xref: /dragonfly/sys/vm/swap_pager.c (revision af79c6e5)
1 /*
2  * Copyright (c) 1998 Matthew Dillon,
3  * Copyright (c) 1994 John S. Dyson
4  * Copyright (c) 1990 University of Utah.
5  * Copyright (c) 1991, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * the Systems Programming Group of the University of Utah Computer
10  * Science Department.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *	This product includes software developed by the University of
23  *	California, Berkeley and its contributors.
24  * 4. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *				New Swap System
41  *				Matthew Dillon
42  *
43  * Radix Bitmap 'blists'.
44  *
45  *	- The new swapper uses the new radix bitmap code.  This should scale
46  *	  to arbitrarily small or arbitrarily large swap spaces and an almost
47  *	  arbitrary degree of fragmentation.
48  *
49  * Features:
50  *
51  *	- on the fly reallocation of swap during putpages.  The new system
52  *	  does not try to keep previously allocated swap blocks for dirty
53  *	  pages.
54  *
55  *	- on the fly deallocation of swap
56  *
57  *	- No more garbage collection required.  Unnecessarily allocated swap
58  *	  blocks only exist for dirty vm_page_t's now and these are already
59  *	  cycled (in a high-load system) by the pager.  We also do on-the-fly
60  *	  removal of invalidated swap blocks when a page is destroyed
61  *	  or renamed.
62  *
63  * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
64  *
65  *	@(#)swap_pager.c	8.9 (Berkeley) 3/21/94
66  *
67  * $FreeBSD: src/sys/vm/swap_pager.c,v 1.130.2.12 2002/08/31 21:15:55 dillon Exp $
68  * $DragonFly: src/sys/vm/swap_pager.c,v 1.10 2003/08/20 08:03:01 rob Exp $
69  */
70 
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/conf.h>
74 #include <sys/kernel.h>
75 #include <sys/proc.h>
76 #include <sys/buf.h>
77 #include <sys/vnode.h>
78 #include <sys/malloc.h>
79 #include <sys/vmmeter.h>
80 #include <sys/sysctl.h>
81 #include <sys/blist.h>
82 #include <sys/lock.h>
83 #include <sys/vmmeter.h>
84 
85 #ifndef MAX_PAGEOUT_CLUSTER
86 #define MAX_PAGEOUT_CLUSTER 16
87 #endif
88 
89 #define SWB_NPAGES	MAX_PAGEOUT_CLUSTER
90 
91 #include "opt_swap.h"
92 #include <vm/vm.h>
93 #include <vm/vm_object.h>
94 #include <vm/vm_page.h>
95 #include <vm/vm_pager.h>
96 #include <vm/vm_pageout.h>
97 #include <vm/swap_pager.h>
98 #include <vm/vm_extern.h>
99 #include <vm/vm_zone.h>
100 
101 #include <sys/buf2.h>
102 #include <vm/vm_page2.h>
103 
104 #define SWM_FREE	0x02	/* free, period			*/
105 #define SWM_POP		0x04	/* pop out			*/
106 
107 /*
108  * vm_swap_size is in page-sized chunks now.  It was DEV_BSIZE'd chunks
109  * in the old system.
110  */
111 
112 extern int vm_swap_size;	/* number of free swap blocks, in pages */
113 
114 int swap_pager_full;		/* swap space exhaustion (task killing) */
115 static int swap_pager_almost_full; /* swap space exhaustion (w/ hysteresis)*/
116 static int nsw_rcount;		/* free read buffers			*/
117 static int nsw_wcount_sync;	/* limit write buffers / synchronous	*/
118 static int nsw_wcount_async;	/* limit write buffers / asynchronous	*/
119 static int nsw_wcount_async_max;/* assigned maximum			*/
120 static int nsw_cluster_max;	/* maximum VOP I/O allowed		*/
121 static int sw_alloc_interlock;	/* swap pager allocation interlock	*/
122 
123 struct blist *swapblist;
124 static struct swblock **swhash;
125 static int swhash_mask;
126 static int swap_async_max = 4;	/* maximum in-progress async I/O's	*/
127 
128 extern struct vnode *swapdev_vp;	/* from vm_swap.c */
129 
130 SYSCTL_INT(_vm, OID_AUTO, swap_async_max,
131         CTLFLAG_RW, &swap_async_max, 0, "Maximum running async swap ops");
132 
133 /*
134  * "named" and "unnamed" anon region objects.  Try to reduce the overhead
135  * of searching a named list by hashing it just a little.
136  */
137 
138 #define NOBJLISTS		8
139 
140 #define NOBJLIST(handle)	\
141 	(&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)])
142 
143 static struct pagerlst	swap_pager_object_list[NOBJLISTS];
144 struct pagerlst		swap_pager_un_object_list;
145 vm_zone_t		swap_zone;
146 
147 /*
148  * pagerops for OBJT_SWAP - "swap pager".  Some ops are also global procedure
149  * calls hooked from other parts of the VM system and do not appear here.
150  * (see vm/swap_pager.h).
151  */
152 
153 static vm_object_t
154 		swap_pager_alloc (void *handle, vm_ooffset_t size,
155 				      vm_prot_t prot, vm_ooffset_t offset);
156 static void	swap_pager_dealloc (vm_object_t object);
157 static int	swap_pager_getpages (vm_object_t, vm_page_t *, int, int);
158 static void	swap_pager_init (void);
159 static void	swap_pager_unswapped (vm_page_t);
160 static void	swap_pager_strategy (vm_object_t, struct buf *);
161 
162 struct pagerops swappagerops = {
163 	swap_pager_init,	/* early system initialization of pager	*/
164 	swap_pager_alloc,	/* allocate an OBJT_SWAP object		*/
165 	swap_pager_dealloc,	/* deallocate an OBJT_SWAP object	*/
166 	swap_pager_getpages,	/* pagein				*/
167 	swap_pager_putpages,	/* pageout				*/
168 	swap_pager_haspage,	/* get backing store status for page	*/
169 	swap_pager_unswapped,	/* remove swap related to page		*/
170 	swap_pager_strategy	/* pager strategy call			*/
171 };
172 
173 /*
174  * dmmax is in page-sized chunks with the new swap system.  It was
175  * dev-bsized chunks in the old.  dmmax is always a power of 2.
176  *
177  * swap_*() routines are externally accessible.  swp_*() routines are
178  * internal.
179  */
180 
181 int dmmax;
182 static int dmmax_mask;
183 int nswap_lowat = 128;		/* in pages, swap_pager_almost_full warn */
184 int nswap_hiwat = 512;		/* in pages, swap_pager_almost_full warn */
185 
186 static __inline void	swp_sizecheck (void);
187 static void	swp_pager_sync_iodone (struct buf *bp);
188 static void	swp_pager_async_iodone (struct buf *bp);
189 
190 /*
191  * Swap bitmap functions
192  */
193 
194 static __inline void	swp_pager_freeswapspace (daddr_t blk, int npages);
195 static __inline daddr_t	swp_pager_getswapspace (int npages);
196 
197 /*
198  * Metadata functions
199  */
200 
201 static void swp_pager_meta_build (vm_object_t, vm_pindex_t, daddr_t);
202 static void swp_pager_meta_free (vm_object_t, vm_pindex_t, daddr_t);
203 static void swp_pager_meta_free_all (vm_object_t);
204 static daddr_t swp_pager_meta_ctl (vm_object_t, vm_pindex_t, int);
205 
206 /*
207  * SWP_SIZECHECK() -	update swap_pager_full indication
208  *
209  *	update the swap_pager_almost_full indication and warn when we are
210  *	about to run out of swap space, using lowat/hiwat hysteresis.
211  *
212  *	Clear swap_pager_full ( task killing ) indication when lowat is met.
213  *
214  *	No restrictions on call
215  *	This routine may not block.
216  *	This routine must be called at splvm()
217  */
218 
219 static __inline void
220 swp_sizecheck()
221 {
222 	if (vm_swap_size < nswap_lowat) {
223 		if (swap_pager_almost_full == 0) {
224 			printf("swap_pager: out of swap space\n");
225 			swap_pager_almost_full = 1;
226 		}
227 	} else {
228 		swap_pager_full = 0;
229 		if (vm_swap_size > nswap_hiwat)
230 			swap_pager_almost_full = 0;
231 	}
232 }
233 
234 /*
235  * SWAP_PAGER_INIT() -	initialize the swap pager!
236  *
237  *	Expected to be started from system init.  NOTE:  This code is run
238  *	before much else so be careful what you depend on.  Most of the VM
239  *	system has yet to be initialized at this point.
