xref: /dragonfly/sys/vm/vm_fault.c (revision 1847e88f)
1 /*
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  *
9  *
10  * This code is derived from software contributed to Berkeley by
11  * The Mach Operating System project at Carnegie-Mellon University.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. All advertising materials mentioning features or use of this software
22  *    must display the following acknowledgement:
23  *	This product includes software developed by the University of
24  *	California, Berkeley and its contributors.
25  * 4. Neither the name of the University nor the names of its contributors
26  *    may be used to endorse or promote products derived from this software
27  *    without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39  * SUCH DAMAGE.
40  *
41  *	from: @(#)vm_fault.c	8.4 (Berkeley) 1/12/94
42  *
43  *
44  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
45  * All rights reserved.
46  *
47  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
48  *
49  * Permission to use, copy, modify and distribute this software and
50  * its documentation is hereby granted, provided that both the copyright
51  * notice and this permission notice appear in all copies of the
52  * software, derivative works or modified versions, and any portions
53  * thereof, and that both notices appear in supporting documentation.
54  *
55  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58  *
59  * Carnegie Mellon requests users of this software to return to
60  *
61  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
62  *  School of Computer Science
63  *  Carnegie Mellon University
64  *  Pittsburgh PA 15213-3890
65  *
66  * any improvements or extensions that they make and grant Carnegie the
67  * rights to redistribute these changes.
68  *
69  * $FreeBSD: src/sys/vm/vm_fault.c,v 1.108.2.8 2002/02/26 05:49:27 silby Exp $
70  * $DragonFly: src/sys/vm/vm_fault.c,v 1.20 2005/11/14 18:50:15 dillon Exp $
71  */
72 
73 /*
74  *	Page fault handling module.
75  */
76 
77 #include <sys/param.h>
78 #include <sys/systm.h>
79 #include <sys/proc.h>
80 #include <sys/vnode.h>
81 #include <sys/resourcevar.h>
82 #include <sys/vmmeter.h>
83 
84 #include <vm/vm.h>
85 #include <vm/vm_param.h>
86 #include <sys/lock.h>
87 #include <vm/pmap.h>
88 #include <vm/vm_map.h>
89 #include <vm/vm_object.h>
90 #include <vm/vm_page.h>
91 #include <vm/vm_pageout.h>
92 #include <vm/vm_kern.h>
93 #include <vm/vm_pager.h>
94 #include <vm/vnode_pager.h>
95 #include <vm/vm_extern.h>
96 
97 #include <sys/thread2.h>
98 #include <vm/vm_page2.h>
99 
100 static int vm_fault_additional_pages (vm_page_t, int,
101 					  int, vm_page_t *, int *);
102 
103 #define VM_FAULT_READ_AHEAD 8
104 #define VM_FAULT_READ_BEHIND 7
105 #define VM_FAULT_READ (VM_FAULT_READ_AHEAD+VM_FAULT_READ_BEHIND+1)
106 
107 struct faultstate {
108 	vm_page_t m;
109 	vm_object_t object;
110 	vm_pindex_t pindex;
111 	vm_page_t first_m;
112 	vm_object_t	first_object;
113 	vm_pindex_t first_pindex;
114 	vm_map_t map;
115 	vm_map_entry_t entry;
116 	int lookup_still_valid;
117 	struct vnode *vp;
118 };
119 
120 static __inline void
121 release_page(struct faultstate *fs)
122 {
123 	vm_page_wakeup(fs->m);
124 	vm_page_deactivate(fs->m);
125 	fs->m = NULL;
126 }
127 
128 static __inline void
129 unlock_map(struct faultstate *fs)
130 {
131 	if (fs->lookup_still_valid) {
132 		vm_map_lookup_done(fs->map, fs->entry, 0);
133 		fs->lookup_still_valid = FALSE;
134 	}
135 }
136 
137 static void
138 _unlock_things(struct faultstate *fs, int dealloc)
139 {
140 	vm_object_pip_wakeup(fs->object);
141 	if (fs->object != fs->first_object) {
142 		vm_page_free(fs->first_m);
143 		vm_object_pip_wakeup(fs->first_object);
144 		fs->first_m = NULL;
145 	}
146 	if (dealloc) {
147 		vm_object_deallocate(fs->first_object);
148 	}
149 	unlock_map(fs);
150 	if (fs->vp != NULL) {
151 		vput(fs->vp);
152 		fs->vp = NULL;
153 	}
154 }
155 
156 #define unlock_things(fs) _unlock_things(fs, 0)
157 #define unlock_and_deallocate(fs) _unlock_things(fs, 1)
158 
159 /*
160  * TRYPAGER - used by vm_fault to calculate whether the pager for the
161  *	      current object *might* contain the page.
162  *
163  *	      default objects are zero-fill, there is no real pager.
164  */
165 
166 #define TRYPAGER	(fs.object->type != OBJT_DEFAULT && \
167 			(((fault_flags & VM_FAULT_WIRE_MASK) == 0) || wired))
168 
169 /*
170  *	vm_fault:
171  *
172  *	Handle a page fault occurring at the given address,
173  *	requiring the given permissions, in the map specified.
174  *	If successful, the page is inserted into the
175  *	associated physical map.
176  *
177  *	NOTE: the given address should be truncated to the
178  *	proper page address.
179  *
180  *	KERN_SUCCESS is returned if the page fault is handled; otherwise,
181  *	a standard error specifying why the fault is fatal is returned.
182  *
183  *
184  *	The map in question must be referenced, and remains so.
