly Project.  All rights reserved.
5  *
6  * This code is derived from software contributed to The DragonFly Project
7  * by Matthew Dillon <dillon@backplane.com>
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  *
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in
17  *    the documentation and/or other materials provided with the
18  *    distribution.
19  * 3. Neither the name of The DragonFly Project nor the names of its
20  *    contributors may be used to endorse or promote products derived
21  *    from this software without specific, prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
27  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
29  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
31  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
32  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
33  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  * Copyright (c) 1994 John S. Dyson
37  * Copyright (c) 1990 University of Utah.
38  * Copyright (c) 1991, 1993
39  *	The Regents of the University of California.  All rights reserved.
40  *
41  * This code is derived from software contributed to Berkeley by
42  * the Systems Programming Group of the University of Utah Computer
43  * Science Department.
44  *
45  * Redistribution and use in source and binary forms, with or without
46  * modification, are permitted provided that the following conditions
47  * are met:
48  * 1. Redistributions of source code must retain the above copyright
49  *    notice, this list of conditions and the following disclaimer.
50  * 2. Redistributions in binary form must reproduce the above copyright
51  *    notice, this list of conditions and the following disclaimer in the
52  *    documentation and/or other materials provided with the distribution.
53  * 3. All advertising materials mentioning features or use of this software
54  *    must display the following acknowledgement:
55  *	This product includes software developed by the University of
56  *	California, Berkeley and its contributors.
57  * 4. Neither the name of the University nor the names of its contributors
58  *    may be used to endorse or promote products derived from this software
59  *    without specific prior written permission.
60  *
61  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
62  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
63  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
64  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
65  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
66  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
67  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
68  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
69  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
70  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
71  * SUCH DAMAGE.
72  *
73  *				New Swap System
74  *				Matthew Dillon
75  *
76  * Radix Bitmap 'blists'.
77  *
78  *	- The new swapper uses the new radix bitmap code.  This should scale
79  *	  to arbitrarily small or arbitrarily large swap spaces and an almost
80  *	  arbitrary degree of fragmentation.
81  *
82  * Features:
83  *
84  *	- on the fly reallocation of swap during putpages.  The new system
85  *	  does not try to keep previously allocated swap blocks for dirty
86  *	  pages.
87  *
88  *	- on the fly deallocation of swap
89  *
90  *	- No more garbage collection required.  Unnecessarily allocated swap
91  *	  blocks only exist for dirty vm_page_t's now and these are already
92  *	  cycled (in a high-load system) by the pager.  We also do on-the-fly
93  *	  removal of invalidated swap blocks when a page is destroyed
94  *	  or renamed.
95  *
96  * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
97  * @(#)swap_pager.c	8.9 (Berkeley) 3/21/94
98  * $FreeBSD: src/sys/vm/swap_pager.c,v 1.130.2.12 2002/08/31 21:15:55 dillon Exp $
99  */
100 
101 #include <sys/param.h>
102 #include <sys/systm.h>
103 #include <sys/conf.h>
104 #include <sys/kernel.h>
105 #include <sys/proc.h>
106 #include <sys/buf.h>
107 #include <sys/vnode.h>
108 #include <sys/malloc.h>
109 #include <sys/vmmeter.h>
110 #include <sys/sysctl.h>
111 #include <sys/blist.h>
112 #include <sys/lock.h>
113 #include <sys/thread2.h>
114 
115 #ifndef MAX_PAGEOUT_CLUSTER
116 #define MAX_PAGEOUT_CLUSTER 16
117 #endif
118 
119 #define SWB_NPAGES	MAX_PAGEOUT_CLUSTER
120 
121 #include "opt_swap.h"
122 #include <vm/vm.h>
123 #include <vm/vm_object.h>
124 #include <vm/vm_page.h>
125 #include <vm/vm_pager.h>
126 #include <vm/vm_pageout.h>
127 #include <vm/swap_pager.h>
128 #include <vm/vm_extern.h>
129 #include <vm/vm_zone.h>
130 #include <vm/vnode_pager.h>
131 
132 #include <sys/buf2.h>
133 #include <vm/vm_page2.h>
134 
135 #define SWM_FREE	0x02	/* free, period			*/
136 #define SWM_POP		0x04	/* pop out			*/
137 
138 #define SWBIO_READ	0x01
139 #define SWBIO_WRITE	0x02
140 #define SWBIO_SYNC	0x04
141 
142 struct swfreeinfo {
143 	vm_object_t	object;
144 	vm_pindex_t	basei;
145 	vm_pindex_t	begi;
146 	vm_pindex_t	endi;	/* inclusive */
147 };
148 
149 /*
150  * vm_swap_size is in page-sized chunks now.  It was DEV_BSIZE'd chunks
151  * in the old system.
152  */
153 
154 int swap_pager_full;		/* swap space exhaustion (task killing) */
155 int vm_swap_cache_use;
156 int vm_swap_anon_use;
157 
158 static int swap_pager_almost_full; /* swap space exhaustion (w/ hysteresis)*/
159 static int nsw_rcount;		/* free read buffers			*/
160 static int nsw_wcount_sync;	/* limit write buffers / synchronous	*/
161 static int nsw_wcount_async;	/* limit write buffers / asynchronous	*/
162 static int nsw_wcount_async_max;/* assigned maximum			*/
163 static int nsw_cluster_max;	/* maximum VOP I/O allowed		*/
164 
165 struct blist *swapblist;
166 static int swap_async_max = 4;	/* maximum in-progress async I/O's	*/
167 static int swap_burst_read = 0;	/* allow burst reading */
168 
169 /* from vm_swap.c */
170 extern struct vnode *swapdev_vp;
171 extern struct swdevt *swdevt;
172 extern int nswdev;
173 
174 #define BLK2DEVIDX(blk) (nswdev > 1 ? blk / dmmax % nswdev : 0)
175 
176 SYSCTL_INT(_vm, OID_AUTO, swap_async_max,
177         CTLFLAG_RW, &swap_async_max, 0, "Maximum running async swap ops");
178 SYSCTL_INT(_vm, OID_AUTO, swap_burst_read,
179         CTLFLAG_RW, &swap_burst_read, 0, "Allow burst reads for pageins");
180 
181 SYSCTL_INT(_vm, OID_AUTO, swap_cache_use,
182         CTLFLAG_RD, &vm_swap_cache_use, 0, "");
183 SYSCTL_INT(_vm, OID_AUTO, swap_anon_use,
184         CTLFLAG_RD, &vm_swap_anon_use, 0, "");
185 SYSCTL_INT(_vm, OID_AUTO, swap_size,
186         CTLFLAG_RD, &vm_swap_size, 0, "");
187 
188 vm_zone_t		swap_zone;
189 
190 /*
191  * Red-Black tree for swblock entries
192  *
193  * The caller must hold vm_token
194  */
195 RB_GENERATE2(swblock_rb_tree, swblock, swb_entry, rb_swblock_compare,
196 	     vm_pindex_t, swb_index);
197 
198 int
199 rb_swblock_compare(struct swblock *swb1, struct swblock *swb2)
200 {
201 	if (swb1->swb_index < swb2->swb_index)
202 		return(-1);
203 	if (swb1->swb_index > swb2->swb_index)
204 		return(1);
205 	return(0);
206 }
207 
208 static
209 int
210 rb_swblock_scancmp(struct swblock *swb, void *data)
211 {
212 	struct swfreeinfo *info = data;
213 
214 	if (swb->swb_index < info->basei)
215 		return(-1);
216 	if (swb->swb_index > info->endi)
217 		return(1);
218 	return(0);
219 }
220 
221 static
222 int
223 rb_swblock_condcmp(struct swblock *swb, void *data)
224 {
225 	struct swfreeinfo *info = data;
226 
227 	if (swb->swb_index < info->basei)
228 		return(-1);
229 	return(0);
230 }
231 
232 /*
233  * pagerops for OBJT_SWAP - "swap pager".  Some ops are also global procedure
234  * calls hooked from other parts of the VM system and do not appear here.
235  * (see vm/swap_pager.h).
236  */
237 
238 static void	swap_pager_dealloc (vm_object_t object);
239 static int	swap_pager_getpage (vm_object_t, vm_page_t *, int);
240 static void	swap_chain_iodone(struct bio *biox);
241 
242 struct pagerops swappagerops = {
243 	swap_pager_dealloc,	/* deallocate an OBJT_SWAP object	*/
244 	swap_pager_getpage,	/* pagein				*/
245 	swap_pager_putpages,	/* pageout				*/
246 	swap_pager_haspage	/* get backing store status for page	*/
247 };
248 
249 /*
250  * dmmax is in page-sized chunks with the new swap system.  It was
251  * dev-bsized chunks in the old.  dmmax is always a power of 2.
252  *
253  * swap_*() routines are externally accessible.  swp_*() routines are
254  * internal.
255  */
256 
257 int dmmax;
258 static int dmmax_mask;
259 int nswap_lowat = 128;		/* in pages, swap_pager_almost_full warn */
260 int nswap_hiwat = 512;		/* in pages, swap_pager_almost_full warn */
261 
262 static __inline void	swp_sizecheck (void);
263 static void	swp_pager_async_iodone (struct bio *bio);
264 
265 /*
266  * Swap bitmap functions
267  */
268 
269 static __inline void	swp_pager_freeswapspace(vm_object_t object,
270 						swblk_t blk, int npages);
271 static __inline swblk_t	swp_pager_getswapspace(vm_object_t object, int npages);
272 
273 /*
274  * Metadata functions
275  */
276 
277 static void swp_pager_meta_convert(vm_object_t);
278 static void swp_pager_meta_build(vm_object_t, vm_pindex_t, swblk_t);
279 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, vm_pindex_t);
280 static void swp_pager_meta_free_all(vm_object_t);
281 static swblk_t swp_pager_meta_ctl(vm_object_t, vm_pindex_t, int);
282 
283 /*
284  * SWP_SIZECHECK() -	update swap_pager_full indication
285  *
286  *	update the swap_pager_almost_full indication and warn when we are
287  *	about to run out of swap space, using lowat/hiwat hysteresis.
288  *
289  *	Clear swap_pager_full ( task killing ) indication when lowat is met.
290  *
291  * No restrictions on call
292  * This routine may not block.
293  * SMP races are ok.
294  */
295 static __inline void
296 swp_sizecheck(void)
297 {
298 	if (vm_swap_size < nswap_lowat) {
299 		if (swap_pager_almost_full == 0) {
300 			kprintf("swap_pager: out of swap space\n");
301 			swap_pager_almost_full = 1;
302 		}
303 	} else {
304 		swap_pager_full = 0;
305 		if (vm_swap_size > nswap_hiwat)
306 			swap_pager_almost_full = 0;
307 	}
308 }
309 
310 /*
311  * SWAP_PAGER_INIT() -	initialize the swap pager!
