xref: /dragonfly/sys/vm/vm_contig.c (revision 7d3e9a5b)
1 /*
2  * Copyright (c) 2003, 2004 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Hiten Pandya <hmp@backplane.com>.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  */
35 /*
36  * Copyright (c) 1991 Regents of the University of California.
37  * All rights reserved.
38  *
39  * This code is derived from software contributed to Berkeley by
40  * The Mach Operating System project at Carnegie-Mellon University.
41  *
42  * Redistribution and use in source and binary forms, with or without
43  * modification, are permitted provided that the following conditions
44  * are met:
45  * 1. Redistributions of source code must retain the above copyright
46  *    notice, this list of conditions and the following disclaimer.
47  * 2. Redistributions in binary form must reproduce the above copyright
48  *    notice, this list of conditions and the following disclaimer in the
49  *    documentation and/or other materials provided with the distribution.
50  * 3. Neither the name of the University nor the names of its contributors
51  *    may be used to endorse or promote products derived from this software
52  *    without specific prior written permission.
53  *
54  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  *
66  *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
67  */
68 
69 /*
70  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
71  * All rights reserved.
72  *
73  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
74  *
75  * Permission to use, copy, modify and distribute this software and
76  * its documentation is hereby granted, provided that both the copyright
77  * notice and this permission notice appear in all copies of the
78  * software, derivative works or modified versions, and any portions
79  * thereof, and that both notices appear in supporting documentation.
80  *
81  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
82  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
83  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
84  *
85  * Carnegie Mellon requests users of this software to return to
86  *
87  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
88  *  School of Computer Science
89  *  Carnegie Mellon University
90  *  Pittsburgh PA 15213-3890
91  *
92  * any improvements or extensions that they make and grant Carnegie the
93  * rights to redistribute these changes.
94  */
95 
96 /*
97  * Contiguous memory allocation API.
98  */
99 
100 #include <sys/param.h>
101 #include <sys/systm.h>
102 #include <sys/malloc.h>
103 #include <sys/proc.h>
104 #include <sys/lock.h>
105 #include <sys/vmmeter.h>
106 #include <sys/vnode.h>
107 
108 #include <vm/vm.h>
109 #include <vm/vm_param.h>
110 #include <vm/vm_kern.h>
111 #include <vm/pmap.h>
112 #include <vm/vm_map.h>
113 #include <vm/vm_object.h>
114 #include <vm/vm_page.h>
115 #include <vm/vm_pageout.h>
116 #include <vm/vm_pager.h>
117 #include <vm/vm_extern.h>
118 
119 #include <sys/spinlock2.h>
120 #include <vm/vm_page2.h>
121 
122 #include <machine/bus_dma.h>
123 
124 static void vm_contig_pg_free(vm_pindex_t start, u_long size);
125 
126 /*
127  * vm_contig_pg_clean:
128  *
129  * Do a thorough cleanup of the specified 'queue', which can be either
130  * PQ_ACTIVE or PQ_INACTIVE by doing a walkthrough.  If the page is not
131  * marked dirty, it is shoved into the page cache, provided no one has
132  * currently aqcuired it, otherwise localized action per object type
133  * is taken for cleanup:
134  *
135  * 	In the OBJT_VNODE case, the whole page range is cleaned up
136  * 	using the vm_object_page_clean() routine, by specyfing a
137  * 	start and end of '0'.
138  *
139  * 	Otherwise if the object is of any other type, the generic
140  * 	pageout (daemon) flush routine is invoked.
141  */
142 static void
143 vm_contig_pg_clean(int queue, vm_pindex_t count)
144 {
145 	vm_object_t object;
146 	vm_page_t m, m_tmp;
147 	struct vm_page marker;
148 	struct vpgqueues *pq = &vm_page_queues[queue];
149 
150 	/*
151 	 * Setup a local marker
152 	 */
153 	bzero(&marker, sizeof(marker));
154 	marker.flags = PG_FICTITIOUS | PG_MARKER;
155 	marker.busy_count = PBUSY_LOCKED;
156 	marker.queue = queue;
157 	marker.wire_count = 1;
158 
159 	vm_page_queues_spin_lock(queue);
160 	TAILQ_INSERT_HEAD(&pq->pl, &marker, pageq);
161 	vm_page_queues_spin_unlock(queue);
162 
163 	/*
164 	 * Iterate the queue.  Note that the vm_page spinlock must be
165 	 * acquired before the pageq spinlock so it's easiest to simply
166 	 * not hold it in the loop iteration.
