xref: /dragonfly/sys/vm/swap_pager.c (revision a563ca70)
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 1998-2010 The DragonFly Project.  All rights reserved.
5  *
6  * This code is derived from software contributed to The DragonFly Project
7  * by Matthew Dillon <dillon@backplane.com>
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  *
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in
17  *    the documentation and/or other materials provided with the
18  *    distribution.
19  * 3. Neither the name of The DragonFly Project nor the names of its
20  *    contributors may be used to endorse or promote products derived
21  *    from this software without specific, prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
27  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
29  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
31  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
32  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
33  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  * Copyright (c) 1994 John S. Dyson
37  * Copyright (c) 1990 University of Utah.
38  * Copyright (c) 1991, 1993
39  *	The Regents of the University of California.  All rights reserved.
40  *
41  * This code is derived from software contributed to Berkeley by
42  * the Systems Programming Group of the University of Utah Computer
43  * Science Department.
44  *
45  * Redistribution and use in source and binary forms, with or without
46  * modification, are permitted provided that the following conditions
47  * are met:
48  * 1. Redistributions of source code must retain the above copyright
49  *    notice, this list of conditions and the following disclaimer.
50  * 2. Redistributions in binary form must reproduce the above copyright
51  *    notice, this list of conditions and the following disclaimer in the
52  *    documentation and/or other materials provided with the distribution.
53  * 3. All advertising materials mentioning features or use of this software
54  *    must display the following acknowledgement:
55  *	This product includes software developed by the University of
56  *	California, Berkeley and its contributors.
57  * 4. Neither the name of the University nor the names of its contributors
58  *    may be used to endorse or promote products derived from this software
59  *    without specific prior written permission.
60  *
61  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
62  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
63  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
64  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
65  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
66  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
67  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
68  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
69  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
70  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
71  * SUCH DAMAGE.
72  *
73  *				New Swap System
74  *				Matthew Dillon
75  *
76  * Radix Bitmap 'blists'.
77  *
78  *	- The new swapper uses the new radix bitmap code.  This should scale
79  *	  to arbitrarily small or arbitrarily large swap spaces and an almost
80  *	  arbitrary degree of fragmentation.
81  *
82  * Features:
83  *
84  *	- on the fly reallocation of swap during putpages.  The new system
85  *	  does not try to keep previously allocated swap blocks for dirty
86  *	  pages.
87  *
88  *	- on the fly deallocation of swap
89  *
90  *	- No more garbage collection required.  Unnecessarily allocated swap
91  *	  blocks only exist for dirty vm_page_t's now and these are already
92  *	  cycled (in a high-load system) by the pager.  We also do on-the-fly
93  *	  removal of invalidated swap blocks when a page is destroyed
94  *	  or renamed.
95  *
96  * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
97  * @(#)swap_pager.c	8.9 (Berkeley) 3/21/94
98  * $FreeBSD: src/sys/vm/swap_pager.c,v 1.130.2.12 2002/08/31 21:15:55 dillon Exp $
99  */
100 
101 #include <sys/param.h>
102 #include <sys/systm.h>
103 #include <sys/conf.h>
104 #include <sys/kernel.h>
105 #include <sys/proc.h>
106 #include <sys/buf.h>
107 #include <sys/vnode.h>
108 #include <sys/malloc.h>
109 #include <sys/vmmeter.h>
110 #include <sys/sysctl.h>
111 #include <sys/blist.h>
112 #include <sys/lock.h>
113 #include <sys/thread2.h>
114 
115 #ifndef MAX_PAGEOUT_CLUSTER
116 #define MAX_PAGEOUT_CLUSTER 16
117 #endif
118 
119 #define SWB_NPAGES	MAX_PAGEOUT_CLUSTER
120 
121 #include "opt_swap.h"
122 #include <vm/vm.h>
123 #include <vm/vm_object.h>
124 #include <vm/vm_page.h>
125 #include <vm/vm_pager.h>
126 #include <vm/vm_pageout.h>
127 #include <vm/swap_pager.h>
128 #include <vm/vm_extern.h>
129 #include <vm/vm_zone.h>
130 #include <vm/vnode_pager.h>
131 
132 #include <sys/buf2.h>
133 #include <vm/vm_page2.h>
134 
135 #define SWM_FREE	0x02	/* free, period			*/
136 #define SWM_POP		0x04	/* pop out			*/
137 
138 #define SWBIO_READ	0x01
139 #define SWBIO_WRITE	0x02
140 #define SWBIO_SYNC	0x04
141 
142 struct swfreeinfo {
143 	vm_object_t	object;
144 	vm_pindex_t	basei;
145 	vm_pindex_t	begi;
146 	vm_pindex_t	endi;	/* inclusive */
147 };
148 
149 /*
150  * vm_swap_size is in page-sized chunks now.  It was DEV_BSIZE'd chunks
151  * in the old system.
152  */
153 
154 int swap_pager_full;		/* swap space exhaustion (task killing) */
155 int vm_swap_cache_use;
156 int vm_swap_anon_use;
157 
158 static int swap_pager_almost_full; /* swap space exhaustion (w/ hysteresis)*/
159 static int nsw_rcount;		/* free read buffers			*/
160 static int nsw_wcount_sync;	/* limit write buffers / synchronous	*/
161 static int nsw_wcount_async;	/* limit write buffers / asynchronous	*/
162 static int nsw_wcount_async_max;/* assigned maximum			*/
163 static int nsw_cluster_max;	/* maximum VOP I/O allowed		*/
164 
165 struct blist *swapblist;
166 static int swap_async_max = 4;	/* maximum in-progress async I/O's	*/
167 static int swap_burst_read = 0;	/* allow burst reading */
168 
169 /* from vm_swap.c */
170 extern struct vnode *swapdev_vp;
171 extern struct swdevt *swdevt;
172 extern int nswdev;
173 
174 #define BLK2DEVIDX(blk) (nswdev > 1 ? blk / dmmax % nswdev : 0)
175 
176 SYSCTL_INT(_vm, OID_AUTO, swap_async_max,
177         CTLFLAG_RW, &swap_async_max, 0, "Maximum running async swap ops");
178 SYSCTL_INT(_vm, OID_AUTO, swap_burst_read,
179         CTLFLAG_RW, &swap_burst_read, 0, "Allow burst reads for pageins");
180 
181 SYSCTL_INT(_vm, OID_AUTO, swap_cache_use,
182         CTLFLAG_RD, &vm_swap_cache_use, 0, "");
183 SYSCTL_INT(_vm, OID_AUTO, swap_anon_use,
184         CTLFLAG_RD, &vm_swap_anon_use, 0, "");
185 SYSCTL_INT(_vm, OID_AUTO, swap_size,
186         CTLFLAG_RD, &vm_swap_size, 0, "");
187 
188 vm_zone_t		swap_zone;
189 
190 /*
191  * Red-Black tree for swblock entries
192  *
193  * The caller must hold vm_token
194  */
195 RB_GENERATE2(swblock_rb_tree, swblock, swb_entry, rb_swblock_compare,
196 	     vm_pindex_t, swb_index);
197 
198 int
199 rb_swblock_compare(struct swblock *swb1, struct swblock *swb2)
200 {
201 	if (swb1->swb_index < swb2->swb_index)
202 		return(-1);
203 	if (swb1->swb_index > swb2->swb_index)
204 		return(1);
205 	return(0);
206 }
207 
208 static
209 int
210 rb_swblock_scancmp(struct swblock *swb, void *data)
211 {
212 	struct swfreeinfo *info = data;
213 
214 	if (swb->swb_index < info->basei)
215 		return(-1);
216 	if (swb->swb_index > info->endi)
217 		return(1);
218 	return(0);
219 }
220 
221 static
222 int
223 rb_swblock_condcmp(struct swblock *swb, void *data)
224 {
225 	struct swfreeinfo *info = data;
226 
227 	if (swb->swb_index < info->basei)
228 		return(-1);
229 	return(0);
230 }
231 
232 /*
233  * pagerops for OBJT_SWAP - "swap pager".  Some ops are also global procedure
234  * calls hooked from other parts of the VM system and do not appear here.
235  * (see vm/swap_pager.h).
236  */
237 
238 static void	swap_pager_dealloc (vm_object_t object);
239 static int	swap_pager_getpage (vm_object_t, vm_page_t *, int);
240 static void	swap_chain_iodone(struct bio *biox);
241 
242 struct pagerops swappagerops = {
243 	swap_pager_dealloc,	/* deallocate an OBJT_SWAP object	*/
244 	swap_pager_getpage,	/* pagein				*/
245 	swap_pager_putpages,	/* pageout				*/
246 	swap_pager_haspage	/* get backing store status for page	*/
247 };
248 
249 /*
250  * dmmax is in page-sized chunks with the new swap system.  It was
251  * dev-bsized chunks in the old.  dmmax is always a power of 2.
252  *
253  * swap_*() routines are externally accessible.  swp_*() routines are
254  * internal.
255  */
256 
257 int dmmax;
258 static int dmmax_mask;
259 int nswap_lowat = 128;		/* in pages, swap_pager_almost_full warn */
260 int nswap_hiwat = 512;		/* in pages, swap_pager_almost_full warn */
261 
262 static __inline void	swp_sizecheck (void);
263 static void	swp_pager_async_iodone (struct bio *bio);
264 
265 /*
266  * Swap bitmap functions
267  */
268 
269 static __inline void	swp_pager_freeswapspace(vm_object_t object,
270 						swblk_t blk, int npages);
271 static __inline swblk_t	swp_pager_getswapspace(vm_object_t object, int npages);
272 
273 /*
274  * Metadata functions
275  */
276 
277 static void swp_pager_meta_convert(vm_object_t);
278 static void swp_pager_meta_build(vm_object_t, vm_pindex_t, swblk_t);
279 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, vm_pindex_t);
280 static void swp_pager_meta_free_all(vm_object_t);
281 static swblk_t swp_pager_meta_ctl(vm_object_t, vm_pindex_t, int);
282 
283 /*
284  * SWP_SIZECHECK() -	update swap_pager_full indication
285  *
286  *	update the swap_pager_almost_full indication and warn when we are
287  *	about to run out of swap space, using lowat/hiwat hysteresis.
288  *
289  *	Clear swap_pager_full ( task killing ) indication when lowat is met.
290  *
291  * No restrictions on call
292  * This routine may not block.
293  * SMP races are ok.
294  */
295 static __inline void
296 swp_sizecheck(void)
297 {
298 	if (vm_swap_size < nswap_lowat) {
299 		if (swap_pager_almost_full == 0) {
300 			kprintf("swap_pager: out of swap space\n");
301 			swap_pager_almost_full = 1;
302 		}
303 	} else {
304 		swap_pager_full = 0;
305 		if (vm_swap_size > nswap_hiwat)
306 			swap_pager_almost_full = 0;
307 	}
308 }
309 
310 /*
311  * SWAP_PAGER_INIT() -	initialize the swap pager!