312  *
313  *	Expected to be started from system init.  NOTE:  This code is run
314  *	before much else so be careful what you depend on.  Most of the VM
315  *	system has yet to be initialized at this point.
316  *
317  * Called from the low level boot code only.
318  */
319 static void
320 swap_pager_init(void *arg __unused)
321 {
322 	/*
323 	 * Device Stripe, in PAGE_SIZE'd blocks
324 	 */
325 	dmmax = SWB_NPAGES * 2;
326 	dmmax_mask = ~(dmmax - 1);
327 }
328 SYSINIT(vm_mem, SI_BOOT1_VM, SI_ORDER_THIRD, swap_pager_init, NULL)
329 
330 /*
331  * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
332  *
333  *	Expected to be started from pageout process once, prior to entering
334  *	its main loop.
335  *
336  * Called from the low level boot code only.
337  */
338 void
339 swap_pager_swap_init(void)
340 {
341 	int n, n2;
342 
343 	/*
344 	 * Number of in-transit swap bp operations.  Don't
345 	 * exhaust the pbufs completely.  Make sure we
346 	 * initialize workable values (0 will work for hysteresis
347 	 * but it isn't very efficient).
348 	 *
349 	 * The nsw_cluster_max is constrained by the number of pages an XIO
350 	 * holds, i.e., (MAXPHYS/PAGE_SIZE) and our locally defined
351 	 * MAX_PAGEOUT_CLUSTER.   Also be aware that swap ops are
352 	 * constrained by the swap device interleave stripe size.
353 	 *
354 	 * Currently we hardwire nsw_wcount_async to 4.  This limit is
355 	 * designed to prevent other I/O from having high latencies due to
356 	 * our pageout I/O.  The value 4 works well for one or two active swap
357 	 * devices but is probably a little low if you have more.  Even so,
358 	 * a higher value would probably generate only a limited improvement
359 	 * with three or four active swap devices since the system does not
360 	 * typically have to pageout at extreme bandwidths.   We will want
361 	 * at least 2 per swap devices, and 4 is a pretty good value if you
362 	 * have one NFS swap device due to the command/ack latency over NFS.
363 	 * So it all works out pretty well.
364 	 */
365 
366 	nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER);
367 
368 	nsw_rcount = (nswbuf + 1) / 2;
369 	nsw_wcount_sync = (nswbuf + 3) / 4;
370 	nsw_wcount_async = 4;
371 	nsw_wcount_async_max = nsw_wcount_async;
372 
373 	/*
374 	 * The zone is dynamically allocated so generally size it to
375 	 * maxswzone (32MB to 512MB of KVM).  Set a minimum size based
376 	 * on physical memory of around 8x (each swblock can hold 16 pages).
377 	 *
378 	 * With the advent of SSDs (vs HDs) the practical (swap:memory) ratio
379 	 * has increased dramatically.
380 	 */
381 	n = vmstats.v_page_count / 2;
382 	if (maxswzone && n < maxswzone / sizeof(struct swblock))
383 		n = maxswzone / sizeof(struct swblock);
384 	n2 = n;
385 
386 	do {
387 		swap_zone = zinit(
388 			"SWAPMETA",
389 			sizeof(struct swblock),
390 			n,
391 			ZONE_INTERRUPT,
392 			1);
393 		if (swap_zone != NULL)
394 			break;
395 		/*
396 		 * if the allocation failed, try a zone two thirds the
397 		 * size of the previous attempt.
398 		 */
399 		n -= ((n + 2) / 3);
400 	} while (n > 0);
401 
402 	if (swap_zone == NULL)
403 		panic("swap_pager_swap_init: swap_zone == NULL");
404 	if (n2 != n)
405 		kprintf("Swap zone entries reduced from %d to %d.\n", n2, n);
406 }
407 
408 /*
409  * SWAP_PAGER_ALLOC() -	allocate a new OBJT_SWAP VM object and instantiate
410  *			its metadata structures.
411  *
412  *	This routine is called from the mmap and fork code to create a new
413  *	OBJT_SWAP object.  We do this by creating an OBJT_DEFAULT object
414  *	and then converting it with swp_pager_meta_convert().
415  *
416  *	We only support unnamed objects.
417  *
418  * No restrictions.
419  */
420 vm_object_t
421 swap_pager_alloc(void *handle, off_t size, vm_prot_t prot, off_t offset)
422 {
423 	vm_object_t object;
424 
425 	KKASSERT(handle == NULL);
426 	object = vm_object_allocate_hold(OBJT_DEFAULT,
427 					 OFF_TO_IDX(offset + PAGE_MASK + size));
428 	swp_pager_meta_convert(object);
429 	vm_object_drop(object);
430 
431 	return (object);
432 }
433 
434 /*
435  * SWAP_PAGER_DEALLOC() -	remove swap metadata from object
436  *
437  *	The swap backing for the object is destroyed.  The code is
438  *	designed such that we can reinstantiate it later, but this
439  *	routine is typically called only when the entire object is
440  *	about to be destroyed.
441  *
442  * The object must be locked or unreferenceable.
443  * No other requirements.
444  */
445 static void
446 swap_pager_dealloc(vm_object_t object)
447 {
448 	vm_object_hold(object);
449 	vm_object_pip_wait(object, "swpdea");
450 
451 	/*
452 	 * Free all remaining metadata.  We only bother to free it from
453 	 * the swap meta data.  We do not attempt to free swapblk's still
454 	 * associated with vm_page_t's for this object.  We do not care
455 	 * if paging is still in progress on some objects.
456 	 */
457 	swp_pager_meta_free_all(object);
458 	vm_object_drop(object);
459 }
460 
461 /************************************************************************
462  *			SWAP PAGER BITMAP ROUTINES			*
463  ************************************************************************/
464 
465 /*
466  * SWP_PAGER_GETSWAPSPACE() -	allocate raw swap space
467  *
468  *	Allocate swap for the requested number of pages.  The starting
469  *	swap block number (a page index) is returned or SWAPBLK_NONE
470  *	if the allocation failed.
471  *
472  *	Also has the side effect of advising that somebody made a mistake
473  *	when they configured swap and didn't configure enough.
474  *
475  * The caller must hold the object.
476  * This routine may not block.
477  */
478 static __inline swblk_t
479 swp_pager_getswapspace(vm_object_t object, int npages)
480 {
481 	swblk_t blk;
482 
483 	lwkt_gettoken(&vm_token);
484 	if ((blk = blist_alloc(swapblist, npages)) == SWAPBLK_NONE) {
485 		if (swap_pager_full != 2) {
486 			kprintf("swap_pager_getswapspace: failed alloc=%d\n",
487 				npages);
488 			swap_pager_full = 2;
489 			swap_pager_almost_full = 1;
490 		}
491 	} else {
492 		swapacctspace(blk, -npages);
493 		if (object->type == OBJT_SWAP)
494 			vm_swap_anon_use += npages;
495 		else
496 			vm_swap_cache_use += npages;
497 		swp_sizecheck();
498 	}
499 	lwkt_reltoken(&vm_token);
500 	return(blk);
501 }
502 
503 /*
504  * SWP_PAGER_FREESWAPSPACE() -	free raw swap space
505  *
506  *	This routine returns the specified swap blocks back to the bitmap.
507  *
508  *	Note:  This routine may not block (it could in the old swap code),
509  *	and through the use of the new blist routines it does not block.
510  *
511  *	We must be called at splvm() to avoid races with bitmap frees from
512  *	vm_page_remove() aka swap_pager_page_removed().
513  *
514  * This routine may not block.
515  */
516 
517 static __inline void
518 swp_pager_freeswapspace(vm_object_t object, swblk_t blk, int npages)
519 {
520 	struct swdevt *sp = &swdevt[BLK2DEVIDX(blk)];
521 
522 	lwkt_gettoken(&vm_token);
523 	sp->sw_nused -= npages;
524 	if (object->type == OBJT_SWAP)
525 		vm_swap_anon_use -= npages;
526 	else
527 		vm_swap_cache_use -= npages;
528 
529 	if (sp->sw_flags & SW_CLOSING) {
530 		lwkt_reltoken(&vm_token);
531 		return;
532 	}
533 
534 	blist_free(swapblist, blk, npages);
535 	vm_swap_size += npages;
536 	swp_sizecheck();
537 	lwkt_reltoken(&vm_token);
538 }
539 
540 /*
541  * SWAP_PAGER_FREESPACE() -	frees swap blocks associated with a page
542  *				range within an object.
543  *
544  *	This is a globally accessible routine.
545  *
546  *	This routine removes swapblk assignments from swap metadata.
547  *
548  *	The external callers of this routine typically have already destroyed
549  *	or renamed vm_page_t's associated with this range in the object so
550  *	we should be ok.
551  *
552  * No requirements.
553  */
554 void
555 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_pindex_t size)
556 {
557 	vm_object_hold(object);
558 	swp_pager_meta_free(object, start, size);
559 	vm_object_drop(object);
560 }
561 
562 /*
563  * No requirements.
564  */
565 void
566 swap_pager_freespace_all(vm_object_t object)
567 {
568 	vm_object_hold(object);
569 	swp_pager_meta_free_all(object);
570 	vm_object_drop(object);
571 }
572 
573 /*
574  * This function conditionally frees swap cache swap starting at
575  * (*basei) in the object.  (count) swap blocks will be nominally freed.
576  * The actual number of blocks freed can be more or less than the
577  * requested number.
578  *
579  * This function nominally returns the number of blocks freed.  However,
580  * the actual number of blocks freed may be less then the returned value.
581  * If the function is unable to exhaust the object or if it is able to
582  * free (approximately) the requested number of blocks it returns
583  * a value n > count.
584  *
585  * If we exhaust the object we will return a value n <= count.
586  *
587  * The caller must hold the object.
588  *
589  * WARNING!  If count == 0 then -1 can be returned as a degenerate case,
590  *	     callers should always pass a count value > 0.
591  */
592 static int swap_pager_condfree_callback(struct swblock *swap, void *data);
593 
594 int
595 swap_pager_condfree(vm_object_t object, vm_pindex_t *basei, int count)
596 {
597 	struct swfreeinfo info;
598 	int n;
599 	int t;
600 
601 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
602 
603 	info.object = object;
604 	info.basei = *basei;	/* skip up to this page index */
605 	info.begi = count;	/* max swap pages to destroy */
606 	info.endi = count * 8;	/* max swblocks to scan */
607 
608 	swblock_rb_tree_RB_SCAN(&object->swblock_root, rb_swblock_condcmp,
609 				swap_pager_condfree_callback, &info);
610 	*basei = info.basei;
611 
612 	/*
613 	 * Take the higher difference swblocks vs pages
614 	 */
615 	n = count - (int)info.begi;
616 	t = count * 8 - (int)info.endi;
617 	if (n < t)
618 		n = t;
619 	if (n < 1)
620 		n = 1;
621 	return(n);
622 }
623 
624 /*
625  * The idea is to free whole meta-block to avoid fragmenting
626  * the swap space or disk I/O.  We only do this if NO VM pages
627  * are present.
