xref: /dragonfly/sys/vm/vm_fault.c (revision 2983445f)
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * Copyright (c) 1994 John S. Dyson
7  * All rights reserved.
8  * Copyright (c) 1994 David Greenman
9  * All rights reserved.
10  *
11  *
12  * This code is derived from software contributed to Berkeley by
13  * The Mach Operating System project at Carnegie-Mellon University.
14  *
15  * Redistribution and use in source and binary forms, with or without
16  * modification, are permitted provided that the following conditions
17  * are met:
18  * 1. Redistributions of source code must retain the above copyright
19  *    notice, this list of conditions and the following disclaimer.
20  * 2. Redistributions in binary form must reproduce the above copyright
21  *    notice, this list of conditions and the following disclaimer in the
22  *    documentation and/or other materials provided with the distribution.
23  * 3. All advertising materials mentioning features or use of this software
24  *    must display the following acknowledgement:
25  *	This product includes software developed by the University of
26  *	California, Berkeley and its contributors.
27  * 4. Neither the name of the University nor the names of its contributors
28  *    may be used to endorse or promote products derived from this software
29  *    without specific prior written permission.
30  *
31  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41  * SUCH DAMAGE.
42  *
43  *	from: @(#)vm_fault.c	8.4 (Berkeley) 1/12/94
44  *
45  *
46  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
47  * All rights reserved.
48  *
49  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
50  *
51  * Permission to use, copy, modify and distribute this software and
52  * its documentation is hereby granted, provided that both the copyright
53  * notice and this permission notice appear in all copies of the
54  * software, derivative works or modified versions, and any portions
55  * thereof, and that both notices appear in supporting documentation.
56  *
57  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
58  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
59  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
60  *
61  * Carnegie Mellon requests users of this software to return to
62  *
63  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
64  *  School of Computer Science
65  *  Carnegie Mellon University
66  *  Pittsburgh PA 15213-3890
67  *
68  * any improvements or extensions that they make and grant Carnegie the
69  * rights to redistribute these changes.
70  *
71  * $FreeBSD: src/sys/vm/vm_fault.c,v 1.108.2.8 2002/02/26 05:49:27 silby Exp $
72  * $DragonFly: src/sys/vm/vm_fault.c,v 1.47 2008/07/01 02:02:56 dillon Exp $
73  */
74 
75 /*
76  *	Page fault handling module.
77  */
78 
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/kernel.h>
82 #include <sys/proc.h>
83 #include <sys/vnode.h>
84 #include <sys/resourcevar.h>
85 #include <sys/vmmeter.h>
86 #include <sys/vkernel.h>
87 #include <sys/lock.h>
88 #include <sys/sysctl.h>
89 
90 #include <cpu/lwbuf.h>
91 
92 #include <vm/vm.h>
93 #include <vm/vm_param.h>
94 #include <vm/pmap.h>
95 #include <vm/vm_map.h>
96 #include <vm/vm_object.h>
97 #include <vm/vm_page.h>
98 #include <vm/vm_pageout.h>
99 #include <vm/vm_kern.h>
100 #include <vm/vm_pager.h>
101 #include <vm/vnode_pager.h>
102 #include <vm/vm_extern.h>
103 
104 #include <sys/thread2.h>
105 #include <vm/vm_page2.h>
106 
107 struct faultstate {
108 	vm_page_t m;
109 	vm_object_t object;
110 	vm_pindex_t pindex;
111 	vm_prot_t prot;
112 	vm_page_t first_m;
113 	vm_object_t first_object;
114 	vm_prot_t first_prot;
115 	vm_map_t map;
116 	vm_map_entry_t entry;
117 	int lookup_still_valid;
118 	int didlimit;
119 	int hardfault;
120 	int fault_flags;
121 	int map_generation;
122 	boolean_t wired;
123 	struct vnode *vp;
124 };
125 
126 static int vm_fast_fault = 1;
127 SYSCTL_INT(_vm, OID_AUTO, fast_fault, CTLFLAG_RW, &vm_fast_fault, 0,
128 	   "Burst fault zero-fill regions");
129 static int debug_cluster = 0;
130 SYSCTL_INT(_vm, OID_AUTO, debug_cluster, CTLFLAG_RW, &debug_cluster, 0, "");
131 
132 static int vm_fault_object(struct faultstate *, vm_pindex_t, vm_prot_t);
133 static int vm_fault_vpagetable(struct faultstate *, vm_pindex_t *, vpte_t, int);
134 #if 0
135 static int vm_fault_additional_pages (vm_page_t, int, int, vm_page_t *, int *);
136 #endif
137 static int vm_fault_ratelimit(struct vmspace *);
138 static void vm_set_nosync(vm_page_t m, vm_map_entry_t entry);
139 static void vm_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry,
140 			int prot);
141 
142 /*
143  * The caller must hold vm_token.
144  */
145 static __inline void
146 release_page(struct faultstate *fs)
147 {
148 	vm_page_deactivate(fs->m);
149 	vm_page_wakeup(fs->m);
150 	fs->m = NULL;
151 }
152 
153 /*
154  * The caller must hold vm_token.
155  */
156 static __inline void
157 unlock_map(struct faultstate *fs)
158 {
159 	if (fs->lookup_still_valid && fs->map) {
160 		vm_map_lookup_done(fs->map, fs->entry, 0);
161 		fs->lookup_still_valid = FALSE;
162 	}
163 }
164 
165 /*
166  * Clean up after a successful call to vm_fault_object() so another call
167  * to vm_fault_object() can be made.
168  *
169  * The caller must hold vm_token.
170  */
171 static void
172 _cleanup_successful_fault(struct faultstate *fs, int relock)
173 {
174 	if (fs->object != fs->first_object) {
175 		vm_page_free(fs->first_m);
176 		vm_object_pip_wakeup(fs->object);
177 		fs->first_m = NULL;
178 	}
179 	fs->object = fs->first_object;
180 	if (relock && fs->lookup_still_valid == FALSE) {
181 		if (fs->map)
182 			vm_map_lock_read(fs->map);
183 		fs->lookup_still_valid = TRUE;
184 	}
185 }
186 
187 /*
188  * The caller must hold vm_token.
189  */
190 static void
191 _unlock_things(struct faultstate *fs, int dealloc)
192 {
193 	vm_object_pip_wakeup(fs->first_object);
194 	_cleanup_successful_fault(fs, 0);
195 	if (dealloc) {
196 		vm_object_deallocate(fs->first_object);
197 		fs->first_object = NULL;
198 	}
199 	unlock_map(fs);
200 	if (fs->vp != NULL) {
201 		vput(fs->vp);
202 		fs->vp = NULL;
203 	}
204 }
205 
206 #define unlock_things(fs) _unlock_things(fs, 0)
207 #define unlock_and_deallocate(fs) _unlock_things(fs, 1)
208 #define cleanup_successful_fault(fs) _cleanup_successful_fault(fs, 1)
209 
210 /*
211  * TRYPAGER
212  *
213  * Determine if the pager for the current object *might* contain the page.
214  *
215  * We only need to try the pager if this is not a default object (default
216  * objects are zero-fill and have no real pager), and if we are not taking
217  * a wiring fault or if the FS entry is wired.
218  */
219 #define TRYPAGER(fs)	\
220 		(fs->object->type != OBJT_DEFAULT && \
221 		(((fs->fault_flags & VM_FAULT_WIRE_MASK) == 0) || fs->wired))
222 
223 /*
224  * vm_fault:
225  *
226  * Handle a page fault occuring at the given address, requiring the given
227  * permissions, in the map specified.  If successful, the page is inserted
228  * into the associated physical map.
229  *
230  * NOTE: The given address should be truncated to the proper page address.
231  *
232  * KERN_SUCCESS is returned if the page fault is handled; otherwise,
233  * a standard error specifying why the fault is fatal is returned.
234  *
235  * The map in question must be referenced, and remains so.
236  * The caller may hold no locks.
237  * No other requirements.
238  */
239 int
240 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, int fault_flags)
241 {
242 	int result;
243 	vm_pindex_t first_pindex;
244 	struct faultstate fs;
245 	int growstack;
246 
247 	mycpu->gd_cnt.v_vm_faults++;
248 
249 	fs.didlimit = 0;
250 	fs.hardfault = 0;
251 	fs.fault_flags = fault_flags;
252 	growstack = 1;
253 
254 RetryFault:
255 	/*
256 	 * Find the vm_map_entry representing the backing store and resolve
257 	 * the top level object and page index.  This may have the side
258 	 * effect of executing a copy-on-write on the map entry and/or
259 	 * creating a shadow object, but will not COW any actual VM pages.
260 	 *
261 	 * On success fs.map is left read-locked and various other fields
262 	 * are initialized but not otherwise referenced or locked.
263 	 *
264 	 * NOTE!  vm_map_lookup will try to upgrade the fault_type to
265 	 * VM_FAULT_WRITE if the map entry is a virtual page table and also
266 	 * writable, so we can set the 'A'accessed bit in the virtual page
267 	 * table entry.
268 	 */
269 	fs.map = map;
270 	result = vm_map_lookup(&fs.map, vaddr, fault_type,
271 			       &fs.entry, &fs.first_object,
272 			       &first_pindex, &fs.first_prot, &fs.wired);
273 
274 	/*
275 	 * If the lookup failed or the map protections are incompatible,
276 	 * the fault generally fails.  However, if the caller is trying
277 	 * to do a user wiring we have more work to do.
278 	 */
279 	if (result != KERN_SUCCESS) {
280 		if (result != KERN_PROTECTION_FAILURE ||
281 		    (fs.fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE)
282 		{
283 			if (result == KERN_INVALID_ADDRESS && growstack &&
284 			    map != &kernel_map && curproc != NULL) {
285 				result = vm_map_growstack(curproc, vaddr);
286 				if (result != KERN_SUCCESS)
287 					return (KERN_FAILURE);
288 				growstack = 0;
289 				goto RetryFault;
290 			}
291 			return (result);
292 		}
293 
294 		/*
295    		 * If we are user-wiring a r/w segment, and it is COW, then
296    		 * we need to do the COW operation.  Note that we don't
297 		 * currently COW RO sections now, because it is NOT desirable
298    		 * to COW .text.  We simply keep .text from ever being COW'ed
299    		 * and take the heat that one cannot debug wired .text sections.
