xref: /dragonfly/sys/vm/vm_contig.c (revision 65cc0652)
1 /*
2  * Copyright (c) 2003, 2004 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Hiten Pandya <hmp@backplane.com>.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  */
35 /*
36  * Copyright (c) 1991 Regents of the University of California.
37  * All rights reserved.
38  *
39  * This code is derived from software contributed to Berkeley by
40  * The Mach Operating System project at Carnegie-Mellon University.
41  *
42  * Redistribution and use in source and binary forms, with or without
43  * modification, are permitted provided that the following conditions
44  * are met:
45  * 1. Redistributions of source code must retain the above copyright
46  *    notice, this list of conditions and the following disclaimer.
47  * 2. Redistributions in binary form must reproduce the above copyright
48  *    notice, this list of conditions and the following disclaimer in the
49  *    documentation and/or other materials provided with the distribution.
50  * 3. Neither the name of the University nor the names of its contributors
51  *    may be used to endorse or promote products derived from this software
52  *    without specific prior written permission.
53  *
54  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  *
66  *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
67  * $DragonFly: src/sys/vm/vm_contig.c,v 1.21 2006/12/28 21:24:02 dillon Exp $
68  */
69 
70 /*
71  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
72  * All rights reserved.
73  *
74  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
75  *
76  * Permission to use, copy, modify and distribute this software and
77  * its documentation is hereby granted, provided that both the copyright
78  * notice and this permission notice appear in all copies of the
79  * software, derivative works or modified versions, and any portions
80  * thereof, and that both notices appear in supporting documentation.
81  *
82  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
83  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
84  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
85  *
86  * Carnegie Mellon requests users of this software to return to
87  *
88  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
89  *  School of Computer Science
90  *  Carnegie Mellon University
91  *  Pittsburgh PA 15213-3890
92  *
93  * any improvements or extensions that they make and grant Carnegie the
94  * rights to redistribute these changes.
95  */
96 
97 /*
98  * Contiguous memory allocation API.
99  */
100 
101 #include <sys/param.h>
102 #include <sys/systm.h>
103 #include <sys/malloc.h>
104 #include <sys/proc.h>
105 #include <sys/lock.h>
106 #include <sys/vmmeter.h>
107 #include <sys/vnode.h>
108 
109 #include <vm/vm.h>
110 #include <vm/vm_param.h>
111 #include <vm/vm_kern.h>
112 #include <vm/pmap.h>
113 #include <vm/vm_map.h>
114 #include <vm/vm_object.h>
115 #include <vm/vm_page.h>
116 #include <vm/vm_pageout.h>
117 #include <vm/vm_pager.h>
118 #include <vm/vm_extern.h>
119 
120 #include <sys/thread2.h>
121 #include <sys/spinlock2.h>
122 #include <vm/vm_page2.h>
123 
124 #include <machine/bus_dma.h>
125 
126 static void vm_contig_pg_free(vm_pindex_t start, u_long size);
127 
128 /*
129  * vm_contig_pg_clean:
130  *
131  * Do a thorough cleanup of the specified 'queue', which can be either
132  * PQ_ACTIVE or PQ_INACTIVE by doing a walkthrough.  If the page is not
133  * marked dirty, it is shoved into the page cache, provided no one has
134  * currently aqcuired it, otherwise localized action per object type
135  * is taken for cleanup:
136  *
137  * 	In the OBJT_VNODE case, the whole page range is cleaned up
138  * 	using the vm_object_page_clean() routine, by specyfing a
139  * 	start and end of '0'.
140  *
141  * 	Otherwise if the object is of any other type, the generic
142  * 	pageout (daemon) flush routine is invoked.
143  */
144 static void
145 vm_contig_pg_clean(int queue, vm_pindex_t count)
146 {
147 	vm_object_t object;
148 	vm_page_t m, m_tmp;
149 	struct vm_page marker;
150 	struct vpgqueues *pq = &vm_page_queues[queue];
151 
152 	/*
153 	 * Setup a local marker
154 	 */
155 	bzero(&marker, sizeof(marker));
156 	marker.flags = PG_FICTITIOUS | PG_MARKER;
157 	marker.busy_count = PBUSY_LOCKED;
158 	marker.queue = queue;
159 	marker.wire_count = 1;
160 
161 	vm_page_queues_spin_lock(queue);
162 	TAILQ_INSERT_HEAD(&pq->pl, &marker, pageq);
163 	vm_page_queues_spin_unlock(queue);
164 
165 	/*
166 	 * Iterate the queue.  Note that the vm_page spinlock must be
167 	 * acquired before the pageq spinlock so it's easiest to simply
168 	 * not hold it in the loop iteration.
