xref: /dragonfly/sys/vm/vm_fault.c (revision 38a690d7)
1 /*
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  *
9  *
10  * This code is derived from software contributed to Berkeley by
11  * The Mach Operating System project at Carnegie-Mellon University.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. All advertising materials mentioning features or use of this software
22  *    must display the following acknowledgement:
23  *	This product includes software developed by the University of
24  *	California, Berkeley and its contributors.
25  * 4. Neither the name of the University nor the names of its contributors
26  *    may be used to endorse or promote products derived from this software
27  *    without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39  * SUCH DAMAGE.
40  *
41  *	from: @(#)vm_fault.c	8.4 (Berkeley) 1/12/94
42  *
43  *
44  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
45  * All rights reserved.
46  *
47  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
48  *
49  * Permission to use, copy, modify and distribute this software and
50  * its documentation is hereby granted, provided that both the copyright
51  * notice and this permission notice appear in all copies of the
52  * software, derivative works or modified versions, and any portions
53  * thereof, and that both notices appear in supporting documentation.
54  *
55  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58  *
59  * Carnegie Mellon requests users of this software to return to
60  *
61  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
62  *  School of Computer Science
63  *  Carnegie Mellon University
64  *  Pittsburgh PA 15213-3890
65  *
66  * any improvements or extensions that they make and grant Carnegie the
67  * rights to redistribute these changes.
68  *
69  * $FreeBSD: src/sys/vm/vm_fault.c,v 1.108.2.8 2002/02/26 05:49:27 silby Exp $
70  * $DragonFly: src/sys/vm/vm_fault.c,v 1.5 2003/07/26 22:10:02 rob Exp $
71  */
72 
73 /*
74  *	Page fault handling module.
75  */
76 
77 #include <sys/param.h>
78 #include <sys/systm.h>
79 #include <sys/proc.h>
80 #include <sys/vnode.h>
81 #include <sys/resourcevar.h>
82 #include <sys/vmmeter.h>
83 
84 #include <vm/vm.h>
85 #include <vm/vm_param.h>
86 #include <sys/lock.h>
87 #include <vm/pmap.h>
88 #include <vm/vm_map.h>
89 #include <vm/vm_object.h>
90 #include <vm/vm_page.h>
91 #include <vm/vm_pageout.h>
92 #include <vm/vm_kern.h>
93 #include <vm/vm_pager.h>
94 #include <vm/vnode_pager.h>
95 #include <vm/vm_extern.h>
96 #include <vm/vm_page2.h>
97 
98 static int vm_fault_additional_pages __P((vm_page_t, int,
99 					  int, vm_page_t *, int *));
100 
101 #define VM_FAULT_READ_AHEAD 8
102 #define VM_FAULT_READ_BEHIND 7
103 #define VM_FAULT_READ (VM_FAULT_READ_AHEAD+VM_FAULT_READ_BEHIND+1)
104 
105 struct faultstate {
106 	vm_page_t m;
107 	vm_object_t object;
108 	vm_pindex_t pindex;
109 	vm_page_t first_m;
110 	vm_object_t	first_object;
111 	vm_pindex_t first_pindex;
112 	vm_map_t map;
113 	vm_map_entry_t entry;
114 	int lookup_still_valid;
115 	struct vnode *vp;
116 };
117 
118 static __inline void
119 release_page(struct faultstate *fs)
120 {
121 	vm_page_wakeup(fs->m);
122 	vm_page_deactivate(fs->m);
123 	fs->m = NULL;
124 }
125 
126 static __inline void
127 unlock_map(struct faultstate *fs)
128 {
129 	if (fs->lookup_still_valid) {
130 		vm_map_lookup_done(fs->map, fs->entry);
131 		fs->lookup_still_valid = FALSE;
132 	}
133 }
134 
135 static void
136 _unlock_things(struct faultstate *fs, int dealloc)
137 {
138 	vm_object_pip_wakeup(fs->object);
139 	if (fs->object != fs->first_object) {
140 		vm_page_free(fs->first_m);
141 		vm_object_pip_wakeup(fs->first_object);
142 		fs->first_m = NULL;
143 	}
144 	if (dealloc) {
145 		vm_object_deallocate(fs->first_object);
146 	}
147 	unlock_map(fs);
148 	if (fs->vp != NULL) {
149 		vput(fs->vp);
150 		fs->vp = NULL;
151 	}
152 }
153 
154 #define unlock_things(fs) _unlock_things(fs, 0)
155 #define unlock_and_deallocate(fs) _unlock_things(fs, 1)
156 
157 /*
158  * TRYPAGER - used by vm_fault to calculate whether the pager for the
159  *	      current object *might* contain the page.
160  *
161  *	      default objects are zero-fill, there is no real pager.
162  */
163 
164 #define TRYPAGER	(fs.object->type != OBJT_DEFAULT && \
165 			(((fault_flags & VM_FAULT_WIRE_MASK) == 0) || wired))
166 
167 /*
168  *	vm_fault:
169  *
170  *	Handle a page fault occurring at the given address,
171  *	requiring the given permissions, in the map specified.
172  *	If successful, the page is inserted into the
173  *	associated physical map.
174  *
175  *	NOTE: the given address should be truncated to the
176  *	proper page address.
177  *
178  *	KERN_SUCCESS is returned if the page fault is handled; otherwise,
179  *	a standard error specifying why the fault is fatal is returned.