312  *
313  *	Expected to be started from system init.  NOTE:  This code is run
314  *	before much else so be careful what you depend on.  Most of the VM
315  *	system has yet to be initialized at this point.
316  *
317  * Called from the low level boot code only.
318  */
319 static void
320 swap_pager_init(void *arg __unused)
321 {
322 	/*
323 	 * Device Stripe, in PAGE_SIZE'd blocks
324 	 */
325 	dmmax = SWB_NPAGES * 2;
326 	dmmax_mask = ~(dmmax - 1);
327 }
328 SYSINIT(vm_mem, SI_BOOT1_VM, SI_ORDER_THIRD, swap_pager_init, NULL)
329 
330 /*
331  * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
332  *
333  *	Expected to be started from pageout process once, prior to entering
334  *	its main loop.
335  *
336  * Called from the low level boot code only.
337  */
338 void
339 swap_pager_swap_init(void)
340 {
341 	int n, n2;
342 
343 	/*
344 	 * Number of in-transit swap bp operations.  Don't
345 	 * exhaust the pbufs completely.  Make sure we
346 	 * initialize workable values (0 will work for hysteresis
347 	 * but it isn't very efficient).
348 	 *
349 	 * The nsw_cluster_max is constrained by the number of pages an XIO
350 	 * holds, i.e., (MAXPHYS/PAGE_SIZE) and our locally defined
351 	 * MAX_PAGEOUT_CLUSTER.   Also be aware that swap ops are
352 	 * constrained by the swap device interleave stripe size.
353 	 *
354 	 * Currently we hardwire nsw_wcount_async to 4.  This limit is
355 	 * designed to prevent other I/O from having high latencies due to
356 	 * our pageout I/O.  The value 4 works well for one or two active swap
357 	 * devices but is probably a little low if you have more.  Even so,
358 	 * a higher value would probably generate only a limited improvement
359 	 * with three or four active swap devices since the system does not
360 	 * typically have to pageout at extreme bandwidths.   We will want
361 	 * at least 2 per swap devices, and 4 is a pretty good value if you
362 	 * have one NFS swap device due to the command/ack latency over NFS.
363 	 * So it all works out pretty well.
364 	 */
365 
366 	nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER);
367 
368 	nsw_rcount = (nswbuf + 1) / 2;
369 	nsw_wcount_sync = (nswbuf + 3) / 4;
370 	nsw_wcount_async = 4;
371 	nsw_wcount_async_max = nsw_wcount_async;
372 
373 	/*
374 	 * The zone is dynamically allocated so generally size it to
375 	 * maxswzone (32MB to 512MB of KVM).  Set a minimum size based
376 	 * on physical memory of around 8x (each swblock can hold 16 pages).
377 	 *
378 	 * With the advent of SSDs (vs HDs) the practical (swap:memory) ratio
379 	 * has increased dramatically.
380 	 */
381 	n = vmstats.v_page_count / 2;
382 	if (maxswzone && n < maxswzone / sizeof(struct swblock))
383 		n = maxswzone / sizeof(struct swblock);
384 	n2 = n;
385 
386 	do {
387 		swap_zone = zinit(
388 			"SWAPMETA",
389 			sizeof(struct swblock),
390 			n,
391 			ZONE_INTERRUPT,
392 			1);
393 		if (swap_zone != NULL)
394 			break;
395 		/*
396 		 * if the allocation failed, try a zone two thirds the
397 		 * size of the previous attempt.
398 		 */
399 		n -= ((n + 2) / 3);
400 	} while (n > 0);
401 
402 	if (swap_zone == NULL)
403 		panic("swap_pager_swap_init: swap_zone == NULL");
404 	if (n2 != n)
405 		kprintf("Swap zone entries reduced from %d to %d.\n", n2, n);
406 }
407 
408 /*
409  * SWAP_PAGER_ALLOC() -	allocate a new OBJT_SWAP VM object and instantiate
410  *			its metadata structures.
411  *
412  *	This routine is called from the mmap and fork code to create a new
413  *	OBJT_SWAP object.  We do this by creating an OBJT_DEFAULT object
414  *	and then converting it with swp_pager_meta_convert().
415  *
416  *	We only support unnamed objects.
417  *
418  * No restrictions.
419  */
420 vm_object_t
421 swap_pager_alloc(void *handle, off_t size, vm_prot_t prot, off_t offset)
422 {
423 	vm_object_t object;
424 
425 	KKASSERT(handle == NULL);
426 	object = vm_object_allocate(OBJT_DEFAULT,
427 				    OFF_TO_IDX(offset + PAGE_MASK + size));
428 	vm_object_hold(object);
429 	swp_pager_meta_convert(object);
430 	vm_object_drop(object);
431 
432 	return (object);
433 }
434 
435 /*
436  * SWAP_PAGER_DEALLOC() -	remove swap metadata from object
437  *
438  *	The swap backing for the object is destroyed.  The code is
439  *	designed such that we can reinstantiate it later, but this
440  *	routine is typically called only when the entire object is
441  *	about to be destroyed.
442  *
443  * The object must be locked or unreferenceable.
444  * No other requirements.
445  */
446 static void
447 swap_pager_dealloc(vm_object_t object)
448 {
449 	vm_object_hold(object);
450 	vm_object_pip_wait(object, "swpdea");
451 
452 	/*
453 	 * Free all remaining metadata.  We only bother to free it from
454 	 * the swap meta data.  We do not attempt to free swapblk's still
455 	 * associated with vm_page_t's for this object.  We do not care
456 	 * if paging is still in progress on some objects.
457 	 */
458 	swp_pager_meta_free_all(object);
459 	vm_object_drop(object);
460 }
461 
462 /************************************************************************
463  *			SWAP PAGER BITMAP ROUTINES			*
464  ************************************************************************/
465 
466 /*
467  * SWP_PAGER_GETSWAPSPACE() -	allocate raw swap space
468  *
469  *	Allocate swap for the requested number of pages.  The starting
470  *	swap block number (a page index) is returned or SWAPBLK_NONE
471  *	if the allocation failed.
472  *
473  *	Also has the side effect of advising that somebody made a mistake
474  *	when they configured swap and didn't configure enough.
475  *
476  * The caller must hold the object.
477  * This routine may not block.
478  */
479 static __inline swblk_t
480 swp_pager_getswapspace(vm_object_t object, int npages)
481 {
482 	swblk_t blk;
483 
484 	lwkt_gettoken(&vm_token);
485 	if ((blk = blist_alloc(swapblist, npages)) == SWAPBLK_NONE) {
486 		if (swap_pager_full != 2) {
487 			kprintf("swap_pager_getswapspace: failed\n");
488 			swap_pager_full = 2;
489 			swap_pager_almost_full = 1;
490 		}
491 	} else {
492 		swapacctspace(blk, -npages);
493 		if (object->type == OBJT_SWAP)
494 			vm_swap_anon_use += npages;
495 		else
496 			vm_swap_cache_use += npages;
497 		swp_sizecheck();
498 	}
499 	lwkt_reltoken(&vm_token);
500 	return(blk);
501 }
502 
503 /*
504  * SWP_PAGER_FREESWAPSPACE() -	free raw swap space
505  *
506  *	This routine returns the specified swap blocks back to the bitmap.
507  *
508  *	Note:  This routine may not block (it could in the old swap code),
509  *	and through the use of the new blist routines it does not block.
510  *
511  *	We must be called at splvm() to avoid races with bitmap frees from
512  *	vm_page_remove() aka swap_pager_page_removed().
513  *
514  * This routine may not block.
515  */
516 
517 static __inline void
518 swp_pager_freeswapspace(vm_object_t object, swblk_t blk, int npages)
519 {
520 	struct swdevt *sp = &swdevt[BLK2DEVIDX(blk)];
521 
522 	lwkt_gettoken(&vm_token);
523 	sp->sw_nused -= npages;
524 	if (object->type == OBJT_SWAP)
525 		vm_swap_anon_use -= npages;
526 	else
527 		vm_swap_cache_use -= npages;
528 
529 	if (sp->sw_flags & SW_CLOSING) {
530 		lwkt_reltoken(&vm_token);
531 		return;
532 	}
533 
534 	blist_free(swapblist, blk, npages);
535 	vm_swap_size += npages;
536 	swp_sizecheck();
537 	lwkt_reltoken(&vm_token);
538 }
539 
540 /*
541  * SWAP_PAGER_FREESPACE() -	frees swap blocks associated with a page
542  *				range within an object.
543  *
544  *	This is a globally accessible routine.
545  *
546  *	This routine removes swapblk assignments from swap metadata.
547  *
548  *	The external callers of this routine typically have already destroyed
549  *	or renamed vm_page_t's associated with this range in the object so
550  *	we should be ok.
551  *
552  * No requirements.
553  */
554 void
555 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_pindex_t size)
556 {
557 	vm_object_hold(object);
558 	swp_pager_meta_free(object, start, size);
559 	vm_object_drop(object);
560 }
561 
562 /*
563  * No requirements.
564  */
565 void
566 swap_pager_freespace_all(vm_object_t object)
567 {
568 	vm_object_hold(object);
569 	swp_pager_meta_free_all(object);
570 	vm_object_drop(object);
571 }
572 
573 /*
574  * This function conditionally frees swap cache swap starting at
575  * (*basei) in the object.  (count) swap blocks will be nominally freed.
576  * The actual number of blocks freed can be more or less than the
577  * requested number.
578  *
579  * This function nominally returns the number of blocks freed.  However,
580  * the actual number of blocks freed may be less then the returned value.
581  * If the function is unable to exhaust the object or if it is able to
582  * free (approximately) the requested number of blocks it returns
583  * a value n > count.
584  *
585  * If we exhaust the object we will return a value n <= count.
586  *
587  * The caller must hold the object.
588  *
589  * WARNING!  If count == 0 then -1 can be returned as a degenerate case,
590  *	     callers should always pass a count value > 0.
591  */
592 static int swap_pager_condfree_callback(struct swblock *swap, void *data);
593 
594 int
595 swap_pager_condfree(vm_object_t object, vm_pindex_t *basei, int count)
596 {
597 	struct swfreeinfo info;
598 
599 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
600 
601 	info.object = object;
602 	info.basei = *basei;	/* skip up to this page index */
603 	info.begi = count;	/* max swap pages to destroy */
604 	info.endi = count * 8;	/* max swblocks to scan */
605 
606 	swblock_rb_tree_RB_SCAN(&object->swblock_root, rb_swblock_condcmp,
607 				swap_pager_condfree_callback, &info);
608 	*basei = info.basei;
609 	if (info.endi < 0 && info.begi <= count)
610 		info.begi = count + 1;
611 	return(count - (int)info.begi);
612 }
613 
614 /*
615  * The idea is to free whole meta-block to avoid fragmenting
616  * the swap space or disk I/O.  We only do this if NO VM pages
617  * are present.
