xref: /dragonfly/sys/vm/swap_pager.c (revision b8c93cad)
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 1998-2010 The DragonFly Project.  All rights reserved.
5  *
6  * This code is derived from software contributed to The DragonFly Project
7  * by Matthew Dillon <dillon@backplane.com>
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  *
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in
17  *    the documentation and/or other materials provided with the
18  *    distribution.
19  * 3. Neither the name of The DragonFly Project nor the names of its
20  *    contributors may be used to endorse or promote products derived
21  *    from this software without specific, prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
27  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
29  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
31  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
32  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
33  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  * Copyright (c) 1994 John S. Dyson
37  * Copyright (c) 1990 University of Utah.
38  * Copyright (c) 1991, 1993
39  *	The Regents of the University of California.  All rights reserved.
40  *
41  * This code is derived from software contributed to Berkeley by
42  * the Systems Programming Group of the University of Utah Computer
43  * Science Department.
44  *
45  * Redistribution and use in source and binary forms, with or without
46  * modification, are permitted provided that the following conditions
47  * are met:
48  * 1. Redistributions of source code must retain the above copyright
49  *    notice, this list of conditions and the following disclaimer.
50  * 2. Redistributions in binary form must reproduce the above copyright
51  *    notice, this list of conditions and the following disclaimer in the
52  *    documentation and/or other materials provided with the distribution.
53  * 3. Neither the name of the University nor the names of its contributors
54  *    may be used to endorse or promote products derived from this software
55  *    without specific prior written permission.
56  *
57  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
58  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
59  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
60  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
61  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
62  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
63  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
64  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
65  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
66  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
67  * SUCH DAMAGE.
68  *
69  *				New Swap System
70  *				Matthew Dillon
71  *
72  * Radix Bitmap 'blists'.
73  *
74  *	- The new swapper uses the new radix bitmap code.  This should scale
75  *	  to arbitrarily small or arbitrarily large swap spaces and an almost
76  *	  arbitrary degree of fragmentation.
77  *
78  * Features:
79  *
80  *	- on the fly reallocation of swap during putpages.  The new system
81  *	  does not try to keep previously allocated swap blocks for dirty
82  *	  pages.
83  *
84  *	- on the fly deallocation of swap
85  *
86  *	- No more garbage collection required.  Unnecessarily allocated swap
87  *	  blocks only exist for dirty vm_page_t's now and these are already
88  *	  cycled (in a high-load system) by the pager.  We also do on-the-fly
89  *	  removal of invalidated swap blocks when a page is destroyed
90  *	  or renamed.
91  *
92  * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
93  * @(#)swap_pager.c	8.9 (Berkeley) 3/21/94
94  * $FreeBSD: src/sys/vm/swap_pager.c,v 1.130.2.12 2002/08/31 21:15:55 dillon Exp $
95  */
96 
97 #include <sys/param.h>
98 #include <sys/systm.h>
99 #include <sys/conf.h>
100 #include <sys/kernel.h>
101 #include <sys/proc.h>
102 #include <sys/buf.h>
103 #include <sys/vnode.h>
104 #include <sys/malloc.h>
105 #include <sys/vmmeter.h>
106 #include <sys/sysctl.h>
107 #include <sys/blist.h>
108 #include <sys/lock.h>
109 #include <sys/thread2.h>
110 
111 #include <unistd.h>
112 #include "opt_swap.h"
113 #include <vm/vm.h>
114 #include <vm/vm_object.h>
115 #include <vm/vm_page.h>
116 #include <vm/vm_pager.h>
117 #include <vm/vm_pageout.h>
118 #include <vm/swap_pager.h>
119 #include <vm/vm_extern.h>
120 #include <vm/vm_zone.h>
121 #include <vm/vnode_pager.h>
122 
123 #include <sys/buf2.h>
124 #include <vm/vm_page2.h>
125 
126 #ifndef MAX_PAGEOUT_CLUSTER
127 #define MAX_PAGEOUT_CLUSTER	SWB_NPAGES
128 #endif
129 
130 #define SWM_FREE	0x02	/* free, period			*/
131 #define SWM_POP		0x04	/* pop out			*/
132 
133 #define SWBIO_READ	0x01
134 #define SWBIO_WRITE	0x02
135 #define SWBIO_SYNC	0x04
136 #define SWBIO_TTC	0x08	/* for VM_PAGER_TRY_TO_CACHE */
137 
138 struct swfreeinfo {
139 	vm_object_t	object;
140 	vm_pindex_t	basei;
141 	vm_pindex_t	begi;
142 	vm_pindex_t	endi;	/* inclusive */
143 };
144 
145 struct swswapoffinfo {
146 	vm_object_t	object;
147 	int		devidx;
148 	int		shared;
149 };
150 
151 /*
152  * vm_swap_size is in page-sized chunks now.  It was DEV_BSIZE'd chunks
153  * in the old system.
154  */
155 
156 int swap_pager_full;		/* swap space exhaustion (task killing) */
157 int swap_fail_ticks;		/* when we became exhausted */
158 int swap_pager_almost_full;	/* swap space exhaustion (w/ hysteresis)*/
159 swblk_t vm_swap_cache_use;
160 swblk_t vm_swap_anon_use;
161 static int vm_report_swap_allocs;
162 
163 static int nsw_rcount;		/* free read buffers			*/
164 static int nsw_wcount_sync;	/* limit write buffers / synchronous	*/
165 static int nsw_wcount_async;	/* limit write buffers / asynchronous	*/
166 static int nsw_wcount_async_max;/* assigned maximum			*/
167 static int nsw_cluster_max;	/* maximum VOP I/O allowed		*/
168 
169 struct blist *swapblist;
170 static int swap_async_max = 4;	/* maximum in-progress async I/O's	*/
171 static int swap_burst_read = 0;	/* allow burst reading */
172 static swblk_t swapiterator;	/* linearize allocations */
173 int swap_user_async = 0;	/* user swap pager operation can be async */
174 
175 static struct spinlock swapbp_spin = SPINLOCK_INITIALIZER(&swapbp_spin, "swapbp_spin");
176 
177 /* from vm_swap.c */
178 extern struct vnode *swapdev_vp;
179 extern struct swdevt *swdevt;
180 extern int nswdev;
181 
182 #define BLK2DEVIDX(blk) (nswdev > 1 ? blk / SWB_DMMAX % nswdev : 0)
183 
184 SYSCTL_INT(_vm, OID_AUTO, swap_async_max,
185         CTLFLAG_RW, &swap_async_max, 0, "Maximum running async swap ops");
186 SYSCTL_INT(_vm, OID_AUTO, swap_burst_read,
187         CTLFLAG_RW, &swap_burst_read, 0, "Allow burst reads for pageins");
188 SYSCTL_INT(_vm, OID_AUTO, swap_user_async,
189         CTLFLAG_RW, &swap_user_async, 0, "Allow async uuser swap write I/O");
190 
191 #if SWBLK_BITS == 64
192 SYSCTL_LONG(_vm, OID_AUTO, swap_cache_use,
193         CTLFLAG_RD, &vm_swap_cache_use, 0, "");
194 SYSCTL_LONG(_vm, OID_AUTO, swap_anon_use,
195         CTLFLAG_RD, &vm_swap_anon_use, 0, "");
196 SYSCTL_LONG(_vm, OID_AUTO, swap_size,
197         CTLFLAG_RD, &vm_swap_size, 0, "");
198 #else
199 SYSCTL_INT(_vm, OID_AUTO, swap_cache_use,
200         CTLFLAG_RD, &vm_swap_cache_use, 0, "");
201 SYSCTL_INT(_vm, OID_AUTO, swap_anon_use,
202         CTLFLAG_RD, &vm_swap_anon_use, 0, "");
203 SYSCTL_INT(_vm, OID_AUTO, swap_size,
204         CTLFLAG_RD, &vm_swap_size, 0, "");
205 #endif
206 SYSCTL_INT(_vm, OID_AUTO, report_swap_allocs,
207         CTLFLAG_RW, &vm_report_swap_allocs, 0, "");
208 
209 vm_zone_t		swap_zone;
210 
211 /*
212  * Red-Black tree for swblock entries
213  *
214  * The caller must hold vm_token
215  */
216 RB_GENERATE2(swblock_rb_tree, swblock, swb_entry, rb_swblock_compare,
217 	     vm_pindex_t, swb_index);
218 
219 int
220 rb_swblock_compare(struct swblock *swb1, struct swblock *swb2)
221 {
222 	if (swb1->swb_index < swb2->swb_index)
223 		return(-1);
224 	if (swb1->swb_index > swb2->swb_index)
225 		return(1);
226 	return(0);
227 }
228 
229 static
230 int
231 rb_swblock_scancmp(struct swblock *swb, void *data)
232 {
233 	struct swfreeinfo *info = data;
234 
235 	if (swb->swb_index < info->basei)
236 		return(-1);
237 	if (swb->swb_index > info->endi)
238 		return(1);
239 	return(0);
240 }
241 
242 static
243 int
244 rb_swblock_condcmp(struct swblock *swb, void *data)
245 {
246 	struct swfreeinfo *info = data;
247 
248 	if (swb->swb_index < info->basei)
249 		return(-1);
250 	return(0);
251 }
252 
253 /*
254  * pagerops for OBJT_SWAP - "swap pager".  Some ops are also global procedure
255  * calls hooked from other parts of the VM system and do not appear here.
256  * (see vm/swap_pager.h).
257  */
258 
259 static void	swap_pager_dealloc (vm_object_t object);
260 static int	swap_pager_getpage (vm_object_t, vm_page_t *, int);
261 static void	swap_chain_iodone(struct bio *biox);
262 
263 struct pagerops swappagerops = {
264 	swap_pager_dealloc,	/* deallocate an OBJT_SWAP object	*/
265 	swap_pager_getpage,	/* pagein				*/
266 	swap_pager_putpages,	/* pageout				*/
267 	swap_pager_haspage	/* get backing store status for page	*/
268 };
269 
270 /*
271  * SWB_DMMAX is in page-sized chunks with the new swap system.  It was
272  * dev-bsized chunks in the old.  SWB_DMMAX is always a power of 2.
273  *
274  * swap_*() routines are externally accessible.  swp_*() routines are
275  * internal.
276  */
277 
278 int nswap_lowat = 128;		/* in pages, swap_pager_almost_full warn */
279 int nswap_hiwat = 512;		/* in pages, swap_pager_almost_full warn */
280 
281 static __inline void	swp_sizecheck (void);
282 static void	swp_pager_async_iodone (struct bio *bio);
283 
284 /*
285  * Swap bitmap functions
286  */
287 
288 static __inline void	swp_pager_freeswapspace(vm_object_t object,
289 						swblk_t blk, int npages);
290 static __inline swblk_t	swp_pager_getswapspace(vm_object_t object, int npages);
291 
292 /*
293  * Metadata functions
294  */
295 
296 static void swp_pager_meta_convert(vm_object_t);
297 static void swp_pager_meta_build(vm_object_t, vm_pindex_t, swblk_t);
298 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, vm_pindex_t);
299 static void swp_pager_meta_free_all(vm_object_t);
300 static swblk_t swp_pager_meta_ctl(vm_object_t, vm_pindex_t, int);
301 
302 /*
303  * SWP_SIZECHECK() -	update swap_pager_full indication
304  *
305  *	update the swap_pager_almost_full indication and warn when we are
306  *	about to run out of swap space, using lowat/hiwat hysteresis.
307  *
308  *	Clear swap_pager_full ( task killing ) indication when lowat is met.
309  *
310  * No restrictions on call
311  * This routine may not block.
312  * SMP races are ok.