180  *
181  *
182  *	The map in question must be referenced, and remains so.
183  *	Caller may hold no locks.
184  */
185 int
186 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, int fault_flags)
187 {
188 	vm_prot_t prot;
189 	int result;
190 	boolean_t wired;
191 	int map_generation;
192 	vm_object_t next_object;
193 	vm_page_t marray[VM_FAULT_READ];
194 	int hardfault;
195 	int faultcount;
196 	struct faultstate fs;
197 
198 	mycpu->gd_cnt.v_vm_faults++;
199 	hardfault = 0;
200 
201 RetryFault:;
202 
203 	/*
204 	 * Find the backing store object and offset into it to begin the
205 	 * search.
206 	 */
207 	fs.map = map;
208 	if ((result = vm_map_lookup(&fs.map, vaddr,
209 		fault_type, &fs.entry, &fs.first_object,
210 		&fs.first_pindex, &prot, &wired)) != KERN_SUCCESS) {
211 		if ((result != KERN_PROTECTION_FAILURE) ||
212 			((fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE)) {
213 			return result;
214 		}
215 
216 		/*
217    		 * If we are user-wiring a r/w segment, and it is COW, then
218    		 * we need to do the COW operation.  Note that we don't COW
219    		 * currently RO sections now, because it is NOT desirable
220    		 * to COW .text.  We simply keep .text from ever being COW'ed
221    		 * and take the heat that one cannot debug wired .text sections.
222    		 */
223 		result = vm_map_lookup(&fs.map, vaddr,
224 			VM_PROT_READ|VM_PROT_WRITE|VM_PROT_OVERRIDE_WRITE,
225 			&fs.entry, &fs.first_object, &fs.first_pindex, &prot, &wired);
226 		if (result != KERN_SUCCESS) {
227 			return result;
228 		}
229 
230 		/*
231 		 * If we don't COW now, on a user wire, the user will never
232 		 * be able to write to the mapping.  If we don't make this
233 		 * restriction, the bookkeeping would be nearly impossible.
234 		 */
235 		if ((fs.entry->protection & VM_PROT_WRITE) == 0)
236 			fs.entry->max_protection &= ~VM_PROT_WRITE;
237 	}
238 
239 	map_generation = fs.map->timestamp;
240 
241 	if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
242 		panic("vm_fault: fault on nofault entry, addr: %lx",
243 		    (u_long)vaddr);
244 	}
245 
246 	/*
247 	 * Make a reference to this object to prevent its disposal while we
248 	 * are messing with it.  Once we have the reference, the map is free
249 	 * to be diddled.  Since objects reference their shadows (and copies),
250 	 * they will stay around as well.
251 	 *
252 	 * Bump the paging-in-progress count to prevent size changes (e.g.
253 	 * truncation operations) during I/O.  This must be done after
254 	 * obtaining the vnode lock in order to avoid possible deadlocks.
255 	 */
256 	vm_object_reference(fs.first_object);
257 	fs.vp = vnode_pager_lock(fs.first_object);
258 	vm_object_pip_add(fs.first_object, 1);
259 
260 	if ((fault_type & VM_PROT_WRITE) &&
261 		(fs.first_object->type == OBJT_VNODE)) {
262 		vm_freeze_copyopts(fs.first_object,
263 			fs.first_pindex, fs.first_pindex + 1);
264 	}
265 
266 	fs.lookup_still_valid = TRUE;
267 
268 	if (wired)
269 		fault_type = prot;
270 
271 	fs.first_m = NULL;
272 
273 	/*
274 	 * Search for the page at object/offset.
275 	 */
276 
277 	fs.object = fs.first_object;
278 	fs.pindex = fs.first_pindex;
279 
280 	while (TRUE) {
281 		/*
282 		 * If the object is dead, we stop here
283 		 */
284 
285 		if (fs.object->flags & OBJ_DEAD) {
286 			unlock_and_deallocate(&fs);
287 			return (KERN_PROTECTION_FAILURE);
288 		}
289 
290 		/*
291 		 * See if page is resident
292 		 */
293 
294 		fs.m = vm_page_lookup(fs.object, fs.pindex);
295 		if (fs.m != NULL) {
296 			int queue, s;
297 			/*
298 			 * Wait/Retry if the page is busy.  We have to do this
299 			 * if the page is busy via either PG_BUSY or
300 			 * vm_page_t->busy because the vm_pager may be using
301 			 * vm_page_t->busy for pageouts ( and even pageins if
302 			 * it is the vnode pager ), and we could end up trying
303 			 * to pagein and pageout the same page simultaneously.
304 			 *
305 			 * We can theoretically allow the busy case on a read
306 			 * fault if the page is marked valid, but since such
307 			 * pages are typically already pmap'd, putting that
308 			 * special case in might be more effort then it is
309 			 * worth.  We cannot under any circumstances mess
310 			 * around with a vm_page_t->busy page except, perhaps,
311 			 * to pmap it.