167 	 */
168 	while ((long)count-- > 0 &&
169 	       (m = TAILQ_NEXT(&marker, pageq)) != NULL) {
170 		vm_page_and_queue_spin_lock(m);
171 		if (m != TAILQ_NEXT(&marker, pageq)) {
172 			vm_page_and_queue_spin_unlock(m);
173 			++count;
174 			continue;
175 		}
176 		KKASSERT(m->queue == queue);
177 
178 		TAILQ_REMOVE(&pq->pl, &marker, pageq);
179 		TAILQ_INSERT_AFTER(&pq->pl, m, &marker, pageq);
180 
181 		if (m->flags & PG_MARKER) {
182 			vm_page_and_queue_spin_unlock(m);
183 			continue;
184 		}
185 		if (vm_page_busy_try(m, TRUE)) {
186 			vm_page_and_queue_spin_unlock(m);
187 			continue;
188 		}
189 		vm_page_and_queue_spin_unlock(m);
190 
191 		/*
192 		 * We've successfully busied the page
193 		 */
194 		if (m->queue - m->pc != queue) {
195 			vm_page_wakeup(m);
196 			continue;
197 		}
198 		if (m->wire_count || m->hold_count) {
199 			vm_page_wakeup(m);
200 			continue;
201 		}
202 		if ((object = m->object) == NULL) {
203 			vm_page_wakeup(m);
204 			continue;
205 		}
206 		vm_page_test_dirty(m);
207 		if (m->dirty || (m->flags & PG_NEED_COMMIT)) {
208 			vm_object_hold(object);
209 			KKASSERT(m->object == object);
210 
211 			if (object->type == OBJT_VNODE) {
212 				vm_page_wakeup(m);
213 				vn_lock(object->handle, LK_EXCLUSIVE|LK_RETRY);
214 				vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
215 				vn_unlock(((struct vnode *)object->handle));
216 			} else if (object->type == OBJT_SWAP ||
217 					object->type == OBJT_DEFAULT) {
218 				m_tmp = m;
219 				vm_pageout_flush(&m_tmp, 1, 0);
220 			} else {
221 				vm_page_wakeup(m);
222 			}
223 			vm_object_drop(object);
224 		} else if (m->hold_count == 0) {
225 			vm_page_cache(m);
226 		} else {
227 			vm_page_wakeup(m);
228 		}
229 	}
230 
231 	/*
232 	 * Scrap our local marker
233 	 */
234 	vm_page_queues_spin_lock(queue);
235 	TAILQ_REMOVE(&pq->pl, &marker, pageq);
236 	vm_page_queues_spin_unlock(queue);
237 }
238 
239 /*
240  * vm_contig_pg_alloc:
241  *
242  * Allocate contiguous pages from the VM.  This function does not
243  * map the allocated pages into the kernel map, otherwise it is
244  * impossible to make large allocations (i.e. >2G).
245  *
246  * Malloc()'s data structures have been used for collection of
247  * statistics and for allocations of less than a page.
248  */
249 static vm_pindex_t
250 vm_contig_pg_alloc(unsigned long size, vm_paddr_t low, vm_paddr_t high,
251 		   unsigned long alignment, unsigned long boundary, int mflags)
252 {
253 	vm_pindex_t i, q, start;
254 	vm_offset_t phys;
255 	vm_page_t pga = vm_page_array;
256 	vm_page_t m;
257 	int pass;
258 	int pqtype;
259 
260 	size = round_page(size);
261 	if (size == 0)
262 		panic("vm_contig_pg_alloc: size must not be 0");
263 	if ((alignment & (alignment - 1)) != 0)
264 		panic("vm_contig_pg_alloc: alignment must be a power of 2");
265 	if ((boundary & (boundary - 1)) != 0)
266 		panic("vm_contig_pg_alloc: boundary must be a power of 2");
267 
268 	/*
269 	 * See if we can get the pages from the contiguous page reserve
270 	 * alist.  The returned pages will be allocated and wired but not
271 	 * busied.