618  *
619  * We do not have to deal with clearing PG_SWAPPED in related VM
620  * pages because there are no related VM pages.
621  *
622  * The caller must hold the object.
623  */
624 static int
625 swap_pager_condfree_callback(struct swblock *swap, void *data)
626 {
627 	struct swfreeinfo *info = data;
628 	vm_object_t object = info->object;
629 	int i;
630 
631 	for (i = 0; i < SWAP_META_PAGES; ++i) {
632 		if (vm_page_lookup(object, swap->swb_index + i))
633 			break;
634 	}
635 	info->basei = swap->swb_index + SWAP_META_PAGES;
636 	if (i == SWAP_META_PAGES) {
637 		info->begi -= swap->swb_count;
638 		swap_pager_freespace(object, swap->swb_index, SWAP_META_PAGES);
639 	}
640 	--info->endi;
641 	if ((int)info->begi < 0 || (int)info->endi < 0)
642 		return(-1);
643 	lwkt_yield();
644 	return(0);
645 }
646 
647 /*
648  * Called by vm_page_alloc() when a new VM page is inserted
649  * into a VM object.  Checks whether swap has been assigned to
650  * the page and sets PG_SWAPPED as necessary.
651  *
652  * No requirements.
653  */
654 void
655 swap_pager_page_inserted(vm_page_t m)
656 {
657 	if (m->object->swblock_count) {
658 		vm_object_hold(m->object);
659 		if (swp_pager_meta_ctl(m->object, m->pindex, 0) != SWAPBLK_NONE)
660 			vm_page_flag_set(m, PG_SWAPPED);
661 		vm_object_drop(m->object);
662 	}
663 }
664 
665 /*
666  * SWAP_PAGER_RESERVE() - reserve swap blocks in object
667  *
668  *	Assigns swap blocks to the specified range within the object.  The
669  *	swap blocks are not zerod.  Any previous swap assignment is destroyed.
670  *
671  *	Returns 0 on success, -1 on failure.
672  *
673  * The caller is responsible for avoiding races in the specified range.
674  * No other requirements.
675  */
676 int
677 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
678 {
679 	int n = 0;
680 	swblk_t blk = SWAPBLK_NONE;
681 	vm_pindex_t beg = start;	/* save start index */
682 
683 	vm_object_hold(object);
684 
685 	while (size) {
686 		if (n == 0) {
687 			n = BLIST_MAX_ALLOC;
688 			while ((blk = swp_pager_getswapspace(object, n)) ==
689 			       SWAPBLK_NONE)
690 			{
691 				n >>= 1;
692 				if (n == 0) {
693 					swp_pager_meta_free(object, beg,
694 							    start - beg);
695 					vm_object_drop(object);
696 					return(-1);
697 				}
698 			}
699 		}
700 		swp_pager_meta_build(object, start, blk);
701 		--size;
702 		++start;
703 		++blk;
704 		--n;
705 	}
706 	swp_pager_meta_free(object, start, n);
707 	vm_object_drop(object);
708 	return(0);
709 }
710 
711 /*
712  * SWAP_PAGER_COPY() -  copy blocks from source pager to destination pager
713  *			and destroy the source.
714  *
715  *	Copy any valid swapblks from the source to the destination.  In
716  *	cases where both the source and destination have a valid swapblk,
717  *	we keep the destination's.
718  *
719  *	This routine is allowed to block.  It may block allocating metadata
720  *	indirectly through swp_pager_meta_build() or if paging is still in
721  *	progress on the source.
722  *
723  *	XXX vm_page_collapse() kinda expects us not to block because we
724  *	supposedly do not need to allocate memory, but for the moment we
725  *	*may* have to get a little memory from the zone allocator, but
726  *	it is taken from the interrupt memory.  We should be ok.
727  *
728  *	The source object contains no vm_page_t's (which is just as well)
729  *	The source object is of type OBJT_SWAP.
730  *
731  *	The source and destination objects must be held by the caller.
732  */
733 void
734 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject,
735 		vm_pindex_t base_index, int destroysource)
736 {
737 	vm_pindex_t i;
738 
739 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(srcobject));
740 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(dstobject));
741 
742 	/*
743 	 * transfer source to destination.
744 	 */
745 	for (i = 0; i < dstobject->size; ++i) {
746 		swblk_t dstaddr;
747 
748 		/*
749 		 * Locate (without changing) the swapblk on the destination,
750 		 * unless it is invalid in which case free it silently, or
751 		 * if the destination is a resident page, in which case the
752 		 * source is thrown away.
753 		 */
754 		dstaddr = swp_pager_meta_ctl(dstobject, i, 0);
755 
756 		if (dstaddr == SWAPBLK_NONE) {
757 			/*
758 			 * Destination has no swapblk and is not resident,
759 			 * copy source.
760 			 */
761 			swblk_t srcaddr;
762 
763 			srcaddr = swp_pager_meta_ctl(srcobject,
764 						     base_index + i, SWM_POP);
765 
766 			if (srcaddr != SWAPBLK_NONE)
767 				swp_pager_meta_build(dstobject, i, srcaddr);
768 		} else {
769 			/*
770 			 * Destination has valid swapblk or it is represented
771 			 * by a resident page.  We destroy the sourceblock.
772 			 */
773 			swp_pager_meta_ctl(srcobject, base_index + i, SWM_FREE);
774 		}
775 	}
776 
777 	/*
778 	 * Free left over swap blocks in source.
779 	 *
780 	 * We have to revert the type to OBJT_DEFAULT so we do not accidently
781 	 * double-remove the object from the swap queues.
782 	 */
783 	if (destroysource) {
784 		/*
785 		 * Reverting the type is not necessary, the caller is going
786 		 * to destroy srcobject directly, but I'm doing it here
787 		 * for consistency since we've removed the object from its
788 		 * queues.
789 		 */
790 		swp_pager_meta_free_all(srcobject);
791 		if (srcobject->type == OBJT_SWAP)
792 			srcobject->type = OBJT_DEFAULT;
793 	}
794 }
795 
796 /*
797  * SWAP_PAGER_HASPAGE() -	determine if we have good backing store for
798  *				the requested page.
799  *
800  *	We determine whether good backing store exists for the requested
801  *	page and return TRUE if it does, FALSE if it doesn't.
802  *
803  *	If TRUE, we also try to determine how much valid, contiguous backing
804  *	store exists before and after the requested page within a reasonable
805  *	distance.  We do not try to restrict it to the swap device stripe
806  *	(that is handled in getpages/putpages).  It probably isn't worth
807  *	doing here.
808  *
809  * No requirements.
810  */
811 boolean_t
812 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex)
813 {
814 	swblk_t blk0;
815 
816 	/*
817 	 * do we have good backing store at the requested index ?
818 	 */
819 	vm_object_hold(object);
820 	blk0 = swp_pager_meta_ctl(object, pindex, 0);
821 
822 	if (blk0 == SWAPBLK_NONE) {
823 		vm_object_drop(object);
824 		return (FALSE);
825 	}
826 	vm_object_drop(object);
827 	return (TRUE);
828 }
829 
830 /*
831  * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
832  *
833  * This removes any associated swap backing store, whether valid or
834  * not, from the page.  This operates on any VM object, not just OBJT_SWAP
835  * objects.
836  *
837  * This routine is typically called when a page is made dirty, at
838  * which point any associated swap can be freed.  MADV_FREE also
839  * calls us in a special-case situation
840  *
841  * NOTE!!!  If the page is clean and the swap was valid, the caller
842  * should make the page dirty before calling this routine.  This routine
843  * does NOT change the m->dirty status of the page.  Also: MADV_FREE
844  * depends on it.
845  *
846  * The page must be busied or soft-busied.
847  * The caller can hold the object to avoid blocking, else we might block.
848  * No other requirements.
849  */
850 void
851 swap_pager_unswapped(vm_page_t m)
852 {
853 	if (m->flags & PG_SWAPPED) {
854 		vm_object_hold(m->object);
855 		KKASSERT(m->flags & PG_SWAPPED);
856 		swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE);
857 		vm_page_flag_clear(m, PG_SWAPPED);
858 		vm_object_drop(m->object);
859 	}
860 }
861 
862 /*
863  * SWAP_PAGER_STRATEGY() - read, write, free blocks
864  *
865  * This implements a VM OBJECT strategy function using swap backing store.
866  * This can operate on any VM OBJECT type, not necessarily just OBJT_SWAP
867  * types.
868  *
869  * This is intended to be a cacheless interface (i.e. caching occurs at
870  * higher levels), and is also used as a swap-based SSD cache for vnode
871  * and device objects.
872  *
873  * All I/O goes directly to and from the swap device.
874  *
875  * We currently attempt to run I/O synchronously or asynchronously as
876  * the caller requests.  This isn't perfect because we loose error
877  * sequencing when we run multiple ops in parallel to satisfy a request.
878  * But this is swap, so we let it all hang out.
879  *
880  * No requirements.
881  */
882 void
883 swap_pager_strategy(vm_object_t object, struct bio *bio)
884 {
885 	struct buf *bp = bio->bio_buf;
886 	struct bio *nbio;
887 	vm_pindex_t start;
888 	vm_pindex_t biox_blkno = 0;
889 	int count;
890 	char *data;
891 	struct bio *biox;
892 	struct buf *bufx;
893 	struct bio_track *track;
894 
895 	/*
896 	 * tracking for swapdev vnode I/Os
897 	 */
898 	if (bp->b_cmd == BUF_CMD_READ)
899 		track = &swapdev_vp->v_track_read;
900 	else
901 		track = &swapdev_vp->v_track_write;
902 
903 	if (bp->b_bcount & PAGE_MASK) {
904 		bp->b_error = EINVAL;
905 		bp->b_flags |= B_ERROR | B_INVAL;
906 		biodone(bio);
907 		kprintf("swap_pager_strategy: bp %p offset %lld size %d, "
908 			"not page bounded\n",
909 			bp, (long long)bio->bio_offset, (int)bp->b_bcount);
910 		return;
911 	}
912 
913 	/*
914 	 * Clear error indication, initialize page index, count, data pointer.