169 	 */
170 	while ((long)count-- > 0 &&
171 	       (m = TAILQ_NEXT(&marker, pageq)) != NULL) {
172 		vm_page_and_queue_spin_lock(m);
173 		if (m != TAILQ_NEXT(&marker, pageq)) {
174 			vm_page_and_queue_spin_unlock(m);
175 			++count;
176 			continue;
177 		}
178 		KKASSERT(m->queue == queue);
179 
180 		TAILQ_REMOVE(&pq->pl, &marker, pageq);
181 		TAILQ_INSERT_AFTER(&pq->pl, m, &marker, pageq);
182 
183 		if (m->flags & PG_MARKER) {
184 			vm_page_and_queue_spin_unlock(m);
185 			continue;
186 		}
187 		if (vm_page_busy_try(m, TRUE)) {
188 			vm_page_and_queue_spin_unlock(m);
189 			continue;
190 		}
191 		vm_page_and_queue_spin_unlock(m);
192 
193 		/*
194 		 * We've successfully busied the page
195 		 */
196 		if (m->queue - m->pc != queue) {
197 			vm_page_wakeup(m);
198 			continue;
199 		}
200 		if (m->wire_count || m->hold_count) {
201 			vm_page_wakeup(m);
202 			continue;
203 		}
204 		if ((object = m->object) == NULL) {
205 			vm_page_wakeup(m);
206 			continue;
207 		}
208 		vm_page_test_dirty(m);
209 		if (m->dirty || (m->flags & PG_NEED_COMMIT)) {
210 			vm_object_hold(object);
211 			KKASSERT(m->object == object);
212 
213 			if (object->type == OBJT_VNODE) {
214 				vm_page_wakeup(m);
215 				vn_lock(object->handle, LK_EXCLUSIVE|LK_RETRY);
216 				vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
217 				vn_unlock(((struct vnode *)object->handle));
218 			} else if (object->type == OBJT_SWAP ||
219 					object->type == OBJT_DEFAULT) {
220 				m_tmp = m;
221 				vm_pageout_flush(&m_tmp, 1, 0);
222 			} else {
223 				vm_page_wakeup(m);
224 			}
225 			vm_object_drop(object);
226 		} else if (m->hold_count == 0) {
227 			vm_page_cache(m);
228 		} else {
229 			vm_page_wakeup(m);
230 		}
231 	}
232 
233 	/*
234 	 * Scrap our local marker
235 	 */
236 	vm_page_queues_spin_lock(queue);
237 	TAILQ_REMOVE(&pq->pl, &marker, pageq);
238 	vm_page_queues_spin_unlock(queue);
239 }
240 
241 /*
242  * vm_contig_pg_alloc:
243  *
244  * Allocate contiguous pages from the VM.  This function does not
245  * map the allocated pages into the kernel map, otherwise it is
246  * impossible to make large allocations (i.e. >2G).
247  *
248  * Malloc()'s data structures have been used for collection of
249  * statistics and for allocations of less than a page.
250  */
251 static vm_pindex_t
252 vm_contig_pg_alloc(unsigned long size, vm_paddr_t low, vm_paddr_t high,
253 		   unsigned long alignment, unsigned long boundary, int mflags)
254 {
255 	vm_pindex_t i, q, start;
256 	vm_offset_t phys;
257 	vm_page_t pga = vm_page_array;
258 	vm_page_t m;
259 	int pass;
260 	int pqtype;
261 
262 	size = round_page(size);
263 	if (size == 0)
264 		panic("vm_contig_pg_alloc: size must not be 0");
265 	if ((alignment & (alignment - 1)) != 0)
266 		panic("vm_contig_pg_alloc: alignment must be a power of 2");
267 	if ((boundary & (boundary - 1)) != 0)
268 		panic("vm_contig_pg_alloc: boundary must be a power of 2");
269 
270 	/*
271 	 * See if we can get the pages from the contiguous page reserve
272 	 * alist.  The returned pages will be allocated and wired but not
273 	 * busied.
