xref: /dragonfly/sys/vm/vm_fault.c (revision 10cbe914)
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * Copyright (c) 1994 John S. Dyson
7  * All rights reserved.
8  * Copyright (c) 1994 David Greenman
9  * All rights reserved.
10  *
11  *
12  * This code is derived from software contributed to Berkeley by
13  * The Mach Operating System project at Carnegie-Mellon University.
14  *
15  * Redistribution and use in source and binary forms, with or without
16  * modification, are permitted provided that the following conditions
17  * are met:
18  * 1. Redistributions of source code must retain the above copyright
19  *    notice, this list of conditions and the following disclaimer.
20  * 2. Redistributions in binary form must reproduce the above copyright
21  *    notice, this list of conditions and the following disclaimer in the
22  *    documentation and/or other materials provided with the distribution.
23  * 3. All advertising materials mentioning features or use of this software
24  *    must display the following acknowledgement:
25  *	This product includes software developed by the University of
26  *	California, Berkeley and its contributors.
27  * 4. Neither the name of the University nor the names of its contributors
28  *    may be used to endorse or promote products derived from this software
29  *    without specific prior written permission.
30  *
31  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41  * SUCH DAMAGE.
42  *
43  *	from: @(#)vm_fault.c	8.4 (Berkeley) 1/12/94
44  *
45  *
46  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
47  * All rights reserved.
48  *
49  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
50  *
51  * Permission to use, copy, modify and distribute this software and
52  * its documentation is hereby granted, provided that both the copyright
53  * notice and this permission notice appear in all copies of the
54  * software, derivative works or modified versions, and any portions
55  * thereof, and that both notices appear in supporting documentation.
56  *
57  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
58  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
59  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
60  *
61  * Carnegie Mellon requests users of this software to return to
62  *
63  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
64  *  School of Computer Science
65  *  Carnegie Mellon University
66  *  Pittsburgh PA 15213-3890
67  *
68  * any improvements or extensions that they make and grant Carnegie the
69  * rights to redistribute these changes.
70  *
71  * $FreeBSD: src/sys/vm/vm_fault.c,v 1.108.2.8 2002/02/26 05:49:27 silby Exp $
72  * $DragonFly: src/sys/vm/vm_fault.c,v 1.47 2008/07/01 02:02:56 dillon Exp $
73  */
74 
75 /*
76  *	Page fault handling module.
77  */
78 
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/kernel.h>
82 #include <sys/proc.h>
83 #include <sys/vnode.h>
84 #include <sys/resourcevar.h>
85 #include <sys/vmmeter.h>
86 #include <sys/vkernel.h>
87 #include <sys/lock.h>
88 #include <sys/sysctl.h>
89 
90 #include <cpu/lwbuf.h>
91 
92 #include <vm/vm.h>
93 #include <vm/vm_param.h>
94 #include <vm/pmap.h>
95 #include <vm/vm_map.h>
96 #include <vm/vm_object.h>
97 #include <vm/vm_page.h>
98 #include <vm/vm_pageout.h>
99 #include <vm/vm_kern.h>
100 #include <vm/vm_pager.h>
101 #include <vm/vnode_pager.h>
102 #include <vm/vm_extern.h>
103 
104 #include <sys/thread2.h>
105 #include <vm/vm_page2.h>
106 
107 struct faultstate {
108 	vm_page_t m;
109 	vm_object_t object;
110 	vm_pindex_t pindex;
111 	vm_prot_t prot;
112 	vm_page_t first_m;
113 	vm_object_t first_object;
114 	vm_prot_t first_prot;
115 	vm_map_t map;
116 	vm_map_entry_t entry;
117 	int lookup_still_valid;
118 	int didlimit;
119 	int hardfault;
120 	int fault_flags;
121 	int map_generation;
122 	boolean_t wired;
123 	struct vnode *vp;
124 };
125 
126 static int vm_fast_fault = 1;
127 SYSCTL_INT(_vm, OID_AUTO, fast_fault, CTLFLAG_RW, &vm_fast_fault, 0,
128 	   "Burst fault zero-fill regions");
129 static int debug_cluster = 0;
130 SYSCTL_INT(_vm, OID_AUTO, debug_cluster, CTLFLAG_RW, &debug_cluster, 0, "");
131 
132 static int vm_fault_object(struct faultstate *, vm_pindex_t, vm_prot_t);
133 static int vm_fault_vpagetable(struct faultstate *, vm_pindex_t *, vpte_t, int);
134 #if 0
135 static int vm_fault_additional_pages (vm_page_t, int, int, vm_page_t *, int *);
136 #endif
137 static int vm_fault_ratelimit(struct vmspace *);
138 static void vm_set_nosync(vm_page_t m, vm_map_entry_t entry);
139 static void vm_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry,
140 			int prot);
141 
142 /*
143  * The caller must hold vm_token.
144  */
145 static __inline void
146 release_page(struct faultstate *fs)
147 {
148 	vm_page_deactivate(fs->m);
149 	vm_page_wakeup(fs->m);
150 	fs->m = NULL;
151 }
152 
153 /*
154  * The caller must hold vm_token.
155  */
156 static __inline void
157 unlock_map(struct faultstate *fs)
158 {
159 	if (fs->lookup_still_valid && fs->map) {
160 		vm_map_lookup_done(fs->map, fs->entry, 0);
161 		fs->lookup_still_valid = FALSE;
162 	}
163 }
164 
165 /*
166  * Clean up after a successful call to vm_fault_object() so another call
167  * to vm_fault_object() can be made.
168  *
169  * The caller must hold vm_token.
170  */
171 static void
172 _cleanup_successful_fault(struct faultstate *fs, int relock)
173 {
174 	if (fs->object != fs->first_object) {
175 		vm_page_free(fs->first_m);
176 		vm_object_pip_wakeup(fs->object);
177 		fs->first_m = NULL;
178 	}
179 	fs->object = fs->first_object;
180 	if (relock && fs->lookup_still_valid == FALSE) {
181 		if (fs->map)
182 			vm_map_lock_read(fs->map);
183 		fs->lookup_still_valid = TRUE;
184 	}
185 }
186 
187 /*
188  * The caller must hold vm_token.
189  */
190 static void
191 _unlock_things(struct faultstate *fs, int dealloc)
192 {
193 	vm_object_pip_wakeup(fs->first_object);
194 	_cleanup_successful_fault(fs, 0);
195 	if (dealloc) {
196 		vm_object_deallocate(fs->first_object);
197 		fs->first_object = NULL;
198 	}
199 	unlock_map(fs);
200 	if (fs->vp != NULL) {
201 		vput(fs->vp);
202 		fs->vp = NULL;
203 	}
204 }
205 
206 #define unlock_things(fs) _unlock_things(fs, 0)
207 #define unlock_and_deallocate(fs) _unlock_things(fs, 1)
208 #define cleanup_successful_fault(fs) _cleanup_successful_fault(fs, 1)
209 
210 /*
211  * TRYPAGER
212  *
213  * Determine if the pager for the current object *might* contain the page.
214  *
215  * We only need to try the pager if this is not a default object (default
216  * objects are zero-fill and have no real pager), and if we are not taking
217  * a wiring fault or if the FS entry is wired.
218  */
219 #define TRYPAGER(fs)	\
220 		(fs->object->type != OBJT_DEFAULT && \
221 		(((fs->fault_flags & VM_FAULT_WIRE_MASK) == 0) || fs->wired))
222 
223 /*
224  * vm_fault:
225  *
226  * Handle a page fault occuring at the given address, requiring the given
227  * permissions, in the map specified.  If successful, the page is inserted
228  * into the associated physical map.
229  *
230  * NOTE: The given address should be truncated to the proper page address.
231  *
232  * KERN_SUCCESS is returned if the page fault is handled; otherwise,
233  * a standard error specifying why the fault is fatal is returned.
234  *
235  * The map in question must be referenced, and remains so.
236  * The caller may hold no locks.
237  * No other requirements.
238  */
239 int
240 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, int fault_flags)
241 {
242 	int result;
243 	vm_pindex_t first_pindex;
244 	struct faultstate fs;
245 	int growstack;
246 
247 	mycpu->gd_cnt.v_vm_faults++;
248 
249 	fs.didlimit = 0;
250 	fs.hardfault = 0;
251 	fs.fault_flags = fault_flags;
252 	growstack = 1;
253 
254 RetryFault:
255 	/*
256 	 * Find the vm_map_entry representing the backing store and resolve
257 	 * the top level object and page index.  This may have the side
258 	 * effect of executing a copy-on-write on the map entry and/or
259 	 * creating a shadow object, but will not COW any actual VM pages.
260 	 *
261 	 * On success fs.map is left read-locked and various other fields
262 	 * are initialized but not otherwise referenced or locked.
263 	 *
264 	 * NOTE!  vm_map_lookup will try to upgrade the fault_type to
265 	 * VM_FAULT_WRITE if the map entry is a virtual page table and also
266 	 * writable, so we can set the 'A'accessed bit in the virtual page
267 	 * table entry.
268 	 */
269 	fs.map = map;
270 	result = vm_map_lookup(&fs.map, vaddr, fault_type,
271 			       &fs.entry, &fs.first_object,
272 			       &first_pindex, &fs.first_prot, &fs.wired);
273 
274 	/*
275 	 * If the lookup failed or the map protections are incompatible,
276 	 * the fault generally fails.  However, if the caller is trying
277 	 * to do a user wiring we have more work to do.
278 	 */
279 	if (result != KERN_SUCCESS) {
280 		if (result != KERN_PROTECTION_FAILURE ||
281 		    (fs.fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE)
282 		{
283 			if (result == KERN_INVALID_ADDRESS && growstack &&
284 			    map != &kernel_map && curproc != NULL) {
285 				result = vm_map_growstack(curproc, vaddr);
286 				if (result != KERN_SUCCESS)
287 					return (KERN_FAILURE);
288 				growstack = 0;
289 				goto RetryFault;
290 			}
291 			return (result);
292 		}
293 
294 		/*
295    		 * If we are user-wiring a r/w segment, and it is COW, then
296    		 * we need to do the COW operation.  Note that we don't
297 		 * currently COW RO sections now, because it is NOT desirable
298    		 * to COW .text.  We simply keep .text from ever being COW'ed
299    		 * and take the heat that one cannot debug wired .text sections.