313  */
314 static __inline void
315 swp_sizecheck(void)
316 {
317 	if (vm_swap_size < nswap_lowat) {
318 		if (swap_pager_almost_full == 0) {
319 			kprintf("swap_pager: out of swap space\n");
320 			swap_pager_almost_full = 1;
321 			swap_fail_ticks = ticks;
322 		}
323 	} else {
324 		swap_pager_full = 0;
325 		if (vm_swap_size > nswap_hiwat)
326 			swap_pager_almost_full = 0;
327 	}
328 }
329 
330 /*
331  * SWAP_PAGER_INIT() -	initialize the swap pager!
332  *
333  *	Expected to be started from system init.  NOTE:  This code is run
334  *	before much else so be careful what you depend on.  Most of the VM
335  *	system has yet to be initialized at this point.
336  *
337  * Called from the low level boot code only.
338  */
339 static void
340 swap_pager_init(void *arg __unused)
341 {
342 }
343 SYSINIT(vm_mem, SI_BOOT1_VM, SI_ORDER_THIRD, swap_pager_init, NULL);
344 
345 /*
346  * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
347  *
348  *	Expected to be started from pageout process once, prior to entering
349  *	its main loop.
350  *
351  * Called from the low level boot code only.
352  */
353 void
354 swap_pager_swap_init(void)
355 {
356 	int n, n2;
357 
358 	/*
359 	 * Number of in-transit swap bp operations.  Don't
360 	 * exhaust the pbufs completely.  Make sure we
361 	 * initialize workable values (0 will work for hysteresis
362 	 * but it isn't very efficient).
363 	 *
364 	 * The nsw_cluster_max is constrained by the number of pages an XIO
365 	 * holds, i.e., (MAXPHYS/PAGE_SIZE) and our locally defined
366 	 * MAX_PAGEOUT_CLUSTER.   Also be aware that swap ops are
367 	 * constrained by the swap device interleave stripe size.
368 	 *
369 	 * Currently we hardwire nsw_wcount_async to 4.  This limit is
370 	 * designed to prevent other I/O from having high latencies due to
371 	 * our pageout I/O.  The value 4 works well for one or two active swap
372 	 * devices but is probably a little low if you have more.  Even so,
373 	 * a higher value would probably generate only a limited improvement
374 	 * with three or four active swap devices since the system does not
375 	 * typically have to pageout at extreme bandwidths.   We will want
376 	 * at least 2 per swap devices, and 4 is a pretty good value if you
377 	 * have one NFS swap device due to the command/ack latency over NFS.
378 	 * So it all works out pretty well.
379 	 */
380 
381 	nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER);
382 
383 	nsw_rcount = (nswbuf_kva + 1) / 2;
384 	nsw_wcount_sync = (nswbuf_kva + 3) / 4;
385 	nsw_wcount_async = 4;
386 	nsw_wcount_async_max = nsw_wcount_async;
387 
388 	/*
389 	 * The zone is dynamically allocated so generally size it to
390 	 * maxswzone (32MB to 256GB of KVM).  Set a minimum size based
391 	 * on physical memory of around 8x (each swblock can hold 16 pages).
392 	 *
393 	 * With the advent of SSDs (vs HDs) the practical (swap:memory) ratio
394 	 * has increased dramatically.
395 	 */
396 	n = vmstats.v_page_count / 2;
397 	if (maxswzone && n < maxswzone / sizeof(struct swblock))
398 		n = maxswzone / sizeof(struct swblock);
399 	n2 = n;
400 
401 	do {
402 		swap_zone = zinit(
403 			"SWAPMETA",
404 			sizeof(struct swblock),
405 			n,
406 			ZONE_INTERRUPT);
407 		if (swap_zone != NULL)
408 			break;
409 		/*
410 		 * if the allocation failed, try a zone two thirds the
411 		 * size of the previous attempt.
412 		 */
413 		n -= ((n + 2) / 3);
414 	} while (n > 0);
415 
416 	if (swap_zone == NULL)
417 		panic("swap_pager_swap_init: swap_zone == NULL");
418 	if (n2 != n)
419 		kprintf("Swap zone entries reduced from %d to %d.\n", n2, n);
420 }
421 
422 /*
423  * SWAP_PAGER_ALLOC() -	allocate a new OBJT_SWAP VM object and instantiate
424  *			its metadata structures.
425  *
426  *	This routine is called from the mmap and fork code to create a new
427  *	OBJT_SWAP object.  We do this by creating an OBJT_DEFAULT object
428  *	and then converting it with swp_pager_meta_convert().
429  *
430  *	We only support unnamed objects.
431  *
432  * No restrictions.
433  */
434 vm_object_t
435 swap_pager_alloc(void *handle, off_t size, vm_prot_t prot, off_t offset)
436 {
437 	vm_object_t object;
438 
439 	KKASSERT(handle == NULL);
440 	object = vm_object_allocate_hold(OBJT_DEFAULT,
441 					 OFF_TO_IDX(offset + PAGE_MASK + size));
442 	swp_pager_meta_convert(object);
443 	vm_object_drop(object);
444 
445 	return (object);
446 }
447 
448 /*
449  * SWAP_PAGER_DEALLOC() -	remove swap metadata from object
450  *
451  *	The swap backing for the object is destroyed.  The code is
452  *	designed such that we can reinstantiate it later, but this
453  *	routine is typically called only when the entire object is
454  *	about to be destroyed.
455  *
456  * The object must be locked or unreferenceable.
457  * No other requirements.
458  */
459 static void
460 swap_pager_dealloc(vm_object_t object)
461 {
462 	vm_object_hold(object);
463 	vm_object_pip_wait(object, "swpdea");
464 
465 	/*
466 	 * Free all remaining metadata.  We only bother to free it from
467 	 * the swap meta data.  We do not attempt to free swapblk's still
468 	 * associated with vm_page_t's for this object.  We do not care
469 	 * if paging is still in progress on some objects.
470 	 */
471 	swp_pager_meta_free_all(object);
472 	vm_object_drop(object);
473 }
474 
475 /************************************************************************
476  *			SWAP PAGER BITMAP ROUTINES			*
477  ************************************************************************/
478 
479 /*
480  * SWP_PAGER_GETSWAPSPACE() -	allocate raw swap space
481  *
482  *	Allocate swap for the requested number of pages.  The starting
483  *	swap block number (a page index) is returned or SWAPBLK_NONE
484  *	if the allocation failed.
485  *
486  *	Also has the side effect of advising that somebody made a mistake
487  *	when they configured swap and didn't configure enough.
488  *
489  * The caller must hold the object.
490  * This routine may not block.
491  */
492 static __inline swblk_t
493 swp_pager_getswapspace(vm_object_t object, int npages)
494 {
495 	swblk_t blk;
496 
497 	lwkt_gettoken(&vm_token);
498 	blk = blist_allocat(swapblist, npages, swapiterator);
499 	if (blk == SWAPBLK_NONE)
500 		blk = blist_allocat(swapblist, npages, 0);
501 	if (blk == SWAPBLK_NONE) {
502 		if (swap_pager_full != 2) {
503 			if (vm_swap_max == 0)
504 				kprintf("Warning: The system would like to "
505 					"page to swap but no swap space "
506 					"is configured!\n");
507 			else
508 				kprintf("swap_pager_getswapspace: "
509 					"swap full allocating %d pages\n",
510 					npages);
511 			swap_pager_full = 2;
512 			if (swap_pager_almost_full == 0)
513 				swap_fail_ticks = ticks;
514 			swap_pager_almost_full = 1;
515 		}
516 	} else {
517 		/* swapiterator = blk; disable for now, doesn't work well */
518 		swapacctspace(blk, -npages);
519 		if (object->type == OBJT_SWAP)
520 			vm_swap_anon_use += npages;
521 		else
522 			vm_swap_cache_use += npages;
523 		swp_sizecheck();
524 	}
525 	lwkt_reltoken(&vm_token);
526 	return(blk);
527 }
528 
529 /*
530  * SWP_PAGER_FREESWAPSPACE() -	free raw swap space
531  *
532  *	This routine returns the specified swap blocks back to the bitmap.
533  *
534  *	Note:  This routine may not block (it could in the old swap code),
535  *	and through the use of the new blist routines it does not block.
536  *
537  * This routine may not block.
538  */
539 
540 static __inline void
541 swp_pager_freeswapspace(vm_object_t object, swblk_t blk, int npages)
542 {
543 	struct swdevt *sp = &swdevt[BLK2DEVIDX(blk)];
544 
545 	lwkt_gettoken(&vm_token);
546 	sp->sw_nused -= npages;
547 	if (object->type == OBJT_SWAP)
548 		vm_swap_anon_use -= npages;
549 	else
550 		vm_swap_cache_use -= npages;
551 
552 	if (sp->sw_flags & SW_CLOSING) {
553 		lwkt_reltoken(&vm_token);
554 		return;
555 	}
556 
557 	blist_free(swapblist, blk, npages);
558 	vm_swap_size += npages;
559 	swp_sizecheck();
560 	lwkt_reltoken(&vm_token);
561 }
562 
563 /*
564  * SWAP_PAGER_FREESPACE() -	frees swap blocks associated with a page
565  *				range within an object.
566  *
567  *	This is a globally accessible routine.
568  *
569  *	This routine removes swapblk assignments from swap metadata.
570  *
571  *	The external callers of this routine typically have already destroyed
572  *	or renamed vm_page_t's associated with this range in the object so
573  *	we should be ok.
574  *
575  * No requirements.
576  */
577 void
578 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_pindex_t size)
579 {
580 	vm_object_hold(object);
581 	swp_pager_meta_free(object, start, size);
582 	vm_object_drop(object);
583 }
584 
585 /*
586  * No requirements.
587  */
588 void
589 swap_pager_freespace_all(vm_object_t object)
590 {
591 	vm_object_hold(object);
592 	swp_pager_meta_free_all(object);
593 	vm_object_drop(object);
594 }
595 
596 /*
597  * This function conditionally frees swap cache swap starting at
598  * (*basei) in the object.  (count) swap blocks will be nominally freed.
599  * The actual number of blocks freed can be more or less than the
600  * requested number.
601  *
602  * This function nominally returns the number of blocks freed.  However,
603  * the actual number of blocks freed may be less then the returned value.
604  * If the function is unable to exhaust the object or if it is able to
605  * free (approximately) the requested number of blocks it returns
606  * a value n > count.
607  *
608  * If we exhaust the object we will return a value n <= count.
609  *
610  * The caller must hold the object.
611  *
612  * WARNING!  If count == 0 then -1 can be returned as a degenerate case,
613  *	     callers should always pass a count value > 0.
614  */
615 static int swap_pager_condfree_callback(struct swblock *swap, void *data);
616 
617 int
618 swap_pager_condfree(vm_object_t object, vm_pindex_t *basei, int count)
619 {
620 	struct swfreeinfo info;
621 	int n;
622 	int t;
623 
624 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
625 
626 	info.object = object;
627 	info.basei = *basei;	/* skip up to this page index */
628 	info.begi = count;	/* max swap pages to destroy */
629 	info.endi = count * 8;	/* max swblocks to scan */
630 
631 	swblock_rb_tree_RB_SCAN(&object->swblock_root, rb_swblock_condcmp,
632 				swap_pager_condfree_callback, &info);
633 	*basei = info.basei;
634 
635 	/*
636 	 * Take the higher difference swblocks vs pages
637 	 */
638 	n = count - (int)info.begi;
639 	t = count * 8 - (int)info.endi;
640 	if (n < t)
641 		n = t;
642 	if (n < 1)
643 		n = 1;
644 	return(n);
645 }
646 
647 /*
648  * The idea is to free whole meta-block to avoid fragmenting
649  * the swap space or disk I/O.  We only do this if NO VM pages
650  * are present.
651  *
652  * We do not have to deal with clearing PG_SWAPPED in related VM
653  * pages because there are no related VM pages.
654  *
655  * The caller must hold the object.