272 	 *
273 	 * If high is not set to BUS_SPACE_MAXADDR we try using our
274 	 * free memory reserve first, otherwise we try it last.
275 	 *
276 	 * XXX Always use the dma reserve first for performance, until
277 	 * we find a better way to differentiate the DRM API.
278 	 */
279 #if 0
280 	if (high != BUS_SPACE_MAXADDR)
281 #endif
282 	{
283 		m = vm_page_alloc_contig(
284 			low, high, alignment, boundary,
285 			size, VM_MEMATTR_DEFAULT);
286 		if (m)
287 			return (m - &pga[0]);
288 	}
289 
290 	/*
291 	 * Three passes (0, 1, 2).  Each pass scans the VM page list for
292 	 * free or cached pages.  After each pass if the entire scan failed
293 	 * we attempt to flush inactive pages and reset the start index back
294 	 * to 0.  For passes 1 and 2 we also attempt to flush active pages.
295 	 */
296 	start = 0;
297 	for (pass = 0; pass < 3; pass++) {
298 		/*
299 		 * Find first page in array that is free, within range,
300 		 * aligned, and such that the boundary won't be crossed.
301 		 */
302 again:
303 		for (i = start; i < vmstats.v_page_count; i++) {
304 			m = &pga[i];
305 			phys = VM_PAGE_TO_PHYS(m);
306 			pqtype = m->queue - m->pc;
307 			if (((pqtype == PQ_FREE) || (pqtype == PQ_CACHE)) &&
308 			    (phys >= low) && (phys < high) &&
309 			    ((phys & (alignment - 1)) == 0) &&
310 			    ((rounddown2(phys ^ (phys + size - 1), boundary)) == 0) &&
311 			    m->wire_count == 0 && m->hold_count == 0 &&
312 			    (m->busy_count &
313 			     (PBUSY_LOCKED | PBUSY_MASK)) == 0 &&
314 			    (m->flags & PG_NEED_COMMIT) == 0)
315 			{
316 				break;
317 			}
318 		}
319 
320 		/*
321 		 * If we cannot find the page in the given range, or we have
322 		 * crossed the boundary, call the vm_contig_pg_clean() function
323 		 * for flushing out the queues, and returning it back to
324 		 * normal state.
325 		 */
326 		if ((i == vmstats.v_page_count) ||
327 		    ((VM_PAGE_TO_PHYS(&pga[i]) + size) > high)) {
328 
329 			/*
330 			 * Best effort flush of all inactive pages.
331 			 * This is quite quick, for now stall all
332 			 * callers, even if they've specified M_NOWAIT.
333 			 */
334 			for (q = 0; q < PQ_L2_SIZE; ++q) {
335 				vm_contig_pg_clean(PQ_INACTIVE + q,
336 						   vmstats.v_inactive_count);
337 				lwkt_yield();
338 			}
339 
340 			/*
341 			 * Best effort flush of active pages.
342 			 *
343 			 * This is very, very slow.
344 			 * Only do this if the caller has agreed to M_WAITOK.
345 			 *
346 			 * If enough pages are flushed, we may succeed on
347 			 * next (final) pass, if not the caller, contigmalloc(),
348 			 * will fail in the index < 0 case.
349 			 */
350 			if (pass > 0 && (mflags & M_WAITOK)) {
351 				for (q = 0; q < PQ_L2_SIZE; ++q) {
352 					vm_contig_pg_clean(PQ_ACTIVE + q,
353 						       vmstats.v_active_count);
354 				}
355 				lwkt_yield();
356 			}
357 
358 			/*
359 			 * We're already too high in the address space
360 			 * to succeed, reset to 0 for the next iteration.
361 			 */
362 			start = 0;
363 			continue;	/* next pass */
364 		}
365 		start = i;
366 
367 		/*
368 		 * Check successive pages for contiguous and free.
369 		 *
370 		 * (still in critical section)
371 		 */
372 		for (i = start + 1; i < (start + size / PAGE_SIZE); i++) {
373 			m = &pga[i];
374 			pqtype = m->queue - m->pc;
375 			if ((VM_PAGE_TO_PHYS(&m[0]) !=
376 			    (VM_PAGE_TO_PHYS(&m[-1]) + PAGE_SIZE)) ||
377 			    ((pqtype != PQ_FREE) && (pqtype != PQ_CACHE)) ||
378 			    m->wire_count ||
379 			    m->hold_count ||
380 			    (m->busy_count & (PBUSY_LOCKED | PBUSY_MASK)) ||
381 			    (m->flags & PG_NEED_COMMIT))
382 			{
383 				start++;
384 				goto again;
385 			}
386 		}
387 
388 		/*
389 		 * Try to allocate the pages, wiring them as we go.