300    		 */
301 		result = vm_map_lookup(&fs.map, vaddr,
302 				       VM_PROT_READ|VM_PROT_WRITE|
303 				        VM_PROT_OVERRIDE_WRITE,
304 				       &fs.entry, &fs.first_object,
305 				       &first_pindex, &fs.first_prot,
306 				       &fs.wired);
307 		if (result != KERN_SUCCESS)
308 			return result;
309 
310 		/*
311 		 * If we don't COW now, on a user wire, the user will never
312 		 * be able to write to the mapping.  If we don't make this
313 		 * restriction, the bookkeeping would be nearly impossible.
314 		 */
315 		if ((fs.entry->protection & VM_PROT_WRITE) == 0)
316 			fs.entry->max_protection &= ~VM_PROT_WRITE;
317 	}
318 
319 	/*
320 	 * fs.map is read-locked
321 	 *
322 	 * Misc checks.  Save the map generation number to detect races.
323 	 */
324 	fs.map_generation = fs.map->timestamp;
325 
326 	if (fs.entry->eflags & (MAP_ENTRY_NOFAULT | MAP_ENTRY_KSTACK)) {
327 		if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
328 			panic("vm_fault: fault on nofault entry, addr: %p",
329 			      (void *)vaddr);
330 		}
331 		if ((fs.entry->eflags & MAP_ENTRY_KSTACK) &&
332 		    vaddr >= fs.entry->start &&
333 		    vaddr < fs.entry->start + PAGE_SIZE) {
334 			panic("vm_fault: fault on stack guard, addr: %p",
335 			      (void *)vaddr);
336 		}
337 	}
338 
339 	/*
340 	 * A system map entry may return a NULL object.  No object means
341 	 * no pager means an unrecoverable kernel fault.
342 	 */
343 	if (fs.first_object == NULL) {
344 		panic("vm_fault: unrecoverable fault at %p in entry %p",
345 			(void *)vaddr, fs.entry);
346 	}
347 
348 	/*
349 	 * Make a reference to this object to prevent its disposal while we
350 	 * are messing with it.  Once we have the reference, the map is free
351 	 * to be diddled.  Since objects reference their shadows (and copies),
352 	 * they will stay around as well.
353 	 *
354 	 * Bump the paging-in-progress count to prevent size changes (e.g.
355 	 * truncation operations) during I/O.  This must be done after
356 	 * obtaining the vnode lock in order to avoid possible deadlocks.
357 	 *
358 	 * The vm_token is needed to manipulate the vm_object
359 	 */
360 	lwkt_gettoken(&vm_token);
361 	vm_object_reference(fs.first_object);
362 	fs.vp = vnode_pager_lock(fs.first_object);
363 	vm_object_pip_add(fs.first_object, 1);
364 	lwkt_reltoken(&vm_token);
365 
366 	fs.lookup_still_valid = TRUE;
367 	fs.first_m = NULL;
368 	fs.object = fs.first_object;	/* so unlock_and_deallocate works */
369 
370 	/*
371 	 * If the entry is wired we cannot change the page protection.
372 	 */
373 	if (fs.wired)
374 		fault_type = fs.first_prot;
375 
376 	/*
377 	 * The page we want is at (first_object, first_pindex), but if the
378 	 * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the
379 	 * page table to figure out the actual pindex.
380 	 *
381 	 * NOTE!  DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION
382 	 * ONLY
383 	 */
384 	if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
385 		result = vm_fault_vpagetable(&fs, &first_pindex,
386 					     fs.entry->aux.master_pde,
387 					     fault_type);
388 		if (result == KERN_TRY_AGAIN)
389 			goto RetryFault;
390 		if (result != KERN_SUCCESS)
391 			return (result);
392 	}
393 
394 	/*
395 	 * Now we have the actual (object, pindex), fault in the page.  If
396 	 * vm_fault_object() fails it will unlock and deallocate the FS
397 	 * data.   If it succeeds everything remains locked and fs->object
398 	 * will have an additional PIP count if it is not equal to
399 	 * fs->first_object
400 	 *
401 	 * vm_fault_object will set fs->prot for the pmap operation.  It is
402 	 * allowed to set VM_PROT_WRITE if fault_type == VM_PROT_READ if the
403 	 * page can be safely written.  However, it will force a read-only
404 	 * mapping for a read fault if the memory is managed by a virtual
405 	 * page table.
406 	 */
407 	/* BEFORE */
408 	result = vm_fault_object(&fs, first_pindex, fault_type);
409 
410 	if (result == KERN_TRY_AGAIN) {
411 		/*lwkt_reltoken(&vm_token);*/
412 		goto RetryFault;
413 	}
414 	if (result != KERN_SUCCESS) {
415 		/*lwkt_reltoken(&vm_token);*/
416 		return (result);
417 	}
418 
419 	/*
420 	 * On success vm_fault_object() does not unlock or deallocate, and fs.m
421 	 * will contain a busied page.
422 	 *
423 	 * Enter the page into the pmap and do pmap-related adjustments.
424 	 */
425 	vm_page_flag_set(fs.m, PG_REFERENCED);
426 	pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot, fs.wired);
427 
428 	/*
429 	 * Burst in a few more pages if possible.  The fs.map should still
430 	 * be locked.
431 	 */
432 	if (fault_flags & VM_FAULT_BURST) {
433 		if ((fs.fault_flags & VM_FAULT_WIRE_MASK) == 0 &&
434 		    fs.wired == 0) {
435 			vm_prefault(fs.map->pmap, vaddr, fs.entry, fs.prot);
436 		}
437 	}
438 	lwkt_gettoken(&vm_token);
439 	unlock_things(&fs);
440 
441 	KKASSERT(fs.m->queue == PQ_NONE);
442 	KKASSERT(fs.m->flags & PG_BUSY);
443 
444 	/*
445 	 * If the page is not wired down, then put it where the pageout daemon
446 	 * can find it.
447 	 *
448 	 * We do not really need to get vm_token here but since all the
449 	 * vm_*() calls have to doing it here improves efficiency.
450 	 */
451 	/*lwkt_gettoken(&vm_token);*/
452 
453 	if (fs.fault_flags & VM_FAULT_WIRE_MASK) {
454 		lwkt_reltoken(&vm_token); /* before wire activate does not */
455 		if (fs.wired)
456 			vm_page_wire(fs.m);
457 		else
458 			vm_page_unwire(fs.m, 1);
459 	} else {
460 		vm_page_activate(fs.m);
461 		lwkt_reltoken(&vm_token); /* before wire activate does not */
462 	}
463 	/*lwkt_reltoken(&vm_token); after wire/activate works */
464 
465 	if (curthread->td_lwp) {
466 		if (fs.hardfault) {
467 			curthread->td_lwp->lwp_ru.ru_majflt++;
468 		} else {
469 			curthread->td_lwp->lwp_ru.ru_minflt++;
470 		}
471 	}
472 
473 	/*
474 	 * Unlock everything, and return
475 	 */
476 	vm_page_wakeup(fs.m);
477 	vm_object_deallocate(fs.first_object);
478 	/*lwkt_reltoken(&vm_token);*/
479 
480 	return (KERN_SUCCESS);
481 }
482 
483 /*
484  * Fault in the specified virtual address in the current process map,
485  * returning a held VM page or NULL.  See vm_fault_page() for more
486  * information.
487  *
488  * No requirements.
489  */
490 vm_page_t
491 vm_fault_page_quick(vm_offset_t va, vm_prot_t fault_type, int *errorp)
492 {
493 	struct lwp *lp = curthread->td_lwp;
494 	vm_page_t m;
495 
496 	m = vm_fault_page(&lp->lwp_vmspace->vm_map, va,
497 			  fault_type, VM_FAULT_NORMAL, errorp);
498 	return(m);
499 }
500 
501 /*
502  * Fault in the specified virtual address in the specified map, doing all
503  * necessary manipulation of the object store and all necessary I/O.  Return
504  * a held VM page or NULL, and set *errorp.  The related pmap is not
505  * updated.
506  *
507  * The returned page will be properly dirtied if VM_PROT_WRITE was specified,
508  * and marked PG_REFERENCED as well.
509  *
510  * If the page cannot be faulted writable and VM_PROT_WRITE was specified, an
511  * error will be returned.
512  *
513  * No requirements.
514  */
515 vm_page_t
516 vm_fault_page(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
517 	      int fault_flags, int *errorp)
518 {
519 	vm_pindex_t first_pindex;
520 	struct faultstate fs;
521 	int result;
522 	vm_prot_t orig_fault_type = fault_type;
523 
524 	mycpu->gd_cnt.v_vm_faults++;
525 
526 	fs.didlimit = 0;
527 	fs.hardfault = 0;
528 	fs.fault_flags = fault_flags;
529 	KKASSERT((fault_flags & VM_FAULT_WIRE_MASK) == 0);
530 
531 RetryFault:
532 	/*
533 	 * Find the vm_map_entry representing the backing store and resolve
534 	 * the top level object and page index.  This may have the side
535 	 * effect of executing a copy-on-write on the map entry and/or
536 	 * creating a shadow object, but will not COW any actual VM pages.
537 	 *
538 	 * On success fs.map is left read-locked and various other fields
539 	 * are initialized but not otherwise referenced or locked.
540 	 *
541 	 * NOTE!  vm_map_lookup will upgrade the fault_type to VM_FAULT_WRITE
542 	 * if the map entry is a virtual page table and also writable,
543 	 * so we can set the 'A'accessed bit in the virtual page table entry.
544 	 */
545 	fs.map = map;
546 	result = vm_map_lookup(&fs.map, vaddr, fault_type,
547 			       &fs.entry, &fs.first_object,
548 			       &first_pindex, &fs.first_prot, &fs.wired);
549 
550 	if (result != KERN_SUCCESS) {
551 		*errorp = result;
552 		return (NULL);
553 	}
554 
555 	/*
556 	 * fs.map is read-locked
557 	 *
558 	 * Misc checks.  Save the map generation number to detect races.
