xref: /dragonfly/sys/vm/vm_contig.c (revision b3f5eba6)
1 /*
2  * Copyright (c) 2003, 2004 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Hiten Pandya <hmp@backplane.com>.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  */
35 /*
36  * Copyright (c) 1991 Regents of the University of California.
37  * All rights reserved.
38  *
39  * This code is derived from software contributed to Berkeley by
40  * The Mach Operating System project at Carnegie-Mellon University.
41  *
42  * Redistribution and use in source and binary forms, with or without
43  * modification, are permitted provided that the following conditions
44  * are met:
45  * 1. Redistributions of source code must retain the above copyright
46  *    notice, this list of conditions and the following disclaimer.
47  * 2. Redistributions in binary form must reproduce the above copyright
48  *    notice, this list of conditions and the following disclaimer in the
49  *    documentation and/or other materials provided with the distribution.
50  * 3. Neither the name of the University nor the names of its contributors
51  *    may be used to endorse or promote products derived from this software
52  *    without specific prior written permission.
53  *
54  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  *
66  *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
67  */
68 
69 /*
70  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
71  * All rights reserved.
72  *
73  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
74  *
75  * Permission to use, copy, modify and distribute this software and
76  * its documentation is hereby granted, provided that both the copyright
77  * notice and this permission notice appear in all copies of the
78  * software, derivative works or modified versions, and any portions
79  * thereof, and that both notices appear in supporting documentation.
80  *
81  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
82  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
83  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
84  *
85  * Carnegie Mellon requests users of this software to return to
86  *
87  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
88  *  School of Computer Science
89  *  Carnegie Mellon University
90  *  Pittsburgh PA 15213-3890
91  *
92  * any improvements or extensions that they make and grant Carnegie the
93  * rights to redistribute these changes.
94  */
95 
96 /*
97  * Contiguous memory allocation API.
98  */
99 
100 #include <sys/param.h>
101 #include <sys/systm.h>
102 #include <sys/malloc.h>
103 #include <sys/proc.h>
104 #include <sys/lock.h>
105 #include <sys/vmmeter.h>
106 #include <sys/vnode.h>
107 
108 #include <vm/vm.h>
109 #include <vm/vm_param.h>
110 #include <vm/vm_kern.h>
111 #include <vm/pmap.h>
112 #include <vm/vm_map.h>
113 #include <vm/vm_object.h>
114 #include <vm/vm_page.h>
115 #include <vm/vm_pageout.h>
116 #include <vm/vm_pager.h>
117 #include <vm/vm_extern.h>
118 
119 #include <sys/spinlock2.h>
120 #include <vm/vm_page2.h>
121 
122 #include <machine/bus_dma.h>
123 
124 static void vm_contig_pg_free(vm_pindex_t start, u_long size);
125 
126 /*
127  * vm_contig_pg_clean:
128  *
129  * Do a thorough cleanup of the specified 'queue', which can be either
130  * PQ_ACTIVE or PQ_INACTIVE by doing a walkthrough.  If the page is not
131  * marked dirty, it is shoved into the page cache, provided no one has
132  * currently aqcuired it, otherwise localized action per object type
133  * is taken for cleanup:
134  *
135  * 	In the OBJT_VNODE case, the whole page range is cleaned up
136  * 	using the vm_object_page_clean() routine, by specyfing a
137  * 	start and end of '0'.
138  *
139  * 	Otherwise if the object is of any other type, the generic
140  * 	pageout (daemon) flush routine is invoked.
141  */
142 static void
143 vm_contig_pg_clean(int queue, vm_pindex_t count)
144 {
145 	vm_object_t object;
146 	vm_page_t m, m_tmp;
147 	struct vm_page marker;
148 	struct vpgqueues *pq = &vm_page_queues[queue];
149 
150 	/*
151 	 * Setup a local marker
152 	 */
153 	bzero(&marker, sizeof(marker));
154 	marker.flags = PG_FICTITIOUS | PG_MARKER;
155 	marker.busy_count = PBUSY_LOCKED;
156 	marker.queue = queue;
157 	marker.wire_count = 1;
158 
159 	vm_page_queues_spin_lock(queue);
160 	TAILQ_INSERT_HEAD(&pq->pl, &marker, pageq);
161 	vm_page_queues_spin_unlock(queue);
162 
163 	/*
164 	 * Iterate the queue.  Note that the vm_page spinlock must be
165 	 * acquired before the pageq spinlock so it's easiest to simply
166 	 * not hold it in the loop iteration.