390 		 *
391 		 * (still in critical section)
392 		 */
393 		for (i = start; i < (start + size / PAGE_SIZE); i++) {
394 			m = &pga[i];
395 
396 			if (vm_page_busy_try(m, TRUE)) {
397 				vm_contig_pg_free(start,
398 						  (i - start) * PAGE_SIZE);
399 				start++;
400 				goto again;
401 			}
402 			pqtype = m->queue - m->pc;
403 			if (pqtype == PQ_CACHE &&
404 			    m->hold_count == 0 &&
405 			    m->wire_count == 0 &&
406 			    (m->flags & PG_NEED_COMMIT) == 0) {
407 				vm_page_protect(m, VM_PROT_NONE);
408 				KKASSERT((m->flags &
409 					 (PG_MAPPED | PG_UNQUEUED)) == 0);
410 				KKASSERT(m->dirty == 0);
411 				vm_page_free(m);
412 				--i;
413 				continue;	/* retry the page */
414 			}
415 			if (pqtype != PQ_FREE || m->hold_count) {
416 				vm_page_wakeup(m);
417 				vm_contig_pg_free(start,
418 						  (i - start) * PAGE_SIZE);
419 				start++;
420 				goto again;
421 			}
422 			KKASSERT((m->valid & m->dirty) == 0);
423 			KKASSERT(m->wire_count == 0);
424 			KKASSERT(m->object == NULL);
425 			vm_page_unqueue_nowakeup(m);
426 			m->valid = VM_PAGE_BITS_ALL;
427 			KASSERT(m->dirty == 0,
428 				("vm_contig_pg_alloc: page %p was dirty", m));
429 			KKASSERT(m->wire_count == 0);
430 			KKASSERT((m->busy_count & PBUSY_MASK) == 0);
431 
432 			/*
433 			 * Clear all flags, set FICTITIOUS and UNQUEUED to
434 			 * indicate the the pages are special, then unbusy
435 			 * the now allocated page.
436 			 *
437 			 * XXX setting FICTITIOUS and UNQUEUED in the future.
438 			 *     (also pair up with vm_contig_pg_free)
439 			 */
440 			vm_page_flag_clear(m, ~PG_KEEP_NEWPAGE_MASK);
441 			/* vm_page_flag_set(m, PG_FICTITIOUS | PG_UNQUEUED);*/
442 			vm_page_wire(m);
443 			vm_page_wakeup(m);
444 		}
445 
446 		/*
447 		 * Our job is done, return the index page of vm_page_array.
448 		 */
449 		return (start); /* aka &pga[start] */
450 	}
451 
452 #if 0
453 	/*
454 	 * Failed, if we haven't already tried, allocate from our reserved
455 	 * dma memory.
456 	 *
457 	 * XXX (see conditionalized code above)
458 	 */
459 	if (high == BUS_SPACE_MAXADDR) {
460 		m = vm_page_alloc_contig(
461 			low, high, alignment, boundary,
462 			size, VM_MEMATTR_DEFAULT);
463 		if (m)
464 			return (m - &pga[0]);
465 	}
466 #endif
467 
468 	/*
469 	 * Failed.
470 	 */
471 	return ((vm_pindex_t)-1);
472 }
473 
474 /*
475  * vm_contig_pg_free:
476  *
477  * Remove pages previously allocated by vm_contig_pg_alloc, and
478  * assume all references to the pages have been removed, and that
479  * it is OK to add them back to the free list.
480  *
481  * Caller must ensure no races on the page range in question.
482  * No other requirements.
483  */
484 static void
485 vm_contig_pg_free(vm_pindex_t start, u_long size)
486 {
487 	vm_page_t pga = vm_page_array;
488 
489 	size = round_page(size);
490 	if (size == 0)
491 		panic("vm_contig_pg_free: size must not be 0");
492 
493 	/*
494 	 * The pages are wired, vm_page_free_contig() determines whether they
495 	 * belong to the contig space or not and either frees them to that
496 	 * space (leaving them wired), or unwires the page and frees it to the
497 	 * normal PQ_FREE queue.