312 			 */
313 			if ((fs.m->flags & PG_BUSY) || fs.m->busy) {
314 				unlock_things(&fs);
315 				(void)vm_page_sleep_busy(fs.m, TRUE, "vmpfw");
316 				mycpu->gd_cnt.v_intrans++;
317 				vm_object_deallocate(fs.first_object);
318 				goto RetryFault;
319 			}
320 
321 			queue = fs.m->queue;
322 			s = splvm();
323 			vm_page_unqueue_nowakeup(fs.m);
324 			splx(s);
325 
326 			if ((queue - fs.m->pc) == PQ_CACHE && vm_page_count_severe()) {
327 				vm_page_activate(fs.m);
328 				unlock_and_deallocate(&fs);
329 				VM_WAITPFAULT;
330 				goto RetryFault;
331 			}
332 
333 			/*
334 			 * Mark page busy for other processes, and the
335 			 * pagedaemon.  If it still isn't completely valid
336 			 * (readable), jump to readrest, else break-out ( we
337 			 * found the page ).
338 			 */
339 
340 			vm_page_busy(fs.m);
341 			if (((fs.m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL) &&
342 				fs.m->object != kernel_object && fs.m->object != kmem_object) {
343 				goto readrest;
344 			}
345 
346 			break;
347 		}
348 
349 		/*
350 		 * Page is not resident, If this is the search termination
351 		 * or the pager might contain the page, allocate a new page.
352 		 */
353 
354 		if (TRYPAGER || fs.object == fs.first_object) {
355 			if (fs.pindex >= fs.object->size) {
356 				unlock_and_deallocate(&fs);
357 				return (KERN_PROTECTION_FAILURE);
358 			}
359 
360 			/*
361 			 * Allocate a new page for this object/offset pair.
362 			 */
363 			fs.m = NULL;
364 			if (!vm_page_count_severe()) {
365 				fs.m = vm_page_alloc(fs.object, fs.pindex,
366 				    (fs.vp || fs.object->backing_object)? VM_ALLOC_NORMAL: VM_ALLOC_ZERO);
367 			}
368 			if (fs.m == NULL) {
369 				unlock_and_deallocate(&fs);
370 				VM_WAITPFAULT;
371 				goto RetryFault;
372 			}
373 		}
374 
375 readrest:
376 		/*
377 		 * We have found a valid page or we have allocated a new page.
378 		 * The page thus may not be valid or may not be entirely
379 		 * valid.
380 		 *
381 		 * Attempt to fault-in the page if there is a chance that the
382 		 * pager has it, and potentially fault in additional pages
383 		 * at the same time.
384 		 */
385 
386 		if (TRYPAGER) {
387 			int rv;
388 			int reqpage;
389 			int ahead, behind;
390 			u_char behavior = vm_map_entry_behavior(fs.entry);
391 
392 			if (behavior == MAP_ENTRY_BEHAV_RANDOM) {
393 				ahead = 0;
394 				behind = 0;
395 			} else {
396 				behind = (vaddr - fs.entry->start) >> PAGE_SHIFT;
397 				if (behind > VM_FAULT_READ_BEHIND)
398 					behind = VM_FAULT_READ_BEHIND;
399 
400 				ahead = ((fs.entry->end - vaddr) >> PAGE_SHIFT) - 1;
401 				if (ahead > VM_FAULT_READ_AHEAD)
402 					ahead = VM_FAULT_READ_AHEAD;
403 			}
404 
405 			if ((fs.first_object->type != OBJT_DEVICE) &&
406 			    (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL ||
407                                 (behavior != MAP_ENTRY_BEHAV_RANDOM &&
408                                 fs.pindex >= fs.entry->lastr &&
409                                 fs.pindex < fs.entry->lastr + VM_FAULT_READ))
410 			) {
411 				vm_pindex_t firstpindex, tmppindex;
412 
413 				if (fs.first_pindex < 2 * VM_FAULT_READ)
414 					firstpindex = 0;
415 				else
416 					firstpindex = fs.first_pindex - 2 * VM_FAULT_READ;
417 
418 				/*
419 				 * note: partially valid pages cannot be
420 				 * included in the lookahead - NFS piecemeal
421 				 * writes will barf on it badly.
422 				 */
423 
424 				for(tmppindex = fs.first_pindex - 1;
425 					tmppindex >= firstpindex;
426 					--tmppindex) {
427 					vm_page_t mt;
428 					mt = vm_page_lookup( fs.first_object, tmppindex);
429 					if (mt == NULL || (mt->valid != VM_PAGE_BITS_ALL))
430 						break;
431 					if (mt->busy ||
432 						(mt->flags & (PG_BUSY | PG_FICTITIOUS | PG_UNMANAGED)) ||
433 						mt->hold_count ||
434 						mt->wire_count)
435 						continue;
436 					if (mt->dirty == 0)
437 						vm_page_test_dirty(mt);
438 					if (mt->dirty) {
439 						vm_page_protect(mt, VM_PROT_NONE);
440 						vm_page_deactivate(mt);
441 					} else {
442 						vm_page_cache(mt);
443 					}
444 				}
445 
446 				ahead += behind;
447 				behind = 0;
448 			}
449 
450 			/*
451 			 * now we find out if any other pages should be paged
452 			 * in at this time this routine checks to see if the
453 			 * pages surrounding this fault reside in the same
454 			 * object as the page for this fault.  If they do,
455 			 * then they are faulted in also into the object.  The
456 			 * array "marray" returned contains an array of
457 			 * vm_page_t structs where one of them is the
458 			 * vm_page_t passed to the routine.  The reqpage
459 			 * return value is the index into the marray for the
460 			 * vm_page_t passed to the routine.
