xref: /dragonfly/sys/vm/vm_fault.c (revision 532828a0)
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * Copyright (c) 1994 John S. Dyson
7  * All rights reserved.
8  * Copyright (c) 1994 David Greenman
9  * All rights reserved.
10  *
11  *
12  * This code is derived from software contributed to Berkeley by
13  * The Mach Operating System project at Carnegie-Mellon University.
14  *
15  * Redistribution and use in source and binary forms, with or without
16  * modification, are permitted provided that the following conditions
17  * are met:
18  * 1. Redistributions of source code must retain the above copyright
19  *    notice, this list of conditions and the following disclaimer.
20  * 2. Redistributions in binary form must reproduce the above copyright
21  *    notice, this list of conditions and the following disclaimer in the
22  *    documentation and/or other materials provided with the distribution.
23  * 3. Neither the name of the University nor the names of its contributors
24  *    may be used to endorse or promote products derived from this software
25  *    without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37  * SUCH DAMAGE.
38  *
39  *	from: @(#)vm_fault.c	8.4 (Berkeley) 1/12/94
40  *
41  *
42  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
43  * All rights reserved.
44  *
45  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
46  *
47  * Permission to use, copy, modify and distribute this software and
48  * its documentation is hereby granted, provided that both the copyright
49  * notice and this permission notice appear in all copies of the
50  * software, derivative works or modified versions, and any portions
51  * thereof, and that both notices appear in supporting documentation.
52  *
53  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
54  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
55  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
56  *
57  * Carnegie Mellon requests users of this software to return to
58  *
59  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
60  *  School of Computer Science
61  *  Carnegie Mellon University
62  *  Pittsburgh PA 15213-3890
63  *
64  * any improvements or extensions that they make and grant Carnegie the
65  * rights to redistribute these changes.
66  *
67  * $FreeBSD: src/sys/vm/vm_fault.c,v 1.108.2.8 2002/02/26 05:49:27 silby Exp $
68  * $DragonFly: src/sys/vm/vm_fault.c,v 1.47 2008/07/01 02:02:56 dillon Exp $
69  */
70 
71 /*
72  *	Page fault handling module.
73  */
74 
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/kernel.h>
78 #include <sys/proc.h>
79 #include <sys/vnode.h>
80 #include <sys/resourcevar.h>
81 #include <sys/vmmeter.h>
82 #include <sys/vkernel.h>
83 #include <sys/lock.h>
84 #include <sys/sysctl.h>
85 
86 #include <cpu/lwbuf.h>
87 
88 #include <vm/vm.h>
89 #include <vm/vm_param.h>
90 #include <vm/pmap.h>
91 #include <vm/vm_map.h>
92 #include <vm/vm_object.h>
93 #include <vm/vm_page.h>
94 #include <vm/vm_pageout.h>
95 #include <vm/vm_kern.h>
96 #include <vm/vm_pager.h>
97 #include <vm/vnode_pager.h>
98 #include <vm/vm_extern.h>
99 
100 #include <sys/thread2.h>
101 #include <vm/vm_page2.h>
102 
103 struct faultstate {
104 	vm_page_t m;
105 	vm_object_t object;
106 	vm_pindex_t pindex;
107 	vm_prot_t prot;
108 	vm_page_t first_m;
109 	vm_object_t first_object;
110 	vm_prot_t first_prot;
111 	vm_map_t map;
112 	vm_map_entry_t entry;
113 	int lookup_still_valid;
114 	int hardfault;
115 	int fault_flags;
116 	int map_generation;
117 	int shared;
118 	int first_shared;
119 	boolean_t wired;
120 	struct vnode *vp;
121 };
122 
123 static int debug_cluster = 0;
124 SYSCTL_INT(_vm, OID_AUTO, debug_cluster, CTLFLAG_RW, &debug_cluster, 0, "");
125 int vm_shared_fault = 1;
126 TUNABLE_INT("vm.shared_fault", &vm_shared_fault);
127 SYSCTL_INT(_vm, OID_AUTO, shared_fault, CTLFLAG_RW, &vm_shared_fault, 0,
128 	   "Allow shared token on vm_object");
129 static long vm_shared_hit = 0;
130 SYSCTL_LONG(_vm, OID_AUTO, shared_hit, CTLFLAG_RW, &vm_shared_hit, 0,
131 	   "Successful shared faults");
132 static long vm_shared_count = 0;
133 SYSCTL_LONG(_vm, OID_AUTO, shared_count, CTLFLAG_RW, &vm_shared_count, 0,
134 	   "Shared fault attempts");
135 static long vm_shared_miss = 0;
136 SYSCTL_LONG(_vm, OID_AUTO, shared_miss, CTLFLAG_RW, &vm_shared_miss, 0,
137 	   "Unsuccessful shared faults");
138 
139 static int vm_fault_object(struct faultstate *, vm_pindex_t, vm_prot_t, int);
140 static int vm_fault_vpagetable(struct faultstate *, vm_pindex_t *,
141 			vpte_t, int, int);
142 #if 0
143 static int vm_fault_additional_pages (vm_page_t, int, int, vm_page_t *, int *);
144 #endif
145 static void vm_set_nosync(vm_page_t m, vm_map_entry_t entry);
146 static void vm_prefault(pmap_t pmap, vm_offset_t addra,
147 			vm_map_entry_t entry, int prot, int fault_flags);
148 static void vm_prefault_quick(pmap_t pmap, vm_offset_t addra,
149 			vm_map_entry_t entry, int prot, int fault_flags);
150 
151 static __inline void
152 release_page(struct faultstate *fs)
153 {
154 	vm_page_deactivate(fs->m);
155 	vm_page_wakeup(fs->m);
156 	fs->m = NULL;
157 }
158 
159 /*
160  * NOTE: Once unlocked any cached fs->entry becomes invalid, any reuse
161  *	 requires relocking and then checking the timestamp.
162  *
163  * NOTE: vm_map_lock_read() does not bump fs->map->timestamp so we do
164  *	 not have to update fs->map_generation here.
165  *
166  * NOTE: This function can fail due to a deadlock against the caller's
167  *	 holding of a vm_page BUSY.
168  */
169 static __inline int
170 relock_map(struct faultstate *fs)
171 {
172 	int error;
173 
174 	if (fs->lookup_still_valid == FALSE && fs->map) {
175 		error = vm_map_lock_read_to(fs->map);
176 		if (error == 0)
177 			fs->lookup_still_valid = TRUE;
178 	} else {
179 		error = 0;
180 	}
181 	return error;
182 }
183 
184 static __inline void
185 unlock_map(struct faultstate *fs)
186 {
187 	if (fs->lookup_still_valid && fs->map) {
188 		vm_map_lookup_done(fs->map, fs->entry, 0);
189 		fs->lookup_still_valid = FALSE;
190 	}
191 }
192 
193 /*
194  * Clean up after a successful call to vm_fault_object() so another call
195  * to vm_fault_object() can be made.
196  */
197 static void
198 _cleanup_successful_fault(struct faultstate *fs, int relock)
199 {
200 	/*
201 	 * We allocated a junk page for a COW operation that did
202 	 * not occur, the page must be freed.
203 	 */
204 	if (fs->object != fs->first_object) {
205 		KKASSERT(fs->first_shared == 0);
206 		vm_page_free(fs->first_m);
207 		vm_object_pip_wakeup(fs->object);
208 		fs->first_m = NULL;
209 	}
210 
211 	/*
212 	 * Reset fs->object.
213 	 */
214 	fs->object = fs->first_object;
215 	if (relock && fs->lookup_still_valid == FALSE) {
216 		if (fs->map)
217 			vm_map_lock_read(fs->map);
218 		fs->lookup_still_valid = TRUE;
219 	}
220 }
221 
222 static void
223 _unlock_things(struct faultstate *fs, int dealloc)
224 {
225 	_cleanup_successful_fault(fs, 0);
226 	if (dealloc) {
227 		/*vm_object_deallocate(fs->first_object);*/
228 		/*fs->first_object = NULL; drop used later on */
229 	}
230 	unlock_map(fs);
231 	if (fs->vp != NULL) {
232 		vput(fs->vp);
233 		fs->vp = NULL;
234 	}
235 }
236 
237 #define unlock_things(fs) _unlock_things(fs, 0)
238 #define unlock_and_deallocate(fs) _unlock_things(fs, 1)
239 #define cleanup_successful_fault(fs) _cleanup_successful_fault(fs, 1)
240 
241 /*
242  * TRYPAGER
243  *
244  * Determine if the pager for the current object *might* contain the page.
245  *
246  * We only need to try the pager if this is not a default object (default
247  * objects are zero-fill and have no real pager), and if we are not taking
248  * a wiring fault or if the FS entry is wired.
249  */
250 #define TRYPAGER(fs)	\
251 		(fs->object->type != OBJT_DEFAULT && \
252 		(((fs->fault_flags & VM_FAULT_WIRE_MASK) == 0) || fs->wired))
253 
254 /*
255  * vm_fault:
256  *
257  * Handle a page fault occuring at the given address, requiring the given
258  * permissions, in the map specified.  If successful, the page is inserted
259  * into the associated physical map.
260  *
261  * NOTE: The given address should be truncated to the proper page address.
262  *
263  * KERN_SUCCESS is returned if the page fault is handled; otherwise,
264  * a standard error specifying why the fault is fatal is returned.
265  *
266  * The map in question must be referenced, and remains so.
267  * The caller may hold no locks.
268  * No other requirements.
269  */
270 int
271 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, int fault_flags)
272 {
273 	int result;
274 	vm_pindex_t first_pindex;
275 	struct faultstate fs;
276 	struct lwp *lp;
277 	int growstack;
278 	int retry = 0;
279 
280 	vm_page_pcpu_cache();
281 	fs.hardfault = 0;
282 	fs.fault_flags = fault_flags;
283 	fs.vp = NULL;
284 	fs.shared = vm_shared_fault;
285 	fs.first_shared = vm_shared_fault;
286 	growstack = 1;
287 	if (vm_shared_fault)
288 		++vm_shared_count;
289 
290 	/*
291 	 * vm_map interactions
292 	 */
293 	if ((lp = curthread->td_lwp) != NULL)
294 		lp->lwp_flags |= LWP_PAGING;
295 	lwkt_gettoken(&map->token);
296 
297 RetryFault:
298 	/*
299 	 * Find the vm_map_entry representing the backing store and resolve
300 	 * the top level object and page index.  This may have the side
301 	 * effect of executing a copy-on-write on the map entry and/or
302 	 * creating a shadow object, but will not COW any actual VM pages.
303 	 *
304 	 * On success fs.map is left read-locked and various other fields
305 	 * are initialized but not otherwise referenced or locked.
306 	 *
307 	 * NOTE!  vm_map_lookup will try to upgrade the fault_type to
308 	 * VM_FAULT_WRITE if the map entry is a virtual page table and also
309 	 * writable, so we can set the 'A'accessed bit in the virtual page
310 	 * table entry.
311 	 */
312 	fs.map = map;
313 	result = vm_map_lookup(&fs.map, vaddr, fault_type,
314 			       &fs.entry, &fs.first_object,
315 			       &first_pindex, &fs.first_prot, &fs.wired);
316 
317 	/*
318 	 * If the lookup failed or the map protections are incompatible,
319 	 * the fault generally fails.  However, if the caller is trying
320 	 * to do a user wiring we have more work to do.
321 	 */
322 	if (result != KERN_SUCCESS) {
323 		if (result != KERN_PROTECTION_FAILURE ||
324 		    (fs.fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE)
325 		{
326 			if (result == KERN_INVALID_ADDRESS && growstack &&
327 			    map != &kernel_map && curproc != NULL) {
328 				result = vm_map_growstack(curproc, vaddr);
329 				if (result == KERN_SUCCESS) {
330 					growstack = 0;
331 					++retry;
332 					goto RetryFault;
333 				}
334 				result = KERN_FAILURE;
335 			}
336 			goto done;
337 		}
338 
339 		/*
340    		 * If we are user-wiring a r/w segment, and it is COW, then
341    		 * we need to do the COW operation.  Note that we don't
342 		 * currently COW RO sections now, because it is NOT desirable
343    		 * to COW .text.  We simply keep .text from ever being COW'ed
344    		 * and take the heat that one cannot debug wired .text sections.
345    		 */
346 		result = vm_map_lookup(&fs.map, vaddr,
347 				       VM_PROT_READ|VM_PROT_WRITE|
348 				        VM_PROT_OVERRIDE_WRITE,
349 				       &fs.entry, &fs.first_object,
350 				       &first_pindex, &fs.first_prot,
351 				       &fs.wired);
352 		if (result != KERN_SUCCESS) {
353 			result = KERN_FAILURE;
354 			goto done;
355 		}
356 
357 		/*
358 		 * If we don't COW now, on a user wire, the user will never
359 		 * be able to write to the mapping.  If we don't make this
360 		 * restriction, the bookkeeping would be nearly impossible.
361 		 *
362 		 * XXX We have a shared lock, this will have a MP race but
363 		 * I don't see how it can hurt anything.
364 		 */
365 		if ((fs.entry->protection & VM_PROT_WRITE) == 0)
366 			fs.entry->max_protection &= ~VM_PROT_WRITE;
367 	}
368 
369 	/*
370 	 * fs.map is read-locked
371 	 *
372 	 * Misc checks.  Save the map generation number to detect races.