167 	 */
168 	while ((long)count-- > 0 &&
169 	       (m = TAILQ_NEXT(&marker, pageq)) != NULL) {
170 		vm_page_and_queue_spin_lock(m);
171 		if (m != TAILQ_NEXT(&marker, pageq)) {
172 			vm_page_and_queue_spin_unlock(m);
173 			++count;
174 			continue;
175 		}
176 		KKASSERT(m->queue == queue);
177 
178 		TAILQ_REMOVE(&pq->pl, &marker, pageq);
179 		TAILQ_INSERT_AFTER(&pq->pl, m, &marker, pageq);
180 
181 		if (m->flags & PG_MARKER) {
182 			vm_page_and_queue_spin_unlock(m);
183 			continue;
184 		}
185 		if (vm_page_busy_try(m, TRUE)) {
186 			vm_page_and_queue_spin_unlock(m);
187 			continue;
188 		}
189 		vm_page_and_queue_spin_unlock(m);
190 
191 		/*
192 		 * We've successfully busied the page
193 		 */
194 		if (m->queue - m->pc != queue) {
195 			vm_page_wakeup(m);
196 			continue;
197 		}
198 		if (m->wire_count || m->hold_count) {
199 			vm_page_wakeup(m);
200 			continue;
201 		}
202 		if ((object = m->object) == NULL) {
203 			vm_page_wakeup(m);
204 			continue;
205 		}
206 		vm_page_test_dirty(m);
207 		if (m->dirty || (m->flags & PG_NEED_COMMIT)) {
208 			vm_object_hold(object);
209 			KKASSERT(m->object == object);
210 
211 			if (object->type == OBJT_VNODE) {
212 				vm_page_wakeup(m);
213 				vn_lock(object->handle, LK_EXCLUSIVE|LK_RETRY);
214 				vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
215 				vn_unlock(((struct vnode *)object->handle));
216 			} else if (object->type == OBJT_SWAP ||
217 					object->type == OBJT_DEFAULT) {
218 				m_tmp = m;
219 				vm_pageout_flush(&m_tmp, 1, 0);
220 			} else {
221 				vm_page_wakeup(m);
222 			}
223 			vm_object_drop(object);
224 		} else if (m->hold_count == 0) {
225 			vm_page_cache(m);
226 		} else {
227 			vm_page_wakeup(m);
228 		}
229 	}
230 
231 	/*
232 	 * Scrap our local marker
233 	 */
234 	vm_page_queues_spin_lock(queue);
235 	TAILQ_REMOVE(&pq->pl, &marker, pageq);
236 	vm_page_queues_spin_unlock(queue);
237 }
238 
239 /*
240  * vm_contig_pg_alloc:
241  *
242  * Allocate contiguous pages from the VM.  This function does not
243  * map the allocated pages into the kernel map, otherwise it is
244  * impossible to make large allocations (i.e. >2G).
245  *
246  * Malloc()'s data structures have been used for collection of
247  * statistics and for allocations of less than a page.
248  */
249 static vm_pindex_t
250 vm_contig_pg_alloc(unsigned long size, vm_paddr_t low, vm_paddr_t high,
251 		   unsigned long alignment, unsigned long boundary, int mflags)
252 {
253 	vm_pindex_t i, q, start;
254 	vm_offset_t phys;
255 	vm_page_t pga = vm_page_array;
256 	vm_page_t m;
257 	int pass;
258 	int pqtype;
259 
260 	size = round_page(size);
261 	if (size == 0)
262 		panic("vm_contig_pg_alloc: size must not be 0");
263 	if ((alignment & (alignment - 1)) != 0)
264 		panic("vm_contig_pg_alloc: alignment must be a power of 2");
265 	if ((boundary & (boundary - 1)) != 0)
266 		panic("vm_contig_pg_alloc: boundary must be a power of 2");
267 
268 	/*
269 	 * See if we can get the pages from the contiguous page reserve
270 	 * alist.  The returned pages will be allocated and wired but not
271 	 * busied.
