xref: /dragonfly/sys/vm/vm_fault.c (revision 55f88487)
1 /*
2  * Copyright (c) 2003-2022 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * ---
35  *
36  * Copyright (c) 1991, 1993
37  *	The Regents of the University of California.  All rights reserved.
38  * Copyright (c) 1994 John S. Dyson
39  * All rights reserved.
40  * Copyright (c) 1994 David Greenman
41  * All rights reserved.
42  *
43  *
44  * This code is derived from software contributed to Berkeley by
45  * The Mach Operating System project at Carnegie-Mellon University.
46  *
47  * Redistribution and use in source and binary forms, with or without
48  * modification, are permitted provided that the following conditions
49  * are met:
50  * 1. Redistributions of source code must retain the above copyright
51  *    notice, this list of conditions and the following disclaimer.
52  * 2. Redistributions in binary form must reproduce the above copyright
53  *    notice, this list of conditions and the following disclaimer in the
54  *    documentation and/or other materials provided with the distribution.
55  * 3. Neither the name of the University nor the names of its contributors
56  *    may be used to endorse or promote products derived from this software
57  *    without specific prior written permission.
58  *
59  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69  * SUCH DAMAGE.
70  *
71  * ---
72  *
73  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
74  * All rights reserved.
75  *
76  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
77  *
78  * Permission to use, copy, modify and distribute this software and
79  * its documentation is hereby granted, provided that both the copyright
80  * notice and this permission notice appear in all copies of the
81  * software, derivative works or modified versions, and any portions
82  * thereof, and that both notices appear in supporting documentation.
83  *
84  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
85  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
86  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
87  *
88  * Carnegie Mellon requests users of this software to return to
89  *
90  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
91  *  School of Computer Science
92  *  Carnegie Mellon University
93  *  Pittsburgh PA 15213-3890
94  *
95  * any improvements or extensions that they make and grant Carnegie the
96  * rights to redistribute these changes.
97  */
98 
99 /*
100  *	Page fault handling module.
101  */
102 
103 #include "opt_vm.h"
104 
105 #include <sys/param.h>
106 #include <sys/systm.h>
107 #include <sys/kernel.h>
108 #include <sys/proc.h>
109 #include <sys/vnode.h>
110 #include <sys/resourcevar.h>
111 #include <sys/vmmeter.h>
112 #include <sys/vkernel.h>
113 #include <sys/lock.h>
114 #include <sys/sysctl.h>
115 
116 #include <cpu/lwbuf.h>
117 
118 #include <vm/vm.h>
119 #include <vm/vm_param.h>
120 #include <vm/pmap.h>
121 #include <vm/vm_map.h>
122 #include <vm/vm_object.h>
123 #include <vm/vm_page.h>
124 #include <vm/vm_pageout.h>
125 #include <vm/vm_kern.h>
126 #include <vm/vm_pager.h>
127 #include <vm/vnode_pager.h>
128 #include <vm/swap_pager.h>
129 #include <vm/vm_extern.h>
130 
131 #include <vm/vm_page2.h>
132 
133 #define VM_FAULT_MAX_QUICK	16
134 
135 struct faultstate {
136 	vm_page_t mary[VM_FAULT_MAX_QUICK];
137 	vm_map_backing_t ba;
138 	vm_prot_t prot;
139 	vm_page_t first_m;
140 	vm_map_backing_t first_ba;