185  *	Caller may hold no locks.
186  */
187 int
188 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, int fault_flags)
189 {
190 	vm_prot_t prot;
191 	int result;
192 	boolean_t wired;
193 	int map_generation;
194 	vm_object_t next_object;
195 	vm_page_t marray[VM_FAULT_READ];
196 	int hardfault;
197 	int faultcount;
198 	struct faultstate fs;
199 
200 	mycpu->gd_cnt.v_vm_faults++;
201 	hardfault = 0;
202 
203 RetryFault:
204 	/*
205 	 * Find the backing store object and offset into it to begin the
206 	 * search.
207 	 */
208 	fs.map = map;
209 	if ((result = vm_map_lookup(&fs.map, vaddr,
210 		fault_type, &fs.entry, &fs.first_object,
211 		&fs.first_pindex, &prot, &wired)) != KERN_SUCCESS) {
212 		if ((result != KERN_PROTECTION_FAILURE) ||
213 			((fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE)) {
214 			return result;
215 		}
216 
217 		/*
218    		 * If we are user-wiring a r/w segment, and it is COW, then
219    		 * we need to do the COW operation.  Note that we don't COW
220    		 * currently RO sections now, because it is NOT desirable
221    		 * to COW .text.  We simply keep .text from ever being COW'ed
222    		 * and take the heat that one cannot debug wired .text sections.
223    		 */
224 		result = vm_map_lookup(&fs.map, vaddr,
225 			VM_PROT_READ|VM_PROT_WRITE|VM_PROT_OVERRIDE_WRITE,
226 			&fs.entry, &fs.first_object, &fs.first_pindex, &prot, &wired);
227 		if (result != KERN_SUCCESS) {
228 			return result;
229 		}
230 
231 		/*
232 		 * If we don't COW now, on a user wire, the user will never
233 		 * be able to write to the mapping.  If we don't make this
234 		 * restriction, the bookkeeping would be nearly impossible.
235 		 */
236 		if ((fs.entry->protection & VM_PROT_WRITE) == 0)
237 			fs.entry->max_protection &= ~VM_PROT_WRITE;
238 	}
239 
240 	map_generation = fs.map->timestamp;
241 
242 	if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
243 		panic("vm_fault: fault on nofault entry, addr: %lx",
244 		    (u_long)vaddr);
245 	}
246 
247 	/*
248 	 * A system map entry may return a NULL object.  No object means
249 	 * no pager means an unrecoverable kernel fault.
250 	 */
251 	if (fs.first_object == NULL) {
252 		panic("vm_fault: unrecoverable fault at %p in entry %p",
253 			(void *)vaddr, fs.entry);
254 	}
255 
256 	/*
257 	 * Make a reference to this object to prevent its disposal while we
258 	 * are messing with it.  Once we have the reference, the map is free
259 	 * to be diddled.  Since objects reference their shadows (and copies),
260 	 * they will stay around as well.
261 	 *
262 	 * Bump the paging-in-progress count to prevent size changes (e.g.
263 	 * truncation operations) during I/O.  This must be done after
264 	 * obtaining the vnode lock in order to avoid possible deadlocks.
265 	 */
266 	vm_object_reference(fs.first_object);
267 	fs.vp = vnode_pager_lock(fs.first_object);
268 	vm_object_pip_add(fs.first_object, 1);
269 
270 	if ((fault_type & VM_PROT_WRITE) &&
271 		(fs.first_object->type == OBJT_VNODE)) {
272 		vm_freeze_copyopts(fs.first_object,
273 			fs.first_pindex, fs.first_pindex + 1);
274 	}
275 
276 	fs.lookup_still_valid = TRUE;
277 
278 	if (wired)
279 		fault_type = prot;
280 
281 	fs.first_m = NULL;
282 
283 	/*
284 	 * Search for the page at object/offset.
285 	 */
286 
287 	fs.object = fs.first_object;
288 	fs.pindex = fs.first_pindex;
289 
290 	while (TRUE) {
291 		/*
292 		 * If the object is dead, we stop here
293 		 */
294 
295 		if (fs.object->flags & OBJ_DEAD) {
296 			unlock_and_deallocate(&fs);
297 			return (KERN_PROTECTION_FAILURE);
298 		}
299 
300 		/*
301 		 * See if page is resident.  spl protection is required
302 		 * to avoid an interrupt unbusy/free race against our
303 		 * lookup.  We must hold the protection through a page
304 		 * allocation or busy.
305 		 */
306 		crit_enter();
307 		fs.m = vm_page_lookup(fs.object, fs.pindex);
308 		if (fs.m != NULL) {
309 			int queue;
310 			/*
311 			 * Wait/Retry if the page is busy.  We have to do this
312 			 * if the page is busy via either PG_BUSY or
313 			 * vm_page_t->busy because the vm_pager may be using
314 			 * vm_page_t->busy for pageouts ( and even pageins if
315 			 * it is the vnode pager ), and we could end up trying
316 			 * to pagein and pageout the same page simultaneously.
317 			 *
318 			 * We can theoretically allow the busy case on a read
319 			 * fault if the page is marked valid, but since such
320 			 * pages are typically already pmap'd, putting that
321 			 * special case in might be more effort then it is
322 			 * worth.  We cannot under any circumstances mess
323 			 * around with a vm_page_t->busy page except, perhaps,
324 			 * to pmap it.