300    		 */
301 		result = vm_map_lookup(&fs.map, vaddr,
302 				       VM_PROT_READ|VM_PROT_WRITE|
303 				        VM_PROT_OVERRIDE_WRITE,
304 				       &fs.entry, &fs.first_object,
305 				       &first_pindex, &fs.first_prot,
306 				       &fs.wired);
307 		if (result != KERN_SUCCESS)
308 			return result;
309 
310 		/*
311 		 * If we don't COW now, on a user wire, the user will never
312 		 * be able to write to the mapping.  If we don't make this
313 		 * restriction, the bookkeeping would be nearly impossible.
314 		 */
315 		if ((fs.entry->protection & VM_PROT_WRITE) == 0)
316 			fs.entry->max_protection &= ~VM_PROT_WRITE;
317 	}
318 
319 	/*
320 	 * fs.map is read-locked
321 	 *
322 	 * Misc checks.  Save the map generation number to detect races.
323 	 */
324 	fs.map_generation = fs.map->timestamp;
325 
326 	if (fs.entry->eflags & (MAP_ENTRY_NOFAULT | MAP_ENTRY_KSTACK)) {
327 		if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
328 			panic("vm_fault: fault on nofault entry, addr: %p",
329 			      (void *)vaddr);
330 		}
331 		if ((fs.entry->eflags & MAP_ENTRY_KSTACK) &&
332 		    vaddr >= fs.entry->start &&
333 		    vaddr < fs.entry->start + PAGE_SIZE) {
334 			panic("vm_fault: fault on stack guard, addr: %p",
335 			      (void *)vaddr);
336 		}
337 	}
338 
339 	/*
340 	 * A system map entry may return a NULL object.  No object means
341 	 * no pager means an unrecoverable kernel fault.
342 	 */
343 	if (fs.first_object == NULL) {
344 		panic("vm_fault: unrecoverable fault at %p in entry %p",
345 			(void *)vaddr, fs.entry);
346 	}
347 
348 	/*
349 	 * Make a reference to this object to prevent its disposal while we
350 	 * are messing with it.  Once we have the reference, the map is free
351 	 * to be diddled.  Since objects reference their shadows (and copies),
352 	 * they will stay around as well.
353 	 *
354 	 * Bump the paging-in-progress count to prevent size changes (e.g.
355 	 * truncation operations) during I/O.  This must be done after
356 	 * obtaining the vnode lock in order to avoid possible deadlocks.
357 	 *
358 	 * The vm_token is needed to manipulate the vm_object
359 	 */
360 	lwkt_gettoken(&vm_token);
361 	vm_object_reference(fs.first_object);
362 	fs.vp = vnode_pager_lock(fs.first_object);
363 	vm_object_pip_add(fs.first_object, 1);
364 	lwkt_reltoken(&vm_token);
365 
366 	fs.lookup_still_valid = TRUE;
367 	fs.first_m = NULL;
368 	fs.object = fs.first_object;	/* so unlock_and_deallocate works */
369 
370 	/*
371 	 * If the entry is wired we cannot change the page protection.
372 	 */
373 	if (fs.wired)
374 		fault_type = fs.first_prot;
375 
376 	/*
377 	 * The page we want is at (first_object, first_pindex), but if the
378 	 * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the
379 	 * page table to figure out the actual pindex.
380 	 *
381 	 * NOTE!  DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION
382 	 * ONLY
383 	 */
384 	if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
385 		result = vm_fault_vpagetable(&fs, &first_pindex,
386 					     fs.entry->aux.master_pde,
387 					     fault_type);
388 		if (result == KERN_TRY_AGAIN)
389 			goto RetryFault;
390 		if (result != KERN_SUCCESS)
391 			return (result);
392 	}
393 
394 	/*
395 	 * Now we have the actual (object, pindex), fault in the page.  If
396 	 * vm_fault_object() fails it will unlock and deallocate the FS
397 	 * data.   If it succeeds everything remains locked and fs->object
398 	 * will have an additional PIP count if it is not equal to
399 	 * fs->first_object
400 	 *
401 	 * vm_fault_object will set fs->prot for the pmap operation.  It is
402 	 * allowed to set VM_PROT_WRITE if fault_type == VM_PROT_READ if the
403 	 * page can be safely written.  However, it will force a read-only
404 	 * mapping for a read fault if the memory is managed by a virtual
405 	 * page table.
406 	 */
407 	/* BEFORE */
408 	result = vm_fault_object(&fs, first_pindex, fault_type);
409 
410 	if (result == KERN_TRY_AGAIN) {
411 		/*lwkt_reltoken(&vm_token);*/
412 		goto RetryFault;
413 	}
414 	if (result != KERN_SUCCESS) {
415 		/*lwkt_reltoken(&vm_token);*/
416 		return (result);
417 	}
418 
419 	/*
420 	 * On success vm_fault_object() does not unlock or deallocate, and fs.m
421 	 * will contain a busied page.
422 	 *
423 	 * Enter the page into the pmap and do pmap-related adjustments.
424 	 */
425 	vm_page_flag_set(fs.m, PG_REFERENCED);
426 	pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot, fs.wired);
427 
428 	/*
429 	 * Burst in a few more pages if possible.  The fs.map should still
430 	 * be locked.
431 	 */
432 	if (fault_flags & VM_FAULT_BURST) {
433 		if ((fs.fault_flags & VM_FAULT_WIRE_MASK) == 0 &&
434 		    fs.wired == 0) {
435 			vm_prefault(fs.map->pmap, vaddr, fs.entry, fs.prot);
436 		}
437 	}
438 	lwkt_gettoken(&vm_token);
439 	unlock_things(&fs);
440 
441 	/*KKASSERT(fs.m->queue == PQ_NONE); page-in op may deactivate page */
442 	KKASSERT(fs.m->flags & PG_BUSY);
443 
444 	/*
445 	 * If the page is not wired down, then put it where the pageout daemon
446 	 * can find it.
447 	 *
448 	 * We do not really need to get vm_token here but since all the
449 	 * vm_*() calls have to doing it here improves efficiency.
450 	 */
451 	/*lwkt_gettoken(&vm_token);*/
452 
453 	if (fs.fault_flags & VM_FAULT_WIRE_MASK) {
454 		lwkt_reltoken(&vm_token); /* before wire activate does not */
455 		if (fs.wired)
456 			vm_page_wire(fs.m);
457 		else
458 			vm_page_unwire(fs.m, 1);
459 	} else {
460 		vm_page_activate(fs.m);
461 		lwkt_reltoken(&vm_token); /* before wire activate does not */
462 	}
463 	/*lwkt_reltoken(&vm_token); after wire/activate works */
464 
465 	if (curthread->td_lwp) {
466 		if (fs.hardfault) {
467 			curthread->td_lwp->lwp_ru.ru_majflt++;
468 		} else {
469 			curthread->td_lwp->lwp_ru.ru_minflt++;
470 		}
471 	}
472 
473 	/*
474 	 * Unlock everything, and return
475 	 */
476 	vm_page_wakeup(fs.m);
477 	vm_object_deallocate(fs.first_object);
478 	/*fs.m = NULL; */
479 	/*fs.first_object = NULL; */
480 	/*lwkt_reltoken(&vm_token);*/
481 
482 	return (KERN_SUCCESS);
483 }
484 
485 /*
486  * Fault in the specified virtual address in the current process map,
487  * returning a held VM page or NULL.  See vm_fault_page() for more
488  * information.
489  *
490  * No requirements.
491  */
492 vm_page_t
493 vm_fault_page_quick(vm_offset_t va, vm_prot_t fault_type, int *errorp)
494 {
495 	struct lwp *lp = curthread->td_lwp;
496 	vm_page_t m;
497 
498 	m = vm_fault_page(&lp->lwp_vmspace->vm_map, va,
499 			  fault_type, VM_FAULT_NORMAL, errorp);
500 	return(m);
501 }
502 
503 /*
504  * Fault in the specified virtual address in the specified map, doing all
505  * necessary manipulation of the object store and all necessary I/O.  Return
506  * a held VM page or NULL, and set *errorp.  The related pmap is not
507  * updated.
508  *
509  * The returned page will be properly dirtied if VM_PROT_WRITE was specified,
510  * and marked PG_REFERENCED as well.
511  *
512  * If the page cannot be faulted writable and VM_PROT_WRITE was specified, an
513  * error will be returned.
514  *
515  * No requirements.
516  */
517 vm_page_t
518 vm_fault_page(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
519 	      int fault_flags, int *errorp)
520 {
521 	vm_pindex_t first_pindex;
522 	struct faultstate fs;
523 	int result;
524 	vm_prot_t orig_fault_type = fault_type;
525 
526 	mycpu->gd_cnt.v_vm_faults++;
527 
528 	fs.didlimit = 0;
529 	fs.hardfault = 0;
530 	fs.fault_flags = fault_flags;
531 	KKASSERT((fault_flags & VM_FAULT_WIRE_MASK) == 0);
532 
533 RetryFault:
534 	/*
535 	 * Find the vm_map_entry representing the backing store and resolve
536 	 * the top level object and page index.  This may have the side
537 	 * effect of executing a copy-on-write on the map entry and/or
538 	 * creating a shadow object, but will not COW any actual VM pages.
539 	 *
540 	 * On success fs.map is left read-locked and various other fields
541 	 * are initialized but not otherwise referenced or locked.
542 	 *
543 	 * NOTE!  vm_map_lookup will upgrade the fault_type to VM_FAULT_WRITE
544 	 * if the map entry is a virtual page table and also writable,
545 	 * so we can set the 'A'accessed bit in the virtual page table entry.
546 	 */
547 	fs.map = map;
548 	result = vm_map_lookup(&fs.map, vaddr, fault_type,
549 			       &fs.entry, &fs.first_object,
550 			       &first_pindex, &fs.first_prot, &fs.wired);
551 
552 	if (result != KERN_SUCCESS) {
553 		*errorp = result;
554 		return (NULL);
555 	}
556 
557 	/*
558 	 * fs.map is read-locked
559 	 *
560 	 * Misc checks.  Save the map generation number to detect races.