559 	 */
560 	fs.map_generation = fs.map->timestamp;
561 
562 	if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
563 		panic("vm_fault: fault on nofault entry, addr: %lx",
564 		    (u_long)vaddr);
565 	}
566 
567 	/*
568 	 * A system map entry may return a NULL object.  No object means
569 	 * no pager means an unrecoverable kernel fault.
570 	 */
571 	if (fs.first_object == NULL) {
572 		panic("vm_fault: unrecoverable fault at %p in entry %p",
573 			(void *)vaddr, fs.entry);
574 	}
575 
576 	/*
577 	 * Make a reference to this object to prevent its disposal while we
578 	 * are messing with it.  Once we have the reference, the map is free
579 	 * to be diddled.  Since objects reference their shadows (and copies),
580 	 * they will stay around as well.
581 	 *
582 	 * Bump the paging-in-progress count to prevent size changes (e.g.
583 	 * truncation operations) during I/O.  This must be done after
584 	 * obtaining the vnode lock in order to avoid possible deadlocks.
585 	 *
586 	 * The vm_token is needed to manipulate the vm_object
587 	 */
588 	lwkt_gettoken(&vm_token);
589 	vm_object_reference(fs.first_object);
590 	fs.vp = vnode_pager_lock(fs.first_object);
591 	vm_object_pip_add(fs.first_object, 1);
592 	lwkt_reltoken(&vm_token);
593 
594 	fs.lookup_still_valid = TRUE;
595 	fs.first_m = NULL;
596 	fs.object = fs.first_object;	/* so unlock_and_deallocate works */
597 
598 	/*
599 	 * If the entry is wired we cannot change the page protection.
600 	 */
601 	if (fs.wired)
602 		fault_type = fs.first_prot;
603 
604 	/*
605 	 * The page we want is at (first_object, first_pindex), but if the
606 	 * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the
607 	 * page table to figure out the actual pindex.
608 	 *
609 	 * NOTE!  DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION
610 	 * ONLY
611 	 */
612 	if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
613 		result = vm_fault_vpagetable(&fs, &first_pindex,
614 					     fs.entry->aux.master_pde,
615 					     fault_type);
616 		if (result == KERN_TRY_AGAIN)
617 			goto RetryFault;
618 		if (result != KERN_SUCCESS) {
619 			*errorp = result;
620 			return (NULL);
621 		}
622 	}
623 
624 	/*
625 	 * Now we have the actual (object, pindex), fault in the page.  If
626 	 * vm_fault_object() fails it will unlock and deallocate the FS
627 	 * data.   If it succeeds everything remains locked and fs->object
628 	 * will have an additinal PIP count if it is not equal to
629 	 * fs->first_object
630 	 */
631 	result = vm_fault_object(&fs, first_pindex, fault_type);
632 
633 	if (result == KERN_TRY_AGAIN)
634 		goto RetryFault;
635 	if (result != KERN_SUCCESS) {
636 		*errorp = result;
637 		return(NULL);
638 	}
639 
640 	if ((orig_fault_type & VM_PROT_WRITE) &&
641 	    (fs.prot & VM_PROT_WRITE) == 0) {
642 		*errorp = KERN_PROTECTION_FAILURE;
643 		unlock_and_deallocate(&fs);
644 		return(NULL);
645 	}
646 
647 	/*
648 	 * On success vm_fault_object() does not unlock or deallocate, and fs.m
649 	 * will contain a busied page.
650 	 */
651 	unlock_things(&fs);
652 
653 	/*
654 	 * Return a held page.  We are not doing any pmap manipulation so do
655 	 * not set PG_MAPPED.  However, adjust the page flags according to
656 	 * the fault type because the caller may not use a managed pmapping
657 	 * (so we don't want to lose the fact that the page will be dirtied
658 	 * if a write fault was specified).
659 	 */
660 	lwkt_gettoken(&vm_token);
661 	vm_page_hold(fs.m);
662 	if (fault_type & VM_PROT_WRITE)
663 		vm_page_dirty(fs.m);
664 
665 	/*
666 	 * Update the pmap.  We really only have to do this if a COW
667 	 * occured to replace the read-only page with the new page.  For
668 	 * now just do it unconditionally. XXX
669 	 */
670 	pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot, fs.wired);
671 	vm_page_flag_set(fs.m, PG_REFERENCED);
672 
673 	/*
674 	 * Unbusy the page by activating it.  It remains held and will not
675 	 * be reclaimed.
676 	 */
677 	vm_page_activate(fs.m);
678 
679 	if (curthread->td_lwp) {
680 		if (fs.hardfault) {
681 			curthread->td_lwp->lwp_ru.ru_majflt++;
682 		} else {
683 			curthread->td_lwp->lwp_ru.ru_minflt++;
684 		}
685 	}
686 
687 	/*
688 	 * Unlock everything, and return the held page.
689 	 */
690 	vm_page_wakeup(fs.m);
691 	vm_object_deallocate(fs.first_object);
692 	lwkt_reltoken(&vm_token);
693 
694 	*errorp = 0;
695 	return(fs.m);
696 }
697 
698 /*
699  * Fault in the specified (object,offset), dirty the returned page as
700  * needed.  If the requested fault_type cannot be done NULL and an
701  * error is returned.
702  *
703  * A held (but not busied) page is returned.
704  *
705  * No requirements.
706  */
707 vm_page_t
708 vm_fault_object_page(vm_object_t object, vm_ooffset_t offset,
709 		     vm_prot_t fault_type, int fault_flags, int *errorp)
710 {
711 	int result;
712 	vm_pindex_t first_pindex;
713 	struct faultstate fs;
714 	struct vm_map_entry entry;
715 
716 	bzero(&entry, sizeof(entry));
717 	entry.object.vm_object = object;
718 	entry.maptype = VM_MAPTYPE_NORMAL;
719 	entry.protection = entry.max_protection = fault_type;
720 
721 	fs.didlimit = 0;
722 	fs.hardfault = 0;
723 	fs.fault_flags = fault_flags;
724 	fs.map = NULL;
725 	KKASSERT((fault_flags & VM_FAULT_WIRE_MASK) == 0);
726 
727 RetryFault:
728 
729 	fs.first_object = object;
730 	first_pindex = OFF_TO_IDX(offset);
731 	fs.entry = &entry;
732 	fs.first_prot = fault_type;
733 	fs.wired = 0;
734 	/*fs.map_generation = 0; unused */
735 
736 	/*
737 	 * Make a reference to this object to prevent its disposal while we
738 	 * are messing with it.  Once we have the reference, the map is free
739 	 * to be diddled.  Since objects reference their shadows (and copies),
740 	 * they will stay around as well.
741 	 *
742 	 * Bump the paging-in-progress count to prevent size changes (e.g.
743 	 * truncation operations) during I/O.  This must be done after
744 	 * obtaining the vnode lock in order to avoid possible deadlocks.
745 	 */
746 	lwkt_gettoken(&vm_token);
747 	vm_object_reference(fs.first_object);
748 	fs.vp = vnode_pager_lock(fs.first_object);
749 	vm_object_pip_add(fs.first_object, 1);
750 	lwkt_reltoken(&vm_token);
751 
752 	fs.lookup_still_valid = TRUE;
753 	fs.first_m = NULL;
754 	fs.object = fs.first_object;	/* so unlock_and_deallocate works */
755 
756 #if 0
757 	/* XXX future - ability to operate on VM object using vpagetable */
758 	if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
759 		result = vm_fault_vpagetable(&fs, &first_pindex,
760 					     fs.entry->aux.master_pde,
761 					     fault_type);
762 		if (result == KERN_TRY_AGAIN)
763 			goto RetryFault;
764 		if (result != KERN_SUCCESS) {
765 			*errorp = result;
766 			return (NULL);
767 		}
768 	}
769 #endif
770 
771 	/*
772 	 * Now we have the actual (object, pindex), fault in the page.  If
773 	 * vm_fault_object() fails it will unlock and deallocate the FS
774 	 * data.   If it succeeds everything remains locked and fs->object
775 	 * will have an additinal PIP count if it is not equal to
776 	 * fs->first_object
777 	 */
778 	result = vm_fault_object(&fs, first_pindex, fault_type);
779 
780 	if (result == KERN_TRY_AGAIN)
781 		goto RetryFault;
782 	if (result != KERN_SUCCESS) {
783 		*errorp = result;
784 		return(NULL);
785 	}
786 
787 	if ((fault_type & VM_PROT_WRITE) && (fs.prot & VM_PROT_WRITE) == 0) {
788 		*errorp = KERN_PROTECTION_FAILURE;
789 		unlock_and_deallocate(&fs);
790 		return(NULL);
791 	}
792 
793 	/*
794 	 * On success vm_fault_object() does not unlock or deallocate, and fs.m
795 	 * will contain a busied page.
796 	 */
797 	unlock_things(&fs);
798 
799 	/*
800 	 * Return a held page.  We are not doing any pmap manipulation so do
801 	 * not set PG_MAPPED.  However, adjust the page flags according to
802 	 * the fault type because the caller may not use a managed pmapping
803 	 * (so we don't want to lose the fact that the page will be dirtied
804 	 * if a write fault was specified).
805 	 */
806 	lwkt_gettoken(&vm_token);
807 	vm_page_hold(fs.m);
808 	if (fault_type & VM_PROT_WRITE)
809 		vm_page_dirty(fs.m);
810 
811 	if (fault_flags & VM_FAULT_DIRTY)
812 		vm_page_dirty(fs.m);
813 	if (fault_flags & VM_FAULT_UNSWAP)
814 		swap_pager_unswapped(fs.m);
815 
816 	/*
817 	 * Indicate that the page was accessed.
818 	 */
819 	vm_page_flag_set(fs.m, PG_REFERENCED);
820 
821 	/*
822 	 * Unbusy the page by activating it.  It remains held and will not
823 	 * be reclaimed.