274 	 *
275 	 * If high is not set to BUS_SPACE_MAXADDR we try using our
276 	 * free memory reserve first, otherwise we try it last.
277 	 *
278 	 * XXX Always use the dma reserve first for performance, until
279 	 * we find a better way to differentiate the DRM API.
280 	 */
281 #if 0
282 	if (high != BUS_SPACE_MAXADDR)
283 #endif
284 	{
285 		m = vm_page_alloc_contig(
286 			low, high, alignment, boundary,
287 			size, VM_MEMATTR_DEFAULT);
288 		if (m)
289 			return (m - &pga[0]);
290 	}
291 
292 	/*
293 	 * Three passes (0, 1, 2).  Each pass scans the VM page list for
294 	 * free or cached pages.  After each pass if the entire scan failed
295 	 * we attempt to flush inactive pages and reset the start index back
296 	 * to 0.  For passes 1 and 2 we also attempt to flush active pages.
297 	 */
298 	start = 0;
299 	for (pass = 0; pass < 3; pass++) {
300 		/*
301 		 * Find first page in array that is free, within range,
302 		 * aligned, and such that the boundary won't be crossed.
303 		 */
304 again:
305 		for (i = start; i < vmstats.v_page_count; i++) {
306 			m = &pga[i];
307 			phys = VM_PAGE_TO_PHYS(m);
308 			pqtype = m->queue - m->pc;
309 			if (((pqtype == PQ_FREE) || (pqtype == PQ_CACHE)) &&
310 			    (phys >= low) && (phys < high) &&
311 			    ((phys & (alignment - 1)) == 0) &&
312 			    (((phys ^ (phys + size - 1)) & /* bitwise and */
313 			     ~(boundary - 1)) == 0) &&
314 			    m->wire_count == 0 && m->hold_count == 0 &&
315 			    (m->busy_count &
316 			     (PBUSY_LOCKED | PBUSY_MASK)) == 0 &&
317 			    (m->flags & PG_NEED_COMMIT) == 0)
318 			{
319 				break;
320 			}
321 		}
322 
323 		/*
324 		 * If we cannot find the page in the given range, or we have
325 		 * crossed the boundary, call the vm_contig_pg_clean() function
326 		 * for flushing out the queues, and returning it back to
327 		 * normal state.
328 		 */
329 		if ((i == vmstats.v_page_count) ||
330 		    ((VM_PAGE_TO_PHYS(&pga[i]) + size) > high)) {
331 
332 			/*
333 			 * Best effort flush of all inactive pages.
334 			 * This is quite quick, for now stall all
335 			 * callers, even if they've specified M_NOWAIT.
336 			 */
337 			for (q = 0; q < PQ_L2_SIZE; ++q) {
338 				vm_contig_pg_clean(PQ_INACTIVE + q,
339 						   vmstats.v_inactive_count);
340 				lwkt_yield();
341 			}
342 
343 			/*
344 			 * Best effort flush of active pages.
345 			 *
346 			 * This is very, very slow.
347 			 * Only do this if the caller has agreed to M_WAITOK.
348 			 *
349 			 * If enough pages are flushed, we may succeed on
350 			 * next (final) pass, if not the caller, contigmalloc(),
351 			 * will fail in the index < 0 case.
352 			 */
353 			if (pass > 0 && (mflags & M_WAITOK)) {
354 				for (q = 0; q < PQ_L2_SIZE; ++q) {
355 					vm_contig_pg_clean(PQ_ACTIVE + q,
356 						       vmstats.v_active_count);
357 				}
358 				lwkt_yield();
359 			}
360 
361 			/*
362 			 * We're already too high in the address space
363 			 * to succeed, reset to 0 for the next iteration.
364 			 */
365 			start = 0;
366 			continue;	/* next pass */
367 		}
368 		start = i;
369 
370 		/*
371 		 * Check successive pages for contiguous and free.