272 	 *
273 	 * If high is not set to BUS_SPACE_MAXADDR we try using our
274 	 * free memory reserve first, otherwise we try it last.
275 	 *
276 	 * XXX Always use the dma reserve first for performance, until
277 	 * we find a better way to differentiate the DRM API.
278 	 */
279 #if 0
280 	if (high != BUS_SPACE_MAXADDR)
281 #endif
282 	{
283 		m = vm_page_alloc_contig(
284 			low, high, alignment, boundary,
285 			size, VM_MEMATTR_DEFAULT);
286 		if (m)
287 			return (m - &pga[0]);
288 	}
289 
290 	/*
291 	 * Three passes (0, 1, 2).  Each pass scans the VM page list for
292 	 * free or cached pages.  After each pass if the entire scan failed
293 	 * we attempt to flush inactive pages and reset the start index back
294 	 * to 0.  For passes 1 and 2 we also attempt to flush active pages.
295 	 */
296 	start = 0;
297 	for (pass = 0; pass < 3; pass++) {
298 		/*
299 		 * Find first page in array that is free, within range,
300 		 * aligned, and such that the boundary won't be crossed.
301 		 */
302 again:
303 		for (i = start; i < vmstats.v_page_count; i++) {
304 			m = &pga[i];
305 			phys = VM_PAGE_TO_PHYS(m);
306 			pqtype = m->queue - m->pc;
307 			if (((pqtype == PQ_FREE) || (pqtype == PQ_CACHE)) &&
308 			    (phys >= low) && (phys < high) &&
309 			    ((phys & (alignment - 1)) == 0) &&
310 			    (((phys ^ (phys + size - 1)) & /* bitwise and */
311 			     ~(boundary - 1)) == 0) &&
312 			    m->wire_count == 0 && m->hold_count == 0 &&
313 			    (m->busy_count &
314 			     (PBUSY_LOCKED | PBUSY_MASK)) == 0 &&
315 			    (m->flags & PG_NEED_COMMIT) == 0)
316 			{
317 				break;
318 			}
319 		}
320 
321 		/*
322 		 * If we cannot find the page in the given range, or we have
323 		 * crossed the boundary, call the vm_contig_pg_clean() function
324 		 * for flushing out the queues, and returning it back to
325 		 * normal state.
326 		 */
327 		if ((i == vmstats.v_page_count) ||
328 		    ((VM_PAGE_TO_PHYS(&pga[i]) + size) > high)) {
329 
330 			/*
331 			 * Best effort flush of all inactive pages.
332 			 * This is quite quick, for now stall all
333 			 * callers, even if they've specified M_NOWAIT.
334 			 */
335 			for (q = 0; q < PQ_L2_SIZE; ++q) {
336 				vm_contig_pg_clean(PQ_INACTIVE + q,
337 						   vmstats.v_inactive_count);
338 				lwkt_yield();
339 			}
340 
341 			/*
342 			 * Best effort flush of active pages.
343 			 *
344 			 * This is very, very slow.
345 			 * Only do this if the caller has agreed to M_WAITOK.
346 			 *
347 			 * If enough pages are flushed, we may succeed on
348 			 * next (final) pass, if not the caller, contigmalloc(),
349 			 * will fail in the index < 0 case.
350 			 */
351 			if (pass > 0 && (mflags & M_WAITOK)) {
352 				for (q = 0; q < PQ_L2_SIZE; ++q) {
353 					vm_contig_pg_clean(PQ_ACTIVE + q,
354 						       vmstats.v_active_count);
355 				}
356 				lwkt_yield();
357 			}
358 
359 			/*
360 			 * We're already too high in the address space
361 			 * to succeed, reset to 0 for the next iteration.
362 			 */
363 			start = 0;
364 			continue;	/* next pass */
365 		}
366 		start = i;
367 
368 		/*
369 		 * Check successive pages for contiguous and free.
370 		 *
371 		 * (still in critical section)
372 		 */
373 		for (i = start + 1; i < (start + size / PAGE_SIZE); i++) {
374 			m = &pga[i];
375 			pqtype = m->queue - m->pc;
376 			if ((VM_PAGE_TO_PHYS(&m[0]) !=
377 			    (VM_PAGE_TO_PHYS(&m[-1]) + PAGE_SIZE)) ||
378 			    ((pqtype != PQ_FREE) && (pqtype != PQ_CACHE)) ||
379 			    m->wire_count ||
380 			    m->hold_count ||
381 			    (m->busy_count & (PBUSY_LOCKED | PBUSY_MASK)) ||
382 			    (m->flags & PG_NEED_COMMIT))
383 			{
384 				start++;
385 				goto again;
386 			}
387 		}
388 
389 		/*
390 		 * Try to allocate the pages, wiring them as we go.