561 	 */
562 	fs.map_generation = fs.map->timestamp;
563 
564 	if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
565 		panic("vm_fault: fault on nofault entry, addr: %lx",
566 		    (u_long)vaddr);
567 	}
568 
569 	/*
570 	 * A system map entry may return a NULL object.  No object means
571 	 * no pager means an unrecoverable kernel fault.
572 	 */
573 	if (fs.first_object == NULL) {
574 		panic("vm_fault: unrecoverable fault at %p in entry %p",
575 			(void *)vaddr, fs.entry);
576 	}
577 
578 	/*
579 	 * Make a reference to this object to prevent its disposal while we
580 	 * are messing with it.  Once we have the reference, the map is free
581 	 * to be diddled.  Since objects reference their shadows (and copies),
582 	 * they will stay around as well.
583 	 *
584 	 * Bump the paging-in-progress count to prevent size changes (e.g.
585 	 * truncation operations) during I/O.  This must be done after
586 	 * obtaining the vnode lock in order to avoid possible deadlocks.
587 	 *
588 	 * The vm_token is needed to manipulate the vm_object
589 	 */
590 	lwkt_gettoken(&vm_token);
591 	vm_object_reference(fs.first_object);
592 	fs.vp = vnode_pager_lock(fs.first_object);
593 	vm_object_pip_add(fs.first_object, 1);
594 	lwkt_reltoken(&vm_token);
595 
596 	fs.lookup_still_valid = TRUE;
597 	fs.first_m = NULL;
598 	fs.object = fs.first_object;	/* so unlock_and_deallocate works */
599 
600 	/*
601 	 * If the entry is wired we cannot change the page protection.
602 	 */
603 	if (fs.wired)
604 		fault_type = fs.first_prot;
605 
606 	/*
607 	 * The page we want is at (first_object, first_pindex), but if the
608 	 * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the
609 	 * page table to figure out the actual pindex.
610 	 *
611 	 * NOTE!  DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION
612 	 * ONLY
613 	 */
614 	if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
615 		result = vm_fault_vpagetable(&fs, &first_pindex,
616 					     fs.entry->aux.master_pde,
617 					     fault_type);
618 		if (result == KERN_TRY_AGAIN)
619 			goto RetryFault;
620 		if (result != KERN_SUCCESS) {
621 			*errorp = result;
622 			return (NULL);
623 		}
624 	}
625 
626 	/*
627 	 * Now we have the actual (object, pindex), fault in the page.  If
628 	 * vm_fault_object() fails it will unlock and deallocate the FS
629 	 * data.   If it succeeds everything remains locked and fs->object
630 	 * will have an additinal PIP count if it is not equal to
631 	 * fs->first_object
632 	 */
633 	result = vm_fault_object(&fs, first_pindex, fault_type);
634 
635 	if (result == KERN_TRY_AGAIN)
636 		goto RetryFault;
637 	if (result != KERN_SUCCESS) {
638 		*errorp = result;
639 		return(NULL);
640 	}
641 
642 	if ((orig_fault_type & VM_PROT_WRITE) &&
643 	    (fs.prot & VM_PROT_WRITE) == 0) {
644 		*errorp = KERN_PROTECTION_FAILURE;
645 		unlock_and_deallocate(&fs);
646 		return(NULL);
647 	}
648 
649 	/*
650 	 * On success vm_fault_object() does not unlock or deallocate, and fs.m
651 	 * will contain a busied page.
652 	 */
653 	unlock_things(&fs);
654 
655 	/*
656 	 * Return a held page.  We are not doing any pmap manipulation so do
657 	 * not set PG_MAPPED.  However, adjust the page flags according to
658 	 * the fault type because the caller may not use a managed pmapping
659 	 * (so we don't want to lose the fact that the page will be dirtied
660 	 * if a write fault was specified).
661 	 */
662 	lwkt_gettoken(&vm_token);
663 	vm_page_hold(fs.m);
664 	if (fault_type & VM_PROT_WRITE)
665 		vm_page_dirty(fs.m);
666 
667 	/*
668 	 * Update the pmap.  We really only have to do this if a COW
669 	 * occured to replace the read-only page with the new page.  For
670 	 * now just do it unconditionally. XXX
671 	 */
672 	pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot, fs.wired);
673 	vm_page_flag_set(fs.m, PG_REFERENCED);
674 
675 	/*
676 	 * Unbusy the page by activating it.  It remains held and will not
677 	 * be reclaimed.
678 	 */
679 	vm_page_activate(fs.m);
680 
681 	if (curthread->td_lwp) {
682 		if (fs.hardfault) {
683 			curthread->td_lwp->lwp_ru.ru_majflt++;
684 		} else {
685 			curthread->td_lwp->lwp_ru.ru_minflt++;
686 		}
687 	}
688 
689 	/*
690 	 * Unlock everything, and return the held page.
691 	 */
692 	vm_page_wakeup(fs.m);
693 	vm_object_deallocate(fs.first_object);
694 	/*fs.first_object = NULL; */
695 	lwkt_reltoken(&vm_token);
696 
697 	*errorp = 0;
698 	return(fs.m);
699 }
700 
701 /*
702  * Fault in the specified (object,offset), dirty the returned page as
703  * needed.  If the requested fault_type cannot be done NULL and an
704  * error is returned.
705  *
706  * A held (but not busied) page is returned.
707  *
708  * No requirements.
709  */
710 vm_page_t
711 vm_fault_object_page(vm_object_t object, vm_ooffset_t offset,
712 		     vm_prot_t fault_type, int fault_flags, int *errorp)
713 {
714 	int result;
715 	vm_pindex_t first_pindex;
716 	struct faultstate fs;
717 	struct vm_map_entry entry;
718 
719 	bzero(&entry, sizeof(entry));
720 	entry.object.vm_object = object;
721 	entry.maptype = VM_MAPTYPE_NORMAL;
722 	entry.protection = entry.max_protection = fault_type;
723 
724 	fs.didlimit = 0;
725 	fs.hardfault = 0;
726 	fs.fault_flags = fault_flags;
727 	fs.map = NULL;
728 	KKASSERT((fault_flags & VM_FAULT_WIRE_MASK) == 0);
729 
730 RetryFault:
731 
732 	fs.first_object = object;
733 	first_pindex = OFF_TO_IDX(offset);
734 	fs.entry = &entry;
735 	fs.first_prot = fault_type;
736 	fs.wired = 0;
737 	/*fs.map_generation = 0; unused */
738 
739 	/*
740 	 * Make a reference to this object to prevent its disposal while we
741 	 * are messing with it.  Once we have the reference, the map is free
742 	 * to be diddled.  Since objects reference their shadows (and copies),
743 	 * they will stay around as well.
744 	 *
745 	 * Bump the paging-in-progress count to prevent size changes (e.g.
746 	 * truncation operations) during I/O.  This must be done after
747 	 * obtaining the vnode lock in order to avoid possible deadlocks.
748 	 */
749 	lwkt_gettoken(&vm_token);
750 	vm_object_reference(fs.first_object);
751 	fs.vp = vnode_pager_lock(fs.first_object);
752 	vm_object_pip_add(fs.first_object, 1);
753 	lwkt_reltoken(&vm_token);
754 
755 	fs.lookup_still_valid = TRUE;
756 	fs.first_m = NULL;
757 	fs.object = fs.first_object;	/* so unlock_and_deallocate works */
758 
759 #if 0
760 	/* XXX future - ability to operate on VM object using vpagetable */
761 	if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
762 		result = vm_fault_vpagetable(&fs, &first_pindex,
763 					     fs.entry->aux.master_pde,
764 					     fault_type);
765 		if (result == KERN_TRY_AGAIN)
766 			goto RetryFault;
767 		if (result != KERN_SUCCESS) {
768 			*errorp = result;
769 			return (NULL);
770 		}
771 	}
772 #endif
773 
774 	/*
775 	 * Now we have the actual (object, pindex), fault in the page.  If
776 	 * vm_fault_object() fails it will unlock and deallocate the FS
777 	 * data.   If it succeeds everything remains locked and fs->object
778 	 * will have an additinal PIP count if it is not equal to
779 	 * fs->first_object
780 	 */
781 	result = vm_fault_object(&fs, first_pindex, fault_type);
782 
783 	if (result == KERN_TRY_AGAIN)
784 		goto RetryFault;
785 	if (result != KERN_SUCCESS) {
786 		*errorp = result;
787 		return(NULL);
788 	}
789 
790 	if ((fault_type & VM_PROT_WRITE) && (fs.prot & VM_PROT_WRITE) == 0) {
791 		*errorp = KERN_PROTECTION_FAILURE;
792 		unlock_and_deallocate(&fs);
793 		return(NULL);
794 	}
795 
796 	/*
797 	 * On success vm_fault_object() does not unlock or deallocate, and fs.m
798 	 * will contain a busied page.
799 	 */
800 	unlock_things(&fs);
801 
802 	/*
803 	 * Return a held page.  We are not doing any pmap manipulation so do
804 	 * not set PG_MAPPED.  However, adjust the page flags according to
805 	 * the fault type because the caller may not use a managed pmapping
806 	 * (so we don't want to lose the fact that the page will be dirtied
807 	 * if a write fault was specified).
808 	 */
809 	lwkt_gettoken(&vm_token);
810 	vm_page_hold(fs.m);
811 	if (fault_type & VM_PROT_WRITE)
812 		vm_page_dirty(fs.m);
813 
814 	if (fault_flags & VM_FAULT_DIRTY)
815 		vm_page_dirty(fs.m);
816 	if (fault_flags & VM_FAULT_UNSWAP)
817 		swap_pager_unswapped(fs.m);
818 
819 	/*
820 	 * Indicate that the page was accessed.
821 	 */
822 	vm_page_flag_set(fs.m, PG_REFERENCED);
823 
824 	/*
825 	 * Unbusy the page by activating it.  It remains held and will not
826 	 * be reclaimed.