240  */
241 
242 static void
243 swap_pager_init()
244 {
245 	/*
246 	 * Initialize object lists
247 	 */
248 	int i;
249 
250 	for (i = 0; i < NOBJLISTS; ++i)
251 		TAILQ_INIT(&swap_pager_object_list[i]);
252 	TAILQ_INIT(&swap_pager_un_object_list);
253 
254 	/*
255 	 * Device Stripe, in PAGE_SIZE'd blocks
256 	 */
257 
258 	dmmax = SWB_NPAGES * 2;
259 	dmmax_mask = ~(dmmax - 1);
260 }
261 
262 /*
263  * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
264  *
265  *	Expected to be started from pageout process once, prior to entering
266  *	its main loop.
267  */
268 
269 void
270 swap_pager_swap_init()
271 {
272 	int n, n2;
273 
274 	/*
275 	 * Number of in-transit swap bp operations.  Don't
276 	 * exhaust the pbufs completely.  Make sure we
277 	 * initialize workable values (0 will work for hysteresis
278 	 * but it isn't very efficient).
279 	 *
280 	 * The nsw_cluster_max is constrained by the bp->b_pages[]
281 	 * array (MAXPHYS/PAGE_SIZE) and our locally defined
282 	 * MAX_PAGEOUT_CLUSTER.   Also be aware that swap ops are
283 	 * constrained by the swap device interleave stripe size.
284 	 *
285 	 * Currently we hardwire nsw_wcount_async to 4.  This limit is
286 	 * designed to prevent other I/O from having high latencies due to
287 	 * our pageout I/O.  The value 4 works well for one or two active swap
288 	 * devices but is probably a little low if you have more.  Even so,
289 	 * a higher value would probably generate only a limited improvement
290 	 * with three or four active swap devices since the system does not
291 	 * typically have to pageout at extreme bandwidths.   We will want
292 	 * at least 2 per swap devices, and 4 is a pretty good value if you
293 	 * have one NFS swap device due to the command/ack latency over NFS.
294 	 * So it all works out pretty well.
295 	 */
296 
297 	nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER);
298 
299 	nsw_rcount = (nswbuf + 1) / 2;
300 	nsw_wcount_sync = (nswbuf + 3) / 4;
301 	nsw_wcount_async = 4;
302 	nsw_wcount_async_max = nsw_wcount_async;
303 
304 	/*
305 	 * Initialize our zone.  Right now I'm just guessing on the number
306 	 * we need based on the number of pages in the system.  Each swblock
307 	 * can hold 16 pages, so this is probably overkill.  This reservation
308 	 * is typically limited to around 32MB by default.
309 	 */
310 	n = vmstats.v_page_count / 2;
311 	if (maxswzone && n > maxswzone / sizeof(struct swblock))
312 		n = maxswzone / sizeof(struct swblock);
313 	n2 = n;
314 
315 	do {
316 		swap_zone = zinit(
317 			"SWAPMETA",
318 			sizeof(struct swblock),
319 			n,
320 			ZONE_INTERRUPT,
321 			1);
322 		if (swap_zone != NULL)
323 			break;
324 		/*
325 		 * if the allocation failed, try a zone two thirds the
326 		 * size of the previous attempt.
327 		 */
328 		n -= ((n + 2) / 3);
329 	} while (n > 0);
330 
331 	if (swap_zone == NULL)
332 		panic("swap_pager_swap_init: swap_zone == NULL");
333 	if (n2 != n)
334 		printf("Swap zone entries reduced from %d to %d.\n", n2, n);
335 	n2 = n;
336 
337 	/*
338 	 * Initialize our meta-data hash table.  The swapper does not need to
339 	 * be quite as efficient as the VM system, so we do not use an
340 	 * oversized hash table.
341 	 *
342 	 * 	n: 		size of hash table, must be power of 2
343 	 *	swhash_mask:	hash table index mask
344 	 */
345 
346 	for (n = 1; n < n2 / 8; n *= 2)
347 		;
348 
349 	swhash = malloc(sizeof(struct swblock *) * n, M_VMPGDATA, M_WAITOK);
350 	bzero(swhash, sizeof(struct swblock *) * n);
351 
352 	swhash_mask = n - 1;
353 }
354 
355 /*
356  * SWAP_PAGER_ALLOC() -	allocate a new OBJT_SWAP VM object and instantiate
357  *			its metadata structures.
358  *
359  *	This routine is called from the mmap and fork code to create a new
360  *	OBJT_SWAP object.  We do this by creating an OBJT_DEFAULT object
361  *	and then converting it with swp_pager_meta_build().
362  *
363  *	This routine may block in vm_object_allocate() and create a named
364  *	object lookup race, so we must interlock.   We must also run at
365  *	splvm() for the object lookup to handle races with interrupts, but
366  *	we do not have to maintain splvm() in between the lookup and the
367  *	add because (I believe) it is not possible to attempt to create
368  *	a new swap object w/handle when a default object with that handle
369  *	already exists.
370  */
371 
372 static vm_object_t
373 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
374 		 vm_ooffset_t offset)
375 {
376 	vm_object_t object;
377 
378 	if (handle) {
379 		/*
380 		 * Reference existing named region or allocate new one.  There
381 		 * should not be a race here against swp_pager_meta_build()
382 		 * as called from vm_page_remove() in regards to the lookup
383 		 * of the handle.
384 		 */
385 
386 		while (sw_alloc_interlock) {
387 			sw_alloc_interlock = -1;
388 			tsleep(&sw_alloc_interlock, 0, "swpalc", 0);
389 		}
390 		sw_alloc_interlock = 1;
391 
392 		object = vm_pager_object_lookup(NOBJLIST(handle), handle);
393 
394 		if (object != NULL) {
395 			vm_object_reference(object);
396 		} else {
397 			object = vm_object_allocate(OBJT_DEFAULT,
398 				OFF_TO_IDX(offset + PAGE_MASK + size));
399 			object->handle = handle;
400 
401 			swp_pager_meta_build(object, 0, SWAPBLK_NONE);
402 		}
403 
404 		if (sw_alloc_interlock < 0)
405 			wakeup(&sw_alloc_interlock);
406 
407 		sw_alloc_interlock = 0;
408 	} else {
409 		object = vm_object_allocate(OBJT_DEFAULT,
410 			OFF_TO_IDX(offset + PAGE_MASK + size));
411 
412 		swp_pager_meta_build(object, 0, SWAPBLK_NONE);
413 	}
414 
415 	return (object);
416 }
417 
418 /*
419  * SWAP_PAGER_DEALLOC() -	remove swap metadata from object
420  *
421  *	The swap backing for the object is destroyed.  The code is
422  *	designed such that we can reinstantiate it later, but this
423  *	routine is typically called only when the entire object is
424  *	about to be destroyed.
425  *
426  *	This routine may block, but no longer does.
427  *
428  *	The object must be locked or unreferenceable.
429  */
430 
431 static void
432 swap_pager_dealloc(object)
433 	vm_object_t object;
434 {
435 	int s;
436 
437 	/*
438 	 * Remove from list right away so lookups will fail if we block for
439 	 * pageout completion.
440 	 */
441 
442 	if (object->handle == NULL) {
443 		TAILQ_REMOVE(&swap_pager_un_object_list, object, pager_object_list);
444 	} else {
445 		TAILQ_REMOVE(NOBJLIST(object->handle), object, pager_object_list);
446 	}
447 
448 	vm_object_pip_wait(object, "swpdea");
449 
450 	/*
451 	 * Free all remaining metadata.  We only bother to free it from
452 	 * the swap meta data.  We do not attempt to free swapblk's still
453 	 * associated with vm_page_t's for this object.  We do not care
454 	 * if paging is still in progress on some objects.
455 	 */
456 	s = splvm();
457 	swp_pager_meta_free_all(object);
458 	splx(s);
459 }
460 
461 /************************************************************************
462  *			SWAP PAGER BITMAP ROUTINES			*
463  ************************************************************************/
464 
465 /*
466  * SWP_PAGER_GETSWAPSPACE() -	allocate raw swap space
467  *
468  *	Allocate swap for the requested number of pages.  The starting
469  *	swap block number (a page index) is returned or SWAPBLK_NONE
470  *	if the allocation failed.
471  *
472  *	Also has the side effect of advising that somebody made a mistake
473  *	when they configured swap and didn't configure enough.
474  *
475  *	Must be called at splvm() to avoid races with bitmap frees from
476  *	vm_page_remove() aka swap_pager_page_removed().
477  *
478  *	This routine may not block
479  *	This routine must be called at splvm().