372 		 *
373 		 * (still in critical section)
374 		 */
375 		for (i = start + 1; i < (start + size / PAGE_SIZE); i++) {
376 			m = &pga[i];
377 			pqtype = m->queue - m->pc;
378 			if ((VM_PAGE_TO_PHYS(&m[0]) !=
379 			    (VM_PAGE_TO_PHYS(&m[-1]) + PAGE_SIZE)) ||
380 			    ((pqtype != PQ_FREE) && (pqtype != PQ_CACHE)) ||
381 			    m->wire_count ||
382 			    m->hold_count ||
383 			    (m->busy_count & (PBUSY_LOCKED | PBUSY_MASK)) ||
384 			    (m->flags & PG_NEED_COMMIT))
385 			{
386 				start++;
387 				goto again;
388 			}
389 		}
390 
391 		/*
392 		 * Try to allocate the pages, wiring them as we go.
393 		 *
394 		 * (still in critical section)
395 		 */
396 		for (i = start; i < (start + size / PAGE_SIZE); i++) {
397 			m = &pga[i];
398 
399 			if (vm_page_busy_try(m, TRUE)) {
400 				vm_contig_pg_free(start,
401 						  (i - start) * PAGE_SIZE);
402 				start++;
403 				goto again;
404 			}
405 			pqtype = m->queue - m->pc;
406 			if (pqtype == PQ_CACHE &&
407 			    m->hold_count == 0 &&
408 			    m->wire_count == 0 &&
409 			    (m->flags & (PG_UNMANAGED | PG_NEED_COMMIT)) == 0) {
410 				vm_page_protect(m, VM_PROT_NONE);
411 				KKASSERT((m->flags & PG_MAPPED) == 0);
412 				KKASSERT(m->dirty == 0);
413 				vm_page_free(m);
414 				--i;
415 				continue;	/* retry the page */
416 			}
417 			if (pqtype != PQ_FREE || m->hold_count) {
418 				vm_page_wakeup(m);
419 				vm_contig_pg_free(start,
420 						  (i - start) * PAGE_SIZE);
421 				start++;
422 				goto again;
423 			}
424 			KKASSERT((m->valid & m->dirty) == 0);
425 			KKASSERT(m->wire_count == 0);
426 			KKASSERT(m->object == NULL);
427 			vm_page_unqueue_nowakeup(m);
428 			m->valid = VM_PAGE_BITS_ALL;
429 			KASSERT(m->dirty == 0,
430 				("vm_contig_pg_alloc: page %p was dirty", m));
431 			KKASSERT(m->wire_count == 0);
432 			KKASSERT((m->busy_count & PBUSY_MASK) == 0);
433 
434 			/*
435 			 * Clear all flags.  Then unbusy the now allocated
436 			 * page.
437 			 */
438 			vm_page_flag_clear(m, ~PG_KEEP_NEWPAGE_MASK);
439 			vm_page_wire(m);
440 			vm_page_wakeup(m);
441 		}
442 
443 		/*
444 		 * Our job is done, return the index page of vm_page_array.
445 		 */
446 		return (start); /* aka &pga[start] */
447 	}
448 
449 #if 0
450 	/*
451 	 * Failed, if we haven't already tried, allocate from our reserved
452 	 * dma memory.
453 	 *
454 	 * XXX (see conditionalized code above)
455 	 */
456 	if (high == BUS_SPACE_MAXADDR) {
457 		m = vm_page_alloc_contig(
458 			low, high, alignment, boundary,
459 			size, VM_MEMATTR_DEFAULT);
460 		if (m)
461 			return (m - &pga[0]);
462 	}
463 #endif
464 
465 	/*
466 	 * Failed.
467 	 */
468 	return ((vm_pindex_t)-1);
469 }
470 
471 /*
472  * vm_contig_pg_free:
473  *
474  * Remove pages previously allocated by vm_contig_pg_alloc, and
475  * assume all references to the pages have been removed, and that
476  * it is OK to add them back to the free list.
477  *
478  * Caller must ensure no races on the page range in question.
479  * No other requirements.
480  */
481 static void
482 vm_contig_pg_free(vm_pindex_t start, u_long size)
483 {
484 	vm_page_t pga = vm_page_array;
485 
486 	size = round_page(size);
487 	if (size == 0)
488 		panic("vm_contig_pg_free: size must not be 0");
489 
490 	/*
491 	 * The pages are wired, vm_page_free_contig() determines whether they
492 	 * belong to the contig space or not and either frees them to that
493 	 * space (leaving them wired), or unwires the page and frees it to the
494 	 * normal PQ_FREE queue.