915 	 */
916 	bp->b_error = 0;
917 	bp->b_flags &= ~B_ERROR;
918 	bp->b_resid = bp->b_bcount;
919 
920 	start = (vm_pindex_t)(bio->bio_offset >> PAGE_SHIFT);
921 	count = howmany(bp->b_bcount, PAGE_SIZE);
922 	data = bp->b_data;
923 
924 	/*
925 	 * Deal with BUF_CMD_FREEBLKS
926 	 */
927 	if (bp->b_cmd == BUF_CMD_FREEBLKS) {
928 		/*
929 		 * FREE PAGE(s) - destroy underlying swap that is no longer
930 		 *		  needed.
931 		 */
932 		vm_object_hold(object);
933 		swp_pager_meta_free(object, start, count);
934 		vm_object_drop(object);
935 		bp->b_resid = 0;
936 		biodone(bio);
937 		return;
938 	}
939 
940 	/*
941 	 * We need to be able to create a new cluster of I/O's.  We cannot
942 	 * use the caller fields of the passed bio so push a new one.
943 	 *
944 	 * Because nbio is just a placeholder for the cluster links,
945 	 * we can biodone() the original bio instead of nbio to make
946 	 * things a bit more efficient.
947 	 */
948 	nbio = push_bio(bio);
949 	nbio->bio_offset = bio->bio_offset;
950 	nbio->bio_caller_info1.cluster_head = NULL;
951 	nbio->bio_caller_info2.cluster_tail = NULL;
952 
953 	biox = NULL;
954 	bufx = NULL;
955 
956 	/*
957 	 * Execute read or write
958 	 */
959 	vm_object_hold(object);
960 
961 	while (count > 0) {
962 		swblk_t blk;
963 
964 		/*
965 		 * Obtain block.  If block not found and writing, allocate a
966 		 * new block and build it into the object.
967 		 */
968 		blk = swp_pager_meta_ctl(object, start, 0);
969 		if ((blk == SWAPBLK_NONE) && bp->b_cmd != BUF_CMD_READ) {
970 			blk = swp_pager_getswapspace(object, 1);
971 			if (blk == SWAPBLK_NONE) {
972 				bp->b_error = ENOMEM;
973 				bp->b_flags |= B_ERROR;
974 				break;
975 			}
976 			swp_pager_meta_build(object, start, blk);
977 		}
978 
979 		/*
980 		 * Do we have to flush our current collection?  Yes if:
981 		 *
982 		 *	- no swap block at this index
983 		 *	- swap block is not contiguous
984 		 *	- we cross a physical disk boundry in the
985 		 *	  stripe.
986 		 */
987 		if (
988 		    biox && (biox_blkno + btoc(bufx->b_bcount) != blk ||
989 		     ((biox_blkno ^ blk) & dmmax_mask)
990 		    )
991 		) {
992 			if (bp->b_cmd == BUF_CMD_READ) {
993 				++mycpu->gd_cnt.v_swapin;
994 				mycpu->gd_cnt.v_swappgsin += btoc(bufx->b_bcount);
995 			} else {
996 				++mycpu->gd_cnt.v_swapout;
997 				mycpu->gd_cnt.v_swappgsout += btoc(bufx->b_bcount);
998 				bufx->b_dirtyend = bufx->b_bcount;
999 			}
1000 
1001 			/*
1002 			 * Finished with this buf.
1003 			 */
1004 			KKASSERT(bufx->b_bcount != 0);
1005 			if (bufx->b_cmd != BUF_CMD_READ)
1006 				bufx->b_dirtyend = bufx->b_bcount;
1007 			biox = NULL;
1008 			bufx = NULL;
1009 		}
1010 
1011 		/*
1012 		 * Add new swapblk to biox, instantiating biox if necessary.
1013 		 * Zero-fill reads are able to take a shortcut.
1014 		 */
1015 		if (blk == SWAPBLK_NONE) {
1016 			/*
1017 			 * We can only get here if we are reading.  Since
1018 			 * we are at splvm() we can safely modify b_resid,
1019 			 * even if chain ops are in progress.
1020 			 */
1021 			bzero(data, PAGE_SIZE);
1022 			bp->b_resid -= PAGE_SIZE;
1023 		} else {
1024 			if (biox == NULL) {
1025 				/* XXX chain count > 4, wait to <= 4 */
1026 
1027 				bufx = getpbuf(NULL);
1028 				biox = &bufx->b_bio1;
1029 				cluster_append(nbio, bufx);
1030 				bufx->b_flags |= (bufx->b_flags & B_ORDERED);
1031 				bufx->b_cmd = bp->b_cmd;
1032 				biox->bio_done = swap_chain_iodone;
1033 				biox->bio_offset = (off_t)blk << PAGE_SHIFT;
1034 				biox->bio_caller_info1.cluster_parent = nbio;
1035 				biox_blkno = blk;
1036 				bufx->b_bcount = 0;
1037 				bufx->b_data = data;
1038 			}
1039 			bufx->b_bcount += PAGE_SIZE;
1040 		}
1041 		--count;
1042 		++start;
1043 		data += PAGE_SIZE;
1044 	}
1045 
1046 	vm_object_drop(object);
1047 
1048 	/*
1049 	 *  Flush out last buffer
1050 	 */
1051 	if (biox) {
1052 		if (bufx->b_cmd == BUF_CMD_READ) {
1053 			++mycpu->gd_cnt.v_swapin;
1054 			mycpu->gd_cnt.v_swappgsin += btoc(bufx->b_bcount);
1055 		} else {
1056 			++mycpu->gd_cnt.v_swapout;
1057 			mycpu->gd_cnt.v_swappgsout += btoc(bufx->b_bcount);
1058 			bufx->b_dirtyend = bufx->b_bcount;
1059 		}
1060 		KKASSERT(bufx->b_bcount);
1061 		if (bufx->b_cmd != BUF_CMD_READ)
1062 			bufx->b_dirtyend = bufx->b_bcount;
1063 		/* biox, bufx = NULL */
1064 	}
1065 
1066 	/*
1067 	 * Now initiate all the I/O.  Be careful looping on our chain as
1068 	 * I/O's may complete while we are still initiating them.
1069 	 *
1070 	 * If the request is a 100% sparse read no bios will be present
1071 	 * and we just biodone() the buffer.
1072 	 */
1073 	nbio->bio_caller_info2.cluster_tail = NULL;
1074 	bufx = nbio->bio_caller_info1.cluster_head;
1075 
1076 	if (bufx) {
1077 		while (bufx) {
1078 			biox = &bufx->b_bio1;
1079 			BUF_KERNPROC(bufx);
1080 			bufx = bufx->b_cluster_next;
1081 			vn_strategy(swapdev_vp, biox);
1082 		}
1083 	} else {
1084 		biodone(bio);
1085 	}
1086 
1087 	/*
1088 	 * Completion of the cluster will also call biodone_chain(nbio).
1089 	 * We never call biodone(nbio) so we don't have to worry about
1090 	 * setting up a bio_done callback.  It's handled in the sub-IO.
1091 	 */
1092 	/**/
1093 }
1094 
1095 /*
1096  * biodone callback
1097  *
1098  * No requirements.
1099  */
1100 static void
1101 swap_chain_iodone(struct bio *biox)
1102 {
1103 	struct buf **nextp;
1104 	struct buf *bufx;	/* chained sub-buffer */
1105 	struct bio *nbio;	/* parent nbio with chain glue */
1106 	struct buf *bp;		/* original bp associated with nbio */
1107 	int chain_empty;
1108 
1109 	bufx = biox->bio_buf;
1110 	nbio = biox->bio_caller_info1.cluster_parent;
1111 	bp = nbio->bio_buf;
1112 
1113 	/*
1114 	 * Update the original buffer
1115 	 */
1116         KKASSERT(bp != NULL);
1117 	if (bufx->b_flags & B_ERROR) {
1118 		atomic_set_int(&bufx->b_flags, B_ERROR);
1119 		bp->b_error = bufx->b_error;	/* race ok */
1120 	} else if (bufx->b_resid != 0) {
1121 		atomic_set_int(&bufx->b_flags, B_ERROR);
1122 		bp->b_error = EINVAL;		/* race ok */
1123 	} else {
1124 		atomic_subtract_int(&bp->b_resid, bufx->b_bcount);
1125 	}
1126 
1127 	/*
1128 	 * Remove us from the chain.
1129 	 */
1130 	spin_lock(&bp->b_lock.lk_spinlock);
1131 	nextp = &nbio->bio_caller_info1.cluster_head;
1132 	while (*nextp != bufx) {
1133 		KKASSERT(*nextp != NULL);
1134 		nextp = &(*nextp)->b_cluster_next;
1135 	}
1136 	*nextp = bufx->b_cluster_next;
1137 	chain_empty = (nbio->bio_caller_info1.cluster_head == NULL);
1138 	spin_unlock(&bp->b_lock.lk_spinlock);
1139 
1140 	/*
1141 	 * Clean up bufx.  If the chain is now empty we finish out
1142 	 * the parent.  Note that we may be racing other completions
1143 	 * so we must use the chain_empty status from above.
1144 	 */
1145 	if (chain_empty) {
1146 		if (bp->b_resid != 0 && !(bp->b_flags & B_ERROR)) {
1147 			atomic_set_int(&bp->b_flags, B_ERROR);
1148 			bp->b_error = EINVAL;
1149 		}
1150 		biodone_chain(nbio);
1151         }
1152         relpbuf(bufx, NULL);
1153 }
1154 
1155 /*
1156  * SWAP_PAGER_GETPAGES() - bring page in from swap
1157  *
1158  * The requested page may have to be brought in from swap.  Calculate the
1159  * swap block and bring in additional pages if possible.  All pages must
1160  * have contiguous swap block assignments and reside in the same object.
1161  *
1162  * The caller has a single vm_object_pip_add() reference prior to
1163  * calling us and we should return with the same.
1164  *
1165  * The caller has BUSY'd the page.  We should return with (*mpp) left busy,
1166  * and any additinal pages unbusied.
1167  *
1168  * If the caller encounters a PG_RAM page it will pass it to us even though
1169  * it may be valid and dirty.  We cannot overwrite the page in this case!
1170  * The case is used to allow us to issue pure read-aheads.
1171  *
1172  * NOTE! XXX This code does not entirely pipeline yet due to the fact that
1173  *       the PG_RAM page is validated at the same time as mreq.  What we
1174  *	 really need to do is issue a separate read-ahead pbuf.
1175  *
1176  * No requirements.