480  */
481 
482 static __inline daddr_t
483 swp_pager_getswapspace(npages)
484 	int npages;
485 {
486 	daddr_t blk;
487 
488 	if ((blk = blist_alloc(swapblist, npages)) == SWAPBLK_NONE) {
489 		if (swap_pager_full != 2) {
490 			printf("swap_pager_getswapspace: failed\n");
491 			swap_pager_full = 2;
492 			swap_pager_almost_full = 1;
493 		}
494 	} else {
495 		vm_swap_size -= npages;
496 		swp_sizecheck();
497 	}
498 	return(blk);
499 }
500 
501 /*
502  * SWP_PAGER_FREESWAPSPACE() -	free raw swap space
503  *
504  *	This routine returns the specified swap blocks back to the bitmap.
505  *
506  *	Note:  This routine may not block (it could in the old swap code),
507  *	and through the use of the new blist routines it does not block.
508  *
509  *	We must be called at splvm() to avoid races with bitmap frees from
510  *	vm_page_remove() aka swap_pager_page_removed().
511  *
512  *	This routine may not block
513  *	This routine must be called at splvm().
514  */
515 
516 static __inline void
517 swp_pager_freeswapspace(blk, npages)
518 	daddr_t blk;
519 	int npages;
520 {
521 	blist_free(swapblist, blk, npages);
522 	vm_swap_size += npages;
523 	swp_sizecheck();
524 }
525 
526 /*
527  * SWAP_PAGER_FREESPACE() -	frees swap blocks associated with a page
528  *				range within an object.
529  *
530  *	This is a globally accessible routine.
531  *
532  *	This routine removes swapblk assignments from swap metadata.
533  *
534  *	The external callers of this routine typically have already destroyed
535  *	or renamed vm_page_t's associated with this range in the object so
536  *	we should be ok.
537  *
538  *	This routine may be called at any spl.  We up our spl to splvm temporarily
539  *	in order to perform the metadata removal.
540  */
541 
542 void
543 swap_pager_freespace(object, start, size)
544 	vm_object_t object;
545 	vm_pindex_t start;
546 	vm_size_t size;
547 {
548 	int s = splvm();
549 	swp_pager_meta_free(object, start, size);
550 	splx(s);
551 }
552 
553 /*
554  * SWAP_PAGER_RESERVE() - reserve swap blocks in object
555  *
556  *	Assigns swap blocks to the specified range within the object.  The
557  *	swap blocks are not zerod.  Any previous swap assignment is destroyed.
558  *
559  *	Returns 0 on success, -1 on failure.
560  */
561 
562 int
563 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
564 {
565 	int s;
566 	int n = 0;
567 	daddr_t blk = SWAPBLK_NONE;
568 	vm_pindex_t beg = start;	/* save start index */
569 
570 	s = splvm();
571 	while (size) {
572 		if (n == 0) {
573 			n = BLIST_MAX_ALLOC;
574 			while ((blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE) {
575 				n >>= 1;
576 				if (n == 0) {
577 					swp_pager_meta_free(object, beg, start - beg);
578 					splx(s);
579 					return(-1);
580 				}
581 			}
582 		}
583 		swp_pager_meta_build(object, start, blk);
584 		--size;
585 		++start;
586 		++blk;
587 		--n;
588 	}
589 	swp_pager_meta_free(object, start, n);
590 	splx(s);
591 	return(0);
592 }
593 
594 /*
595  * SWAP_PAGER_COPY() -  copy blocks from source pager to destination pager
596  *			and destroy the source.
597  *
598  *	Copy any valid swapblks from the source to the destination.  In
599  *	cases where both the source and destination have a valid swapblk,
600  *	we keep the destination's.
601  *
602  *	This routine is allowed to block.  It may block allocating metadata
603  *	indirectly through swp_pager_meta_build() or if paging is still in
604  *	progress on the source.
605  *
606  *	This routine can be called at any spl
607  *
608  *	XXX vm_page_collapse() kinda expects us not to block because we
609  *	supposedly do not need to allocate memory, but for the moment we
610  *	*may* have to get a little memory from the zone allocator, but
611  *	it is taken from the interrupt memory.  We should be ok.
612  *
613  *	The source object contains no vm_page_t's (which is just as well)
614  *
615  *	The source object is of type OBJT_SWAP.
616  *
617  *	The source and destination objects must be locked or
618  *	inaccessible (XXX are they ?)
619  */
620 
621 void
622 swap_pager_copy(srcobject, dstobject, offset, destroysource)
623 	vm_object_t srcobject;
624 	vm_object_t dstobject;
625 	vm_pindex_t offset;
626 	int destroysource;
627 {
628 	vm_pindex_t i;
629 	int s;
630 
631 	s = splvm();
632 
633 	/*
634 	 * If destroysource is set, we remove the source object from the
635 	 * swap_pager internal queue now.
636 	 */
637 
638 	if (destroysource) {
639 		if (srcobject->handle == NULL) {
640 			TAILQ_REMOVE(
641 			    &swap_pager_un_object_list,
642 			    srcobject,
643 			    pager_object_list
644 			);
645 		} else {
646 			TAILQ_REMOVE(
647 			    NOBJLIST(srcobject->handle),
648 			    srcobject,
649 			    pager_object_list
650 			);
651 		}
652 	}
653 
654 	/*
655 	 * transfer source to destination.
656 	 */
657 
658 	for (i = 0; i < dstobject->size; ++i) {
659 		daddr_t dstaddr;
660 
661 		/*
662 		 * Locate (without changing) the swapblk on the destination,
663 		 * unless it is invalid in which case free it silently, or
664 		 * if the destination is a resident page, in which case the
665 		 * source is thrown away.
666 		 */
667 
668 		dstaddr = swp_pager_meta_ctl(dstobject, i, 0);
669 
670 		if (dstaddr == SWAPBLK_NONE) {
671 			/*
672 			 * Destination has no swapblk and is not resident,
673 			 * copy source.
674 			 */
675 			daddr_t srcaddr;
676 
677 			srcaddr = swp_pager_meta_ctl(
678 			    srcobject,
679 			    i + offset,
680 			    SWM_POP
681 			);
682 
683 			if (srcaddr != SWAPBLK_NONE)
684 				swp_pager_meta_build(dstobject, i, srcaddr);
685 		} else {
686 			/*
687 			 * Destination has valid swapblk or it is represented
688 			 * by a resident page.  We destroy the sourceblock.
689 			 */
690 
691 			swp_pager_meta_ctl(srcobject, i + offset, SWM_FREE);
692 		}
693 	}
694 
695 	/*
696 	 * Free left over swap blocks in source.
697 	 *
698 	 * We have to revert the type to OBJT_DEFAULT so we do not accidently
699 	 * double-remove the object from the swap queues.
700 	 */
701 
702 	if (destroysource) {
703 		swp_pager_meta_free_all(srcobject);
704 		/*
705 		 * Reverting the type is not necessary, the caller is going
706 		 * to destroy srcobject directly, but I'm doing it here
707 		 * for consistency since we've removed the object from its
708 		 * queues.
709 		 */
710 		srcobject->type = OBJT_DEFAULT;
711 	}
712 	splx(s);
713 }
714 
715 /*
716  * SWAP_PAGER_HASPAGE() -	determine if we have good backing store for
717  *				the requested page.
718  *
719  *	We determine whether good backing store exists for the requested
720  *	page and return TRUE if it does, FALSE if it doesn't.
721  *
722  *	If TRUE, we also try to determine how much valid, contiguous backing
723  *	store exists before and after the requested page within a reasonable
724  *	distance.  We do not try to restrict it to the swap device stripe
725  *	(that is handled in getpages/putpages).  It probably isn't worth
726  *	doing here.
727  */
728 
729 boolean_t
730 swap_pager_haspage(object, pindex, before, after)
731 	vm_object_t object;
732 	vm_pindex_t pindex;
733 	int *before;
734 	int *after;
735 {
736 	daddr_t blk0;
737 	int s;
738 
739 	/*
740 	 * do we have good backing store at the requested index ?