391 		 *
392 		 * (still in critical section)
393 		 */
394 		for (i = start; i < (start + size / PAGE_SIZE); i++) {
395 			m = &pga[i];
396 
397 			if (vm_page_busy_try(m, TRUE)) {
398 				vm_contig_pg_free(start,
399 						  (i - start) * PAGE_SIZE);
400 				start++;
401 				goto again;
402 			}
403 			pqtype = m->queue - m->pc;
404 			if (pqtype == PQ_CACHE &&
405 			    m->hold_count == 0 &&
406 			    m->wire_count == 0 &&
407 			    (m->flags & PG_NEED_COMMIT) == 0) {
408 				vm_page_protect(m, VM_PROT_NONE);
409 				KKASSERT((m->flags &
410 					 (PG_MAPPED | PG_UNQUEUED)) == 0);
411 				KKASSERT(m->dirty == 0);
412 				vm_page_free(m);
413 				--i;
414 				continue;	/* retry the page */
415 			}
416 			if (pqtype != PQ_FREE || m->hold_count) {
417 				vm_page_wakeup(m);
418 				vm_contig_pg_free(start,
419 						  (i - start) * PAGE_SIZE);
420 				start++;
421 				goto again;
422 			}
423 			KKASSERT((m->valid & m->dirty) == 0);
424 			KKASSERT(m->wire_count == 0);
425 			KKASSERT(m->object == NULL);
426 			vm_page_unqueue_nowakeup(m);
427 			m->valid = VM_PAGE_BITS_ALL;
428 			KASSERT(m->dirty == 0,
429 				("vm_contig_pg_alloc: page %p was dirty", m));
430 			KKASSERT(m->wire_count == 0);
431 			KKASSERT((m->busy_count & PBUSY_MASK) == 0);
432 
433 			/*
434 			 * Clear all flags, set FICTITIOUS and UNQUEUED to
435 			 * indicate the the pages are special, then unbusy
436 			 * the now allocated page.
437 			 *
438 			 * XXX setting FICTITIOUS and UNQUEUED in the future.
439 			 *     (also pair up with vm_contig_pg_free)
440 			 */
441 			vm_page_flag_clear(m, ~PG_KEEP_NEWPAGE_MASK);
442 			/* vm_page_flag_set(m, PG_FICTITIOUS | PG_UNQUEUED);*/
443 			vm_page_wire(m);
444 			vm_page_wakeup(m);
445 		}
446 
447 		/*
448 		 * Our job is done, return the index page of vm_page_array.
449 		 */
450 		return (start); /* aka &pga[start] */
451 	}
452 
453 #if 0
454 	/*
455 	 * Failed, if we haven't already tried, allocate from our reserved
456 	 * dma memory.
457 	 *
458 	 * XXX (see conditionalized code above)
459 	 */
460 	if (high == BUS_SPACE_MAXADDR) {
461 		m = vm_page_alloc_contig(
462 			low, high, alignment, boundary,
463 			size, VM_MEMATTR_DEFAULT);
464 		if (m)
465 			return (m - &pga[0]);
466 	}
467 #endif
468 
469 	/*
470 	 * Failed.
471 	 */
472 	return ((vm_pindex_t)-1);
473 }
474 
475 /*
476  * vm_contig_pg_free:
477  *
478  * Remove pages previously allocated by vm_contig_pg_alloc, and
479  * assume all references to the pages have been removed, and that
480  * it is OK to add them back to the free list.
481  *
482  * Caller must ensure no races on the page range in question.
483  * No other requirements.
484  */
485 static void
486 vm_contig_pg_free(vm_pindex_t start, u_long size)
487 {
488 	vm_page_t pga = vm_page_array;
489 
490 	size = round_page(size);
491 	if (size == 0)
492 		panic("vm_contig_pg_free: size must not be 0");
493 
494 	/*
495 	 * The pages are wired, vm_page_free_contig() determines whether they
496 	 * belong to the contig space or not and either frees them to that
497 	 * space (leaving them wired), or unwires the page and frees it to the
498 	 * normal PQ_FREE queue.