1177  */
1178 static int
1179 swap_pager_getpage(vm_object_t object, vm_page_t *mpp, int seqaccess)
1180 {
1181 	struct buf *bp;
1182 	struct bio *bio;
1183 	vm_page_t mreq;
1184 	vm_page_t m;
1185 	vm_offset_t kva;
1186 	swblk_t blk;
1187 	int i;
1188 	int j;
1189 	int raonly;
1190 	int error;
1191 	u_int32_t flags;
1192 	vm_page_t marray[XIO_INTERNAL_PAGES];
1193 
1194 	mreq = *mpp;
1195 
1196 	vm_object_hold(object);
1197 	if (mreq->object != object) {
1198 		panic("swap_pager_getpages: object mismatch %p/%p",
1199 		    object,
1200 		    mreq->object
1201 		);
1202 	}
1203 
1204 	/*
1205 	 * We don't want to overwrite a fully valid page as it might be
1206 	 * dirty.  This case can occur when e.g. vm_fault hits a perfectly
1207 	 * valid page with PG_RAM set.
1208 	 *
1209 	 * In this case we see if the next page is a suitable page-in
1210 	 * candidate and if it is we issue read-ahead.  PG_RAM will be
1211 	 * set on the last page of the read-ahead to continue the pipeline.
1212 	 */
1213 	if (mreq->valid == VM_PAGE_BITS_ALL) {
1214 		if (swap_burst_read == 0 || mreq->pindex + 1 >= object->size) {
1215 			vm_object_drop(object);
1216 			return(VM_PAGER_OK);
1217 		}
1218 		blk = swp_pager_meta_ctl(object, mreq->pindex + 1, 0);
1219 		if (blk == SWAPBLK_NONE) {
1220 			vm_object_drop(object);
1221 			return(VM_PAGER_OK);
1222 		}
1223 		m = vm_page_lookup_busy_try(object, mreq->pindex + 1,
1224 					    TRUE, &error);
1225 		if (error) {
1226 			vm_object_drop(object);
1227 			return(VM_PAGER_OK);
1228 		} else if (m == NULL) {
1229 			/*
1230 			 * Use VM_ALLOC_QUICK to avoid blocking on cache
1231 			 * page reuse.
1232 			 */
1233 			m = vm_page_alloc(object, mreq->pindex + 1,
1234 					  VM_ALLOC_QUICK);
1235 			if (m == NULL) {
1236 				vm_object_drop(object);
1237 				return(VM_PAGER_OK);
1238 			}
1239 		} else {
1240 			if (m->valid) {
1241 				vm_page_wakeup(m);
1242 				vm_object_drop(object);
1243 				return(VM_PAGER_OK);
1244 			}
1245 			vm_page_unqueue_nowakeup(m);
1246 		}
1247 		/* page is busy */
1248 		mreq = m;
1249 		raonly = 1;
1250 	} else {
1251 		raonly = 0;
1252 	}
1253 
1254 	/*
1255 	 * Try to block-read contiguous pages from swap if sequential,
1256 	 * otherwise just read one page.  Contiguous pages from swap must
1257 	 * reside within a single device stripe because the I/O cannot be
1258 	 * broken up across multiple stripes.
1259 	 *
1260 	 * Note that blk and iblk can be SWAPBLK_NONE but the loop is
1261 	 * set up such that the case(s) are handled implicitly.
1262 	 */
1263 	blk = swp_pager_meta_ctl(mreq->object, mreq->pindex, 0);
1264 	marray[0] = mreq;
1265 
1266 	for (i = 1; swap_burst_read &&
1267 		    i < XIO_INTERNAL_PAGES &&
1268 		    mreq->pindex + i < object->size; ++i) {
1269 		swblk_t iblk;
1270 
1271 		iblk = swp_pager_meta_ctl(object, mreq->pindex + i, 0);
1272 		if (iblk != blk + i)
1273 			break;
1274 		if ((blk ^ iblk) & dmmax_mask)
1275 			break;
1276 		m = vm_page_lookup_busy_try(object, mreq->pindex + i,
1277 					    TRUE, &error);
1278 		if (error) {
1279 			break;
1280 		} else if (m == NULL) {
1281 			/*
1282 			 * Use VM_ALLOC_QUICK to avoid blocking on cache
1283 			 * page reuse.
1284 			 */
1285 			m = vm_page_alloc(object, mreq->pindex + i,
1286 					  VM_ALLOC_QUICK);
1287 			if (m == NULL)
1288 				break;
1289 		} else {
1290 			if (m->valid) {
1291 				vm_page_wakeup(m);
1292 				break;
1293 			}
1294 			vm_page_unqueue_nowakeup(m);
1295 		}
1296 		/* page is busy */
1297 		marray[i] = m;
1298 	}
1299 	if (i > 1)
1300 		vm_page_flag_set(marray[i - 1], PG_RAM);
1301 
1302 	/*
1303 	 * If mreq is the requested page and we have nothing to do return
1304 	 * VM_PAGER_FAIL.  If raonly is set mreq is just another read-ahead
1305 	 * page and must be cleaned up.
1306 	 */
1307 	if (blk == SWAPBLK_NONE) {
1308 		KKASSERT(i == 1);
1309 		if (raonly) {
1310 			vnode_pager_freepage(mreq);
1311 			vm_object_drop(object);
1312 			return(VM_PAGER_OK);
1313 		} else {
1314 			vm_object_drop(object);
1315 			return(VM_PAGER_FAIL);
1316 		}
1317 	}
1318 
1319 	/*
1320 	 * map our page(s) into kva for input
1321 	 */
1322 	bp = getpbuf_kva(&nsw_rcount);
1323 	bio = &bp->b_bio1;
1324 	kva = (vm_offset_t) bp->b_kvabase;
1325 	bcopy(marray, bp->b_xio.xio_pages, i * sizeof(vm_page_t));
1326 	pmap_qenter(kva, bp->b_xio.xio_pages, i);
1327 
1328 	bp->b_data = (caddr_t)kva;
1329 	bp->b_bcount = PAGE_SIZE * i;
1330 	bp->b_xio.xio_npages = i;
1331 	bio->bio_done = swp_pager_async_iodone;
1332 	bio->bio_offset = (off_t)blk << PAGE_SHIFT;
1333 	bio->bio_caller_info1.index = SWBIO_READ;
1334 
1335 	/*
1336 	 * Set index.  If raonly set the index beyond the array so all
1337 	 * the pages are treated the same, otherwise the original mreq is
1338 	 * at index 0.
1339 	 */
1340 	if (raonly)
1341 		bio->bio_driver_info = (void *)(intptr_t)i;
1342 	else
1343 		bio->bio_driver_info = (void *)(intptr_t)0;
1344 
1345 	for (j = 0; j < i; ++j)
1346 		vm_page_flag_set(bp->b_xio.xio_pages[j], PG_SWAPINPROG);
1347 
1348 	mycpu->gd_cnt.v_swapin++;
1349 	mycpu->gd_cnt.v_swappgsin += bp->b_xio.xio_npages;
1350 
1351 	/*
1352 	 * We still hold the lock on mreq, and our automatic completion routine
1353 	 * does not remove it.
1354 	 */
1355 	vm_object_pip_add(object, bp->b_xio.xio_npages);
1356 
1357 	/*
1358 	 * perform the I/O.  NOTE!!!  bp cannot be considered valid after
1359 	 * this point because we automatically release it on completion.
1360 	 * Instead, we look at the one page we are interested in which we
1361 	 * still hold a lock on even through the I/O completion.
1362 	 *
1363 	 * The other pages in our m[] array are also released on completion,
1364 	 * so we cannot assume they are valid anymore either.
1365 	 */
1366 	bp->b_cmd = BUF_CMD_READ;
1367 	BUF_KERNPROC(bp);
1368 	vn_strategy(swapdev_vp, bio);
1369 
1370 	/*
1371 	 * Wait for the page we want to complete.  PG_SWAPINPROG is always
1372 	 * cleared on completion.  If an I/O error occurs, SWAPBLK_NONE
1373 	 * is set in the meta-data.
1374 	 *
1375 	 * If this is a read-ahead only we return immediately without
1376 	 * waiting for I/O.
1377 	 */
1378 	if (raonly) {
1379 		vm_object_drop(object);
1380 		return(VM_PAGER_OK);
1381 	}
1382 
1383 	/*
1384 	 * Read-ahead includes originally requested page case.
1385 	 */
1386 	for (;;) {
1387 		flags = mreq->flags;
1388 		cpu_ccfence();
1389 		if ((flags & PG_SWAPINPROG) == 0)
1390 			break;
1391 		tsleep_interlock(mreq, 0);
1392 		if (!atomic_cmpset_int(&mreq->flags, flags,
1393 				       flags | PG_WANTED | PG_REFERENCED)) {
1394 			continue;
1395 		}
1396 		mycpu->gd_cnt.v_intrans++;
1397 		if (tsleep(mreq, PINTERLOCKED, "swread", hz*20)) {
1398 			kprintf(
1399 			    "swap_pager: indefinite wait buffer: "
1400 				" offset: %lld, size: %ld\n",
1401 			    (long long)bio->bio_offset,
1402 			    (long)bp->b_bcount
1403 			);
1404 		}
1405 	}
1406 
1407 	/*
1408 	 * mreq is left bussied after completion, but all the other pages
1409 	 * are freed.  If we had an unrecoverable read error the page will
1410 	 * not be valid.
1411 	 */
1412 	vm_object_drop(object);
1413 	if (mreq->valid != VM_PAGE_BITS_ALL)
1414 		return(VM_PAGER_ERROR);
1415 	else
1416 		return(VM_PAGER_OK);
1417 
1418 	/*
1419 	 * A final note: in a low swap situation, we cannot deallocate swap
1420 	 * and mark a page dirty here because the caller is likely to mark
1421 	 * the page clean when we return, causing the page to possibly revert
1422 	 * to all-zero's later.
1423 	 */
1424 }
1425 
1426 /*
1427  *	swap_pager_putpages:
1428  *
1429  *	Assign swap (if necessary) and initiate I/O on the specified pages.
1430  *
1431  *	We support both OBJT_DEFAULT and OBJT_SWAP objects.  DEFAULT objects
1432  *	are automatically converted to SWAP objects.
1433  *
1434  *	In a low memory situation we may block in vn_strategy(), but the new
1435  *	vm_page reservation system coupled with properly written VFS devices
1436  *	should ensure that no low-memory deadlock occurs.  This is an area
1437  *	which needs work.
1438  *
1439  *	The parent has N vm_object_pip_add() references prior to
1440  *	calling us and will remove references for rtvals[] that are
1441  *	not set to VM_PAGER_PEND.  We need to remove the rest on I/O
1442  *	completion.
1443  *
1444  *	The parent has soft-busy'd the pages it passes us and will unbusy
1445  *	those whos rtvals[] entry is not set to VM_PAGER_PEND on return.
1446  *	We need to unbusy the rest on I/O completion.