741 	 */
742 
743 	s = splvm();
744 	blk0 = swp_pager_meta_ctl(object, pindex, 0);
745 
746 	if (blk0 == SWAPBLK_NONE) {
747 		splx(s);
748 		if (before)
749 			*before = 0;
750 		if (after)
751 			*after = 0;
752 		return (FALSE);
753 	}
754 
755 	/*
756 	 * find backwards-looking contiguous good backing store
757 	 */
758 
759 	if (before != NULL) {
760 		int i;
761 
762 		for (i = 1; i < (SWB_NPAGES/2); ++i) {
763 			daddr_t blk;
764 
765 			if (i > pindex)
766 				break;
767 			blk = swp_pager_meta_ctl(object, pindex - i, 0);
768 			if (blk != blk0 - i)
769 				break;
770 		}
771 		*before = (i - 1);
772 	}
773 
774 	/*
775 	 * find forward-looking contiguous good backing store
776 	 */
777 
778 	if (after != NULL) {
779 		int i;
780 
781 		for (i = 1; i < (SWB_NPAGES/2); ++i) {
782 			daddr_t blk;
783 
784 			blk = swp_pager_meta_ctl(object, pindex + i, 0);
785 			if (blk != blk0 + i)
786 				break;
787 		}
788 		*after = (i - 1);
789 	}
790 	splx(s);
791 	return (TRUE);
792 }
793 
794 /*
795  * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
796  *
797  *	This removes any associated swap backing store, whether valid or
798  *	not, from the page.
799  *
800  *	This routine is typically called when a page is made dirty, at
801  *	which point any associated swap can be freed.  MADV_FREE also
802  *	calls us in a special-case situation
803  *
804  *	NOTE!!!  If the page is clean and the swap was valid, the caller
805  *	should make the page dirty before calling this routine.  This routine
806  *	does NOT change the m->dirty status of the page.  Also: MADV_FREE
807  *	depends on it.
808  *
809  *	This routine may not block
810  *	This routine must be called at splvm()
811  */
812 
813 static void
814 swap_pager_unswapped(m)
815 	vm_page_t m;
816 {
817 	swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE);
818 }
819 
820 /*
821  * SWAP_PAGER_STRATEGY() - read, write, free blocks
822  *
823  *	This implements the vm_pager_strategy() interface to swap and allows
824  *	other parts of the system to directly access swap as backing store
825  *	through vm_objects of type OBJT_SWAP.  This is intended to be a
826  *	cacheless interface ( i.e. caching occurs at higher levels ).
827  *	Therefore we do not maintain any resident pages.  All I/O goes
828  *	directly to and from the swap device.
829  *
830  *	Note that b_blkno is scaled for PAGE_SIZE
831  *
832  *	We currently attempt to run I/O synchronously or asynchronously as
833  *	the caller requests.  This isn't perfect because we loose error
834  *	sequencing when we run multiple ops in parallel to satisfy a request.
835  *	But this is swap, so we let it all hang out.
836  */
837 
838 static void
839 swap_pager_strategy(vm_object_t object, struct buf *bp)
840 {
841 	vm_pindex_t start;
842 	int count;
843 	int s;
844 	char *data;
845 	struct buf *nbp = NULL;
846 
847 	if (bp->b_bcount & PAGE_MASK) {
848 		bp->b_error = EINVAL;
849 		bp->b_flags |= B_ERROR | B_INVAL;
850 		biodone(bp);
851 		printf("swap_pager_strategy: bp %p b_vp %p blk %d size %d, not page bounded\n", bp, bp->b_vp, (int)bp->b_pblkno, (int)bp->b_bcount);
852 		return;
853 	}
854 
855 	/*
856 	 * Clear error indication, initialize page index, count, data pointer.
857 	 */
858 
859 	bp->b_error = 0;
860 	bp->b_flags &= ~B_ERROR;
861 	bp->b_resid = bp->b_bcount;
862 
863 	start = bp->b_pblkno;
864 	count = howmany(bp->b_bcount, PAGE_SIZE);
865 	data = bp->b_data;
866 
867 	s = splvm();
868 
869 	/*
870 	 * Deal with B_FREEBUF
871 	 */
872 
873 	if (bp->b_flags & B_FREEBUF) {
874 		/*
875 		 * FREE PAGE(s) - destroy underlying swap that is no longer
876 		 *		  needed.
877 		 */
878 		swp_pager_meta_free(object, start, count);
879 		splx(s);
880 		bp->b_resid = 0;
881 		biodone(bp);
882 		return;
883 	}
884 
885 	/*
886 	 * Execute read or write
887 	 */
888 
889 	while (count > 0) {
890 		daddr_t blk;
891 
892 		/*
893 		 * Obtain block.  If block not found and writing, allocate a
894 		 * new block and build it into the object.
895 		 */
896 
897 		blk = swp_pager_meta_ctl(object, start, 0);
898 		if ((blk == SWAPBLK_NONE) && (bp->b_flags & B_READ) == 0) {
899 			blk = swp_pager_getswapspace(1);
900 			if (blk == SWAPBLK_NONE) {
901 				bp->b_error = ENOMEM;
902 				bp->b_flags |= B_ERROR;
903 				break;
904 			}
905 			swp_pager_meta_build(object, start, blk);
906 		}
907 
908 		/*
909 		 * Do we have to flush our current collection?  Yes if:
910 		 *
911 		 *	- no swap block at this index
912 		 *	- swap block is not contiguous
913 		 *	- we cross a physical disk boundry in the
914 		 *	  stripe.
915 		 */
916 
917 		if (
918 		    nbp && (nbp->b_blkno + btoc(nbp->b_bcount) != blk ||
919 		     ((nbp->b_blkno ^ blk) & dmmax_mask)
920 		    )
921 		) {
922 			splx(s);
923 			if (bp->b_flags & B_READ) {
924 				++mycpu->gd_cnt.v_swapin;
925 				mycpu->gd_cnt.v_swappgsin += btoc(nbp->b_bcount);
926 			} else {
927 				++mycpu->gd_cnt.v_swapout;
928 				mycpu->gd_cnt.v_swappgsout += btoc(nbp->b_bcount);
929 				nbp->b_dirtyend = nbp->b_bcount;
930 			}
931 			flushchainbuf(nbp);
932 			s = splvm();
933 			nbp = NULL;
934 		}
935 
936 		/*
937 		 * Add new swapblk to nbp, instantiating nbp if necessary.
938 		 * Zero-fill reads are able to take a shortcut.
939 		 */
940 
941 		if (blk == SWAPBLK_NONE) {
942 			/*
943 			 * We can only get here if we are reading.  Since
944 			 * we are at splvm() we can safely modify b_resid,
945 			 * even if chain ops are in progress.
946 			 */
947 			bzero(data, PAGE_SIZE);
948 			bp->b_resid -= PAGE_SIZE;
949 		} else {
950 			if (nbp == NULL) {
951 				nbp = getchainbuf(bp, swapdev_vp, (bp->b_flags & B_READ) | B_ASYNC);
952 				nbp->b_blkno = blk;
953 				nbp->b_bcount = 0;
954 				nbp->b_data = data;
955 			}
956 			nbp->b_bcount += PAGE_SIZE;
957 		}
958 		--count;
959 		++start;
960 		data += PAGE_SIZE;
961 	}
962 
963 	/*
964 	 *  Flush out last buffer
965 	 */
966 
967 	splx(s);
968 
969 	if (nbp) {
970 		if ((bp->b_flags & B_ASYNC) == 0)
971 			nbp->b_flags &= ~B_ASYNC;
972 		if (nbp->b_flags & B_READ) {
973 			++mycpu->gd_cnt.v_swapin;
974 			mycpu->gd_cnt.v_swappgsin += btoc(nbp->b_bcount);
975 		} else {
976 			++mycpu->gd_cnt.v_swapout;
977 			mycpu->gd_cnt.v_swappgsout += btoc(nbp->b_bcount);
978 			nbp->b_dirtyend = nbp->b_bcount;
979 		}
980 		flushchainbuf(nbp);
981 		/* nbp = NULL; */
982 	}
983 
984 	/*
985 	 * Wait for completion.
986 	 */
987 
988 	if (bp->b_flags & B_ASYNC) {
989 		autochaindone(bp);
990 	} else {
991 		waitchainbuf(bp, 0, 1);
992 	}
993 }
994 
995 /*
996  * SWAP_PAGER_GETPAGES() - bring pages in from swap
997  *
998  *	Attempt to retrieve (m, count) pages from backing store, but make
999  *	sure we retrieve at least m[reqpage].  We try to load in as large
1000  *	a chunk surrounding m[reqpage] as is contiguous in swap and which
1001  *	belongs to the same object.
1002  *
1003  *	The code is designed for asynchronous operation and
1004  *	immediate-notification of 'reqpage' but tends not to be
1005  *	used that way.  Please do not optimize-out this algorithmic
1006  *	feature, I intend to improve on it in the future.
1007  *
1008  *	The parent has a single vm_object_pip_add() reference prior to
1009  *	calling us and we should return with the same.
1010  *
1011  *	The parent has BUSY'd the pages.  We should return with 'm'
1012  *	left busy, but the others adjusted.