325 			 */
326 			if ((fs.m->flags & PG_BUSY) || fs.m->busy) {
327 				unlock_things(&fs);
328 				vm_page_sleep_busy(fs.m, TRUE, "vmpfw");
329 				mycpu->gd_cnt.v_intrans++;
330 				vm_object_deallocate(fs.first_object);
331 				crit_exit();
332 				goto RetryFault;
333 			}
334 
335 			queue = fs.m->queue;
336 			vm_page_unqueue_nowakeup(fs.m);
337 
338 			if ((queue - fs.m->pc) == PQ_CACHE && vm_page_count_severe()) {
339 				vm_page_activate(fs.m);
340 				unlock_and_deallocate(&fs);
341 				vm_waitpfault();
342 				crit_exit();
343 				goto RetryFault;
344 			}
345 
346 			/*
347 			 * Mark page busy for other processes, and the
348 			 * pagedaemon.  If it still isn't completely valid
349 			 * (readable), jump to readrest, else break-out ( we
350 			 * found the page ).
351 			 *
352 			 * We can release the spl once we have marked the
353 			 * page busy.
354 			 */
355 
356 			vm_page_busy(fs.m);
357 			crit_exit();
358 
359 			if (((fs.m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL) &&
360 				fs.m->object != kernel_object && fs.m->object != kmem_object) {
361 				goto readrest;
362 			}
363 
364 			break;
365 		}
366 
367 		/*
368 		 * Page is not resident, If this is the search termination
369 		 * or the pager might contain the page, allocate a new page.
370 		 *
371 		 * note: we are still in splvm().
372 		 */
373 
374 		if (TRYPAGER || fs.object == fs.first_object) {
375 			if (fs.pindex >= fs.object->size) {
376 				crit_exit();
377 				unlock_and_deallocate(&fs);
378 				return (KERN_PROTECTION_FAILURE);
379 			}
380 
381 			/*
382 			 * Allocate a new page for this object/offset pair.
383 			 */
384 			fs.m = NULL;
385 			if (!vm_page_count_severe()) {
386 				fs.m = vm_page_alloc(fs.object, fs.pindex,
387 				    (fs.vp || fs.object->backing_object)? VM_ALLOC_NORMAL: VM_ALLOC_NORMAL | VM_ALLOC_ZERO);
388 			}
389 			if (fs.m == NULL) {
390 				crit_exit();
391 				unlock_and_deallocate(&fs);
392 				vm_waitpfault();
393 				goto RetryFault;
394 			}
395 		}
396 		crit_exit();
397 
398 readrest:
399 		/*
400 		 * We have found a valid page or we have allocated a new page.
401 		 * The page thus may not be valid or may not be entirely
402 		 * valid.
403 		 *
404 		 * Attempt to fault-in the page if there is a chance that the
405 		 * pager has it, and potentially fault in additional pages
406 		 * at the same time.
407 		 *
408 		 * We are NOT in splvm here and if TRYPAGER is true then
409 		 * fs.m will be non-NULL and will be PG_BUSY for us.
410 		 */
411 
412 		if (TRYPAGER) {
413 			int rv;
414 			int reqpage;
415 			int ahead, behind;
416 			u_char behavior = vm_map_entry_behavior(fs.entry);
417 
418 			if (behavior == MAP_ENTRY_BEHAV_RANDOM) {
419 				ahead = 0;
420 				behind = 0;
421 			} else {
422 				behind = (vaddr - fs.entry->start) >> PAGE_SHIFT;
423 				if (behind > VM_FAULT_READ_BEHIND)
424 					behind = VM_FAULT_READ_BEHIND;
425 
426 				ahead = ((fs.entry->end - vaddr) >> PAGE_SHIFT) - 1;
427 				if (ahead > VM_FAULT_READ_AHEAD)
428 					ahead = VM_FAULT_READ_AHEAD;
429 			}
430 
431 			if ((fs.first_object->type != OBJT_DEVICE) &&
432 			    (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL ||
433                                 (behavior != MAP_ENTRY_BEHAV_RANDOM &&
434                                 fs.pindex >= fs.entry->lastr &&
435                                 fs.pindex < fs.entry->lastr + VM_FAULT_READ))
436 			) {
437 				vm_pindex_t firstpindex, tmppindex;
438 
439 				if (fs.first_pindex < 2 * VM_FAULT_READ)
440 					firstpindex = 0;
441 				else
442 					firstpindex = fs.first_pindex - 2 * VM_FAULT_READ;
443 
444 				/*
445 				 * note: partially valid pages cannot be
446 				 * included in the lookahead - NFS piecemeal
447 				 * writes will barf on it badly.
448 				 *
449 				 * spl protection is required to avoid races
450 				 * between the lookup and an interrupt
451 				 * unbusy/free sequence occuring prior to
452 				 * our busy check.
453 				 */
454 				crit_enter();
455 				for (tmppindex = fs.first_pindex - 1;
456 				    tmppindex >= firstpindex;
457 				    --tmppindex
458 				) {
459 					vm_page_t mt;
460 					mt = vm_page_lookup( fs.first_object, tmppindex);
461 					if (mt == NULL || (mt->valid != VM_PAGE_BITS_ALL))
462 						break;
463 					if (mt->busy ||
464 						(mt->flags & (PG_BUSY | PG_FICTITIOUS | PG_UNMANAGED)) ||
465 						mt->hold_count ||
466 						mt->wire_count)
467 						continue;
468 					if (mt->dirty == 0)
469 						vm_page_test_dirty(mt);
470 					if (mt->dirty) {
471 						vm_page_protect(mt, VM_PROT_NONE);
472 						vm_page_deactivate(mt);
473 					} else {
474 						vm_page_cache(mt);
475 					}
476 				}
477 				crit_exit();
478 
479 				ahead += behind;
480 				behind = 0;
481 			}
482 
483 			/*
484 			 * now we find out if any other pages should be paged
485 			 * in at this time this routine checks to see if the
486 			 * pages surrounding this fault reside in the same
487 			 * object as the page for this fault.  If they do,
488 			 * then they are faulted in also into the object.  The
489 			 * array "marray" returned contains an array of
490 			 * vm_page_t structs where one of them is the
491 			 * vm_page_t passed to the routine.  The reqpage
492 			 * return value is the index into the marray for the
493 			 * vm_page_t passed to the routine.