461 			 *
462 			 * fs.m plus the additional pages are PG_BUSY'd.
463 			 */
464 			faultcount = vm_fault_additional_pages(
465 			    fs.m, behind, ahead, marray, &reqpage);
466 
467 			/*
468 			 * update lastr imperfectly (we do not know how much
469 			 * getpages will actually read), but good enough.
470 			 */
471 			fs.entry->lastr = fs.pindex + faultcount - behind;
472 
473 			/*
474 			 * Call the pager to retrieve the data, if any, after
475 			 * releasing the lock on the map.  We hold a ref on
476 			 * fs.object and the pages are PG_BUSY'd.
477 			 */
478 			unlock_map(&fs);
479 
480 			rv = faultcount ?
481 			    vm_pager_get_pages(fs.object, marray, faultcount,
482 				reqpage) : VM_PAGER_FAIL;
483 
484 			if (rv == VM_PAGER_OK) {
485 				/*
486 				 * Found the page. Leave it busy while we play
487 				 * with it.
488 				 */
489 
490 				/*
491 				 * Relookup in case pager changed page. Pager
492 				 * is responsible for disposition of old page
493 				 * if moved.
494 				 */
495 				fs.m = vm_page_lookup(fs.object, fs.pindex);
496 				if(!fs.m) {
497 					unlock_and_deallocate(&fs);
498 					goto RetryFault;
499 				}
500 
501 				hardfault++;
502 				break; /* break to PAGE HAS BEEN FOUND */
503 			}
504 			/*
505 			 * Remove the bogus page (which does not exist at this
506 			 * object/offset); before doing so, we must get back
507 			 * our object lock to preserve our invariant.
508 			 *
509 			 * Also wake up any other process that may want to bring
510 			 * in this page.
511 			 *
512 			 * If this is the top-level object, we must leave the
513 			 * busy page to prevent another process from rushing
514 			 * past us, and inserting the page in that object at
515 			 * the same time that we are.
516 			 */
517 
518 			if (rv == VM_PAGER_ERROR)
519 				printf("vm_fault: pager read error, pid %d (%s)\n",
520 				    curproc->p_pid, curproc->p_comm);
521 			/*
522 			 * Data outside the range of the pager or an I/O error
523 			 */
524 			/*
525 			 * XXX - the check for kernel_map is a kludge to work
526 			 * around having the machine panic on a kernel space
527 			 * fault w/ I/O error.
528 			 */
529 			if (((fs.map != kernel_map) && (rv == VM_PAGER_ERROR)) ||
530 				(rv == VM_PAGER_BAD)) {
531 				vm_page_free(fs.m);
532 				fs.m = NULL;
533 				unlock_and_deallocate(&fs);
534 				return ((rv == VM_PAGER_ERROR) ? KERN_FAILURE : KERN_PROTECTION_FAILURE);
535 			}
536 			if (fs.object != fs.first_object) {
537 				vm_page_free(fs.m);
538 				fs.m = NULL;
539 				/*
540 				 * XXX - we cannot just fall out at this
541 				 * point, m has been freed and is invalid!
542 				 */
543 			}
544 		}
545 
546 		/*
547 		 * We get here if the object has default pager (or unwiring)
548 		 * or the pager doesn't have the page.
549 		 */
550 		if (fs.object == fs.first_object)
551 			fs.first_m = fs.m;
552 
553 		/*
554 		 * Move on to the next object.  Lock the next object before
555 		 * unlocking the current one.
556 		 */
557 
558 		fs.pindex += OFF_TO_IDX(fs.object->backing_object_offset);
559 		next_object = fs.object->backing_object;
560 		if (next_object == NULL) {
561 			/*
562 			 * If there's no object left, fill the page in the top
563 			 * object with zeros.
564 			 */
565 			if (fs.object != fs.first_object) {
566 				vm_object_pip_wakeup(fs.object);
567 
568 				fs.object = fs.first_object;
569 				fs.pindex = fs.first_pindex;
570 				fs.m = fs.first_m;
571 			}
572 			fs.first_m = NULL;
573 
574 			/*
575 			 * Zero the page if necessary and mark it valid.
576 			 */
577 			if ((fs.m->flags & PG_ZERO) == 0) {
578 				vm_page_zero_fill(fs.m);
579 			} else {
580 				mycpu->gd_cnt.v_ozfod++;
581 			}
582 			mycpu->gd_cnt.v_zfod++;
583 			fs.m->valid = VM_PAGE_BITS_ALL;
584 			break;	/* break to PAGE HAS BEEN FOUND */
585 		} else {
586 			if (fs.object != fs.first_object) {
587 				vm_object_pip_wakeup(fs.object);
588 			}
589 			KASSERT(fs.object != next_object, ("object loop %p", next_object));
590 			fs.object = next_object;
591 			vm_object_pip_add(fs.object, 1);
592 		}
593 	}
594 
595 	KASSERT((fs.m->flags & PG_BUSY) != 0,
596 	    ("vm_fault: not busy after main loop"));
597 
598 	/*
599 	 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
600 	 * is held.]
601 	 */
602 
603 	/*
604 	 * If the page is being written, but isn't already owned by the
605 	 * top-level object, we have to copy it into a new page owned by the
606 	 * top-level object.
