xref: /dragonfly/sys/vm/vm_fault.c (revision 3f5e28f4)
1 /*
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  *
9  *
10  * This code is derived from software contributed to Berkeley by
11  * The Mach Operating System project at Carnegie-Mellon University.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. All advertising materials mentioning features or use of this software
22  *    must display the following acknowledgement:
23  *	This product includes software developed by the University of
24  *	California, Berkeley and its contributors.
25  * 4. Neither the name of the University nor the names of its contributors
26  *    may be used to endorse or promote products derived from this software
27  *    without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39  * SUCH DAMAGE.
40  *
41  *	from: @(#)vm_fault.c	8.4 (Berkeley) 1/12/94
42  *
43  *
44  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
45  * All rights reserved.
46  *
47  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
48  *
49  * Permission to use, copy, modify and distribute this software and
50  * its documentation is hereby granted, provided that both the copyright
51  * notice and this permission notice appear in all copies of the
52  * software, derivative works or modified versions, and any portions
53  * thereof, and that both notices appear in supporting documentation.
54  *
55  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58  *
59  * Carnegie Mellon requests users of this software to return to
60  *
61  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
62  *  School of Computer Science
63  *  Carnegie Mellon University
64  *  Pittsburgh PA 15213-3890
65  *
66  * any improvements or extensions that they make and grant Carnegie the
67  * rights to redistribute these changes.
68  *
69  * $FreeBSD: src/sys/vm/vm_fault.c,v 1.108.2.8 2002/02/26 05:49:27 silby Exp $
70  * $DragonFly: src/sys/vm/vm_fault.c,v 1.41 2007/01/12 22:12:53 dillon Exp $
71  */
72 
73 /*
74  *	Page fault handling module.
75  */
76 
77 #include <sys/param.h>
78 #include <sys/systm.h>
79 #include <sys/kernel.h>
80 #include <sys/proc.h>
81 #include <sys/vnode.h>
82 #include <sys/resourcevar.h>
83 #include <sys/vmmeter.h>
84 #include <sys/vkernel.h>
85 #include <sys/sfbuf.h>
86 #include <sys/lock.h>
87 
88 #include <vm/vm.h>
89 #include <vm/vm_param.h>
90 #include <vm/pmap.h>
91 #include <vm/vm_map.h>
92 #include <vm/vm_object.h>
93 #include <vm/vm_page.h>
94 #include <vm/vm_pageout.h>
95 #include <vm/vm_kern.h>
96 #include <vm/vm_pager.h>
97 #include <vm/vnode_pager.h>
98 #include <vm/vm_extern.h>
99 
100 #include <sys/thread2.h>
101 #include <vm/vm_page2.h>
102 
103 #define VM_FAULT_READ_AHEAD 8
104 #define VM_FAULT_READ_BEHIND 7
105 #define VM_FAULT_READ (VM_FAULT_READ_AHEAD+VM_FAULT_READ_BEHIND+1)
106 
107 struct faultstate {
108 	vm_page_t m;
109 	vm_object_t object;
110 	vm_pindex_t pindex;
111 	vm_prot_t prot;
112 	vm_page_t first_m;
113 	vm_object_t first_object;
114 	vm_prot_t first_prot;
115 	vm_map_t map;
116 	vm_map_entry_t entry;
117 	int lookup_still_valid;
118 	int didlimit;
119 	int hardfault;
120 	int fault_flags;
121 	int map_generation;
122 	boolean_t wired;
123 	struct vnode *vp;
124 };
125 
126 static int vm_fault_object(struct faultstate *, vm_pindex_t, vm_prot_t);
127 static int vm_fault_vpagetable(struct faultstate *, vm_pindex_t *, vpte_t, int);
128 static int vm_fault_additional_pages (vm_page_t, int, int, vm_page_t *, int *);
129 static int vm_fault_ratelimit(struct vmspace *);
130 
131 static __inline void
132 release_page(struct faultstate *fs)
133 {
134 	vm_page_wakeup(fs->m);
135 	vm_page_deactivate(fs->m);
136 	fs->m = NULL;
137 }
138 
139 static __inline void
140 unlock_map(struct faultstate *fs)
141 {
142 	if (fs->lookup_still_valid) {
143 		vm_map_lookup_done(fs->map, fs->entry, 0);
144 		fs->lookup_still_valid = FALSE;
145 	}
146 }
147 
148 /*
149  * Clean up after a successful call to vm_fault_object() so another call
150  * to vm_fault_object() can be made.
151  */
152 static void
153 _cleanup_successful_fault(struct faultstate *fs, int relock)
154 {
155 	if (fs->object != fs->first_object) {
156 		vm_page_free(fs->first_m);
157 		vm_object_pip_wakeup(fs->object);
158 		fs->first_m = NULL;
159 	}
160 	fs->object = fs->first_object;
161 	if (relock && fs->lookup_still_valid == FALSE) {
162 		vm_map_lock_read(fs->map);
163 		fs->lookup_still_valid = TRUE;
164 	}
165 }
166 
167 static void
168 _unlock_things(struct faultstate *fs, int dealloc)
169 {
170 	vm_object_pip_wakeup(fs->first_object);
171 	_cleanup_successful_fault(fs, 0);
172 	if (dealloc) {
173 		vm_object_deallocate(fs->first_object);
174 	}
175 	unlock_map(fs);
176 	if (fs->vp != NULL) {
177 		vput(fs->vp);
178 		fs->vp = NULL;
179 	}
180 }
181 
182 #define unlock_things(fs) _unlock_things(fs, 0)
183 #define unlock_and_deallocate(fs) _unlock_things(fs, 1)
184 #define cleanup_successful_fault(fs) _cleanup_successful_fault(fs, 1)
185 
186 /*
187  * TRYPAGER
188  *
189  * Determine if the pager for the current object *might* contain the page.
190  *
191  * We only need to try the pager if this is not a default object (default
192  * objects are zero-fill and have no real pager), and if we are not taking
193  * a wiring fault or if the FS entry is wired.
194  */
195 #define TRYPAGER(fs)	\
196 		(fs->object->type != OBJT_DEFAULT && \
197 		(((fs->fault_flags & VM_FAULT_WIRE_MASK) == 0) || fs->wired))
198 
199 /*
200  * vm_fault:
201  *
202  * Handle a page fault occuring at the given address, requiring the given
203  * permissions, in the map specified.  If successful, the page is inserted
204  * into the associated physical map.
205  *
206  * NOTE: The given address should be truncated to the proper page address.
207  *
208  * KERN_SUCCESS is returned if the page fault is handled; otherwise,
209  * a standard error specifying why the fault is fatal is returned.
210  *
211  * The map in question must be referenced, and remains so.
212  * The caller may hold no locks.
213  */
214 int
215 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, int fault_flags)
216 {
217 	int result;
218 	vm_pindex_t first_pindex;
219 	struct faultstate fs;
220 
221 	mycpu->gd_cnt.v_vm_faults++;
222 
223 	fs.didlimit = 0;
224 	fs.hardfault = 0;
225 	fs.fault_flags = fault_flags;
226 
227 RetryFault:
228 	/*
229 	 * Find the vm_map_entry representing the backing store and resolve
230 	 * the top level object and page index.  This may have the side
231 	 * effect of executing a copy-on-write on the map entry and/or
232 	 * creating a shadow object, but will not COW any actual VM pages.
233 	 *
234 	 * On success fs.map is left read-locked and various other fields
235 	 * are initialized but not otherwise referenced or locked.
236 	 *
237 	 * NOTE!  vm_map_lookup will try to upgrade the fault_type to
238 	 * VM_FAULT_WRITE if the map entry is a virtual page table and also
239 	 * writable, so we can set the 'A'accessed bit in the virtual page
240 	 * table entry.