1447  *
1448  * No requirements.
1449  */
1450 void
1451 swap_pager_putpages(vm_object_t object, vm_page_t *m, int count,
1452 		    boolean_t sync, int *rtvals)
1453 {
1454 	int i;
1455 	int n = 0;
1456 
1457 	vm_object_hold(object);
1458 
1459 	if (count && m[0]->object != object) {
1460 		panic("swap_pager_getpages: object mismatch %p/%p",
1461 		    object,
1462 		    m[0]->object
1463 		);
1464 	}
1465 
1466 	/*
1467 	 * Step 1
1468 	 *
1469 	 * Turn object into OBJT_SWAP
1470 	 * check for bogus sysops
1471 	 * force sync if not pageout process
1472 	 */
1473 	if (object->type == OBJT_DEFAULT) {
1474 		if (object->type == OBJT_DEFAULT)
1475 			swp_pager_meta_convert(object);
1476 	}
1477 
1478 	if (curthread != pagethread)
1479 		sync = TRUE;
1480 
1481 	/*
1482 	 * Step 2
1483 	 *
1484 	 * Update nsw parameters from swap_async_max sysctl values.
1485 	 * Do not let the sysop crash the machine with bogus numbers.
1486 	 */
1487 
1488 	if (swap_async_max != nsw_wcount_async_max) {
1489 		int n;
1490 
1491 		/*
1492 		 * limit range
1493 		 */
1494 		if ((n = swap_async_max) > nswbuf / 2)
1495 			n = nswbuf / 2;
1496 		if (n < 1)
1497 			n = 1;
1498 		swap_async_max = n;
1499 
1500 		/*
1501 		 * Adjust difference ( if possible ).  If the current async
1502 		 * count is too low, we may not be able to make the adjustment
1503 		 * at this time.
1504 		 *
1505 		 * vm_token needed for nsw_wcount sleep interlock
1506 		 */
1507 		lwkt_gettoken(&vm_token);
1508 		n -= nsw_wcount_async_max;
1509 		if (nsw_wcount_async + n >= 0) {
1510 			nsw_wcount_async += n;
1511 			nsw_wcount_async_max += n;
1512 			wakeup(&nsw_wcount_async);
1513 		}
1514 		lwkt_reltoken(&vm_token);
1515 	}
1516 
1517 	/*
1518 	 * Step 3
1519 	 *
1520 	 * Assign swap blocks and issue I/O.  We reallocate swap on the fly.
1521 	 * The page is left dirty until the pageout operation completes
1522 	 * successfully.
1523 	 */
1524 
1525 	for (i = 0; i < count; i += n) {
1526 		struct buf *bp;
1527 		struct bio *bio;
1528 		swblk_t blk;
1529 		int j;
1530 
1531 		/*
1532 		 * Maximum I/O size is limited by a number of factors.
1533 		 */
1534 
1535 		n = min(BLIST_MAX_ALLOC, count - i);
1536 		n = min(n, nsw_cluster_max);
1537 
1538 		lwkt_gettoken(&vm_token);
1539 
1540 		/*
1541 		 * Get biggest block of swap we can.  If we fail, fall
1542 		 * back and try to allocate a smaller block.  Don't go
1543 		 * overboard trying to allocate space if it would overly
1544 		 * fragment swap.
1545 		 */
1546 		while (
1547 		    (blk = swp_pager_getswapspace(object, n)) == SWAPBLK_NONE &&
1548 		    n > 4
1549 		) {
1550 			n >>= 1;
1551 		}
1552 		if (blk == SWAPBLK_NONE) {
1553 			for (j = 0; j < n; ++j)
1554 				rtvals[i+j] = VM_PAGER_FAIL;
1555 			lwkt_reltoken(&vm_token);
1556 			continue;
1557 		}
1558 
1559 		/*
1560 		 * The I/O we are constructing cannot cross a physical
1561 		 * disk boundry in the swap stripe.  Note: we are still
1562 		 * at splvm().
1563 		 */
1564 		if ((blk ^ (blk + n)) & dmmax_mask) {
1565 			j = ((blk + dmmax) & dmmax_mask) - blk;
1566 			swp_pager_freeswapspace(object, blk + j, n - j);
1567 			n = j;
1568 		}
1569 
1570 		/*
1571 		 * All I/O parameters have been satisfied, build the I/O
1572 		 * request and assign the swap space.
1573 		 */
1574 		if (sync == TRUE)
1575 			bp = getpbuf_kva(&nsw_wcount_sync);
1576 		else
1577 			bp = getpbuf_kva(&nsw_wcount_async);
1578 		bio = &bp->b_bio1;
1579 
1580 		lwkt_reltoken(&vm_token);
1581 
1582 		pmap_qenter((vm_offset_t)bp->b_data, &m[i], n);
1583 
1584 		bp->b_bcount = PAGE_SIZE * n;
1585 		bio->bio_offset = (off_t)blk << PAGE_SHIFT;
1586 
1587 		for (j = 0; j < n; ++j) {
1588 			vm_page_t mreq = m[i+j];
1589 
1590 			swp_pager_meta_build(mreq->object, mreq->pindex,
1591 					     blk + j);
1592 			if (object->type == OBJT_SWAP)
1593 				vm_page_dirty(mreq);
1594 			rtvals[i+j] = VM_PAGER_OK;
1595 
1596 			vm_page_flag_set(mreq, PG_SWAPINPROG);
1597 			bp->b_xio.xio_pages[j] = mreq;
1598 		}
1599 		bp->b_xio.xio_npages = n;
1600 
1601 		mycpu->gd_cnt.v_swapout++;
1602 		mycpu->gd_cnt.v_swappgsout += bp->b_xio.xio_npages;
1603 
1604 		bp->b_dirtyoff = 0;		/* req'd for NFS */
1605 		bp->b_dirtyend = bp->b_bcount;	/* req'd for NFS */
1606 		bp->b_cmd = BUF_CMD_WRITE;
1607 		bio->bio_caller_info1.index = SWBIO_WRITE;
1608 
1609 		/*
1610 		 * asynchronous
1611 		 */
1612 		if (sync == FALSE) {
1613 			bio->bio_done = swp_pager_async_iodone;
1614 			BUF_KERNPROC(bp);
1615 			vn_strategy(swapdev_vp, bio);
1616 
1617 			for (j = 0; j < n; ++j)
1618 				rtvals[i+j] = VM_PAGER_PEND;
1619 			continue;
1620 		}
1621 
1622 		/*
1623 		 * Issue synchrnously.
1624 		 *
1625 		 * Wait for the sync I/O to complete, then update rtvals.
1626 		 * We just set the rtvals[] to VM_PAGER_PEND so we can call
1627 		 * our async completion routine at the end, thus avoiding a
1628 		 * double-free.
1629 		 */
1630 		bio->bio_caller_info1.index |= SWBIO_SYNC;
1631 		bio->bio_done = biodone_sync;
1632 		bio->bio_flags |= BIO_SYNC;
1633 		vn_strategy(swapdev_vp, bio);
1634 		biowait(bio, "swwrt");
1635 
1636 		for (j = 0; j < n; ++j)
1637 			rtvals[i+j] = VM_PAGER_PEND;
1638 
1639 		/*
1640 		 * Now that we are through with the bp, we can call the
1641 		 * normal async completion, which frees everything up.
1642 		 */
1643 		swp_pager_async_iodone(bio);
1644 	}
1645 	vm_object_drop(object);
1646 }
1647 
1648 /*
1649  * No requirements.
1650  */
1651 void
1652 swap_pager_newswap(void)
1653 {
1654 	swp_sizecheck();
1655 }
1656 
1657 /*
1658  *	swp_pager_async_iodone:
1659  *
1660  *	Completion routine for asynchronous reads and writes from/to swap.
1661  *	Also called manually by synchronous code to finish up a bp.
1662  *
1663  *	For READ operations, the pages are PG_BUSY'd.  For WRITE operations,
1664  *	the pages are vm_page_t->busy'd.  For READ operations, we PG_BUSY
1665  *	unbusy all pages except the 'main' request page.  For WRITE
1666  *	operations, we vm_page_t->busy'd unbusy all pages ( we can do this
1667  *	because we marked them all VM_PAGER_PEND on return from putpages ).
1668  *
1669  *	This routine may not block.
1670  *
1671  * No requirements.
1672  */
1673 static void
1674 swp_pager_async_iodone(struct bio *bio)
1675 {
1676 	struct buf *bp = bio->bio_buf;
1677 	vm_object_t object = NULL;
1678 	int i;
1679 	int *nswptr;
1680 
1681 	/*
1682 	 * report error
1683 	 */
1684 	if (bp->b_flags & B_ERROR) {
1685 		kprintf(
1686 		    "swap_pager: I/O error - %s failed; offset %lld,"
1687 			"size %ld, error %d\n",
1688 		    ((bio->bio_caller_info1.index & SWBIO_READ) ?
1689 			"pagein" : "pageout"),
1690 		    (long long)bio->bio_offset,
1691 		    (long)bp->b_bcount,
1692 		    bp->b_error
1693 		);
1694 	}
1695 
1696 	/*
1697 	 * set object, raise to splvm().
1698 	 */
1699 	if (bp->b_xio.xio_npages)
1700 		object = bp->b_xio.xio_pages[0]->object;
1701 
1702 	/*
1703 	 * remove the mapping for kernel virtual
1704 	 */
1705 	pmap_qremove((vm_offset_t)bp->b_data, bp->b_xio.xio_npages);
1706 
1707 	/*
1708 	 * cleanup pages.  If an error occurs writing to swap, we are in
1709 	 * very serious trouble.  If it happens to be a disk error, though,
1710 	 * we may be able to recover by reassigning the swap later on.  So
1711 	 * in this case we remove the m->swapblk assignment for the page
1712 	 * but do not free it in the rlist.  The errornous block(s) are thus
1713 	 * never reallocated as swap.  Redirty the page and continue.
1714 	 */
1715 	for (i = 0; i < bp->b_xio.xio_npages; ++i) {
1716 		vm_page_t m = bp->b_xio.xio_pages[i];
1717 
1718 		if (bp->b_flags & B_ERROR) {
1719 			/*
1720 			 * If an error occurs I'd love to throw the swapblk
1721 			 * away without freeing it back to swapspace, so it
1722 			 * can never be used again.  But I can't from an
1723 			 * interrupt.
1724 			 */
1725 
1726 			if (bio->bio_caller_info1.index & SWBIO_READ) {
1727 				/*
1728 				 * When reading, reqpage needs to stay
1729 				 * locked for the parent, but all other
1730 				 * pages can be freed.  We still want to
1731 				 * wakeup the parent waiting on the page,
1732 				 * though.  ( also: pg_reqpage can be -1 and
1733 				 * not match anything ).