607 	 */
608 
609 	if (fs.object != fs.first_object) {
610 		/*
611 		 * We only really need to copy if we want to write it.
612 		 */
613 
614 		if (fault_type & VM_PROT_WRITE) {
615 			/*
616 			 * This allows pages to be virtually copied from a
617 			 * backing_object into the first_object, where the
618 			 * backing object has no other refs to it, and cannot
619 			 * gain any more refs.  Instead of a bcopy, we just
620 			 * move the page from the backing object to the
621 			 * first object.  Note that we must mark the page
622 			 * dirty in the first object so that it will go out
623 			 * to swap when needed.
624 			 */
625 			if (map_generation == fs.map->timestamp &&
626 				/*
627 				 * Only one shadow object
628 				 */
629 				(fs.object->shadow_count == 1) &&
630 				/*
631 				 * No COW refs, except us
632 				 */
633 				(fs.object->ref_count == 1) &&
634 				/*
635 				 * No one else can look this object up
636 				 */
637 				(fs.object->handle == NULL) &&
638 				/*
639 				 * No other ways to look the object up
640 				 */
641 				((fs.object->type == OBJT_DEFAULT) ||
642 				 (fs.object->type == OBJT_SWAP)) &&
643 				/*
644 				 * We don't chase down the shadow chain
645 				 */
646 				(fs.object == fs.first_object->backing_object) &&
647 
648 				/*
649 				 * grab the lock if we need to
650 				 */
651 				(fs.lookup_still_valid ||
652 				 lockmgr(&fs.map->lock, LK_EXCLUSIVE|LK_NOWAIT, (void *)0, curthread) == 0)
653 			    ) {
654 
655 				fs.lookup_still_valid = 1;
656 				/*
657 				 * get rid of the unnecessary page
658 				 */
659 				vm_page_protect(fs.first_m, VM_PROT_NONE);
660 				vm_page_free(fs.first_m);
661 				fs.first_m = NULL;
662 
663 				/*
664 				 * grab the page and put it into the
665 				 * process'es object.  The page is
666 				 * automatically made dirty.
667 				 */
668 				vm_page_rename(fs.m, fs.first_object, fs.first_pindex);
669 				fs.first_m = fs.m;
670 				vm_page_busy(fs.first_m);
671 				fs.m = NULL;
672 				mycpu->gd_cnt.v_cow_optim++;
673 			} else {
674 				/*
675 				 * Oh, well, lets copy it.
676 				 */
677 				vm_page_copy(fs.m, fs.first_m);
678 			}
679 
680 			if (fs.m) {
681 				/*
682 				 * We no longer need the old page or object.
683 				 */
684 				release_page(&fs);
685 			}
686 
687 			/*
688 			 * fs.object != fs.first_object due to above
689 			 * conditional
690 			 */
691 
692 			vm_object_pip_wakeup(fs.object);
693 
694 			/*
695 			 * Only use the new page below...
696 			 */
697 
698 			mycpu->gd_cnt.v_cow_faults++;
699 			fs.m = fs.first_m;
700 			fs.object = fs.first_object;
701 			fs.pindex = fs.first_pindex;
702 
703 		} else {
704 			prot &= ~VM_PROT_WRITE;
705 		}
706 	}
707 
708 	/*
709 	 * We must verify that the maps have not changed since our last
710 	 * lookup.
711 	 */
712 
713 	if (!fs.lookup_still_valid &&
714 		(fs.map->timestamp != map_generation)) {
715 		vm_object_t retry_object;
716 		vm_pindex_t retry_pindex;
717 		vm_prot_t retry_prot;
718 
719 		/*
720 		 * Since map entries may be pageable, make sure we can take a
721 		 * page fault on them.
722 		 */
723 
724 		/*
725 		 * Unlock vnode before the lookup to avoid deadlock.   E.G.
726 		 * avoid a deadlock between the inode and exec_map that can
727 		 * occur due to locks being obtained in different orders.
728 		 */
729 
730 		if (fs.vp != NULL) {
731 			vput(fs.vp);
732 			fs.vp = NULL;
733 		}
734 
735 		if (fs.map->infork) {
736 			release_page(&fs);
737 			unlock_and_deallocate(&fs);
738 			goto RetryFault;
739 		}
740 
741 		/*
742 		 * To avoid trying to write_lock the map while another process
743 		 * has it read_locked (in vm_map_pageable), we do not try for
744 		 * write permission.  If the page is still writable, we will
745 		 * get write permission.  If it is not, or has been marked
746 		 * needs_copy, we enter the mapping without write permission,
747 		 * and will merely take another fault.
748 		 */
749 		result = vm_map_lookup(&fs.map, vaddr, fault_type & ~VM_PROT_WRITE,
750 		    &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired);
751 		map_generation = fs.map->timestamp;
752 
753 		/*
754 		 * If we don't need the page any longer, put it on the active
755 		 * list (the easiest thing to do here).  If no one needs it,
756 		 * pageout will grab it eventually.