241 	 */
242 	fs.map = map;
243 	result = vm_map_lookup(&fs.map, vaddr, fault_type,
244 			       &fs.entry, &fs.first_object,
245 			       &first_pindex, &fs.first_prot, &fs.wired);
246 
247 	/*
248 	 * If the lookup failed or the map protections are incompatible,
249 	 * the fault generally fails.  However, if the caller is trying
250 	 * to do a user wiring we have more work to do.
251 	 */
252 	if (result != KERN_SUCCESS) {
253 		if (result != KERN_PROTECTION_FAILURE)
254 			return result;
255 		if ((fs.fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE)
256 			return result;
257 
258 		/*
259    		 * If we are user-wiring a r/w segment, and it is COW, then
260    		 * we need to do the COW operation.  Note that we don't
261 		 * currently COW RO sections now, because it is NOT desirable
262    		 * to COW .text.  We simply keep .text from ever being COW'ed
263    		 * and take the heat that one cannot debug wired .text sections.
264    		 */
265 		result = vm_map_lookup(&fs.map, vaddr,
266 				       VM_PROT_READ|VM_PROT_WRITE|
267 				        VM_PROT_OVERRIDE_WRITE,
268 				       &fs.entry, &fs.first_object,
269 				       &first_pindex, &fs.first_prot,
270 				       &fs.wired);
271 		if (result != KERN_SUCCESS)
272 			return result;
273 
274 		/*
275 		 * If we don't COW now, on a user wire, the user will never
276 		 * be able to write to the mapping.  If we don't make this
277 		 * restriction, the bookkeeping would be nearly impossible.
278 		 */
279 		if ((fs.entry->protection & VM_PROT_WRITE) == 0)
280 			fs.entry->max_protection &= ~VM_PROT_WRITE;
281 	}
282 
283 	/*
284 	 * fs.map is read-locked
285 	 *
286 	 * Misc checks.  Save the map generation number to detect races.
287 	 */
288 	fs.map_generation = fs.map->timestamp;
289 
290 	if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
291 		panic("vm_fault: fault on nofault entry, addr: %lx",
292 		    (u_long)vaddr);
293 	}
294 
295 	/*
296 	 * A system map entry may return a NULL object.  No object means
297 	 * no pager means an unrecoverable kernel fault.
298 	 */
299 	if (fs.first_object == NULL) {
300 		panic("vm_fault: unrecoverable fault at %p in entry %p",
301 			(void *)vaddr, fs.entry);
302 	}
303 
304 	/*
305 	 * Make a reference to this object to prevent its disposal while we
306 	 * are messing with it.  Once we have the reference, the map is free
307 	 * to be diddled.  Since objects reference their shadows (and copies),
308 	 * they will stay around as well.
309 	 *
310 	 * Bump the paging-in-progress count to prevent size changes (e.g.
311 	 * truncation operations) during I/O.  This must be done after
312 	 * obtaining the vnode lock in order to avoid possible deadlocks.
313 	 */
314 	vm_object_reference(fs.first_object);
315 	fs.vp = vnode_pager_lock(fs.first_object);
316 	vm_object_pip_add(fs.first_object, 1);
317 
318 	fs.lookup_still_valid = TRUE;
319 	fs.first_m = NULL;
320 	fs.object = fs.first_object;	/* so unlock_and_deallocate works */
321 
322 	/*
323 	 * If the entry is wired we cannot change the page protection.
324 	 */
325 	if (fs.wired)
326 		fault_type = fs.first_prot;
327 
328 	/*
329 	 * The page we want is at (first_object, first_pindex), but if the
330 	 * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the
331 	 * page table to figure out the actual pindex.
332 	 *
333 	 * NOTE!  DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION
334 	 * ONLY
335 	 */
336 	if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
337 		result = vm_fault_vpagetable(&fs, &first_pindex,
338 					     fs.entry->aux.master_pde,
339 					     fault_type);
340 		if (result == KERN_TRY_AGAIN)
341 			goto RetryFault;
342 		if (result != KERN_SUCCESS)
343 			return (result);
344 	}
345 
346 	/*
347 	 * Now we have the actual (object, pindex), fault in the page.  If
348 	 * vm_fault_object() fails it will unlock and deallocate the FS
349 	 * data.   If it succeeds everything remains locked and fs->object
350 	 * will have an additinal PIP count if it is not equal to
351 	 * fs->first_object
352 	 *
353 	 * vm_fault_object will set fs->prot for the pmap operation.  It is
354 	 * allowed to set VM_PROT_WRITE if fault_type == VM_PROT_READ if the
355 	 * page can be safely written.  However, it will force a read-only
356 	 * mapping for a read fault if the memory is managed by a virtual
357 	 * page table.
358 	 */
359 	result = vm_fault_object(&fs, first_pindex, fault_type);
360 
361 	if (result == KERN_TRY_AGAIN)
362 		goto RetryFault;
363 	if (result != KERN_SUCCESS)
364 		return (result);
365 
366 	/*
367 	 * On success vm_fault_object() does not unlock or deallocate, and fs.m
368 	 * will contain a busied page.
369 	 *
370 	 * Enter the page into the pmap and do pmap-related adjustments.
371 	 */
372 	unlock_things(&fs);
373 	pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot, fs.wired);
374 
375 	if (((fs.fault_flags & VM_FAULT_WIRE_MASK) == 0) && (fs.wired == 0)) {
376 		pmap_prefault(fs.map->pmap, vaddr, fs.entry);
377 	}
378 
379 	vm_page_flag_clear(fs.m, PG_ZERO);
380 	vm_page_flag_set(fs.m, PG_MAPPED|PG_REFERENCED);
381 
382 	/*
383 	 * If the page is not wired down, then put it where the pageout daemon
384 	 * can find it.
385 	 */
386 	if (fs.fault_flags & VM_FAULT_WIRE_MASK) {
387 		if (fs.wired)
388 			vm_page_wire(fs.m);
389 		else
390 			vm_page_unwire(fs.m, 1);
391 	} else {
392 		vm_page_activate(fs.m);
393 	}
394 
395 	if (curthread->td_lwp) {
396 		if (fs.hardfault) {
397 			curthread->td_lwp->lwp_ru.ru_majflt++;
398 		} else {
399 			curthread->td_lwp->lwp_ru.ru_minflt++;
400 		}
401 	}
402 
403 	/*
404 	 * Unlock everything, and return
405 	 */
406 	vm_page_wakeup(fs.m);
407 	vm_object_deallocate(fs.first_object);
408 
409 	return (KERN_SUCCESS);
410 }
411 
412 /*
413  * Fault in the specified virtual address in the current process map,
414  * returning a held VM page or NULL.  See vm_fault_page() for more
415  * information.
416  */
417 vm_page_t
418 vm_fault_page_quick(vm_offset_t va, vm_prot_t fault_type, int *errorp)
419 {
420 	vm_page_t m;
421 
422 	m = vm_fault_page(&curproc->p_vmspace->vm_map, va,
423 			  fault_type, VM_FAULT_NORMAL, errorp);
424 	return(m);
425 }
426 
427 /*
428  * Fault in the specified virtual address in the specified map, doing all
429  * necessary manipulation of the object store and all necessary I/O.  Return
430  * a held VM page or NULL, and set *errorp.  The related pmap is not
431  * updated.
432  *
433  * The returned page will be properly dirtied if VM_PROT_WRITE was specified,
434  * and marked PG_REFERENCED as well.