656  */
657 static int
658 swap_pager_condfree_callback(struct swblock *swap, void *data)
659 {
660 	struct swfreeinfo *info = data;
661 	vm_object_t object = info->object;
662 	int i;
663 
664 	for (i = 0; i < SWAP_META_PAGES; ++i) {
665 		if (vm_page_lookup(object, swap->swb_index + i))
666 			break;
667 	}
668 	info->basei = swap->swb_index + SWAP_META_PAGES;
669 	if (i == SWAP_META_PAGES) {
670 		info->begi -= swap->swb_count;
671 		swap_pager_freespace(object, swap->swb_index, SWAP_META_PAGES);
672 	}
673 	--info->endi;
674 	if ((int)info->begi < 0 || (int)info->endi < 0)
675 		return(-1);
676 	lwkt_yield();
677 	return(0);
678 }
679 
680 /*
681  * Called by vm_page_alloc() when a new VM page is inserted
682  * into a VM object.  Checks whether swap has been assigned to
683  * the page and sets PG_SWAPPED as necessary.
684  *
685  * (m) must be busied by caller and remains busied on return.
686  */
687 void
688 swap_pager_page_inserted(vm_page_t m)
689 {
690 	if (m->object->swblock_count) {
691 		vm_object_hold(m->object);
692 		if (swp_pager_meta_ctl(m->object, m->pindex, 0) != SWAPBLK_NONE)
693 			vm_page_flag_set(m, PG_SWAPPED);
694 		vm_object_drop(m->object);
695 	}
696 }
697 
698 /*
699  * SWAP_PAGER_RESERVE() - reserve swap blocks in object
700  *
701  *	Assigns swap blocks to the specified range within the object.  The
702  *	swap blocks are not zerod.  Any previous swap assignment is destroyed.
703  *
704  *	Returns 0 on success, -1 on failure.
705  *
706  * The caller is responsible for avoiding races in the specified range.
707  * No other requirements.
708  */
709 int
710 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
711 {
712 	int n = 0;
713 	swblk_t blk = SWAPBLK_NONE;
714 	vm_pindex_t beg = start;	/* save start index */
715 
716 	vm_object_hold(object);
717 
718 	while (size) {
719 		if (n == 0) {
720 			n = BLIST_MAX_ALLOC;
721 			while ((blk = swp_pager_getswapspace(object, n)) ==
722 			       SWAPBLK_NONE)
723 			{
724 				n >>= 1;
725 				if (n == 0) {
726 					swp_pager_meta_free(object, beg,
727 							    start - beg);
728 					vm_object_drop(object);
729 					return(-1);
730 				}
731 			}
732 		}
733 		swp_pager_meta_build(object, start, blk);
734 		--size;
735 		++start;
736 		++blk;
737 		--n;
738 	}
739 	swp_pager_meta_free(object, start, n);
740 	vm_object_drop(object);
741 	return(0);
742 }
743 
744 /*
745  * SWAP_PAGER_COPY() -  copy blocks from source pager to destination pager
746  *			and destroy the source.
747  *
748  *	Copy any valid swapblks from the source to the destination.  In
749  *	cases where both the source and destination have a valid swapblk,
750  *	we keep the destination's.
751  *
752  *	This routine is allowed to block.  It may block allocating metadata
753  *	indirectly through swp_pager_meta_build() or if paging is still in
754  *	progress on the source.
755  *
756  *	XXX vm_page_collapse() kinda expects us not to block because we
757  *	supposedly do not need to allocate memory, but for the moment we
758  *	*may* have to get a little memory from the zone allocator, but
759  *	it is taken from the interrupt memory.  We should be ok.
760  *
761  *	The source object contains no vm_page_t's (which is just as well)
762  *	The source object is of type OBJT_SWAP.
763  *
764  *	The source and destination objects must be held by the caller.
765  */
766 void
767 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject,
768 		vm_pindex_t base_index, int destroysource)
769 {
770 	vm_pindex_t i;
771 
772 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(srcobject));
773 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(dstobject));
774 
775 	/*
776 	 * transfer source to destination.
777 	 */
778 	for (i = 0; i < dstobject->size; ++i) {
779 		swblk_t dstaddr;
780 
781 		/*
782 		 * Locate (without changing) the swapblk on the destination,
783 		 * unless it is invalid in which case free it silently, or
784 		 * if the destination is a resident page, in which case the
785 		 * source is thrown away.
786 		 */
787 		dstaddr = swp_pager_meta_ctl(dstobject, i, 0);
788 
789 		if (dstaddr == SWAPBLK_NONE) {
790 			/*
791 			 * Destination has no swapblk and is not resident,
792 			 * copy source.
793 			 */
794 			swblk_t srcaddr;
795 
796 			srcaddr = swp_pager_meta_ctl(srcobject,
797 						     base_index + i, SWM_POP);
798 
799 			if (srcaddr != SWAPBLK_NONE)
800 				swp_pager_meta_build(dstobject, i, srcaddr);
801 		} else {
802 			/*
803 			 * Destination has valid swapblk or it is represented
804 			 * by a resident page.  We destroy the sourceblock.
805 			 */
806 			swp_pager_meta_ctl(srcobject, base_index + i, SWM_FREE);
807 		}
808 	}
809 
810 	/*
811 	 * Free left over swap blocks in source.
812 	 *
813 	 * We have to revert the type to OBJT_DEFAULT so we do not accidently
814 	 * double-remove the object from the swap queues.
815 	 */
816 	if (destroysource) {
817 		/*
818 		 * Reverting the type is not necessary, the caller is going
819 		 * to destroy srcobject directly, but I'm doing it here
820 		 * for consistency since we've removed the object from its
821 		 * queues.
822 		 */
823 		swp_pager_meta_free_all(srcobject);
824 		if (srcobject->type == OBJT_SWAP)
825 			srcobject->type = OBJT_DEFAULT;
826 	}
827 }
828 
829 /*
830  * SWAP_PAGER_HASPAGE() -	determine if we have good backing store for
831  *				the requested page.
832  *
833  *	We determine whether good backing store exists for the requested
834  *	page and return TRUE if it does, FALSE if it doesn't.
835  *
836  *	If TRUE, we also try to determine how much valid, contiguous backing
837  *	store exists before and after the requested page within a reasonable
838  *	distance.  We do not try to restrict it to the swap device stripe
839  *	(that is handled in getpages/putpages).  It probably isn't worth
840  *	doing here.
841  *
842  * No requirements.
843  */
844 boolean_t
845 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex)
846 {
847 	swblk_t blk0;
848 
849 	/*
850 	 * do we have good backing store at the requested index ?
851 	 */
852 	vm_object_hold(object);
853 	blk0 = swp_pager_meta_ctl(object, pindex, 0);
854 
855 	if (blk0 == SWAPBLK_NONE) {
856 		vm_object_drop(object);
857 		return (FALSE);
858 	}
859 	vm_object_drop(object);
860 	return (TRUE);
861 }
862 
863 /*
864  * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
865  *
866  * This removes any associated swap backing store, whether valid or
867  * not, from the page.  This operates on any VM object, not just OBJT_SWAP
868  * objects.
869  *
870  * This routine is typically called when a page is made dirty, at
871  * which point any associated swap can be freed.  MADV_FREE also
872  * calls us in a special-case situation
873  *
874  * NOTE!!!  If the page is clean and the swap was valid, the caller
875  *	    should make the page dirty before calling this routine.
876  *	    This routine does NOT change the m->dirty status of the page.
877  *	    Also: MADV_FREE depends on it.
878  *
879  * The page must be busied.
880  * The caller can hold the object to avoid blocking, else we might block.
881  * No other requirements.
882  */
883 void
884 swap_pager_unswapped(vm_page_t m)
885 {
886 	if (m->flags & PG_SWAPPED) {
887 		vm_object_hold(m->object);
888 		KKASSERT(m->flags & PG_SWAPPED);
889 		swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE);
890 		vm_page_flag_clear(m, PG_SWAPPED);
891 		vm_object_drop(m->object);
892 	}
893 }
894 
895 /*
896  * SWAP_PAGER_STRATEGY() - read, write, free blocks
897  *
898  * This implements a VM OBJECT strategy function using swap backing store.
899  * This can operate on any VM OBJECT type, not necessarily just OBJT_SWAP
900  * types.
901  *
902  * This is intended to be a cacheless interface (i.e. caching occurs at
903  * higher levels), and is also used as a swap-based SSD cache for vnode
904  * and device objects.
905  *
906  * All I/O goes directly to and from the swap device.
907  *
908  * We currently attempt to run I/O synchronously or asynchronously as
909  * the caller requests.  This isn't perfect because we loose error
910  * sequencing when we run multiple ops in parallel to satisfy a request.
911  * But this is swap, so we let it all hang out.
912  *
913  * No requirements.
914  */
915 void
916 swap_pager_strategy(vm_object_t object, struct bio *bio)
917 {
918 	struct buf *bp = bio->bio_buf;
919 	struct bio *nbio;
920 	vm_pindex_t start;
921 	vm_pindex_t biox_blkno = 0;
922 	int count;
923 	char *data;
924 	struct bio *biox;
925 	struct buf *bufx;
926 #if 0
927 	struct bio_track *track;
928 #endif
929 
930 #if 0
931 	/*
932 	 * tracking for swapdev vnode I/Os
933 	 */
934 	if (bp->b_cmd == BUF_CMD_READ)
935 		track = &swapdev_vp->v_track_read;
936 	else
937 		track = &swapdev_vp->v_track_write;
938 #endif
939 
940 	if (bp->b_bcount & PAGE_MASK) {
941 		bp->b_error = EINVAL;
942 		bp->b_flags |= B_ERROR | B_INVAL;
943 		biodone(bio);
944 		kprintf("swap_pager_strategy: bp %p offset %lld size %d, "
945 			"not page bounded\n",
946 			bp, (long long)bio->bio_offset, (int)bp->b_bcount);
947 		return;
948 	}
949 
950 	/*
951 	 * Clear error indication, initialize page index, count, data pointer.
952 	 */
953 	bp->b_error = 0;
954 	bp->b_flags &= ~B_ERROR;
955 	bp->b_resid = bp->b_bcount;
956 
957 	start = (vm_pindex_t)(bio->bio_offset >> PAGE_SHIFT);
958 	count = howmany(bp->b_bcount, PAGE_SIZE);
959 	data = bp->b_data;
960 
961 	/*
962 	 * Deal with BUF_CMD_FREEBLKS
963 	 */
964 	if (bp->b_cmd == BUF_CMD_FREEBLKS) {
965 		/*
966 		 * FREE PAGE(s) - destroy underlying swap that is no longer
967 		 *		  needed.
968 		 */
969 		vm_object_hold(object);
970 		swp_pager_meta_free(object, start, count);
971 		vm_object_drop(object);
972 		bp->b_resid = 0;
973 		biodone(bio);
974 		return;
975 	}
976 
977 	/*
978 	 * We need to be able to create a new cluster of I/O's.  We cannot
979 	 * use the caller fields of the passed bio so push a new one.
980 	 *
981 	 * Because nbio is just a placeholder for the cluster links,
982 	 * we can biodone() the original bio instead of nbio to make
983 	 * things a bit more efficient.
984 	 */
985 	nbio = push_bio(bio);
986 	nbio->bio_offset = bio->bio_offset;
987 	nbio->bio_caller_info1.cluster_head = NULL;
988 	nbio->bio_caller_info2.cluster_tail = NULL;
989 
990 	biox = NULL;
991 	bufx = NULL;
992 
993 	/*
994 	 * Execute read or write
995 	 */
996 	vm_object_hold(object);
997 
998 	while (count > 0) {
999 		swblk_t blk;
1000 
1001 		/*
1002 		 * Obtain block.  If block not found and writing, allocate a
1003 		 * new block and build it into the object.