494 			 *
495 			 * fs.m plus the additional pages are PG_BUSY'd.
496 			 */
497 			faultcount = vm_fault_additional_pages(
498 			    fs.m, behind, ahead, marray, &reqpage);
499 
500 			/*
501 			 * update lastr imperfectly (we do not know how much
502 			 * getpages will actually read), but good enough.
503 			 */
504 			fs.entry->lastr = fs.pindex + faultcount - behind;
505 
506 			/*
507 			 * Call the pager to retrieve the data, if any, after
508 			 * releasing the lock on the map.  We hold a ref on
509 			 * fs.object and the pages are PG_BUSY'd.
510 			 */
511 			unlock_map(&fs);
512 
513 			rv = faultcount ?
514 			    vm_pager_get_pages(fs.object, marray, faultcount,
515 				reqpage) : VM_PAGER_FAIL;
516 
517 			if (rv == VM_PAGER_OK) {
518 				/*
519 				 * Found the page. Leave it busy while we play
520 				 * with it.
521 				 */
522 
523 				/*
524 				 * Relookup in case pager changed page. Pager
525 				 * is responsible for disposition of old page
526 				 * if moved.
527 				 *
528 				 * XXX other code segments do relookups too.
529 				 * It's a bad abstraction that needs to be
530 				 * fixed/removed.
531 				 */
532 				fs.m = vm_page_lookup(fs.object, fs.pindex);
533 				if (fs.m == NULL) {
534 					unlock_and_deallocate(&fs);
535 					goto RetryFault;
536 				}
537 
538 				hardfault++;
539 				break; /* break to PAGE HAS BEEN FOUND */
540 			}
541 			/*
542 			 * Remove the bogus page (which does not exist at this
543 			 * object/offset); before doing so, we must get back
544 			 * our object lock to preserve our invariant.
545 			 *
546 			 * Also wake up any other process that may want to bring
547 			 * in this page.
548 			 *
549 			 * If this is the top-level object, we must leave the
550 			 * busy page to prevent another process from rushing
551 			 * past us, and inserting the page in that object at
552 			 * the same time that we are.
553 			 */
554 
555 			if (rv == VM_PAGER_ERROR)
556 				printf("vm_fault: pager read error, pid %d (%s)\n",
557 				    curproc->p_pid, curproc->p_comm);
558 			/*
559 			 * Data outside the range of the pager or an I/O error
560 			 */
561 			/*
562 			 * XXX - the check for kernel_map is a kludge to work
563 			 * around having the machine panic on a kernel space
564 			 * fault w/ I/O error.
565 			 */
566 			if (((fs.map != kernel_map) && (rv == VM_PAGER_ERROR)) ||
567 				(rv == VM_PAGER_BAD)) {
568 				vm_page_free(fs.m);
569 				fs.m = NULL;
570 				unlock_and_deallocate(&fs);
571 				return ((rv == VM_PAGER_ERROR) ? KERN_FAILURE : KERN_PROTECTION_FAILURE);
572 			}
573 			if (fs.object != fs.first_object) {
574 				vm_page_free(fs.m);
575 				fs.m = NULL;
576 				/*
577 				 * XXX - we cannot just fall out at this
578 				 * point, m has been freed and is invalid!
579 				 */
580 			}
581 		}
582 
583 		/*
584 		 * We get here if the object has default pager (or unwiring)
585 		 * or the pager doesn't have the page.
586 		 */
587 		if (fs.object == fs.first_object)
588 			fs.first_m = fs.m;
589 
590 		/*
591 		 * Move on to the next object.  Lock the next object before
592 		 * unlocking the current one.
593 		 */
594 
595 		fs.pindex += OFF_TO_IDX(fs.object->backing_object_offset);
596 		next_object = fs.object->backing_object;
597 		if (next_object == NULL) {
598 			/*
599 			 * If there's no object left, fill the page in the top
600 			 * object with zeros.
601 			 */
602 			if (fs.object != fs.first_object) {
603 				vm_object_pip_wakeup(fs.object);
604 
605 				fs.object = fs.first_object;
606 				fs.pindex = fs.first_pindex;
607 				fs.m = fs.first_m;
608 			}
609 			fs.first_m = NULL;
610 
611 			/*
612 			 * Zero the page if necessary and mark it valid.
613 			 */
614 			if ((fs.m->flags & PG_ZERO) == 0) {
615 				vm_page_zero_fill(fs.m);
616 			} else {
617 				mycpu->gd_cnt.v_ozfod++;
618 			}
619 			mycpu->gd_cnt.v_zfod++;
620 			fs.m->valid = VM_PAGE_BITS_ALL;
621 			break;	/* break to PAGE HAS BEEN FOUND */
622 		} else {
623 			if (fs.object != fs.first_object) {
624 				vm_object_pip_wakeup(fs.object);
625 			}
626 			KASSERT(fs.object != next_object, ("object loop %p", next_object));
627 			fs.object = next_object;
628 			vm_object_pip_add(fs.object, 1);
629 		}
630 	}
631 
632 	KASSERT((fs.m->flags & PG_BUSY) != 0,
633 	    ("vm_fault: not busy after main loop"));
634 
635 	/*
636 	 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
637 	 * is held.]