628  *
629  * We do not have to deal with clearing PG_SWAPPED in related VM
630  * pages because there are no related VM pages.
631  *
632  * The caller must hold the object.
633  */
634 static int
635 swap_pager_condfree_callback(struct swblock *swap, void *data)
636 {
637 	struct swfreeinfo *info = data;
638 	vm_object_t object = info->object;
639 	int i;
640 
641 	for (i = 0; i < SWAP_META_PAGES; ++i) {
642 		if (vm_page_lookup(object, swap->swb_index + i))
643 			break;
644 	}
645 	info->basei = swap->swb_index + SWAP_META_PAGES;
646 	if (i == SWAP_META_PAGES) {
647 		info->begi -= swap->swb_count;
648 		swap_pager_freespace(object, swap->swb_index, SWAP_META_PAGES);
649 	}
650 	--info->endi;
651 	if ((int)info->begi < 0 || (int)info->endi < 0)
652 		return(-1);
653 	lwkt_yield();
654 	return(0);
655 }
656 
657 /*
658  * Called by vm_page_alloc() when a new VM page is inserted
659  * into a VM object.  Checks whether swap has been assigned to
660  * the page and sets PG_SWAPPED as necessary.
661  *
662  * No requirements.
663  */
664 void
665 swap_pager_page_inserted(vm_page_t m)
666 {
667 	if (m->object->swblock_count) {
668 		vm_object_hold(m->object);
669 		if (swp_pager_meta_ctl(m->object, m->pindex, 0) != SWAPBLK_NONE)
670 			vm_page_flag_set(m, PG_SWAPPED);
671 		vm_object_drop(m->object);
672 	}
673 }
674 
675 /*
676  * SWAP_PAGER_RESERVE() - reserve swap blocks in object
677  *
678  *	Assigns swap blocks to the specified range within the object.  The
679  *	swap blocks are not zerod.  Any previous swap assignment is destroyed.
680  *
681  *	Returns 0 on success, -1 on failure.
682  *
683  * The caller is responsible for avoiding races in the specified range.
684  * No other requirements.
685  */
686 int
687 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
688 {
689 	int n = 0;
690 	swblk_t blk = SWAPBLK_NONE;
691 	vm_pindex_t beg = start;	/* save start index */
692 
693 	vm_object_hold(object);
694 
695 	while (size) {
696 		if (n == 0) {
697 			n = BLIST_MAX_ALLOC;
698 			while ((blk = swp_pager_getswapspace(object, n)) ==
699 			       SWAPBLK_NONE)
700 			{
701 				n >>= 1;
702 				if (n == 0) {
703 					swp_pager_meta_free(object, beg,
704 							    start - beg);
705 					vm_object_drop(object);
706 					return(-1);
707 				}
708 			}
709 		}
710 		swp_pager_meta_build(object, start, blk);
711 		--size;
712 		++start;
713 		++blk;
714 		--n;
715 	}
716 	swp_pager_meta_free(object, start, n);
717 	vm_object_drop(object);
718 	return(0);
719 }
720 
721 /*
722  * SWAP_PAGER_COPY() -  copy blocks from source pager to destination pager
723  *			and destroy the source.
724  *
725  *	Copy any valid swapblks from the source to the destination.  In
726  *	cases where both the source and destination have a valid swapblk,
727  *	we keep the destination's.
728  *
729  *	This routine is allowed to block.  It may block allocating metadata
730  *	indirectly through swp_pager_meta_build() or if paging is still in
731  *	progress on the source.
732  *
733  *	XXX vm_page_collapse() kinda expects us not to block because we
734  *	supposedly do not need to allocate memory, but for the moment we
735  *	*may* have to get a little memory from the zone allocator, but
736  *	it is taken from the interrupt memory.  We should be ok.
737  *
738  *	The source object contains no vm_page_t's (which is just as well)
739  *	The source object is of type OBJT_SWAP.
740  *
741  *	The source and destination objects must be held by the caller.
742  */
743 void
744 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject,
745 		vm_pindex_t base_index, int destroysource)
746 {
747 	vm_pindex_t i;
748 
749 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(srcobject));
750 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(dstobject));
751 
752 	/*
753 	 * transfer source to destination.
754 	 */
755 	for (i = 0; i < dstobject->size; ++i) {
756 		swblk_t dstaddr;
757 
758 		/*
759 		 * Locate (without changing) the swapblk on the destination,
760 		 * unless it is invalid in which case free it silently, or
761 		 * if the destination is a resident page, in which case the
762 		 * source is thrown away.
763 		 */
764 		dstaddr = swp_pager_meta_ctl(dstobject, i, 0);
765 
766 		if (dstaddr == SWAPBLK_NONE) {
767 			/*
768 			 * Destination has no swapblk and is not resident,
769 			 * copy source.
770 			 */
771 			swblk_t srcaddr;
772 
773 			srcaddr = swp_pager_meta_ctl(srcobject,
774 						     base_index + i, SWM_POP);
775 
776 			if (srcaddr != SWAPBLK_NONE)
777 				swp_pager_meta_build(dstobject, i, srcaddr);
778 		} else {
779 			/*
780 			 * Destination has valid swapblk or it is represented
781 			 * by a resident page.  We destroy the sourceblock.
782 			 */
783 			swp_pager_meta_ctl(srcobject, base_index + i, SWM_FREE);
784 		}
785 	}
786 
787 	/*
788 	 * Free left over swap blocks in source.
789 	 *
790 	 * We have to revert the type to OBJT_DEFAULT so we do not accidently
791 	 * double-remove the object from the swap queues.
792 	 */
793 	if (destroysource) {
794 		/*
795 		 * Reverting the type is not necessary, the caller is going
796 		 * to destroy srcobject directly, but I'm doing it here
797 		 * for consistency since we've removed the object from its
798 		 * queues.
799 		 */
800 		swp_pager_meta_free_all(srcobject);
801 		if (srcobject->type == OBJT_SWAP)
802 			srcobject->type = OBJT_DEFAULT;
803 	}
804 }
805 
806 /*
807  * SWAP_PAGER_HASPAGE() -	determine if we have good backing store for
808  *				the requested page.
809  *
810  *	We determine whether good backing store exists for the requested
811  *	page and return TRUE if it does, FALSE if it doesn't.
812  *
813  *	If TRUE, we also try to determine how much valid, contiguous backing
814  *	store exists before and after the requested page within a reasonable
815  *	distance.  We do not try to restrict it to the swap device stripe
816  *	(that is handled in getpages/putpages).  It probably isn't worth
817  *	doing here.
818  *
819  * No requirements.
820  */
821 boolean_t
822 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex)
823 {
824 	swblk_t blk0;
825 
826 	/*
827 	 * do we have good backing store at the requested index ?
828 	 */
829 	vm_object_hold(object);
830 	blk0 = swp_pager_meta_ctl(object, pindex, 0);
831 
832 	if (blk0 == SWAPBLK_NONE) {
833 		vm_object_drop(object);
834 		return (FALSE);
835 	}
836 	vm_object_drop(object);
837 	return (TRUE);
838 }
839 
840 /*
841  * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
842  *
843  * This removes any associated swap backing store, whether valid or
844  * not, from the page.  This operates on any VM object, not just OBJT_SWAP
845  * objects.
846  *
847  * This routine is typically called when a page is made dirty, at
848  * which point any associated swap can be freed.  MADV_FREE also
849  * calls us in a special-case situation
850  *
851  * NOTE!!!  If the page is clean and the swap was valid, the caller
852  * should make the page dirty before calling this routine.  This routine
853  * does NOT change the m->dirty status of the page.  Also: MADV_FREE
854  * depends on it.
855  *
856  * The page must be busied or soft-busied.
857  * The caller can hold the object to avoid blocking, else we might block.
858  * No other requirements.
859  */
860 void
861 swap_pager_unswapped(vm_page_t m)
862 {
863 	if (m->flags & PG_SWAPPED) {
864 		vm_object_hold(m->object);
865 		KKASSERT(m->flags & PG_SWAPPED);
866 		swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE);
867 		vm_page_flag_clear(m, PG_SWAPPED);
868 		vm_object_drop(m->object);
869 	}
870 }
871 
872 /*
873  * SWAP_PAGER_STRATEGY() - read, write, free blocks
874  *
875  * This implements a VM OBJECT strategy function using swap backing store.
876  * This can operate on any VM OBJECT type, not necessarily just OBJT_SWAP
877  * types.
878  *
879  * This is intended to be a cacheless interface (i.e. caching occurs at
880  * higher levels), and is also used as a swap-based SSD cache for vnode
881  * and device objects.
882  *
883  * All I/O goes directly to and from the swap device.
884  *
885  * We currently attempt to run I/O synchronously or asynchronously as
886  * the caller requests.  This isn't perfect because we loose error
887  * sequencing when we run multiple ops in parallel to satisfy a request.
888  * But this is swap, so we let it all hang out.
889  *
890  * No requirements.
891  */
892 void
893 swap_pager_strategy(vm_object_t object, struct bio *bio)
894 {
895 	struct buf *bp = bio->bio_buf;
896 	struct bio *nbio;
897 	vm_pindex_t start;
898 	vm_pindex_t biox_blkno = 0;
899 	int count;
900 	char *data;
901 	struct bio *biox;
902 	struct buf *bufx;
903 	struct bio_track *track;
904 
905 	/*
906 	 * tracking for swapdev vnode I/Os
907 	 */
908 	if (bp->b_cmd == BUF_CMD_READ)
909 		track = &swapdev_vp->v_track_read;
910 	else
911 		track = &swapdev_vp->v_track_write;
912 
913 	if (bp->b_bcount & PAGE_MASK) {
914 		bp->b_error = EINVAL;
915 		bp->b_flags |= B_ERROR | B_INVAL;
916 		biodone(bio);
917 		kprintf("swap_pager_strategy: bp %p offset %lld size %d, "
918 			"not page bounded\n",
919 			bp, (long long)bio->bio_offset, (int)bp->b_bcount);
920 		return;
921 	}
922 
923 	/*
924 	 * Clear error indication, initialize page index, count, data pointer.
925 	 */
926 	bp->b_error = 0;
927 	bp->b_flags &= ~B_ERROR;
928 	bp->b_resid = bp->b_bcount;
929 
930 	start = (vm_pindex_t)(bio->bio_offset >> PAGE_SHIFT);
931 	count = howmany(bp->b_bcount, PAGE_SIZE);
932 	data = bp->b_data;
933 
934 	/*
935 	 * Deal with BUF_CMD_FREEBLKS
936 	 */
937 	if (bp->b_cmd == BUF_CMD_FREEBLKS) {
938 		/*
939 		 * FREE PAGE(s) - destroy underlying swap that is no longer
940 		 *		  needed.