824 	 */
825 	vm_page_activate(fs.m);
826 
827 	if (curthread->td_lwp) {
828 		if (fs.hardfault) {
829 			mycpu->gd_cnt.v_vm_faults++;
830 			curthread->td_lwp->lwp_ru.ru_majflt++;
831 		} else {
832 			curthread->td_lwp->lwp_ru.ru_minflt++;
833 		}
834 	}
835 
836 	/*
837 	 * Unlock everything, and return the held page.
838 	 */
839 	vm_page_wakeup(fs.m);
840 	vm_object_deallocate(fs.first_object);
841 	lwkt_reltoken(&vm_token);
842 
843 	*errorp = 0;
844 	return(fs.m);
845 }
846 
847 /*
848  * Translate the virtual page number (first_pindex) that is relative
849  * to the address space into a logical page number that is relative to the
850  * backing object.  Use the virtual page table pointed to by (vpte).
851  *
852  * This implements an N-level page table.  Any level can terminate the
853  * scan by setting VPTE_PS.   A linear mapping is accomplished by setting
854  * VPTE_PS in the master page directory entry set via mcontrol(MADV_SETMAP).
855  *
856  * No requirements (vm_token need not be held).
857  */
858 static
859 int
860 vm_fault_vpagetable(struct faultstate *fs, vm_pindex_t *pindex,
861 		    vpte_t vpte, int fault_type)
862 {
863 	struct lwbuf *lwb;
864 	int vshift = VPTE_FRAME_END - PAGE_SHIFT; /* index bits remaining */
865 	int result = KERN_SUCCESS;
866 	vpte_t *ptep;
867 
868 	for (;;) {
869 		/*
870 		 * We cannot proceed if the vpte is not valid, not readable
871 		 * for a read fault, or not writable for a write fault.
872 		 */
873 		if ((vpte & VPTE_V) == 0) {
874 			unlock_and_deallocate(fs);
875 			return (KERN_FAILURE);
876 		}
877 		if ((fault_type & VM_PROT_READ) && (vpte & VPTE_R) == 0) {
878 			unlock_and_deallocate(fs);
879 			return (KERN_FAILURE);
880 		}
881 		if ((fault_type & VM_PROT_WRITE) && (vpte & VPTE_W) == 0) {
882 			unlock_and_deallocate(fs);
883 			return (KERN_FAILURE);
884 		}
885 		if ((vpte & VPTE_PS) || vshift == 0)
886 			break;
887 		KKASSERT(vshift >= VPTE_PAGE_BITS);
888 
889 		/*
890 		 * Get the page table page.  Nominally we only read the page
891 		 * table, but since we are actively setting VPTE_M and VPTE_A,
892 		 * tell vm_fault_object() that we are writing it.
893 		 *
894 		 * There is currently no real need to optimize this.
895 		 */
896 		result = vm_fault_object(fs, (vpte & VPTE_FRAME) >> PAGE_SHIFT,
897 					 VM_PROT_READ|VM_PROT_WRITE);
898 		if (result != KERN_SUCCESS)
899 			return (result);
900 
901 		/*
902 		 * Process the returned fs.m and look up the page table
903 		 * entry in the page table page.
904 		 */
905 		vshift -= VPTE_PAGE_BITS;
906 		lwb = lwbuf_alloc(fs->m);
907 		ptep = ((vpte_t *)lwbuf_kva(lwb) +
908 		        ((*pindex >> vshift) & VPTE_PAGE_MASK));
909 		vpte = *ptep;
910 
911 		/*
912 		 * Page table write-back.  If the vpte is valid for the
913 		 * requested operation, do a write-back to the page table.
914 		 *
915 		 * XXX VPTE_M is not set properly for page directory pages.
916 		 * It doesn't get set in the page directory if the page table
917 		 * is modified during a read access.
918 		 */
919 		if ((fault_type & VM_PROT_WRITE) && (vpte & VPTE_V) &&
920 		    (vpte & VPTE_W)) {
921 			if ((vpte & (VPTE_M|VPTE_A)) != (VPTE_M|VPTE_A)) {
922 				atomic_set_long(ptep, VPTE_M | VPTE_A);
923 				vm_page_dirty(fs->m);
924 			}
925 		}
926 		if ((fault_type & VM_PROT_READ) && (vpte & VPTE_V) &&
927 		    (vpte & VPTE_R)) {
928 			if ((vpte & VPTE_A) == 0) {
929 				atomic_set_long(ptep, VPTE_A);
930 				vm_page_dirty(fs->m);
931 			}
932 		}
933 		lwbuf_free(lwb);
934 		vm_page_flag_set(fs->m, PG_REFERENCED);
935 		vm_page_activate(fs->m);
936 		vm_page_wakeup(fs->m);
937 		cleanup_successful_fault(fs);
938 	}
939 	/*
940 	 * Combine remaining address bits with the vpte.
941 	 */
942 	/* JG how many bits from each? */
943 	*pindex = ((vpte & VPTE_FRAME) >> PAGE_SHIFT) +
944 		  (*pindex & ((1L << vshift) - 1));
945 	return (KERN_SUCCESS);
946 }
947 
948 
949 /*
950  * This is the core of the vm_fault code.
951  *
952  * Do all operations required to fault-in (fs.first_object, pindex).  Run
953  * through the shadow chain as necessary and do required COW or virtual
954  * copy operations.  The caller has already fully resolved the vm_map_entry
955  * and, if appropriate, has created a copy-on-write layer.  All we need to
956  * do is iterate the object chain.
957  *
958  * On failure (fs) is unlocked and deallocated and the caller may return or
959  * retry depending on the failure code.  On success (fs) is NOT unlocked or
960  * deallocated, fs.m will contained a resolved, busied page, and fs.object
961  * will have an additional PIP count if it is not equal to fs.first_object.
962  *
963  * No requirements.
964  */
965 static
966 int
967 vm_fault_object(struct faultstate *fs,
968 		vm_pindex_t first_pindex, vm_prot_t fault_type)
969 {
970 	vm_object_t next_object;
971 	vm_pindex_t pindex;
972 
973 	fs->prot = fs->first_prot;
974 	fs->object = fs->first_object;
975 	pindex = first_pindex;
976 
977 	/*
978 	 * If a read fault occurs we try to make the page writable if
979 	 * possible.  There are three cases where we cannot make the
980 	 * page mapping writable:
981 	 *
982 	 * (1) The mapping is read-only or the VM object is read-only,
983 	 *     fs->prot above will simply not have VM_PROT_WRITE set.
984 	 *
985 	 * (2) If the mapping is a virtual page table we need to be able
986 	 *     to detect writes so we can set VPTE_M in the virtual page
987 	 *     table.
988 	 *
989 	 * (3) If the VM page is read-only or copy-on-write, upgrading would
990 	 *     just result in an unnecessary COW fault.
991 	 *
992 	 * VM_PROT_VPAGED is set if faulting via a virtual page table and
993 	 * causes adjustments to the 'M'odify bit to also turn off write
994 	 * access to force a re-fault.
995 	 */
996 	if (fs->entry->maptype == VM_MAPTYPE_VPAGETABLE) {
997 		if ((fault_type & VM_PROT_WRITE) == 0)
998 			fs->prot &= ~VM_PROT_WRITE;
999 	}
1000 
1001 	lwkt_gettoken(&vm_token);
1002 
1003 	for (;;) {
1004 		/*
1005 		 * If the object is dead, we stop here
1006 		 */
1007 		if (fs->object->flags & OBJ_DEAD) {
1008 			unlock_and_deallocate(fs);
1009 			lwkt_reltoken(&vm_token);
1010 			return (KERN_PROTECTION_FAILURE);
1011 		}
1012 
1013 		/*
1014 		 * See if the page is resident.
1015 		 */
1016 		fs->m = vm_page_lookup(fs->object, pindex);
1017 		if (fs->m != NULL) {
1018 			int queue;
1019 			/*
1020 			 * Wait/Retry if the page is busy.  We have to do this
1021 			 * if the page is busy via either PG_BUSY or
1022 			 * vm_page_t->busy because the vm_pager may be using
1023 			 * vm_page_t->busy for pageouts ( and even pageins if
1024 			 * it is the vnode pager ), and we could end up trying
1025 			 * to pagein and pageout the same page simultaneously.
1026 			 *
1027 			 * We can theoretically allow the busy case on a read
1028 			 * fault if the page is marked valid, but since such
1029 			 * pages are typically already pmap'd, putting that
1030 			 * special case in might be more effort then it is
1031 			 * worth.  We cannot under any circumstances mess
1032 			 * around with a vm_page_t->busy page except, perhaps,
1033 			 * to pmap it.
1034 			 */
1035 			if ((fs->m->flags & PG_BUSY) || fs->m->busy) {
1036 				unlock_things(fs);
1037 				vm_page_sleep_busy(fs->m, TRUE, "vmpfw");
1038 				mycpu->gd_cnt.v_intrans++;
1039 				vm_object_deallocate(fs->first_object);
1040 				fs->first_object = NULL;
1041 				lwkt_reltoken(&vm_token);
1042 				return (KERN_TRY_AGAIN);
1043 			}
1044 
1045 			/*
1046 			 * If reactivating a page from PQ_CACHE we may have
1047 			 * to rate-limit.
1048 			 */
1049 			queue = fs->m->queue;
1050 			vm_page_unqueue_nowakeup(fs->m);
1051 
1052 			if ((queue - fs->m->pc) == PQ_CACHE &&
1053 			    vm_page_count_severe()) {
1054 				vm_page_activate(fs->m);
1055 				unlock_and_deallocate(fs);
1056 				vm_waitpfault();
1057 				lwkt_reltoken(&vm_token);
1058 				return (KERN_TRY_AGAIN);
1059 			}
1060 
1061 			/*
1062 			 * Mark page busy for other processes, and the
1063 			 * pagedaemon.  If it still isn't completely valid
1064 			 * (readable), or if a read-ahead-mark is set on
1065 			 * the VM page, jump to readrest, else we found the
1066 			 * page and can return.
1067 			 *
1068 			 * We can release the spl once we have marked the
1069 			 * page busy.