638 	 */
639 
640 	/*
641 	 * If the page is being written, but isn't already owned by the
642 	 * top-level object, we have to copy it into a new page owned by the
643 	 * top-level object.
644 	 */
645 
646 	if (fs.object != fs.first_object) {
647 		/*
648 		 * We only really need to copy if we want to write it.
649 		 */
650 
651 		if (fault_type & VM_PROT_WRITE) {
652 			/*
653 			 * This allows pages to be virtually copied from a
654 			 * backing_object into the first_object, where the
655 			 * backing object has no other refs to it, and cannot
656 			 * gain any more refs.  Instead of a bcopy, we just
657 			 * move the page from the backing object to the
658 			 * first object.  Note that we must mark the page
659 			 * dirty in the first object so that it will go out
660 			 * to swap when needed.
661 			 */
662 			if (map_generation == fs.map->timestamp &&
663 				/*
664 				 * Only one shadow object
665 				 */
666 				(fs.object->shadow_count == 1) &&
667 				/*
668 				 * No COW refs, except us
669 				 */
670 				(fs.object->ref_count == 1) &&
671 				/*
672 				 * No one else can look this object up
673 				 */
674 				(fs.object->handle == NULL) &&
675 				/*
676 				 * No other ways to look the object up
677 				 */
678 				((fs.object->type == OBJT_DEFAULT) ||
679 				 (fs.object->type == OBJT_SWAP)) &&
680 				/*
681 				 * We don't chase down the shadow chain
682 				 */
683 				(fs.object == fs.first_object->backing_object) &&
684 
685 				/*
686 				 * grab the lock if we need to
687 				 */
688 				(fs.lookup_still_valid ||
689 				 lockmgr(&fs.map->lock, LK_EXCLUSIVE|LK_NOWAIT, NULL, curthread) == 0)
690 			    ) {
691 
692 				fs.lookup_still_valid = 1;
693 				/*
694 				 * get rid of the unnecessary page
695 				 */
696 				vm_page_protect(fs.first_m, VM_PROT_NONE);
697 				vm_page_free(fs.first_m);
698 				fs.first_m = NULL;
699 
700 				/*
701 				 * grab the page and put it into the
702 				 * process'es object.  The page is
703 				 * automatically made dirty.
704 				 */
705 				vm_page_rename(fs.m, fs.first_object, fs.first_pindex);
706 				fs.first_m = fs.m;
707 				vm_page_busy(fs.first_m);
708 				fs.m = NULL;
709 				mycpu->gd_cnt.v_cow_optim++;
710 			} else {
711 				/*
712 				 * Oh, well, lets copy it.
713 				 */
714 				vm_page_copy(fs.m, fs.first_m);
715 			}
716 
717 			if (fs.m) {
718 				/*
719 				 * We no longer need the old page or object.
720 				 */
721 				release_page(&fs);
722 			}
723 
724 			/*
725 			 * fs.object != fs.first_object due to above
726 			 * conditional
727 			 */
728 
729 			vm_object_pip_wakeup(fs.object);
730 
731 			/*
732 			 * Only use the new page below...
733 			 */
734 
735 			mycpu->gd_cnt.v_cow_faults++;
736 			fs.m = fs.first_m;
737 			fs.object = fs.first_object;
738 			fs.pindex = fs.first_pindex;
739 
740 		} else {
741 			prot &= ~VM_PROT_WRITE;
742 		}
743 	}
744 
745 	/*
746 	 * We must verify that the maps have not changed since our last
747 	 * lookup.
748 	 */
749 
750 	if (!fs.lookup_still_valid &&
751 		(fs.map->timestamp != map_generation)) {
752 		vm_object_t retry_object;
753 		vm_pindex_t retry_pindex;
754 		vm_prot_t retry_prot;
755 
756 		/*
757 		 * Since map entries may be pageable, make sure we can take a
758 		 * page fault on them.
759 		 */
760 
761 		/*
762 		 * Unlock vnode before the lookup to avoid deadlock.   E.G.
763 		 * avoid a deadlock between the inode and exec_map that can
764 		 * occur due to locks being obtained in different orders.
765 		 */
766 
767 		if (fs.vp != NULL) {
768 			vput(fs.vp);
769 			fs.vp = NULL;
770 		}
771 
772 		if (fs.map->infork) {
773 			release_page(&fs);
774 			unlock_and_deallocate(&fs);
775 			goto RetryFault;
776 		}
777 
778 		/*
779 		 * To avoid trying to write_lock the map while another process
780 		 * has it read_locked (in vm_map_wire), we do not try for
781 		 * write permission.  If the page is still writable, we will
782 		 * get write permission.  If it is not, or has been marked
783 		 * needs_copy, we enter the mapping without write permission,
784 		 * and will merely take another fault.
785 		 */
786 		result = vm_map_lookup(&fs.map, vaddr, fault_type & ~VM_PROT_WRITE,
787 		    &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired);
788 		map_generation = fs.map->timestamp;
789 
790 		/*
791 		 * If we don't need the page any longer, put it on the active
792 		 * list (the easiest thing to do here).  If no one needs it,
793 		 * pageout will grab it eventually.