827 	 */
828 	vm_page_activate(fs.m);
829 
830 	if (curthread->td_lwp) {
831 		if (fs.hardfault) {
832 			mycpu->gd_cnt.v_vm_faults++;
833 			curthread->td_lwp->lwp_ru.ru_majflt++;
834 		} else {
835 			curthread->td_lwp->lwp_ru.ru_minflt++;
836 		}
837 	}
838 
839 	/*
840 	 * Unlock everything, and return the held page.
841 	 */
842 	vm_page_wakeup(fs.m);
843 	vm_object_deallocate(fs.first_object);
844 	/*fs.first_object = NULL; */
845 	lwkt_reltoken(&vm_token);
846 
847 	*errorp = 0;
848 	return(fs.m);
849 }
850 
851 /*
852  * Translate the virtual page number (first_pindex) that is relative
853  * to the address space into a logical page number that is relative to the
854  * backing object.  Use the virtual page table pointed to by (vpte).
855  *
856  * This implements an N-level page table.  Any level can terminate the
857  * scan by setting VPTE_PS.   A linear mapping is accomplished by setting
858  * VPTE_PS in the master page directory entry set via mcontrol(MADV_SETMAP).
859  *
860  * No requirements (vm_token need not be held).
861  */
862 static
863 int
864 vm_fault_vpagetable(struct faultstate *fs, vm_pindex_t *pindex,
865 		    vpte_t vpte, int fault_type)
866 {
867 	struct lwbuf *lwb;
868 	int vshift = VPTE_FRAME_END - PAGE_SHIFT; /* index bits remaining */
869 	int result = KERN_SUCCESS;
870 	vpte_t *ptep;
871 
872 	for (;;) {
873 		/*
874 		 * We cannot proceed if the vpte is not valid, not readable
875 		 * for a read fault, or not writable for a write fault.
876 		 */
877 		if ((vpte & VPTE_V) == 0) {
878 			unlock_and_deallocate(fs);
879 			return (KERN_FAILURE);
880 		}
881 		if ((fault_type & VM_PROT_READ) && (vpte & VPTE_R) == 0) {
882 			unlock_and_deallocate(fs);
883 			return (KERN_FAILURE);
884 		}
885 		if ((fault_type & VM_PROT_WRITE) && (vpte & VPTE_W) == 0) {
886 			unlock_and_deallocate(fs);
887 			return (KERN_FAILURE);
888 		}
889 		if ((vpte & VPTE_PS) || vshift == 0)
890 			break;
891 		KKASSERT(vshift >= VPTE_PAGE_BITS);
892 
893 		/*
894 		 * Get the page table page.  Nominally we only read the page
895 		 * table, but since we are actively setting VPTE_M and VPTE_A,
896 		 * tell vm_fault_object() that we are writing it.
897 		 *
898 		 * There is currently no real need to optimize this.
899 		 */
900 		result = vm_fault_object(fs, (vpte & VPTE_FRAME) >> PAGE_SHIFT,
901 					 VM_PROT_READ|VM_PROT_WRITE);
902 		if (result != KERN_SUCCESS)
903 			return (result);
904 
905 		/*
906 		 * Process the returned fs.m and look up the page table
907 		 * entry in the page table page.
908 		 */
909 		vshift -= VPTE_PAGE_BITS;
910 		lwb = lwbuf_alloc(fs->m);
911 		ptep = ((vpte_t *)lwbuf_kva(lwb) +
912 		        ((*pindex >> vshift) & VPTE_PAGE_MASK));
913 		vpte = *ptep;
914 
915 		/*
916 		 * Page table write-back.  If the vpte is valid for the
917 		 * requested operation, do a write-back to the page table.
918 		 *
919 		 * XXX VPTE_M is not set properly for page directory pages.
920 		 * It doesn't get set in the page directory if the page table
921 		 * is modified during a read access.
922 		 */
923 		if ((fault_type & VM_PROT_WRITE) && (vpte & VPTE_V) &&
924 		    (vpte & VPTE_W)) {
925 			if ((vpte & (VPTE_M|VPTE_A)) != (VPTE_M|VPTE_A)) {
926 				atomic_set_long(ptep, VPTE_M | VPTE_A);
927 				vm_page_dirty(fs->m);
928 			}
929 		}
930 		if ((fault_type & VM_PROT_READ) && (vpte & VPTE_V) &&
931 		    (vpte & VPTE_R)) {
932 			if ((vpte & VPTE_A) == 0) {
933 				atomic_set_long(ptep, VPTE_A);
934 				vm_page_dirty(fs->m);
935 			}
936 		}
937 		lwbuf_free(lwb);
938 		vm_page_flag_set(fs->m, PG_REFERENCED);
939 		vm_page_activate(fs->m);
940 		vm_page_wakeup(fs->m);
941 		fs->m = NULL;
942 		cleanup_successful_fault(fs);
943 	}
944 	/*
945 	 * Combine remaining address bits with the vpte.
946 	 */
947 	/* JG how many bits from each? */
948 	*pindex = ((vpte & VPTE_FRAME) >> PAGE_SHIFT) +
949 		  (*pindex & ((1L << vshift) - 1));
950 	return (KERN_SUCCESS);
951 }
952 
953 
954 /*
955  * This is the core of the vm_fault code.
956  *
957  * Do all operations required to fault-in (fs.first_object, pindex).  Run
958  * through the shadow chain as necessary and do required COW or virtual
959  * copy operations.  The caller has already fully resolved the vm_map_entry
960  * and, if appropriate, has created a copy-on-write layer.  All we need to
961  * do is iterate the object chain.
962  *
963  * On failure (fs) is unlocked and deallocated and the caller may return or
964  * retry depending on the failure code.  On success (fs) is NOT unlocked or
965  * deallocated, fs.m will contained a resolved, busied page, and fs.object
966  * will have an additional PIP count if it is not equal to fs.first_object.
967  *
968  * No requirements.
969  */
970 static
971 int
972 vm_fault_object(struct faultstate *fs,
973 		vm_pindex_t first_pindex, vm_prot_t fault_type)
974 {
975 	vm_object_t next_object;
976 	vm_pindex_t pindex;
977 
978 	fs->prot = fs->first_prot;
979 	fs->object = fs->first_object;
980 	pindex = first_pindex;
981 
982 	/*
983 	 * If a read fault occurs we try to make the page writable if
984 	 * possible.  There are three cases where we cannot make the
985 	 * page mapping writable:
986 	 *
987 	 * (1) The mapping is read-only or the VM object is read-only,
988 	 *     fs->prot above will simply not have VM_PROT_WRITE set.
989 	 *
990 	 * (2) If the mapping is a virtual page table we need to be able
991 	 *     to detect writes so we can set VPTE_M in the virtual page
992 	 *     table.
993 	 *
994 	 * (3) If the VM page is read-only or copy-on-write, upgrading would
995 	 *     just result in an unnecessary COW fault.
996 	 *
997 	 * VM_PROT_VPAGED is set if faulting via a virtual page table and
998 	 * causes adjustments to the 'M'odify bit to also turn off write
999 	 * access to force a re-fault.
1000 	 */
1001 	if (fs->entry->maptype == VM_MAPTYPE_VPAGETABLE) {
1002 		if ((fault_type & VM_PROT_WRITE) == 0)
1003 			fs->prot &= ~VM_PROT_WRITE;
1004 	}
1005 
1006 	lwkt_gettoken(&vm_token);
1007 
1008 	for (;;) {
1009 		/*
1010 		 * If the object is dead, we stop here
1011 		 */
1012 		if (fs->object->flags & OBJ_DEAD) {
1013 			unlock_and_deallocate(fs);
1014 			lwkt_reltoken(&vm_token);
1015 			return (KERN_PROTECTION_FAILURE);
1016 		}
1017 
1018 		/*
1019 		 * See if the page is resident.
1020 		 */
1021 		fs->m = vm_page_lookup(fs->object, pindex);
1022 		if (fs->m != NULL) {
1023 			int queue;
1024 			/*
1025 			 * Wait/Retry if the page is busy.  We have to do this
1026 			 * if the page is busy via either PG_BUSY or
1027 			 * vm_page_t->busy because the vm_pager may be using
1028 			 * vm_page_t->busy for pageouts ( and even pageins if
1029 			 * it is the vnode pager ), and we could end up trying
1030 			 * to pagein and pageout the same page simultaneously.
1031 			 *
1032 			 * We can theoretically allow the busy case on a read
1033 			 * fault if the page is marked valid, but since such
1034 			 * pages are typically already pmap'd, putting that
1035 			 * special case in might be more effort then it is
1036 			 * worth.  We cannot under any circumstances mess
1037 			 * around with a vm_page_t->busy page except, perhaps,
1038 			 * to pmap it.
1039 			 */
1040 			if ((fs->m->flags & PG_BUSY) || fs->m->busy) {
1041 				unlock_things(fs);
1042 				vm_page_sleep_busy(fs->m, TRUE, "vmpfw");
1043 				mycpu->gd_cnt.v_intrans++;
1044 				vm_object_deallocate(fs->first_object);
1045 				fs->first_object = NULL;
1046 				lwkt_reltoken(&vm_token);
1047 				return (KERN_TRY_AGAIN);
1048 			}
1049 
1050 			/*
1051 			 * If reactivating a page from PQ_CACHE we may have
1052 			 * to rate-limit.
1053 			 */
1054 			queue = fs->m->queue;
1055 			vm_page_unqueue_nowakeup(fs->m);
1056 
1057 			if ((queue - fs->m->pc) == PQ_CACHE &&
1058 			    vm_page_count_severe()) {
1059 				vm_page_activate(fs->m);
1060 				unlock_and_deallocate(fs);
1061 				vm_waitpfault();
1062 				lwkt_reltoken(&vm_token);
1063 				return (KERN_TRY_AGAIN);
1064 			}
1065 
1066 			/*
1067 			 * Mark page busy for other processes, and the
1068 			 * pagedaemon.  If it still isn't completely valid
1069 			 * (readable), or if a read-ahead-mark is set on
1070 			 * the VM page, jump to readrest, else we found the
1071 			 * page and can return.