1013  */
1014 
1015 static int
1016 swap_pager_getpages(object, m, count, reqpage)
1017 	vm_object_t object;
1018 	vm_page_t *m;
1019 	int count, reqpage;
1020 {
1021 	struct buf *bp;
1022 	vm_page_t mreq;
1023 	int s;
1024 	int i;
1025 	int j;
1026 	daddr_t blk;
1027 	vm_offset_t kva;
1028 	vm_pindex_t lastpindex;
1029 
1030 	mreq = m[reqpage];
1031 
1032 	if (mreq->object != object) {
1033 		panic("swap_pager_getpages: object mismatch %p/%p",
1034 		    object,
1035 		    mreq->object
1036 		);
1037 	}
1038 	/*
1039 	 * Calculate range to retrieve.  The pages have already been assigned
1040 	 * their swapblks.  We require a *contiguous* range that falls entirely
1041 	 * within a single device stripe.   If we do not supply it, bad things
1042 	 * happen.  Note that blk, iblk & jblk can be SWAPBLK_NONE, but the
1043 	 * loops are set up such that the case(s) are handled implicitly.
1044 	 *
1045 	 * The swp_*() calls must be made at splvm().  vm_page_free() does
1046 	 * not need to be, but it will go a little faster if it is.
1047 	 */
1048 
1049 	s = splvm();
1050 	blk = swp_pager_meta_ctl(mreq->object, mreq->pindex, 0);
1051 
1052 	for (i = reqpage - 1; i >= 0; --i) {
1053 		daddr_t iblk;
1054 
1055 		iblk = swp_pager_meta_ctl(m[i]->object, m[i]->pindex, 0);
1056 		if (blk != iblk + (reqpage - i))
1057 			break;
1058 		if ((blk ^ iblk) & dmmax_mask)
1059 			break;
1060 	}
1061 	++i;
1062 
1063 	for (j = reqpage + 1; j < count; ++j) {
1064 		daddr_t jblk;
1065 
1066 		jblk = swp_pager_meta_ctl(m[j]->object, m[j]->pindex, 0);
1067 		if (blk != jblk - (j - reqpage))
1068 			break;
1069 		if ((blk ^ jblk) & dmmax_mask)
1070 			break;
1071 	}
1072 
1073 	/*
1074 	 * free pages outside our collection range.   Note: we never free
1075 	 * mreq, it must remain busy throughout.
1076 	 */
1077 
1078 	{
1079 		int k;
1080 
1081 		for (k = 0; k < i; ++k)
1082 			vm_page_free(m[k]);
1083 		for (k = j; k < count; ++k)
1084 			vm_page_free(m[k]);
1085 	}
1086 	splx(s);
1087 
1088 
1089 	/*
1090 	 * Return VM_PAGER_FAIL if we have nothing to do.  Return mreq
1091 	 * still busy, but the others unbusied.
1092 	 */
1093 
1094 	if (blk == SWAPBLK_NONE)
1095 		return(VM_PAGER_FAIL);
1096 
1097 	/*
1098 	 * Get a swap buffer header to perform the IO
1099 	 */
1100 
1101 	bp = getpbuf(&nsw_rcount);
1102 	kva = (vm_offset_t) bp->b_data;
1103 
1104 	/*
1105 	 * map our page(s) into kva for input
1106 	 *
1107 	 * NOTE: B_PAGING is set by pbgetvp()
1108 	 */
1109 
1110 	pmap_qenter(kva, m + i, j - i);
1111 
1112 	bp->b_flags = B_READ | B_CALL;
1113 	bp->b_iodone = swp_pager_async_iodone;
1114 	bp->b_data = (caddr_t) kva;
1115 	bp->b_blkno = blk - (reqpage - i);
1116 	bp->b_bcount = PAGE_SIZE * (j - i);
1117 	bp->b_bufsize = PAGE_SIZE * (j - i);
1118 	bp->b_pager.pg_reqpage = reqpage - i;
1119 
1120 	{
1121 		int k;
1122 
1123 		for (k = i; k < j; ++k) {
1124 			bp->b_pages[k - i] = m[k];
1125 			vm_page_flag_set(m[k], PG_SWAPINPROG);
1126 		}
1127 	}
1128 	bp->b_npages = j - i;
1129 
1130 	pbgetvp(swapdev_vp, bp);
1131 
1132 	mycpu->gd_cnt.v_swapin++;
1133 	mycpu->gd_cnt.v_swappgsin += bp->b_npages;
1134 
1135 	/*
1136 	 * We still hold the lock on mreq, and our automatic completion routine
1137 	 * does not remove it.
1138 	 */
1139 
1140 	vm_object_pip_add(mreq->object, bp->b_npages);
1141 	lastpindex = m[j-1]->pindex;
1142 
1143 	/*
1144 	 * perform the I/O.  NOTE!!!  bp cannot be considered valid after
1145 	 * this point because we automatically release it on completion.
1146 	 * Instead, we look at the one page we are interested in which we
1147 	 * still hold a lock on even through the I/O completion.
1148 	 *
1149 	 * The other pages in our m[] array are also released on completion,
1150 	 * so we cannot assume they are valid anymore either.
1151 	 *
1152 	 * NOTE: b_blkno is destroyed by the call to VOP_STRATEGY
1153 	 */
1154 
1155 	BUF_KERNPROC(bp);
1156 	VOP_STRATEGY(bp->b_vp, bp);
1157 
1158 	/*
1159 	 * wait for the page we want to complete.  PG_SWAPINPROG is always
1160 	 * cleared on completion.  If an I/O error occurs, SWAPBLK_NONE
1161 	 * is set in the meta-data.
1162 	 */
1163 
1164 	s = splvm();
1165 
1166 	while ((mreq->flags & PG_SWAPINPROG) != 0) {
1167 		vm_page_flag_set(mreq, PG_WANTED | PG_REFERENCED);
1168 		mycpu->gd_cnt.v_intrans++;
1169 		if (tsleep(mreq, 0, "swread", hz*20)) {
1170 			printf(
1171 			    "swap_pager: indefinite wait buffer: device:"
1172 				" %s, blkno: %ld, size: %ld\n",
1173 			    devtoname(bp->b_dev), (long)bp->b_blkno,
1174 			    bp->b_bcount
1175 			);
1176 		}
1177 	}
1178 
1179 	splx(s);
1180 
1181 	/*
1182 	 * mreq is left bussied after completion, but all the other pages
1183 	 * are freed.  If we had an unrecoverable read error the page will
1184 	 * not be valid.
1185 	 */
1186 
1187 	if (mreq->valid != VM_PAGE_BITS_ALL) {
1188 		return(VM_PAGER_ERROR);
1189 	} else {
1190 		return(VM_PAGER_OK);
1191 	}
1192 
1193 	/*
1194 	 * A final note: in a low swap situation, we cannot deallocate swap
1195 	 * and mark a page dirty here because the caller is likely to mark
1196 	 * the page clean when we return, causing the page to possibly revert
1197 	 * to all-zero's later.
1198 	 */
1199 }
1200 
1201 /*
1202  *	swap_pager_putpages:
1203  *
1204  *	Assign swap (if necessary) and initiate I/O on the specified pages.
1205  *
1206  *	We support both OBJT_DEFAULT and OBJT_SWAP objects.  DEFAULT objects
1207  *	are automatically converted to SWAP objects.
1208  *
1209  *	In a low memory situation we may block in VOP_STRATEGY(), but the new
1210  *	vm_page reservation system coupled with properly written VFS devices
1211  *	should ensure that no low-memory deadlock occurs.  This is an area
1212  *	which needs work.
1213  *
1214  *	The parent has N vm_object_pip_add() references prior to
1215  *	calling us and will remove references for rtvals[] that are
1216  *	not set to VM_PAGER_PEND.  We need to remove the rest on I/O
1217  *	completion.
1218  *
1219  *	The parent has soft-busy'd the pages it passes us and will unbusy
1220  *	those whos rtvals[] entry is not set to VM_PAGER_PEND on return.
1221  *	We need to unbusy the rest on I/O completion.
1222  */
1223 
1224 void
1225 swap_pager_putpages(object, m, count, sync, rtvals)
1226 	vm_object_t object;
1227 	vm_page_t *m;
1228 	int count;
1229 	boolean_t sync;
1230 	int *rtvals;
1231 {
1232 	int i;
1233 	int n = 0;
1234 
1235 	if (count && m[0]->object != object) {
1236 		panic("swap_pager_getpages: object mismatch %p/%p",
1237 		    object,
1238 		    m[0]->object
1239 		);
1240 	}
1241 	/*
1242 	 * Step 1
1243 	 *
1244 	 * Turn object into OBJT_SWAP
1245 	 * check for bogus sysops
1246 	 * force sync if not pageout process
1247 	 */
1248 
1249 	if (object->type != OBJT_SWAP)
1250 		swp_pager_meta_build(object, 0, SWAPBLK_NONE);
1251 
1252 	if (curthread != pagethread)
1253 		sync = TRUE;
1254 
1255 	/*
1256 	 * Step 2
1257 	 *
1258 	 * Update nsw parameters from swap_async_max sysctl values.