1004 		 */
1005 		blk = swp_pager_meta_ctl(object, start, 0);
1006 		if ((blk == SWAPBLK_NONE) && bp->b_cmd != BUF_CMD_READ) {
1007 			blk = swp_pager_getswapspace(object, 1);
1008 			if (blk == SWAPBLK_NONE) {
1009 				bp->b_error = ENOMEM;
1010 				bp->b_flags |= B_ERROR;
1011 				break;
1012 			}
1013 			swp_pager_meta_build(object, start, blk);
1014 		}
1015 
1016 		/*
1017 		 * Do we have to flush our current collection?  Yes if:
1018 		 *
1019 		 *	- no swap block at this index
1020 		 *	- swap block is not contiguous
1021 		 *	- we cross a physical disk boundry in the
1022 		 *	  stripe.
1023 		 */
1024 		if (
1025 		    biox && (biox_blkno + btoc(bufx->b_bcount) != blk ||
1026 		     ((biox_blkno ^ blk) & ~SWB_DMMASK)
1027 		    )
1028 		) {
1029 			if (bp->b_cmd == BUF_CMD_READ) {
1030 				++mycpu->gd_cnt.v_swapin;
1031 				mycpu->gd_cnt.v_swappgsin += btoc(bufx->b_bcount);
1032 			} else {
1033 				++mycpu->gd_cnt.v_swapout;
1034 				mycpu->gd_cnt.v_swappgsout += btoc(bufx->b_bcount);
1035 				bufx->b_dirtyend = bufx->b_bcount;
1036 			}
1037 
1038 			/*
1039 			 * Finished with this buf.
1040 			 */
1041 			KKASSERT(bufx->b_bcount != 0);
1042 			if (bufx->b_cmd != BUF_CMD_READ)
1043 				bufx->b_dirtyend = bufx->b_bcount;
1044 			biox = NULL;
1045 			bufx = NULL;
1046 		}
1047 
1048 		/*
1049 		 * Add new swapblk to biox, instantiating biox if necessary.
1050 		 * Zero-fill reads are able to take a shortcut.
1051 		 */
1052 		if (blk == SWAPBLK_NONE) {
1053 			/*
1054 			 * We can only get here if we are reading.
1055 			 */
1056 			bzero(data, PAGE_SIZE);
1057 			bp->b_resid -= PAGE_SIZE;
1058 		} else {
1059 			if (biox == NULL) {
1060 				/* XXX chain count > 4, wait to <= 4 */
1061 
1062 				bufx = getpbuf(NULL);
1063 				biox = &bufx->b_bio1;
1064 				cluster_append(nbio, bufx);
1065 				bufx->b_cmd = bp->b_cmd;
1066 				biox->bio_done = swap_chain_iodone;
1067 				biox->bio_offset = (off_t)blk << PAGE_SHIFT;
1068 				biox->bio_caller_info1.cluster_parent = nbio;
1069 				biox_blkno = blk;
1070 				bufx->b_bcount = 0;
1071 				bufx->b_data = data;
1072 			}
1073 			bufx->b_bcount += PAGE_SIZE;
1074 		}
1075 		--count;
1076 		++start;
1077 		data += PAGE_SIZE;
1078 	}
1079 
1080 	vm_object_drop(object);
1081 
1082 	/*
1083 	 *  Flush out last buffer
1084 	 */
1085 	if (biox) {
1086 		if (bufx->b_cmd == BUF_CMD_READ) {
1087 			++mycpu->gd_cnt.v_swapin;
1088 			mycpu->gd_cnt.v_swappgsin += btoc(bufx->b_bcount);
1089 		} else {
1090 			++mycpu->gd_cnt.v_swapout;
1091 			mycpu->gd_cnt.v_swappgsout += btoc(bufx->b_bcount);
1092 			bufx->b_dirtyend = bufx->b_bcount;
1093 		}
1094 		KKASSERT(bufx->b_bcount);
1095 		if (bufx->b_cmd != BUF_CMD_READ)
1096 			bufx->b_dirtyend = bufx->b_bcount;
1097 		/* biox, bufx = NULL */
1098 	}
1099 
1100 	/*
1101 	 * Now initiate all the I/O.  Be careful looping on our chain as
1102 	 * I/O's may complete while we are still initiating them.
1103 	 *
1104 	 * If the request is a 100% sparse read no bios will be present
1105 	 * and we just biodone() the buffer.
1106 	 */
1107 	nbio->bio_caller_info2.cluster_tail = NULL;
1108 	bufx = nbio->bio_caller_info1.cluster_head;
1109 
1110 	if (bufx) {
1111 		while (bufx) {
1112 			biox = &bufx->b_bio1;
1113 			BUF_KERNPROC(bufx);
1114 			bufx = bufx->b_cluster_next;
1115 			vn_strategy(swapdev_vp, biox);
1116 		}
1117 	} else {
1118 		biodone(bio);
1119 	}
1120 
1121 	/*
1122 	 * Completion of the cluster will also call biodone_chain(nbio).
1123 	 * We never call biodone(nbio) so we don't have to worry about
1124 	 * setting up a bio_done callback.  It's handled in the sub-IO.
1125 	 */
1126 	/**/
1127 }
1128 
1129 /*
1130  * biodone callback
1131  *
1132  * No requirements.
1133  */
1134 static void
1135 swap_chain_iodone(struct bio *biox)
1136 {
1137 	struct buf **nextp;
1138 	struct buf *bufx;	/* chained sub-buffer */
1139 	struct bio *nbio;	/* parent nbio with chain glue */
1140 	struct buf *bp;		/* original bp associated with nbio */
1141 	int chain_empty;
1142 
1143 	bufx = biox->bio_buf;
1144 	nbio = biox->bio_caller_info1.cluster_parent;
1145 	bp = nbio->bio_buf;
1146 
1147 	/*
1148 	 * Update the original buffer
1149 	 */
1150         KKASSERT(bp != NULL);
1151 	if (bufx->b_flags & B_ERROR) {
1152 		atomic_set_int(&bufx->b_flags, B_ERROR);
1153 		bp->b_error = bufx->b_error;	/* race ok */
1154 	} else if (bufx->b_resid != 0) {
1155 		atomic_set_int(&bufx->b_flags, B_ERROR);
1156 		bp->b_error = EINVAL;		/* race ok */
1157 	} else {
1158 		atomic_subtract_int(&bp->b_resid, bufx->b_bcount);
1159 	}
1160 
1161 	/*
1162 	 * Remove us from the chain.
1163 	 */
1164 	spin_lock(&swapbp_spin);
1165 	nextp = &nbio->bio_caller_info1.cluster_head;
1166 	while (*nextp != bufx) {
1167 		KKASSERT(*nextp != NULL);
1168 		nextp = &(*nextp)->b_cluster_next;
1169 	}
1170 	*nextp = bufx->b_cluster_next;
1171 	chain_empty = (nbio->bio_caller_info1.cluster_head == NULL);
1172 	spin_unlock(&swapbp_spin);
1173 
1174 	/*
1175 	 * Clean up bufx.  If the chain is now empty we finish out
1176 	 * the parent.  Note that we may be racing other completions
1177 	 * so we must use the chain_empty status from above.
1178 	 */
1179 	if (chain_empty) {
1180 		if (bp->b_resid != 0 && !(bp->b_flags & B_ERROR)) {
1181 			atomic_set_int(&bp->b_flags, B_ERROR);
1182 			bp->b_error = EINVAL;
1183 		}
1184 		biodone_chain(nbio);
1185         }
1186         relpbuf(bufx, NULL);
1187 }
1188 
1189 /*
1190  * SWAP_PAGER_GETPAGES() - bring page in from swap
1191  *
1192  * The requested page may have to be brought in from swap.  Calculate the
1193  * swap block and bring in additional pages if possible.  All pages must
1194  * have contiguous swap block assignments and reside in the same object.
1195  *
1196  * The caller has a single vm_object_pip_add() reference prior to
1197  * calling us and we should return with the same.
1198  *
1199  * The caller has BUSY'd the page.  We should return with (*mpp) left busy,
1200  * and any additinal pages unbusied.
1201  *
1202  * If the caller encounters a PG_RAM page it will pass it to us even though
1203  * it may be valid and dirty.  We cannot overwrite the page in this case!
1204  * The case is used to allow us to issue pure read-aheads.
1205  *
1206  * NOTE! XXX This code does not entirely pipeline yet due to the fact that
1207  *       the PG_RAM page is validated at the same time as mreq.  What we
1208  *	 really need to do is issue a separate read-ahead pbuf.
1209  *
1210  * No requirements.
1211  */
1212 static int
1213 swap_pager_getpage(vm_object_t object, vm_page_t *mpp, int seqaccess)
1214 {
1215 	struct buf *bp;
1216 	struct bio *bio;
1217 	vm_page_t mreq;
1218 	vm_page_t m;
1219 	vm_offset_t kva;
1220 	swblk_t blk;
1221 	int i;
1222 	int j;
1223 	int raonly;
1224 	int error;
1225 	u_int32_t flags;
1226 	vm_page_t marray[XIO_INTERNAL_PAGES];
1227 
1228 	mreq = *mpp;
1229 
1230 	vm_object_hold(object);
1231 	if (mreq->object != object) {
1232 		panic("swap_pager_getpages: object mismatch %p/%p",
1233 		    object,
1234 		    mreq->object
1235 		);
1236 	}
1237 
1238 	/*
1239 	 * We don't want to overwrite a fully valid page as it might be
1240 	 * dirty.  This case can occur when e.g. vm_fault hits a perfectly
1241 	 * valid page with PG_RAM set.
1242 	 *
1243 	 * In this case we see if the next page is a suitable page-in
1244 	 * candidate and if it is we issue read-ahead.  PG_RAM will be
1245 	 * set on the last page of the read-ahead to continue the pipeline.
1246 	 */
1247 	if (mreq->valid == VM_PAGE_BITS_ALL) {
1248 		if (swap_burst_read == 0 || mreq->pindex + 1 >= object->size) {
1249 			vm_object_drop(object);
1250 			return(VM_PAGER_OK);
1251 		}
1252 		blk = swp_pager_meta_ctl(object, mreq->pindex + 1, 0);
1253 		if (blk == SWAPBLK_NONE) {
1254 			vm_object_drop(object);
1255 			return(VM_PAGER_OK);
1256 		}
1257 		m = vm_page_lookup_busy_try(object, mreq->pindex + 1,
1258 					    TRUE, &error);
1259 		if (error) {
1260 			vm_object_drop(object);
1261 			return(VM_PAGER_OK);
1262 		} else if (m == NULL) {
1263 			/*
1264 			 * Use VM_ALLOC_QUICK to avoid blocking on cache
1265 			 * page reuse.
1266 			 */
1267 			m = vm_page_alloc(object, mreq->pindex + 1,
1268 					  VM_ALLOC_QUICK);
1269 			if (m == NULL) {
1270 				vm_object_drop(object);
1271 				return(VM_PAGER_OK);
1272 			}
1273 		} else {
1274 			if (m->valid) {
1275 				vm_page_wakeup(m);
1276 				vm_object_drop(object);
1277 				return(VM_PAGER_OK);
1278 			}
1279 			vm_page_unqueue_nowakeup(m);
1280 		}
1281 		/* page is busy */
1282 		mreq = m;
1283 		raonly = 1;
1284 	} else {
1285 		raonly = 0;
1286 	}
1287 
1288 	/*
1289 	 * Try to block-read contiguous pages from swap if sequential,
1290 	 * otherwise just read one page.  Contiguous pages from swap must
1291 	 * reside within a single device stripe because the I/O cannot be
1292 	 * broken up across multiple stripes.
1293 	 *
1294 	 * Note that blk and iblk can be SWAPBLK_NONE but the loop is
1295 	 * set up such that the case(s) are handled implicitly.