1734 				 *
1735 				 * We have to wake specifically requested pages
1736 				 * up too because we cleared PG_SWAPINPROG and
1737 				 * someone may be waiting for that.
1738 				 *
1739 				 * NOTE: for reads, m->dirty will probably
1740 				 * be overridden by the original caller of
1741 				 * getpages so don't play cute tricks here.
1742 				 *
1743 				 * NOTE: We can't actually free the page from
1744 				 * here, because this is an interrupt.  It
1745 				 * is not legal to mess with object->memq
1746 				 * from an interrupt.  Deactivate the page
1747 				 * instead.
1748 				 */
1749 
1750 				m->valid = 0;
1751 				vm_page_flag_clear(m, PG_ZERO);
1752 				vm_page_flag_clear(m, PG_SWAPINPROG);
1753 
1754 				/*
1755 				 * bio_driver_info holds the requested page
1756 				 * index.
1757 				 */
1758 				if (i != (int)(intptr_t)bio->bio_driver_info) {
1759 					vm_page_deactivate(m);
1760 					vm_page_wakeup(m);
1761 				} else {
1762 					vm_page_flash(m);
1763 				}
1764 				/*
1765 				 * If i == bp->b_pager.pg_reqpage, do not wake
1766 				 * the page up.  The caller needs to.
1767 				 */
1768 			} else {
1769 				/*
1770 				 * If a write error occurs remove the swap
1771 				 * assignment (note that PG_SWAPPED may or
1772 				 * may not be set depending on prior activity).
1773 				 *
1774 				 * Re-dirty OBJT_SWAP pages as there is no
1775 				 * other backing store, we can't throw the
1776 				 * page away.
1777 				 *
1778 				 * Non-OBJT_SWAP pages (aka swapcache) must
1779 				 * not be dirtied since they may not have
1780 				 * been dirty in the first place, and they
1781 				 * do have backing store (the vnode).
1782 				 */
1783 				vm_page_busy_wait(m, FALSE, "swadpg");
1784 				swp_pager_meta_ctl(m->object, m->pindex,
1785 						   SWM_FREE);
1786 				vm_page_flag_clear(m, PG_SWAPPED);
1787 				if (m->object->type == OBJT_SWAP) {
1788 					vm_page_dirty(m);
1789 					vm_page_activate(m);
1790 				}
1791 				vm_page_flag_clear(m, PG_SWAPINPROG);
1792 				vm_page_io_finish(m);
1793 				vm_page_wakeup(m);
1794 			}
1795 		} else if (bio->bio_caller_info1.index & SWBIO_READ) {
1796 			/*
1797 			 * NOTE: for reads, m->dirty will probably be
1798 			 * overridden by the original caller of getpages so
1799 			 * we cannot set them in order to free the underlying
1800 			 * swap in a low-swap situation.  I don't think we'd
1801 			 * want to do that anyway, but it was an optimization
1802 			 * that existed in the old swapper for a time before
1803 			 * it got ripped out due to precisely this problem.
1804 			 *
1805 			 * clear PG_ZERO in page.
1806 			 *
1807 			 * If not the requested page then deactivate it.
1808 			 *
1809 			 * Note that the requested page, reqpage, is left
1810 			 * busied, but we still have to wake it up.  The
1811 			 * other pages are released (unbusied) by
1812 			 * vm_page_wakeup().  We do not set reqpage's
1813 			 * valid bits here, it is up to the caller.
1814 			 */
1815 
1816 			/*
1817 			 * NOTE: can't call pmap_clear_modify(m) from an
1818 			 * interrupt thread, the pmap code may have to map
1819 			 * non-kernel pmaps and currently asserts the case.
1820 			 */
1821 			/*pmap_clear_modify(m);*/
1822 			m->valid = VM_PAGE_BITS_ALL;
1823 			vm_page_undirty(m);
1824 			vm_page_flag_clear(m, PG_ZERO | PG_SWAPINPROG);
1825 			vm_page_flag_set(m, PG_SWAPPED);
1826 
1827 			/*
1828 			 * We have to wake specifically requested pages
1829 			 * up too because we cleared PG_SWAPINPROG and
1830 			 * could be waiting for it in getpages.  However,
1831 			 * be sure to not unbusy getpages specifically
1832 			 * requested page - getpages expects it to be
1833 			 * left busy.
1834 			 *
1835 			 * bio_driver_info holds the requested page
1836 			 */
1837 			if (i != (int)(intptr_t)bio->bio_driver_info) {
1838 				vm_page_deactivate(m);
1839 				vm_page_wakeup(m);
1840 			} else {
1841 				vm_page_flash(m);
1842 			}
1843 		} else {
1844 			/*
1845 			 * Mark the page clean but do not mess with the
1846 			 * pmap-layer's modified state.  That state should
1847 			 * also be clear since the caller protected the
1848 			 * page VM_PROT_READ, but allow the case.
1849 			 *
1850 			 * We are in an interrupt, avoid pmap operations.
1851 			 *
1852 			 * If we have a severe page deficit, deactivate the
1853 			 * page.  Do not try to cache it (which would also
1854 			 * involve a pmap op), because the page might still
1855 			 * be read-heavy.
1856 			 *
1857 			 * When using the swap to cache clean vnode pages
1858 			 * we do not mess with the page dirty bits.
1859 			 */
1860 			vm_page_busy_wait(m, FALSE, "swadpg");
1861 			if (m->object->type == OBJT_SWAP)
1862 				vm_page_undirty(m);
1863 			vm_page_flag_clear(m, PG_SWAPINPROG);
1864 			vm_page_flag_set(m, PG_SWAPPED);
1865 			if (vm_page_count_severe())
1866 				vm_page_deactivate(m);
1867 #if 0
1868 			if (!vm_page_count_severe() || !vm_page_try_to_cache(m))
1869 				vm_page_protect(m, VM_PROT_READ);
1870 #endif
1871 			vm_page_io_finish(m);
1872 			vm_page_wakeup(m);
1873 		}
1874 	}
1875 
1876 	/*
1877 	 * adjust pip.  NOTE: the original parent may still have its own
1878 	 * pip refs on the object.
1879 	 */
1880 
1881 	if (object)
1882 		vm_object_pip_wakeup_n(object, bp->b_xio.xio_npages);
1883 
1884 	/*
1885 	 * Release the physical I/O buffer.
1886 	 *
1887 	 * NOTE: Due to synchronous operations in the write case b_cmd may
1888 	 *	 already be set to BUF_CMD_DONE and BIO_SYNC may have already
1889 	 *	 been cleared.
1890 	 *
1891 	 * Use vm_token to interlock nsw_rcount/wcount wakeup?
1892 	 */
1893 	lwkt_gettoken(&vm_token);
1894 	if (bio->bio_caller_info1.index & SWBIO_READ)
1895 		nswptr = &nsw_rcount;
1896 	else if (bio->bio_caller_info1.index & SWBIO_SYNC)
1897 		nswptr = &nsw_wcount_sync;
1898 	else
1899 		nswptr = &nsw_wcount_async;
1900 	bp->b_cmd = BUF_CMD_DONE;
1901 	relpbuf(bp, nswptr);
1902 	lwkt_reltoken(&vm_token);
1903 }
1904 
1905 /*
1906  * Fault-in a potentially swapped page and remove the swap reference.
1907  *
1908  * object must be held.
1909  */
1910 static __inline void
1911 swp_pager_fault_page(vm_object_t object, vm_pindex_t pindex)
1912 {
1913 	struct vnode *vp;
1914 	vm_page_t m;
1915 	int error;
1916 
1917 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1918 
1919 	if (object->type == OBJT_VNODE) {
1920 		/*
1921 		 * Any swap related to a vnode is due to swapcache.  We must
1922 		 * vget() the vnode in case it is not active (otherwise
1923 		 * vref() will panic).  Calling vm_object_page_remove() will
1924 		 * ensure that any swap ref is removed interlocked with the
1925 		 * page.  clean_only is set to TRUE so we don't throw away
1926 		 * dirty pages.
1927 		 */
1928 		vp = object->handle;
1929 		error = vget(vp, LK_SHARED | LK_RETRY | LK_CANRECURSE);
1930 		if (error == 0) {
1931 			vm_object_page_remove(object, pindex, pindex + 1, TRUE);
1932 			vput(vp);
1933 		}
1934 	} else {
1935 		/*
1936 		 * Otherwise it is a normal OBJT_SWAP object and we can
1937 		 * fault the page in and remove the swap.
1938 		 */
1939 		m = vm_fault_object_page(object, IDX_TO_OFF(pindex),
1940 					 VM_PROT_NONE,
1941 					 VM_FAULT_DIRTY | VM_FAULT_UNSWAP,
1942 					 &error);
1943 		if (m)
1944 			vm_page_unhold(m);
1945 	}
1946 }
1947 
1948 int
1949 swap_pager_swapoff(int devidx)
1950 {
1951 	vm_object_t object;
1952 	struct swblock *swap;
1953 	swblk_t v;
1954 	int i;
1955 
1956 	lwkt_gettoken(&vmobj_token);
1957 rescan:
1958 	TAILQ_FOREACH(object, &vm_object_list, object_list) {
1959 		if (object->type != OBJT_SWAP && object->type != OBJT_VNODE)
1960 			continue;
1961 		vm_object_hold(object);
1962 		if (object->type == OBJT_SWAP || object->type == OBJT_VNODE) {
1963 			RB_FOREACH(swap,
1964 				   swblock_rb_tree, &object->swblock_root) {
1965 				for (i = 0; i < SWAP_META_PAGES; ++i) {
1966 					v = swap->swb_pages[i];
1967 					if (v != SWAPBLK_NONE &&
1968 					    BLK2DEVIDX(v) == devidx) {
1969 						swp_pager_fault_page(
1970 						    object,
1971 						    swap->swb_index + i);
1972 						vm_object_drop(object);
1973 						goto rescan;
1974 					}
1975 				}
1976 			}
1977 		}
1978 		vm_object_drop(object);
1979 	}
1980 	lwkt_reltoken(&vmobj_token);
1981 
1982 	/*
1983 	 * If we fail to locate all swblocks we just fail gracefully and
1984 	 * do not bother to restore paging on the swap device.  If the
1985 	 * user wants to retry the user can retry.
1986 	 */
1987 	if (swdevt[devidx].sw_nused)
1988 		return (1);
1989 	else
1990 		return (0);
1991 }
1992 
1993 /************************************************************************
1994  *				SWAP META DATA 				*
1995  ************************************************************************
1996  *
1997  *	These routines manipulate the swap metadata stored in the
1998  *	OBJT_SWAP object.  All swp_*() routines must be called at
1999  *	splvm() because swap can be freed up by the low level vm_page
2000  *	code which might be called from interrupts beyond what splbio() covers.