435  */
436 vm_page_t
437 vm_fault_page(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
438 	      int fault_flags, int *errorp)
439 {
440 	int result;
441 	vm_pindex_t first_pindex;
442 	struct faultstate fs;
443 
444 	mycpu->gd_cnt.v_vm_faults++;
445 
446 	fs.didlimit = 0;
447 	fs.hardfault = 0;
448 	fs.fault_flags = fault_flags;
449 	KKASSERT((fault_flags & VM_FAULT_WIRE_MASK) == 0);
450 
451 RetryFault:
452 	/*
453 	 * Find the vm_map_entry representing the backing store and resolve
454 	 * the top level object and page index.  This may have the side
455 	 * effect of executing a copy-on-write on the map entry and/or
456 	 * creating a shadow object, but will not COW any actual VM pages.
457 	 *
458 	 * On success fs.map is left read-locked and various other fields
459 	 * are initialized but not otherwise referenced or locked.
460 	 *
461 	 * NOTE!  vm_map_lookup will upgrade the fault_type to VM_FAULT_WRITE
462 	 * if the map entry is a virtual page table and also writable,
463 	 * so we can set the 'A'accessed bit in the virtual page table entry.
464 	 */
465 	fs.map = map;
466 	result = vm_map_lookup(&fs.map, vaddr, fault_type,
467 			       &fs.entry, &fs.first_object,
468 			       &first_pindex, &fs.first_prot, &fs.wired);
469 
470 	if (result != KERN_SUCCESS) {
471 		*errorp = result;
472 		return (NULL);
473 	}
474 
475 	/*
476 	 * fs.map is read-locked
477 	 *
478 	 * Misc checks.  Save the map generation number to detect races.
479 	 */
480 	fs.map_generation = fs.map->timestamp;
481 
482 	if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
483 		panic("vm_fault: fault on nofault entry, addr: %lx",
484 		    (u_long)vaddr);
485 	}
486 
487 	/*
488 	 * A system map entry may return a NULL object.  No object means
489 	 * no pager means an unrecoverable kernel fault.
490 	 */
491 	if (fs.first_object == NULL) {
492 		panic("vm_fault: unrecoverable fault at %p in entry %p",
493 			(void *)vaddr, fs.entry);
494 	}
495 
496 	/*
497 	 * Make a reference to this object to prevent its disposal while we
498 	 * are messing with it.  Once we have the reference, the map is free
499 	 * to be diddled.  Since objects reference their shadows (and copies),
500 	 * they will stay around as well.
501 	 *
502 	 * Bump the paging-in-progress count to prevent size changes (e.g.
503 	 * truncation operations) during I/O.  This must be done after
504 	 * obtaining the vnode lock in order to avoid possible deadlocks.
505 	 */
506 	vm_object_reference(fs.first_object);
507 	fs.vp = vnode_pager_lock(fs.first_object);
508 	vm_object_pip_add(fs.first_object, 1);
509 
510 	fs.lookup_still_valid = TRUE;
511 	fs.first_m = NULL;
512 	fs.object = fs.first_object;	/* so unlock_and_deallocate works */
513 
514 	/*
515 	 * If the entry is wired we cannot change the page protection.
516 	 */
517 	if (fs.wired)
518 		fault_type = fs.first_prot;
519 
520 	/*
521 	 * The page we want is at (first_object, first_pindex), but if the
522 	 * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the
523 	 * page table to figure out the actual pindex.
524 	 *
525 	 * NOTE!  DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION
526 	 * ONLY
527 	 */
528 	if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
529 		result = vm_fault_vpagetable(&fs, &first_pindex,
530 					     fs.entry->aux.master_pde,
531 					     fault_type);
532 		if (result == KERN_TRY_AGAIN)
533 			goto RetryFault;
534 		if (result != KERN_SUCCESS) {
535 			*errorp = result;
536 			return (NULL);
537 		}
538 	}
539 
540 	/*
541 	 * Now we have the actual (object, pindex), fault in the page.  If
542 	 * vm_fault_object() fails it will unlock and deallocate the FS
543 	 * data.   If it succeeds everything remains locked and fs->object
544 	 * will have an additinal PIP count if it is not equal to
545 	 * fs->first_object
546 	 */
547 	result = vm_fault_object(&fs, first_pindex, fault_type);
548 
549 	if (result == KERN_TRY_AGAIN)
550 		goto RetryFault;
551 	if (result != KERN_SUCCESS) {
552 		*errorp = result;
553 		return(NULL);
554 	}
555 
556 	/*
557 	 * On success vm_fault_object() does not unlock or deallocate, and fs.m
558 	 * will contain a busied page.
559 	 */
560 	unlock_things(&fs);
561 
562 	/*
563 	 * Return a held page.  We are not doing any pmap manipulation so do
564 	 * not set PG_MAPPED.  However, adjust the page flags according to
565 	 * the fault type because the caller may not use a managed pmapping
566 	 * (so we don't want to lose the fact that the page will be dirtied
567 	 * if a write fault was specified).
568 	 */
569 	vm_page_hold(fs.m);
570 	vm_page_flag_clear(fs.m, PG_ZERO);
571 	if (fault_type & VM_PROT_WRITE)
572 		vm_page_dirty(fs.m);
573 
574 	/*
575 	 * Update the pmap.  We really only have to do this if a COW
576 	 * occured to replace the read-only page with the new page.  For
577 	 * now just do it unconditionally. XXX
578 	 */
579 	pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot, fs.wired);
580 	vm_page_flag_set(fs.m, PG_REFERENCED|PG_MAPPED);
581 
582 	/*
583 	 * Unbusy the page by activating it.  It remains held and will not
584 	 * be reclaimed.
585 	 */
586 	vm_page_activate(fs.m);
587 
588 	if (curthread->td_lwp) {
589 		if (fs.hardfault) {
590 			curthread->td_lwp->lwp_ru.ru_majflt++;
591 		} else {
592 			curthread->td_lwp->lwp_ru.ru_minflt++;
593 		}
594 	}
595 
596 	/*
597 	 * Unlock everything, and return the held page.
598 	 */
599 	vm_page_wakeup(fs.m);
600 	vm_object_deallocate(fs.first_object);
601 
602 	*errorp = 0;
603 	return(fs.m);
604 }
605 
606 /*
607  * Translate the virtual page number (first_pindex) that is relative
608  * to the address space into a logical page number that is relative to the
609  * backing object.  Use the virtual page table pointed to by (vpte).
610  *
611  * This implements an N-level page table.  Any level can terminate the
612  * scan by setting VPTE_PS.   A linear mapping is accomplished by setting
613  * VPTE_PS in the master page directory entry set via mcontrol(MADV_SETMAP).
614  */
615 static
616 int
617 vm_fault_vpagetable(struct faultstate *fs, vm_pindex_t *pindex,
618 		    vpte_t vpte, int fault_type)
619 {
620 	struct sf_buf *sf;
621 	int vshift = 32 - PAGE_SHIFT;	/* page index bits remaining */
622 	int result = KERN_SUCCESS;
623 	vpte_t *ptep;
624 
625 	for (;;) {
626 		/*
627 		 * We cannot proceed if the vpte is not valid, not readable
628 		 * for a read fault, or not writable for a write fault.
629 		 */
630 		if ((vpte & VPTE_V) == 0) {
631 			unlock_and_deallocate(fs);
632 			return (KERN_FAILURE);
633 		}
634 		if ((fault_type & VM_PROT_READ) && (vpte & VPTE_R) == 0) {
635 			unlock_and_deallocate(fs);
636 			return (KERN_FAILURE);
637 		}
638 		if ((fault_type & VM_PROT_WRITE) && (vpte & VPTE_W) == 0) {
639 			unlock_and_deallocate(fs);
640 			return (KERN_FAILURE);
641 		}
642 		if ((vpte & VPTE_PS) || vshift == 0)
643 			break;
644 		KKASSERT(vshift >= VPTE_PAGE_BITS);
645 
646 		/*
647 		 * Get the page table page.  Nominally we only read the page
648 		 * table, but since we are actively setting VPTE_M and VPTE_A,
649 		 * tell vm_fault_object() that we are writing it.