1072 			 *
1073 			 * We can release the spl once we have marked the
1074 			 * page busy.
1075 			 */
1076 			vm_page_busy(fs->m);
1077 
1078 			if (fs->m->object != &kernel_object) {
1079 				if ((fs->m->valid & VM_PAGE_BITS_ALL) !=
1080 				    VM_PAGE_BITS_ALL) {
1081 					goto readrest;
1082 				}
1083 				if (fs->m->flags & PG_RAM) {
1084 					if (debug_cluster)
1085 						kprintf("R");
1086 					vm_page_flag_clear(fs->m, PG_RAM);
1087 					goto readrest;
1088 				}
1089 			}
1090 			break; /* break to PAGE HAS BEEN FOUND */
1091 		}
1092 
1093 		/*
1094 		 * Page is not resident, If this is the search termination
1095 		 * or the pager might contain the page, allocate a new page.
1096 		 */
1097 		if (TRYPAGER(fs) || fs->object == fs->first_object) {
1098 			/*
1099 			 * If the page is beyond the object size we fail
1100 			 */
1101 			if (pindex >= fs->object->size) {
1102 				lwkt_reltoken(&vm_token);
1103 				unlock_and_deallocate(fs);
1104 				return (KERN_PROTECTION_FAILURE);
1105 			}
1106 
1107 			/*
1108 			 * Ratelimit.
1109 			 */
1110 			if (fs->didlimit == 0 && curproc != NULL) {
1111 				int limticks;
1112 
1113 				limticks = vm_fault_ratelimit(curproc->p_vmspace);
1114 				if (limticks) {
1115 					lwkt_reltoken(&vm_token);
1116 					unlock_and_deallocate(fs);
1117 					tsleep(curproc, 0, "vmrate", limticks);
1118 					fs->didlimit = 1;
1119 					return (KERN_TRY_AGAIN);
1120 				}
1121 			}
1122 
1123 			/*
1124 			 * Allocate a new page for this object/offset pair.
1125 			 */
1126 			fs->m = NULL;
1127 			if (!vm_page_count_severe()) {
1128 				fs->m = vm_page_alloc(fs->object, pindex,
1129 				    (fs->vp || fs->object->backing_object) ? VM_ALLOC_NORMAL : VM_ALLOC_NORMAL | VM_ALLOC_ZERO);
1130 			}
1131 			if (fs->m == NULL) {
1132 				lwkt_reltoken(&vm_token);
1133 				unlock_and_deallocate(fs);
1134 				vm_waitpfault();
1135 				return (KERN_TRY_AGAIN);
1136 			}
1137 		}
1138 
1139 readrest:
1140 		/*
1141 		 * We have found an invalid or partially valid page, a
1142 		 * page with a read-ahead mark which might be partially or
1143 		 * fully valid (and maybe dirty too), or we have allocated
1144 		 * a new page.
1145 		 *
1146 		 * Attempt to fault-in the page if there is a chance that the
1147 		 * pager has it, and potentially fault in additional pages
1148 		 * at the same time.
1149 		 *
1150 		 * We are NOT in splvm here and if TRYPAGER is true then
1151 		 * fs.m will be non-NULL and will be PG_BUSY for us.
1152 		 */
1153 		if (TRYPAGER(fs)) {
1154 			int rv;
1155 			int seqaccess;
1156 			u_char behavior = vm_map_entry_behavior(fs->entry);
1157 
1158 			if (behavior == MAP_ENTRY_BEHAV_RANDOM)
1159 				seqaccess = 0;
1160 			else
1161 				seqaccess = -1;
1162 
1163 			/*
1164 			 * If sequential access is detected then attempt
1165 			 * to deactivate/cache pages behind the scan to
1166 			 * prevent resource hogging.
1167 			 *
1168 			 * Use of PG_RAM to detect sequential access
1169 			 * also simulates multi-zone sequential access
1170 			 * detection for free.
1171 			 *
1172 			 * NOTE: Partially valid dirty pages cannot be
1173 			 *	 deactivated without causing NFS picemeal
1174 			 *	 writes to barf.
1175 			 */
1176 			if ((fs->first_object->type != OBJT_DEVICE) &&
1177 			    (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL ||
1178                                 (behavior != MAP_ENTRY_BEHAV_RANDOM &&
1179 				 (fs->m->flags & PG_RAM)))
1180 			) {
1181 				vm_pindex_t scan_pindex;
1182 				int scan_count = 16;
1183 
1184 				if (first_pindex < 16) {
1185 					scan_pindex = 0;
1186 					scan_count = 0;
1187 				} else {
1188 					scan_pindex = first_pindex - 16;
1189 					if (scan_pindex < 16)
1190 						scan_count = scan_pindex;
1191 					else
1192 						scan_count = 16;
1193 				}
1194 
1195 				while (scan_count) {
1196 					vm_page_t mt;
1197 
1198 					mt = vm_page_lookup(fs->first_object,
1199 							    scan_pindex);
1200 					if (mt == NULL ||
1201 					    (mt->valid != VM_PAGE_BITS_ALL)) {
1202 						break;
1203 					}
1204 					if (mt->busy ||
1205 					    (mt->flags & (PG_BUSY | PG_FICTITIOUS | PG_UNMANAGED)) ||
1206 					    mt->hold_count ||
1207 					    mt->wire_count)  {
1208 						goto skip;
1209 					}
1210 					vm_page_busy(mt);
1211 					if (mt->dirty == 0)
1212 						vm_page_test_dirty(mt);
1213 					if (mt->dirty) {
1214 						vm_page_protect(mt,
1215 								VM_PROT_NONE);
1216 						vm_page_deactivate(mt);
1217 						vm_page_wakeup(mt);
1218 					} else {
1219 						vm_page_cache(mt);
1220 					}
1221 skip:
1222 					--scan_count;
1223 					--scan_pindex;
1224 				}
1225 
1226 				seqaccess = 1;
1227 			}
1228 
1229 			/*
1230 			 * Avoid deadlocking against the map when doing I/O.
1231 			 * fs.object and the page is PG_BUSY'd.
1232 			 */
1233 			unlock_map(fs);
1234 
1235 			/*
1236 			 * Acquire the page data.  We still hold a ref on
1237 			 * fs.object and the page has been PG_BUSY's.
1238 			 *
1239 			 * The pager may replace the page (for example, in
1240 			 * order to enter a fictitious page into the
1241 			 * object).  If it does so it is responsible for
1242 			 * cleaning up the passed page and properly setting
1243 			 * the new page PG_BUSY.
1244 			 *
1245 			 * If we got here through a PG_RAM read-ahead
1246 			 * mark the page may be partially dirty and thus
1247 			 * not freeable.  Don't bother checking to see
1248 			 * if the pager has the page because we can't free
1249 			 * it anyway.  We have to depend on the get_page
1250 			 * operation filling in any gaps whether there is
1251 			 * backing store or not.
1252 			 */
1253 			rv = vm_pager_get_page(fs->object, &fs->m, seqaccess);
1254 
1255 			if (rv == VM_PAGER_OK) {
1256 				/*
1257 				 * Relookup in case pager changed page. Pager
1258 				 * is responsible for disposition of old page
1259 				 * if moved.
1260 				 *
1261 				 * XXX other code segments do relookups too.
1262 				 * It's a bad abstraction that needs to be
1263 				 * fixed/removed.
1264 				 */
1265 				fs->m = vm_page_lookup(fs->object, pindex);
1266 				if (fs->m == NULL) {
1267 					lwkt_reltoken(&vm_token);
1268 					unlock_and_deallocate(fs);
1269 					return (KERN_TRY_AGAIN);
1270 				}
1271 
1272 				++fs->hardfault;
1273 				break; /* break to PAGE HAS BEEN FOUND */
1274 			}
1275 
1276 			/*
1277 			 * Remove the bogus page (which does not exist at this
1278 			 * object/offset); before doing so, we must get back
1279 			 * our object lock to preserve our invariant.
1280 			 *
1281 			 * Also wake up any other process that may want to bring
1282 			 * in this page.
1283 			 *
1284 			 * If this is the top-level object, we must leave the
1285 			 * busy page to prevent another process from rushing
1286 			 * past us, and inserting the page in that object at
1287 			 * the same time that we are.
1288 			 */
1289 			if (rv == VM_PAGER_ERROR) {
1290 				if (curproc)
1291 					kprintf("vm_fault: pager read error, pid %d (%s)\n", curproc->p_pid, curproc->p_comm);
1292 				else
1293 					kprintf("vm_fault: pager read error, thread %p (%s)\n", curthread, curproc->p_comm);
1294 			}
1295 
1296 			/*
1297 			 * Data outside the range of the pager or an I/O error
1298 			 *
1299 			 * The page may have been wired during the pagein,
1300 			 * e.g. by the buffer cache, and cannot simply be
1301 			 * freed.  Call vnode_pager_freepage() to deal with it.
1302 			 */
1303 			/*
1304 			 * XXX - the check for kernel_map is a kludge to work
1305 			 * around having the machine panic on a kernel space
1306 			 * fault w/ I/O error.
1307 			 */
1308 			if (((fs->map != &kernel_map) &&
1309 			    (rv == VM_PAGER_ERROR)) || (rv == VM_PAGER_BAD)) {
1310 				vnode_pager_freepage(fs->m);
1311 				lwkt_reltoken(&vm_token);
1312 				fs->m = NULL;
1313 				unlock_and_deallocate(fs);
1314 				if (rv == VM_PAGER_ERROR)
1315 					return (KERN_FAILURE);
1316 				else
1317 					return (KERN_PROTECTION_FAILURE);
1318 				/* NOT REACHED */
1319 			}
1320 			if (fs->object != fs->first_object) {
1321 				vnode_pager_freepage(fs->m);
1322 				fs->m = NULL;
1323 				/*
1324 				 * XXX - we cannot just fall out at this
1325 				 * point, m has been freed and is invalid!
1326 				 */
1327 			}
1328 		}
1329 
1330 		/*
1331 		 * We get here if the object has a default pager (or unwiring)
1332 		 * or the pager doesn't have the page.