941 		 */
942 		vm_object_hold(object);
943 		swp_pager_meta_free(object, start, count);
944 		vm_object_drop(object);
945 		bp->b_resid = 0;
946 		biodone(bio);
947 		return;
948 	}
949 
950 	/*
951 	 * We need to be able to create a new cluster of I/O's.  We cannot
952 	 * use the caller fields of the passed bio so push a new one.
953 	 *
954 	 * Because nbio is just a placeholder for the cluster links,
955 	 * we can biodone() the original bio instead of nbio to make
956 	 * things a bit more efficient.
957 	 */
958 	nbio = push_bio(bio);
959 	nbio->bio_offset = bio->bio_offset;
960 	nbio->bio_caller_info1.cluster_head = NULL;
961 	nbio->bio_caller_info2.cluster_tail = NULL;
962 
963 	biox = NULL;
964 	bufx = NULL;
965 
966 	/*
967 	 * Execute read or write
968 	 */
969 	vm_object_hold(object);
970 
971 	while (count > 0) {
972 		swblk_t blk;
973 
974 		/*
975 		 * Obtain block.  If block not found and writing, allocate a
976 		 * new block and build it into the object.
977 		 */
978 		blk = swp_pager_meta_ctl(object, start, 0);
979 		if ((blk == SWAPBLK_NONE) && bp->b_cmd != BUF_CMD_READ) {
980 			blk = swp_pager_getswapspace(object, 1);
981 			if (blk == SWAPBLK_NONE) {
982 				bp->b_error = ENOMEM;
983 				bp->b_flags |= B_ERROR;
984 				break;
985 			}
986 			swp_pager_meta_build(object, start, blk);
987 		}
988 
989 		/*
990 		 * Do we have to flush our current collection?  Yes if:
991 		 *
992 		 *	- no swap block at this index
993 		 *	- swap block is not contiguous
994 		 *	- we cross a physical disk boundry in the
995 		 *	  stripe.
996 		 */
997 		if (
998 		    biox && (biox_blkno + btoc(bufx->b_bcount) != blk ||
999 		     ((biox_blkno ^ blk) & dmmax_mask)
1000 		    )
1001 		) {
1002 			if (bp->b_cmd == BUF_CMD_READ) {
1003 				++mycpu->gd_cnt.v_swapin;
1004 				mycpu->gd_cnt.v_swappgsin += btoc(bufx->b_bcount);
1005 			} else {
1006 				++mycpu->gd_cnt.v_swapout;
1007 				mycpu->gd_cnt.v_swappgsout += btoc(bufx->b_bcount);
1008 				bufx->b_dirtyend = bufx->b_bcount;
1009 			}
1010 
1011 			/*
1012 			 * Finished with this buf.
1013 			 */
1014 			KKASSERT(bufx->b_bcount != 0);
1015 			if (bufx->b_cmd != BUF_CMD_READ)
1016 				bufx->b_dirtyend = bufx->b_bcount;
1017 			biox = NULL;
1018 			bufx = NULL;
1019 		}
1020 
1021 		/*
1022 		 * Add new swapblk to biox, instantiating biox if necessary.
1023 		 * Zero-fill reads are able to take a shortcut.
1024 		 */
1025 		if (blk == SWAPBLK_NONE) {
1026 			/*
1027 			 * We can only get here if we are reading.  Since
1028 			 * we are at splvm() we can safely modify b_resid,
1029 			 * even if chain ops are in progress.
1030 			 */
1031 			bzero(data, PAGE_SIZE);
1032 			bp->b_resid -= PAGE_SIZE;
1033 		} else {
1034 			if (biox == NULL) {
1035 				/* XXX chain count > 4, wait to <= 4 */
1036 
1037 				bufx = getpbuf(NULL);
1038 				biox = &bufx->b_bio1;
1039 				cluster_append(nbio, bufx);
1040 				bufx->b_flags |= (bufx->b_flags & B_ORDERED);
1041 				bufx->b_cmd = bp->b_cmd;
1042 				biox->bio_done = swap_chain_iodone;
1043 				biox->bio_offset = (off_t)blk << PAGE_SHIFT;
1044 				biox->bio_caller_info1.cluster_parent = nbio;
1045 				biox_blkno = blk;
1046 				bufx->b_bcount = 0;
1047 				bufx->b_data = data;
1048 			}
1049 			bufx->b_bcount += PAGE_SIZE;
1050 		}
1051 		--count;
1052 		++start;
1053 		data += PAGE_SIZE;
1054 	}
1055 
1056 	vm_object_drop(object);
1057 
1058 	/*
1059 	 *  Flush out last buffer
1060 	 */
1061 	if (biox) {
1062 		if (bufx->b_cmd == BUF_CMD_READ) {
1063 			++mycpu->gd_cnt.v_swapin;
1064 			mycpu->gd_cnt.v_swappgsin += btoc(bufx->b_bcount);
1065 		} else {
1066 			++mycpu->gd_cnt.v_swapout;
1067 			mycpu->gd_cnt.v_swappgsout += btoc(bufx->b_bcount);
1068 			bufx->b_dirtyend = bufx->b_bcount;
1069 		}
1070 		KKASSERT(bufx->b_bcount);
1071 		if (bufx->b_cmd != BUF_CMD_READ)
1072 			bufx->b_dirtyend = bufx->b_bcount;
1073 		/* biox, bufx = NULL */
1074 	}
1075 
1076 	/*
1077 	 * Now initiate all the I/O.  Be careful looping on our chain as
1078 	 * I/O's may complete while we are still initiating them.
1079 	 *
1080 	 * If the request is a 100% sparse read no bios will be present
1081 	 * and we just biodone() the buffer.
1082 	 */
1083 	nbio->bio_caller_info2.cluster_tail = NULL;
1084 	bufx = nbio->bio_caller_info1.cluster_head;
1085 
1086 	if (bufx) {
1087 		while (bufx) {
1088 			biox = &bufx->b_bio1;
1089 			BUF_KERNPROC(bufx);
1090 			bufx = bufx->b_cluster_next;
1091 			vn_strategy(swapdev_vp, biox);
1092 		}
1093 	} else {
1094 		biodone(bio);
1095 	}
1096 
1097 	/*
1098 	 * Completion of the cluster will also call biodone_chain(nbio).
1099 	 * We never call biodone(nbio) so we don't have to worry about
1100 	 * setting up a bio_done callback.  It's handled in the sub-IO.
1101 	 */
1102 	/**/
1103 }
1104 
1105 /*
1106  * biodone callback
1107  *
1108  * No requirements.
1109  */
1110 static void
1111 swap_chain_iodone(struct bio *biox)
1112 {
1113 	struct buf **nextp;
1114 	struct buf *bufx;	/* chained sub-buffer */
1115 	struct bio *nbio;	/* parent nbio with chain glue */
1116 	struct buf *bp;		/* original bp associated with nbio */
1117 	int chain_empty;
1118 
1119 	bufx = biox->bio_buf;
1120 	nbio = biox->bio_caller_info1.cluster_parent;
1121 	bp = nbio->bio_buf;
1122 
1123 	/*
1124 	 * Update the original buffer
1125 	 */
1126         KKASSERT(bp != NULL);
1127 	if (bufx->b_flags & B_ERROR) {
1128 		atomic_set_int(&bufx->b_flags, B_ERROR);
1129 		bp->b_error = bufx->b_error;	/* race ok */
1130 	} else if (bufx->b_resid != 0) {
1131 		atomic_set_int(&bufx->b_flags, B_ERROR);
1132 		bp->b_error = EINVAL;		/* race ok */
1133 	} else {
1134 		atomic_subtract_int(&bp->b_resid, bufx->b_bcount);
1135 	}
1136 
1137 	/*
1138 	 * Remove us from the chain.
1139 	 */
1140 	spin_lock(&bp->b_lock.lk_spinlock);
1141 	nextp = &nbio->bio_caller_info1.cluster_head;
1142 	while (*nextp != bufx) {
1143 		KKASSERT(*nextp != NULL);
1144 		nextp = &(*nextp)->b_cluster_next;
1145 	}
1146 	*nextp = bufx->b_cluster_next;
1147 	chain_empty = (nbio->bio_caller_info1.cluster_head == NULL);
1148 	spin_unlock(&bp->b_lock.lk_spinlock);
1149 
1150 	/*
1151 	 * Clean up bufx.  If the chain is now empty we finish out
1152 	 * the parent.  Note that we may be racing other completions
1153 	 * so we must use the chain_empty status from above.
1154 	 */
1155 	if (chain_empty) {
1156 		if (bp->b_resid != 0 && !(bp->b_flags & B_ERROR)) {
1157 			atomic_set_int(&bp->b_flags, B_ERROR);
1158 			bp->b_error = EINVAL;
1159 		}
1160 		biodone_chain(nbio);
1161         }
1162         relpbuf(bufx, NULL);
1163 }
1164 
1165 /*
1166  * SWAP_PAGER_GETPAGES() - bring page in from swap
1167  *
1168  * The requested page may have to be brought in from swap.  Calculate the
1169  * swap block and bring in additional pages if possible.  All pages must
1170  * have contiguous swap block assignments and reside in the same object.
1171  *
1172  * The caller has a single vm_object_pip_add() reference prior to
1173  * calling us and we should return with the same.
1174  *
1175  * The caller has BUSY'd the page.  We should return with (*mpp) left busy,
1176  * and any additinal pages unbusied.
1177  *
1178  * If the caller encounters a PG_RAM page it will pass it to us even though
1179  * it may be valid and dirty.  We cannot overwrite the page in this case!
1180  * The case is used to allow us to issue pure read-aheads.
1181  *
1182  * NOTE! XXX This code does not entirely pipeline yet due to the fact that
1183  *       the PG_RAM page is validated at the same time as mreq.  What we
1184  *	 really need to do is issue a separate read-ahead pbuf.
1185  *
1186  * No requirements.
1187  */
1188 static int
1189 swap_pager_getpage(vm_object_t object, vm_page_t *mpp, int seqaccess)
1190 {
1191 	struct buf *bp;
1192 	struct bio *bio;
1193 	vm_page_t mreq;
1194 	vm_page_t m;
1195 	vm_offset_t kva;
1196 	swblk_t blk;
1197 	int i;
1198 	int j;
1199 	int raonly;
1200 	int error;
1201 	u_int32_t flags;
1202 	vm_page_t marray[XIO_INTERNAL_PAGES];
1203 
1204 	mreq = *mpp;
1205 
1206 	vm_object_hold(object);
1207 	if (mreq->object != object) {
1208 		panic("swap_pager_getpages: object mismatch %p/%p",
1209 		    object,
1210 		    mreq->object
1211 		);
1212 	}
1213 
1214 	/*
1215 	 * We don't want to overwrite a fully valid page as it might be
1216 	 * dirty.  This case can occur when e.g. vm_fault hits a perfectly
1217 	 * valid page with PG_RAM set.