1259 	 * Do not let the sysop crash the machine with bogus numbers.
1260 	 */
1261 
1262 	if (swap_async_max != nsw_wcount_async_max) {
1263 		int n;
1264 		int s;
1265 
1266 		/*
1267 		 * limit range
1268 		 */
1269 		if ((n = swap_async_max) > nswbuf / 2)
1270 			n = nswbuf / 2;
1271 		if (n < 1)
1272 			n = 1;
1273 		swap_async_max = n;
1274 
1275 		/*
1276 		 * Adjust difference ( if possible ).  If the current async
1277 		 * count is too low, we may not be able to make the adjustment
1278 		 * at this time.
1279 		 */
1280 		s = splvm();
1281 		n -= nsw_wcount_async_max;
1282 		if (nsw_wcount_async + n >= 0) {
1283 			nsw_wcount_async += n;
1284 			nsw_wcount_async_max += n;
1285 			wakeup(&nsw_wcount_async);
1286 		}
1287 		splx(s);
1288 	}
1289 
1290 	/*
1291 	 * Step 3
1292 	 *
1293 	 * Assign swap blocks and issue I/O.  We reallocate swap on the fly.
1294 	 * The page is left dirty until the pageout operation completes
1295 	 * successfully.
1296 	 */
1297 
1298 	for (i = 0; i < count; i += n) {
1299 		int s;
1300 		int j;
1301 		struct buf *bp;
1302 		daddr_t blk;
1303 
1304 		/*
1305 		 * Maximum I/O size is limited by a number of factors.
1306 		 */
1307 
1308 		n = min(BLIST_MAX_ALLOC, count - i);
1309 		n = min(n, nsw_cluster_max);
1310 
1311 		s = splvm();
1312 
1313 		/*
1314 		 * Get biggest block of swap we can.  If we fail, fall
1315 		 * back and try to allocate a smaller block.  Don't go
1316 		 * overboard trying to allocate space if it would overly
1317 		 * fragment swap.
1318 		 */
1319 		while (
1320 		    (blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE &&
1321 		    n > 4
1322 		) {
1323 			n >>= 1;
1324 		}
1325 		if (blk == SWAPBLK_NONE) {
1326 			for (j = 0; j < n; ++j)
1327 				rtvals[i+j] = VM_PAGER_FAIL;
1328 			splx(s);
1329 			continue;
1330 		}
1331 
1332 		/*
1333 		 * The I/O we are constructing cannot cross a physical
1334 		 * disk boundry in the swap stripe.  Note: we are still
1335 		 * at splvm().
1336 		 */
1337 		if ((blk ^ (blk + n)) & dmmax_mask) {
1338 			j = ((blk + dmmax) & dmmax_mask) - blk;
1339 			swp_pager_freeswapspace(blk + j, n - j);
1340 			n = j;
1341 		}
1342 
1343 		/*
1344 		 * All I/O parameters have been satisfied, build the I/O
1345 		 * request and assign the swap space.
1346 		 *
1347 		 * NOTE: B_PAGING is set by pbgetvp()
1348 		 */
1349 
1350 		if (sync == TRUE) {
1351 			bp = getpbuf(&nsw_wcount_sync);
1352 			bp->b_flags = B_CALL;
1353 		} else {
1354 			bp = getpbuf(&nsw_wcount_async);
1355 			bp->b_flags = B_CALL | B_ASYNC;
1356 		}
1357 		bp->b_spc = NULL;	/* not used, but NULL-out anyway */
1358 
1359 		pmap_qenter((vm_offset_t)bp->b_data, &m[i], n);
1360 
1361 		bp->b_bcount = PAGE_SIZE * n;
1362 		bp->b_bufsize = PAGE_SIZE * n;
1363 		bp->b_blkno = blk;
1364 
1365 		pbgetvp(swapdev_vp, bp);
1366 
1367 		for (j = 0; j < n; ++j) {
1368 			vm_page_t mreq = m[i+j];
1369 
1370 			swp_pager_meta_build(
1371 			    mreq->object,
1372 			    mreq->pindex,
1373 			    blk + j
1374 			);
1375 			vm_page_dirty(mreq);
1376 			rtvals[i+j] = VM_PAGER_OK;
1377 
1378 			vm_page_flag_set(mreq, PG_SWAPINPROG);
1379 			bp->b_pages[j] = mreq;
1380 		}
1381 		bp->b_npages = n;
1382 		/*
1383 		 * Must set dirty range for NFS to work.
1384 		 */
1385 		bp->b_dirtyoff = 0;
1386 		bp->b_dirtyend = bp->b_bcount;
1387 
1388 		mycpu->gd_cnt.v_swapout++;
1389 		mycpu->gd_cnt.v_swappgsout += bp->b_npages;
1390 		swapdev_vp->v_numoutput++;
1391 
1392 		splx(s);
1393 
1394 		/*
1395 		 * asynchronous
1396 		 *
1397 		 * NOTE: b_blkno is destroyed by the call to VOP_STRATEGY
1398 		 */
1399 
1400 		if (sync == FALSE) {
1401 			bp->b_iodone = swp_pager_async_iodone;
1402 			BUF_KERNPROC(bp);
1403 			VOP_STRATEGY(bp->b_vp, bp);
1404 
1405 			for (j = 0; j < n; ++j)
1406 				rtvals[i+j] = VM_PAGER_PEND;
1407 			continue;
1408 		}
1409 
1410 		/*
1411 		 * synchronous
1412 		 *
1413 		 * NOTE: b_blkno is destroyed by the call to VOP_STRATEGY
1414 		 */
1415 
1416 		bp->b_iodone = swp_pager_sync_iodone;
1417 		VOP_STRATEGY(bp->b_vp, bp);
1418 
1419 		/*
1420 		 * Wait for the sync I/O to complete, then update rtvals.
1421 		 * We just set the rtvals[] to VM_PAGER_PEND so we can call
1422 		 * our async completion routine at the end, thus avoiding a
1423 		 * double-free.
1424 		 */
1425 		s = splbio();
1426 
1427 		while ((bp->b_flags & B_DONE) == 0) {
1428 			tsleep(bp, 0, "swwrt", 0);
1429 		}
1430 
1431 		for (j = 0; j < n; ++j)
1432 			rtvals[i+j] = VM_PAGER_PEND;
1433 
1434 		/*
1435 		 * Now that we are through with the bp, we can call the
1436 		 * normal async completion, which frees everything up.
1437 		 */
1438 
1439 		swp_pager_async_iodone(bp);
1440 
1441 		splx(s);
1442 	}
1443 }
1444 
1445 /*
1446  *	swap_pager_sync_iodone:
1447  *
1448  *	Completion routine for synchronous reads and writes from/to swap.
1449  *	We just mark the bp is complete and wake up anyone waiting on it.
1450  *
1451  *	This routine may not block.  This routine is called at splbio() or better.
1452  */
1453 
1454 static void
1455 swp_pager_sync_iodone(bp)
1456 	struct buf *bp;
1457 {
1458 	bp->b_flags |= B_DONE;
1459 	bp->b_flags &= ~B_ASYNC;
1460 	wakeup(bp);
1461 }
1462 
1463 /*
1464  *	swp_pager_async_iodone:
1465  *
1466  *	Completion routine for asynchronous reads and writes from/to swap.
1467  *	Also called manually by synchronous code to finish up a bp.
1468  *
1469  *	For READ operations, the pages are PG_BUSY'd.  For WRITE operations,
1470  *	the pages are vm_page_t->busy'd.  For READ operations, we PG_BUSY
1471  *	unbusy all pages except the 'main' request page.  For WRITE
1472  *	operations, we vm_page_t->busy'd unbusy all pages ( we can do this
1473  *	because we marked them all VM_PAGER_PEND on return from putpages ).
1474  *
1475  *	This routine may not block.
1476  *	This routine is called at splbio() or better
1477  *
1478  *	We up ourselves to splvm() as required for various vm_page related
1479  *	calls.