373 	 */
374 	fs.map_generation = fs.map->timestamp;
375 	fs.lookup_still_valid = TRUE;
376 	fs.first_m = NULL;
377 	fs.object = fs.first_object;	/* so unlock_and_deallocate works */
378 
379 	if (fs.entry->eflags & (MAP_ENTRY_NOFAULT | MAP_ENTRY_KSTACK)) {
380 		if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
381 			panic("vm_fault: fault on nofault entry, addr: %p",
382 			      (void *)vaddr);
383 		}
384 		if ((fs.entry->eflags & MAP_ENTRY_KSTACK) &&
385 		    vaddr >= fs.entry->start &&
386 		    vaddr < fs.entry->start + PAGE_SIZE) {
387 			panic("vm_fault: fault on stack guard, addr: %p",
388 			      (void *)vaddr);
389 		}
390 	}
391 
392 	/*
393 	 * A system map entry may return a NULL object.  No object means
394 	 * no pager means an unrecoverable kernel fault.
395 	 */
396 	if (fs.first_object == NULL) {
397 		panic("vm_fault: unrecoverable fault at %p in entry %p",
398 			(void *)vaddr, fs.entry);
399 	}
400 
401 	/*
402 	 * Fail here if not a trivial anonymous page fault and TDF_NOFAULT
403 	 * is set.
404 	 */
405 	if ((curthread->td_flags & TDF_NOFAULT) &&
406 	    (retry ||
407 	     fs.first_object->type == OBJT_VNODE ||
408 	     fs.first_object->backing_object)) {
409 		result = KERN_FAILURE;
410 		unlock_things(&fs);
411 		goto done2;
412 	}
413 
414 	/*
415 	 * If the entry is wired we cannot change the page protection.
416 	 */
417 	if (fs.wired)
418 		fault_type = fs.first_prot;
419 
420 	/*
421 	 * We generally want to avoid unnecessary exclusive modes on backing
422 	 * and terminal objects because this can seriously interfere with
423 	 * heavily fork()'d processes (particularly /bin/sh scripts).
424 	 *
425 	 * However, we also want to avoid unnecessary retries due to needed
426 	 * shared->exclusive promotion for common faults.  Exclusive mode is
427 	 * always needed if any page insertion, rename, or free occurs in an
428 	 * object (and also indirectly if any I/O is done).
429 	 *
430 	 * The main issue here is going to be fs.first_shared.  If the
431 	 * first_object has a backing object which isn't shadowed and the
432 	 * process is single-threaded we might as well use an exclusive
433 	 * lock/chain right off the bat.
434 	 */
435 	if (fs.first_shared && fs.first_object->backing_object &&
436 	    LIST_EMPTY(&fs.first_object->shadow_head) &&
437 	    curthread->td_proc && curthread->td_proc->p_nthreads == 1) {
438 		fs.first_shared = 0;
439 	}
440 
441 	/*
442 	 * swap_pager_unswapped() needs an exclusive object
443 	 */
444 	if (fault_flags & (VM_FAULT_UNSWAP | VM_FAULT_DIRTY)) {
445 		fs.first_shared = 0;
446 	}
447 
448 	/*
449 	 * Obtain a top-level object lock, shared or exclusive depending
450 	 * on fs.first_shared.  If a shared lock winds up being insufficient
451 	 * we will retry with an exclusive lock.
452 	 *
453 	 * The vnode pager lock is always shared.
454 	 */
455 	if (fs.first_shared)
456 		vm_object_hold_shared(fs.first_object);
457 	else
458 		vm_object_hold(fs.first_object);
459 	if (fs.vp == NULL)
460 		fs.vp = vnode_pager_lock(fs.first_object);
461 
462 	/*
463 	 * The page we want is at (first_object, first_pindex), but if the
464 	 * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the
465 	 * page table to figure out the actual pindex.
466 	 *
467 	 * NOTE!  DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION
468 	 * ONLY
469 	 */
470 	if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
471 		result = vm_fault_vpagetable(&fs, &first_pindex,
472 					     fs.entry->aux.master_pde,
473 					     fault_type, 1);
474 		if (result == KERN_TRY_AGAIN) {
475 			vm_object_drop(fs.first_object);
476 			++retry;
477 			goto RetryFault;
478 		}
479 		if (result != KERN_SUCCESS)
480 			goto done;
481 	}
482 
483 	/*
484 	 * Now we have the actual (object, pindex), fault in the page.  If
485 	 * vm_fault_object() fails it will unlock and deallocate the FS
486 	 * data.   If it succeeds everything remains locked and fs->object
487 	 * will have an additional PIP count if it is not equal to
488 	 * fs->first_object
489 	 *
490 	 * vm_fault_object will set fs->prot for the pmap operation.  It is
491 	 * allowed to set VM_PROT_WRITE if fault_type == VM_PROT_READ if the
492 	 * page can be safely written.  However, it will force a read-only
493 	 * mapping for a read fault if the memory is managed by a virtual
494 	 * page table.
495 	 *
496 	 * If the fault code uses the shared object lock shortcut
497 	 * we must not try to burst (we can't allocate VM pages).
498 	 */
499 	result = vm_fault_object(&fs, first_pindex, fault_type, 1);
500 	if (result == KERN_TRY_AGAIN) {
501 		vm_object_drop(fs.first_object);
502 		++retry;
503 		goto RetryFault;
504 	}
505 	if (result != KERN_SUCCESS)
506 		goto done;
507 
508 	/*
509 	 * On success vm_fault_object() does not unlock or deallocate, and fs.m
510 	 * will contain a busied page.
511 	 *
512 	 * Enter the page into the pmap and do pmap-related adjustments.
513 	 */
514 	KKASSERT(fs.lookup_still_valid == TRUE);
515 	vm_page_flag_set(fs.m, PG_REFERENCED);
516 	pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot, fs.wired, fs.entry);
517 	mycpu->gd_cnt.v_vm_faults++;
518 	if (curthread->td_lwp)
519 		++curthread->td_lwp->lwp_ru.ru_minflt;
520 
521 	/*KKASSERT(fs.m->queue == PQ_NONE); page-in op may deactivate page */
522 	KKASSERT(fs.m->flags & PG_BUSY);
523 
524 	/*
525 	 * If the page is not wired down, then put it where the pageout daemon
526 	 * can find it.
527 	 */
528 	if (fs.fault_flags & VM_FAULT_WIRE_MASK) {
529 		if (fs.wired)
530 			vm_page_wire(fs.m);
531 		else
532 			vm_page_unwire(fs.m, 1);
533 	} else {
534 		vm_page_activate(fs.m);
535 	}
536 	vm_page_wakeup(fs.m);
537 
538 	/*
539 	 * Burst in a few more pages if possible.  The fs.map should still
540 	 * be locked.  To avoid interlocking against a vnode->getblk
541 	 * operation we had to be sure to unbusy our primary vm_page above
542 	 * first.
543 	 *
544 	 * A normal burst can continue down backing store, only execute
545 	 * if we are holding an exclusive lock, otherwise the exclusive
546 	 * locks the burst code gets might cause excessive SMP collisions.
547 	 *
548 	 * A quick burst can be utilized when there is no backing object
549 	 * (i.e. a shared file mmap).
550 	 */
551 	if ((fault_flags & VM_FAULT_BURST) &&
552 	    (fs.fault_flags & VM_FAULT_WIRE_MASK) == 0 &&
553 	    fs.wired == 0) {
554 		if (fs.first_shared == 0 && fs.shared == 0) {
555 			vm_prefault(fs.map->pmap, vaddr,
556 				    fs.entry, fs.prot, fault_flags);
557 		} else {
558 			vm_prefault_quick(fs.map->pmap, vaddr,
559 					  fs.entry, fs.prot, fault_flags);
560 		}
561 	}
562 
563 	/*
564 	 * Unlock everything, and return
565 	 */
566 	unlock_things(&fs);
567 
568 	if (curthread->td_lwp) {
569 		if (fs.hardfault) {
570 			curthread->td_lwp->lwp_ru.ru_majflt++;
571 		} else {
572 			curthread->td_lwp->lwp_ru.ru_minflt++;
573 		}
574 	}
575 
576 	/*vm_object_deallocate(fs.first_object);*/
577 	/*fs.m = NULL; */
578 	/*fs.first_object = NULL; must still drop later */
579 
580 	result = KERN_SUCCESS;
581 done:
582 	if (fs.first_object)
583 		vm_object_drop(fs.first_object);
584 done2:
585 	lwkt_reltoken(&map->token);
586 	if (lp)
587 		lp->lwp_flags &= ~LWP_PAGING;
588 	if (vm_shared_fault && fs.shared == 0)
589 		++vm_shared_miss;
590 	return (result);
591 }
592 
593 /*
594  * Fault in the specified virtual address in the current process map,
595  * returning a held VM page or NULL.  See vm_fault_page() for more
596  * information.
597  *
598  * No requirements.
599  */
600 vm_page_t
601 vm_fault_page_quick(vm_offset_t va, vm_prot_t fault_type, int *errorp)
602 {
603 	struct lwp *lp = curthread->td_lwp;
604 	vm_page_t m;
605 
606 	m = vm_fault_page(&lp->lwp_vmspace->vm_map, va,
607 			  fault_type, VM_FAULT_NORMAL, errorp);
608 	return(m);
609 }
610 
611 /*
612  * Fault in the specified virtual address in the specified map, doing all
613  * necessary manipulation of the object store and all necessary I/O.  Return
614  * a held VM page or NULL, and set *errorp.  The related pmap is not
615  * updated.
616  *
617  * The returned page will be properly dirtied if VM_PROT_WRITE was specified,
618  * and marked PG_REFERENCED as well.
619  *
620  * If the page cannot be faulted writable and VM_PROT_WRITE was specified, an
621  * error will be returned.
622  *
623  * No requirements.
624  */
625 vm_page_t
626 vm_fault_page(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
627 	      int fault_flags, int *errorp)
628 {
629 	vm_pindex_t first_pindex;
630 	struct faultstate fs;
631 	int result;
632 	int retry = 0;
633 	vm_prot_t orig_fault_type = fault_type;
634 
635 	fs.hardfault = 0;
636 	fs.fault_flags = fault_flags;
637 	KKASSERT((fault_flags & VM_FAULT_WIRE_MASK) == 0);
638 
639 	/*
640 	 * Dive the pmap (concurrency possible).  If we find the
641 	 * appropriate page we can terminate early and quickly.
642 	 */
643 	fs.m = pmap_fault_page_quick(map->pmap, vaddr, fault_type);
644 	if (fs.m) {
645 		*errorp = 0;
646 		return(fs.m);
647 	}
648 
649 	/*
650 	 * Otherwise take a concurrency hit and do a formal page
651 	 * fault.
652 	 */
653 	fs.shared = vm_shared_fault;
654 	fs.first_shared = vm_shared_fault;
655 	fs.vp = NULL;
656 	lwkt_gettoken(&map->token);
657 
658 	/*
659 	 * swap_pager_unswapped() needs an exclusive object
660 	 */
661 	if (fault_flags & (VM_FAULT_UNSWAP | VM_FAULT_DIRTY)) {
662 		fs.first_shared = 0;
663 	}
664 
665 RetryFault:
666 	/*
667 	 * Find the vm_map_entry representing the backing store and resolve
668 	 * the top level object and page index.  This may have the side
669 	 * effect of executing a copy-on-write on the map entry and/or
670 	 * creating a shadow object, but will not COW any actual VM pages.
671 	 *
672 	 * On success fs.map is left read-locked and various other fields
673 	 * are initialized but not otherwise referenced or locked.
674 	 *
675 	 * NOTE!  vm_map_lookup will upgrade the fault_type to VM_FAULT_WRITE
676 	 * if the map entry is a virtual page table and also writable,
677 	 * so we can set the 'A'accessed bit in the virtual page table entry.
678 	 */
679 	fs.map = map;
680 	result = vm_map_lookup(&fs.map, vaddr, fault_type,
681 			       &fs.entry, &fs.first_object,
682 			       &first_pindex, &fs.first_prot, &fs.wired);
683 
684 	if (result != KERN_SUCCESS) {
685 		*errorp = result;
686 		fs.m = NULL;
687 		goto done;
688 	}
689 
690 	/*
691 	 * fs.map is read-locked
692 	 *
693 	 * Misc checks.  Save the map generation number to detect races.
694 	 */
695 	fs.map_generation = fs.map->timestamp;
696 	fs.lookup_still_valid = TRUE;
697 	fs.first_m = NULL;
698 	fs.object = fs.first_object;	/* so unlock_and_deallocate works */
699 
700 	if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
701 		panic("vm_fault: fault on nofault entry, addr: %lx",
702 		    (u_long)vaddr);
703 	}
704 
705 	/*
706 	 * A system map entry may return a NULL object.  No object means
707 	 * no pager means an unrecoverable kernel fault.
708 	 */
709 	if (fs.first_object == NULL) {
710 		panic("vm_fault: unrecoverable fault at %p in entry %p",
711 			(void *)vaddr, fs.entry);
712 	}
713 
714 	/*
715 	 * Fail here if not a trivial anonymous page fault and TDF_NOFAULT
716 	 * is set.