794 		 */
795 
796 		if (result != KERN_SUCCESS) {
797 			release_page(&fs);
798 			unlock_and_deallocate(&fs);
799 			return (result);
800 		}
801 		fs.lookup_still_valid = TRUE;
802 
803 		if ((retry_object != fs.first_object) ||
804 		    (retry_pindex != fs.first_pindex)) {
805 			release_page(&fs);
806 			unlock_and_deallocate(&fs);
807 			goto RetryFault;
808 		}
809 		/*
810 		 * Check whether the protection has changed or the object has
811 		 * been copied while we left the map unlocked. Changing from
812 		 * read to write permission is OK - we leave the page
813 		 * write-protected, and catch the write fault. Changing from
814 		 * write to read permission means that we can't mark the page
815 		 * write-enabled after all.
816 		 */
817 		prot &= retry_prot;
818 	}
819 
820 	/*
821 	 * Put this page into the physical map. We had to do the unlock above
822 	 * because pmap_enter may cause other faults.   We don't put the page
823 	 * back on the active queue until later so that the page-out daemon
824 	 * won't find us (yet).
825 	 */
826 
827 	if (prot & VM_PROT_WRITE) {
828 		vm_page_flag_set(fs.m, PG_WRITEABLE);
829 		vm_object_set_writeable_dirty(fs.m->object);
830 
831 		/*
832 		 * If the fault is a write, we know that this page is being
833 		 * written NOW so dirty it explicitly to save on
834 		 * pmap_is_modified() calls later.
835 		 *
836 		 * If this is a NOSYNC mmap we do not want to set PG_NOSYNC
837 		 * if the page is already dirty to prevent data written with
838 		 * the expectation of being synced from not being synced.
839 		 * Likewise if this entry does not request NOSYNC then make
840 		 * sure the page isn't marked NOSYNC.  Applications sharing
841 		 * data should use the same flags to avoid ping ponging.
842 		 *
843 		 * Also tell the backing pager, if any, that it should remove
844 		 * any swap backing since the page is now dirty.
845 		 */
846 		if (fs.entry->eflags & MAP_ENTRY_NOSYNC) {
847 			if (fs.m->dirty == 0)
848 				vm_page_flag_set(fs.m, PG_NOSYNC);
849 		} else {
850 			vm_page_flag_clear(fs.m, PG_NOSYNC);
851 		}
852 		if (fault_flags & VM_FAULT_DIRTY) {
853 			crit_enter();
854 			vm_page_dirty(fs.m);
855 			vm_pager_page_unswapped(fs.m);
856 			crit_exit();
857 		}
858 	}
859 
860 	/*
861 	 * Page had better still be busy
862 	 */
863 
864 	KASSERT(fs.m->flags & PG_BUSY,
865 		("vm_fault: page %p not busy!", fs.m));
866 
867 	unlock_things(&fs);
868 
869 	/*
870 	 * Sanity check: page must be completely valid or it is not fit to
871 	 * map into user space.  vm_pager_get_pages() ensures this.
872 	 */
873 
874 	if (fs.m->valid != VM_PAGE_BITS_ALL) {
875 		vm_page_zero_invalid(fs.m, TRUE);
876 		printf("Warning: page %p partially invalid on fault\n", fs.m);
877 	}
878 
879 	pmap_enter(fs.map->pmap, vaddr, fs.m, prot, wired);
880 
881 	if (((fault_flags & VM_FAULT_WIRE_MASK) == 0) && (wired == 0)) {
882 		pmap_prefault(fs.map->pmap, vaddr, fs.entry);
883 	}
884 
885 	vm_page_flag_clear(fs.m, PG_ZERO);
886 	vm_page_flag_set(fs.m, PG_MAPPED|PG_REFERENCED);
887 	if (fault_flags & VM_FAULT_HOLD)
888 		vm_page_hold(fs.m);
889 
890 	/*
891 	 * If the page is not wired down, then put it where the pageout daemon
892 	 * can find it.
893 	 */
894 
895 	if (fault_flags & VM_FAULT_WIRE_MASK) {
896 		if (wired)
897 			vm_page_wire(fs.m);
898 		else
899 			vm_page_unwire(fs.m, 1);
900 	} else {
901 		vm_page_activate(fs.m);
902 	}
903 
904 	if (curproc && (curproc->p_flag & P_SWAPPEDOUT) == 0 &&
905 	    curproc->p_stats) {
906 		if (hardfault) {
907 			curproc->p_stats->p_ru.ru_majflt++;
908 		} else {
909 			curproc->p_stats->p_ru.ru_minflt++;
910 		}
911 	}
912 
913 	/*
914 	 * Unlock everything, and return
915 	 */
916 
917 	vm_page_wakeup(fs.m);
918 	vm_object_deallocate(fs.first_object);
919 
920 	return (KERN_SUCCESS);
921 
922 }
923 
924 /*
925  * quick version of vm_fault
926  */
927 int
928 vm_fault_quick(caddr_t v, int prot)
929 {
930 	int r;
931 
932 	if (prot & VM_PROT_WRITE)
933 		r = subyte(v, fubyte(v));
934 	else
935 		r = fubyte(v);
936 	return(r);
937 }
938 
939 /*
940  * Wire down a range of virtual addresses in a map.  The entry in question
941  * should be marked in-transition and the map must be locked.  We must
942  * release the map temporarily while faulting-in the page to avoid a
943  * deadlock.  Note that the entry may be clipped while we are blocked but
944  * will never be freed.