499 	 */
500 	vm_page_free_contig(&pga[start], size);
501 }
502 
503 /*
504  * vm_contig_pg_kmap:
505  *
506  * Map previously allocated (vm_contig_pg_alloc) range of pages from
507  * vm_page_array[] into the KVA.  Once mapped, the pages are part of
508  * the Kernel, and are to free'ed with kmem_free(&kernel_map, addr, size).
509  *
510  * No requirements.
511  */
512 static vm_offset_t
513 vm_contig_pg_kmap(vm_pindex_t start, u_long size, vm_map_t map, int flags)
514 {
515 	vm_offset_t addr;
516 	vm_paddr_t pa;
517 	vm_page_t pga = vm_page_array;
518 	u_long offset;
519 
520 	if (size == 0)
521 		panic("vm_contig_pg_kmap: size must not be 0");
522 	size = round_page(size);
523 	addr = kmem_alloc_pageable(&kernel_map, size, VM_SUBSYS_CONTIG);
524 	if (addr) {
525 		pa = VM_PAGE_TO_PHYS(&pga[start]);
526 		for (offset = 0; offset < size; offset += PAGE_SIZE)
527 			pmap_kenter_noinval(addr + offset, pa + offset);
528 		pmap_invalidate_range(&kernel_pmap, addr, addr + size);
529 		if (flags & M_ZERO)
530 			bzero((void *)addr, size);
531 	}
532 	return(addr);
533 }
534 
535 /*
536  * No requirements.
537  */
538 void *
539 contigmalloc(
540 	unsigned long size,	/* should be size_t here and for malloc() */
541 	struct malloc_type *type,
542 	int flags,
543 	vm_paddr_t low,
544 	vm_paddr_t high,
545 	unsigned long alignment,
546 	unsigned long boundary)
547 {
548 	return contigmalloc_map(size, type, flags, low, high, alignment,
549 			boundary, &kernel_map);
550 }
551 
552 /*
553  * No requirements.
554  */
555 void *
556 contigmalloc_map(unsigned long size, struct malloc_type *type,
557 		 int flags, vm_paddr_t low, vm_paddr_t high,
558 		 unsigned long alignment, unsigned long boundary,
559 		 vm_map_t map)
560 {
561 	vm_pindex_t index;
562 	void *rv;
563 
564 	index = vm_contig_pg_alloc(size, low, high, alignment, boundary, flags);
565 	if (index == (vm_pindex_t)-1) {
566 		kprintf("contigmalloc_map: failed size %lu low=%llx "
567 			"high=%llx align=%lu boundary=%lu flags=%08x\n",
568 			size, (long long)low, (long long)high,
569 			alignment, boundary, flags);
570 		return NULL;
571 	}
572 
573 	rv = (void *)vm_contig_pg_kmap(index, size, map, flags);
574 	if (rv == NULL)
575 		vm_contig_pg_free(index, size);
576 
577 	return rv;
578 }
579 
580 /*
581  * No requirements.
582  */
583 void
584 contigfree(void *addr, unsigned long size, struct malloc_type *type)
585 {
586 	vm_paddr_t pa;
587 	vm_page_t m;
588 
589 	if (size == 0)
590 		panic("vm_contig_pg_kmap: size must not be 0");
591 	size = round_page(size);
592 
593 	pa = pmap_kextract((vm_offset_t)addr);
594 	pmap_qremove((vm_offset_t)addr, size / PAGE_SIZE);
595 	kmem_free(&kernel_map, (vm_offset_t)addr, size);
596 
597 	m = PHYS_TO_VM_PAGE(pa);
598 	vm_page_free_contig(m, size);
599 }
600 
601 /*
602  * No requirements.
603  */
604 vm_offset_t
605 kmem_alloc_contig(vm_offset_t size, vm_paddr_t low, vm_paddr_t high,
606 		  vm_offset_t alignment)
607 {
608 	return ((vm_offset_t)contigmalloc_map(size, M_DEVBUF, M_NOWAIT, low,
609 				high, alignment, 0ul, &kernel_map));
610 }
611