717 	 */
718 	if ((curthread->td_flags & TDF_NOFAULT) &&
719 	    (retry ||
720 	     fs.first_object->type == OBJT_VNODE ||
721 	     fs.first_object->backing_object)) {
722 		*errorp = KERN_FAILURE;
723 		unlock_things(&fs);
724 		goto done2;
725 	}
726 
727 	/*
728 	 * If the entry is wired we cannot change the page protection.
729 	 */
730 	if (fs.wired)
731 		fault_type = fs.first_prot;
732 
733 	/*
734 	 * Make a reference to this object to prevent its disposal while we
735 	 * are messing with it.  Once we have the reference, the map is free
736 	 * to be diddled.  Since objects reference their shadows (and copies),
737 	 * they will stay around as well.
738 	 *
739 	 * The reference should also prevent an unexpected collapse of the
740 	 * parent that might move pages from the current object into the
741 	 * parent unexpectedly, resulting in corruption.
742 	 *
743 	 * Bump the paging-in-progress count to prevent size changes (e.g.
744 	 * truncation operations) during I/O.  This must be done after
745 	 * obtaining the vnode lock in order to avoid possible deadlocks.
746 	 */
747 	if (fs.first_shared)
748 		vm_object_hold_shared(fs.first_object);
749 	else
750 		vm_object_hold(fs.first_object);
751 	if (fs.vp == NULL)
752 		fs.vp = vnode_pager_lock(fs.first_object);	/* shared */
753 
754 	/*
755 	 * The page we want is at (first_object, first_pindex), but if the
756 	 * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the
757 	 * page table to figure out the actual pindex.
758 	 *
759 	 * NOTE!  DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION
760 	 * ONLY
761 	 */
762 	if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
763 		result = vm_fault_vpagetable(&fs, &first_pindex,
764 					     fs.entry->aux.master_pde,
765 					     fault_type, 1);
766 		if (result == KERN_TRY_AGAIN) {
767 			vm_object_drop(fs.first_object);
768 			++retry;
769 			goto RetryFault;
770 		}
771 		if (result != KERN_SUCCESS) {
772 			*errorp = result;
773 			fs.m = NULL;
774 			goto done;
775 		}
776 	}
777 
778 	/*
779 	 * Now we have the actual (object, pindex), fault in the page.  If
780 	 * vm_fault_object() fails it will unlock and deallocate the FS
781 	 * data.   If it succeeds everything remains locked and fs->object
782 	 * will have an additinal PIP count if it is not equal to
783 	 * fs->first_object
784 	 */
785 	fs.m = NULL;
786 	result = vm_fault_object(&fs, first_pindex, fault_type, 1);
787 
788 	if (result == KERN_TRY_AGAIN) {
789 		vm_object_drop(fs.first_object);
790 		++retry;
791 		goto RetryFault;
792 	}
793 	if (result != KERN_SUCCESS) {
794 		*errorp = result;
795 		fs.m = NULL;
796 		goto done;
797 	}
798 
799 	if ((orig_fault_type & VM_PROT_WRITE) &&
800 	    (fs.prot & VM_PROT_WRITE) == 0) {
801 		*errorp = KERN_PROTECTION_FAILURE;
802 		unlock_and_deallocate(&fs);
803 		fs.m = NULL;
804 		goto done;
805 	}
806 
807 	/*
808 	 * DO NOT UPDATE THE PMAP!!!  This function may be called for
809 	 * a pmap unrelated to the current process pmap, in which case
810 	 * the current cpu core will not be listed in the pmap's pm_active
811 	 * mask.  Thus invalidation interlocks will fail to work properly.
812 	 *
813 	 * (for example, 'ps' uses procfs to read program arguments from
814 	 * each process's stack).
815 	 *
816 	 * In addition to the above this function will be called to acquire
817 	 * a page that might already be faulted in, re-faulting it
818 	 * continuously is a waste of time.
819 	 *
820 	 * XXX could this have been the cause of our random seg-fault
821 	 *     issues?  procfs accesses user stacks.
822 	 */
823 	vm_page_flag_set(fs.m, PG_REFERENCED);
824 #if 0
825 	pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot, fs.wired, NULL);
826 	mycpu->gd_cnt.v_vm_faults++;
827 	if (curthread->td_lwp)
828 		++curthread->td_lwp->lwp_ru.ru_minflt;
829 #endif
830 
831 	/*
832 	 * On success vm_fault_object() does not unlock or deallocate, and fs.m
833 	 * will contain a busied page.  So we must unlock here after having
834 	 * messed with the pmap.
835 	 */
836 	unlock_things(&fs);
837 
838 	/*
839 	 * Return a held page.  We are not doing any pmap manipulation so do
840 	 * not set PG_MAPPED.  However, adjust the page flags according to
841 	 * the fault type because the caller may not use a managed pmapping
842 	 * (so we don't want to lose the fact that the page will be dirtied
843 	 * if a write fault was specified).
844 	 */
845 	vm_page_hold(fs.m);
846 	vm_page_activate(fs.m);
847 	if (fault_type & VM_PROT_WRITE)
848 		vm_page_dirty(fs.m);
849 
850 	if (curthread->td_lwp) {
851 		if (fs.hardfault) {
852 			curthread->td_lwp->lwp_ru.ru_majflt++;
853 		} else {
854 			curthread->td_lwp->lwp_ru.ru_minflt++;
855 		}
856 	}
857 
858 	/*
859 	 * Unlock everything, and return the held page.
860 	 */
861 	vm_page_wakeup(fs.m);
862 	/*vm_object_deallocate(fs.first_object);*/
863 	/*fs.first_object = NULL; */
864 	*errorp = 0;
865 
866 done:
867 	if (fs.first_object)
868 		vm_object_drop(fs.first_object);
869 done2:
870 	lwkt_reltoken(&map->token);
871 	return(fs.m);
872 }
873 
874 /*
875  * Fault in the specified (object,offset), dirty the returned page as
876  * needed.  If the requested fault_type cannot be done NULL and an
877  * error is returned.
878  *
879  * A held (but not busied) page is returned.
880  *
881  * The passed in object must be held as specified by the shared
882  * argument.
883  */
884 vm_page_t
885 vm_fault_object_page(vm_object_t object, vm_ooffset_t offset,
886 		     vm_prot_t fault_type, int fault_flags,
887 		     int *sharedp, int *errorp)
888 {
889 	int result;
890 	vm_pindex_t first_pindex;
891 	struct faultstate fs;
892 	struct vm_map_entry entry;
893 
894 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
895 	bzero(&entry, sizeof(entry));
896 	entry.object.vm_object = object;
897 	entry.maptype = VM_MAPTYPE_NORMAL;
898 	entry.protection = entry.max_protection = fault_type;
899 
900 	fs.hardfault = 0;
901 	fs.fault_flags = fault_flags;
902 	fs.map = NULL;
903 	fs.shared = vm_shared_fault;
904 	fs.first_shared = *sharedp;
905 	fs.vp = NULL;
906 	KKASSERT((fault_flags & VM_FAULT_WIRE_MASK) == 0);
907 
908 	/*
909 	 * Might require swap block adjustments
910 	 */
911 	if (fs.first_shared && (fault_flags & (VM_FAULT_UNSWAP | VM_FAULT_DIRTY))) {
912 		fs.first_shared = 0;
913 		vm_object_upgrade(object);
914 	}
915 
916 	/*
917 	 * Retry loop as needed (typically for shared->exclusive transitions)
918 	 */
919 RetryFault:
920 	*sharedp = fs.first_shared;
921 	first_pindex = OFF_TO_IDX(offset);
922 	fs.first_object = object;
923 	fs.entry = &entry;
924 	fs.first_prot = fault_type;
925 	fs.wired = 0;
926 	/*fs.map_generation = 0; unused */
927 
928 	/*
929 	 * Make a reference to this object to prevent its disposal while we
930 	 * are messing with it.  Once we have the reference, the map is free
931 	 * to be diddled.  Since objects reference their shadows (and copies),
932 	 * they will stay around as well.
933 	 *
934 	 * The reference should also prevent an unexpected collapse of the
935 	 * parent that might move pages from the current object into the
936 	 * parent unexpectedly, resulting in corruption.
937 	 *
938 	 * Bump the paging-in-progress count to prevent size changes (e.g.
939 	 * truncation operations) during I/O.  This must be done after
940 	 * obtaining the vnode lock in order to avoid possible deadlocks.
941 	 */
942 	if (fs.vp == NULL)
943 		fs.vp = vnode_pager_lock(fs.first_object);
944 
945 	fs.lookup_still_valid = TRUE;
946 	fs.first_m = NULL;
947 	fs.object = fs.first_object;	/* so unlock_and_deallocate works */
948 
949 #if 0
950 	/* XXX future - ability to operate on VM object using vpagetable */
951 	if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
952 		result = vm_fault_vpagetable(&fs, &first_pindex,
953 					     fs.entry->aux.master_pde,
954 					     fault_type, 0);
955 		if (result == KERN_TRY_AGAIN) {
956 			if (fs.first_shared == 0 && *sharedp)
957 				vm_object_upgrade(object);
958 			goto RetryFault;
959 		}
960 		if (result != KERN_SUCCESS) {
961 			*errorp = result;
962 			return (NULL);
963 		}
964 	}
965 #endif
966 
967 	/*
968 	 * Now we have the actual (object, pindex), fault in the page.  If
969 	 * vm_fault_object() fails it will unlock and deallocate the FS
970 	 * data.   If it succeeds everything remains locked and fs->object
971 	 * will have an additinal PIP count if it is not equal to
972 	 * fs->first_object
973 	 *
974 	 * On KERN_TRY_AGAIN vm_fault_object() leaves fs.first_object intact.
975 	 * We may have to upgrade its lock to handle the requested fault.
976 	 */
977 	result = vm_fault_object(&fs, first_pindex, fault_type, 0);
978 
979 	if (result == KERN_TRY_AGAIN) {
980 		if (fs.first_shared == 0 && *sharedp)
981 			vm_object_upgrade(object);
982 		goto RetryFault;
983 	}
984 	if (result != KERN_SUCCESS) {
985 		*errorp = result;
986 		return(NULL);
987 	}
988 
989 	if ((fault_type & VM_PROT_WRITE) && (fs.prot & VM_PROT_WRITE) == 0) {
990 		*errorp = KERN_PROTECTION_FAILURE;
991 		unlock_and_deallocate(&fs);
992 		return(NULL);
993 	}
994 
995 	/*
996 	 * On success vm_fault_object() does not unlock or deallocate, so we
997 	 * do it here.  Note that the returned fs.m will be busied.
998 	 */
999 	unlock_things(&fs);
1000 
1001 	/*
1002 	 * Return a held page.  We are not doing any pmap manipulation so do
1003 	 * not set PG_MAPPED.  However, adjust the page flags according to
1004 	 * the fault type because the caller may not use a managed pmapping
1005 	 * (so we don't want to lose the fact that the page will be dirtied
1006 	 * if a write fault was specified).
1007 	 */
1008 	vm_page_hold(fs.m);
1009 	vm_page_activate(fs.m);
1010 	if ((fault_type & VM_PROT_WRITE) || (fault_flags & VM_FAULT_DIRTY))
1011 		vm_page_dirty(fs.m);
1012 	if (fault_flags & VM_FAULT_UNSWAP)
1013 		swap_pager_unswapped(fs.m);
1014 
1015 	/*
1016 	 * Indicate that the page was accessed.
1017 	 */
1018 	vm_page_flag_set(fs.m, PG_REFERENCED);
1019 
1020 	if (curthread->td_lwp) {
1021 		if (fs.hardfault) {
1022 			curthread->td_lwp->lwp_ru.ru_majflt++;
1023 		} else {
1024 			curthread->td_lwp->lwp_ru.ru_minflt++;
1025 		}
1026 	}
1027 
1028 	/*
1029 	 * Unlock everything, and return the held page.
1030 	 */
1031 	vm_page_wakeup(fs.m);
1032 	/*vm_object_deallocate(fs.first_object);*/
1033 	/*fs.first_object = NULL; */
1034 
1035 	*errorp = 0;
1036 	return(fs.m);
1037 }
1038 
1039 /*
1040  * Translate the virtual page number (first_pindex) that is relative
1041  * to the address space into a logical page number that is relative to the
1042  * backing object.  Use the virtual page table pointed to by (vpte).
1043  *
1044  * This implements an N-level page table.  Any level can terminate the
1045  * scan by setting VPTE_PS.   A linear mapping is accomplished by setting
1046  * VPTE_PS in the master page directory entry set via mcontrol(MADV_SETMAP).
1047  */
1048 static
1049 int
1050 vm_fault_vpagetable(struct faultstate *fs, vm_pindex_t *pindex,
1051 		    vpte_t vpte, int fault_type, int allow_nofault)
1052 {
1053 	struct lwbuf *lwb;
1054 	struct lwbuf lwb_cache;
1055 	int vshift = VPTE_FRAME_END - PAGE_SHIFT; /* index bits remaining */
1056 	int result = KERN_SUCCESS;
1057 	vpte_t *ptep;
1058 
1059 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(fs->first_object));
1060 	for (;;) {
1061 		/*
1062 		 * We cannot proceed if the vpte is not valid, not readable
1063 		 * for a read fault, or not writable for a write fault.