1480  */
1481 
1482 static void
1483 swp_pager_async_iodone(bp)
1484 	struct buf *bp;
1485 {
1486 	int s;
1487 	int i;
1488 	vm_object_t object = NULL;
1489 
1490 	bp->b_flags |= B_DONE;
1491 
1492 	/*
1493 	 * report error
1494 	 */
1495 
1496 	if (bp->b_flags & B_ERROR) {
1497 		printf(
1498 		    "swap_pager: I/O error - %s failed; blkno %ld,"
1499 			"size %ld, error %d\n",
1500 		    ((bp->b_flags & B_READ) ? "pagein" : "pageout"),
1501 		    (long)bp->b_blkno,
1502 		    (long)bp->b_bcount,
1503 		    bp->b_error
1504 		);
1505 	}
1506 
1507 	/*
1508 	 * set object, raise to splvm().
1509 	 */
1510 
1511 	if (bp->b_npages)
1512 		object = bp->b_pages[0]->object;
1513 	s = splvm();
1514 
1515 	/*
1516 	 * remove the mapping for kernel virtual
1517 	 */
1518 
1519 	pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages);
1520 
1521 	/*
1522 	 * cleanup pages.  If an error occurs writing to swap, we are in
1523 	 * very serious trouble.  If it happens to be a disk error, though,
1524 	 * we may be able to recover by reassigning the swap later on.  So
1525 	 * in this case we remove the m->swapblk assignment for the page
1526 	 * but do not free it in the rlist.  The errornous block(s) are thus
1527 	 * never reallocated as swap.  Redirty the page and continue.
1528 	 */
1529 
1530 	for (i = 0; i < bp->b_npages; ++i) {
1531 		vm_page_t m = bp->b_pages[i];
1532 
1533 		vm_page_flag_clear(m, PG_SWAPINPROG);
1534 
1535 		if (bp->b_flags & B_ERROR) {
1536 			/*
1537 			 * If an error occurs I'd love to throw the swapblk
1538 			 * away without freeing it back to swapspace, so it
1539 			 * can never be used again.  But I can't from an
1540 			 * interrupt.
1541 			 */
1542 
1543 			if (bp->b_flags & B_READ) {
1544 				/*
1545 				 * When reading, reqpage needs to stay
1546 				 * locked for the parent, but all other
1547 				 * pages can be freed.  We still want to
1548 				 * wakeup the parent waiting on the page,
1549 				 * though.  ( also: pg_reqpage can be -1 and
1550 				 * not match anything ).
1551 				 *
1552 				 * We have to wake specifically requested pages
1553 				 * up too because we cleared PG_SWAPINPROG and
1554 				 * someone may be waiting for that.
1555 				 *
1556 				 * NOTE: for reads, m->dirty will probably
1557 				 * be overridden by the original caller of
1558 				 * getpages so don't play cute tricks here.
1559 				 *
1560 				 * XXX IT IS NOT LEGAL TO FREE THE PAGE HERE
1561 				 * AS THIS MESSES WITH object->memq, and it is
1562 				 * not legal to mess with object->memq from an
1563 				 * interrupt.
1564 				 */
1565 
1566 				m->valid = 0;
1567 				vm_page_flag_clear(m, PG_ZERO);
1568 
1569 				if (i != bp->b_pager.pg_reqpage)
1570 					vm_page_free(m);
1571 				else
1572 					vm_page_flash(m);
1573 				/*
1574 				 * If i == bp->b_pager.pg_reqpage, do not wake
1575 				 * the page up.  The caller needs to.
1576 				 */
1577 			} else {
1578 				/*
1579 				 * If a write error occurs, reactivate page
1580 				 * so it doesn't clog the inactive list,
1581 				 * then finish the I/O.
1582 				 */
1583 				vm_page_dirty(m);
1584 				vm_page_activate(m);
1585 				vm_page_io_finish(m);
1586 			}
1587 		} else if (bp->b_flags & B_READ) {
1588 			/*
1589 			 * For read success, clear dirty bits.  Nobody should
1590 			 * have this page mapped but don't take any chances,
1591 			 * make sure the pmap modify bits are also cleared.
1592 			 *
1593 			 * NOTE: for reads, m->dirty will probably be
1594 			 * overridden by the original caller of getpages so
1595 			 * we cannot set them in order to free the underlying
1596 			 * swap in a low-swap situation.  I don't think we'd
1597 			 * want to do that anyway, but it was an optimization
1598 			 * that existed in the old swapper for a time before
1599 			 * it got ripped out due to precisely this problem.
1600 			 *
1601 			 * clear PG_ZERO in page.
1602 			 *
1603 			 * If not the requested page then deactivate it.
1604 			 *
1605 			 * Note that the requested page, reqpage, is left
1606 			 * busied, but we still have to wake it up.  The
1607 			 * other pages are released (unbusied) by
1608 			 * vm_page_wakeup().  We do not set reqpage's
1609 			 * valid bits here, it is up to the caller.
1610 			 */
1611 
1612 			pmap_clear_modify(m);
1613 			m->valid = VM_PAGE_BITS_ALL;
1614 			vm_page_undirty(m);
1615 			vm_page_flag_clear(m, PG_ZERO);
1616 
1617 			/*
1618 			 * We have to wake specifically requested pages
1619 			 * up too because we cleared PG_SWAPINPROG and
1620 			 * could be waiting for it in getpages.  However,
1621 			 * be sure to not unbusy getpages specifically
1622 			 * requested page - getpages expects it to be
1623 			 * left busy.
1624 			 */
1625 			if (i != bp->b_pager.pg_reqpage) {
1626 				vm_page_deactivate(m);
1627 				vm_page_wakeup(m);
1628 			} else {
1629 				vm_page_flash(m);
1630 			}
1631 		} else {
1632 			/*
1633 			 * For write success, clear the modify and dirty
1634 			 * status, then finish the I/O ( which decrements the
1635 			 * busy count and possibly wakes waiter's up ).
1636 			 */
1637 			pmap_clear_modify(m);
1638 			vm_page_undirty(m);
1639 			vm_page_io_finish(m);
1640 			if (!vm_page_count_severe() || !vm_page_try_to_cache(m))
1641 				vm_page_protect(m, VM_PROT_READ);
1642 		}
1643 	}
1644 
1645 	/*
1646 	 * adjust pip.  NOTE: the original parent may still have its own
1647 	 * pip refs on the object.
1648 	 */
1649 
1650 	if (object)
1651 		vm_object_pip_wakeupn(object, bp->b_npages);
1652 
1653 	/*
1654 	 * release the physical I/O buffer
1655 	 */
1656 
1657 	relpbuf(
1658 	    bp,
1659 	    ((bp->b_flags & B_READ) ? &nsw_rcount :
1660 		((bp->b_flags & B_ASYNC) ?
1661 		    &nsw_wcount_async :
1662 		    &nsw_wcount_sync
1663 		)
1664 	    )
1665 	);
1666 	splx(s);
1667 }
1668 
1669 /************************************************************************
1670  *				SWAP META DATA 				*
1671  ************************************************************************
1672  *
1673  *	These routines manipulate the swap metadata stored in the
1674  *	OBJT_SWAP object.  All swp_*() routines must be called at
1675  *	splvm() because swap can be freed up by the low level vm_page
1676  *	code which might be called from interrupts beyond what splbio() covers.
1677  *
1678  *	Swap metadata is implemented with a global hash and not directly
1679  *	linked into the object.  Instead the object simply contains
1680  *	appropriate tracking counters.
1681  */
1682 
1683 /*
1684  * SWP_PAGER_HASH() -	hash swap meta data
1685  *
1686  *	This is an inline helper function which hashes the swapblk given
1687  *	the object and page index.  It returns a pointer to a pointer
1688  *	to the object, or a pointer to a NULL pointer if it could not
1689  *	find a swapblk.
1690  *
1691  *	This routine must be called at splvm().
1692  */
1693 
1694 static __inline struct swblock **
1695 swp_pager_hash(vm_object_t object, vm_pindex_t index)
1696 {
1697 	struct swblock **pswap;
1698 	struct swblock *swap;
1699 
1700 	index &= ~SWAP_META_MASK;
1701 	pswap = &swhash[(index ^ (int)(intptr_t)object) & swhash_mask];
1702 
1703 	while ((swap = *pswap) != NULL) {
1704 		if (swap->swb_object == object &&
1705 		    swap->swb_index == index
1706 		) {
1707 			break;
1708 		}
1709 		pswap = &swap->swb_hnext;
1710 	}
1711 	return(pswap);
1712 }
1713 
1714 /*
1715  * SWP_PAGER_META_BUILD() -	add swap block to swap meta data for object
1716  *
1717  *	We first convert the object to a swap object if it is a default
1718  *	object.