1218 	 *
1219 	 * In this case we see if the next page is a suitable page-in
1220 	 * candidate and if it is we issue read-ahead.  PG_RAM will be
1221 	 * set on the last page of the read-ahead to continue the pipeline.
1222 	 */
1223 	if (mreq->valid == VM_PAGE_BITS_ALL) {
1224 		if (swap_burst_read == 0 || mreq->pindex + 1 >= object->size) {
1225 			vm_object_drop(object);
1226 			return(VM_PAGER_OK);
1227 		}
1228 		blk = swp_pager_meta_ctl(object, mreq->pindex + 1, 0);
1229 		if (blk == SWAPBLK_NONE) {
1230 			vm_object_drop(object);
1231 			return(VM_PAGER_OK);
1232 		}
1233 		m = vm_page_lookup_busy_try(object, mreq->pindex + 1,
1234 					    TRUE, &error);
1235 		if (error) {
1236 			vm_object_drop(object);
1237 			return(VM_PAGER_OK);
1238 		} else if (m == NULL) {
1239 			/*
1240 			 * Use VM_ALLOC_QUICK to avoid blocking on cache
1241 			 * page reuse.
1242 			 */
1243 			m = vm_page_alloc(object, mreq->pindex + 1,
1244 					  VM_ALLOC_QUICK);
1245 			if (m == NULL) {
1246 				vm_object_drop(object);
1247 				return(VM_PAGER_OK);
1248 			}
1249 		} else {
1250 			if (m->valid) {
1251 				vm_page_wakeup(m);
1252 				vm_object_drop(object);
1253 				return(VM_PAGER_OK);
1254 			}
1255 			vm_page_unqueue_nowakeup(m);
1256 		}
1257 		/* page is busy */
1258 		mreq = m;
1259 		raonly = 1;
1260 	} else {
1261 		raonly = 0;
1262 	}
1263 
1264 	/*
1265 	 * Try to block-read contiguous pages from swap if sequential,
1266 	 * otherwise just read one page.  Contiguous pages from swap must
1267 	 * reside within a single device stripe because the I/O cannot be
1268 	 * broken up across multiple stripes.
1269 	 *
1270 	 * Note that blk and iblk can be SWAPBLK_NONE but the loop is
1271 	 * set up such that the case(s) are handled implicitly.
1272 	 */
1273 	blk = swp_pager_meta_ctl(mreq->object, mreq->pindex, 0);
1274 	marray[0] = mreq;
1275 
1276 	for (i = 1; swap_burst_read &&
1277 		    i < XIO_INTERNAL_PAGES &&
1278 		    mreq->pindex + i < object->size; ++i) {
1279 		swblk_t iblk;
1280 
1281 		iblk = swp_pager_meta_ctl(object, mreq->pindex + i, 0);
1282 		if (iblk != blk + i)
1283 			break;
1284 		if ((blk ^ iblk) & dmmax_mask)
1285 			break;
1286 		m = vm_page_lookup_busy_try(object, mreq->pindex + i,
1287 					    TRUE, &error);
1288 		if (error) {
1289 			break;
1290 		} else if (m == NULL) {
1291 			/*
1292 			 * Use VM_ALLOC_QUICK to avoid blocking on cache
1293 			 * page reuse.
1294 			 */
1295 			m = vm_page_alloc(object, mreq->pindex + i,
1296 					  VM_ALLOC_QUICK);
1297 			if (m == NULL)
1298 				break;
1299 		} else {
1300 			if (m->valid) {
1301 				vm_page_wakeup(m);
1302 				break;
1303 			}
1304 			vm_page_unqueue_nowakeup(m);
1305 		}
1306 		/* page is busy */
1307 		marray[i] = m;
1308 	}
1309 	if (i > 1)
1310 		vm_page_flag_set(marray[i - 1], PG_RAM);
1311 
1312 	/*
1313 	 * If mreq is the requested page and we have nothing to do return
1314 	 * VM_PAGER_FAIL.  If raonly is set mreq is just another read-ahead
1315 	 * page and must be cleaned up.
1316 	 */
1317 	if (blk == SWAPBLK_NONE) {
1318 		KKASSERT(i == 1);
1319 		if (raonly) {
1320 			vnode_pager_freepage(mreq);
1321 			vm_object_drop(object);
1322 			return(VM_PAGER_OK);
1323 		} else {
1324 			vm_object_drop(object);
1325 			return(VM_PAGER_FAIL);
1326 		}
1327 	}
1328 
1329 	/*
1330 	 * map our page(s) into kva for input
1331 	 */
1332 	bp = getpbuf_kva(&nsw_rcount);
1333 	bio = &bp->b_bio1;
1334 	kva = (vm_offset_t) bp->b_kvabase;
1335 	bcopy(marray, bp->b_xio.xio_pages, i * sizeof(vm_page_t));
1336 	pmap_qenter(kva, bp->b_xio.xio_pages, i);
1337 
1338 	bp->b_data = (caddr_t)kva;
1339 	bp->b_bcount = PAGE_SIZE * i;
1340 	bp->b_xio.xio_npages = i;
1341 	bio->bio_done = swp_pager_async_iodone;
1342 	bio->bio_offset = (off_t)blk << PAGE_SHIFT;
1343 	bio->bio_caller_info1.index = SWBIO_READ;
1344 
1345 	/*
1346 	 * Set index.  If raonly set the index beyond the array so all
1347 	 * the pages are treated the same, otherwise the original mreq is
1348 	 * at index 0.
1349 	 */
1350 	if (raonly)
1351 		bio->bio_driver_info = (void *)(intptr_t)i;
1352 	else
1353 		bio->bio_driver_info = (void *)(intptr_t)0;
1354 
1355 	for (j = 0; j < i; ++j)
1356 		vm_page_flag_set(bp->b_xio.xio_pages[j], PG_SWAPINPROG);
1357 
1358 	mycpu->gd_cnt.v_swapin++;
1359 	mycpu->gd_cnt.v_swappgsin += bp->b_xio.xio_npages;
1360 
1361 	/*
1362 	 * We still hold the lock on mreq, and our automatic completion routine
1363 	 * does not remove it.
1364 	 */
1365 	vm_object_pip_add(object, bp->b_xio.xio_npages);
1366 
1367 	/*
1368 	 * perform the I/O.  NOTE!!!  bp cannot be considered valid after
1369 	 * this point because we automatically release it on completion.
1370 	 * Instead, we look at the one page we are interested in which we
1371 	 * still hold a lock on even through the I/O completion.
1372 	 *
1373 	 * The other pages in our m[] array are also released on completion,
1374 	 * so we cannot assume they are valid anymore either.
1375 	 */
1376 	bp->b_cmd = BUF_CMD_READ;
1377 	BUF_KERNPROC(bp);
1378 	vn_strategy(swapdev_vp, bio);
1379 
1380 	/*
1381 	 * Wait for the page we want to complete.  PG_SWAPINPROG is always
1382 	 * cleared on completion.  If an I/O error occurs, SWAPBLK_NONE
1383 	 * is set in the meta-data.
1384 	 *
1385 	 * If this is a read-ahead only we return immediately without
1386 	 * waiting for I/O.
1387 	 */
1388 	if (raonly) {
1389 		vm_object_drop(object);
1390 		return(VM_PAGER_OK);
1391 	}
1392 
1393 	/*
1394 	 * Read-ahead includes originally requested page case.
1395 	 */
1396 	for (;;) {
1397 		flags = mreq->flags;
1398 		cpu_ccfence();
1399 		if ((flags & PG_SWAPINPROG) == 0)
1400 			break;
1401 		tsleep_interlock(mreq, 0);
1402 		if (!atomic_cmpset_int(&mreq->flags, flags,
1403 				       flags | PG_WANTED | PG_REFERENCED)) {
1404 			continue;
1405 		}
1406 		mycpu->gd_cnt.v_intrans++;
1407 		if (tsleep(mreq, PINTERLOCKED, "swread", hz*20)) {
1408 			kprintf(
1409 			    "swap_pager: indefinite wait buffer: "
1410 				" offset: %lld, size: %ld\n",
1411 			    (long long)bio->bio_offset,
1412 			    (long)bp->b_bcount
1413 			);
1414 		}
1415 	}
1416 
1417 	/*
1418 	 * mreq is left bussied after completion, but all the other pages
1419 	 * are freed.  If we had an unrecoverable read error the page will
1420 	 * not be valid.
1421 	 */
1422 	vm_object_drop(object);
1423 	if (mreq->valid != VM_PAGE_BITS_ALL)
1424 		return(VM_PAGER_ERROR);
1425 	else
1426 		return(VM_PAGER_OK);
1427 
1428 	/*
1429 	 * A final note: in a low swap situation, we cannot deallocate swap
1430 	 * and mark a page dirty here because the caller is likely to mark
1431 	 * the page clean when we return, causing the page to possibly revert
1432 	 * to all-zero's later.
1433 	 */
1434 }
1435 
1436 /*
1437  *	swap_pager_putpages:
1438  *
1439  *	Assign swap (if necessary) and initiate I/O on the specified pages.
1440  *
1441  *	We support both OBJT_DEFAULT and OBJT_SWAP objects.  DEFAULT objects
1442  *	are automatically converted to SWAP objects.
1443  *
1444  *	In a low memory situation we may block in vn_strategy(), but the new
1445  *	vm_page reservation system coupled with properly written VFS devices
1446  *	should ensure that no low-memory deadlock occurs.  This is an area
1447  *	which needs work.
1448  *
1449  *	The parent has N vm_object_pip_add() references prior to
1450  *	calling us and will remove references for rtvals[] that are
1451  *	not set to VM_PAGER_PEND.  We need to remove the rest on I/O
1452  *	completion.
1453  *
1454  *	The parent has soft-busy'd the pages it passes us and will unbusy
1455  *	those whos rtvals[] entry is not set to VM_PAGER_PEND on return.
1456  *	We need to unbusy the rest on I/O completion.
1457  *
1458  * No requirements.