1296 	 */
1297 	blk = swp_pager_meta_ctl(mreq->object, mreq->pindex, 0);
1298 	marray[0] = mreq;
1299 
1300 	for (i = 1; i <= swap_burst_read &&
1301 		    i < XIO_INTERNAL_PAGES &&
1302 		    mreq->pindex + i < object->size; ++i) {
1303 		swblk_t iblk;
1304 
1305 		iblk = swp_pager_meta_ctl(object, mreq->pindex + i, 0);
1306 		if (iblk != blk + i)
1307 			break;
1308 		if ((blk ^ iblk) & ~SWB_DMMASK)
1309 			break;
1310 		m = vm_page_lookup_busy_try(object, mreq->pindex + i,
1311 					    TRUE, &error);
1312 		if (error) {
1313 			break;
1314 		} else if (m == NULL) {
1315 			/*
1316 			 * Use VM_ALLOC_QUICK to avoid blocking on cache
1317 			 * page reuse.
1318 			 */
1319 			m = vm_page_alloc(object, mreq->pindex + i,
1320 					  VM_ALLOC_QUICK);
1321 			if (m == NULL)
1322 				break;
1323 		} else {
1324 			if (m->valid) {
1325 				vm_page_wakeup(m);
1326 				break;
1327 			}
1328 			vm_page_unqueue_nowakeup(m);
1329 		}
1330 		/* page is busy */
1331 		marray[i] = m;
1332 	}
1333 	if (i > 1)
1334 		vm_page_flag_set(marray[i - 1], PG_RAM);
1335 
1336 	/*
1337 	 * If mreq is the requested page and we have nothing to do return
1338 	 * VM_PAGER_FAIL.  If raonly is set mreq is just another read-ahead
1339 	 * page and must be cleaned up.
1340 	 */
1341 	if (blk == SWAPBLK_NONE) {
1342 		KKASSERT(i == 1);
1343 		if (raonly) {
1344 			vnode_pager_freepage(mreq);
1345 			vm_object_drop(object);
1346 			return(VM_PAGER_OK);
1347 		} else {
1348 			vm_object_drop(object);
1349 			return(VM_PAGER_FAIL);
1350 		}
1351 	}
1352 
1353 	/*
1354 	 * map our page(s) into kva for input
1355 	 */
1356 	bp = getpbuf_kva(&nsw_rcount);
1357 	bio = &bp->b_bio1;
1358 	kva = (vm_offset_t) bp->b_kvabase;
1359 	bcopy(marray, bp->b_xio.xio_pages, i * sizeof(vm_page_t));
1360 	pmap_qenter(kva, bp->b_xio.xio_pages, i);
1361 
1362 	bp->b_data = (caddr_t)kva;
1363 	bp->b_bcount = PAGE_SIZE * i;
1364 	bp->b_xio.xio_npages = i;
1365 	bio->bio_done = swp_pager_async_iodone;
1366 	bio->bio_offset = (off_t)blk << PAGE_SHIFT;
1367 	bio->bio_caller_info1.index = SWBIO_READ;
1368 
1369 	/*
1370 	 * Set index.  If raonly set the index beyond the array so all
1371 	 * the pages are treated the same, otherwise the original mreq is
1372 	 * at index 0.
1373 	 */
1374 	if (raonly)
1375 		bio->bio_driver_info = (void *)(intptr_t)i;
1376 	else
1377 		bio->bio_driver_info = (void *)(intptr_t)0;
1378 
1379 	for (j = 0; j < i; ++j)
1380 		vm_page_flag_set(bp->b_xio.xio_pages[j], PG_SWAPINPROG);
1381 
1382 	mycpu->gd_cnt.v_swapin++;
1383 	mycpu->gd_cnt.v_swappgsin += bp->b_xio.xio_npages;
1384 
1385 	/*
1386 	 * We still hold the lock on mreq, and our automatic completion routine
1387 	 * does not remove it.
1388 	 */
1389 	vm_object_pip_add(object, bp->b_xio.xio_npages);
1390 
1391 	/*
1392 	 * perform the I/O.  NOTE!!!  bp cannot be considered valid after
1393 	 * this point because we automatically release it on completion.
1394 	 * Instead, we look at the one page we are interested in which we
1395 	 * still hold a lock on even through the I/O completion.
1396 	 *
1397 	 * The other pages in our m[] array are also released on completion,
1398 	 * so we cannot assume they are valid anymore either.
1399 	 */
1400 	bp->b_cmd = BUF_CMD_READ;
1401 	BUF_KERNPROC(bp);
1402 	vn_strategy(swapdev_vp, bio);
1403 
1404 	/*
1405 	 * Wait for the page we want to complete.  PG_SWAPINPROG is always
1406 	 * cleared on completion.  If an I/O error occurs, SWAPBLK_NONE
1407 	 * is set in the meta-data.
1408 	 *
1409 	 * If this is a read-ahead only we return immediately without
1410 	 * waiting for I/O.
1411 	 */
1412 	if (raonly) {
1413 		vm_object_drop(object);
1414 		return(VM_PAGER_OK);
1415 	}
1416 
1417 	/*
1418 	 * Read-ahead includes originally requested page case.
1419 	 */
1420 	for (;;) {
1421 		flags = mreq->flags;
1422 		cpu_ccfence();
1423 		if ((flags & PG_SWAPINPROG) == 0)
1424 			break;
1425 		tsleep_interlock(mreq, 0);
1426 		if (!atomic_cmpset_int(&mreq->flags, flags,
1427 				       flags | PG_WANTED | PG_REFERENCED)) {
1428 			continue;
1429 		}
1430 		mycpu->gd_cnt.v_intrans++;
1431 		if (tsleep(mreq, PINTERLOCKED, "swread", hz*20)) {
1432 			kprintf(
1433 			    "swap_pager: indefinite wait buffer: "
1434 				" bp %p offset: %lld, size: %ld\n",
1435 			    bp,
1436 			    (long long)bio->bio_offset,
1437 			    (long)bp->b_bcount
1438 			);
1439 		}
1440 	}
1441 
1442 	/*
1443 	 * Disallow speculative reads prior to the PG_SWAPINPROG test.
1444 	 */
1445 	cpu_lfence();
1446 
1447 	/*
1448 	 * mreq is left busied after completion, but all the other pages
1449 	 * are freed.  If we had an unrecoverable read error the page will
1450 	 * not be valid.
1451 	 */
1452 	vm_object_drop(object);
1453 	if (mreq->valid != VM_PAGE_BITS_ALL)
1454 		return(VM_PAGER_ERROR);
1455 	else
1456 		return(VM_PAGER_OK);
1457 
1458 	/*
1459 	 * A final note: in a low swap situation, we cannot deallocate swap
1460 	 * and mark a page dirty here because the caller is likely to mark
1461 	 * the page clean when we return, causing the page to possibly revert
1462 	 * to all-zero's later.
1463 	 */
1464 }
1465 
1466 /*
1467  *	swap_pager_putpages:
1468  *
1469  *	Assign swap (if necessary) and initiate I/O on the specified pages.
1470  *
1471  *	We support both OBJT_DEFAULT and OBJT_SWAP objects.  DEFAULT objects
1472  *	are automatically converted to SWAP objects.
1473  *
1474  *	In a low memory situation we may block in vn_strategy(), but the new
1475  *	vm_page reservation system coupled with properly written VFS devices
1476  *	should ensure that no low-memory deadlock occurs.  This is an area
1477  *	which needs work.
1478  *
1479  *	The parent has N vm_object_pip_add() references prior to
1480  *	calling us and will remove references for rtvals[] that are
1481  *	not set to VM_PAGER_PEND.  We need to remove the rest on I/O
1482  *	completion.
1483  *
1484  *	The parent has soft-busy'd the pages it passes us and will unbusy
1485  *	those whos rtvals[] entry is not set to VM_PAGER_PEND on return.
1486  *	We need to unbusy the rest on I/O completion.
1487  *
1488  * No requirements.
1489  */
1490 void
1491 swap_pager_putpages(vm_object_t object, vm_page_t *m, int count,
1492 		    int flags, int *rtvals)
1493 {
1494 	int i;
1495 	int n = 0;
1496 
1497 	vm_object_hold(object);
1498 
1499 	if (count && m[0]->object != object) {
1500 		panic("swap_pager_getpages: object mismatch %p/%p",
1501 		    object,
1502 		    m[0]->object
1503 		);
1504 	}
1505 
1506 	/*
1507 	 * Step 1
1508 	 *
1509 	 * Turn object into OBJT_SWAP
1510 	 * Check for bogus sysops
1511 	 *
1512 	 * Force sync if not pageout process, we don't want any single
1513 	 * non-pageout process to be able to hog the I/O subsystem!  This
1514 	 * can be overridden by setting.
1515 	 */
1516 	if (object->type == OBJT_DEFAULT) {
1517 		if (object->type == OBJT_DEFAULT)
1518 			swp_pager_meta_convert(object);
1519 	}
1520 
1521 	/*
1522 	 * Normally we force synchronous swap I/O if this is not the
1523 	 * pageout daemon to prevent any single user process limited
1524 	 * via RLIMIT_RSS from hogging swap write bandwidth.
1525 	 */
1526 	if (curthread != pagethread && swap_user_async == 0)
1527 		flags |= VM_PAGER_PUT_SYNC;
1528 
1529 	/*
1530 	 * Step 2
1531 	 *
1532 	 * Update nsw parameters from swap_async_max sysctl values.
1533 	 * Do not let the sysop crash the machine with bogus numbers.
1534 	 */
1535 	if (swap_async_max != nsw_wcount_async_max) {
1536 		int n;
1537 
1538 		/*
1539 		 * limit range
1540 		 */
1541 		if ((n = swap_async_max) > nswbuf_kva / 2)
1542 			n = nswbuf_kva / 2;
1543 		if (n < 1)
1544 			n = 1;
1545 		swap_async_max = n;
1546 
1547 		/*
1548 		 * Adjust difference ( if possible ).  If the current async
1549 		 * count is too low, we may not be able to make the adjustment
1550 		 * at this time.
1551 		 *
1552 		 * vm_token needed for nsw_wcount sleep interlock
1553 		 */
1554 		lwkt_gettoken(&vm_token);
1555 		n -= nsw_wcount_async_max;
1556 		if (nsw_wcount_async + n >= 0) {
1557 			nsw_wcount_async_max += n;
1558 			pbuf_adjcount(&nsw_wcount_async, n);
1559 		}
1560 		lwkt_reltoken(&vm_token);
1561 	}
1562 
1563 	/*
1564 	 * Step 3
1565 	 *
1566 	 * Assign swap blocks and issue I/O.  We reallocate swap on the fly.
1567 	 * The page is left dirty until the pageout operation completes
1568 	 * successfully.
1569 	 */
1570 
1571 	for (i = 0; i < count; i += n) {
1572 		struct buf *bp;
1573 		struct bio *bio;
1574 		swblk_t blk;
1575 		int j;
1576 
1577 		/*
1578 		 * Maximum I/O size is limited by a number of factors.
1579 		 */
1580 
1581 		n = min(BLIST_MAX_ALLOC, count - i);
1582 		n = min(n, nsw_cluster_max);
1583 
1584 		lwkt_gettoken(&vm_token);
1585 
1586 		/*
1587 		 * Get biggest block of swap we can.  If we fail, fall
1588 		 * back and try to allocate a smaller block.  Don't go
1589 		 * overboard trying to allocate space if it would overly
1590 		 * fragment swap.
1591 		 */
1592 		while (
1593 		    (blk = swp_pager_getswapspace(object, n)) == SWAPBLK_NONE &&
1594 		    n > 4
1595 		) {
1596 			n >>= 1;
1597 		}
1598 		if (blk == SWAPBLK_NONE) {
1599 			for (j = 0; j < n; ++j)
1600 				rtvals[i+j] = VM_PAGER_FAIL;
1601 			lwkt_reltoken(&vm_token);
1602 			continue;
1603 		}
1604 		if (vm_report_swap_allocs > 0) {
1605 			kprintf("swap_alloc %08jx,%d\n", (intmax_t)blk, n);
1606 			--vm_report_swap_allocs;
1607 		}
1608 
1609 		/*
1610 		 * The I/O we are constructing cannot cross a physical
1611 		 * disk boundry in the swap stripe.