1070 			 */
1071 			vm_page_busy(fs->m);
1072 
1073 			if (fs->m->object != &kernel_object) {
1074 				if ((fs->m->valid & VM_PAGE_BITS_ALL) !=
1075 				    VM_PAGE_BITS_ALL) {
1076 					goto readrest;
1077 				}
1078 				if (fs->m->flags & PG_RAM) {
1079 					if (debug_cluster)
1080 						kprintf("R");
1081 					vm_page_flag_clear(fs->m, PG_RAM);
1082 					goto readrest;
1083 				}
1084 			}
1085 			break; /* break to PAGE HAS BEEN FOUND */
1086 		}
1087 
1088 		/*
1089 		 * Page is not resident, If this is the search termination
1090 		 * or the pager might contain the page, allocate a new page.
1091 		 */
1092 		if (TRYPAGER(fs) || fs->object == fs->first_object) {
1093 			/*
1094 			 * If the page is beyond the object size we fail
1095 			 */
1096 			if (pindex >= fs->object->size) {
1097 				lwkt_reltoken(&vm_token);
1098 				unlock_and_deallocate(fs);
1099 				return (KERN_PROTECTION_FAILURE);
1100 			}
1101 
1102 			/*
1103 			 * Ratelimit.
1104 			 */
1105 			if (fs->didlimit == 0 && curproc != NULL) {
1106 				int limticks;
1107 
1108 				limticks = vm_fault_ratelimit(curproc->p_vmspace);
1109 				if (limticks) {
1110 					lwkt_reltoken(&vm_token);
1111 					unlock_and_deallocate(fs);
1112 					tsleep(curproc, 0, "vmrate", limticks);
1113 					fs->didlimit = 1;
1114 					return (KERN_TRY_AGAIN);
1115 				}
1116 			}
1117 
1118 			/*
1119 			 * Allocate a new page for this object/offset pair.
1120 			 */
1121 			fs->m = NULL;
1122 			if (!vm_page_count_severe()) {
1123 				fs->m = vm_page_alloc(fs->object, pindex,
1124 				    (fs->vp || fs->object->backing_object) ? VM_ALLOC_NORMAL : VM_ALLOC_NORMAL | VM_ALLOC_ZERO);
1125 			}
1126 			if (fs->m == NULL) {
1127 				lwkt_reltoken(&vm_token);
1128 				unlock_and_deallocate(fs);
1129 				vm_waitpfault();
1130 				return (KERN_TRY_AGAIN);
1131 			}
1132 		}
1133 
1134 readrest:
1135 		/*
1136 		 * We have found an invalid or partially valid page, a
1137 		 * page with a read-ahead mark which might be partially or
1138 		 * fully valid (and maybe dirty too), or we have allocated
1139 		 * a new page.
1140 		 *
1141 		 * Attempt to fault-in the page if there is a chance that the
1142 		 * pager has it, and potentially fault in additional pages
1143 		 * at the same time.
1144 		 *
1145 		 * We are NOT in splvm here and if TRYPAGER is true then
1146 		 * fs.m will be non-NULL and will be PG_BUSY for us.
1147 		 */
1148 		if (TRYPAGER(fs)) {
1149 			int rv;
1150 			int seqaccess;
1151 			u_char behavior = vm_map_entry_behavior(fs->entry);
1152 
1153 			if (behavior == MAP_ENTRY_BEHAV_RANDOM)
1154 				seqaccess = 0;
1155 			else
1156 				seqaccess = -1;
1157 
1158 			/*
1159 			 * If sequential access is detected then attempt
1160 			 * to deactivate/cache pages behind the scan to
1161 			 * prevent resource hogging.
1162 			 *
1163 			 * Use of PG_RAM to detect sequential access
1164 			 * also simulates multi-zone sequential access
1165 			 * detection for free.
1166 			 *
1167 			 * NOTE: Partially valid dirty pages cannot be
1168 			 *	 deactivated without causing NFS picemeal
1169 			 *	 writes to barf.
1170 			 */
1171 			if ((fs->first_object->type != OBJT_DEVICE) &&
1172 			    (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL ||
1173                                 (behavior != MAP_ENTRY_BEHAV_RANDOM &&
1174 				 (fs->m->flags & PG_RAM)))
1175 			) {
1176 				vm_pindex_t scan_pindex;
1177 				int scan_count = 16;
1178 
1179 				if (first_pindex < 16) {
1180 					scan_pindex = 0;
1181 					scan_count = 0;
1182 				} else {
1183 					scan_pindex = first_pindex - 16;
1184 					if (scan_pindex < 16)
1185 						scan_count = scan_pindex;
1186 					else
1187 						scan_count = 16;
1188 				}
1189 
1190 				while (scan_count) {
1191 					vm_page_t mt;
1192 
1193 					mt = vm_page_lookup(fs->first_object,
1194 							    scan_pindex);
1195 					if (mt == NULL ||
1196 					    (mt->valid != VM_PAGE_BITS_ALL)) {
1197 						break;
1198 					}
1199 					if (mt->busy ||
1200 					    (mt->flags & (PG_BUSY | PG_FICTITIOUS | PG_UNMANAGED)) ||
1201 					    mt->hold_count ||
1202 					    mt->wire_count)  {
1203 						goto skip;
1204 					}
1205 					if (mt->dirty == 0)
1206 						vm_page_test_dirty(mt);
1207 					if (mt->dirty) {
1208 						vm_page_busy(mt);
1209 						vm_page_protect(mt,
1210 								VM_PROT_NONE);
1211 						vm_page_deactivate(mt);
1212 						vm_page_wakeup(mt);
1213 					} else {
1214 						vm_page_cache(mt);
1215 					}
1216 skip:
1217 					--scan_count;
1218 					--scan_pindex;
1219 				}
1220 
1221 				seqaccess = 1;
1222 			}
1223 
1224 			/*
1225 			 * Avoid deadlocking against the map when doing I/O.
1226 			 * fs.object and the page is PG_BUSY'd.
1227 			 */
1228 			unlock_map(fs);
1229 
1230 			/*
1231 			 * Acquire the page data.  We still hold a ref on
1232 			 * fs.object and the page has been PG_BUSY's.
1233 			 *
1234 			 * The pager may replace the page (for example, in
1235 			 * order to enter a fictitious page into the
1236 			 * object).  If it does so it is responsible for
1237 			 * cleaning up the passed page and properly setting
1238 			 * the new page PG_BUSY.
1239 			 *
1240 			 * If we got here through a PG_RAM read-ahead
1241 			 * mark the page may be partially dirty and thus
1242 			 * not freeable.  Don't bother checking to see
1243 			 * if the pager has the page because we can't free
1244 			 * it anyway.  We have to depend on the get_page
1245 			 * operation filling in any gaps whether there is
1246 			 * backing store or not.
1247 			 */
1248 			rv = vm_pager_get_page(fs->object, &fs->m, seqaccess);
1249 
1250 			if (rv == VM_PAGER_OK) {
1251 				/*
1252 				 * Relookup in case pager changed page. Pager
1253 				 * is responsible for disposition of old page
1254 				 * if moved.
1255 				 *
1256 				 * XXX other code segments do relookups too.
1257 				 * It's a bad abstraction that needs to be
1258 				 * fixed/removed.
1259 				 */
1260 				fs->m = vm_page_lookup(fs->object, pindex);
1261 				if (fs->m == NULL) {
1262 					lwkt_reltoken(&vm_token);
1263 					unlock_and_deallocate(fs);
1264 					return (KERN_TRY_AGAIN);
1265 				}
1266 
1267 				++fs->hardfault;
1268 				break; /* break to PAGE HAS BEEN FOUND */
1269 			}
1270 
1271 			/*
1272 			 * Remove the bogus page (which does not exist at this
1273 			 * object/offset); before doing so, we must get back
1274 			 * our object lock to preserve our invariant.
1275 			 *
1276 			 * Also wake up any other process that may want to bring
1277 			 * in this page.
1278 			 *
1279 			 * If this is the top-level object, we must leave the
1280 			 * busy page to prevent another process from rushing
1281 			 * past us, and inserting the page in that object at
1282 			 * the same time that we are.
1283 			 */
1284 			if (rv == VM_PAGER_ERROR) {
1285 				if (curproc)
1286 					kprintf("vm_fault: pager read error, pid %d (%s)\n", curproc->p_pid, curproc->p_comm);
1287 				else
1288 					kprintf("vm_fault: pager read error, thread %p (%s)\n", curthread, curproc->p_comm);
1289 			}
1290 
1291 			/*
1292 			 * Data outside the range of the pager or an I/O error
1293 			 *
1294 			 * The page may have been wired during the pagein,
1295 			 * e.g. by the buffer cache, and cannot simply be
1296 			 * freed.  Call vnode_pager_freepage() to deal with it.
1297 			 */
1298 			/*
1299 			 * XXX - the check for kernel_map is a kludge to work
1300 			 * around having the machine panic on a kernel space
1301 			 * fault w/ I/O error.
1302 			 */
1303 			if (((fs->map != &kernel_map) &&
1304 			    (rv == VM_PAGER_ERROR)) || (rv == VM_PAGER_BAD)) {
1305 				vnode_pager_freepage(fs->m);
1306 				lwkt_reltoken(&vm_token);
1307 				fs->m = NULL;
1308 				unlock_and_deallocate(fs);
1309 				if (rv == VM_PAGER_ERROR)
1310 					return (KERN_FAILURE);
1311 				else
1312 					return (KERN_PROTECTION_FAILURE);
1313 				/* NOT REACHED */
1314 			}
1315 			if (fs->object != fs->first_object) {
1316 				vnode_pager_freepage(fs->m);
1317 				fs->m = NULL;
1318 				/*
1319 				 * XXX - we cannot just fall out at this
1320 				 * point, m has been freed and is invalid!
1321 				 */
1322 			}
1323 		}
1324 
1325 		/*
1326 		 * We get here if the object has a default pager (or unwiring)
1327 		 * or the pager doesn't have the page.
1328 		 */
1329 		if (fs->object == fs->first_object)
1330 			fs->first_m = fs->m;
1331 
1332 		/*
1333 		 * Move on to the next object.  Lock the next object before
1334 		 * unlocking the current one.