1459  */
1460 void
1461 swap_pager_putpages(vm_object_t object, vm_page_t *m, int count,
1462 		    boolean_t sync, int *rtvals)
1463 {
1464 	int i;
1465 	int n = 0;
1466 
1467 	vm_object_hold(object);
1468 
1469 	if (count && m[0]->object != object) {
1470 		panic("swap_pager_getpages: object mismatch %p/%p",
1471 		    object,
1472 		    m[0]->object
1473 		);
1474 	}
1475 
1476 	/*
1477 	 * Step 1
1478 	 *
1479 	 * Turn object into OBJT_SWAP
1480 	 * check for bogus sysops
1481 	 * force sync if not pageout process
1482 	 */
1483 	if (object->type == OBJT_DEFAULT) {
1484 		if (object->type == OBJT_DEFAULT)
1485 			swp_pager_meta_convert(object);
1486 	}
1487 
1488 	if (curthread != pagethread)
1489 		sync = TRUE;
1490 
1491 	/*
1492 	 * Step 2
1493 	 *
1494 	 * Update nsw parameters from swap_async_max sysctl values.
1495 	 * Do not let the sysop crash the machine with bogus numbers.
1496 	 */
1497 	if (swap_async_max != nsw_wcount_async_max) {
1498 		int n;
1499 
1500 		/*
1501 		 * limit range
1502 		 */
1503 		if ((n = swap_async_max) > nswbuf / 2)
1504 			n = nswbuf / 2;
1505 		if (n < 1)
1506 			n = 1;
1507 		swap_async_max = n;
1508 
1509 		/*
1510 		 * Adjust difference ( if possible ).  If the current async
1511 		 * count is too low, we may not be able to make the adjustment
1512 		 * at this time.
1513 		 *
1514 		 * vm_token needed for nsw_wcount sleep interlock
1515 		 */
1516 		lwkt_gettoken(&vm_token);
1517 		n -= nsw_wcount_async_max;
1518 		if (nsw_wcount_async + n >= 0) {
1519 			nsw_wcount_async_max += n;
1520 			pbuf_adjcount(&nsw_wcount_async, n);
1521 		}
1522 		lwkt_reltoken(&vm_token);
1523 	}
1524 
1525 	/*
1526 	 * Step 3
1527 	 *
1528 	 * Assign swap blocks and issue I/O.  We reallocate swap on the fly.
1529 	 * The page is left dirty until the pageout operation completes
1530 	 * successfully.
1531 	 */
1532 
1533 	for (i = 0; i < count; i += n) {
1534 		struct buf *bp;
1535 		struct bio *bio;
1536 		swblk_t blk;
1537 		int j;
1538 
1539 		/*
1540 		 * Maximum I/O size is limited by a number of factors.
1541 		 */
1542 
1543 		n = min(BLIST_MAX_ALLOC, count - i);
1544 		n = min(n, nsw_cluster_max);
1545 
1546 		lwkt_gettoken(&vm_token);
1547 
1548 		/*
1549 		 * Get biggest block of swap we can.  If we fail, fall
1550 		 * back and try to allocate a smaller block.  Don't go
1551 		 * overboard trying to allocate space if it would overly
1552 		 * fragment swap.
1553 		 */
1554 		while (
1555 		    (blk = swp_pager_getswapspace(object, n)) == SWAPBLK_NONE &&
1556 		    n > 4
1557 		) {
1558 			n >>= 1;
1559 		}
1560 		if (blk == SWAPBLK_NONE) {
1561 			for (j = 0; j < n; ++j)
1562 				rtvals[i+j] = VM_PAGER_FAIL;
1563 			lwkt_reltoken(&vm_token);
1564 			continue;
1565 		}
1566 
1567 		/*
1568 		 * The I/O we are constructing cannot cross a physical
1569 		 * disk boundry in the swap stripe.  Note: we are still
1570 		 * at splvm().
1571 		 */
1572 		if ((blk ^ (blk + n)) & dmmax_mask) {
1573 			j = ((blk + dmmax) & dmmax_mask) - blk;
1574 			swp_pager_freeswapspace(object, blk + j, n - j);
1575 			n = j;
1576 		}
1577 
1578 		/*
1579 		 * All I/O parameters have been satisfied, build the I/O
1580 		 * request and assign the swap space.
1581 		 */
1582 		if (sync == TRUE)
1583 			bp = getpbuf_kva(&nsw_wcount_sync);
1584 		else
1585 			bp = getpbuf_kva(&nsw_wcount_async);
1586 		bio = &bp->b_bio1;
1587 
1588 		lwkt_reltoken(&vm_token);
1589 
1590 		pmap_qenter((vm_offset_t)bp->b_data, &m[i], n);
1591 
1592 		bp->b_bcount = PAGE_SIZE * n;
1593 		bio->bio_offset = (off_t)blk << PAGE_SHIFT;
1594 
1595 		for (j = 0; j < n; ++j) {
1596 			vm_page_t mreq = m[i+j];
1597 
1598 			swp_pager_meta_build(mreq->object, mreq->pindex,
1599 					     blk + j);
1600 			if (object->type == OBJT_SWAP)
1601 				vm_page_dirty(mreq);
1602 			rtvals[i+j] = VM_PAGER_OK;
1603 
1604 			vm_page_flag_set(mreq, PG_SWAPINPROG);
1605 			bp->b_xio.xio_pages[j] = mreq;
1606 		}
1607 		bp->b_xio.xio_npages = n;
1608 
1609 		mycpu->gd_cnt.v_swapout++;
1610 		mycpu->gd_cnt.v_swappgsout += bp->b_xio.xio_npages;
1611 
1612 		bp->b_dirtyoff = 0;		/* req'd for NFS */
1613 		bp->b_dirtyend = bp->b_bcount;	/* req'd for NFS */
1614 		bp->b_cmd = BUF_CMD_WRITE;
1615 		bio->bio_caller_info1.index = SWBIO_WRITE;
1616 
1617 		/*
1618 		 * asynchronous
1619 		 */
1620 		if (sync == FALSE) {
1621 			bio->bio_done = swp_pager_async_iodone;
1622 			BUF_KERNPROC(bp);
1623 			vn_strategy(swapdev_vp, bio);
1624 
1625 			for (j = 0; j < n; ++j)
1626 				rtvals[i+j] = VM_PAGER_PEND;
1627 			continue;
1628 		}
1629 
1630 		/*
1631 		 * Issue synchrnously.
1632 		 *
1633 		 * Wait for the sync I/O to complete, then update rtvals.
1634 		 * We just set the rtvals[] to VM_PAGER_PEND so we can call
1635 		 * our async completion routine at the end, thus avoiding a
1636 		 * double-free.
1637 		 */
1638 		bio->bio_caller_info1.index |= SWBIO_SYNC;
1639 		bio->bio_done = biodone_sync;
1640 		bio->bio_flags |= BIO_SYNC;
1641 		vn_strategy(swapdev_vp, bio);
1642 		biowait(bio, "swwrt");
1643 
1644 		for (j = 0; j < n; ++j)
1645 			rtvals[i+j] = VM_PAGER_PEND;
1646 
1647 		/*
1648 		 * Now that we are through with the bp, we can call the
1649 		 * normal async completion, which frees everything up.
1650 		 */
1651 		swp_pager_async_iodone(bio);
1652 	}
1653 	vm_object_drop(object);
1654 }
1655 
1656 /*
1657  * No requirements.
1658  */
1659 void
1660 swap_pager_newswap(void)
1661 {
1662 	swp_sizecheck();
1663 }
1664 
1665 /*
1666  *	swp_pager_async_iodone:
1667  *
1668  *	Completion routine for asynchronous reads and writes from/to swap.
1669  *	Also called manually by synchronous code to finish up a bp.
1670  *
1671  *	For READ operations, the pages are PG_BUSY'd.  For WRITE operations,
1672  *	the pages are vm_page_t->busy'd.  For READ operations, we PG_BUSY
1673  *	unbusy all pages except the 'main' request page.  For WRITE
1674  *	operations, we vm_page_t->busy'd unbusy all pages ( we can do this
1675  *	because we marked them all VM_PAGER_PEND on return from putpages ).
1676  *
1677  *	This routine may not block.
1678  *
1679  * No requirements.
1680  */
1681 static void
1682 swp_pager_async_iodone(struct bio *bio)
1683 {
1684 	struct buf *bp = bio->bio_buf;
1685 	vm_object_t object = NULL;
1686 	int i;
1687 	int *nswptr;
1688 
1689 	/*
1690 	 * report error
1691 	 */
1692 	if (bp->b_flags & B_ERROR) {
1693 		kprintf(
1694 		    "swap_pager: I/O error - %s failed; offset %lld,"
1695 			"size %ld, error %d\n",
1696 		    ((bio->bio_caller_info1.index & SWBIO_READ) ?
1697 			"pagein" : "pageout"),
1698 		    (long long)bio->bio_offset,
1699 		    (long)bp->b_bcount,
1700 		    bp->b_error
1701 		);
1702 	}
1703 
1704 	/*
1705 	 * set object, raise to splvm().
1706 	 */
1707 	if (bp->b_xio.xio_npages)
1708 		object = bp->b_xio.xio_pages[0]->object;
1709 
1710 	/*
1711 	 * remove the mapping for kernel virtual
1712 	 */
1713 	pmap_qremove((vm_offset_t)bp->b_data, bp->b_xio.xio_npages);
1714 
1715 	/*
1716 	 * cleanup pages.  If an error occurs writing to swap, we are in
1717 	 * very serious trouble.  If it happens to be a disk error, though,
1718 	 * we may be able to recover by reassigning the swap later on.  So
1719 	 * in this case we remove the m->swapblk assignment for the page
1720 	 * but do not free it in the rlist.  The errornous block(s) are thus
1721 	 * never reallocated as swap.  Redirty the page and continue.
1722 	 */
1723 	for (i = 0; i < bp->b_xio.xio_npages; ++i) {
1724 		vm_page_t m = bp->b_xio.xio_pages[i];
1725 
1726 		if (bp->b_flags & B_ERROR) {
1727 			/*
1728 			 * If an error occurs I'd love to throw the swapblk
1729 			 * away without freeing it back to swapspace, so it
1730 			 * can never be used again.  But I can't from an
1731 			 * interrupt.
1732 			 */
1733 
1734 			if (bio->bio_caller_info1.index & SWBIO_READ) {
1735 				/*
1736 				 * When reading, reqpage needs to stay
1737 				 * locked for the parent, but all other
1738 				 * pages can be freed.  We still want to
1739 				 * wakeup the parent waiting on the page,
1740 				 * though.  ( also: pg_reqpage can be -1 and
1741 				 * not match anything ).
1742 				 *
1743 				 * We have to wake specifically requested pages
1744 				 * up too because we cleared PG_SWAPINPROG and
1745 				 * someone may be waiting for that.
1746 				 *
1747 				 * NOTE: for reads, m->dirty will probably
1748 				 * be overridden by the original caller of
1749 				 * getpages so don't play cute tricks here.