1612 		 */
1613 		if ((blk ^ (blk + n)) & ~SWB_DMMASK) {
1614 			j = ((blk + SWB_DMMAX) & ~SWB_DMMASK) - blk;
1615 			swp_pager_freeswapspace(object, blk + j, n - j);
1616 			n = j;
1617 		}
1618 
1619 		/*
1620 		 * All I/O parameters have been satisfied, build the I/O
1621 		 * request and assign the swap space.
1622 		 */
1623 		if ((flags & VM_PAGER_PUT_SYNC))
1624 			bp = getpbuf_kva(&nsw_wcount_sync);
1625 		else
1626 			bp = getpbuf_kva(&nsw_wcount_async);
1627 		bio = &bp->b_bio1;
1628 
1629 		lwkt_reltoken(&vm_token);
1630 
1631 		pmap_qenter((vm_offset_t)bp->b_data, &m[i], n);
1632 
1633 		bp->b_bcount = PAGE_SIZE * n;
1634 		bio->bio_offset = (off_t)blk << PAGE_SHIFT;
1635 
1636 		for (j = 0; j < n; ++j) {
1637 			vm_page_t mreq = m[i+j];
1638 
1639 			swp_pager_meta_build(mreq->object, mreq->pindex,
1640 					     blk + j);
1641 			if (object->type == OBJT_SWAP)
1642 				vm_page_dirty(mreq);
1643 			rtvals[i+j] = VM_PAGER_OK;
1644 
1645 			vm_page_flag_set(mreq, PG_SWAPINPROG);
1646 			bp->b_xio.xio_pages[j] = mreq;
1647 		}
1648 		bp->b_xio.xio_npages = n;
1649 
1650 		mycpu->gd_cnt.v_swapout++;
1651 		mycpu->gd_cnt.v_swappgsout += bp->b_xio.xio_npages;
1652 
1653 		bp->b_dirtyoff = 0;		/* req'd for NFS */
1654 		bp->b_dirtyend = bp->b_bcount;	/* req'd for NFS */
1655 		bp->b_cmd = BUF_CMD_WRITE;
1656 		bio->bio_caller_info1.index = SWBIO_WRITE;
1657 
1658 #if 0
1659 		/* PMAP TESTING CODE (useful, keep it in but #if 0'd) */
1660 		bio->bio_crc = iscsi_crc32(bp->b_data, bp->b_bcount);
1661 		{
1662 		    uint32_t crc = 0;
1663 		    for (j = 0; j < n; ++j) {
1664 			    vm_page_t mm = bp->b_xio.xio_pages[j];
1665 			    char *p = (char *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mm));
1666 			    crc = iscsi_crc32_ext(p, PAGE_SIZE, crc);
1667 		    }
1668 		    if (bio->bio_crc != crc) {
1669 			    kprintf("PREWRITE MISMATCH-A "
1670 				    "bdata=%08x dmap=%08x bdata=%08x (%d)\n",
1671 				    bio->bio_crc,
1672 				    crc,
1673 				    iscsi_crc32(bp->b_data, bp->b_bcount),
1674 				    bp->b_bcount);
1675 #ifdef _KERNEL_VIRTUAL
1676 			    madvise(bp->b_data, bp->b_bcount, MADV_INVAL);
1677 #endif
1678 			    crc = 0;
1679 			    for (j = 0; j < n; ++j) {
1680 				    vm_page_t mm = bp->b_xio.xio_pages[j];
1681 				    char *p = (char *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mm));
1682 				    crc = iscsi_crc32_ext(p, PAGE_SIZE, crc);
1683 			    }
1684 			    kprintf("PREWRITE MISMATCH-B "
1685 				    "bdata=%08x dmap=%08x\n",
1686 				    iscsi_crc32(bp->b_data, bp->b_bcount),
1687 				    crc);
1688 		    }
1689 		}
1690 #endif
1691 
1692 		/*
1693 		 * asynchronous
1694 		 */
1695 		if ((flags & VM_PAGER_PUT_SYNC) == 0) {
1696 			bio->bio_done = swp_pager_async_iodone;
1697 			BUF_KERNPROC(bp);
1698 			vn_strategy(swapdev_vp, bio);
1699 
1700 			for (j = 0; j < n; ++j)
1701 				rtvals[i+j] = VM_PAGER_PEND;
1702 			continue;
1703 		}
1704 
1705 		/*
1706 		 * Issue synchrnously.
1707 		 *
1708 		 * Wait for the sync I/O to complete, then update rtvals.
1709 		 * We just set the rtvals[] to VM_PAGER_PEND so we can call
1710 		 * our async completion routine at the end, thus avoiding a
1711 		 * double-free.
1712 		 */
1713 		bio->bio_caller_info1.index |= SWBIO_SYNC;
1714 		if (flags & VM_PAGER_TRY_TO_CACHE)
1715 			bio->bio_caller_info1.index |= SWBIO_TTC;
1716 		bio->bio_done = biodone_sync;
1717 		bio->bio_flags |= BIO_SYNC;
1718 		vn_strategy(swapdev_vp, bio);
1719 		biowait(bio, "swwrt");
1720 
1721 		for (j = 0; j < n; ++j)
1722 			rtvals[i+j] = VM_PAGER_PEND;
1723 
1724 		/*
1725 		 * Now that we are through with the bp, we can call the
1726 		 * normal async completion, which frees everything up.
1727 		 */
1728 		swp_pager_async_iodone(bio);
1729 	}
1730 	vm_object_drop(object);
1731 }
1732 
1733 /*
1734  * No requirements.
1735  *
1736  * Recalculate the low and high-water marks.
1737  */
1738 void
1739 swap_pager_newswap(void)
1740 {
1741 	/*
1742 	 * NOTE: vm_swap_max cannot exceed 1 billion blocks, which is the
1743 	 *	 limitation imposed by the blist code.  Remember that this
1744 	 *	 will be divided by NSWAP_MAX (4), so each swap device is
1745 	 *	 limited to around a terrabyte.
1746 	 */
1747 	if (vm_swap_max) {
1748 		nswap_lowat = (int64_t)vm_swap_max * 4 / 100;	/* 4% left */
1749 		nswap_hiwat = (int64_t)vm_swap_max * 6 / 100;	/* 6% left */
1750 		kprintf("swap low/high-water marks set to %d/%d\n",
1751 			nswap_lowat, nswap_hiwat);
1752 	} else {
1753 		nswap_lowat = 128;
1754 		nswap_hiwat = 512;
1755 	}
1756 	swp_sizecheck();
1757 }
1758 
1759 /*
1760  *	swp_pager_async_iodone:
1761  *
1762  *	Completion routine for asynchronous reads and writes from/to swap.
1763  *	Also called manually by synchronous code to finish up a bp.
1764  *
1765  *	For READ operations, the pages are PG_BUSY'd.  For WRITE operations,
1766  *	the pages are vm_page_t->busy'd.  For READ operations, we PG_BUSY
1767  *	unbusy all pages except the 'main' request page.  For WRITE
1768  *	operations, we vm_page_t->busy'd unbusy all pages ( we can do this
1769  *	because we marked them all VM_PAGER_PEND on return from putpages ).
1770  *
1771  *	This routine may not block.
1772  *
1773  * No requirements.
1774  */
1775 static void
1776 swp_pager_async_iodone(struct bio *bio)
1777 {
1778 	struct buf *bp = bio->bio_buf;
1779 	vm_object_t object = NULL;
1780 	int i;
1781 	int *nswptr;
1782 
1783 	/*
1784 	 * report error
1785 	 */
1786 	if (bp->b_flags & B_ERROR) {
1787 		kprintf(
1788 		    "swap_pager: I/O error - %s failed; offset %lld,"
1789 			"size %ld, error %d\n",
1790 		    ((bio->bio_caller_info1.index & SWBIO_READ) ?
1791 			"pagein" : "pageout"),
1792 		    (long long)bio->bio_offset,
1793 		    (long)bp->b_bcount,
1794 		    bp->b_error
1795 		);
1796 	}
1797 
1798 	/*
1799 	 * set object.
1800 	 */
1801 	if (bp->b_xio.xio_npages)
1802 		object = bp->b_xio.xio_pages[0]->object;
1803 
1804 #if 0
1805 	/* PMAP TESTING CODE (useful, keep it in but #if 0'd) */
1806 	if (bio->bio_caller_info1.index & SWBIO_WRITE) {
1807 		if (bio->bio_crc != iscsi_crc32(bp->b_data, bp->b_bcount)) {
1808 			kprintf("SWAPOUT: BADCRC %08x %08x\n",
1809 				bio->bio_crc,
1810 				iscsi_crc32(bp->b_data, bp->b_bcount));
1811 			for (i = 0; i < bp->b_xio.xio_npages; ++i) {
1812 				vm_page_t m = bp->b_xio.xio_pages[i];
1813 				if (m->flags & PG_WRITEABLE)
1814 					kprintf("SWAPOUT: "
1815 						"%d/%d %p writable\n",
1816 						i, bp->b_xio.xio_npages, m);
1817 			}
1818 		}
1819 	}
1820 #endif
1821 
1822 	/*
1823 	 * remove the mapping for kernel virtual
1824 	 */
1825 	pmap_qremove((vm_offset_t)bp->b_data, bp->b_xio.xio_npages);
1826 
1827 	/*
1828 	 * cleanup pages.  If an error occurs writing to swap, we are in
1829 	 * very serious trouble.  If it happens to be a disk error, though,
1830 	 * we may be able to recover by reassigning the swap later on.  So
1831 	 * in this case we remove the m->swapblk assignment for the page
1832 	 * but do not free it in the rlist.  The errornous block(s) are thus
1833 	 * never reallocated as swap.  Redirty the page and continue.
1834 	 */
1835 	for (i = 0; i < bp->b_xio.xio_npages; ++i) {
1836 		vm_page_t m = bp->b_xio.xio_pages[i];
1837 
1838 		if (bp->b_flags & B_ERROR) {
1839 			/*
1840 			 * If an error occurs I'd love to throw the swapblk
1841 			 * away without freeing it back to swapspace, so it
1842 			 * can never be used again.  But I can't from an
1843 			 * interrupt.
1844 			 */
1845 
1846 			if (bio->bio_caller_info1.index & SWBIO_READ) {
1847 				/*
1848 				 * When reading, reqpage needs to stay
1849 				 * locked for the parent, but all other
1850 				 * pages can be freed.  We still want to
1851 				 * wakeup the parent waiting on the page,
1852 				 * though.  ( also: pg_reqpage can be -1 and
1853 				 * not match anything ).
1854 				 *
1855 				 * We have to wake specifically requested pages
1856 				 * up too because we cleared PG_SWAPINPROG and
1857 				 * someone may be waiting for that.
1858 				 *
1859 				 * NOTE: For reads, m->dirty will probably
1860 				 *	 be overridden by the original caller
1861 				 *	 of getpages so don't play cute tricks
1862 				 *	 here.
1863 				 *
1864 				 * NOTE: We can't actually free the page from
1865 				 *	 here, because this is an interrupt.
1866 				 *	 It is not legal to mess with
1867 				 *	 object->memq from an interrupt.
1868 				 *	 Deactivate the page instead.
1869 				 *
1870 				 * WARNING! The instant PG_SWAPINPROG is
1871 				 *	    cleared another cpu may start
1872 				 *	    using the mreq page (it will
1873 				 *	    check m->valid immediately).
1874 				 */
1875 
1876 				m->valid = 0;
1877 				vm_page_flag_clear(m, PG_SWAPINPROG);
1878 
1879 				/*
1880 				 * bio_driver_info holds the requested page
1881 				 * index.