1064 		 */
1065 		if ((vpte & VPTE_V) == 0) {
1066 			unlock_and_deallocate(fs);
1067 			return (KERN_FAILURE);
1068 		}
1069 		if ((fault_type & VM_PROT_WRITE) && (vpte & VPTE_RW) == 0) {
1070 			unlock_and_deallocate(fs);
1071 			return (KERN_FAILURE);
1072 		}
1073 		if ((vpte & VPTE_PS) || vshift == 0)
1074 			break;
1075 		KKASSERT(vshift >= VPTE_PAGE_BITS);
1076 
1077 		/*
1078 		 * Get the page table page.  Nominally we only read the page
1079 		 * table, but since we are actively setting VPTE_M and VPTE_A,
1080 		 * tell vm_fault_object() that we are writing it.
1081 		 *
1082 		 * There is currently no real need to optimize this.
1083 		 */
1084 		result = vm_fault_object(fs, (vpte & VPTE_FRAME) >> PAGE_SHIFT,
1085 					 VM_PROT_READ|VM_PROT_WRITE,
1086 					 allow_nofault);
1087 		if (result != KERN_SUCCESS)
1088 			return (result);
1089 
1090 		/*
1091 		 * Process the returned fs.m and look up the page table
1092 		 * entry in the page table page.
1093 		 */
1094 		vshift -= VPTE_PAGE_BITS;
1095 		lwb = lwbuf_alloc(fs->m, &lwb_cache);
1096 		ptep = ((vpte_t *)lwbuf_kva(lwb) +
1097 		        ((*pindex >> vshift) & VPTE_PAGE_MASK));
1098 		vpte = *ptep;
1099 
1100 		/*
1101 		 * Page table write-back.  If the vpte is valid for the
1102 		 * requested operation, do a write-back to the page table.
1103 		 *
1104 		 * XXX VPTE_M is not set properly for page directory pages.
1105 		 * It doesn't get set in the page directory if the page table
1106 		 * is modified during a read access.
1107 		 */
1108 		vm_page_activate(fs->m);
1109 		if ((fault_type & VM_PROT_WRITE) && (vpte & VPTE_V) &&
1110 		    (vpte & VPTE_RW)) {
1111 			if ((vpte & (VPTE_M|VPTE_A)) != (VPTE_M|VPTE_A)) {
1112 				atomic_set_long(ptep, VPTE_M | VPTE_A);
1113 				vm_page_dirty(fs->m);
1114 			}
1115 		}
1116 		if ((fault_type & VM_PROT_READ) && (vpte & VPTE_V)) {
1117 			if ((vpte & VPTE_A) == 0) {
1118 				atomic_set_long(ptep, VPTE_A);
1119 				vm_page_dirty(fs->m);
1120 			}
1121 		}
1122 		lwbuf_free(lwb);
1123 		vm_page_flag_set(fs->m, PG_REFERENCED);
1124 		vm_page_wakeup(fs->m);
1125 		fs->m = NULL;
1126 		cleanup_successful_fault(fs);
1127 	}
1128 	/*
1129 	 * Combine remaining address bits with the vpte.
1130 	 */
1131 	/* JG how many bits from each? */
1132 	*pindex = ((vpte & VPTE_FRAME) >> PAGE_SHIFT) +
1133 		  (*pindex & ((1L << vshift) - 1));
1134 	return (KERN_SUCCESS);
1135 }
1136 
1137 
1138 /*
1139  * This is the core of the vm_fault code.
1140  *
1141  * Do all operations required to fault-in (fs.first_object, pindex).  Run
1142  * through the shadow chain as necessary and do required COW or virtual
1143  * copy operations.  The caller has already fully resolved the vm_map_entry
1144  * and, if appropriate, has created a copy-on-write layer.  All we need to
1145  * do is iterate the object chain.
1146  *
1147  * On failure (fs) is unlocked and deallocated and the caller may return or
1148  * retry depending on the failure code.  On success (fs) is NOT unlocked or
1149  * deallocated, fs.m will contained a resolved, busied page, and fs.object
1150  * will have an additional PIP count if it is not equal to fs.first_object.
1151  *
1152  * If locks based on fs->first_shared or fs->shared are insufficient,
1153  * clear the appropriate field(s) and return RETRY.  COWs require that
1154  * first_shared be 0, while page allocations (or frees) require that
1155  * shared be 0.  Renames require that both be 0.
1156  *
1157  * fs->first_object must be held on call.
1158  */
1159 static
1160 int
1161 vm_fault_object(struct faultstate *fs, vm_pindex_t first_pindex,
1162 		vm_prot_t fault_type, int allow_nofault)
1163 {
1164 	vm_object_t next_object;
1165 	vm_pindex_t pindex;
1166 	int error;
1167 
1168 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(fs->first_object));
1169 	fs->prot = fs->first_prot;
1170 	fs->object = fs->first_object;
1171 	pindex = first_pindex;
1172 
1173 	vm_object_chain_acquire(fs->first_object, fs->shared);
1174 	vm_object_pip_add(fs->first_object, 1);
1175 
1176 	/*
1177 	 * If a read fault occurs we try to make the page writable if
1178 	 * possible.  There are three cases where we cannot make the
1179 	 * page mapping writable:
1180 	 *
1181 	 * (1) The mapping is read-only or the VM object is read-only,
1182 	 *     fs->prot above will simply not have VM_PROT_WRITE set.
1183 	 *
1184 	 * (2) If the mapping is a virtual page table we need to be able
1185 	 *     to detect writes so we can set VPTE_M in the virtual page
1186 	 *     table.
1187 	 *
1188 	 * (3) If the VM page is read-only or copy-on-write, upgrading would
1189 	 *     just result in an unnecessary COW fault.
1190 	 *
1191 	 * VM_PROT_VPAGED is set if faulting via a virtual page table and
1192 	 * causes adjustments to the 'M'odify bit to also turn off write
1193 	 * access to force a re-fault.
1194 	 */
1195 	if (fs->entry->maptype == VM_MAPTYPE_VPAGETABLE) {
1196 		if ((fault_type & VM_PROT_WRITE) == 0)
1197 			fs->prot &= ~VM_PROT_WRITE;
1198 	}
1199 
1200 	if (curthread->td_lwp && curthread->td_lwp->lwp_vmspace &&
1201 	    pmap_emulate_ad_bits(&curthread->td_lwp->lwp_vmspace->vm_pmap)) {
1202 		if ((fault_type & VM_PROT_WRITE) == 0)
1203 			fs->prot &= ~VM_PROT_WRITE;
1204 	}
1205 
1206 	/* vm_object_hold(fs->object); implied b/c object == first_object */
1207 
1208 	for (;;) {
1209 		/*
1210 		 * The entire backing chain from first_object to object
1211 		 * inclusive is chainlocked.
1212 		 *
1213 		 * If the object is dead, we stop here
1214 		 */
1215 		if (fs->object->flags & OBJ_DEAD) {
1216 			vm_object_pip_wakeup(fs->first_object);
1217 			vm_object_chain_release_all(fs->first_object,
1218 						    fs->object);
1219 			if (fs->object != fs->first_object)
1220 				vm_object_drop(fs->object);
1221 			unlock_and_deallocate(fs);
1222 			return (KERN_PROTECTION_FAILURE);
1223 		}
1224 
1225 		/*
1226 		 * See if the page is resident.  Wait/Retry if the page is
1227 		 * busy (lots of stuff may have changed so we can't continue
1228 		 * in that case).
1229 		 *
1230 		 * We can theoretically allow the soft-busy case on a read
1231 		 * fault if the page is marked valid, but since such
1232 		 * pages are typically already pmap'd, putting that
1233 		 * special case in might be more effort then it is
1234 		 * worth.  We cannot under any circumstances mess
1235 		 * around with a vm_page_t->busy page except, perhaps,
1236 		 * to pmap it.
1237 		 */
1238 		fs->m = vm_page_lookup_busy_try(fs->object, pindex,
1239 						TRUE, &error);
1240 		if (error) {
1241 			vm_object_pip_wakeup(fs->first_object);
1242 			vm_object_chain_release_all(fs->first_object,
1243 						    fs->object);
1244 			if (fs->object != fs->first_object)
1245 				vm_object_drop(fs->object);
1246 			unlock_things(fs);
1247 			vm_page_sleep_busy(fs->m, TRUE, "vmpfw");
1248 			mycpu->gd_cnt.v_intrans++;
1249 			/*vm_object_deallocate(fs->first_object);*/
1250 			/*fs->first_object = NULL;*/
1251 			fs->m = NULL;
1252 			return (KERN_TRY_AGAIN);
1253 		}
1254 		if (fs->m) {
1255 			/*
1256 			 * The page is busied for us.
1257 			 *
1258 			 * If reactivating a page from PQ_CACHE we may have
1259 			 * to rate-limit.
1260 			 */
1261 			int queue = fs->m->queue;
1262 			vm_page_unqueue_nowakeup(fs->m);
1263 
1264 			if ((queue - fs->m->pc) == PQ_CACHE &&
1265 			    vm_page_count_severe()) {
1266 				vm_page_activate(fs->m);
1267 				vm_page_wakeup(fs->m);
1268 				fs->m = NULL;
1269 				vm_object_pip_wakeup(fs->first_object);
1270 				vm_object_chain_release_all(fs->first_object,
1271 							    fs->object);
1272 				if (fs->object != fs->first_object)
1273 					vm_object_drop(fs->object);
1274 				unlock_and_deallocate(fs);
1275 				if (allow_nofault == 0 ||
1276 				    (curthread->td_flags & TDF_NOFAULT) == 0) {
1277 					vm_wait_pfault();
1278 				}
1279 				return (KERN_TRY_AGAIN);
1280 			}
1281 
1282 			/*
1283 			 * If it still isn't completely valid (readable),
1284 			 * or if a read-ahead-mark is set on the VM page,
1285 			 * jump to readrest, else we found the page and
1286 			 * can return.
1287 			 *
1288 			 * We can release the spl once we have marked the
1289 			 * page busy.
1290 			 */
1291 			if (fs->m->object != &kernel_object) {
1292 				if ((fs->m->valid & VM_PAGE_BITS_ALL) !=
1293 				    VM_PAGE_BITS_ALL) {
1294 					goto readrest;
1295 				}
1296 				if (fs->m->flags & PG_RAM) {
1297 					if (debug_cluster)
1298 						kprintf("R");
1299 					vm_page_flag_clear(fs->m, PG_RAM);
1300 					goto readrest;
1301 				}
1302 			}
1303 			break; /* break to PAGE HAS BEEN FOUND */
1304 		}
1305 
1306 		/*
1307 		 * Page is not resident, If this is the search termination
1308 		 * or the pager might contain the page, allocate a new page.
1309 		 */
1310 		if (TRYPAGER(fs) || fs->object == fs->first_object) {
1311 			/*
1312 			 * Allocating, must be exclusive.
1313 			 */
1314 			if (fs->object == fs->first_object &&
1315 			    fs->first_shared) {
1316 				fs->first_shared = 0;
1317 				vm_object_pip_wakeup(fs->first_object);
1318 				vm_object_chain_release_all(fs->first_object,
1319 							    fs->object);
1320 				if (fs->object != fs->first_object)
1321 					vm_object_drop(fs->object);
1322 				unlock_and_deallocate(fs);
1323 				return (KERN_TRY_AGAIN);
1324 			}
1325 			if (fs->object != fs->first_object &&
1326 			    fs->shared) {
1327 				fs->first_shared = 0;
1328 				fs->shared = 0;
1329 				vm_object_pip_wakeup(fs->first_object);
1330 				vm_object_chain_release_all(fs->first_object,
1331 							    fs->object);
1332 				if (fs->object != fs->first_object)
1333 					vm_object_drop(fs->object);
1334 				unlock_and_deallocate(fs);
1335 				return (KERN_TRY_AGAIN);
1336 			}
1337 
1338 			/*
1339 			 * If the page is beyond the object size we fail
1340 			 */
1341 			if (pindex >= fs->object->size) {
1342 				vm_object_pip_wakeup(fs->first_object);
1343 				vm_object_chain_release_all(fs->first_object,
1344 							    fs->object);
1345 				if (fs->object != fs->first_object)
1346 					vm_object_drop(fs->object);
1347 				unlock_and_deallocate(fs);
1348 				return (KERN_PROTECTION_FAILURE);
1349 			}
1350 
1351 			/*
1352 			 * Allocate a new page for this object/offset pair.
1353 			 *
1354 			 * It is possible for the allocation to race, so
1355 			 * handle the case.
1356 			 */
1357 			fs->m = NULL;
1358 			if (!vm_page_count_severe()) {
1359 				fs->m = vm_page_alloc(fs->object, pindex,
1360 				    ((fs->vp || fs->object->backing_object) ?