945  */
946 int
947 vm_fault_wire(vm_map_t map, vm_map_entry_t entry, boolean_t user_wire)
948 {
949 	boolean_t fictitious;
950 	vm_offset_t start;
951 	vm_offset_t end;
952 	vm_offset_t va;
953 	vm_paddr_t pa;
954 	pmap_t pmap;
955 	int rv;
956 
957 	pmap = vm_map_pmap(map);
958 	start = entry->start;
959 	end = entry->end;
960 	fictitious = entry->object.vm_object &&
961 			(entry->object.vm_object->type == OBJT_DEVICE);
962 
963 	vm_map_unlock(map);
964 	map->timestamp++;
965 
966 	/*
967 	 * We simulate a fault to get the page and enter it in the physical
968 	 * map.
969 	 */
970 	for (va = start; va < end; va += PAGE_SIZE) {
971 		if (user_wire) {
972 			rv = vm_fault(map, va, VM_PROT_READ,
973 					VM_FAULT_USER_WIRE);
974 		} else {
975 			rv = vm_fault(map, va, VM_PROT_READ|VM_PROT_WRITE,
976 					VM_FAULT_CHANGE_WIRING);
977 		}
978 		if (rv) {
979 			while (va > start) {
980 				va -= PAGE_SIZE;
981 				if ((pa = pmap_extract(pmap, va)) == 0)
982 					continue;
983 				pmap_change_wiring(pmap, va, FALSE);
984 				if (!fictitious)
985 					vm_page_unwire(PHYS_TO_VM_PAGE(pa), 1);
986 			}
987 			vm_map_lock(map);
988 			return (rv);
989 		}
990 	}
991 	vm_map_lock(map);
992 	return (KERN_SUCCESS);
993 }
994 
995 /*
996  * Unwire a range of virtual addresses in a map.  The map should be
997  * locked.
998  */
999 void
1000 vm_fault_unwire(vm_map_t map, vm_map_entry_t entry)
1001 {
1002 	boolean_t fictitious;
1003 	vm_offset_t start;
1004 	vm_offset_t end;
1005 	vm_offset_t va;
1006 	vm_paddr_t pa;
1007 	pmap_t pmap;
1008 
1009 	pmap = vm_map_pmap(map);
1010 	start = entry->start;
1011 	end = entry->end;
1012 	fictitious = entry->object.vm_object &&
1013 			(entry->object.vm_object->type == OBJT_DEVICE);
1014 
1015 	/*
1016 	 * Since the pages are wired down, we must be able to get their
1017 	 * mappings from the physical map system.
1018 	 */
1019 	for (va = start; va < end; va += PAGE_SIZE) {
1020 		pa = pmap_extract(pmap, va);
1021 		if (pa != 0) {
1022 			pmap_change_wiring(pmap, va, FALSE);
1023 			if (!fictitious)
1024 				vm_page_unwire(PHYS_TO_VM_PAGE(pa), 1);
1025 		}
1026 	}
1027 }
1028 
1029 /*
1030  *	Routine:
1031  *		vm_fault_copy_entry
1032  *	Function:
1033  *		Copy all of the pages from a wired-down map entry to another.
1034  *
1035  *	In/out conditions:
1036  *		The source and destination maps must be locked for write.
1037  *		The source map entry must be wired down (or be a sharing map
1038  *		entry corresponding to a main map entry that is wired down).
1039  */
1040 
1041 void
1042 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
1043     vm_map_entry_t dst_entry, vm_map_entry_t src_entry)
1044 {
1045 	vm_object_t dst_object;
1046 	vm_object_t src_object;
1047 	vm_ooffset_t dst_offset;
1048 	vm_ooffset_t src_offset;
1049 	vm_prot_t prot;
1050 	vm_offset_t vaddr;
1051 	vm_page_t dst_m;
1052 	vm_page_t src_m;
1053 
1054 #ifdef	lint
1055 	src_map++;
1056 #endif	/* lint */
1057 
1058 	src_object = src_entry->object.vm_object;
1059 	src_offset = src_entry->offset;
1060 
1061 	/*
1062 	 * Create the top-level object for the destination entry. (Doesn't
1063 	 * actually shadow anything - we copy the pages directly.)
1064 	 */
1065 	dst_object = vm_object_allocate(OBJT_DEFAULT,
1066 	    (vm_size_t) OFF_TO_IDX(dst_entry->end - dst_entry->start));
1067 
1068 	dst_entry->object.vm_object = dst_object;
1069 	dst_entry->offset = 0;
1070 
1071 	prot = dst_entry->max_protection;
1072 
1073 	/*
1074 	 * Loop through all of the pages in the entry's range, copying each
1075 	 * one from the source object (it should be there) to the destination
1076 	 * object.
1077 	 */
1078 	for (vaddr = dst_entry->start, dst_offset = 0;
1079 	    vaddr < dst_entry->end;
1080 	    vaddr += PAGE_SIZE, dst_offset += PAGE_SIZE) {
1081 
1082 		/*
1083 		 * Allocate a page in the destination object
1084 		 */
1085 		do {
1086 			dst_m = vm_page_alloc(dst_object,
1087 				OFF_TO_IDX(dst_offset), VM_ALLOC_NORMAL);
1088 			if (dst_m == NULL) {
1089 				vm_wait();
1090 			}
1091 		} while (dst_m == NULL);
1092 
1093 		/*
1094 		 * Find the page in the source object, and copy it in.