1719  *
1720  *	The specified swapblk is added to the object's swap metadata.  If
1721  *	the swapblk is not valid, it is freed instead.  Any previously
1722  *	assigned swapblk is freed.
1723  *
1724  *	This routine must be called at splvm(), except when used to convert
1725  *	an OBJT_DEFAULT object into an OBJT_SWAP object.
1726 
1727  */
1728 
1729 static void
1730 swp_pager_meta_build(
1731 	vm_object_t object,
1732 	vm_pindex_t index,
1733 	daddr_t swapblk
1734 ) {
1735 	struct swblock *swap;
1736 	struct swblock **pswap;
1737 
1738 	/*
1739 	 * Convert default object to swap object if necessary
1740 	 */
1741 
1742 	if (object->type != OBJT_SWAP) {
1743 		object->type = OBJT_SWAP;
1744 		object->un_pager.swp.swp_bcount = 0;
1745 
1746 		if (object->handle != NULL) {
1747 			TAILQ_INSERT_TAIL(
1748 			    NOBJLIST(object->handle),
1749 			    object,
1750 			    pager_object_list
1751 			);
1752 		} else {
1753 			TAILQ_INSERT_TAIL(
1754 			    &swap_pager_un_object_list,
1755 			    object,
1756 			    pager_object_list
1757 			);
1758 		}
1759 	}
1760 
1761 	/*
1762 	 * Locate hash entry.  If not found create, but if we aren't adding
1763 	 * anything just return.  If we run out of space in the map we wait
1764 	 * and, since the hash table may have changed, retry.
1765 	 */
1766 
1767 retry:
1768 	pswap = swp_pager_hash(object, index);
1769 
1770 	if ((swap = *pswap) == NULL) {
1771 		int i;
1772 
1773 		if (swapblk == SWAPBLK_NONE)
1774 			return;
1775 
1776 		swap = *pswap = zalloc(swap_zone);
1777 		if (swap == NULL) {
1778 			VM_WAIT;
1779 			goto retry;
1780 		}
1781 		swap->swb_hnext = NULL;
1782 		swap->swb_object = object;
1783 		swap->swb_index = index & ~SWAP_META_MASK;
1784 		swap->swb_count = 0;
1785 
1786 		++object->un_pager.swp.swp_bcount;
1787 
1788 		for (i = 0; i < SWAP_META_PAGES; ++i)
1789 			swap->swb_pages[i] = SWAPBLK_NONE;
1790 	}
1791 
1792 	/*
1793 	 * Delete prior contents of metadata
1794 	 */
1795 
1796 	index &= SWAP_META_MASK;
1797 
1798 	if (swap->swb_pages[index] != SWAPBLK_NONE) {
1799 		swp_pager_freeswapspace(swap->swb_pages[index], 1);
1800 		--swap->swb_count;
1801 	}
1802 
1803 	/*
1804 	 * Enter block into metadata
1805 	 */
1806 
1807 	swap->swb_pages[index] = swapblk;
1808 	if (swapblk != SWAPBLK_NONE)
1809 		++swap->swb_count;
1810 }
1811 
1812 /*
1813  * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
1814  *
1815  *	The requested range of blocks is freed, with any associated swap
1816  *	returned to the swap bitmap.
1817  *
1818  *	This routine will free swap metadata structures as they are cleaned
1819  *	out.  This routine does *NOT* operate on swap metadata associated
1820  *	with resident pages.
1821  *
1822  *	This routine must be called at splvm()
1823  */
1824 
1825 static void
1826 swp_pager_meta_free(vm_object_t object, vm_pindex_t index, daddr_t count)
1827 {
1828 	if (object->type != OBJT_SWAP)
1829 		return;
1830 
1831 	while (count > 0) {
1832 		struct swblock **pswap;
1833 		struct swblock *swap;
1834 
1835 		pswap = swp_pager_hash(object, index);
1836 
1837 		if ((swap = *pswap) != NULL) {
1838 			daddr_t v = swap->swb_pages[index & SWAP_META_MASK];
1839 
1840 			if (v != SWAPBLK_NONE) {
1841 				swp_pager_freeswapspace(v, 1);
1842 				swap->swb_pages[index & SWAP_META_MASK] =
1843 					SWAPBLK_NONE;
1844 				if (--swap->swb_count == 0) {
1845 					*pswap = swap->swb_hnext;
1846 					zfree(swap_zone, swap);
1847 					--object->un_pager.swp.swp_bcount;
1848 				}
1849 			}
1850 			--count;
1851 			++index;
1852 		} else {
1853 			int n = SWAP_META_PAGES - (index & SWAP_META_MASK);
1854 			count -= n;
1855 			index += n;
1856 		}
1857 	}
1858 }
1859 
1860 /*
1861  * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
1862  *
1863  *	This routine locates and destroys all swap metadata associated with
1864  *	an object.
1865  *
1866  *	This routine must be called at splvm()
1867  */
1868 
1869 static void
1870 swp_pager_meta_free_all(vm_object_t object)
1871 {
1872 	daddr_t index = 0;
1873 
1874 	if (object->type != OBJT_SWAP)
1875 		return;
1876 
1877 	while (object->un_pager.swp.swp_bcount) {
1878 		struct swblock **pswap;
1879 		struct swblock *swap;
1880 
1881 		pswap = swp_pager_hash(object, index);
1882 		if ((swap = *pswap) != NULL) {
1883 			int i;
1884 
1885 			for (i = 0; i < SWAP_META_PAGES; ++i) {
1886 				daddr_t v = swap->swb_pages[i];
1887 				if (v != SWAPBLK_NONE) {
1888 					--swap->swb_count;
1889 					swp_pager_freeswapspace(v, 1);
1890 				}
1891 			}
1892 			if (swap->swb_count != 0)
1893 				panic("swap_pager_meta_free_all: swb_count != 0");
1894 			*pswap = swap->swb_hnext;
1895 			zfree(swap_zone, swap);
1896 			--object->un_pager.swp.swp_bcount;
1897 		}
1898 		index += SWAP_META_PAGES;
1899 		if (index > 0x20000000)
1900 			panic("swp_pager_meta_free_all: failed to locate all swap meta blocks");
1901 	}
1902 }
1903 
1904 /*
1905  * SWP_PAGER_METACTL() -  misc control of swap and vm_page_t meta data.
1906  *
1907  *	This routine is capable of looking up, popping, or freeing
1908  *	swapblk assignments in the swap meta data or in the vm_page_t.
1909  *	The routine typically returns the swapblk being looked-up, or popped,
1910  *	or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block
1911  *	was invalid.  This routine will automatically free any invalid
1912  *	meta-data swapblks.
1913  *
1914  *	It is not possible to store invalid swapblks in the swap meta data
1915  *	(other then a literal 'SWAPBLK_NONE'), so we don't bother checking.
1916  *
1917  *	When acting on a busy resident page and paging is in progress, we
1918  *	have to wait until paging is complete but otherwise can act on the
1919  *	busy page.
1920  *
1921  *	This routine must be called at splvm().
1922  *
1923  *	SWM_FREE	remove and free swap block from metadata
1924  *	SWM_POP		remove from meta data but do not free.. pop it out
1925  */
1926 
1927 static daddr_t
1928 swp_pager_meta_ctl(
1929 	vm_object_t object,
1930 	vm_pindex_t index,
1931 	int flags
1932 ) {
1933 	struct swblock **pswap;
1934 	struct swblock *swap;
1935 	daddr_t r1;
1936 
1937 	/*
1938 	 * The meta data only exists of the object is OBJT_SWAP
1939 	 * and even then might not be allocated yet.
1940 	 */
1941 
1942 	if (object->type != OBJT_SWAP)
1943 		return(SWAPBLK_NONE);
1944 
1945 	r1 = SWAPBLK_NONE;
1946 	pswap = swp_pager_hash(object, index);
1947 
1948 	if ((swap = *pswap) != NULL) {
1949 		index &= SWAP_META_MASK;
1950 		r1 = swap->swb_pages[index];
1951 
1952 		if (r1 != SWAPBLK_NONE) {
1953 			if (flags & SWM_FREE) {
1954 				swp_pager_freeswapspace(r1, 1);
1955 				r1 = SWAPBLK_NONE;
1956 			}
1957 			if (flags & (SWM_FREE|SWM_POP)) {
1958 				swap->swb_pages[index] = SWAPBLK_NONE;
1959 				if (--swap->swb_count == 0) {
1960 					*pswap = swap->swb_hnext;
1961 					zfree(swap_zone, swap);
1962 					--object->un_pager.swp.swp_bcount;
1963 				}
1964 			}
1965 		}
1966 	}
1967 	return(r1);
1968 }
1969 
1970