1361 					VM_ALLOC_NULL_OK | VM_ALLOC_NORMAL :
1362 					VM_ALLOC_NULL_OK | VM_ALLOC_NORMAL |
1363 					VM_ALLOC_USE_GD | VM_ALLOC_ZERO));
1364 			}
1365 			if (fs->m == NULL) {
1366 				vm_object_pip_wakeup(fs->first_object);
1367 				vm_object_chain_release_all(fs->first_object,
1368 							    fs->object);
1369 				if (fs->object != fs->first_object)
1370 					vm_object_drop(fs->object);
1371 				unlock_and_deallocate(fs);
1372 				if (allow_nofault == 0 ||
1373 				    (curthread->td_flags & TDF_NOFAULT) == 0) {
1374 					vm_wait_pfault();
1375 				}
1376 				return (KERN_TRY_AGAIN);
1377 			}
1378 
1379 			/*
1380 			 * Fall through to readrest.  We have a new page which
1381 			 * will have to be paged (since m->valid will be 0).
1382 			 */
1383 		}
1384 
1385 readrest:
1386 		/*
1387 		 * We have found an invalid or partially valid page, a
1388 		 * page with a read-ahead mark which might be partially or
1389 		 * fully valid (and maybe dirty too), or we have allocated
1390 		 * a new page.
1391 		 *
1392 		 * Attempt to fault-in the page if there is a chance that the
1393 		 * pager has it, and potentially fault in additional pages
1394 		 * at the same time.
1395 		 *
1396 		 * If TRYPAGER is true then fs.m will be non-NULL and busied
1397 		 * for us.
1398 		 */
1399 		if (TRYPAGER(fs)) {
1400 			int rv;
1401 			int seqaccess;
1402 			u_char behavior = vm_map_entry_behavior(fs->entry);
1403 
1404 			if (behavior == MAP_ENTRY_BEHAV_RANDOM)
1405 				seqaccess = 0;
1406 			else
1407 				seqaccess = -1;
1408 
1409 			/*
1410 			 * Doing I/O may synchronously insert additional
1411 			 * pages so we can't be shared at this point either.
1412 			 *
1413 			 * NOTE: We can't free fs->m here in the allocated
1414 			 *	 case (fs->object != fs->first_object) as
1415 			 *	 this would require an exclusively locked
1416 			 *	 VM object.
1417 			 */
1418 			if (fs->object == fs->first_object &&
1419 			    fs->first_shared) {
1420 				vm_page_deactivate(fs->m);
1421 				vm_page_wakeup(fs->m);
1422 				fs->m = NULL;
1423 				fs->first_shared = 0;
1424 				vm_object_pip_wakeup(fs->first_object);
1425 				vm_object_chain_release_all(fs->first_object,
1426 							    fs->object);
1427 				if (fs->object != fs->first_object)
1428 					vm_object_drop(fs->object);
1429 				unlock_and_deallocate(fs);
1430 				return (KERN_TRY_AGAIN);
1431 			}
1432 			if (fs->object != fs->first_object &&
1433 			    fs->shared) {
1434 				vm_page_deactivate(fs->m);
1435 				vm_page_wakeup(fs->m);
1436 				fs->m = NULL;
1437 				fs->first_shared = 0;
1438 				fs->shared = 0;
1439 				vm_object_pip_wakeup(fs->first_object);
1440 				vm_object_chain_release_all(fs->first_object,
1441 							    fs->object);
1442 				if (fs->object != fs->first_object)
1443 					vm_object_drop(fs->object);
1444 				unlock_and_deallocate(fs);
1445 				return (KERN_TRY_AGAIN);
1446 			}
1447 
1448 			/*
1449 			 * Avoid deadlocking against the map when doing I/O.
1450 			 * fs.object and the page is PG_BUSY'd.
1451 			 *
1452 			 * NOTE: Once unlocked, fs->entry can become stale
1453 			 *	 so this will NULL it out.
1454 			 *
1455 			 * NOTE: fs->entry is invalid until we relock the
1456 			 *	 map and verify that the timestamp has not
1457 			 *	 changed.
1458 			 */
1459 			unlock_map(fs);
1460 
1461 			/*
1462 			 * Acquire the page data.  We still hold a ref on
1463 			 * fs.object and the page has been PG_BUSY's.
1464 			 *
1465 			 * The pager may replace the page (for example, in
1466 			 * order to enter a fictitious page into the
1467 			 * object).  If it does so it is responsible for
1468 			 * cleaning up the passed page and properly setting
1469 			 * the new page PG_BUSY.
1470 			 *
1471 			 * If we got here through a PG_RAM read-ahead
1472 			 * mark the page may be partially dirty and thus
1473 			 * not freeable.  Don't bother checking to see
1474 			 * if the pager has the page because we can't free
1475 			 * it anyway.  We have to depend on the get_page
1476 			 * operation filling in any gaps whether there is
1477 			 * backing store or not.
1478 			 */
1479 			rv = vm_pager_get_page(fs->object, &fs->m, seqaccess);
1480 
1481 			if (rv == VM_PAGER_OK) {
1482 				/*
1483 				 * Relookup in case pager changed page. Pager
1484 				 * is responsible for disposition of old page
1485 				 * if moved.
1486 				 *
1487 				 * XXX other code segments do relookups too.
1488 				 * It's a bad abstraction that needs to be
1489 				 * fixed/removed.
1490 				 */
1491 				fs->m = vm_page_lookup(fs->object, pindex);
1492 				if (fs->m == NULL) {
1493 					vm_object_pip_wakeup(fs->first_object);
1494 					vm_object_chain_release_all(
1495 						fs->first_object, fs->object);
1496 					if (fs->object != fs->first_object)
1497 						vm_object_drop(fs->object);
1498 					unlock_and_deallocate(fs);
1499 					return (KERN_TRY_AGAIN);
1500 				}
1501 				++fs->hardfault;
1502 				break; /* break to PAGE HAS BEEN FOUND */
1503 			}
1504 
1505 			/*
1506 			 * Remove the bogus page (which does not exist at this
1507 			 * object/offset); before doing so, we must get back
1508 			 * our object lock to preserve our invariant.
1509 			 *
1510 			 * Also wake up any other process that may want to bring
1511 			 * in this page.
1512 			 *
1513 			 * If this is the top-level object, we must leave the
1514 			 * busy page to prevent another process from rushing
1515 			 * past us, and inserting the page in that object at
1516 			 * the same time that we are.
1517 			 */
1518 			if (rv == VM_PAGER_ERROR) {
1519 				if (curproc) {
1520 					kprintf("vm_fault: pager read error, "
1521 						"pid %d (%s)\n",
1522 						curproc->p_pid,
1523 						curproc->p_comm);
1524 				} else {
1525 					kprintf("vm_fault: pager read error, "
1526 						"thread %p (%s)\n",
1527 						curthread,
1528 						curproc->p_comm);
1529 				}
1530 			}
1531 
1532 			/*
1533 			 * Data outside the range of the pager or an I/O error
1534 			 *
1535 			 * The page may have been wired during the pagein,
1536 			 * e.g. by the buffer cache, and cannot simply be
1537 			 * freed.  Call vnode_pager_freepage() to deal with it.
1538 			 *
1539 			 * Also note that we cannot free the page if we are
1540 			 * holding the related object shared. XXX not sure
1541 			 * what to do in that case.
1542 			 */
1543 			if (fs->object != fs->first_object) {
1544 				vnode_pager_freepage(fs->m);
1545 				fs->m = NULL;
1546 				/*
1547 				 * XXX - we cannot just fall out at this
1548 				 * point, m has been freed and is invalid!
1549 				 */
1550 			}
1551 			/*
1552 			 * XXX - the check for kernel_map is a kludge to work
1553 			 * around having the machine panic on a kernel space
1554 			 * fault w/ I/O error.
1555 			 */
1556 			if (((fs->map != &kernel_map) &&
1557 			    (rv == VM_PAGER_ERROR)) || (rv == VM_PAGER_BAD)) {
1558 				if (fs->m) {
1559 					if (fs->first_shared) {
1560 						vm_page_deactivate(fs->m);
1561 						vm_page_wakeup(fs->m);
1562 					} else {
1563 						vnode_pager_freepage(fs->m);
1564 					}
1565 					fs->m = NULL;
1566 				}
1567 				vm_object_pip_wakeup(fs->first_object);
1568 				vm_object_chain_release_all(fs->first_object,
1569 							    fs->object);
1570 				if (fs->object != fs->first_object)
1571 					vm_object_drop(fs->object);
1572 				unlock_and_deallocate(fs);
1573 				if (rv == VM_PAGER_ERROR)
1574 					return (KERN_FAILURE);
1575 				else
1576 					return (KERN_PROTECTION_FAILURE);
1577 				/* NOT REACHED */
1578 			}
1579 		}
1580 
1581 		/*
1582 		 * We get here if the object has a default pager (or unwiring)
1583 		 * or the pager doesn't have the page.
1584 		 *
1585 		 * fs->first_m will be used for the COW unless we find a
1586 		 * deeper page to be mapped read-only, in which case the
1587 		 * unlock*(fs) will free first_m.
1588 		 */
1589 		if (fs->object == fs->first_object)
1590 			fs->first_m = fs->m;
1591 
1592 		/*
1593 		 * Move on to the next object.  The chain lock should prevent
1594 		 * the backing_object from getting ripped out from under us.
1595 		 *
1596 		 * The object lock for the next object is governed by
1597 		 * fs->shared.
1598 		 */
1599 		if ((next_object = fs->object->backing_object) != NULL) {
1600 			if (fs->shared)
1601 				vm_object_hold_shared(next_object);
1602 			else
1603 				vm_object_hold(next_object);
1604 			vm_object_chain_acquire(next_object, fs->shared);
1605 			KKASSERT(next_object == fs->object->backing_object);
1606 			pindex += OFF_TO_IDX(fs->object->backing_object_offset);
1607 		}
1608 
1609 		if (next_object == NULL) {
1610 			/*
1611 			 * If there's no object left, fill the page in the top
1612 			 * object with zeros.
1613 			 */
1614 			if (fs->object != fs->first_object) {
1615 #if 0
1616 				if (fs->first_object->backing_object !=
1617 				    fs->object) {
1618 					vm_object_hold(fs->first_object->backing_object);
1619 				}
1620 #endif
1621 				vm_object_chain_release_all(
1622 					fs->first_object->backing_object,
1623 					fs->object);
1624 #if 0
1625 				if (fs->first_object->backing_object !=
1626 				    fs->object) {
1627 					vm_object_drop(fs->first_object->backing_object);
1628 				}
1629 #endif
1630 				vm_object_pip_wakeup(fs->object);
1631 				vm_object_drop(fs->object);
1632 				fs->object = fs->first_object;
1633 				pindex = first_pindex;
1634 				fs->m = fs->first_m;
1635 			}
1636 			fs->first_m = NULL;
1637 
1638 			/*
1639 			 * Zero the page if necessary and mark it valid.
1640 			 */
1641 			if ((fs->m->flags & PG_ZERO) == 0) {
1642 				vm_page_zero_fill(fs->m);
1643 			} else {
1644 #ifdef PMAP_DEBUG
1645 				pmap_page_assertzero(VM_PAGE_TO_PHYS(fs->m));
1646 #endif
1647 				vm_page_flag_clear(fs->m, PG_ZERO);
1648 				mycpu->gd_cnt.v_ozfod++;
1649 			}
1650 			mycpu->gd_cnt.v_zfod++;
1651 			fs->m->valid = VM_PAGE_BITS_ALL;
1652 			break;	/* break to PAGE HAS BEEN FOUND */
1653 		}
1654 		if (fs->object != fs->first_object) {
1655 			vm_object_pip_wakeup(fs->object);
1656 			vm_object_lock_swap();
1657 			vm_object_drop(fs->object);
1658 		}
1659 		KASSERT(fs->object != next_object,
1660 			("object loop %p", next_object));
1661 		fs->object = next_object;
1662 		vm_object_pip_add(fs->object, 1);
1663 	}
1664 
1665 	/*
1666 	 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
1667 	 * is held.]
1668 	 *
1669 	 * object still held.
1670 	 *
1671 	 * local shared variable may be different from fs->shared.
1672 	 *
1673 	 * If the page is being written, but isn't already owned by the
1674 	 * top-level object, we have to copy it into a new page owned by the
1675 	 * top-level object.
1676 	 */
1677 	KASSERT((fs->m->flags & PG_BUSY) != 0,
1678 		("vm_fault: not busy after main loop"));
1679 
1680 	if (fs->object != fs->first_object) {
1681 		/*
1682 		 * We only really need to copy if we want to write it.
1683 		 */
1684 		if (fault_type & VM_PROT_WRITE) {
1685 			/*
1686 			 * This allows pages to be virtually copied from a
1687 			 * backing_object into the first_object, where the
1688 			 * backing object has no other refs to it, and cannot
1689 			 * gain any more refs.  Instead of a bcopy, we just
1690 			 * move the page from the backing object to the
1691 			 * first object.  Note that we must mark the page
1692 			 * dirty in the first object so that it will go out
1693 			 * to swap when needed.