650 		 *
651 		 * There is currently no real need to optimize this.
652 		 */
653 		result = vm_fault_object(fs, vpte >> PAGE_SHIFT,
654 					 VM_PROT_READ|VM_PROT_WRITE);
655 		if (result != KERN_SUCCESS)
656 			return (result);
657 
658 		/*
659 		 * Process the returned fs.m and look up the page table
660 		 * entry in the page table page.
661 		 */
662 		vshift -= VPTE_PAGE_BITS;
663 		sf = sf_buf_alloc(fs->m, SFB_CPUPRIVATE);
664 		ptep = ((vpte_t *)sf_buf_kva(sf) +
665 		        ((*pindex >> vshift) & VPTE_PAGE_MASK));
666 		vpte = *ptep;
667 
668 		/*
669 		 * Page table write-back.  If the vpte is valid for the
670 		 * requested operation, do a write-back to the page table.
671 		 *
672 		 * XXX VPTE_M is not set properly for page directory pages.
673 		 * It doesn't get set in the page directory if the page table
674 		 * is modified during a read access.
675 		 */
676 		if ((fault_type & VM_PROT_WRITE) && (vpte & VPTE_V) &&
677 		    (vpte & VPTE_W)) {
678 			if ((vpte & (VPTE_M|VPTE_A)) != (VPTE_M|VPTE_A)) {
679 				atomic_set_int(ptep, VPTE_M|VPTE_A);
680 				vm_page_dirty(fs->m);
681 			}
682 		}
683 		if ((fault_type & VM_PROT_READ) && (vpte & VPTE_V) &&
684 		    (vpte & VPTE_R)) {
685 			if ((vpte & VPTE_A) == 0) {
686 				atomic_set_int(ptep, VPTE_A);
687 				vm_page_dirty(fs->m);
688 			}
689 		}
690 		sf_buf_free(sf);
691 		vm_page_flag_set(fs->m, PG_REFERENCED);
692 		vm_page_activate(fs->m);
693 		vm_page_wakeup(fs->m);
694 		cleanup_successful_fault(fs);
695 	}
696 	/*
697 	 * Combine remaining address bits with the vpte.
698 	 */
699 	*pindex = (vpte >> PAGE_SHIFT) +
700 		  (*pindex & ((1 << vshift) - 1));
701 	return (KERN_SUCCESS);
702 }
703 
704 
705 /*
706  * Do all operations required to fault-in (fs.first_object, pindex).  Run
707  * through the shadow chain as necessary and do required COW or virtual
708  * copy operations.  The caller has already fully resolved the vm_map_entry
709  * and, if appropriate, has created a copy-on-write layer.  All we need to
710  * do is iterate the object chain.
711  *
712  * On failure (fs) is unlocked and deallocated and the caller may return or
713  * retry depending on the failure code.  On success (fs) is NOT unlocked or
714  * deallocated, fs.m will contained a resolved, busied page, and fs.object
715  * will have an additional PIP count if it is not equal to fs.first_object.
716  */
717 static
718 int
719 vm_fault_object(struct faultstate *fs,
720 		vm_pindex_t first_pindex, vm_prot_t fault_type)
721 {
722 	vm_object_t next_object;
723 	vm_page_t marray[VM_FAULT_READ];
724 	vm_pindex_t pindex;
725 	int faultcount;
726 
727 	fs->prot = fs->first_prot;
728 	fs->object = fs->first_object;
729 	pindex = first_pindex;
730 
731 	/*
732 	 * If a read fault occurs we try to make the page writable if
733 	 * possible.  There are three cases where we cannot make the
734 	 * page mapping writable:
735 	 *
736 	 * (1) The mapping is read-only or the VM object is read-only,
737 	 *     fs->prot above will simply not have VM_PROT_WRITE set.
738 	 *
739 	 * (2) If the mapping is a virtual page table we need to be able
740 	 *     to detect writes so we can set VPTE_M in the virtual page
741 	 *     table.
742 	 *
743 	 * (3) If the VM page is read-only or copy-on-write, upgrading would
744 	 *     just result in an unnecessary COW fault.
745 	 *
746 	 * VM_PROT_VPAGED is set if faulting via a virtual page table and
747 	 * causes adjustments to the 'M'odify bit to also turn off write
748 	 * access to force a re-fault.
749 	 */
750 	if (fs->entry->maptype == VM_MAPTYPE_VPAGETABLE) {
751 		if ((fault_type & VM_PROT_WRITE) == 0)
752 			fs->prot &= ~VM_PROT_WRITE;
753 	}
754 
755 	for (;;) {
756 		/*
757 		 * If the object is dead, we stop here
758 		 */
759 		if (fs->object->flags & OBJ_DEAD) {
760 			unlock_and_deallocate(fs);
761 			return (KERN_PROTECTION_FAILURE);
762 		}
763 
764 		/*
765 		 * See if page is resident.  spl protection is required
766 		 * to avoid an interrupt unbusy/free race against our
767 		 * lookup.  We must hold the protection through a page
768 		 * allocation or busy.
769 		 */
770 		crit_enter();
771 		fs->m = vm_page_lookup(fs->object, pindex);
772 		if (fs->m != NULL) {
773 			int queue;
774 			/*
775 			 * Wait/Retry if the page is busy.  We have to do this
776 			 * if the page is busy via either PG_BUSY or
777 			 * vm_page_t->busy because the vm_pager may be using
778 			 * vm_page_t->busy for pageouts ( and even pageins if
779 			 * it is the vnode pager ), and we could end up trying
780 			 * to pagein and pageout the same page simultaneously.
781 			 *
782 			 * We can theoretically allow the busy case on a read
783 			 * fault if the page is marked valid, but since such
784 			 * pages are typically already pmap'd, putting that
785 			 * special case in might be more effort then it is
786 			 * worth.  We cannot under any circumstances mess
787 			 * around with a vm_page_t->busy page except, perhaps,
788 			 * to pmap it.
789 			 */
790 			if ((fs->m->flags & PG_BUSY) || fs->m->busy) {
791 				unlock_things(fs);
792 				vm_page_sleep_busy(fs->m, TRUE, "vmpfw");
793 				mycpu->gd_cnt.v_intrans++;
794 				vm_object_deallocate(fs->first_object);
795 				crit_exit();
796 				return (KERN_TRY_AGAIN);
797 			}
798 
799 			/*
800 			 * If reactivating a page from PQ_CACHE we may have
801 			 * to rate-limit.
802 			 */
803 			queue = fs->m->queue;
804 			vm_page_unqueue_nowakeup(fs->m);
805 
806 			if ((queue - fs->m->pc) == PQ_CACHE &&
807 			    vm_page_count_severe()) {
808 				vm_page_activate(fs->m);
809 				unlock_and_deallocate(fs);
810 				vm_waitpfault();
811 				crit_exit();
812 				return (KERN_TRY_AGAIN);
813 			}
814 
815 			/*
816 			 * Mark page busy for other processes, and the
817 			 * pagedaemon.  If it still isn't completely valid
818 			 * (readable), jump to readrest, else we found the
819 			 * page and can return.
820 			 *
821 			 * We can release the spl once we have marked the
822 			 * page busy.