757 		 */
758 
759 		if (result != KERN_SUCCESS) {
760 			release_page(&fs);
761 			unlock_and_deallocate(&fs);
762 			return (result);
763 		}
764 		fs.lookup_still_valid = TRUE;
765 
766 		if ((retry_object != fs.first_object) ||
767 		    (retry_pindex != fs.first_pindex)) {
768 			release_page(&fs);
769 			unlock_and_deallocate(&fs);
770 			goto RetryFault;
771 		}
772 		/*
773 		 * Check whether the protection has changed or the object has
774 		 * been copied while we left the map unlocked. Changing from
775 		 * read to write permission is OK - we leave the page
776 		 * write-protected, and catch the write fault. Changing from
777 		 * write to read permission means that we can't mark the page
778 		 * write-enabled after all.
779 		 */
780 		prot &= retry_prot;
781 	}
782 
783 	/*
784 	 * Put this page into the physical map. We had to do the unlock above
785 	 * because pmap_enter may cause other faults.   We don't put the page
786 	 * back on the active queue until later so that the page-out daemon
787 	 * won't find us (yet).
788 	 */
789 
790 	if (prot & VM_PROT_WRITE) {
791 		vm_page_flag_set(fs.m, PG_WRITEABLE);
792 		vm_object_set_writeable_dirty(fs.m->object);
793 
794 		/*
795 		 * If the fault is a write, we know that this page is being
796 		 * written NOW so dirty it explicitly to save on
797 		 * pmap_is_modified() calls later.
798 		 *
799 		 * If this is a NOSYNC mmap we do not want to set PG_NOSYNC
800 		 * if the page is already dirty to prevent data written with
801 		 * the expectation of being synced from not being synced.
802 		 * Likewise if this entry does not request NOSYNC then make
803 		 * sure the page isn't marked NOSYNC.  Applications sharing
804 		 * data should use the same flags to avoid ping ponging.
805 		 *
806 		 * Also tell the backing pager, if any, that it should remove
807 		 * any swap backing since the page is now dirty.
808 		 */
809 		if (fs.entry->eflags & MAP_ENTRY_NOSYNC) {
810 			if (fs.m->dirty == 0)
811 				vm_page_flag_set(fs.m, PG_NOSYNC);
812 		} else {
813 			vm_page_flag_clear(fs.m, PG_NOSYNC);
814 		}
815 		if (fault_flags & VM_FAULT_DIRTY) {
816 			int s;
817 			vm_page_dirty(fs.m);
818 			s = splvm();
819 			vm_pager_page_unswapped(fs.m);
820 			splx(s);
821 		}
822 	}
823 
824 	/*
825 	 * Page had better still be busy
826 	 */
827 
828 	KASSERT(fs.m->flags & PG_BUSY,
829 		("vm_fault: page %p not busy!", fs.m));
830 
831 	unlock_things(&fs);
832 
833 	/*
834 	 * Sanity check: page must be completely valid or it is not fit to
835 	 * map into user space.  vm_pager_get_pages() ensures this.
836 	 */
837 
838 	if (fs.m->valid != VM_PAGE_BITS_ALL) {
839 		vm_page_zero_invalid(fs.m, TRUE);
840 		printf("Warning: page %p partially invalid on fault\n", fs.m);
841 	}
842 
843 	pmap_enter(fs.map->pmap, vaddr, fs.m, prot, wired);
844 
845 	if (((fault_flags & VM_FAULT_WIRE_MASK) == 0) && (wired == 0)) {
846 		pmap_prefault(fs.map->pmap, vaddr, fs.entry);
847 	}
848 
849 	vm_page_flag_clear(fs.m, PG_ZERO);
850 	vm_page_flag_set(fs.m, PG_MAPPED|PG_REFERENCED);
851 	if (fault_flags & VM_FAULT_HOLD)
852 		vm_page_hold(fs.m);
853 
854 	/*
855 	 * If the page is not wired down, then put it where the pageout daemon
856 	 * can find it.
857 	 */
858 
859 	if (fault_flags & VM_FAULT_WIRE_MASK) {
860 		if (wired)
861 			vm_page_wire(fs.m);
862 		else
863 			vm_page_unwire(fs.m, 1);
864 	} else {
865 		vm_page_activate(fs.m);
866 	}
867 
868 	if (curproc && (curproc->p_flag & P_INMEM) && curproc->p_stats) {
869 		if (hardfault) {
870 			curproc->p_stats->p_ru.ru_majflt++;
871 		} else {
872 			curproc->p_stats->p_ru.ru_minflt++;
873 		}
874 	}
875 
876 	/*
877 	 * Unlock everything, and return
878 	 */
879 
880 	vm_page_wakeup(fs.m);
881 	vm_object_deallocate(fs.first_object);
882 
883 	return (KERN_SUCCESS);
884 
885 }
886 
887 /*
888  *	vm_fault_wire:
889  *
890  *	Wire down a range of virtual addresses in a map.
891  */
892 int
893 vm_fault_wire(map, start, end)
894 	vm_map_t map;
895 	vm_offset_t start, end;
896 {
897 
898 	vm_offset_t va;
899 	pmap_t pmap;
900 	int rv;
901 
902 	pmap = vm_map_pmap(map);
903 
904 	/*
905 	 * Inform the physical mapping system that the range of addresses may
906 	 * not fault, so that page tables and such can be locked down as well.
907 	 */
908 
909 	pmap_pageable(pmap, start, end, FALSE);
910 
911 	/*
912 	 * We simulate a fault to get the page and enter it in the physical
913 	 * map.