1335 		 */
1336 		pindex += OFF_TO_IDX(fs->object->backing_object_offset);
1337 		next_object = fs->object->backing_object;
1338 		if (next_object == NULL) {
1339 			/*
1340 			 * If there's no object left, fill the page in the top
1341 			 * object with zeros.
1342 			 */
1343 			if (fs->object != fs->first_object) {
1344 				vm_object_pip_wakeup(fs->object);
1345 
1346 				fs->object = fs->first_object;
1347 				pindex = first_pindex;
1348 				fs->m = fs->first_m;
1349 			}
1350 			fs->first_m = NULL;
1351 
1352 			/*
1353 			 * Zero the page if necessary and mark it valid.
1354 			 */
1355 			if ((fs->m->flags & PG_ZERO) == 0) {
1356 				vm_page_zero_fill(fs->m);
1357 			} else {
1358 #ifdef PMAP_DEBUG
1359 				pmap_page_assertzero(VM_PAGE_TO_PHYS(fs->m));
1360 #endif
1361 				vm_page_flag_clear(fs->m, PG_ZERO);
1362 				mycpu->gd_cnt.v_ozfod++;
1363 			}
1364 			mycpu->gd_cnt.v_zfod++;
1365 			fs->m->valid = VM_PAGE_BITS_ALL;
1366 			break;	/* break to PAGE HAS BEEN FOUND */
1367 		}
1368 		if (fs->object != fs->first_object) {
1369 			vm_object_pip_wakeup(fs->object);
1370 		}
1371 		KASSERT(fs->object != next_object,
1372 			("object loop %p", next_object));
1373 		fs->object = next_object;
1374 		vm_object_pip_add(fs->object, 1);
1375 	}
1376 
1377 	/*
1378 	 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
1379 	 * is held.]
1380 	 *
1381 	 * vm_token is still held
1382 	 *
1383 	 * If the page is being written, but isn't already owned by the
1384 	 * top-level object, we have to copy it into a new page owned by the
1385 	 * top-level object.
1386 	 */
1387 	KASSERT((fs->m->flags & PG_BUSY) != 0,
1388 		("vm_fault: not busy after main loop"));
1389 
1390 	if (fs->object != fs->first_object) {
1391 		/*
1392 		 * We only really need to copy if we want to write it.
1393 		 */
1394 		if (fault_type & VM_PROT_WRITE) {
1395 			/*
1396 			 * This allows pages to be virtually copied from a
1397 			 * backing_object into the first_object, where the
1398 			 * backing object has no other refs to it, and cannot
1399 			 * gain any more refs.  Instead of a bcopy, we just
1400 			 * move the page from the backing object to the
1401 			 * first object.  Note that we must mark the page
1402 			 * dirty in the first object so that it will go out
1403 			 * to swap when needed.
1404 			 */
1405 			if (
1406 				/*
1407 				 * Map, if present, has not changed
1408 				 */
1409 				(fs->map == NULL ||
1410 				fs->map_generation == fs->map->timestamp) &&
1411 				/*
1412 				 * Only one shadow object
1413 				 */
1414 				(fs->object->shadow_count == 1) &&
1415 				/*
1416 				 * No COW refs, except us
1417 				 */
1418 				(fs->object->ref_count == 1) &&
1419 				/*
1420 				 * No one else can look this object up
1421 				 */
1422 				(fs->object->handle == NULL) &&
1423 				/*
1424 				 * No other ways to look the object up
1425 				 */
1426 				((fs->object->type == OBJT_DEFAULT) ||
1427 				 (fs->object->type == OBJT_SWAP)) &&
1428 				/*
1429 				 * We don't chase down the shadow chain
1430 				 */
1431 				(fs->object == fs->first_object->backing_object) &&
1432 
1433 				/*
1434 				 * grab the lock if we need to
1435 				 */
1436 				(fs->lookup_still_valid ||
1437 				 fs->map == NULL ||
1438 				 lockmgr(&fs->map->lock, LK_EXCLUSIVE|LK_NOWAIT) == 0)
1439 			    ) {
1440 
1441 				fs->lookup_still_valid = 1;
1442 				/*
1443 				 * get rid of the unnecessary page
1444 				 */
1445 				vm_page_protect(fs->first_m, VM_PROT_NONE);
1446 				vm_page_free(fs->first_m);
1447 				fs->first_m = NULL;
1448 
1449 				/*
1450 				 * grab the page and put it into the
1451 				 * process'es object.  The page is
1452 				 * automatically made dirty.
1453 				 */
1454 				vm_page_rename(fs->m, fs->first_object, first_pindex);
1455 				fs->first_m = fs->m;
1456 				vm_page_busy(fs->first_m);
1457 				fs->m = NULL;
1458 				mycpu->gd_cnt.v_cow_optim++;
1459 			} else {
1460 				/*
1461 				 * Oh, well, lets copy it.
1462 				 */
1463 				vm_page_copy(fs->m, fs->first_m);
1464 				vm_page_event(fs->m, VMEVENT_COW);
1465 			}
1466 
1467 			if (fs->m) {
1468 				/*
1469 				 * We no longer need the old page or object.
1470 				 */
1471 				release_page(fs);
1472 			}
1473 
1474 			/*
1475 			 * fs->object != fs->first_object due to above
1476 			 * conditional
1477 			 */
1478 			vm_object_pip_wakeup(fs->object);
1479 
1480 			/*
1481 			 * Only use the new page below...
1482 			 */
1483 
1484 			mycpu->gd_cnt.v_cow_faults++;
1485 			fs->m = fs->first_m;
1486 			fs->object = fs->first_object;
1487 			pindex = first_pindex;
1488 		} else {
1489 			/*
1490 			 * If it wasn't a write fault avoid having to copy
1491 			 * the page by mapping it read-only.
1492 			 */
1493 			fs->prot &= ~VM_PROT_WRITE;
1494 		}
1495 	}
1496 
1497 	/*
1498 	 * We may have had to unlock a map to do I/O.  If we did then
1499 	 * lookup_still_valid will be FALSE.  If the map generation count
1500 	 * also changed then all sorts of things could have happened while
1501 	 * we were doing the I/O and we need to retry.
1502 	 */
1503 
1504 	if (!fs->lookup_still_valid &&
1505 	    fs->map != NULL &&
1506 	    (fs->map->timestamp != fs->map_generation)) {
1507 		release_page(fs);
1508 		lwkt_reltoken(&vm_token);
1509 		unlock_and_deallocate(fs);
1510 		return (KERN_TRY_AGAIN);
1511 	}
1512 
1513 	/*
1514 	 * If the fault is a write, we know that this page is being
1515 	 * written NOW so dirty it explicitly to save on pmap_is_modified()
1516 	 * calls later.
1517 	 *
1518 	 * If this is a NOSYNC mmap we do not want to set PG_NOSYNC
1519 	 * if the page is already dirty to prevent data written with
1520 	 * the expectation of being synced from not being synced.
1521 	 * Likewise if this entry does not request NOSYNC then make
1522 	 * sure the page isn't marked NOSYNC.  Applications sharing
1523 	 * data should use the same flags to avoid ping ponging.
1524 	 *
1525 	 * Also tell the backing pager, if any, that it should remove
1526 	 * any swap backing since the page is now dirty.
1527 	 */
1528 	if (fs->prot & VM_PROT_WRITE) {
1529 		vm_object_set_writeable_dirty(fs->m->object);
1530 		vm_set_nosync(fs->m, fs->entry);
1531 		if (fs->fault_flags & VM_FAULT_DIRTY) {
1532 			vm_page_dirty(fs->m);
1533 			swap_pager_unswapped(fs->m);
1534 		}
1535 	}
1536 
1537 	lwkt_reltoken(&vm_token);
1538 
1539 	/*
1540 	 * Page had better still be busy.  We are still locked up and
1541 	 * fs->object will have another PIP reference if it is not equal
1542 	 * to fs->first_object.
1543 	 */
1544 	KASSERT(fs->m->flags & PG_BUSY,
1545 		("vm_fault: page %p not busy!", fs->m));
1546 
1547 	/*
1548 	 * Sanity check: page must be completely valid or it is not fit to
1549 	 * map into user space.  vm_pager_get_pages() ensures this.
1550 	 */
1551 	if (fs->m->valid != VM_PAGE_BITS_ALL) {
1552 		vm_page_zero_invalid(fs->m, TRUE);
1553 		kprintf("Warning: page %p partially invalid on fault\n", fs->m);
1554 	}
1555 	vm_page_flag_clear(fs->m, PG_ZERO);
1556 
1557 	return (KERN_SUCCESS);
1558 }
1559 
1560 /*
1561  * Wire down a range of virtual addresses in a map.  The entry in question
1562  * should be marked in-transition and the map must be locked.  We must
1563  * release the map temporarily while faulting-in the page to avoid a
1564  * deadlock.  Note that the entry may be clipped while we are blocked but
1565  * will never be freed.
1566  *
1567  * No requirements.
1568  */
1569 int
1570 vm_fault_wire(vm_map_t map, vm_map_entry_t entry, boolean_t user_wire)
1571 {
1572 	boolean_t fictitious;
1573 	vm_offset_t start;
1574 	vm_offset_t end;
1575 	vm_offset_t va;
1576 	vm_paddr_t pa;
1577 	pmap_t pmap;
1578 	int rv;
1579 
1580 	pmap = vm_map_pmap(map);
1581 	start = entry->start;
1582 	end = entry->end;
1583 	fictitious = entry->object.vm_object &&
1584 			(entry->object.vm_object->type == OBJT_DEVICE);
1585 	if (entry->eflags & MAP_ENTRY_KSTACK)
1586 		start += PAGE_SIZE;
1587 	lwkt_gettoken(&vm_token);
1588 	vm_map_unlock(map);
1589 	map->timestamp++;
1590 
1591 	/*
1592 	 * We simulate a fault to get the page and enter it in the physical
1593 	 * map.