823 			 */
824 			vm_page_busy(fs->m);
825 			crit_exit();
826 
827 			if (((fs->m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL) &&
828 			    fs->m->object != &kernel_object) {
829 				goto readrest;
830 			}
831 			break; /* break to PAGE HAS BEEN FOUND */
832 		}
833 
834 		/*
835 		 * Page is not resident, If this is the search termination
836 		 * or the pager might contain the page, allocate a new page.
837 		 *
838 		 * NOTE: We are still in a critical section.
839 		 */
840 		if (TRYPAGER(fs) || fs->object == fs->first_object) {
841 			/*
842 			 * If the page is beyond the object size we fail
843 			 */
844 			if (pindex >= fs->object->size) {
845 				crit_exit();
846 				unlock_and_deallocate(fs);
847 				return (KERN_PROTECTION_FAILURE);
848 			}
849 
850 			/*
851 			 * Ratelimit.
852 			 */
853 			if (fs->didlimit == 0 && curproc != NULL) {
854 				int limticks;
855 
856 				limticks = vm_fault_ratelimit(curproc->p_vmspace);
857 				if (limticks) {
858 					crit_exit();
859 					unlock_and_deallocate(fs);
860 					tsleep(curproc, 0, "vmrate", limticks);
861 					fs->didlimit = 1;
862 					return (KERN_TRY_AGAIN);
863 				}
864 			}
865 
866 			/*
867 			 * Allocate a new page for this object/offset pair.
868 			 */
869 			fs->m = NULL;
870 			if (!vm_page_count_severe()) {
871 				fs->m = vm_page_alloc(fs->object, pindex,
872 				    (fs->vp || fs->object->backing_object) ? VM_ALLOC_NORMAL : VM_ALLOC_NORMAL | VM_ALLOC_ZERO);
873 			}
874 			if (fs->m == NULL) {
875 				crit_exit();
876 				unlock_and_deallocate(fs);
877 				vm_waitpfault();
878 				return (KERN_TRY_AGAIN);
879 			}
880 		}
881 		crit_exit();
882 
883 readrest:
884 		/*
885 		 * We have found a valid page or we have allocated a new page.
886 		 * The page thus may not be valid or may not be entirely
887 		 * valid.
888 		 *
889 		 * Attempt to fault-in the page if there is a chance that the
890 		 * pager has it, and potentially fault in additional pages
891 		 * at the same time.
892 		 *
893 		 * We are NOT in splvm here and if TRYPAGER is true then
894 		 * fs.m will be non-NULL and will be PG_BUSY for us.
895 		 */
896 
897 		if (TRYPAGER(fs)) {
898 			int rv;
899 			int reqpage;
900 			int ahead, behind;
901 			u_char behavior = vm_map_entry_behavior(fs->entry);
902 
903 			if (behavior == MAP_ENTRY_BEHAV_RANDOM) {
904 				ahead = 0;
905 				behind = 0;
906 			} else {
907 				behind = pindex;
908 				if (behind > VM_FAULT_READ_BEHIND)
909 					behind = VM_FAULT_READ_BEHIND;
910 
911 				ahead = fs->object->size - pindex;
912 				if (ahead < 1)
913 					ahead = 1;
914 				if (ahead > VM_FAULT_READ_AHEAD)
915 					ahead = VM_FAULT_READ_AHEAD;
916 			}
917 
918 			if ((fs->first_object->type != OBJT_DEVICE) &&
919 			    (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL ||
920                                 (behavior != MAP_ENTRY_BEHAV_RANDOM &&
921                                 pindex >= fs->entry->lastr &&
922                                 pindex < fs->entry->lastr + VM_FAULT_READ))
923 			) {
924 				vm_pindex_t firstpindex, tmppindex;
925 
926 				if (first_pindex < 2 * VM_FAULT_READ)
927 					firstpindex = 0;
928 				else
929 					firstpindex = first_pindex - 2 * VM_FAULT_READ;
930 
931 				/*
932 				 * note: partially valid pages cannot be
933 				 * included in the lookahead - NFS piecemeal
934 				 * writes will barf on it badly.
935 				 *
936 				 * spl protection is required to avoid races
937 				 * between the lookup and an interrupt
938 				 * unbusy/free sequence occuring prior to
939 				 * our busy check.
940 				 */
941 				crit_enter();
942 				for (tmppindex = first_pindex - 1;
943 				    tmppindex >= firstpindex;
944 				    --tmppindex
945 				) {
946 					vm_page_t mt;
947 
948 					mt = vm_page_lookup(fs->first_object, tmppindex);
949 					if (mt == NULL || (mt->valid != VM_PAGE_BITS_ALL))
950 						break;
951 					if (mt->busy ||
952 						(mt->flags & (PG_BUSY | PG_FICTITIOUS | PG_UNMANAGED)) ||
953 						mt->hold_count ||
954 						mt->wire_count)
955 						continue;
956 					if (mt->dirty == 0)
957 						vm_page_test_dirty(mt);
958 					if (mt->dirty) {
959 						vm_page_protect(mt, VM_PROT_NONE);
960 						vm_page_deactivate(mt);
961 					} else {
962 						vm_page_cache(mt);
963 					}
964 				}
965 				crit_exit();
966 
967 				ahead += behind;
968 				behind = 0;
969 			}
970 
971 			/*
972 			 * now we find out if any other pages should be paged
973 			 * in at this time this routine checks to see if the
974 			 * pages surrounding this fault reside in the same
975 			 * object as the page for this fault.  If they do,
976 			 * then they are faulted in also into the object.  The
977 			 * array "marray" returned contains an array of
978 			 * vm_page_t structs where one of them is the
979 			 * vm_page_t passed to the routine.  The reqpage
980 			 * return value is the index into the marray for the
981 			 * vm_page_t passed to the routine.
982 			 *
983 			 * fs.m plus the additional pages are PG_BUSY'd.
984 			 */
985 			faultcount = vm_fault_additional_pages(
986 			    fs->m, behind, ahead, marray, &reqpage);
987 
988 			/*
989 			 * update lastr imperfectly (we do not know how much
990 			 * getpages will actually read), but good enough.
991 			 */
992 			fs->entry->lastr = pindex + faultcount - behind;
993 
994 			/*
995 			 * Call the pager to retrieve the data, if any, after
996 			 * releasing the lock on the map.  We hold a ref on
997 			 * fs.object and the pages are PG_BUSY'd.
998 			 */
999 			unlock_map(fs);
1000 
1001 			if (faultcount) {
1002 				rv = vm_pager_get_pages(fs->object, marray,
1003 							faultcount, reqpage);
1004 			} else {
1005 				rv = VM_PAGER_FAIL;
1006 			}
1007 
1008 			if (rv == VM_PAGER_OK) {
1009 				/*
1010 				 * Found the page. Leave it busy while we play
1011 				 * with it.
1012 				 */
1013 
1014 				/*
1015 				 * Relookup in case pager changed page. Pager
1016 				 * is responsible for disposition of old page
1017 				 * if moved.
1018 				 *
1019 				 * XXX other code segments do relookups too.
1020 				 * It's a bad abstraction that needs to be
1021 				 * fixed/removed.
1022 				 */
1023 				fs->m = vm_page_lookup(fs->object, pindex);
1024 				if (fs->m == NULL) {
1025 					unlock_and_deallocate(fs);
1026 					return (KERN_TRY_AGAIN);
1027 				}
1028 
1029 				++fs->hardfault;
1030 				break; /* break to PAGE HAS BEEN FOUND */
1031 			}
1032 
1033 			/*
1034 			 * Remove the bogus page (which does not exist at this
1035 			 * object/offset); before doing so, we must get back
1036 			 * our object lock to preserve our invariant.
1037 			 *
1038 			 * Also wake up any other process that may want to bring
1039 			 * in this page.