2001  *
2002  *	Swap metadata is implemented with a global hash and not directly
2003  *	linked into the object.  Instead the object simply contains
2004  *	appropriate tracking counters.
2005  */
2006 
2007 /*
2008  * Lookup the swblock containing the specified swap block index.
2009  *
2010  * The caller must hold the object.
2011  */
2012 static __inline
2013 struct swblock *
2014 swp_pager_lookup(vm_object_t object, vm_pindex_t index)
2015 {
2016 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2017 	index &= ~SWAP_META_MASK;
2018 	return (RB_LOOKUP(swblock_rb_tree, &object->swblock_root, index));
2019 }
2020 
2021 /*
2022  * Remove a swblock from the RB tree.
2023  *
2024  * The caller must hold the object.
2025  */
2026 static __inline
2027 void
2028 swp_pager_remove(vm_object_t object, struct swblock *swap)
2029 {
2030 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2031 	RB_REMOVE(swblock_rb_tree, &object->swblock_root, swap);
2032 }
2033 
2034 /*
2035  * Convert default object to swap object if necessary
2036  *
2037  * The caller must hold the object.
2038  */
2039 static void
2040 swp_pager_meta_convert(vm_object_t object)
2041 {
2042 	if (object->type == OBJT_DEFAULT) {
2043 		object->type = OBJT_SWAP;
2044 		KKASSERT(object->swblock_count == 0);
2045 	}
2046 }
2047 
2048 /*
2049  * SWP_PAGER_META_BUILD() -	add swap block to swap meta data for object
2050  *
2051  *	We first convert the object to a swap object if it is a default
2052  *	object.  Vnode objects do not need to be converted.
2053  *
2054  *	The specified swapblk is added to the object's swap metadata.  If
2055  *	the swapblk is not valid, it is freed instead.  Any previously
2056  *	assigned swapblk is freed.
2057  *
2058  * The caller must hold the object.
2059  */
2060 static void
2061 swp_pager_meta_build(vm_object_t object, vm_pindex_t index, swblk_t swapblk)
2062 {
2063 	struct swblock *swap;
2064 	struct swblock *oswap;
2065 
2066 	KKASSERT(swapblk != SWAPBLK_NONE);
2067 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2068 
2069 	/*
2070 	 * Convert object if necessary
2071 	 */
2072 	if (object->type == OBJT_DEFAULT)
2073 		swp_pager_meta_convert(object);
2074 
2075 	/*
2076 	 * Locate swblock.  If not found create, but if we aren't adding
2077 	 * anything just return.  If we run out of space in the map we wait
2078 	 * and, since the hash table may have changed, retry.
2079 	 */
2080 retry:
2081 	swap = swp_pager_lookup(object, index);
2082 
2083 	if (swap == NULL) {
2084 		int i;
2085 
2086 		swap = zalloc(swap_zone);
2087 		if (swap == NULL) {
2088 			vm_wait(0);
2089 			goto retry;
2090 		}
2091 		swap->swb_index = index & ~SWAP_META_MASK;
2092 		swap->swb_count = 0;
2093 
2094 		++object->swblock_count;
2095 
2096 		for (i = 0; i < SWAP_META_PAGES; ++i)
2097 			swap->swb_pages[i] = SWAPBLK_NONE;
2098 		oswap = RB_INSERT(swblock_rb_tree, &object->swblock_root, swap);
2099 		KKASSERT(oswap == NULL);
2100 	}
2101 
2102 	/*
2103 	 * Delete prior contents of metadata
2104 	 */
2105 
2106 	index &= SWAP_META_MASK;
2107 
2108 	if (swap->swb_pages[index] != SWAPBLK_NONE) {
2109 		swp_pager_freeswapspace(object, swap->swb_pages[index], 1);
2110 		--swap->swb_count;
2111 	}
2112 
2113 	/*
2114 	 * Enter block into metadata
2115 	 */
2116 	swap->swb_pages[index] = swapblk;
2117 	if (swapblk != SWAPBLK_NONE)
2118 		++swap->swb_count;
2119 }
2120 
2121 /*
2122  * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
2123  *
2124  *	The requested range of blocks is freed, with any associated swap
2125  *	returned to the swap bitmap.
2126  *
2127  *	This routine will free swap metadata structures as they are cleaned
2128  *	out.  This routine does *NOT* operate on swap metadata associated
2129  *	with resident pages.
2130  *
2131  * The caller must hold the object.
2132  */
2133 static int swp_pager_meta_free_callback(struct swblock *swb, void *data);
2134 
2135 static void
2136 swp_pager_meta_free(vm_object_t object, vm_pindex_t index, vm_pindex_t count)
2137 {
2138 	struct swfreeinfo info;
2139 
2140 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2141 
2142 	/*
2143 	 * Nothing to do
2144 	 */
2145 	if (object->swblock_count == 0) {
2146 		KKASSERT(RB_EMPTY(&object->swblock_root));
2147 		return;
2148 	}
2149 	if (count == 0)
2150 		return;
2151 
2152 	/*
2153 	 * Setup for RB tree scan.  Note that the pindex range can be huge
2154 	 * due to the 64 bit page index space so we cannot safely iterate.
2155 	 */
2156 	info.object = object;
2157 	info.basei = index & ~SWAP_META_MASK;
2158 	info.begi = index;
2159 	info.endi = index + count - 1;
2160 	swblock_rb_tree_RB_SCAN(&object->swblock_root, rb_swblock_scancmp,
2161 				swp_pager_meta_free_callback, &info);
2162 }
2163 
2164 /*
2165  * The caller must hold the object.
2166  */
2167 static
2168 int
2169 swp_pager_meta_free_callback(struct swblock *swap, void *data)
2170 {
2171 	struct swfreeinfo *info = data;
2172 	vm_object_t object = info->object;
2173 	int index;
2174 	int eindex;
2175 
2176 	/*
2177 	 * Figure out the range within the swblock.  The wider scan may
2178 	 * return edge-case swap blocks when the start and/or end points
2179 	 * are in the middle of a block.
2180 	 */
2181 	if (swap->swb_index < info->begi)
2182 		index = (int)info->begi & SWAP_META_MASK;
2183 	else
2184 		index = 0;
2185 
2186 	if (swap->swb_index + SWAP_META_PAGES > info->endi)
2187 		eindex = (int)info->endi & SWAP_META_MASK;
2188 	else
2189 		eindex = SWAP_META_MASK;
2190 
2191 	/*
2192 	 * Scan and free the blocks.  The loop terminates early
2193 	 * if (swap) runs out of blocks and could be freed.
2194 	 */
2195 	while (index <= eindex) {
2196 		swblk_t v = swap->swb_pages[index];
2197 
2198 		if (v != SWAPBLK_NONE) {
2199 			swap->swb_pages[index] = SWAPBLK_NONE;
2200 			if (--swap->swb_count == 0) {
2201 				swp_pager_remove(object, swap);
2202 				zfree(swap_zone, swap);
2203 				--object->swblock_count;
2204 				break;
2205 			}
2206 			swp_pager_freeswapspace(object, v, 1); /* can block */
2207 		}
2208 		++index;
2209 	}
2210 	/* swap may be invalid here due to zfree above */
2211 	return(0);
2212 }
2213 
2214 /*
2215  * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
2216  *
2217  *	This routine locates and destroys all swap metadata associated with
2218  *	an object.
2219  *
2220  * The caller must hold the object.
2221  */
2222 static void
2223 swp_pager_meta_free_all(vm_object_t object)
2224 {
2225 	struct swblock *swap;
2226 	int i;
2227 
2228 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2229 
2230 	while ((swap = RB_ROOT(&object->swblock_root)) != NULL) {
2231 		swp_pager_remove(object, swap);
2232 		for (i = 0; i < SWAP_META_PAGES; ++i) {
2233 			swblk_t v = swap->swb_pages[i];
2234 			if (v != SWAPBLK_NONE) {
2235 				--swap->swb_count;
2236 				swp_pager_freeswapspace(object, v, 1);
2237 			}
2238 		}
2239 		if (swap->swb_count != 0)
2240 			panic("swap_pager_meta_free_all: swb_count != 0");
2241 		zfree(swap_zone, swap);
2242 		--object->swblock_count;
2243 	}
2244 	KKASSERT(object->swblock_count == 0);
2245 }
2246 
2247 /*
2248  * SWP_PAGER_METACTL() -  misc control of swap and vm_page_t meta data.
2249  *
2250  *	This routine is capable of looking up, popping, or freeing
2251  *	swapblk assignments in the swap meta data or in the vm_page_t.
2252  *	The routine typically returns the swapblk being looked-up, or popped,
2253  *	or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block
2254  *	was invalid.  This routine will automatically free any invalid
2255  *	meta-data swapblks.
2256  *
2257  *	It is not possible to store invalid swapblks in the swap meta data
2258  *	(other then a literal 'SWAPBLK_NONE'), so we don't bother checking.
2259  *
2260  *	When acting on a busy resident page and paging is in progress, we
2261  *	have to wait until paging is complete but otherwise can act on the
2262  *	busy page.
2263  *
2264  *	SWM_FREE	remove and free swap block from metadata
2265  *	SWM_POP		remove from meta data but do not free.. pop it out
2266  *
2267  * The caller must hold the object.
2268  */
2269 static swblk_t
2270 swp_pager_meta_ctl(vm_object_t object, vm_pindex_t index, int flags)
2271 {
2272 	struct swblock *swap;
2273 	swblk_t r1;
2274 
2275 	if (object->swblock_count == 0)
2276 		return(SWAPBLK_NONE);
2277 
2278 	r1 = SWAPBLK_NONE;
2279 	swap = swp_pager_lookup(object, index);
2280 
2281 	if (swap != NULL) {
2282 		index &= SWAP_META_MASK;
2283 		r1 = swap->swb_pages[index];
2284 
2285 		if (r1 != SWAPBLK_NONE) {
2286 			if (flags & (SWM_FREE|SWM_POP)) {
2287 				swap->swb_pages[index] = SWAPBLK_NONE;
2288 				if (--swap->swb_count == 0) {
2289 					swp_pager_remove(object, swap);
2290 					zfree(swap_zone, swap);
2291 					--object->swblock_count;
2292 				}
2293 			}
2294 			if (flags & SWM_FREE) {
2295 				swp_pager_freeswapspace(object, r1, 1);
2296 				r1 = SWAPBLK_NONE;
2297 			}
2298 		}
2299 	}
2300 	return(r1);
2301 }
2302