1694 			 */
1695 			if (
1696 				/*
1697 				 * Must be holding exclusive locks
1698 				 */
1699 				fs->first_shared == 0 &&
1700 				fs->shared == 0 &&
1701 				/*
1702 				 * Map, if present, has not changed
1703 				 */
1704 				(fs->map == NULL ||
1705 				fs->map_generation == fs->map->timestamp) &&
1706 				/*
1707 				 * Only one shadow object
1708 				 */
1709 				(fs->object->shadow_count == 1) &&
1710 				/*
1711 				 * No COW refs, except us
1712 				 */
1713 				(fs->object->ref_count == 1) &&
1714 				/*
1715 				 * No one else can look this object up
1716 				 */
1717 				(fs->object->handle == NULL) &&
1718 				/*
1719 				 * No other ways to look the object up
1720 				 */
1721 				((fs->object->type == OBJT_DEFAULT) ||
1722 				 (fs->object->type == OBJT_SWAP)) &&
1723 				/*
1724 				 * We don't chase down the shadow chain
1725 				 */
1726 				(fs->object == fs->first_object->backing_object) &&
1727 
1728 				/*
1729 				 * grab the lock if we need to
1730 				 */
1731 				(fs->lookup_still_valid ||
1732 				 fs->map == NULL ||
1733 				 lockmgr(&fs->map->lock, LK_EXCLUSIVE|LK_NOWAIT) == 0)
1734 			    ) {
1735 				/*
1736 				 * (first_m) and (m) are both busied.  We have
1737 				 * move (m) into (first_m)'s object/pindex
1738 				 * in an atomic fashion, then free (first_m).
1739 				 *
1740 				 * first_object is held so second remove
1741 				 * followed by the rename should wind
1742 				 * up being atomic.  vm_page_free() might
1743 				 * block so we don't do it until after the
1744 				 * rename.
1745 				 */
1746 				fs->lookup_still_valid = 1;
1747 				vm_page_protect(fs->first_m, VM_PROT_NONE);
1748 				vm_page_remove(fs->first_m);
1749 				vm_page_rename(fs->m, fs->first_object,
1750 					       first_pindex);
1751 				vm_page_free(fs->first_m);
1752 				fs->first_m = fs->m;
1753 				fs->m = NULL;
1754 				mycpu->gd_cnt.v_cow_optim++;
1755 			} else {
1756 				/*
1757 				 * Oh, well, lets copy it.
1758 				 *
1759 				 * Why are we unmapping the original page
1760 				 * here?  Well, in short, not all accessors
1761 				 * of user memory go through the pmap.  The
1762 				 * procfs code doesn't have access user memory
1763 				 * via a local pmap, so vm_fault_page*()
1764 				 * can't call pmap_enter().  And the umtx*()
1765 				 * code may modify the COW'd page via a DMAP
1766 				 * or kernel mapping and not via the pmap,
1767 				 * leaving the original page still mapped
1768 				 * read-only into the pmap.
1769 				 *
1770 				 * So we have to remove the page from at
1771 				 * least the current pmap if it is in it.
1772 				 * Just remove it from all pmaps.
1773 				 */
1774 				KKASSERT(fs->first_shared == 0);
1775 				vm_page_copy(fs->m, fs->first_m);
1776 				vm_page_protect(fs->m, VM_PROT_NONE);
1777 				vm_page_event(fs->m, VMEVENT_COW);
1778 			}
1779 
1780 			/*
1781 			 * We no longer need the old page or object.
1782 			 */
1783 			if (fs->m)
1784 				release_page(fs);
1785 
1786 			/*
1787 			 * We intend to revert to first_object, undo the
1788 			 * chain lock through to that.
1789 			 */
1790 #if 0
1791 			if (fs->first_object->backing_object != fs->object)
1792 				vm_object_hold(fs->first_object->backing_object);
1793 #endif
1794 			vm_object_chain_release_all(
1795 					fs->first_object->backing_object,
1796 					fs->object);
1797 #if 0
1798 			if (fs->first_object->backing_object != fs->object)
1799 				vm_object_drop(fs->first_object->backing_object);
1800 #endif
1801 
1802 			/*
1803 			 * fs->object != fs->first_object due to above
1804 			 * conditional
1805 			 */
1806 			vm_object_pip_wakeup(fs->object);
1807 			vm_object_drop(fs->object);
1808 
1809 			/*
1810 			 * Only use the new page below...
1811 			 */
1812 			mycpu->gd_cnt.v_cow_faults++;
1813 			fs->m = fs->first_m;
1814 			fs->object = fs->first_object;
1815 			pindex = first_pindex;
1816 		} else {
1817 			/*
1818 			 * If it wasn't a write fault avoid having to copy
1819 			 * the page by mapping it read-only.
1820 			 */
1821 			fs->prot &= ~VM_PROT_WRITE;
1822 		}
1823 	}
1824 
1825 	/*
1826 	 * Relock the map if necessary, then check the generation count.
1827 	 * relock_map() will update fs->timestamp to account for the
1828 	 * relocking if necessary.
1829 	 *
1830 	 * If the count has changed after relocking then all sorts of
1831 	 * crap may have happened and we have to retry.
1832 	 *
1833 	 * NOTE: The relock_map() can fail due to a deadlock against
1834 	 *	 the vm_page we are holding BUSY.
1835 	 */
1836 	if (fs->lookup_still_valid == FALSE && fs->map) {
1837 		if (relock_map(fs) ||
1838 		    fs->map->timestamp != fs->map_generation) {
1839 			release_page(fs);
1840 			vm_object_pip_wakeup(fs->first_object);
1841 			vm_object_chain_release_all(fs->first_object,
1842 						    fs->object);
1843 			if (fs->object != fs->first_object)
1844 				vm_object_drop(fs->object);
1845 			unlock_and_deallocate(fs);
1846 			return (KERN_TRY_AGAIN);
1847 		}
1848 	}
1849 
1850 	/*
1851 	 * If the fault is a write, we know that this page is being
1852 	 * written NOW so dirty it explicitly to save on pmap_is_modified()
1853 	 * calls later.
1854 	 *
1855 	 * If this is a NOSYNC mmap we do not want to set PG_NOSYNC
1856 	 * if the page is already dirty to prevent data written with
1857 	 * the expectation of being synced from not being synced.
1858 	 * Likewise if this entry does not request NOSYNC then make
1859 	 * sure the page isn't marked NOSYNC.  Applications sharing
1860 	 * data should use the same flags to avoid ping ponging.
1861 	 *
1862 	 * Also tell the backing pager, if any, that it should remove
1863 	 * any swap backing since the page is now dirty.
1864 	 */
1865 	vm_page_activate(fs->m);
1866 	if (fs->prot & VM_PROT_WRITE) {
1867 		vm_object_set_writeable_dirty(fs->m->object);
1868 		vm_set_nosync(fs->m, fs->entry);
1869 		if (fs->fault_flags & VM_FAULT_DIRTY) {
1870 			vm_page_dirty(fs->m);
1871 			swap_pager_unswapped(fs->m);
1872 		}
1873 	}
1874 
1875 	vm_object_pip_wakeup(fs->first_object);
1876 	vm_object_chain_release_all(fs->first_object, fs->object);
1877 	if (fs->object != fs->first_object)
1878 		vm_object_drop(fs->object);
1879 
1880 	/*
1881 	 * Page had better still be busy.  We are still locked up and
1882 	 * fs->object will have another PIP reference if it is not equal
1883 	 * to fs->first_object.
1884 	 */
1885 	KASSERT(fs->m->flags & PG_BUSY,
1886 		("vm_fault: page %p not busy!", fs->m));
1887 
1888 	/*
1889 	 * Sanity check: page must be completely valid or it is not fit to
1890 	 * map into user space.  vm_pager_get_pages() ensures this.
1891 	 */
1892 	if (fs->m->valid != VM_PAGE_BITS_ALL) {
1893 		vm_page_zero_invalid(fs->m, TRUE);
1894 		kprintf("Warning: page %p partially invalid on fault\n", fs->m);
1895 	}
1896 	vm_page_flag_clear(fs->m, PG_ZERO);
1897 
1898 	return (KERN_SUCCESS);
1899 }
1900 
1901 /*
1902  * Hold each of the physical pages that are mapped by the specified range of
1903  * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid
1904  * and allow the specified types of access, "prot".  If all of the implied
1905  * pages are successfully held, then the number of held pages is returned
1906  * together with pointers to those pages in the array "ma".  However, if any
1907  * of the pages cannot be held, -1 is returned.
1908  */
1909 int
1910 vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len,
1911     vm_prot_t prot, vm_page_t *ma, int max_count)
1912 {
1913 	vm_offset_t start, end;
1914 	int i, npages, error;
1915 
1916 	start = trunc_page(addr);
1917 	end = round_page(addr + len);
1918 
1919 	npages = howmany(end - start, PAGE_SIZE);
1920 
1921 	if (npages > max_count)
1922 		return -1;
1923 
1924 	for (i = 0; i < npages; i++) {
1925 		// XXX error handling
1926 		ma[i] = vm_fault_page_quick(start + (i * PAGE_SIZE),
1927 			prot,
1928 			&error);
1929 	}
1930 
1931 	return npages;
1932 }
1933 
1934 /*
1935  * Wire down a range of virtual addresses in a map.  The entry in question
1936  * should be marked in-transition and the map must be locked.  We must
1937  * release the map temporarily while faulting-in the page to avoid a
1938  * deadlock.  Note that the entry may be clipped while we are blocked but
1939  * will never be freed.
1940  *
1941  * No requirements.
1942  */
1943 int
1944 vm_fault_wire(vm_map_t map, vm_map_entry_t entry, boolean_t user_wire)
1945 {
1946 	boolean_t fictitious;
1947 	vm_offset_t start;
1948 	vm_offset_t end;
1949 	vm_offset_t va;
1950 	vm_paddr_t pa;
1951 	vm_page_t m;
1952 	pmap_t pmap;
1953 	int rv;
1954 
1955 	lwkt_gettoken(&map->token);
1956 
1957 	pmap = vm_map_pmap(map);
1958 	start = entry->start;
1959 	end = entry->end;
1960 	fictitious = entry->object.vm_object &&
1961 			((entry->object.vm_object->type == OBJT_DEVICE) ||
1962 			 (entry->object.vm_object->type == OBJT_MGTDEVICE));
1963 	if (entry->eflags & MAP_ENTRY_KSTACK)
1964 		start += PAGE_SIZE;
1965 	map->timestamp++;
1966 	vm_map_unlock(map);
1967 
1968 	/*
1969 	 * We simulate a fault to get the page and enter it in the physical
1970 	 * map.
1971 	 */
1972 	for (va = start; va < end; va += PAGE_SIZE) {
1973 		if (user_wire) {
1974 			rv = vm_fault(map, va, VM_PROT_READ,
1975 					VM_FAULT_USER_WIRE);
1976 		} else {
1977 			rv = vm_fault(map, va, VM_PROT_READ|VM_PROT_WRITE,
1978 					VM_FAULT_CHANGE_WIRING);
1979 		}
1980 		if (rv) {
1981 			while (va > start) {
1982 				va -= PAGE_SIZE;
1983 				if ((pa = pmap_extract(pmap, va)) == 0)
1984 					continue;
1985 				pmap_change_wiring(pmap, va, FALSE, entry);
1986 				if (!fictitious) {
1987 					m = PHYS_TO_VM_PAGE(pa);
1988 					vm_page_busy_wait(m, FALSE, "vmwrpg");
1989 					vm_page_unwire(m, 1);
1990 					vm_page_wakeup(m);
1991 				}
1992 			}
1993 			goto done;
1994 		}
1995 	}
1996 	rv = KERN_SUCCESS;
1997 done:
1998 	vm_map_lock(map);
1999 	lwkt_reltoken(&map->token);
2000 	return (rv);
2001 }
2002 
2003 /*
2004  * Unwire a range of virtual addresses in a map.  The map should be
2005  * locked.
2006  */
2007 void
2008 vm_fault_unwire(vm_map_t map, vm_map_entry_t entry)
2009 {
2010 	boolean_t fictitious;
2011 	vm_offset_t start;
2012 	vm_offset_t end;
2013 	vm_offset_t va;
2014 	vm_paddr_t pa;
2015 	vm_page_t m;
2016 	pmap_t pmap;
2017 
2018 	lwkt_gettoken(&map->token);
2019 
2020 	pmap = vm_map_pmap(map);
2021 	start = entry->start;
2022 	end = entry->end;
2023 	fictitious = entry->object.vm_object &&
2024 			((entry->object.vm_object->type == OBJT_DEVICE) ||
2025 			 (entry->object.vm_object->type == OBJT_MGTDEVICE));
2026 	if (entry->eflags & MAP_ENTRY_KSTACK)
2027 		start += PAGE_SIZE;
2028 
2029 	/*
2030 	 * Since the pages are wired down, we must be able to get their
2031 	 * mappings from the physical map system.
2032 	 */
2033 	for (va = start; va < end; va += PAGE_SIZE) {
2034 		pa = pmap_extract(pmap, va);
2035 		if (pa != 0) {
2036 			pmap_change_wiring(pmap, va, FALSE, entry);
2037 			if (!fictitious) {
2038 				m = PHYS_TO_VM_PAGE(pa);
2039 				vm_page_busy_wait(m, FALSE, "vmwupg");
2040 				vm_page_unwire(m, 1);
2041 				vm_page_wakeup(m);
2042 			}
2043 		}
2044 	}
2045 	lwkt_reltoken(&map->token);
2046 }
2047 
2048 /*
2049  * Copy all of the pages from a wired-down map entry to another.