1040 			 *
1041 			 * If this is the top-level object, we must leave the
1042 			 * busy page to prevent another process from rushing
1043 			 * past us, and inserting the page in that object at
1044 			 * the same time that we are.
1045 			 */
1046 			if (rv == VM_PAGER_ERROR) {
1047 				if (curproc)
1048 					kprintf("vm_fault: pager read error, pid %d (%s)\n", curproc->p_pid, curproc->p_comm);
1049 				else
1050 					kprintf("vm_fault: pager read error, thread %p (%s)\n", curthread, curproc->p_comm);
1051 			}
1052 			/*
1053 			 * Data outside the range of the pager or an I/O error
1054 			 */
1055 			/*
1056 			 * XXX - the check for kernel_map is a kludge to work
1057 			 * around having the machine panic on a kernel space
1058 			 * fault w/ I/O error.
1059 			 */
1060 			if (((fs->map != &kernel_map) && (rv == VM_PAGER_ERROR)) ||
1061 				(rv == VM_PAGER_BAD)) {
1062 				vm_page_free(fs->m);
1063 				fs->m = NULL;
1064 				unlock_and_deallocate(fs);
1065 				if (rv == VM_PAGER_ERROR)
1066 					return (KERN_FAILURE);
1067 				else
1068 					return (KERN_PROTECTION_FAILURE);
1069 				/* NOT REACHED */
1070 			}
1071 			if (fs->object != fs->first_object) {
1072 				vm_page_free(fs->m);
1073 				fs->m = NULL;
1074 				/*
1075 				 * XXX - we cannot just fall out at this
1076 				 * point, m has been freed and is invalid!
1077 				 */
1078 			}
1079 		}
1080 
1081 		/*
1082 		 * We get here if the object has a default pager (or unwiring)
1083 		 * or the pager doesn't have the page.
1084 		 */
1085 		if (fs->object == fs->first_object)
1086 			fs->first_m = fs->m;
1087 
1088 		/*
1089 		 * Move on to the next object.  Lock the next object before
1090 		 * unlocking the current one.
1091 		 */
1092 		pindex += OFF_TO_IDX(fs->object->backing_object_offset);
1093 		next_object = fs->object->backing_object;
1094 		if (next_object == NULL) {
1095 			/*
1096 			 * If there's no object left, fill the page in the top
1097 			 * object with zeros.
1098 			 */
1099 			if (fs->object != fs->first_object) {
1100 				vm_object_pip_wakeup(fs->object);
1101 
1102 				fs->object = fs->first_object;
1103 				pindex = first_pindex;
1104 				fs->m = fs->first_m;
1105 			}
1106 			fs->first_m = NULL;
1107 
1108 			/*
1109 			 * Zero the page if necessary and mark it valid.
1110 			 */
1111 			if ((fs->m->flags & PG_ZERO) == 0) {
1112 				vm_page_zero_fill(fs->m);
1113 			} else {
1114 				mycpu->gd_cnt.v_ozfod++;
1115 			}
1116 			mycpu->gd_cnt.v_zfod++;
1117 			fs->m->valid = VM_PAGE_BITS_ALL;
1118 			break;	/* break to PAGE HAS BEEN FOUND */
1119 		} else {
1120 			if (fs->object != fs->first_object) {
1121 				vm_object_pip_wakeup(fs->object);
1122 			}
1123 			KASSERT(fs->object != next_object, ("object loop %p", next_object));
1124 			fs->object = next_object;
1125 			vm_object_pip_add(fs->object, 1);
1126 		}
1127 	}
1128 
1129 	KASSERT((fs->m->flags & PG_BUSY) != 0,
1130 		("vm_fault: not busy after main loop"));
1131 
1132 	/*
1133 	 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
1134 	 * is held.]
1135 	 */
1136 
1137 	/*
1138 	 * If the page is being written, but isn't already owned by the
1139 	 * top-level object, we have to copy it into a new page owned by the
1140 	 * top-level object.
1141 	 */
1142 	if (fs->object != fs->first_object) {
1143 		/*
1144 		 * We only really need to copy if we want to write it.
1145 		 */
1146 		if (fault_type & VM_PROT_WRITE) {
1147 			/*
1148 			 * This allows pages to be virtually copied from a
1149 			 * backing_object into the first_object, where the
1150 			 * backing object has no other refs to it, and cannot
1151 			 * gain any more refs.  Instead of a bcopy, we just
1152 			 * move the page from the backing object to the
1153 			 * first object.  Note that we must mark the page
1154 			 * dirty in the first object so that it will go out
1155 			 * to swap when needed.
1156 			 */
1157 			if (fs->map_generation == fs->map->timestamp &&
1158 				/*
1159 				 * Only one shadow object
1160 				 */
1161 				(fs->object->shadow_count == 1) &&
1162 				/*
1163 				 * No COW refs, except us
1164 				 */
1165 				(fs->object->ref_count == 1) &&
1166 				/*
1167 				 * No one else can look this object up
1168 				 */
1169 				(fs->object->handle == NULL) &&
1170 				/*
1171 				 * No other ways to look the object up
1172 				 */
1173 				((fs->object->type == OBJT_DEFAULT) ||
1174 				 (fs->object->type == OBJT_SWAP)) &&
1175 				/*
1176 				 * We don't chase down the shadow chain
1177 				 */
1178 				(fs->object == fs->first_object->backing_object) &&
1179 
1180 				/*
1181 				 * grab the lock if we need to
1182 				 */
1183 				(fs->lookup_still_valid ||
1184 				 lockmgr(&fs->map->lock, LK_EXCLUSIVE|LK_NOWAIT) == 0)
1185 			    ) {
1186 
1187 				fs->lookup_still_valid = 1;
1188 				/*
1189 				 * get rid of the unnecessary page
1190 				 */
1191 				vm_page_protect(fs->first_m, VM_PROT_NONE);
1192 				vm_page_free(fs->first_m);
1193 				fs->first_m = NULL;
1194 
1195 				/*
1196 				 * grab the page and put it into the
1197 				 * process'es object.  The page is
1198 				 * automatically made dirty.
1199 				 */
1200 				vm_page_rename(fs->m, fs->first_object, first_pindex);
1201 				fs->first_m = fs->m;
1202 				vm_page_busy(fs->first_m);
1203 				fs->m = NULL;
1204 				mycpu->gd_cnt.v_cow_optim++;
1205 			} else {
1206 				/*
1207 				 * Oh, well, lets copy it.
1208 				 */
1209 				vm_page_copy(fs->m, fs->first_m);
1210 			}
1211 
1212 			if (fs->m) {
1213 				/*
1214 				 * We no longer need the old page or object.
1215 				 */
1216 				release_page(fs);
1217 			}
1218 
1219 			/*
1220 			 * fs->object != fs->first_object due to above
1221 			 * conditional
1222 			 */
1223 			vm_object_pip_wakeup(fs->object);
1224 
1225 			/*
1226 			 * Only use the new page below...
1227 			 */
1228 
1229 			mycpu->gd_cnt.v_cow_faults++;
1230 			fs->m = fs->first_m;
1231 			fs->object = fs->first_object;
1232 			pindex = first_pindex;
1233 		} else {
1234 			/*
1235 			 * If it wasn't a write fault avoid having to copy
1236 			 * the page by mapping it read-only.
1237 			 */
1238 			fs->prot &= ~VM_PROT_WRITE;
1239 		}
1240 	}
1241 
1242 	/*
1243 	 * We may have had to unlock a map to do I/O.  If we did then
1244 	 * lookup_still_valid will be FALSE.  If the map generation count
1245 	 * also changed then all sorts of things could have happened while
1246 	 * we were doing the I/O and we need to retry.