1333 		 */
1334 		if (fs->object == fs->first_object)
1335 			fs->first_m = fs->m;
1336 
1337 		/*
1338 		 * Move on to the next object.  Lock the next object before
1339 		 * unlocking the current one.
1340 		 */
1341 		pindex += OFF_TO_IDX(fs->object->backing_object_offset);
1342 		next_object = fs->object->backing_object;
1343 		if (next_object == NULL) {
1344 			/*
1345 			 * If there's no object left, fill the page in the top
1346 			 * object with zeros.
1347 			 */
1348 			if (fs->object != fs->first_object) {
1349 				vm_object_pip_wakeup(fs->object);
1350 
1351 				fs->object = fs->first_object;
1352 				pindex = first_pindex;
1353 				fs->m = fs->first_m;
1354 			}
1355 			fs->first_m = NULL;
1356 
1357 			/*
1358 			 * Zero the page if necessary and mark it valid.
1359 			 */
1360 			if ((fs->m->flags & PG_ZERO) == 0) {
1361 				vm_page_zero_fill(fs->m);
1362 			} else {
1363 #ifdef PMAP_DEBUG
1364 				pmap_page_assertzero(VM_PAGE_TO_PHYS(fs->m));
1365 #endif
1366 				vm_page_flag_clear(fs->m, PG_ZERO);
1367 				mycpu->gd_cnt.v_ozfod++;
1368 			}
1369 			mycpu->gd_cnt.v_zfod++;
1370 			fs->m->valid = VM_PAGE_BITS_ALL;
1371 			break;	/* break to PAGE HAS BEEN FOUND */
1372 		}
1373 		if (fs->object != fs->first_object) {
1374 			vm_object_pip_wakeup(fs->object);
1375 		}
1376 		KASSERT(fs->object != next_object,
1377 			("object loop %p", next_object));
1378 		fs->object = next_object;
1379 		vm_object_pip_add(fs->object, 1);
1380 	}
1381 
1382 	/*
1383 	 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
1384 	 * is held.]
1385 	 *
1386 	 * vm_token is still held
1387 	 *
1388 	 * If the page is being written, but isn't already owned by the
1389 	 * top-level object, we have to copy it into a new page owned by the
1390 	 * top-level object.
1391 	 */
1392 	KASSERT((fs->m->flags & PG_BUSY) != 0,
1393 		("vm_fault: not busy after main loop"));
1394 
1395 	if (fs->object != fs->first_object) {
1396 		/*
1397 		 * We only really need to copy if we want to write it.
1398 		 */
1399 		if (fault_type & VM_PROT_WRITE) {
1400 			/*
1401 			 * This allows pages to be virtually copied from a
1402 			 * backing_object into the first_object, where the
1403 			 * backing object has no other refs to it, and cannot
1404 			 * gain any more refs.  Instead of a bcopy, we just
1405 			 * move the page from the backing object to the
1406 			 * first object.  Note that we must mark the page
1407 			 * dirty in the first object so that it will go out
1408 			 * to swap when needed.
1409 			 */
1410 			if (
1411 				/*
1412 				 * Map, if present, has not changed
1413 				 */
1414 				(fs->map == NULL ||
1415 				fs->map_generation == fs->map->timestamp) &&
1416 				/*
1417 				 * Only one shadow object
1418 				 */
1419 				(fs->object->shadow_count == 1) &&
1420 				/*
1421 				 * No COW refs, except us
1422 				 */
1423 				(fs->object->ref_count == 1) &&
1424 				/*
1425 				 * No one else can look this object up
1426 				 */
1427 				(fs->object->handle == NULL) &&
1428 				/*
1429 				 * No other ways to look the object up
1430 				 */
1431 				((fs->object->type == OBJT_DEFAULT) ||
1432 				 (fs->object->type == OBJT_SWAP)) &&
1433 				/*
1434 				 * We don't chase down the shadow chain
1435 				 */
1436 				(fs->object == fs->first_object->backing_object) &&
1437 
1438 				/*
1439 				 * grab the lock if we need to
1440 				 */
1441 				(fs->lookup_still_valid ||
1442 				 fs->map == NULL ||
1443 				 lockmgr(&fs->map->lock, LK_EXCLUSIVE|LK_NOWAIT) == 0)
1444 			    ) {
1445 
1446 				fs->lookup_still_valid = 1;
1447 				/*
1448 				 * get rid of the unnecessary page
1449 				 */
1450 				vm_page_protect(fs->first_m, VM_PROT_NONE);
1451 				vm_page_free(fs->first_m);
1452 				fs->first_m = NULL;
1453 
1454 				/*
1455 				 * grab the page and put it into the
1456 				 * process'es object.  The page is
1457 				 * automatically made dirty.
1458 				 */
1459 				vm_page_rename(fs->m, fs->first_object, first_pindex);
1460 				fs->first_m = fs->m;
1461 				vm_page_busy(fs->first_m);
1462 				fs->m = NULL;
1463 				mycpu->gd_cnt.v_cow_optim++;
1464 			} else {
1465 				/*
1466 				 * Oh, well, lets copy it.
1467 				 */
1468 				vm_page_copy(fs->m, fs->first_m);
1469 				vm_page_event(fs->m, VMEVENT_COW);
1470 			}
1471 
1472 			if (fs->m) {
1473 				/*
1474 				 * We no longer need the old page or object.
1475 				 */
1476 				release_page(fs);
1477 			}
1478 
1479 			/*
1480 			 * fs->object != fs->first_object due to above
1481 			 * conditional
1482 			 */
1483 			vm_object_pip_wakeup(fs->object);
1484 
1485 			/*
1486 			 * Only use the new page below...
1487 			 */
1488 
1489 			mycpu->gd_cnt.v_cow_faults++;
1490 			fs->m = fs->first_m;
1491 			fs->object = fs->first_object;
1492 			pindex = first_pindex;
1493 		} else {
1494 			/*
1495 			 * If it wasn't a write fault avoid having to copy
1496 			 * the page by mapping it read-only.
1497 			 */
1498 			fs->prot &= ~VM_PROT_WRITE;
1499 		}
1500 	}
1501 
1502 	/*
1503 	 * We may have had to unlock a map to do I/O.  If we did then
1504 	 * lookup_still_valid will be FALSE.  If the map generation count
1505 	 * also changed then all sorts of things could have happened while
1506 	 * we were doing the I/O and we need to retry.
1507 	 */
1508 
1509 	if (!fs->lookup_still_valid &&
1510 	    fs->map != NULL &&
1511 	    (fs->map->timestamp != fs->map_generation)) {
1512 		release_page(fs);
1513 		lwkt_reltoken(&vm_token);
1514 		unlock_and_deallocate(fs);
1515 		return (KERN_TRY_AGAIN);
1516 	}
1517 
1518 	/*
1519 	 * If the fault is a write, we know that this page is being
1520 	 * written NOW so dirty it explicitly to save on pmap_is_modified()
1521 	 * calls later.
1522 	 *
1523 	 * If this is a NOSYNC mmap we do not want to set PG_NOSYNC
1524 	 * if the page is already dirty to prevent data written with
1525 	 * the expectation of being synced from not being synced.
1526 	 * Likewise if this entry does not request NOSYNC then make
1527 	 * sure the page isn't marked NOSYNC.  Applications sharing
1528 	 * data should use the same flags to avoid ping ponging.
1529 	 *
1530 	 * Also tell the backing pager, if any, that it should remove
1531 	 * any swap backing since the page is now dirty.
1532 	 */
1533 	if (fs->prot & VM_PROT_WRITE) {
1534 		vm_object_set_writeable_dirty(fs->m->object);
1535 		vm_set_nosync(fs->m, fs->entry);
1536 		if (fs->fault_flags & VM_FAULT_DIRTY) {
1537 			vm_page_dirty(fs->m);
1538 			swap_pager_unswapped(fs->m);
1539 		}
1540 	}
1541 
1542 	lwkt_reltoken(&vm_token);
1543 
1544 	/*
1545 	 * Page had better still be busy.  We are still locked up and
1546 	 * fs->object will have another PIP reference if it is not equal
1547 	 * to fs->first_object.
1548 	 */
1549 	KASSERT(fs->m->flags & PG_BUSY,
1550 		("vm_fault: page %p not busy!", fs->m));
1551 
1552 	/*
1553 	 * Sanity check: page must be completely valid or it is not fit to
1554 	 * map into user space.  vm_pager_get_pages() ensures this.
1555 	 */
1556 	if (fs->m->valid != VM_PAGE_BITS_ALL) {
1557 		vm_page_zero_invalid(fs->m, TRUE);
1558 		kprintf("Warning: page %p partially invalid on fault\n", fs->m);
1559 	}
1560 	vm_page_flag_clear(fs->m, PG_ZERO);
1561 
1562 	return (KERN_SUCCESS);
1563 }
1564 
1565 /*
1566  * Wire down a range of virtual addresses in a map.  The entry in question
1567  * should be marked in-transition and the map must be locked.  We must
1568  * release the map temporarily while faulting-in the page to avoid a
1569  * deadlock.  Note that the entry may be clipped while we are blocked but
1570  * will never be freed.
1571  *
1572  * No requirements.
1573  */
1574 int
1575 vm_fault_wire(vm_map_t map, vm_map_entry_t entry, boolean_t user_wire)
1576 {
1577 	boolean_t fictitious;
1578 	vm_offset_t start;
1579 	vm_offset_t end;
1580 	vm_offset_t va;
1581 	vm_paddr_t pa;
1582 	pmap_t pmap;
1583 	int rv;
1584 
1585 	pmap = vm_map_pmap(map);
1586 	start = entry->start;
1587 	end = entry->end;
1588 	fictitious = entry->object.vm_object &&
1589 			(entry->object.vm_object->type == OBJT_DEVICE);
1590 	if (entry->eflags & MAP_ENTRY_KSTACK)
1591 		start += PAGE_SIZE;
1592 	lwkt_gettoken(&vm_token);
1593 	vm_map_unlock(map);
1594 	map->timestamp++;
1595 
1596 	/*
1597 	 * We simulate a fault to get the page and enter it in the physical
1598 	 * map.