1750 				 *
1751 				 * NOTE: We can't actually free the page from
1752 				 * here, because this is an interrupt.  It
1753 				 * is not legal to mess with object->memq
1754 				 * from an interrupt.  Deactivate the page
1755 				 * instead.
1756 				 */
1757 
1758 				m->valid = 0;
1759 				vm_page_flag_clear(m, PG_ZERO);
1760 				vm_page_flag_clear(m, PG_SWAPINPROG);
1761 
1762 				/*
1763 				 * bio_driver_info holds the requested page
1764 				 * index.
1765 				 */
1766 				if (i != (int)(intptr_t)bio->bio_driver_info) {
1767 					vm_page_deactivate(m);
1768 					vm_page_wakeup(m);
1769 				} else {
1770 					vm_page_flash(m);
1771 				}
1772 				/*
1773 				 * If i == bp->b_pager.pg_reqpage, do not wake
1774 				 * the page up.  The caller needs to.
1775 				 */
1776 			} else {
1777 				/*
1778 				 * If a write error occurs remove the swap
1779 				 * assignment (note that PG_SWAPPED may or
1780 				 * may not be set depending on prior activity).
1781 				 *
1782 				 * Re-dirty OBJT_SWAP pages as there is no
1783 				 * other backing store, we can't throw the
1784 				 * page away.
1785 				 *
1786 				 * Non-OBJT_SWAP pages (aka swapcache) must
1787 				 * not be dirtied since they may not have
1788 				 * been dirty in the first place, and they
1789 				 * do have backing store (the vnode).
1790 				 */
1791 				vm_page_busy_wait(m, FALSE, "swadpg");
1792 				swp_pager_meta_ctl(m->object, m->pindex,
1793 						   SWM_FREE);
1794 				vm_page_flag_clear(m, PG_SWAPPED);
1795 				if (m->object->type == OBJT_SWAP) {
1796 					vm_page_dirty(m);
1797 					vm_page_activate(m);
1798 				}
1799 				vm_page_flag_clear(m, PG_SWAPINPROG);
1800 				vm_page_io_finish(m);
1801 				vm_page_wakeup(m);
1802 			}
1803 		} else if (bio->bio_caller_info1.index & SWBIO_READ) {
1804 			/*
1805 			 * NOTE: for reads, m->dirty will probably be
1806 			 * overridden by the original caller of getpages so
1807 			 * we cannot set them in order to free the underlying
1808 			 * swap in a low-swap situation.  I don't think we'd
1809 			 * want to do that anyway, but it was an optimization
1810 			 * that existed in the old swapper for a time before
1811 			 * it got ripped out due to precisely this problem.
1812 			 *
1813 			 * clear PG_ZERO in page.
1814 			 *
1815 			 * If not the requested page then deactivate it.
1816 			 *
1817 			 * Note that the requested page, reqpage, is left
1818 			 * busied, but we still have to wake it up.  The
1819 			 * other pages are released (unbusied) by
1820 			 * vm_page_wakeup().  We do not set reqpage's
1821 			 * valid bits here, it is up to the caller.
1822 			 */
1823 
1824 			/*
1825 			 * NOTE: can't call pmap_clear_modify(m) from an
1826 			 * interrupt thread, the pmap code may have to map
1827 			 * non-kernel pmaps and currently asserts the case.
1828 			 */
1829 			/*pmap_clear_modify(m);*/
1830 			m->valid = VM_PAGE_BITS_ALL;
1831 			vm_page_undirty(m);
1832 			vm_page_flag_clear(m, PG_ZERO | PG_SWAPINPROG);
1833 			vm_page_flag_set(m, PG_SWAPPED);
1834 
1835 			/*
1836 			 * We have to wake specifically requested pages
1837 			 * up too because we cleared PG_SWAPINPROG and
1838 			 * could be waiting for it in getpages.  However,
1839 			 * be sure to not unbusy getpages specifically
1840 			 * requested page - getpages expects it to be
1841 			 * left busy.
1842 			 *
1843 			 * bio_driver_info holds the requested page
1844 			 */
1845 			if (i != (int)(intptr_t)bio->bio_driver_info) {
1846 				vm_page_deactivate(m);
1847 				vm_page_wakeup(m);
1848 			} else {
1849 				vm_page_flash(m);
1850 			}
1851 		} else {
1852 			/*
1853 			 * Mark the page clean but do not mess with the
1854 			 * pmap-layer's modified state.  That state should
1855 			 * also be clear since the caller protected the
1856 			 * page VM_PROT_READ, but allow the case.
1857 			 *
1858 			 * We are in an interrupt, avoid pmap operations.
1859 			 *
1860 			 * If we have a severe page deficit, deactivate the
1861 			 * page.  Do not try to cache it (which would also
1862 			 * involve a pmap op), because the page might still
1863 			 * be read-heavy.
1864 			 *
1865 			 * When using the swap to cache clean vnode pages
1866 			 * we do not mess with the page dirty bits.
1867 			 */
1868 			vm_page_busy_wait(m, FALSE, "swadpg");
1869 			if (m->object->type == OBJT_SWAP)
1870 				vm_page_undirty(m);
1871 			vm_page_flag_clear(m, PG_SWAPINPROG);
1872 			vm_page_flag_set(m, PG_SWAPPED);
1873 			if (vm_page_count_severe())
1874 				vm_page_deactivate(m);
1875 #if 0
1876 			if (!vm_page_count_severe() || !vm_page_try_to_cache(m))
1877 				vm_page_protect(m, VM_PROT_READ);
1878 #endif
1879 			vm_page_io_finish(m);
1880 			vm_page_wakeup(m);
1881 		}
1882 	}
1883 
1884 	/*
1885 	 * adjust pip.  NOTE: the original parent may still have its own
1886 	 * pip refs on the object.
1887 	 */
1888 
1889 	if (object)
1890 		vm_object_pip_wakeup_n(object, bp->b_xio.xio_npages);
1891 
1892 	/*
1893 	 * Release the physical I/O buffer.
1894 	 *
1895 	 * NOTE: Due to synchronous operations in the write case b_cmd may
1896 	 *	 already be set to BUF_CMD_DONE and BIO_SYNC may have already
1897 	 *	 been cleared.
1898 	 *
1899 	 * Use vm_token to interlock nsw_rcount/wcount wakeup?
1900 	 */
1901 	lwkt_gettoken(&vm_token);
1902 	if (bio->bio_caller_info1.index & SWBIO_READ)
1903 		nswptr = &nsw_rcount;
1904 	else if (bio->bio_caller_info1.index & SWBIO_SYNC)
1905 		nswptr = &nsw_wcount_sync;
1906 	else
1907 		nswptr = &nsw_wcount_async;
1908 	bp->b_cmd = BUF_CMD_DONE;
1909 	relpbuf(bp, nswptr);
1910 	lwkt_reltoken(&vm_token);
1911 }
1912 
1913 /*
1914  * Fault-in a potentially swapped page and remove the swap reference.
1915  *
1916  * object must be held.
1917  */
1918 static __inline void
1919 swp_pager_fault_page(vm_object_t object, vm_pindex_t pindex)
1920 {
1921 	struct vnode *vp;
1922 	vm_page_t m;
1923 	int error;
1924 
1925 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1926 
1927 	if (object->type == OBJT_VNODE) {
1928 		/*
1929 		 * Any swap related to a vnode is due to swapcache.  We must
1930 		 * vget() the vnode in case it is not active (otherwise
1931 		 * vref() will panic).  Calling vm_object_page_remove() will
1932 		 * ensure that any swap ref is removed interlocked with the
1933 		 * page.  clean_only is set to TRUE so we don't throw away
1934 		 * dirty pages.
1935 		 */
1936 		vp = object->handle;
1937 		error = vget(vp, LK_SHARED | LK_RETRY | LK_CANRECURSE);
1938 		if (error == 0) {
1939 			vm_object_page_remove(object, pindex, pindex + 1, TRUE);
1940 			vput(vp);
1941 		}
1942 	} else {
1943 		/*
1944 		 * Otherwise it is a normal OBJT_SWAP object and we can
1945 		 * fault the page in and remove the swap.
1946 		 */
1947 		m = vm_fault_object_page(object, IDX_TO_OFF(pindex),
1948 					 VM_PROT_NONE,
1949 					 VM_FAULT_DIRTY | VM_FAULT_UNSWAP,
1950 					 &error);
1951 		if (m)
1952 			vm_page_unhold(m);
1953 	}
1954 }
1955 
1956 int
1957 swap_pager_swapoff(int devidx)
1958 {
1959 	vm_object_t object;
1960 	struct swblock *swap;
1961 	swblk_t v;
1962 	int i;
1963 
1964 	lwkt_gettoken(&vmobj_token);
1965 rescan:
1966 	TAILQ_FOREACH(object, &vm_object_list, object_list) {
1967 		if (object->type != OBJT_SWAP && object->type != OBJT_VNODE)
1968 			continue;
1969 		vm_object_hold(object);
1970 		if (object->type == OBJT_SWAP || object->type == OBJT_VNODE) {
1971 			RB_FOREACH(swap,
1972 				   swblock_rb_tree, &object->swblock_root) {
1973 				for (i = 0; i < SWAP_META_PAGES; ++i) {
1974 					v = swap->swb_pages[i];
1975 					if (v != SWAPBLK_NONE &&
1976 					    BLK2DEVIDX(v) == devidx) {
1977 						swp_pager_fault_page(
1978 						    object,
1979 						    swap->swb_index + i);
1980 						vm_object_drop(object);
1981 						goto rescan;
1982 					}
1983 				}
1984 			}
1985 		}
1986 		vm_object_drop(object);
1987 	}
1988 	lwkt_reltoken(&vmobj_token);
1989 
1990 	/*
1991 	 * If we fail to locate all swblocks we just fail gracefully and
1992 	 * do not bother to restore paging on the swap device.  If the
1993 	 * user wants to retry the user can retry.
1994 	 */
1995 	if (swdevt[devidx].sw_nused)
1996 		return (1);
1997 	else
1998 		return (0);
1999 }
2000 
2001 /************************************************************************
2002  *				SWAP META DATA 				*
2003  ************************************************************************
2004  *
2005  *	These routines manipulate the swap metadata stored in the
2006  *	OBJT_SWAP object.  All swp_*() routines must be called at
2007  *	splvm() because swap can be freed up by the low level vm_page
2008  *	code which might be called from interrupts beyond what splbio() covers.
2009  *
2010  *	Swap metadata is implemented with a global hash and not directly
2011  *	linked into the object.  Instead the object simply contains
2012  *	appropriate tracking counters.
2013  */
2014 
2015 /*
2016  * Lookup the swblock containing the specified swap block index.
2017  *
2018  * The caller must hold the object.