498 	 */
499 	vm_page_free_contig(&pga[start], size);
500 }
501 
502 /*
503  * vm_contig_pg_kmap:
504  *
505  * Map previously allocated (vm_contig_pg_alloc) range of pages from
506  * vm_page_array[] into the KVA.  Once mapped, the pages are part of
507  * the Kernel, and are to free'ed with kmem_free(kernel_map, addr, size).
508  *
509  * No requirements.
510  */
511 static vm_offset_t
512 vm_contig_pg_kmap(vm_pindex_t start, u_long size, vm_map_t map, int flags)
513 {
514 	vm_offset_t addr;
515 	vm_paddr_t pa;
516 	vm_page_t pga = vm_page_array;
517 	u_long offset;
518 
519 	if (size == 0)
520 		panic("vm_contig_pg_kmap: size must not be 0");
521 	size = round_page(size);
522 	addr = kmem_alloc_pageable(kernel_map, size, VM_SUBSYS_CONTIG);
523 	if (addr) {
524 		pa = VM_PAGE_TO_PHYS(&pga[start]);
525 		for (offset = 0; offset < size; offset += PAGE_SIZE)
526 			pmap_kenter_noinval(addr + offset, pa + offset);
527 		pmap_invalidate_range(kernel_pmap, addr, addr + size);
528 		if (flags & M_ZERO)
529 			bzero((void *)addr, size);
530 	}
531 	return(addr);
532 }
533 
534 /*
535  * No requirements.
536  */
537 void *
538 contigmalloc(
539 	unsigned long size,	/* should be size_t here and for malloc() */
540 	struct malloc_type *type,
541 	int flags,
542 	vm_paddr_t low,
543 	vm_paddr_t high,
544 	unsigned long alignment,
545 	unsigned long boundary)
546 {
547 	return contigmalloc_map(size, type, flags, low, high, alignment,
548 			boundary, kernel_map);
549 }
550 
551 /*
552  * No requirements.
553  */
554 void *
555 contigmalloc_map(unsigned long size, struct malloc_type *type,
556 		 int flags, vm_paddr_t low, vm_paddr_t high,
557 		 unsigned long alignment, unsigned long boundary,
558 		 vm_map_t map)
559 {
560 	vm_pindex_t index;
561 	void *rv;
562 
563 	index = vm_contig_pg_alloc(size, low, high, alignment, boundary, flags);
564 	if (index == (vm_pindex_t)-1) {
565 		kprintf("contigmalloc_map: failed size %lu low=%llx "
566 			"high=%llx align=%lu boundary=%lu flags=%08x\n",
567 			size, (long long)low, (long long)high,
568 			alignment, boundary, flags);
569 		return NULL;
570 	}
571 
572 	rv = (void *)vm_contig_pg_kmap(index, size, map, flags);
573 	if (rv == NULL)
574 		vm_contig_pg_free(index, size);
575 
576 	return rv;
577 }
578 
579 /*
580  * No requirements.
581  */
582 void
583 contigfree(void *addr, unsigned long size, struct malloc_type *type)
584 {
585 	vm_paddr_t pa;
586 	vm_page_t m;
587 
588 	if (size == 0)
589 		panic("vm_contig_pg_kmap: size must not be 0");
590 	size = round_page(size);
591 
592 	pa = pmap_kextract((vm_offset_t)addr);
593 	pmap_qremove((vm_offset_t)addr, size / PAGE_SIZE);
594 	kmem_free(kernel_map, (vm_offset_t)addr, size);
595 
596 	m = PHYS_TO_VM_PAGE(pa);
597 	vm_page_free_contig(m, size);
598 }
599 
600 /*
601  * No requirements.
602  */
603 vm_offset_t
604 kmem_alloc_contig(vm_offset_t size, vm_paddr_t low, vm_paddr_t high,
605 		  vm_offset_t alignment)
606 {
607 	return ((vm_offset_t)contigmalloc_map(size, M_DEVBUF, M_NOWAIT, low,
608 				high, alignment, 0ul, kernel_map));
609 }
610