1882 				 */
1883 				if (i != (int)(intptr_t)bio->bio_driver_info) {
1884 					vm_page_deactivate(m);
1885 					vm_page_wakeup(m);
1886 				} else {
1887 					vm_page_flash(m);
1888 				}
1889 				/*
1890 				 * If i == bp->b_pager.pg_reqpage, do not wake
1891 				 * the page up.  The caller needs to.
1892 				 */
1893 			} else {
1894 				/*
1895 				 * If a write error occurs remove the swap
1896 				 * assignment (note that PG_SWAPPED may or
1897 				 * may not be set depending on prior activity).
1898 				 *
1899 				 * Re-dirty OBJT_SWAP pages as there is no
1900 				 * other backing store, we can't throw the
1901 				 * page away.
1902 				 *
1903 				 * Non-OBJT_SWAP pages (aka swapcache) must
1904 				 * not be dirtied since they may not have
1905 				 * been dirty in the first place, and they
1906 				 * do have backing store (the vnode).
1907 				 */
1908 				vm_page_busy_wait(m, FALSE, "swadpg");
1909 				vm_object_hold(m->object);
1910 				swp_pager_meta_ctl(m->object, m->pindex,
1911 						   SWM_FREE);
1912 				vm_page_flag_clear(m, PG_SWAPPED);
1913 				vm_object_drop(m->object);
1914 				if (m->object->type == OBJT_SWAP) {
1915 					vm_page_dirty(m);
1916 					vm_page_activate(m);
1917 				}
1918 				vm_page_io_finish(m);
1919 				vm_page_flag_clear(m, PG_SWAPINPROG);
1920 				vm_page_wakeup(m);
1921 			}
1922 		} else if (bio->bio_caller_info1.index & SWBIO_READ) {
1923 			/*
1924 			 * NOTE: for reads, m->dirty will probably be
1925 			 * overridden by the original caller of getpages so
1926 			 * we cannot set them in order to free the underlying
1927 			 * swap in a low-swap situation.  I don't think we'd
1928 			 * want to do that anyway, but it was an optimization
1929 			 * that existed in the old swapper for a time before
1930 			 * it got ripped out due to precisely this problem.
1931 			 *
1932 			 * If not the requested page then deactivate it.
1933 			 *
1934 			 * Note that the requested page, reqpage, is left
1935 			 * busied, but we still have to wake it up.  The
1936 			 * other pages are released (unbusied) by
1937 			 * vm_page_wakeup().  We do not set reqpage's
1938 			 * valid bits here, it is up to the caller.
1939 			 */
1940 
1941 			/*
1942 			 * NOTE: Can't call pmap_clear_modify(m) from an
1943 			 *	 interrupt thread, the pmap code may have to
1944 			 *	 map non-kernel pmaps and currently asserts
1945 			 *	 the case.
1946 			 *
1947 			 * WARNING! The instant PG_SWAPINPROG is
1948 			 *	    cleared another cpu may start
1949 			 *	    using the mreq page (it will
1950 			 *	    check m->valid immediately).
1951 			 */
1952 			/*pmap_clear_modify(m);*/
1953 			m->valid = VM_PAGE_BITS_ALL;
1954 			vm_page_undirty(m);
1955 			vm_page_flag_set(m, PG_SWAPPED);
1956 			vm_page_flag_clear(m, PG_SWAPINPROG);
1957 
1958 			/*
1959 			 * We have to wake specifically requested pages
1960 			 * up too because we cleared PG_SWAPINPROG and
1961 			 * could be waiting for it in getpages.  However,
1962 			 * be sure to not unbusy getpages specifically
1963 			 * requested page - getpages expects it to be
1964 			 * left busy.
1965 			 *
1966 			 * bio_driver_info holds the requested page
1967 			 */
1968 			if (i != (int)(intptr_t)bio->bio_driver_info) {
1969 				vm_page_deactivate(m);
1970 				vm_page_wakeup(m);
1971 			} else {
1972 				vm_page_flash(m);
1973 			}
1974 		} else {
1975 			/*
1976 			 * Mark the page clean but do not mess with the
1977 			 * pmap-layer's modified state.  That state should
1978 			 * also be clear since the caller protected the
1979 			 * page VM_PROT_READ, but allow the case.
1980 			 *
1981 			 * We are in an interrupt, avoid pmap operations.
1982 			 *
1983 			 * If we have a severe page deficit, deactivate the
1984 			 * page.  Do not try to cache it (which would also
1985 			 * involve a pmap op), because the page might still
1986 			 * be read-heavy.
1987 			 *
1988 			 * When using the swap to cache clean vnode pages
1989 			 * we do not mess with the page dirty bits.
1990 			 *
1991 			 * NOTE! Nobody is waiting for the key mreq page
1992 			 *	 on write completion.
1993 			 */
1994 			vm_page_busy_wait(m, FALSE, "swadpg");
1995 			if (m->object->type == OBJT_SWAP)
1996 				vm_page_undirty(m);
1997 			vm_page_flag_set(m, PG_SWAPPED);
1998 			vm_page_flag_clear(m, PG_SWAPINPROG);
1999 			if (vm_page_count_severe())
2000 				vm_page_deactivate(m);
2001 			vm_page_io_finish(m);
2002 			if (bio->bio_caller_info1.index & SWBIO_TTC)
2003 				vm_page_try_to_cache(m);
2004 			else
2005 				vm_page_wakeup(m);
2006 		}
2007 	}
2008 
2009 	/*
2010 	 * adjust pip.  NOTE: the original parent may still have its own
2011 	 * pip refs on the object.
2012 	 */
2013 
2014 	if (object)
2015 		vm_object_pip_wakeup_n(object, bp->b_xio.xio_npages);
2016 
2017 	/*
2018 	 * Release the physical I/O buffer.
2019 	 *
2020 	 * NOTE: Due to synchronous operations in the write case b_cmd may
2021 	 *	 already be set to BUF_CMD_DONE and BIO_SYNC may have already
2022 	 *	 been cleared.
2023 	 *
2024 	 * Use vm_token to interlock nsw_rcount/wcount wakeup?
2025 	 */
2026 	lwkt_gettoken(&vm_token);
2027 	if (bio->bio_caller_info1.index & SWBIO_READ)
2028 		nswptr = &nsw_rcount;
2029 	else if (bio->bio_caller_info1.index & SWBIO_SYNC)
2030 		nswptr = &nsw_wcount_sync;
2031 	else
2032 		nswptr = &nsw_wcount_async;
2033 	bp->b_cmd = BUF_CMD_DONE;
2034 	relpbuf(bp, nswptr);
2035 	lwkt_reltoken(&vm_token);
2036 }
2037 
2038 /*
2039  * Fault-in a potentially swapped page and remove the swap reference.
2040  * (used by swapoff code)
2041  *
2042  * object must be held.
2043  */
2044 static __inline void
2045 swp_pager_fault_page(vm_object_t object, int *sharedp, vm_pindex_t pindex)
2046 {
2047 	struct vnode *vp;
2048 	vm_page_t m;
2049 	int error;
2050 
2051 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2052 
2053 	if (object->type == OBJT_VNODE) {
2054 		/*
2055 		 * Any swap related to a vnode is due to swapcache.  We must
2056 		 * vget() the vnode in case it is not active (otherwise
2057 		 * vref() will panic).  Calling vm_object_page_remove() will
2058 		 * ensure that any swap ref is removed interlocked with the
2059 		 * page.  clean_only is set to TRUE so we don't throw away
2060 		 * dirty pages.
2061 		 */
2062 		vp = object->handle;
2063 		error = vget(vp, LK_SHARED | LK_RETRY | LK_CANRECURSE);
2064 		if (error == 0) {
2065 			vm_object_page_remove(object, pindex, pindex + 1, TRUE);
2066 			vput(vp);
2067 		}
2068 	} else {
2069 		/*
2070 		 * Otherwise it is a normal OBJT_SWAP object and we can
2071 		 * fault the page in and remove the swap.
2072 		 */
2073 		m = vm_fault_object_page(object, IDX_TO_OFF(pindex),
2074 					 VM_PROT_NONE,
2075 					 VM_FAULT_DIRTY | VM_FAULT_UNSWAP,
2076 					 sharedp, &error);
2077 		if (m)
2078 			vm_page_unhold(m);
2079 	}
2080 }
2081 
2082 /*
2083  * This removes all swap blocks related to a particular device.  We have
2084  * to be careful of ripups during the scan.
2085  */
2086 static int swp_pager_swapoff_callback(struct swblock *swap, void *data);
2087 
2088 int
2089 swap_pager_swapoff(int devidx)
2090 {
2091 	struct vm_object_hash *hash;
2092 	struct swswapoffinfo info;
2093 	struct vm_object marker;
2094 	vm_object_t object;
2095 	int n;
2096 
2097 	bzero(&marker, sizeof(marker));
2098 	marker.type = OBJT_MARKER;
2099 
2100 	for (n = 0; n < VMOBJ_HSIZE; ++n) {
2101 		hash = &vm_object_hash[n];
2102 
2103 		lwkt_gettoken(&hash->token);
2104 		TAILQ_INSERT_HEAD(&hash->list, &marker, object_list);
2105 
2106 		while ((object = TAILQ_NEXT(&marker, object_list)) != NULL) {
2107 			if (object->type == OBJT_MARKER)
2108 				goto skip;
2109 			if (object->type != OBJT_SWAP &&
2110 			    object->type != OBJT_VNODE)
2111 				goto skip;
2112 			vm_object_hold(object);
2113 			if (object->type != OBJT_SWAP &&
2114 			    object->type != OBJT_VNODE) {
2115 				vm_object_drop(object);
2116 				goto skip;
2117 			}
2118 			info.object = object;
2119 			info.shared = 0;
2120 			info.devidx = devidx;
2121 			swblock_rb_tree_RB_SCAN(&object->swblock_root,
2122 					    NULL, swp_pager_swapoff_callback,
2123 					    &info);
2124 			vm_object_drop(object);
2125 skip:
2126 			if (object == TAILQ_NEXT(&marker, object_list)) {
2127 				TAILQ_REMOVE(&hash->list, &marker, object_list);
2128 				TAILQ_INSERT_AFTER(&hash->list, object,
2129 						   &marker, object_list);
2130 			}
2131 		}
2132 		TAILQ_REMOVE(&hash->list, &marker, object_list);
2133 		lwkt_reltoken(&hash->token);
2134 	}
2135 
2136 	/*
2137 	 * If we fail to locate all swblocks we just fail gracefully and
2138 	 * do not bother to restore paging on the swap device.  If the
2139 	 * user wants to retry the user can retry.
2140 	 */
2141 	if (swdevt[devidx].sw_nused)
2142 		return (1);
2143 	else
2144 		return (0);
2145 }
2146 
2147 static
2148 int
2149 swp_pager_swapoff_callback(struct swblock *swap, void *data)
2150 {
2151 	struct swswapoffinfo *info = data;
2152 	vm_object_t object = info->object;
2153 	vm_pindex_t index;
2154 	swblk_t v;
2155 	int i;
2156 
2157 	index = swap->swb_index;
2158 	for (i = 0; i < SWAP_META_PAGES; ++i) {
2159 		/*
2160 		 * Make sure we don't race a dying object.  This will
2161 		 * kill the scan of the object's swap blocks entirely.
2162 		 */
2163 		if (object->flags & OBJ_DEAD)
2164 			return(-1);
2165 
2166 		/*
2167 		 * Fault the page, which can obviously block.  If the swap
2168 		 * structure disappears break out.
2169 		 */
2170 		v = swap->swb_pages[i];
2171 		if (v != SWAPBLK_NONE && BLK2DEVIDX(v) == info->devidx) {
2172 			swp_pager_fault_page(object, &info->shared,
2173 					     swap->swb_index + i);
2174 			/* swap ptr might go away */
2175 			if (RB_LOOKUP(swblock_rb_tree,
2176 				      &object->swblock_root, index) != swap) {
2177 				break;
2178 			}
2179 		}
2180 	}
2181 	return(0);
2182 }
2183 
2184 /************************************************************************
2185  *				SWAP META DATA 				*
2186  ************************************************************************
2187  *
2188  *	These routines manipulate the swap metadata stored in the
2189  *	OBJT_SWAP object.