1095 		 * (Because the source is wired down, the page will be in
1096 		 * memory.)
1097 		 */
1098 		src_m = vm_page_lookup(src_object,
1099 			OFF_TO_IDX(dst_offset + src_offset));
1100 		if (src_m == NULL)
1101 			panic("vm_fault_copy_wired: page missing");
1102 
1103 		vm_page_copy(src_m, dst_m);
1104 
1105 		/*
1106 		 * Enter it in the pmap...
1107 		 */
1108 
1109 		vm_page_flag_clear(dst_m, PG_ZERO);
1110 		pmap_enter(dst_map->pmap, vaddr, dst_m, prot, FALSE);
1111 		vm_page_flag_set(dst_m, PG_WRITEABLE|PG_MAPPED);
1112 
1113 		/*
1114 		 * Mark it no longer busy, and put it on the active list.
1115 		 */
1116 		vm_page_activate(dst_m);
1117 		vm_page_wakeup(dst_m);
1118 	}
1119 }
1120 
1121 
1122 /*
1123  * This routine checks around the requested page for other pages that
1124  * might be able to be faulted in.  This routine brackets the viable
1125  * pages for the pages to be paged in.
1126  *
1127  * Inputs:
1128  *	m, rbehind, rahead
1129  *
1130  * Outputs:
1131  *  marray (array of vm_page_t), reqpage (index of requested page)
1132  *
1133  * Return value:
1134  *  number of pages in marray
1135  */
1136 static int
1137 vm_fault_additional_pages(vm_page_t m, int rbehind, int rahead,
1138     vm_page_t *marray, int *reqpage)
1139 {
1140 	int i,j;
1141 	vm_object_t object;
1142 	vm_pindex_t pindex, startpindex, endpindex, tpindex;
1143 	vm_page_t rtm;
1144 	int cbehind, cahead;
1145 
1146 	object = m->object;
1147 	pindex = m->pindex;
1148 
1149 	/*
1150 	 * we don't fault-ahead for device pager
1151 	 */
1152 	if (object->type == OBJT_DEVICE) {
1153 		*reqpage = 0;
1154 		marray[0] = m;
1155 		return 1;
1156 	}
1157 
1158 	/*
1159 	 * if the requested page is not available, then give up now
1160 	 */
1161 
1162 	if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
1163 		return 0;
1164 	}
1165 
1166 	if ((cbehind == 0) && (cahead == 0)) {
1167 		*reqpage = 0;
1168 		marray[0] = m;
1169 		return 1;
1170 	}
1171 
1172 	if (rahead > cahead) {
1173 		rahead = cahead;
1174 	}
1175 
1176 	if (rbehind > cbehind) {
1177 		rbehind = cbehind;
1178 	}
1179 
1180 	/*
1181 	 * try to do any readahead that we might have free pages for.
1182 	 */
1183 	if ((rahead + rbehind) >
1184 		((vmstats.v_free_count + vmstats.v_cache_count) - vmstats.v_free_reserved)) {
1185 		pagedaemon_wakeup();
1186 		marray[0] = m;
1187 		*reqpage = 0;
1188 		return 1;
1189 	}
1190 
1191 	/*
1192 	 * scan backward for the read behind pages -- in memory
1193 	 *
1194 	 * Assume that if the page is not found an interrupt will not
1195 	 * create it.  Theoretically interrupts can only remove (busy)
1196 	 * pages, not create new associations.
1197 	 */
1198 	if (pindex > 0) {
1199 		if (rbehind > pindex) {
1200 			rbehind = pindex;
1201 			startpindex = 0;
1202 		} else {
1203 			startpindex = pindex - rbehind;
1204 		}
1205 
1206 		crit_enter();
1207 		for ( tpindex = pindex - 1; tpindex >= startpindex; tpindex -= 1) {
1208 			if (vm_page_lookup( object, tpindex)) {
1209 				startpindex = tpindex + 1;
1210 				break;
1211 			}
1212 			if (tpindex == 0)
1213 				break;
1214 		}
1215 
1216 		for(i = 0, tpindex = startpindex; tpindex < pindex; i++, tpindex++) {
1217 
1218 			rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL);
1219 			if (rtm == NULL) {
1220 				crit_exit();
1221 				for (j = 0; j < i; j++) {
1222 					vm_page_free(marray[j]);
1223 				}
1224 				marray[0] = m;
1225 				*reqpage = 0;
1226 				return 1;
1227 			}
1228 
1229 			marray[i] = rtm;
1230 		}
1231 		crit_exit();
1232 	} else {
1233 		startpindex = 0;
1234 		i = 0;
1235 	}
1236 
1237 	marray[i] = m;
1238 	/* page offset of the required page */
1239 	*reqpage = i;
1240 
1241 	tpindex = pindex + 1;
1242 	i++;
1243 
1244 	/*
1245 	 * scan forward for the read ahead pages
1246 	 */
1247 	endpindex = tpindex + rahead;
1248 	if (endpindex > object->size)
1249 		endpindex = object->size;
1250 
1251 	crit_enter();
1252 	for( ; tpindex < endpindex; i++, tpindex++) {
1253 
1254 		if (vm_page_lookup(object, tpindex)) {
1255 			break;
1256 		}
1257 
1258 		rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL);
1259 		if (rtm == NULL) {
1260 			break;
1261 		}
1262 
1263 		marray[i] = rtm;
1264 	}
1265 	crit_exit();
1266 
1267 	/* return number of bytes of pages */
1268 	return i;
1269 }
1270