1599 	 */
1600 	for (va = start; va < end; va += PAGE_SIZE) {
1601 		if (user_wire) {
1602 			rv = vm_fault(map, va, VM_PROT_READ,
1603 					VM_FAULT_USER_WIRE);
1604 		} else {
1605 			rv = vm_fault(map, va, VM_PROT_READ|VM_PROT_WRITE,
1606 					VM_FAULT_CHANGE_WIRING);
1607 		}
1608 		if (rv) {
1609 			while (va > start) {
1610 				va -= PAGE_SIZE;
1611 				if ((pa = pmap_extract(pmap, va)) == 0)
1612 					continue;
1613 				pmap_change_wiring(pmap, va, FALSE);
1614 				if (!fictitious)
1615 					vm_page_unwire(PHYS_TO_VM_PAGE(pa), 1);
1616 			}
1617 			vm_map_lock(map);
1618 			lwkt_reltoken(&vm_token);
1619 			return (rv);
1620 		}
1621 	}
1622 	vm_map_lock(map);
1623 	lwkt_reltoken(&vm_token);
1624 	return (KERN_SUCCESS);
1625 }
1626 
1627 /*
1628  * Unwire a range of virtual addresses in a map.  The map should be
1629  * locked.
1630  */
1631 void
1632 vm_fault_unwire(vm_map_t map, vm_map_entry_t entry)
1633 {
1634 	boolean_t fictitious;
1635 	vm_offset_t start;
1636 	vm_offset_t end;
1637 	vm_offset_t va;
1638 	vm_paddr_t pa;
1639 	pmap_t pmap;
1640 
1641 	pmap = vm_map_pmap(map);
1642 	start = entry->start;
1643 	end = entry->end;
1644 	fictitious = entry->object.vm_object &&
1645 			(entry->object.vm_object->type == OBJT_DEVICE);
1646 	if (entry->eflags & MAP_ENTRY_KSTACK)
1647 		start += PAGE_SIZE;
1648 
1649 	/*
1650 	 * Since the pages are wired down, we must be able to get their
1651 	 * mappings from the physical map system.
1652 	 */
1653 	lwkt_gettoken(&vm_token);
1654 	for (va = start; va < end; va += PAGE_SIZE) {
1655 		pa = pmap_extract(pmap, va);
1656 		if (pa != 0) {
1657 			pmap_change_wiring(pmap, va, FALSE);
1658 			if (!fictitious)
1659 				vm_page_unwire(PHYS_TO_VM_PAGE(pa), 1);
1660 		}
1661 	}
1662 	lwkt_reltoken(&vm_token);
1663 }
1664 
1665 /*
1666  * Reduce the rate at which memory is allocated to a process based
1667  * on the perceived load on the VM system. As the load increases
1668  * the allocation burst rate goes down and the delay increases.
1669  *
1670  * Rate limiting does not apply when faulting active or inactive
1671  * pages.  When faulting 'cache' pages, rate limiting only applies
1672  * if the system currently has a severe page deficit.
1673  *
1674  * XXX vm_pagesupply should be increased when a page is freed.
1675  *
1676  * We sleep up to 1/10 of a second.
1677  */
1678 static int
1679 vm_fault_ratelimit(struct vmspace *vmspace)
1680 {
1681 	if (vm_load_enable == 0)
1682 		return(0);
1683 	if (vmspace->vm_pagesupply > 0) {
1684 		--vmspace->vm_pagesupply;	/* SMP race ok */
1685 		return(0);
1686 	}
1687 #ifdef INVARIANTS
1688 	if (vm_load_debug) {
1689 		kprintf("load %-4d give %d pgs, wait %d, pid %-5d (%s)\n",
1690 			vm_load,
1691 			(1000 - vm_load ) / 10, vm_load * hz / 10000,
1692 			curproc->p_pid, curproc->p_comm);
1693 	}
1694 #endif
1695 	vmspace->vm_pagesupply = (1000 - vm_load) / 10;
1696 	return(vm_load * hz / 10000);
1697 }
1698 
1699 /*
1700  * Copy all of the pages from a wired-down map entry to another.
1701  *
1702  * The source and destination maps must be locked for write.
1703  * The source map entry must be wired down (or be a sharing map
1704  * entry corresponding to a main map entry that is wired down).
1705  *
1706  * No other requirements.
1707  */
1708 void
1709 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
1710 		    vm_map_entry_t dst_entry, vm_map_entry_t src_entry)
1711 {
1712 	vm_object_t dst_object;
1713 	vm_object_t src_object;
1714 	vm_ooffset_t dst_offset;
1715 	vm_ooffset_t src_offset;
1716 	vm_prot_t prot;
1717 	vm_offset_t vaddr;
1718 	vm_page_t dst_m;
1719 	vm_page_t src_m;
1720 
1721 #ifdef	lint
1722 	src_map++;
1723 #endif	/* lint */
1724 
1725 	src_object = src_entry->object.vm_object;
1726 	src_offset = src_entry->offset;
1727 
1728 	/*
1729 	 * Create the top-level object for the destination entry. (Doesn't
1730 	 * actually shadow anything - we copy the pages directly.)
1731 	 */
1732 	vm_map_entry_allocate_object(dst_entry);
1733 	dst_object = dst_entry->object.vm_object;
1734 
1735 	prot = dst_entry->max_protection;
1736 
1737 	/*
1738 	 * Loop through all of the pages in the entry's range, copying each
1739 	 * one from the source object (it should be there) to the destination
1740 	 * object.
1741 	 */
1742 	for (vaddr = dst_entry->start, dst_offset = 0;
1743 	    vaddr < dst_entry->end;
1744 	    vaddr += PAGE_SIZE, dst_offset += PAGE_SIZE) {
1745 
1746 		/*
1747 		 * Allocate a page in the destination object
1748 		 */
1749 		do {
1750 			dst_m = vm_page_alloc(dst_object,
1751 				OFF_TO_IDX(dst_offset), VM_ALLOC_NORMAL);
1752 			if (dst_m == NULL) {
1753 				vm_wait(0);
1754 			}
1755 		} while (dst_m == NULL);
1756 
1757 		/*
1758 		 * Find the page in the source object, and copy it in.
1759 		 * (Because the source is wired down, the page will be in
1760 		 * memory.)
1761 		 */
1762 		src_m = vm_page_lookup(src_object,
1763 				       OFF_TO_IDX(dst_offset + src_offset));
1764 		if (src_m == NULL)
1765 			panic("vm_fault_copy_wired: page missing");
1766 
1767 		vm_page_copy(src_m, dst_m);
1768 		vm_page_event(src_m, VMEVENT_COW);
1769 
1770 		/*
1771 		 * Enter it in the pmap...
1772 		 */
1773 
1774 		vm_page_flag_clear(dst_m, PG_ZERO);
1775 		pmap_enter(dst_map->pmap, vaddr, dst_m, prot, FALSE);
1776 
1777 		/*
1778 		 * Mark it no longer busy, and put it on the active list.
1779 		 */
1780 		vm_page_activate(dst_m);
1781 		vm_page_wakeup(dst_m);
1782 	}
1783 }
1784 
1785 #if 0
1786 
1787 /*
1788  * This routine checks around the requested page for other pages that
1789  * might be able to be faulted in.  This routine brackets the viable
1790  * pages for the pages to be paged in.
1791  *
1792  * Inputs:
1793  *	m, rbehind, rahead
1794  *
1795  * Outputs:
1796  *  marray (array of vm_page_t), reqpage (index of requested page)
1797  *
1798  * Return value:
1799  *  number of pages in marray
1800  */
1801 static int
1802 vm_fault_additional_pages(vm_page_t m, int rbehind, int rahead,
1803 			  vm_page_t *marray, int *reqpage)
1804 {
1805 	int i,j;
1806 	vm_object_t object;
1807 	vm_pindex_t pindex, startpindex, endpindex, tpindex;
1808 	vm_page_t rtm;
1809 	int cbehind, cahead;
1810 
1811 	object = m->object;
1812 	pindex = m->pindex;
1813 
1814 	/*
1815 	 * we don't fault-ahead for device pager
1816 	 */
1817 	if (object->type == OBJT_DEVICE) {
1818 		*reqpage = 0;
1819 		marray[0] = m;
1820 		return 1;
1821 	}
1822 
1823 	/*
1824 	 * if the requested page is not available, then give up now
1825 	 */
1826 	if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
1827 		*reqpage = 0;	/* not used by caller, fix compiler warn */
1828 		return 0;
1829 	}
1830 
1831 	if ((cbehind == 0) && (cahead == 0)) {
1832 		*reqpage = 0;
1833 		marray[0] = m;
1834 		return 1;
1835 	}
1836 
1837 	if (rahead > cahead) {
1838 		rahead = cahead;
1839 	}
1840 
1841 	if (rbehind > cbehind) {
1842 		rbehind = cbehind;
1843 	}
1844 
1845 	/*
1846 	 * Do not do any readahead if we have insufficient free memory.
1847 	 *
1848 	 * XXX code was broken disabled before and has instability
1849 	 * with this conditonal fixed, so shortcut for now.
1850 	 */
1851 	if (burst_fault == 0 || vm_page_count_severe()) {
1852 		marray[0] = m;
1853 		*reqpage = 0;
1854 		return 1;
1855 	}
1856 
1857 	/*
1858 	 * scan backward for the read behind pages -- in memory
1859 	 *
1860 	 * Assume that if the page is not found an interrupt will not
1861 	 * create it.  Theoretically interrupts can only remove (busy)
1862 	 * pages, not create new associations.