1247 	 */
1248 
1249 	if (!fs->lookup_still_valid &&
1250 	    (fs->map->timestamp != fs->map_generation)) {
1251 		release_page(fs);
1252 		unlock_and_deallocate(fs);
1253 		return (KERN_TRY_AGAIN);
1254 	}
1255 
1256 	/*
1257 	 * Put this page into the physical map. We had to do the unlock above
1258 	 * because pmap_enter may cause other faults.   We don't put the page
1259 	 * back on the active queue until later so that the page-out daemon
1260 	 * won't find us (yet).
1261 	 */
1262 	if (fs->prot & VM_PROT_WRITE) {
1263 		vm_page_flag_set(fs->m, PG_WRITEABLE);
1264 		vm_object_set_writeable_dirty(fs->m->object);
1265 
1266 		/*
1267 		 * If the fault is a write, we know that this page is being
1268 		 * written NOW so dirty it explicitly to save on
1269 		 * pmap_is_modified() calls later.
1270 		 *
1271 		 * If this is a NOSYNC mmap we do not want to set PG_NOSYNC
1272 		 * if the page is already dirty to prevent data written with
1273 		 * the expectation of being synced from not being synced.
1274 		 * Likewise if this entry does not request NOSYNC then make
1275 		 * sure the page isn't marked NOSYNC.  Applications sharing
1276 		 * data should use the same flags to avoid ping ponging.
1277 		 *
1278 		 * Also tell the backing pager, if any, that it should remove
1279 		 * any swap backing since the page is now dirty.
1280 		 */
1281 		if (fs->entry->eflags & MAP_ENTRY_NOSYNC) {
1282 			if (fs->m->dirty == 0)
1283 				vm_page_flag_set(fs->m, PG_NOSYNC);
1284 		} else {
1285 			vm_page_flag_clear(fs->m, PG_NOSYNC);
1286 		}
1287 		if (fs->fault_flags & VM_FAULT_DIRTY) {
1288 			crit_enter();
1289 			vm_page_dirty(fs->m);
1290 			vm_pager_page_unswapped(fs->m);
1291 			crit_exit();
1292 		}
1293 	}
1294 
1295 	/*
1296 	 * Page had better still be busy.  We are still locked up and
1297 	 * fs->object will have another PIP reference if it is not equal
1298 	 * to fs->first_object.
1299 	 */
1300 	KASSERT(fs->m->flags & PG_BUSY,
1301 		("vm_fault: page %p not busy!", fs->m));
1302 
1303 	/*
1304 	 * Sanity check: page must be completely valid or it is not fit to
1305 	 * map into user space.  vm_pager_get_pages() ensures this.
1306 	 */
1307 	if (fs->m->valid != VM_PAGE_BITS_ALL) {
1308 		vm_page_zero_invalid(fs->m, TRUE);
1309 		kprintf("Warning: page %p partially invalid on fault\n", fs->m);
1310 	}
1311 
1312 	return (KERN_SUCCESS);
1313 }
1314 
1315 /*
1316  * Wire down a range of virtual addresses in a map.  The entry in question
1317  * should be marked in-transition and the map must be locked.  We must
1318  * release the map temporarily while faulting-in the page to avoid a
1319  * deadlock.  Note that the entry may be clipped while we are blocked but
1320  * will never be freed.
1321  */
1322 int
1323 vm_fault_wire(vm_map_t map, vm_map_entry_t entry, boolean_t user_wire)
1324 {
1325 	boolean_t fictitious;
1326 	vm_offset_t start;
1327 	vm_offset_t end;
1328 	vm_offset_t va;
1329 	vm_paddr_t pa;
1330 	pmap_t pmap;
1331 	int rv;
1332 
1333 	pmap = vm_map_pmap(map);
1334 	start = entry->start;
1335 	end = entry->end;
1336 	fictitious = entry->object.vm_object &&
1337 			(entry->object.vm_object->type == OBJT_DEVICE);
1338 
1339 	vm_map_unlock(map);
1340 	map->timestamp++;
1341 
1342 	/*
1343 	 * We simulate a fault to get the page and enter it in the physical
1344 	 * map.
1345 	 */
1346 	for (va = start; va < end; va += PAGE_SIZE) {
1347 		if (user_wire) {
1348 			rv = vm_fault(map, va, VM_PROT_READ,
1349 					VM_FAULT_USER_WIRE);
1350 		} else {
1351 			rv = vm_fault(map, va, VM_PROT_READ|VM_PROT_WRITE,
1352 					VM_FAULT_CHANGE_WIRING);
1353 		}
1354 		if (rv) {
1355 			while (va > start) {
1356 				va -= PAGE_SIZE;
1357 				if ((pa = pmap_extract(pmap, va)) == 0)
1358 					continue;
1359 				pmap_change_wiring(pmap, va, FALSE);
1360 				if (!fictitious)
1361 					vm_page_unwire(PHYS_TO_VM_PAGE(pa), 1);
1362 			}
1363 			vm_map_lock(map);
1364 			return (rv);
1365 		}
1366 	}
1367 	vm_map_lock(map);
1368 	return (KERN_SUCCESS);
1369 }
1370 
1371 /*
1372  * Unwire a range of virtual addresses in a map.  The map should be
1373  * locked.
1374  */
1375 void
1376 vm_fault_unwire(vm_map_t map, vm_map_entry_t entry)
1377 {
1378 	boolean_t fictitious;
1379 	vm_offset_t start;
1380 	vm_offset_t end;
1381 	vm_offset_t va;
1382 	vm_paddr_t pa;
1383 	pmap_t pmap;
1384 
1385 	pmap = vm_map_pmap(map);
1386 	start = entry->start;
1387 	end = entry->end;
1388 	fictitious = entry->object.vm_object &&
1389 			(entry->object.vm_object->type == OBJT_DEVICE);
1390 
1391 	/*
1392 	 * Since the pages are wired down, we must be able to get their
1393 	 * mappings from the physical map system.
1394 	 */
1395 	for (va = start; va < end; va += PAGE_SIZE) {
1396 		pa = pmap_extract(pmap, va);
1397 		if (pa != 0) {
1398 			pmap_change_wiring(pmap, va, FALSE);
1399 			if (!fictitious)
1400 				vm_page_unwire(PHYS_TO_VM_PAGE(pa), 1);
1401 		}
1402 	}
1403 }
1404 
1405 /*
1406  * Reduce the rate at which memory is allocated to a process based
1407  * on the perceived load on the VM system. As the load increases
1408  * the allocation burst rate goes down and the delay increases.
1409  *
1410  * Rate limiting does not apply when faulting active or inactive
1411  * pages.  When faulting 'cache' pages, rate limiting only applies
1412  * if the system currently has a severe page deficit.
1413  *
1414  * XXX vm_pagesupply should be increased when a page is freed.
1415  *
1416  * We sleep up to 1/10 of a second.
1417  */
1418 static int
1419 vm_fault_ratelimit(struct vmspace *vmspace)
1420 {
1421 	if (vm_load_enable == 0)
1422 		return(0);
1423 	if (vmspace->vm_pagesupply > 0) {
1424 		--vmspace->vm_pagesupply;
1425 		return(0);
1426 	}
1427 #ifdef INVARIANTS
1428 	if (vm_load_debug) {
1429 		kprintf("load %-4d give %d pgs, wait %d, pid %-5d (%s)\n",
1430 			vm_load,
1431 			(1000 - vm_load ) / 10, vm_load * hz / 10000,
1432 			curproc->p_pid, curproc->p_comm);
1433 	}
1434 #endif
1435 	vmspace->vm_pagesupply = (1000 - vm_load) / 10;
1436 	return(vm_load * hz / 10000);
1437 }
1438 
1439 /*
1440  *	Routine:
1441  *		vm_fault_copy_entry
1442  *	Function:
1443  *		Copy all of the pages from a wired-down map entry to another.