2050  *
2051  * The source and destination maps must be locked for write.
2052  * The source and destination maps token must be held
2053  * The source map entry must be wired down (or be a sharing map
2054  * entry corresponding to a main map entry that is wired down).
2055  *
2056  * No other requirements.
2057  *
2058  * XXX do segment optimization
2059  */
2060 void
2061 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
2062 		    vm_map_entry_t dst_entry, vm_map_entry_t src_entry)
2063 {
2064 	vm_object_t dst_object;
2065 	vm_object_t src_object;
2066 	vm_ooffset_t dst_offset;
2067 	vm_ooffset_t src_offset;
2068 	vm_prot_t prot;
2069 	vm_offset_t vaddr;
2070 	vm_page_t dst_m;
2071 	vm_page_t src_m;
2072 
2073 	src_object = src_entry->object.vm_object;
2074 	src_offset = src_entry->offset;
2075 
2076 	/*
2077 	 * Create the top-level object for the destination entry. (Doesn't
2078 	 * actually shadow anything - we copy the pages directly.)
2079 	 */
2080 	vm_map_entry_allocate_object(dst_entry);
2081 	dst_object = dst_entry->object.vm_object;
2082 
2083 	prot = dst_entry->max_protection;
2084 
2085 	/*
2086 	 * Loop through all of the pages in the entry's range, copying each
2087 	 * one from the source object (it should be there) to the destination
2088 	 * object.
2089 	 */
2090 	vm_object_hold(src_object);
2091 	vm_object_hold(dst_object);
2092 	for (vaddr = dst_entry->start, dst_offset = 0;
2093 	    vaddr < dst_entry->end;
2094 	    vaddr += PAGE_SIZE, dst_offset += PAGE_SIZE) {
2095 
2096 		/*
2097 		 * Allocate a page in the destination object
2098 		 */
2099 		do {
2100 			dst_m = vm_page_alloc(dst_object,
2101 					      OFF_TO_IDX(dst_offset),
2102 					      VM_ALLOC_NORMAL);
2103 			if (dst_m == NULL) {
2104 				vm_wait(0);
2105 			}
2106 		} while (dst_m == NULL);
2107 
2108 		/*
2109 		 * Find the page in the source object, and copy it in.
2110 		 * (Because the source is wired down, the page will be in
2111 		 * memory.)
2112 		 */
2113 		src_m = vm_page_lookup(src_object,
2114 				       OFF_TO_IDX(dst_offset + src_offset));
2115 		if (src_m == NULL)
2116 			panic("vm_fault_copy_wired: page missing");
2117 
2118 		vm_page_copy(src_m, dst_m);
2119 		vm_page_event(src_m, VMEVENT_COW);
2120 
2121 		/*
2122 		 * Enter it in the pmap...
2123 		 */
2124 
2125 		vm_page_flag_clear(dst_m, PG_ZERO);
2126 		pmap_enter(dst_map->pmap, vaddr, dst_m, prot, FALSE, dst_entry);
2127 
2128 		/*
2129 		 * Mark it no longer busy, and put it on the active list.
2130 		 */
2131 		vm_page_activate(dst_m);
2132 		vm_page_wakeup(dst_m);
2133 	}
2134 	vm_object_drop(dst_object);
2135 	vm_object_drop(src_object);
2136 }
2137 
2138 #if 0
2139 
2140 /*
2141  * This routine checks around the requested page for other pages that
2142  * might be able to be faulted in.  This routine brackets the viable
2143  * pages for the pages to be paged in.
2144  *
2145  * Inputs:
2146  *	m, rbehind, rahead
2147  *
2148  * Outputs:
2149  *  marray (array of vm_page_t), reqpage (index of requested page)
2150  *
2151  * Return value:
2152  *  number of pages in marray
2153  */
2154 static int
2155 vm_fault_additional_pages(vm_page_t m, int rbehind, int rahead,
2156 			  vm_page_t *marray, int *reqpage)
2157 {
2158 	int i,j;
2159 	vm_object_t object;
2160 	vm_pindex_t pindex, startpindex, endpindex, tpindex;
2161 	vm_page_t rtm;
2162 	int cbehind, cahead;
2163 
2164 	object = m->object;
2165 	pindex = m->pindex;
2166 
2167 	/*
2168 	 * we don't fault-ahead for device pager
2169 	 */
2170 	if ((object->type == OBJT_DEVICE) ||
2171 	    (object->type == OBJT_MGTDEVICE)) {
2172 		*reqpage = 0;
2173 		marray[0] = m;
2174 		return 1;
2175 	}
2176 
2177 	/*
2178 	 * if the requested page is not available, then give up now
2179 	 */
2180 	if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
2181 		*reqpage = 0;	/* not used by caller, fix compiler warn */
2182 		return 0;
2183 	}
2184 
2185 	if ((cbehind == 0) && (cahead == 0)) {
2186 		*reqpage = 0;
2187 		marray[0] = m;
2188 		return 1;
2189 	}
2190 
2191 	if (rahead > cahead) {
2192 		rahead = cahead;
2193 	}
2194 
2195 	if (rbehind > cbehind) {
2196 		rbehind = cbehind;
2197 	}
2198 
2199 	/*
2200 	 * Do not do any readahead if we have insufficient free memory.
2201 	 *
2202 	 * XXX code was broken disabled before and has instability
2203 	 * with this conditonal fixed, so shortcut for now.
2204 	 */
2205 	if (burst_fault == 0 || vm_page_count_severe()) {
2206 		marray[0] = m;
2207 		*reqpage = 0;
2208 		return 1;
2209 	}
2210 
2211 	/*
2212 	 * scan backward for the read behind pages -- in memory
2213 	 *
2214 	 * Assume that if the page is not found an interrupt will not
2215 	 * create it.  Theoretically interrupts can only remove (busy)
2216 	 * pages, not create new associations.
2217 	 */
2218 	if (pindex > 0) {
2219 		if (rbehind > pindex) {
2220 			rbehind = pindex;
2221 			startpindex = 0;
2222 		} else {
2223 			startpindex = pindex - rbehind;
2224 		}
2225 
2226 		vm_object_hold(object);
2227 		for (tpindex = pindex; tpindex > startpindex; --tpindex) {
2228 			if (vm_page_lookup(object, tpindex - 1))
2229 				break;
2230 		}
2231 
2232 		i = 0;
2233 		while (tpindex < pindex) {
2234 			rtm = vm_page_alloc(object, tpindex, VM_ALLOC_SYSTEM |
2235 							     VM_ALLOC_NULL_OK);
2236 			if (rtm == NULL) {
2237 				for (j = 0; j < i; j++) {
2238 					vm_page_free(marray[j]);
2239 				}
2240 				vm_object_drop(object);
2241 				marray[0] = m;
2242 				*reqpage = 0;
2243 				return 1;
2244 			}
2245 			marray[i] = rtm;
2246 			++i;
2247 			++tpindex;
2248 		}
2249 		vm_object_drop(object);
2250 	} else {
2251 		i = 0;
2252 	}
2253 
2254 	/*
2255 	 * Assign requested page
2256 	 */
2257 	marray[i] = m;
2258 	*reqpage = i;
2259 	++i;
2260 
2261 	/*
2262 	 * Scan forwards for read-ahead pages
2263 	 */
2264 	tpindex = pindex + 1;
2265 	endpindex = tpindex + rahead;
2266 	if (endpindex > object->size)
2267 		endpindex = object->size;
2268 
2269 	vm_object_hold(object);
2270 	while (tpindex < endpindex) {
2271 		if (vm_page_lookup(object, tpindex))
2272 			break;
2273 		rtm = vm_page_alloc(object, tpindex, VM_ALLOC_SYSTEM |
2274 						     VM_ALLOC_NULL_OK);
2275 		if (rtm == NULL)
2276 			break;
2277 		marray[i] = rtm;
2278 		++i;
2279 		++tpindex;
2280 	}
2281 	vm_object_drop(object);
2282 
2283 	return (i);
2284 }
2285 
2286 #endif
2287 
2288 /*
2289  * vm_prefault() provides a quick way of clustering pagefaults into a
2290  * processes address space.  It is a "cousin" of pmap_object_init_pt,
2291  * except it runs at page fault time instead of mmap time.
2292  *
2293  * vm.fast_fault	Enables pre-faulting zero-fill pages
2294  *
2295  * vm.prefault_pages	Number of pages (1/2 negative, 1/2 positive) to
2296  *			prefault.  Scan stops in either direction when
2297  *			a page is found to already exist.
2298  *
2299  * This code used to be per-platform pmap_prefault().  It is now
2300  * machine-independent and enhanced to also pre-fault zero-fill pages
2301  * (see vm.fast_fault) as well as make them writable, which greatly
2302  * reduces the number of page faults programs incur.
2303  *
2304  * Application performance when pre-faulting zero-fill pages is heavily
2305  * dependent on the application.  Very tiny applications like /bin/echo
2306  * lose a little performance while applications of any appreciable size
2307  * gain performance.  Prefaulting multiple pages also reduces SMP
2308  * congestion and can improve SMP performance significantly.
2309  *
2310  * NOTE!  prot may allow writing but this only applies to the top level
2311  *	  object.  If we wind up mapping a page extracted from a backing
2312  *	  object we have to make sure it is read-only.
2313  *
2314  * NOTE!  The caller has already handled any COW operations on the
2315  *	  vm_map_entry via the normal fault code.  Do NOT call this
2316  *	  shortcut unless the normal fault code has run on this entry.
2317  *
2318  * The related map must be locked.
2319  * No other requirements.
2320  */
2321 static int vm_prefault_pages = 8;
2322 SYSCTL_INT(_vm, OID_AUTO, prefault_pages, CTLFLAG_RW, &vm_prefault_pages, 0,
2323 	   "Maximum number of pages to pre-fault");
2324 static int vm_fast_fault = 1;
2325 SYSCTL_INT(_vm, OID_AUTO, fast_fault, CTLFLAG_RW, &vm_fast_fault, 0,
2326 	   "Burst fault zero-fill regions");
2327 
2328 /*
2329  * Set PG_NOSYNC if the map entry indicates so, but only if the page
2330  * is not already dirty by other means.  This will prevent passive
2331  * filesystem syncing as well as 'sync' from writing out the page.
2332  */
2333 static void
2334 vm_set_nosync(vm_page_t m, vm_map_entry_t entry)
2335 {
2336 	if (entry->eflags & MAP_ENTRY_NOSYNC) {
2337 		if (m->dirty == 0)
2338 			vm_page_flag_set(m, PG_NOSYNC);
2339 	} else {
2340 		vm_page_flag_clear(m, PG_NOSYNC);
2341 	}
2342 }
2343 
2344 static void
2345 vm_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry, int prot,
2346 	    int fault_flags)
2347 {
2348 	struct lwp *lp;
2349 	vm_page_t m;
2350 	vm_offset_t addr;
2351 	vm_pindex_t index;
2352 	vm_pindex_t pindex;
2353 	vm_object_t object;
2354 	int pprot;
2355 	int i;
2356 	int noneg;
2357 	int nopos;
2358 	int maxpages;
2359 
2360 	/*
2361 	 * Get stable max count value, disabled if set to 0
2362 	 */
2363 	maxpages = vm_prefault_pages;
2364 	cpu_ccfence();
2365 	if (maxpages <= 0)
2366 		return;
2367 
2368 	/*
2369 	 * We do not currently prefault mappings that use virtual page
2370 	 * tables.  We do not prefault foreign pmaps.
2371 	 */
2372 	if (entry->maptype == VM_MAPTYPE_VPAGETABLE)
2373 		return;
2374 	lp = curthread->td_lwp;
2375 	if (lp == NULL || (pmap != vmspace_pmap(lp->lwp_vmspace)))
2376 		return;
2377 
2378 	/*
2379 	 * Limit pre-fault count to 1024 pages.
2380 	 */
2381 	if (maxpages > 1024)
2382 		maxpages = 1024;
2383 
2384 	object = entry->object.vm_object;
2385 	KKASSERT(object != NULL);
2386 	KKASSERT(object == entry->object.vm_object);
2387 	vm_object_hold(object);
2388 	vm_object_chain_acquire(object, 0);
2389 
2390 	noneg = 0;
2391 	nopos = 0;
2392 	for (i = 0; i < maxpages; ++i) {
2393 		vm_object_t lobject;
2394 		vm_object_t nobject;
2395 		int allocated = 0;
2396 		int error;
2397 
2398 		/*
2399 		 * This can eat a lot of time on a heavily contended
2400 		 * machine so yield on the tick if needed.
2401 		 */
2402 		if ((i & 7) == 7)
2403 			lwkt_yield();
2404 
2405 		/*
2406 		 * Calculate the page to pre-fault, stopping the scan in
2407 		 * each direction separately if the limit is reached.