1863 	 */
1864 	if (pindex > 0) {
1865 		if (rbehind > pindex) {
1866 			rbehind = pindex;
1867 			startpindex = 0;
1868 		} else {
1869 			startpindex = pindex - rbehind;
1870 		}
1871 
1872 		lwkt_gettoken(&vm_token);
1873 		for (tpindex = pindex; tpindex > startpindex; --tpindex) {
1874 			if (vm_page_lookup(object, tpindex - 1))
1875 				break;
1876 		}
1877 
1878 		i = 0;
1879 		while (tpindex < pindex) {
1880 			rtm = vm_page_alloc(object, tpindex, VM_ALLOC_SYSTEM);
1881 			if (rtm == NULL) {
1882 				lwkt_reltoken(&vm_token);
1883 				for (j = 0; j < i; j++) {
1884 					vm_page_free(marray[j]);
1885 				}
1886 				marray[0] = m;
1887 				*reqpage = 0;
1888 				return 1;
1889 			}
1890 			marray[i] = rtm;
1891 			++i;
1892 			++tpindex;
1893 		}
1894 		lwkt_reltoken(&vm_token);
1895 	} else {
1896 		i = 0;
1897 	}
1898 
1899 	/*
1900 	 * Assign requested page
1901 	 */
1902 	marray[i] = m;
1903 	*reqpage = i;
1904 	++i;
1905 
1906 	/*
1907 	 * Scan forwards for read-ahead pages
1908 	 */
1909 	tpindex = pindex + 1;
1910 	endpindex = tpindex + rahead;
1911 	if (endpindex > object->size)
1912 		endpindex = object->size;
1913 
1914 	lwkt_gettoken(&vm_token);
1915 	while (tpindex < endpindex) {
1916 		if (vm_page_lookup(object, tpindex))
1917 			break;
1918 		rtm = vm_page_alloc(object, tpindex, VM_ALLOC_SYSTEM);
1919 		if (rtm == NULL)
1920 			break;
1921 		marray[i] = rtm;
1922 		++i;
1923 		++tpindex;
1924 	}
1925 	lwkt_reltoken(&vm_token);
1926 
1927 	return (i);
1928 }
1929 
1930 #endif
1931 
1932 /*
1933  * vm_prefault() provides a quick way of clustering pagefaults into a
1934  * processes address space.  It is a "cousin" of pmap_object_init_pt,
1935  * except it runs at page fault time instead of mmap time.
1936  *
1937  * This code used to be per-platform pmap_prefault().  It is now
1938  * machine-independent and enhanced to also pre-fault zero-fill pages
1939  * (see vm.fast_fault) as well as make them writable, which greatly
1940  * reduces the number of page faults programs incur.
1941  *
1942  * Application performance when pre-faulting zero-fill pages is heavily
1943  * dependent on the application.  Very tiny applications like /bin/echo
1944  * lose a little performance while applications of any appreciable size
1945  * gain performance.  Prefaulting multiple pages also reduces SMP
1946  * congestion and can improve SMP performance significantly.
1947  *
1948  * NOTE!  prot may allow writing but this only applies to the top level
1949  *	  object.  If we wind up mapping a page extracted from a backing
1950  *	  object we have to make sure it is read-only.
1951  *
1952  * NOTE!  The caller has already handled any COW operations on the
1953  *	  vm_map_entry via the normal fault code.  Do NOT call this
1954  *	  shortcut unless the normal fault code has run on this entry.
1955  *
1956  * No other requirements.
1957  */
1958 #define PFBAK 4
1959 #define PFFOR 4
1960 #define PAGEORDER_SIZE (PFBAK+PFFOR)
1961 
1962 static int vm_prefault_pageorder[] = {
1963 	-PAGE_SIZE, PAGE_SIZE,
1964 	-2 * PAGE_SIZE, 2 * PAGE_SIZE,
1965 	-3 * PAGE_SIZE, 3 * PAGE_SIZE,
1966 	-4 * PAGE_SIZE, 4 * PAGE_SIZE
1967 };
1968 
1969 /*
1970  * Set PG_NOSYNC if the map entry indicates so, but only if the page
1971  * is not already dirty by other means.  This will prevent passive
1972  * filesystem syncing as well as 'sync' from writing out the page.
1973  */
1974 static void
1975 vm_set_nosync(vm_page_t m, vm_map_entry_t entry)
1976 {
1977 	if (entry->eflags & MAP_ENTRY_NOSYNC) {
1978 		if (m->dirty == 0)
1979 			vm_page_flag_set(m, PG_NOSYNC);
1980 	} else {
1981 		vm_page_flag_clear(m, PG_NOSYNC);
1982 	}
1983 }
1984 
1985 static void
1986 vm_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry, int prot)
1987 {
1988 	struct lwp *lp;
1989 	vm_page_t m;
1990 	vm_offset_t starta;
1991 	vm_offset_t addr;
1992 	vm_pindex_t index;
1993 	vm_pindex_t pindex;
1994 	vm_object_t object;
1995 	int pprot;
1996 	int i;
1997 
1998 	/*
1999 	 * We do not currently prefault mappings that use virtual page
2000 	 * tables.  We do not prefault foreign pmaps.
2001 	 */
2002 	if (entry->maptype == VM_MAPTYPE_VPAGETABLE)
2003 		return;
2004 	lp = curthread->td_lwp;
2005 	if (lp == NULL || (pmap != vmspace_pmap(lp->lwp_vmspace)))
2006 		return;
2007 
2008 	object = entry->object.vm_object;
2009 
2010 	starta = addra - PFBAK * PAGE_SIZE;
2011 	if (starta < entry->start)
2012 		starta = entry->start;
2013 	else if (starta > addra)
2014 		starta = 0;
2015 
2016 	lwkt_gettoken(&vm_token);
2017 	for (i = 0; i < PAGEORDER_SIZE; i++) {
2018 		vm_object_t lobject;
2019 		int allocated = 0;
2020 
2021 		addr = addra + vm_prefault_pageorder[i];
2022 		if (addr > addra + (PFFOR * PAGE_SIZE))
2023 			addr = 0;
2024 
2025 		if (addr < starta || addr >= entry->end)
2026 			continue;
2027 
2028 		if (pmap_prefault_ok(pmap, addr) == 0)
2029 			continue;
2030 
2031 		/*
2032 		 * Follow the VM object chain to obtain the page to be mapped
2033 		 * into the pmap.
2034 		 *
2035 		 * If we reach the terminal object without finding a page
2036 		 * and we determine it would be advantageous, then allocate
2037 		 * a zero-fill page for the base object.  The base object
2038 		 * is guaranteed to be OBJT_DEFAULT for this case.
2039 		 *
2040 		 * In order to not have to check the pager via *haspage*()
2041 		 * we stop if any non-default object is encountered.  e.g.
2042 		 * a vnode or swap object would stop the loop.
2043 		 */
2044 		index = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
2045 		lobject = object;
2046 		pindex = index;
2047 		pprot = prot;
2048 
2049 		while ((m = vm_page_lookup(lobject, pindex)) == NULL) {
2050 			if (lobject->type != OBJT_DEFAULT)
2051 				break;
2052 			if (lobject->backing_object == NULL) {
2053 				if (vm_fast_fault == 0)
2054 					break;
2055 				if (vm_prefault_pageorder[i] < 0 ||
2056 				    (prot & VM_PROT_WRITE) == 0 ||
2057 				    vm_page_count_min(0)) {
2058 					break;
2059 				}
2060 				/* note: allocate from base object */
2061 				m = vm_page_alloc(object, index,
2062 					      VM_ALLOC_NORMAL | VM_ALLOC_ZERO);
2063 
2064 				if ((m->flags & PG_ZERO) == 0) {
2065 					vm_page_zero_fill(m);
2066 				} else {
2067 #ifdef PMAP_DEBUG
2068 					pmap_page_assertzero(VM_PAGE_TO_PHYS(m));
2069 #endif
2070 					vm_page_flag_clear(m, PG_ZERO);
2071 					mycpu->gd_cnt.v_ozfod++;
2072 				}
2073 				mycpu->gd_cnt.v_zfod++;
2074 				m->valid = VM_PAGE_BITS_ALL;
2075 				allocated = 1;
2076 				pprot = prot;
2077 				/* lobject = object .. not needed */
2078 				break;
2079 			}
2080 			if (lobject->backing_object_offset & PAGE_MASK)
2081 				break;
2082 			pindex += lobject->backing_object_offset >> PAGE_SHIFT;
2083 			lobject = lobject->backing_object;
2084 			pprot &= ~VM_PROT_WRITE;
2085 		}
2086 		/*
2087 		 * NOTE: lobject now invalid (if we did a zero-fill we didn't
2088 		 *	 bother assigning lobject = object).
2089 		 *
2090 		 * Give-up if the page is not available.
2091 		 */
2092 		if (m == NULL)
2093 			break;
2094 
2095 		/*
2096 		 * Do not conditionalize on PG_RAM.  If pages are present in
2097 		 * the VM system we assume optimal caching.  If caching is
2098 		 * not optimal the I/O gravy train will be restarted when we
2099 		 * hit an unavailable page.  We do not want to try to restart
2100 		 * the gravy train now because we really don't know how much
2101 		 * of the object has been cached.  The cost for restarting
2102 		 * the gravy train should be low (since accesses will likely
2103 		 * be I/O bound anyway).
2104 		 *
2105 		 * The object must be marked dirty if we are mapping a
2106 		 * writable page.
2107 		 */
2108 		if (pprot & VM_PROT_WRITE)
2109 			vm_object_set_writeable_dirty(m->object);
2110 
2111 		/*
2112 		 * Enter the page into the pmap if appropriate.  If we had
2113 		 * allocated the page we have to place it on a queue.  If not
2114 		 * we just have to make sure it isn't on the cache queue
2115 		 * (pages on the cache queue are not allowed to be mapped).
2116 		 */
2117 		if (allocated) {
2118 			if (pprot & VM_PROT_WRITE)
2119 				vm_set_nosync(m, entry);
2120 			pmap_enter(pmap, addr, m, pprot, 0);
2121 			vm_page_deactivate(m);
2122 			vm_page_wakeup(m);
2123 		} else if (((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2124 		    (m->busy == 0) &&
2125 		    (m->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2126 
2127 			vm_page_busy(m);
2128 			if ((m->queue - m->pc) == PQ_CACHE) {
2129 				vm_page_deactivate(m);
2130 			}
2131 			if (pprot & VM_PROT_WRITE)
2132 				vm_set_nosync(m, entry);
2133 			pmap_enter(pmap, addr, m, pprot, 0);
2134 			vm_page_wakeup(m);
2135 		}
2136 	}
2137 	lwkt_reltoken(&vm_token);
2138 }
2139