1594 	 */
1595 	for (va = start; va < end; va += PAGE_SIZE) {
1596 		if (user_wire) {
1597 			rv = vm_fault(map, va, VM_PROT_READ,
1598 					VM_FAULT_USER_WIRE);
1599 		} else {
1600 			rv = vm_fault(map, va, VM_PROT_READ|VM_PROT_WRITE,
1601 					VM_FAULT_CHANGE_WIRING);
1602 		}
1603 		if (rv) {
1604 			while (va > start) {
1605 				va -= PAGE_SIZE;
1606 				if ((pa = pmap_extract(pmap, va)) == 0)
1607 					continue;
1608 				pmap_change_wiring(pmap, va, FALSE);
1609 				if (!fictitious)
1610 					vm_page_unwire(PHYS_TO_VM_PAGE(pa), 1);
1611 			}
1612 			vm_map_lock(map);
1613 			lwkt_reltoken(&vm_token);
1614 			return (rv);
1615 		}
1616 	}
1617 	vm_map_lock(map);
1618 	lwkt_reltoken(&vm_token);
1619 	return (KERN_SUCCESS);
1620 }
1621 
1622 /*
1623  * Unwire a range of virtual addresses in a map.  The map should be
1624  * locked.
1625  */
1626 void
1627 vm_fault_unwire(vm_map_t map, vm_map_entry_t entry)
1628 {
1629 	boolean_t fictitious;
1630 	vm_offset_t start;
1631 	vm_offset_t end;
1632 	vm_offset_t va;
1633 	vm_paddr_t pa;
1634 	pmap_t pmap;
1635 
1636 	pmap = vm_map_pmap(map);
1637 	start = entry->start;
1638 	end = entry->end;
1639 	fictitious = entry->object.vm_object &&
1640 			(entry->object.vm_object->type == OBJT_DEVICE);
1641 	if (entry->eflags & MAP_ENTRY_KSTACK)
1642 		start += PAGE_SIZE;
1643 
1644 	/*
1645 	 * Since the pages are wired down, we must be able to get their
1646 	 * mappings from the physical map system.
1647 	 */
1648 	lwkt_gettoken(&vm_token);
1649 	for (va = start; va < end; va += PAGE_SIZE) {
1650 		pa = pmap_extract(pmap, va);
1651 		if (pa != 0) {
1652 			pmap_change_wiring(pmap, va, FALSE);
1653 			if (!fictitious)
1654 				vm_page_unwire(PHYS_TO_VM_PAGE(pa), 1);
1655 		}
1656 	}
1657 	lwkt_reltoken(&vm_token);
1658 }
1659 
1660 /*
1661  * Reduce the rate at which memory is allocated to a process based
1662  * on the perceived load on the VM system. As the load increases
1663  * the allocation burst rate goes down and the delay increases.
1664  *
1665  * Rate limiting does not apply when faulting active or inactive
1666  * pages.  When faulting 'cache' pages, rate limiting only applies
1667  * if the system currently has a severe page deficit.
1668  *
1669  * XXX vm_pagesupply should be increased when a page is freed.
1670  *
1671  * We sleep up to 1/10 of a second.
1672  */
1673 static int
1674 vm_fault_ratelimit(struct vmspace *vmspace)
1675 {
1676 	if (vm_load_enable == 0)
1677 		return(0);
1678 	if (vmspace->vm_pagesupply > 0) {
1679 		--vmspace->vm_pagesupply;	/* SMP race ok */
1680 		return(0);
1681 	}
1682 #ifdef INVARIANTS
1683 	if (vm_load_debug) {
1684 		kprintf("load %-4d give %d pgs, wait %d, pid %-5d (%s)\n",
1685 			vm_load,
1686 			(1000 - vm_load ) / 10, vm_load * hz / 10000,
1687 			curproc->p_pid, curproc->p_comm);
1688 	}
1689 #endif
1690 	vmspace->vm_pagesupply = (1000 - vm_load) / 10;
1691 	return(vm_load * hz / 10000);
1692 }
1693 
1694 /*
1695  * Copy all of the pages from a wired-down map entry to another.
1696  *
1697  * The source and destination maps must be locked for write.
1698  * The source map entry must be wired down (or be a sharing map
1699  * entry corresponding to a main map entry that is wired down).
1700  *
1701  * No other requirements.
1702  */
1703 void
1704 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
1705 		    vm_map_entry_t dst_entry, vm_map_entry_t src_entry)
1706 {
1707 	vm_object_t dst_object;
1708 	vm_object_t src_object;
1709 	vm_ooffset_t dst_offset;
1710 	vm_ooffset_t src_offset;
1711 	vm_prot_t prot;
1712 	vm_offset_t vaddr;
1713 	vm_page_t dst_m;
1714 	vm_page_t src_m;
1715 
1716 #ifdef	lint
1717 	src_map++;
1718 #endif	/* lint */
1719 
1720 	src_object = src_entry->object.vm_object;
1721 	src_offset = src_entry->offset;
1722 
1723 	/*
1724 	 * Create the top-level object for the destination entry. (Doesn't
1725 	 * actually shadow anything - we copy the pages directly.)
1726 	 */
1727 	vm_map_entry_allocate_object(dst_entry);
1728 	dst_object = dst_entry->object.vm_object;
1729 
1730 	prot = dst_entry->max_protection;
1731 
1732 	/*
1733 	 * Loop through all of the pages in the entry's range, copying each
1734 	 * one from the source object (it should be there) to the destination
1735 	 * object.
1736 	 */
1737 	for (vaddr = dst_entry->start, dst_offset = 0;
1738 	    vaddr < dst_entry->end;
1739 	    vaddr += PAGE_SIZE, dst_offset += PAGE_SIZE) {
1740 
1741 		/*
1742 		 * Allocate a page in the destination object
1743 		 */
1744 		do {
1745 			dst_m = vm_page_alloc(dst_object,
1746 				OFF_TO_IDX(dst_offset), VM_ALLOC_NORMAL);
1747 			if (dst_m == NULL) {
1748 				vm_wait(0);
1749 			}
1750 		} while (dst_m == NULL);
1751 
1752 		/*
1753 		 * Find the page in the source object, and copy it in.
1754 		 * (Because the source is wired down, the page will be in
1755 		 * memory.)
1756 		 */
1757 		src_m = vm_page_lookup(src_object,
1758 				       OFF_TO_IDX(dst_offset + src_offset));
1759 		if (src_m == NULL)
1760 			panic("vm_fault_copy_wired: page missing");
1761 
1762 		vm_page_copy(src_m, dst_m);
1763 		vm_page_event(src_m, VMEVENT_COW);
1764 
1765 		/*
1766 		 * Enter it in the pmap...
1767 		 */
1768 
1769 		vm_page_flag_clear(dst_m, PG_ZERO);
1770 		pmap_enter(dst_map->pmap, vaddr, dst_m, prot, FALSE);
1771 
1772 		/*
1773 		 * Mark it no longer busy, and put it on the active list.
1774 		 */
1775 		vm_page_activate(dst_m);
1776 		vm_page_wakeup(dst_m);
1777 	}
1778 }
1779 
1780 #if 0
1781 
1782 /*
1783  * This routine checks around the requested page for other pages that
1784  * might be able to be faulted in.  This routine brackets the viable
1785  * pages for the pages to be paged in.
1786  *
1787  * Inputs:
1788  *	m, rbehind, rahead
1789  *
1790  * Outputs:
1791  *  marray (array of vm_page_t), reqpage (index of requested page)
1792  *
1793  * Return value:
1794  *  number of pages in marray
1795  */
1796 static int
1797 vm_fault_additional_pages(vm_page_t m, int rbehind, int rahead,
1798 			  vm_page_t *marray, int *reqpage)
1799 {
1800 	int i,j;
1801 	vm_object_t object;
1802 	vm_pindex_t pindex, startpindex, endpindex, tpindex;
1803 	vm_page_t rtm;
1804 	int cbehind, cahead;
1805 
1806 	object = m->object;
1807 	pindex = m->pindex;
1808 
1809 	/*
1810 	 * we don't fault-ahead for device pager
1811 	 */
1812 	if (object->type == OBJT_DEVICE) {
1813 		*reqpage = 0;
1814 		marray[0] = m;
1815 		return 1;
1816 	}
1817 
1818 	/*
1819 	 * if the requested page is not available, then give up now
1820 	 */
1821 	if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
1822 		*reqpage = 0;	/* not used by caller, fix compiler warn */
1823 		return 0;
1824 	}
1825 
1826 	if ((cbehind == 0) && (cahead == 0)) {
1827 		*reqpage = 0;
1828 		marray[0] = m;
1829 		return 1;
1830 	}
1831 
1832 	if (rahead > cahead) {
1833 		rahead = cahead;
1834 	}
1835 
1836 	if (rbehind > cbehind) {
1837 		rbehind = cbehind;
1838 	}
1839 
1840 	/*
1841 	 * Do not do any readahead if we have insufficient free memory.
1842 	 *
1843 	 * XXX code was broken disabled before and has instability
1844 	 * with this conditonal fixed, so shortcut for now.
1845 	 */
1846 	if (burst_fault == 0 || vm_page_count_severe()) {
1847 		marray[0] = m;
1848 		*reqpage = 0;
1849 		return 1;
1850 	}
1851 
1852 	/*
1853 	 * scan backward for the read behind pages -- in memory
1854 	 *
1855 	 * Assume that if the page is not found an interrupt will not
1856 	 * create it.  Theoretically interrupts can only remove (busy)
1857 	 * pages, not create new associations.