1444  *
1445  *	In/out conditions:
1446  *		The source and destination maps must be locked for write.
1447  *		The source map entry must be wired down (or be a sharing map
1448  *		entry corresponding to a main map entry that is wired down).
1449  */
1450 
1451 void
1452 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
1453     vm_map_entry_t dst_entry, vm_map_entry_t src_entry)
1454 {
1455 	vm_object_t dst_object;
1456 	vm_object_t src_object;
1457 	vm_ooffset_t dst_offset;
1458 	vm_ooffset_t src_offset;
1459 	vm_prot_t prot;
1460 	vm_offset_t vaddr;
1461 	vm_page_t dst_m;
1462 	vm_page_t src_m;
1463 
1464 #ifdef	lint
1465 	src_map++;
1466 #endif	/* lint */
1467 
1468 	src_object = src_entry->object.vm_object;
1469 	src_offset = src_entry->offset;
1470 
1471 	/*
1472 	 * Create the top-level object for the destination entry. (Doesn't
1473 	 * actually shadow anything - we copy the pages directly.)
1474 	 */
1475 	vm_map_entry_allocate_object(dst_entry);
1476 	dst_object = dst_entry->object.vm_object;
1477 
1478 	prot = dst_entry->max_protection;
1479 
1480 	/*
1481 	 * Loop through all of the pages in the entry's range, copying each
1482 	 * one from the source object (it should be there) to the destination
1483 	 * object.
1484 	 */
1485 	for (vaddr = dst_entry->start, dst_offset = 0;
1486 	    vaddr < dst_entry->end;
1487 	    vaddr += PAGE_SIZE, dst_offset += PAGE_SIZE) {
1488 
1489 		/*
1490 		 * Allocate a page in the destination object
1491 		 */
1492 		do {
1493 			dst_m = vm_page_alloc(dst_object,
1494 				OFF_TO_IDX(dst_offset), VM_ALLOC_NORMAL);
1495 			if (dst_m == NULL) {
1496 				vm_wait();
1497 			}
1498 		} while (dst_m == NULL);
1499 
1500 		/*
1501 		 * Find the page in the source object, and copy it in.
1502 		 * (Because the source is wired down, the page will be in
1503 		 * memory.)
1504 		 */
1505 		src_m = vm_page_lookup(src_object,
1506 			OFF_TO_IDX(dst_offset + src_offset));
1507 		if (src_m == NULL)
1508 			panic("vm_fault_copy_wired: page missing");
1509 
1510 		vm_page_copy(src_m, dst_m);
1511 
1512 		/*
1513 		 * Enter it in the pmap...
1514 		 */
1515 
1516 		vm_page_flag_clear(dst_m, PG_ZERO);
1517 		pmap_enter(dst_map->pmap, vaddr, dst_m, prot, FALSE);
1518 		vm_page_flag_set(dst_m, PG_WRITEABLE|PG_MAPPED);
1519 
1520 		/*
1521 		 * Mark it no longer busy, and put it on the active list.
1522 		 */
1523 		vm_page_activate(dst_m);
1524 		vm_page_wakeup(dst_m);
1525 	}
1526 }
1527 
1528 
1529 /*
1530  * This routine checks around the requested page for other pages that
1531  * might be able to be faulted in.  This routine brackets the viable
1532  * pages for the pages to be paged in.
1533  *
1534  * Inputs:
1535  *	m, rbehind, rahead
1536  *
1537  * Outputs:
1538  *  marray (array of vm_page_t), reqpage (index of requested page)
1539  *
1540  * Return value:
1541  *  number of pages in marray
1542  */
1543 static int
1544 vm_fault_additional_pages(vm_page_t m, int rbehind, int rahead,
1545     vm_page_t *marray, int *reqpage)
1546 {
1547 	int i,j;
1548 	vm_object_t object;
1549 	vm_pindex_t pindex, startpindex, endpindex, tpindex;
1550 	vm_page_t rtm;
1551 	int cbehind, cahead;
1552 
1553 	object = m->object;
1554 	pindex = m->pindex;
1555 
1556 	/*
1557 	 * we don't fault-ahead for device pager
1558 	 */
1559 	if (object->type == OBJT_DEVICE) {
1560 		*reqpage = 0;
1561 		marray[0] = m;
1562 		return 1;
1563 	}
1564 
1565 	/*
1566 	 * if the requested page is not available, then give up now
1567 	 */
1568 
1569 	if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
1570 		return 0;
1571 	}
1572 
1573 	if ((cbehind == 0) && (cahead == 0)) {
1574 		*reqpage = 0;
1575 		marray[0] = m;
1576 		return 1;
1577 	}
1578 
1579 	if (rahead > cahead) {
1580 		rahead = cahead;
1581 	}
1582 
1583 	if (rbehind > cbehind) {
1584 		rbehind = cbehind;
1585 	}
1586 
1587 	/*
1588 	 * try to do any readahead that we might have free pages for.
1589 	 */
1590 	if ((rahead + rbehind) >
1591 		((vmstats.v_free_count + vmstats.v_cache_count) - vmstats.v_free_reserved)) {
1592 		pagedaemon_wakeup();
1593 		marray[0] = m;
1594 		*reqpage = 0;
1595 		return 1;
1596 	}
1597 
1598 	/*
1599 	 * scan backward for the read behind pages -- in memory
1600 	 *
1601 	 * Assume that if the page is not found an interrupt will not
1602 	 * create it.  Theoretically interrupts can only remove (busy)
1603 	 * pages, not create new associations.
1604 	 */
1605 	if (pindex > 0) {
1606 		if (rbehind > pindex) {
1607 			rbehind = pindex;
1608 			startpindex = 0;
1609 		} else {
1610 			startpindex = pindex - rbehind;
1611 		}
1612 
1613 		crit_enter();
1614 		for ( tpindex = pindex - 1; tpindex >= startpindex; tpindex -= 1) {
1615 			if (vm_page_lookup( object, tpindex)) {
1616 				startpindex = tpindex + 1;
1617 				break;
1618 			}
1619 			if (tpindex == 0)
1620 				break;
1621 		}
1622 
1623 		for(i = 0, tpindex = startpindex; tpindex < pindex; i++, tpindex++) {
1624 
1625 			rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL);
1626 			if (rtm == NULL) {
1627 				crit_exit();
1628 				for (j = 0; j < i; j++) {
1629 					vm_page_free(marray[j]);
1630 				}
1631 				marray[0] = m;
1632 				*reqpage = 0;
1633 				return 1;
1634 			}
1635 
1636 			marray[i] = rtm;
1637 		}
1638 		crit_exit();
1639 	} else {
1640 		startpindex = 0;
1641 		i = 0;
1642 	}
1643 
1644 	marray[i] = m;
1645 	/* page offset of the required page */
1646 	*reqpage = i;
1647 
1648 	tpindex = pindex + 1;
1649 	i++;
1650 
1651 	/*
1652 	 * scan forward for the read ahead pages
1653 	 */
1654 	endpindex = tpindex + rahead;
1655 	if (endpindex > object->size)
1656 		endpindex = object->size;
1657 
1658 	crit_enter();
1659 	for( ; tpindex < endpindex; i++, tpindex++) {
1660 
1661 		if (vm_page_lookup(object, tpindex)) {
1662 			break;
1663 		}
1664 
1665 		rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL);
1666 		if (rtm == NULL) {
1667 			break;
1668 		}
1669 
1670 		marray[i] = rtm;
1671 	}
1672 	crit_exit();
1673 
1674 	/* return number of bytes of pages */
1675 	return i;
1676 }
1677