2408 		 */
2409 		if (i & 1) {
2410 			if (noneg)
2411 				continue;
2412 			addr = addra - ((i + 1) >> 1) * PAGE_SIZE;
2413 		} else {
2414 			if (nopos)
2415 				continue;
2416 			addr = addra + ((i + 2) >> 1) * PAGE_SIZE;
2417 		}
2418 		if (addr < entry->start) {
2419 			noneg = 1;
2420 			if (noneg && nopos)
2421 				break;
2422 			continue;
2423 		}
2424 		if (addr >= entry->end) {
2425 			nopos = 1;
2426 			if (noneg && nopos)
2427 				break;
2428 			continue;
2429 		}
2430 
2431 		/*
2432 		 * Skip pages already mapped, and stop scanning in that
2433 		 * direction.  When the scan terminates in both directions
2434 		 * we are done.
2435 		 */
2436 		if (pmap_prefault_ok(pmap, addr) == 0) {
2437 			if (i & 1)
2438 				noneg = 1;
2439 			else
2440 				nopos = 1;
2441 			if (noneg && nopos)
2442 				break;
2443 			continue;
2444 		}
2445 
2446 		/*
2447 		 * Follow the VM object chain to obtain the page to be mapped
2448 		 * into the pmap.
2449 		 *
2450 		 * If we reach the terminal object without finding a page
2451 		 * and we determine it would be advantageous, then allocate
2452 		 * a zero-fill page for the base object.  The base object
2453 		 * is guaranteed to be OBJT_DEFAULT for this case.
2454 		 *
2455 		 * In order to not have to check the pager via *haspage*()
2456 		 * we stop if any non-default object is encountered.  e.g.
2457 		 * a vnode or swap object would stop the loop.
2458 		 */
2459 		index = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
2460 		lobject = object;
2461 		pindex = index;
2462 		pprot = prot;
2463 
2464 		KKASSERT(lobject == entry->object.vm_object);
2465 		/*vm_object_hold(lobject); implied */
2466 
2467 		while ((m = vm_page_lookup_busy_try(lobject, pindex,
2468 						    TRUE, &error)) == NULL) {
2469 			if (lobject->type != OBJT_DEFAULT)
2470 				break;
2471 			if (lobject->backing_object == NULL) {
2472 				if (vm_fast_fault == 0)
2473 					break;
2474 				if ((prot & VM_PROT_WRITE) == 0 ||
2475 				    vm_page_count_min(0)) {
2476 					break;
2477 				}
2478 
2479 				/*
2480 				 * NOTE: Allocated from base object
2481 				 */
2482 				m = vm_page_alloc(object, index,
2483 						  VM_ALLOC_NORMAL |
2484 						  VM_ALLOC_ZERO |
2485 						  VM_ALLOC_USE_GD |
2486 						  VM_ALLOC_NULL_OK);
2487 				if (m == NULL)
2488 					break;
2489 				allocated = 1;
2490 				pprot = prot;
2491 				/* lobject = object .. not needed */
2492 				break;
2493 			}
2494 			if (lobject->backing_object_offset & PAGE_MASK)
2495 				break;
2496 			nobject = lobject->backing_object;
2497 			vm_object_hold(nobject);
2498 			KKASSERT(nobject == lobject->backing_object);
2499 			pindex += lobject->backing_object_offset >> PAGE_SHIFT;
2500 			if (lobject != object) {
2501 				vm_object_lock_swap();
2502 				vm_object_drop(lobject);
2503 			}
2504 			lobject = nobject;
2505 			pprot &= ~VM_PROT_WRITE;
2506 			vm_object_chain_acquire(lobject, 0);
2507 		}
2508 
2509 		/*
2510 		 * NOTE: A non-NULL (m) will be associated with lobject if
2511 		 *	 it was found there, otherwise it is probably a
2512 		 *	 zero-fill page associated with the base object.
2513 		 *
2514 		 * Give-up if no page is available.
2515 		 */
2516 		if (m == NULL) {
2517 			if (lobject != object) {
2518 #if 0
2519 				if (object->backing_object != lobject)
2520 					vm_object_hold(object->backing_object);
2521 #endif
2522 				vm_object_chain_release_all(
2523 					object->backing_object, lobject);
2524 #if 0
2525 				if (object->backing_object != lobject)
2526 					vm_object_drop(object->backing_object);
2527 #endif
2528 				vm_object_drop(lobject);
2529 			}
2530 			break;
2531 		}
2532 
2533 		/*
2534 		 * The object must be marked dirty if we are mapping a
2535 		 * writable page.  m->object is either lobject or object,
2536 		 * both of which are still held.  Do this before we
2537 		 * potentially drop the object.
2538 		 */
2539 		if (pprot & VM_PROT_WRITE)
2540 			vm_object_set_writeable_dirty(m->object);
2541 
2542 		/*
2543 		 * Do not conditionalize on PG_RAM.  If pages are present in
2544 		 * the VM system we assume optimal caching.  If caching is
2545 		 * not optimal the I/O gravy train will be restarted when we
2546 		 * hit an unavailable page.  We do not want to try to restart
2547 		 * the gravy train now because we really don't know how much
2548 		 * of the object has been cached.  The cost for restarting
2549 		 * the gravy train should be low (since accesses will likely
2550 		 * be I/O bound anyway).
2551 		 */
2552 		if (lobject != object) {
2553 #if 0
2554 			if (object->backing_object != lobject)
2555 				vm_object_hold(object->backing_object);
2556 #endif
2557 			vm_object_chain_release_all(object->backing_object,
2558 						    lobject);
2559 #if 0
2560 			if (object->backing_object != lobject)
2561 				vm_object_drop(object->backing_object);
2562 #endif
2563 			vm_object_drop(lobject);
2564 		}
2565 
2566 		/*
2567 		 * Enter the page into the pmap if appropriate.  If we had
2568 		 * allocated the page we have to place it on a queue.  If not
2569 		 * we just have to make sure it isn't on the cache queue
2570 		 * (pages on the cache queue are not allowed to be mapped).
2571 		 */
2572 		if (allocated) {
2573 			/*
2574 			 * Page must be zerod.
2575 			 */
2576 			if ((m->flags & PG_ZERO) == 0) {
2577 				vm_page_zero_fill(m);
2578 			} else {
2579 #ifdef PMAP_DEBUG
2580 				pmap_page_assertzero(
2581 						VM_PAGE_TO_PHYS(m));
2582 #endif
2583 				vm_page_flag_clear(m, PG_ZERO);
2584 				mycpu->gd_cnt.v_ozfod++;
2585 			}
2586 			mycpu->gd_cnt.v_zfod++;
2587 			m->valid = VM_PAGE_BITS_ALL;
2588 
2589 			/*
2590 			 * Handle dirty page case
2591 			 */
2592 			if (pprot & VM_PROT_WRITE)
2593 				vm_set_nosync(m, entry);
2594 			pmap_enter(pmap, addr, m, pprot, 0, entry);
2595 			mycpu->gd_cnt.v_vm_faults++;
2596 			if (curthread->td_lwp)
2597 				++curthread->td_lwp->lwp_ru.ru_minflt;
2598 			vm_page_deactivate(m);
2599 			if (pprot & VM_PROT_WRITE) {
2600 				/*vm_object_set_writeable_dirty(m->object);*/
2601 				vm_set_nosync(m, entry);
2602 				if (fault_flags & VM_FAULT_DIRTY) {
2603 					vm_page_dirty(m);
2604 					/*XXX*/
2605 					swap_pager_unswapped(m);
2606 				}
2607 			}
2608 			vm_page_wakeup(m);
2609 		} else if (error) {
2610 			/* couldn't busy page, no wakeup */
2611 		} else if (
2612 		    ((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2613 		    (m->flags & PG_FICTITIOUS) == 0) {
2614 			/*
2615 			 * A fully valid page not undergoing soft I/O can
2616 			 * be immediately entered into the pmap.
2617 			 */
2618 			if ((m->queue - m->pc) == PQ_CACHE)
2619 				vm_page_deactivate(m);
2620 			if (pprot & VM_PROT_WRITE) {
2621 				/*vm_object_set_writeable_dirty(m->object);*/
2622 				vm_set_nosync(m, entry);
2623 				if (fault_flags & VM_FAULT_DIRTY) {
2624 					vm_page_dirty(m);
2625 					/*XXX*/
2626 					swap_pager_unswapped(m);
2627 				}
2628 			}
2629 			if (pprot & VM_PROT_WRITE)
2630 				vm_set_nosync(m, entry);
2631 			pmap_enter(pmap, addr, m, pprot, 0, entry);
2632 			mycpu->gd_cnt.v_vm_faults++;
2633 			if (curthread->td_lwp)
2634 				++curthread->td_lwp->lwp_ru.ru_minflt;
2635 			vm_page_wakeup(m);
2636 		} else {
2637 			vm_page_wakeup(m);
2638 		}
2639 	}
2640 	vm_object_chain_release(object);
2641 	vm_object_drop(object);
2642 }
2643 
2644 /*
2645  * Object can be held shared
2646  */
2647 static void
2648 vm_prefault_quick(pmap_t pmap, vm_offset_t addra,
2649 		  vm_map_entry_t entry, int prot, int fault_flags)
2650 {
2651 	struct lwp *lp;
2652 	vm_page_t m;
2653 	vm_offset_t addr;
2654 	vm_pindex_t pindex;
2655 	vm_object_t object;
2656 	int i;
2657 	int noneg;
2658 	int nopos;
2659 	int maxpages;
2660 
2661 	/*
2662 	 * Get stable max count value, disabled if set to 0
2663 	 */
2664 	maxpages = vm_prefault_pages;
2665 	cpu_ccfence();
2666 	if (maxpages <= 0)
2667 		return;
2668 
2669 	/*
2670 	 * We do not currently prefault mappings that use virtual page
2671 	 * tables.  We do not prefault foreign pmaps.
2672 	 */
2673 	if (entry->maptype == VM_MAPTYPE_VPAGETABLE)
2674 		return;
2675 	lp = curthread->td_lwp;
2676 	if (lp == NULL || (pmap != vmspace_pmap(lp->lwp_vmspace)))
2677 		return;
2678 	object = entry->object.vm_object;
2679 	if (object->backing_object != NULL)
2680 		return;
2681 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2682 
2683 	/*
2684 	 * Limit pre-fault count to 1024 pages.
2685 	 */
2686 	if (maxpages > 1024)
2687 		maxpages = 1024;
2688 
2689 	noneg = 0;
2690 	nopos = 0;
2691 	for (i = 0; i < maxpages; ++i) {
2692 		int error;
2693 
2694 		/*
2695 		 * Calculate the page to pre-fault, stopping the scan in
2696 		 * each direction separately if the limit is reached.
2697 		 */
2698 		if (i & 1) {
2699 			if (noneg)
2700 				continue;
2701 			addr = addra - ((i + 1) >> 1) * PAGE_SIZE;
2702 		} else {
2703 			if (nopos)
2704 				continue;
2705 			addr = addra + ((i + 2) >> 1) * PAGE_SIZE;
2706 		}
2707 		if (addr < entry->start) {
2708 			noneg = 1;
2709 			if (noneg && nopos)
2710 				break;
2711 			continue;
2712 		}
2713 		if (addr >= entry->end) {
2714 			nopos = 1;
2715 			if (noneg && nopos)
2716 				break;
2717 			continue;
2718 		}
2719 
2720 		/*
2721 		 * Skip pages already mapped, and stop scanning in that
2722 		 * direction.  When the scan terminates in both directions
2723 		 * we are done.
2724 		 */
2725 		if (pmap_prefault_ok(pmap, addr) == 0) {
2726 			if (i & 1)
2727 				noneg = 1;
2728 			else
2729 				nopos = 1;
2730 			if (noneg && nopos)
2731 				break;
2732 			continue;
2733 		}
2734 
2735 		/*
2736 		 * Follow the VM object chain to obtain the page to be mapped
2737 		 * into the pmap.  This version of the prefault code only
2738 		 * works with terminal objects.
2739 		 *
2740 		 * WARNING!  We cannot call swap_pager_unswapped() with a
2741 		 *	     shared token.
2742 		 */
2743 		pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
2744 
2745 		m = vm_page_lookup_busy_try(object, pindex, TRUE, &error);
2746 		if (m == NULL || error)
2747 			continue;
2748 
2749 		if (((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2750 		    (m->flags & PG_FICTITIOUS) == 0 &&
2751 		    ((m->flags & PG_SWAPPED) == 0 ||
2752 		     (prot & VM_PROT_WRITE) == 0 ||
2753 		     (fault_flags & VM_FAULT_DIRTY) == 0)) {
2754 			/*
2755 			 * A fully valid page not undergoing soft I/O can
2756 			 * be immediately entered into the pmap.
2757 			 */
2758 			if ((m->queue - m->pc) == PQ_CACHE)
2759 				vm_page_deactivate(m);
2760 			if (prot & VM_PROT_WRITE) {
2761 				vm_object_set_writeable_dirty(m->object);
2762 				vm_set_nosync(m, entry);
2763 				if (fault_flags & VM_FAULT_DIRTY) {
2764 					vm_page_dirty(m);
2765 					/*XXX*/
2766 					swap_pager_unswapped(m);
2767 				}
2768 			}
2769 			pmap_enter(pmap, addr, m, prot, 0, entry);
2770 			mycpu->gd_cnt.v_vm_faults++;
2771 			if (curthread->td_lwp)
2772 				++curthread->td_lwp->lwp_ru.ru_minflt;
2773 		}
2774 		vm_page_wakeup(m);
2775 	}
2776 }
2777