495 	 */
496 	vm_page_free_contig(&pga[start], size);
497 }
498 
499 /*
500  * vm_contig_pg_kmap:
501  *
502  * Map previously allocated (vm_contig_pg_alloc) range of pages from
503  * vm_page_array[] into the KVA.  Once mapped, the pages are part of
504  * the Kernel, and are to free'ed with kmem_free(&kernel_map, addr, size).
505  *
506  * No requirements.
507  */
508 static vm_offset_t
509 vm_contig_pg_kmap(vm_pindex_t start, u_long size, vm_map_t map, int flags)
510 {
511 	vm_offset_t addr;
512 	vm_paddr_t pa;
513 	vm_page_t pga = vm_page_array;
514 	u_long offset;
515 
516 	if (size == 0)
517 		panic("vm_contig_pg_kmap: size must not be 0");
518 	size = round_page(size);
519 	addr = kmem_alloc_pageable(&kernel_map, size, VM_SUBSYS_CONTIG);
520 	if (addr) {
521 		pa = VM_PAGE_TO_PHYS(&pga[start]);
522 		for (offset = 0; offset < size; offset += PAGE_SIZE)
523 			pmap_kenter_noinval(addr + offset, pa + offset);
524 		pmap_invalidate_range(&kernel_pmap, addr, addr + size);
525 		if (flags & M_ZERO)
526 			bzero((void *)addr, size);
527 	}
528 	return(addr);
529 }
530 
531 /*
532  * No requirements.
533  */
534 void *
535 contigmalloc(
536 	unsigned long size,	/* should be size_t here and for malloc() */
537 	struct malloc_type *type,
538 	int flags,
539 	vm_paddr_t low,
540 	vm_paddr_t high,
541 	unsigned long alignment,
542 	unsigned long boundary)
543 {
544 	return contigmalloc_map(size, type, flags, low, high, alignment,
545 			boundary, &kernel_map);
546 }
547 
548 /*
549  * No requirements.
550  */
551 void *
552 contigmalloc_map(unsigned long size, struct malloc_type *type,
553 		 int flags, vm_paddr_t low, vm_paddr_t high,
554 		 unsigned long alignment, unsigned long boundary,
555 		 vm_map_t map)
556 {
557 	vm_pindex_t index;
558 	void *rv;
559 
560 	index = vm_contig_pg_alloc(size, low, high, alignment, boundary, flags);
561 	if (index == (vm_pindex_t)-1) {
562 		kprintf("contigmalloc_map: failed size %lu low=%llx "
563 			"high=%llx align=%lu boundary=%lu flags=%08x\n",
564 			size, (long long)low, (long long)high,
565 			alignment, boundary, flags);
566 		return NULL;
567 	}
568 
569 	rv = (void *)vm_contig_pg_kmap(index, size, map, flags);
570 	if (rv == NULL)
571 		vm_contig_pg_free(index, size);
572 
573 	return rv;
574 }
575 
576 /*
577  * No requirements.
578  */
579 void
580 contigfree(void *addr, unsigned long size, struct malloc_type *type)
581 {
582 	vm_paddr_t pa;
583 	vm_page_t m;
584 
585 	if (size == 0)
586 		panic("vm_contig_pg_kmap: size must not be 0");
587 	size = round_page(size);
588 
589 	pa = pmap_kextract((vm_offset_t)addr);
590 	pmap_qremove((vm_offset_t)addr, size / PAGE_SIZE);
591 	kmem_free(&kernel_map, (vm_offset_t)addr, size);
592 
593 	m = PHYS_TO_VM_PAGE(pa);
594 	vm_page_free_contig(m, size);
595 }
596 
597 /*
598  * No requirements.
599  */
600 vm_offset_t
601 kmem_alloc_contig(vm_offset_t size, vm_paddr_t low, vm_paddr_t high,
602 		  vm_offset_t alignment)
603 {
604 	return ((vm_offset_t)contigmalloc_map(size, M_DEVBUF, M_NOWAIT, low,
605 				high, alignment, 0ul, &kernel_map));
606 }
607