914 	 */
915 
916 	for (va = start; va < end; va += PAGE_SIZE) {
917 		rv = vm_fault(map, va, VM_PROT_READ|VM_PROT_WRITE,
918 			VM_FAULT_CHANGE_WIRING);
919 		if (rv) {
920 			if (va != start)
921 				vm_fault_unwire(map, start, va);
922 			return (rv);
923 		}
924 	}
925 	return (KERN_SUCCESS);
926 }
927 
928 /*
929  *	vm_fault_user_wire:
930  *
931  *	Wire down a range of virtual addresses in a map.  This
932  *	is for user mode though, so we only ask for read access
933  *	on currently read only sections.
934  */
935 int
936 vm_fault_user_wire(map, start, end)
937 	vm_map_t map;
938 	vm_offset_t start, end;
939 {
940 
941 	vm_offset_t va;
942 	pmap_t pmap;
943 	int rv;
944 
945 	pmap = vm_map_pmap(map);
946 
947 	/*
948 	 * Inform the physical mapping system that the range of addresses may
949 	 * not fault, so that page tables and such can be locked down as well.
950 	 */
951 
952 	pmap_pageable(pmap, start, end, FALSE);
953 
954 	/*
955 	 * We simulate a fault to get the page and enter it in the physical
956 	 * map.
957 	 */
958 	for (va = start; va < end; va += PAGE_SIZE) {
959 		rv = vm_fault(map, va, VM_PROT_READ, VM_FAULT_USER_WIRE);
960 		if (rv) {
961 			if (va != start)
962 				vm_fault_unwire(map, start, va);
963 			return (rv);
964 		}
965 	}
966 	return (KERN_SUCCESS);
967 }
968 
969 
970 /*
971  *	vm_fault_unwire:
972  *
973  *	Unwire a range of virtual addresses in a map.
974  */
975 void
976 vm_fault_unwire(map, start, end)
977 	vm_map_t map;
978 	vm_offset_t start, end;
979 {
980 
981 	vm_offset_t va, pa;
982 	pmap_t pmap;
983 
984 	pmap = vm_map_pmap(map);
985 
986 	/*
987 	 * Since the pages are wired down, we must be able to get their
988 	 * mappings from the physical map system.
989 	 */
990 
991 	for (va = start; va < end; va += PAGE_SIZE) {
992 		pa = pmap_extract(pmap, va);
993 		if (pa != (vm_offset_t) 0) {
994 			pmap_change_wiring(pmap, va, FALSE);
995 			vm_page_unwire(PHYS_TO_VM_PAGE(pa), 1);
996 		}
997 	}
998 
999 	/*
1000 	 * Inform the physical mapping system that the range of addresses may
1001 	 * fault, so that page tables and such may be unwired themselves.
1002 	 */
1003 
1004 	pmap_pageable(pmap, start, end, TRUE);
1005 
1006 }
1007 
1008 /*
1009  *	Routine:
1010  *		vm_fault_copy_entry
1011  *	Function:
1012  *		Copy all of the pages from a wired-down map entry to another.
1013  *
1014  *	In/out conditions:
1015  *		The source and destination maps must be locked for write.
1016  *		The source map entry must be wired down (or be a sharing map
1017  *		entry corresponding to a main map entry that is wired down).
1018  */
1019 
1020 void
1021 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry)
1022 	vm_map_t dst_map;
1023 	vm_map_t src_map;
1024 	vm_map_entry_t dst_entry;
1025 	vm_map_entry_t src_entry;
1026 {
1027 	vm_object_t dst_object;
1028 	vm_object_t src_object;
1029 	vm_ooffset_t dst_offset;
1030 	vm_ooffset_t src_offset;
1031 	vm_prot_t prot;
1032 	vm_offset_t vaddr;
1033 	vm_page_t dst_m;
1034 	vm_page_t src_m;
1035 
1036 #ifdef	lint
1037 	src_map++;
1038 #endif	/* lint */
1039 
1040 	src_object = src_entry->object.vm_object;
1041 	src_offset = src_entry->offset;
1042 
1043 	/*
1044 	 * Create the top-level object for the destination entry. (Doesn't
1045 	 * actually shadow anything - we copy the pages directly.)
1046 	 */
1047 	dst_object = vm_object_allocate(OBJT_DEFAULT,
1048 	    (vm_size_t) OFF_TO_IDX(dst_entry->end - dst_entry->start));
1049 
1050 	dst_entry->object.vm_object = dst_object;
1051 	dst_entry->offset = 0;
1052 
1053 	prot = dst_entry->max_protection;
1054 
1055 	/*
1056 	 * Loop through all of the pages in the entry's range, copying each
1057 	 * one from the source object (it should be there) to the destination
1058 	 * object.
1059 	 */
1060 	for (vaddr = dst_entry->start, dst_offset = 0;
1061 	    vaddr < dst_entry->end;
1062 	    vaddr += PAGE_SIZE, dst_offset += PAGE_SIZE) {
1063 
1064 		/*
1065 		 * Allocate a page in the destination object
1066 		 */
1067 		do {
1068 			dst_m = vm_page_alloc(dst_object,
1069 				OFF_TO_IDX(dst_offset), VM_ALLOC_NORMAL);
1070 			if (dst_m == NULL) {
1071 				VM_WAIT;
1072 			}
1073 		} while (dst_m == NULL);
1074 
1075 		/*
1076 		 * Find the page in the source object, and copy it in.