1858 	 */
1859 	if (pindex > 0) {
1860 		if (rbehind > pindex) {
1861 			rbehind = pindex;
1862 			startpindex = 0;
1863 		} else {
1864 			startpindex = pindex - rbehind;
1865 		}
1866 
1867 		lwkt_gettoken(&vm_token);
1868 		for (tpindex = pindex; tpindex > startpindex; --tpindex) {
1869 			if (vm_page_lookup(object, tpindex - 1))
1870 				break;
1871 		}
1872 
1873 		i = 0;
1874 		while (tpindex < pindex) {
1875 			rtm = vm_page_alloc(object, tpindex, VM_ALLOC_SYSTEM);
1876 			if (rtm == NULL) {
1877 				lwkt_reltoken(&vm_token);
1878 				for (j = 0; j < i; j++) {
1879 					vm_page_free(marray[j]);
1880 				}
1881 				marray[0] = m;
1882 				*reqpage = 0;
1883 				return 1;
1884 			}
1885 			marray[i] = rtm;
1886 			++i;
1887 			++tpindex;
1888 		}
1889 		lwkt_reltoken(&vm_token);
1890 	} else {
1891 		i = 0;
1892 	}
1893 
1894 	/*
1895 	 * Assign requested page
1896 	 */
1897 	marray[i] = m;
1898 	*reqpage = i;
1899 	++i;
1900 
1901 	/*
1902 	 * Scan forwards for read-ahead pages
1903 	 */
1904 	tpindex = pindex + 1;
1905 	endpindex = tpindex + rahead;
1906 	if (endpindex > object->size)
1907 		endpindex = object->size;
1908 
1909 	lwkt_gettoken(&vm_token);
1910 	while (tpindex < endpindex) {
1911 		if (vm_page_lookup(object, tpindex))
1912 			break;
1913 		rtm = vm_page_alloc(object, tpindex, VM_ALLOC_SYSTEM);
1914 		if (rtm == NULL)
1915 			break;
1916 		marray[i] = rtm;
1917 		++i;
1918 		++tpindex;
1919 	}
1920 	lwkt_reltoken(&vm_token);
1921 
1922 	return (i);
1923 }
1924 
1925 #endif
1926 
1927 /*
1928  * vm_prefault() provides a quick way of clustering pagefaults into a
1929  * processes address space.  It is a "cousin" of pmap_object_init_pt,
1930  * except it runs at page fault time instead of mmap time.
1931  *
1932  * This code used to be per-platform pmap_prefault().  It is now
1933  * machine-independent and enhanced to also pre-fault zero-fill pages
1934  * (see vm.fast_fault) as well as make them writable, which greatly
1935  * reduces the number of page faults programs incur.
1936  *
1937  * Application performance when pre-faulting zero-fill pages is heavily
1938  * dependent on the application.  Very tiny applications like /bin/echo
1939  * lose a little performance while applications of any appreciable size
1940  * gain performance.  Prefaulting multiple pages also reduces SMP
1941  * congestion and can improve SMP performance significantly.
1942  *
1943  * NOTE!  prot may allow writing but this only applies to the top level
1944  *	  object.  If we wind up mapping a page extracted from a backing
1945  *	  object we have to make sure it is read-only.
1946  *
1947  * NOTE!  The caller has already handled any COW operations on the
1948  *	  vm_map_entry via the normal fault code.  Do NOT call this
1949  *	  shortcut unless the normal fault code has run on this entry.
1950  *
1951  * No other requirements.
1952  */
1953 #define PFBAK 4
1954 #define PFFOR 4
1955 #define PAGEORDER_SIZE (PFBAK+PFFOR)
1956 
1957 static int vm_prefault_pageorder[] = {
1958 	-PAGE_SIZE, PAGE_SIZE,
1959 	-2 * PAGE_SIZE, 2 * PAGE_SIZE,
1960 	-3 * PAGE_SIZE, 3 * PAGE_SIZE,
1961 	-4 * PAGE_SIZE, 4 * PAGE_SIZE
1962 };
1963 
1964 /*
1965  * Set PG_NOSYNC if the map entry indicates so, but only if the page
1966  * is not already dirty by other means.  This will prevent passive
1967  * filesystem syncing as well as 'sync' from writing out the page.
1968  */
1969 static void
1970 vm_set_nosync(vm_page_t m, vm_map_entry_t entry)
1971 {
1972 	if (entry->eflags & MAP_ENTRY_NOSYNC) {
1973 		if (m->dirty == 0)
1974 			vm_page_flag_set(m, PG_NOSYNC);
1975 	} else {
1976 		vm_page_flag_clear(m, PG_NOSYNC);
1977 	}
1978 }
1979 
1980 static void
1981 vm_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry, int prot)
1982 {
1983 	struct lwp *lp;
1984 	vm_page_t m;
1985 	vm_offset_t starta;
1986 	vm_offset_t addr;
1987 	vm_pindex_t index;
1988 	vm_pindex_t pindex;
1989 	vm_object_t object;
1990 	int pprot;
1991 	int i;
1992 
1993 	/*
1994 	 * We do not currently prefault mappings that use virtual page
1995 	 * tables.  We do not prefault foreign pmaps.
1996 	 */
1997 	if (entry->maptype == VM_MAPTYPE_VPAGETABLE)
1998 		return;
1999 	lp = curthread->td_lwp;
2000 	if (lp == NULL || (pmap != vmspace_pmap(lp->lwp_vmspace)))
2001 		return;
2002 
2003 	object = entry->object.vm_object;
2004 
2005 	starta = addra - PFBAK * PAGE_SIZE;
2006 	if (starta < entry->start)
2007 		starta = entry->start;
2008 	else if (starta > addra)
2009 		starta = 0;
2010 
2011 	lwkt_gettoken(&vm_token);
2012 	for (i = 0; i < PAGEORDER_SIZE; i++) {
2013 		vm_object_t lobject;
2014 		int allocated = 0;
2015 
2016 		addr = addra + vm_prefault_pageorder[i];
2017 		if (addr > addra + (PFFOR * PAGE_SIZE))
2018 			addr = 0;
2019 
2020 		if (addr < starta || addr >= entry->end)
2021 			continue;
2022 
2023 		if (pmap_prefault_ok(pmap, addr) == 0)
2024 			continue;
2025 
2026 		/*
2027 		 * Follow the VM object chain to obtain the page to be mapped
2028 		 * into the pmap.
2029 		 *
2030 		 * If we reach the terminal object without finding a page
2031 		 * and we determine it would be advantageous, then allocate
2032 		 * a zero-fill page for the base object.  The base object
2033 		 * is guaranteed to be OBJT_DEFAULT for this case.
2034 		 *
2035 		 * In order to not have to check the pager via *haspage*()
2036 		 * we stop if any non-default object is encountered.  e.g.
2037 		 * a vnode or swap object would stop the loop.
2038 		 */
2039 		index = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
2040 		lobject = object;
2041 		pindex = index;
2042 		pprot = prot;
2043 
2044 		while ((m = vm_page_lookup(lobject, pindex)) == NULL) {
2045 			if (lobject->type != OBJT_DEFAULT)
2046 				break;
2047 			if (lobject->backing_object == NULL) {
2048 				if (vm_fast_fault == 0)
2049 					break;
2050 				if (vm_prefault_pageorder[i] < 0 ||
2051 				    (prot & VM_PROT_WRITE) == 0 ||
2052 				    vm_page_count_min(0)) {
2053 					break;
2054 				}
2055 				/* note: allocate from base object */
2056 				m = vm_page_alloc(object, index,
2057 					      VM_ALLOC_NORMAL | VM_ALLOC_ZERO);
2058 
2059 				if ((m->flags & PG_ZERO) == 0) {
2060 					vm_page_zero_fill(m);
2061 				} else {
2062 #ifdef PMAP_DEBUG
2063 					pmap_page_assertzero(VM_PAGE_TO_PHYS(m));
2064 #endif
2065 					vm_page_flag_clear(m, PG_ZERO);
2066 					mycpu->gd_cnt.v_ozfod++;
2067 				}
2068 				mycpu->gd_cnt.v_zfod++;
2069 				m->valid = VM_PAGE_BITS_ALL;
2070 				allocated = 1;
2071 				pprot = prot;
2072 				/* lobject = object .. not needed */
2073 				break;
2074 			}
2075 			if (lobject->backing_object_offset & PAGE_MASK)
2076 				break;
2077 			pindex += lobject->backing_object_offset >> PAGE_SHIFT;
2078 			lobject = lobject->backing_object;
2079 			pprot &= ~VM_PROT_WRITE;
2080 		}
2081 		/*
2082 		 * NOTE: lobject now invalid (if we did a zero-fill we didn't
2083 		 *	 bother assigning lobject = object).
2084 		 *
2085 		 * Give-up if the page is not available.
2086 		 */
2087 		if (m == NULL)
2088 			break;
2089 
2090 		/*
2091 		 * Do not conditionalize on PG_RAM.  If pages are present in
2092 		 * the VM system we assume optimal caching.  If caching is
2093 		 * not optimal the I/O gravy train will be restarted when we
2094 		 * hit an unavailable page.  We do not want to try to restart
2095 		 * the gravy train now because we really don't know how much
2096 		 * of the object has been cached.  The cost for restarting
2097 		 * the gravy train should be low (since accesses will likely
2098 		 * be I/O bound anyway).
2099 		 *
2100 		 * The object must be marked dirty if we are mapping a
2101 		 * writable page.
2102 		 */
2103 		if (pprot & VM_PROT_WRITE)
2104 			vm_object_set_writeable_dirty(m->object);
2105 
2106 		/*
2107 		 * Enter the page into the pmap if appropriate.  If we had
2108 		 * allocated the page we have to place it on a queue.  If not
2109 		 * we just have to make sure it isn't on the cache queue
2110 		 * (pages on the cache queue are not allowed to be mapped).
2111 		 */
2112 		if (allocated) {
2113 			if (pprot & VM_PROT_WRITE)
2114 				vm_set_nosync(m, entry);
2115 			pmap_enter(pmap, addr, m, pprot, 0);
2116 			vm_page_deactivate(m);
2117 			vm_page_wakeup(m);
2118 		} else if (((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2119 		    (m->busy == 0) &&
2120 		    (m->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2121 
2122 			if ((m->queue - m->pc) == PQ_CACHE) {
2123 				vm_page_deactivate(m);
2124 			}
2125 			vm_page_busy(m);
2126 			if (pprot & VM_PROT_WRITE)
2127 				vm_set_nosync(m, entry);
2128 			pmap_enter(pmap, addr, m, pprot, 0);
2129 			vm_page_wakeup(m);
2130 		}
2131 	}
2132 	lwkt_reltoken(&vm_token);
2133 }
2134