2190  *
2191  *	Swap metadata is implemented with a global hash and not directly
2192  *	linked into the object.  Instead the object simply contains
2193  *	appropriate tracking counters.
2194  */
2195 
2196 /*
2197  * Lookup the swblock containing the specified swap block index.
2198  *
2199  * The caller must hold the object.
2200  */
2201 static __inline
2202 struct swblock *
2203 swp_pager_lookup(vm_object_t object, vm_pindex_t index)
2204 {
2205 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2206 	index &= ~(vm_pindex_t)SWAP_META_MASK;
2207 	return (RB_LOOKUP(swblock_rb_tree, &object->swblock_root, index));
2208 }
2209 
2210 /*
2211  * Remove a swblock from the RB tree.
2212  *
2213  * The caller must hold the object.
2214  */
2215 static __inline
2216 void
2217 swp_pager_remove(vm_object_t object, struct swblock *swap)
2218 {
2219 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2220 	RB_REMOVE(swblock_rb_tree, &object->swblock_root, swap);
2221 }
2222 
2223 /*
2224  * Convert default object to swap object if necessary
2225  *
2226  * The caller must hold the object.
2227  */
2228 static void
2229 swp_pager_meta_convert(vm_object_t object)
2230 {
2231 	if (object->type == OBJT_DEFAULT) {
2232 		object->type = OBJT_SWAP;
2233 		KKASSERT(object->swblock_count == 0);
2234 	}
2235 }
2236 
2237 /*
2238  * SWP_PAGER_META_BUILD() -	add swap block to swap meta data for object
2239  *
2240  *	We first convert the object to a swap object if it is a default
2241  *	object.  Vnode objects do not need to be converted.
2242  *
2243  *	The specified swapblk is added to the object's swap metadata.  If
2244  *	the swapblk is not valid, it is freed instead.  Any previously
2245  *	assigned swapblk is freed.
2246  *
2247  * The caller must hold the object.
2248  */
2249 static void
2250 swp_pager_meta_build(vm_object_t object, vm_pindex_t index, swblk_t swapblk)
2251 {
2252 	struct swblock *swap;
2253 	struct swblock *oswap;
2254 	vm_pindex_t v;
2255 
2256 	KKASSERT(swapblk != SWAPBLK_NONE);
2257 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2258 
2259 	/*
2260 	 * Convert object if necessary
2261 	 */
2262 	if (object->type == OBJT_DEFAULT)
2263 		swp_pager_meta_convert(object);
2264 
2265 	/*
2266 	 * Locate swblock.  If not found create, but if we aren't adding
2267 	 * anything just return.  If we run out of space in the map we wait
2268 	 * and, since the hash table may have changed, retry.
2269 	 */
2270 retry:
2271 	swap = swp_pager_lookup(object, index);
2272 
2273 	if (swap == NULL) {
2274 		int i;
2275 
2276 		swap = zalloc(swap_zone);
2277 		if (swap == NULL) {
2278 			vm_wait(0);
2279 			goto retry;
2280 		}
2281 		swap->swb_index = index & ~(vm_pindex_t)SWAP_META_MASK;
2282 		swap->swb_count = 0;
2283 
2284 		++object->swblock_count;
2285 
2286 		for (i = 0; i < SWAP_META_PAGES; ++i)
2287 			swap->swb_pages[i] = SWAPBLK_NONE;
2288 		oswap = RB_INSERT(swblock_rb_tree, &object->swblock_root, swap);
2289 		KKASSERT(oswap == NULL);
2290 	}
2291 
2292 	/*
2293 	 * Delete prior contents of metadata.
2294 	 *
2295 	 * NOTE: Decrement swb_count after the freeing operation (which
2296 	 *	 might block) to prevent racing destruction of the swblock.
2297 	 */
2298 	index &= SWAP_META_MASK;
2299 
2300 	while ((v = swap->swb_pages[index]) != SWAPBLK_NONE) {
2301 		swap->swb_pages[index] = SWAPBLK_NONE;
2302 		/* can block */
2303 		swp_pager_freeswapspace(object, v, 1);
2304 		--swap->swb_count;
2305 		--mycpu->gd_vmtotal.t_vm;
2306 	}
2307 
2308 	/*
2309 	 * Enter block into metadata
2310 	 */
2311 	swap->swb_pages[index] = swapblk;
2312 	if (swapblk != SWAPBLK_NONE) {
2313 		++swap->swb_count;
2314 		++mycpu->gd_vmtotal.t_vm;
2315 	}
2316 }
2317 
2318 /*
2319  * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
2320  *
2321  *	The requested range of blocks is freed, with any associated swap
2322  *	returned to the swap bitmap.
2323  *
2324  *	This routine will free swap metadata structures as they are cleaned
2325  *	out.  This routine does *NOT* operate on swap metadata associated
2326  *	with resident pages.
2327  *
2328  * The caller must hold the object.
2329  */
2330 static int swp_pager_meta_free_callback(struct swblock *swb, void *data);
2331 
2332 static void
2333 swp_pager_meta_free(vm_object_t object, vm_pindex_t index, vm_pindex_t count)
2334 {
2335 	struct swfreeinfo info;
2336 
2337 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2338 
2339 	/*
2340 	 * Nothing to do
2341 	 */
2342 	if (object->swblock_count == 0) {
2343 		KKASSERT(RB_EMPTY(&object->swblock_root));
2344 		return;
2345 	}
2346 	if (count == 0)
2347 		return;
2348 
2349 	/*
2350 	 * Setup for RB tree scan.  Note that the pindex range can be huge
2351 	 * due to the 64 bit page index space so we cannot safely iterate.
2352 	 */
2353 	info.object = object;
2354 	info.basei = index & ~(vm_pindex_t)SWAP_META_MASK;
2355 	info.begi = index;
2356 	info.endi = index + count - 1;
2357 	swblock_rb_tree_RB_SCAN(&object->swblock_root, rb_swblock_scancmp,
2358 				swp_pager_meta_free_callback, &info);
2359 }
2360 
2361 /*
2362  * The caller must hold the object.
2363  */
2364 static
2365 int
2366 swp_pager_meta_free_callback(struct swblock *swap, void *data)
2367 {
2368 	struct swfreeinfo *info = data;
2369 	vm_object_t object = info->object;
2370 	int index;
2371 	int eindex;
2372 
2373 	/*
2374 	 * Figure out the range within the swblock.  The wider scan may
2375 	 * return edge-case swap blocks when the start and/or end points
2376 	 * are in the middle of a block.
2377 	 */
2378 	if (swap->swb_index < info->begi)
2379 		index = (int)info->begi & SWAP_META_MASK;
2380 	else
2381 		index = 0;
2382 
2383 	if (swap->swb_index + SWAP_META_PAGES > info->endi)
2384 		eindex = (int)info->endi & SWAP_META_MASK;
2385 	else
2386 		eindex = SWAP_META_MASK;
2387 
2388 	/*
2389 	 * Scan and free the blocks.  The loop terminates early
2390 	 * if (swap) runs out of blocks and could be freed.
2391 	 *
2392 	 * NOTE: Decrement swb_count after swp_pager_freeswapspace()
2393 	 *	 to deal with a zfree race.
2394 	 */
2395 	while (index <= eindex) {
2396 		swblk_t v = swap->swb_pages[index];
2397 
2398 		if (v != SWAPBLK_NONE) {
2399 			swap->swb_pages[index] = SWAPBLK_NONE;
2400 			/* can block */
2401 			swp_pager_freeswapspace(object, v, 1);
2402 			--mycpu->gd_vmtotal.t_vm;
2403 			if (--swap->swb_count == 0) {
2404 				swp_pager_remove(object, swap);
2405 				zfree(swap_zone, swap);
2406 				--object->swblock_count;
2407 				break;
2408 			}
2409 		}
2410 		++index;
2411 	}
2412 
2413 	/* swap may be invalid here due to zfree above */
2414 	lwkt_yield();
2415 
2416 	return(0);
2417 }
2418 
2419 /*
2420  * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
2421  *
2422  *	This routine locates and destroys all swap metadata associated with
2423  *	an object.
2424  *
2425  * NOTE: Decrement swb_count after the freeing operation (which
2426  *	 might block) to prevent racing destruction of the swblock.
2427  *
2428  * The caller must hold the object.
2429  */
2430 static void
2431 swp_pager_meta_free_all(vm_object_t object)
2432 {
2433 	struct swblock *swap;
2434 	int i;
2435 
2436 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2437 
2438 	while ((swap = RB_ROOT(&object->swblock_root)) != NULL) {
2439 		swp_pager_remove(object, swap);
2440 		for (i = 0; i < SWAP_META_PAGES; ++i) {
2441 			swblk_t v = swap->swb_pages[i];
2442 			if (v != SWAPBLK_NONE) {
2443 				/* can block */
2444 				swp_pager_freeswapspace(object, v, 1);
2445 				--swap->swb_count;
2446 				--mycpu->gd_vmtotal.t_vm;
2447 			}
2448 		}
2449 		if (swap->swb_count != 0)
2450 			panic("swap_pager_meta_free_all: swb_count != 0");
2451 		zfree(swap_zone, swap);
2452 		--object->swblock_count;
2453 		lwkt_yield();
2454 	}
2455 	KKASSERT(object->swblock_count == 0);
2456 }
2457 
2458 /*
2459  * SWP_PAGER_METACTL() -  misc control of swap and vm_page_t meta data.
2460  *
2461  *	This routine is capable of looking up, popping, or freeing
2462  *	swapblk assignments in the swap meta data or in the vm_page_t.
2463  *	The routine typically returns the swapblk being looked-up, or popped,
2464  *	or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block
2465  *	was invalid.  This routine will automatically free any invalid
2466  *	meta-data swapblks.
2467  *
2468  *	It is not possible to store invalid swapblks in the swap meta data
2469  *	(other then a literal 'SWAPBLK_NONE'), so we don't bother checking.
2470  *
2471  *	When acting on a busy resident page and paging is in progress, we
2472  *	have to wait until paging is complete but otherwise can act on the
2473  *	busy page.
2474  *
2475  *	SWM_FREE	remove and free swap block from metadata
2476  *	SWM_POP		remove from meta data but do not free.. pop it out
2477  *
2478  * The caller must hold the object.
2479  */
2480 static swblk_t
2481 swp_pager_meta_ctl(vm_object_t object, vm_pindex_t index, int flags)
2482 {
2483 	struct swblock *swap;
2484 	swblk_t r1;
2485 
2486 	if (object->swblock_count == 0)
2487 		return(SWAPBLK_NONE);
2488 
2489 	r1 = SWAPBLK_NONE;
2490 	swap = swp_pager_lookup(object, index);
2491 
2492 	if (swap != NULL) {
2493 		index &= SWAP_META_MASK;
2494 		r1 = swap->swb_pages[index];
2495 
2496 		if (r1 != SWAPBLK_NONE) {
2497 			if (flags & (SWM_FREE|SWM_POP)) {
2498 				swap->swb_pages[index] = SWAPBLK_NONE;
2499 				--mycpu->gd_vmtotal.t_vm;
2500 				if (--swap->swb_count == 0) {
2501 					swp_pager_remove(object, swap);
2502 					zfree(swap_zone, swap);
2503 					--object->swblock_count;
2504 				}
2505 			}
2506 			/* swap ptr may be invalid */
2507 			if (flags & SWM_FREE) {
2508 				swp_pager_freeswapspace(object, r1, 1);
2509 				r1 = SWAPBLK_NONE;
2510 			}
2511 		}
2512 		/* swap ptr may be invalid */
2513 	}
2514 	return(r1);
2515 }
2516