1077 		 * (Because the source is wired down, the page will be in
1078 		 * memory.)
1079 		 */
1080 		src_m = vm_page_lookup(src_object,
1081 			OFF_TO_IDX(dst_offset + src_offset));
1082 		if (src_m == NULL)
1083 			panic("vm_fault_copy_wired: page missing");
1084 
1085 		vm_page_copy(src_m, dst_m);
1086 
1087 		/*
1088 		 * Enter it in the pmap...
1089 		 */
1090 
1091 		vm_page_flag_clear(dst_m, PG_ZERO);
1092 		pmap_enter(dst_map->pmap, vaddr, dst_m, prot, FALSE);
1093 		vm_page_flag_set(dst_m, PG_WRITEABLE|PG_MAPPED);
1094 
1095 		/*
1096 		 * Mark it no longer busy, and put it on the active list.
1097 		 */
1098 		vm_page_activate(dst_m);
1099 		vm_page_wakeup(dst_m);
1100 	}
1101 }
1102 
1103 
1104 /*
1105  * This routine checks around the requested page for other pages that
1106  * might be able to be faulted in.  This routine brackets the viable
1107  * pages for the pages to be paged in.
1108  *
1109  * Inputs:
1110  *	m, rbehind, rahead
1111  *
1112  * Outputs:
1113  *  marray (array of vm_page_t), reqpage (index of requested page)
1114  *
1115  * Return value:
1116  *  number of pages in marray
1117  */
1118 static int
1119 vm_fault_additional_pages(m, rbehind, rahead, marray, reqpage)
1120 	vm_page_t m;
1121 	int rbehind;
1122 	int rahead;
1123 	vm_page_t *marray;
1124 	int *reqpage;
1125 {
1126 	int i,j;
1127 	vm_object_t object;
1128 	vm_pindex_t pindex, startpindex, endpindex, tpindex;
1129 	vm_page_t rtm;
1130 	int cbehind, cahead;
1131 
1132 	object = m->object;
1133 	pindex = m->pindex;
1134 
1135 	/*
1136 	 * we don't fault-ahead for device pager
1137 	 */
1138 	if (object->type == OBJT_DEVICE) {
1139 		*reqpage = 0;
1140 		marray[0] = m;
1141 		return 1;
1142 	}
1143 
1144 	/*
1145 	 * if the requested page is not available, then give up now
1146 	 */
1147 
1148 	if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
1149 		return 0;
1150 	}
1151 
1152 	if ((cbehind == 0) && (cahead == 0)) {
1153 		*reqpage = 0;
1154 		marray[0] = m;
1155 		return 1;
1156 	}
1157 
1158 	if (rahead > cahead) {
1159 		rahead = cahead;
1160 	}
1161 
1162 	if (rbehind > cbehind) {
1163 		rbehind = cbehind;
1164 	}
1165 
1166 	/*
1167 	 * try to do any readahead that we might have free pages for.
1168 	 */
1169 	if ((rahead + rbehind) >
1170 		((vmstats.v_free_count + vmstats.v_cache_count) - vmstats.v_free_reserved)) {
1171 		pagedaemon_wakeup();
1172 		marray[0] = m;
1173 		*reqpage = 0;
1174 		return 1;
1175 	}
1176 
1177 	/*
1178 	 * scan backward for the read behind pages -- in memory
1179 	 */
1180 	if (pindex > 0) {
1181 		if (rbehind > pindex) {
1182 			rbehind = pindex;
1183 			startpindex = 0;
1184 		} else {
1185 			startpindex = pindex - rbehind;
1186 		}
1187 
1188 		for ( tpindex = pindex - 1; tpindex >= startpindex; tpindex -= 1) {
1189 			if (vm_page_lookup( object, tpindex)) {
1190 				startpindex = tpindex + 1;
1191 				break;
1192 			}
1193 			if (tpindex == 0)
1194 				break;
1195 		}
1196 
1197 		for(i = 0, tpindex = startpindex; tpindex < pindex; i++, tpindex++) {
1198 
1199 			rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL);
1200 			if (rtm == NULL) {
1201 				for (j = 0; j < i; j++) {
1202 					vm_page_free(marray[j]);
1203 				}
1204 				marray[0] = m;
1205 				*reqpage = 0;
1206 				return 1;
1207 			}
1208 
1209 			marray[i] = rtm;
1210 		}
1211 	} else {
1212 		startpindex = 0;
1213 		i = 0;
1214 	}
1215 
1216 	marray[i] = m;
1217 	/* page offset of the required page */
1218 	*reqpage = i;
1219 
1220 	tpindex = pindex + 1;
1221 	i++;
1222 
1223 	/*
1224 	 * scan forward for the read ahead pages
1225 	 */
1226 	endpindex = tpindex + rahead;
1227 	if (endpindex > object->size)
1228 		endpindex = object->size;
1229 
1230 	for( ; tpindex < endpindex; i++, tpindex++) {
1231 
1232 		if (vm_page_lookup(object, tpindex)) {
1233 			break;
1234 		}
1235 
1236 		rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL);
1237 		if (rtm == NULL) {
1238 			break;
1239 		}
1240 
1241 		marray[i] = rtm;
1242 	}
1243 
1244 	/* return number of bytes of pages */
1245 	return i;
1246 }
1247