2019  */
2020 static __inline
2021 struct swblock *
2022 swp_pager_lookup(vm_object_t object, vm_pindex_t index)
2023 {
2024 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2025 	index &= ~(vm_pindex_t)SWAP_META_MASK;
2026 	return (RB_LOOKUP(swblock_rb_tree, &object->swblock_root, index));
2027 }
2028 
2029 /*
2030  * Remove a swblock from the RB tree.
2031  *
2032  * The caller must hold the object.
2033  */
2034 static __inline
2035 void
2036 swp_pager_remove(vm_object_t object, struct swblock *swap)
2037 {
2038 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2039 	RB_REMOVE(swblock_rb_tree, &object->swblock_root, swap);
2040 }
2041 
2042 /*
2043  * Convert default object to swap object if necessary
2044  *
2045  * The caller must hold the object.
2046  */
2047 static void
2048 swp_pager_meta_convert(vm_object_t object)
2049 {
2050 	if (object->type == OBJT_DEFAULT) {
2051 		object->type = OBJT_SWAP;
2052 		KKASSERT(object->swblock_count == 0);
2053 	}
2054 }
2055 
2056 /*
2057  * SWP_PAGER_META_BUILD() -	add swap block to swap meta data for object
2058  *
2059  *	We first convert the object to a swap object if it is a default
2060  *	object.  Vnode objects do not need to be converted.
2061  *
2062  *	The specified swapblk is added to the object's swap metadata.  If
2063  *	the swapblk is not valid, it is freed instead.  Any previously
2064  *	assigned swapblk is freed.
2065  *
2066  * The caller must hold the object.
2067  */
2068 static void
2069 swp_pager_meta_build(vm_object_t object, vm_pindex_t index, swblk_t swapblk)
2070 {
2071 	struct swblock *swap;
2072 	struct swblock *oswap;
2073 	vm_pindex_t v;
2074 
2075 	KKASSERT(swapblk != SWAPBLK_NONE);
2076 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2077 
2078 	/*
2079 	 * Convert object if necessary
2080 	 */
2081 	if (object->type == OBJT_DEFAULT)
2082 		swp_pager_meta_convert(object);
2083 
2084 	/*
2085 	 * Locate swblock.  If not found create, but if we aren't adding
2086 	 * anything just return.  If we run out of space in the map we wait
2087 	 * and, since the hash table may have changed, retry.
2088 	 */
2089 retry:
2090 	swap = swp_pager_lookup(object, index);
2091 
2092 	if (swap == NULL) {
2093 		int i;
2094 
2095 		swap = zalloc(swap_zone);
2096 		if (swap == NULL) {
2097 			vm_wait(0);
2098 			goto retry;
2099 		}
2100 		swap->swb_index = index & ~(vm_pindex_t)SWAP_META_MASK;
2101 		swap->swb_count = 0;
2102 
2103 		++object->swblock_count;
2104 
2105 		for (i = 0; i < SWAP_META_PAGES; ++i)
2106 			swap->swb_pages[i] = SWAPBLK_NONE;
2107 		oswap = RB_INSERT(swblock_rb_tree, &object->swblock_root, swap);
2108 		KKASSERT(oswap == NULL);
2109 	}
2110 
2111 	/*
2112 	 * Delete prior contents of metadata.
2113 	 *
2114 	 * NOTE: Decrement swb_count after the freeing operation (which
2115 	 *	 might block) to prevent racing destruction of the swblock.
2116 	 */
2117 	index &= SWAP_META_MASK;
2118 
2119 	while ((v = swap->swb_pages[index]) != SWAPBLK_NONE) {
2120 		swap->swb_pages[index] = SWAPBLK_NONE;
2121 		/* can block */
2122 		swp_pager_freeswapspace(object, v, 1);
2123 		--swap->swb_count;
2124 	}
2125 
2126 	/*
2127 	 * Enter block into metadata
2128 	 */
2129 	swap->swb_pages[index] = swapblk;
2130 	if (swapblk != SWAPBLK_NONE)
2131 		++swap->swb_count;
2132 }
2133 
2134 /*
2135  * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
2136  *
2137  *	The requested range of blocks is freed, with any associated swap
2138  *	returned to the swap bitmap.
2139  *
2140  *	This routine will free swap metadata structures as they are cleaned
2141  *	out.  This routine does *NOT* operate on swap metadata associated
2142  *	with resident pages.
2143  *
2144  * The caller must hold the object.
2145  */
2146 static int swp_pager_meta_free_callback(struct swblock *swb, void *data);
2147 
2148 static void
2149 swp_pager_meta_free(vm_object_t object, vm_pindex_t index, vm_pindex_t count)
2150 {
2151 	struct swfreeinfo info;
2152 
2153 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2154 
2155 	/*
2156 	 * Nothing to do
2157 	 */
2158 	if (object->swblock_count == 0) {
2159 		KKASSERT(RB_EMPTY(&object->swblock_root));
2160 		return;
2161 	}
2162 	if (count == 0)
2163 		return;
2164 
2165 	/*
2166 	 * Setup for RB tree scan.  Note that the pindex range can be huge
2167 	 * due to the 64 bit page index space so we cannot safely iterate.
2168 	 */
2169 	info.object = object;
2170 	info.basei = index & ~(vm_pindex_t)SWAP_META_MASK;
2171 	info.begi = index;
2172 	info.endi = index + count - 1;
2173 	swblock_rb_tree_RB_SCAN(&object->swblock_root, rb_swblock_scancmp,
2174 				swp_pager_meta_free_callback, &info);
2175 }
2176 
2177 /*
2178  * The caller must hold the object.
2179  */
2180 static
2181 int
2182 swp_pager_meta_free_callback(struct swblock *swap, void *data)
2183 {
2184 	struct swfreeinfo *info = data;
2185 	vm_object_t object = info->object;
2186 	int index;
2187 	int eindex;
2188 
2189 	/*
2190 	 * Figure out the range within the swblock.  The wider scan may
2191 	 * return edge-case swap blocks when the start and/or end points
2192 	 * are in the middle of a block.
2193 	 */
2194 	if (swap->swb_index < info->begi)
2195 		index = (int)info->begi & SWAP_META_MASK;
2196 	else
2197 		index = 0;
2198 
2199 	if (swap->swb_index + SWAP_META_PAGES > info->endi)
2200 		eindex = (int)info->endi & SWAP_META_MASK;
2201 	else
2202 		eindex = SWAP_META_MASK;
2203 
2204 	/*
2205 	 * Scan and free the blocks.  The loop terminates early
2206 	 * if (swap) runs out of blocks and could be freed.
2207 	 *
2208 	 * NOTE: Decrement swb_count after swp_pager_freeswapspace()
2209 	 *	 to deal with a zfree race.
2210 	 */
2211 	while (index <= eindex) {
2212 		swblk_t v = swap->swb_pages[index];
2213 
2214 		if (v != SWAPBLK_NONE) {
2215 			swap->swb_pages[index] = SWAPBLK_NONE;
2216 			/* can block */
2217 			swp_pager_freeswapspace(object, v, 1);
2218 			if (--swap->swb_count == 0) {
2219 				swp_pager_remove(object, swap);
2220 				zfree(swap_zone, swap);
2221 				--object->swblock_count;
2222 				break;
2223 			}
2224 		}
2225 		++index;
2226 	}
2227 	/* swap may be invalid here due to zfree above */
2228 	return(0);
2229 }
2230 
2231 /*
2232  * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
2233  *
2234  *	This routine locates and destroys all swap metadata associated with
2235  *	an object.
2236  *
2237  * NOTE: Decrement swb_count after the freeing operation (which
2238  *	 might block) to prevent racing destruction of the swblock.
2239  *
2240  * The caller must hold the object.
2241  */
2242 static void
2243 swp_pager_meta_free_all(vm_object_t object)
2244 {
2245 	struct swblock *swap;
2246 	int i;
2247 
2248 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2249 
2250 	while ((swap = RB_ROOT(&object->swblock_root)) != NULL) {
2251 		swp_pager_remove(object, swap);
2252 		for (i = 0; i < SWAP_META_PAGES; ++i) {
2253 			swblk_t v = swap->swb_pages[i];
2254 			if (v != SWAPBLK_NONE) {
2255 				/* can block */
2256 				swp_pager_freeswapspace(object, v, 1);
2257 				--swap->swb_count;
2258 			}
2259 		}
2260 		if (swap->swb_count != 0)
2261 			panic("swap_pager_meta_free_all: swb_count != 0");
2262 		zfree(swap_zone, swap);
2263 		--object->swblock_count;
2264 	}
2265 	KKASSERT(object->swblock_count == 0);
2266 }
2267 
2268 /*
2269  * SWP_PAGER_METACTL() -  misc control of swap and vm_page_t meta data.
2270  *
2271  *	This routine is capable of looking up, popping, or freeing
2272  *	swapblk assignments in the swap meta data or in the vm_page_t.
2273  *	The routine typically returns the swapblk being looked-up, or popped,
2274  *	or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block
2275  *	was invalid.  This routine will automatically free any invalid
2276  *	meta-data swapblks.
2277  *
2278  *	It is not possible to store invalid swapblks in the swap meta data
2279  *	(other then a literal 'SWAPBLK_NONE'), so we don't bother checking.
2280  *
2281  *	When acting on a busy resident page and paging is in progress, we
2282  *	have to wait until paging is complete but otherwise can act on the
2283  *	busy page.
2284  *
2285  *	SWM_FREE	remove and free swap block from metadata
2286  *	SWM_POP		remove from meta data but do not free.. pop it out
2287  *
2288  * The caller must hold the object.
2289  */
2290 static swblk_t
2291 swp_pager_meta_ctl(vm_object_t object, vm_pindex_t index, int flags)
2292 {
2293 	struct swblock *swap;
2294 	swblk_t r1;
2295 
2296 	if (object->swblock_count == 0)
2297 		return(SWAPBLK_NONE);
2298 
2299 	r1 = SWAPBLK_NONE;
2300 	swap = swp_pager_lookup(object, index);
2301 
2302 	if (swap != NULL) {
2303 		index &= SWAP_META_MASK;
2304 		r1 = swap->swb_pages[index];
2305 
2306 		if (r1 != SWAPBLK_NONE) {
2307 			if (flags & (SWM_FREE|SWM_POP)) {
2308 				swap->swb_pages[index] = SWAPBLK_NONE;
2309 				if (--swap->swb_count == 0) {
2310 					swp_pager_remove(object, swap);
2311 					zfree(swap_zone, swap);
2312 					--object->swblock_count;
2313 				}
2314 			}
2315 			/* swap ptr may be invalid */
2316 			if (flags & SWM_FREE) {
2317 				swp_pager_freeswapspace(object, r1, 1);
2318 				r1 = SWAPBLK_NONE;
2319 			}
2320 		}
2321 		/* swap ptr may be invalid */
2322 	}
2323 	return(r1);
2324 }
2325