141 	vm_prot_t first_prot;
142 	vm_map_t map;
143 	vm_map_entry_t entry;
144 	int lookup_still_valid;	/* 0=inv 1=valid/rel -1=valid/atomic */
145 	int hardfault;
146 	int fault_flags;
147 	int shared;
148 	int msoftonly;
149 	int first_shared;
150 	int wflags;
151 	int first_ba_held;	/* 0=unlocked 1=locked/rel -1=lock/atomic */
152 	struct vnode *vp;
153 };
154 
155 __read_mostly static int debug_fault = 0;
156 SYSCTL_INT(_vm, OID_AUTO, debug_fault, CTLFLAG_RW, &debug_fault, 0, "");
157 __read_mostly static int debug_cluster = 0;
158 SYSCTL_INT(_vm, OID_AUTO, debug_cluster, CTLFLAG_RW, &debug_cluster, 0, "");
159 #if 0
160 static int virtual_copy_enable = 1;
161 SYSCTL_INT(_vm, OID_AUTO, virtual_copy_enable, CTLFLAG_RW,
162 		&virtual_copy_enable, 0, "");
163 #endif
164 __read_mostly int vm_shared_fault = 1;
165 TUNABLE_INT("vm.shared_fault", &vm_shared_fault);
166 SYSCTL_INT(_vm, OID_AUTO, shared_fault, CTLFLAG_RW,
167 		&vm_shared_fault, 0, "Allow shared token on vm_object");
168 __read_mostly static int vm_fault_bypass_count = 1;
169 TUNABLE_INT("vm.fault_bypass", &vm_fault_bypass_count);
170 SYSCTL_INT(_vm, OID_AUTO, fault_bypass, CTLFLAG_RW,
171 		&vm_fault_bypass_count, 0, "Allow fast vm_fault shortcut");
172 
173 /*
174  * Define here for debugging ioctls.  Note that these are globals, so
175  * they were cause a ton of cache line bouncing.  Only use for debugging
176  * purposes.
177  */
178 /*#define VM_FAULT_QUICK_DEBUG */
179 #ifdef VM_FAULT_QUICK_DEBUG
180 static long vm_fault_bypass_success_count = 0;
181 SYSCTL_LONG(_vm, OID_AUTO, fault_bypass_success_count, CTLFLAG_RW,
182 		&vm_fault_bypass_success_count, 0, "");
183 static long vm_fault_bypass_failure_count1 = 0;
184 SYSCTL_LONG(_vm, OID_AUTO, fault_bypass_failure_count1, CTLFLAG_RW,
185 		&vm_fault_bypass_failure_count1, 0, "");
186 static long vm_fault_bypass_failure_count2 = 0;
187 SYSCTL_LONG(_vm, OID_AUTO, fault_bypass_failure_count2, CTLFLAG_RW,
188 		&vm_fault_bypass_failure_count2, 0, "");
189 static long vm_fault_bypass_failure_count3 = 0;
190 SYSCTL_LONG(_vm, OID_AUTO, fault_bypass_failure_count3, CTLFLAG_RW,
191 		&vm_fault_bypass_failure_count3, 0, "");
192 static long vm_fault_bypass_failure_count4 = 0;
193 SYSCTL_LONG(_vm, OID_AUTO, fault_bypass_failure_count4, CTLFLAG_RW,
194 		&vm_fault_bypass_failure_count4, 0, "");
195 #endif
196 
197 static int vm_fault_bypass(struct faultstate *fs, vm_pindex_t first_pindex,
198 			vm_pindex_t first_count, int *mextcountp,
199 			vm_prot_t fault_type);
200 static int vm_fault_object(struct faultstate *, vm_pindex_t, vm_prot_t, int);
201 static void vm_set_nosync(vm_page_t m, vm_map_entry_t entry);
202 static void vm_prefault(pmap_t pmap, vm_offset_t addra,
203 			vm_map_entry_t entry, int prot, int fault_flags);
204 static void vm_prefault_quick(pmap_t pmap, vm_offset_t addra,
205 			vm_map_entry_t entry, int prot, int fault_flags);
206 
207 static __inline void
208 release_page(struct faultstate *fs)
209 {
210 	vm_page_deactivate(fs->mary[0]);
211 	vm_page_wakeup(fs->mary[0]);
212 	fs->mary[0] = NULL;
213 }
214 
215 static __inline void
216 unlock_map(struct faultstate *fs)
217 {
218 	if (fs->ba != fs->first_ba)
219 		vm_object_drop(fs->ba->object);
220 	if (fs->first_ba && fs->first_ba_held == 1) {
221 		vm_object_drop(fs->first_ba->object);
222 		fs->first_ba_held = 0;
223 		fs->first_ba = NULL;
224 	}
225 	fs->ba = NULL;
226 
227 	/*
228 	 * NOTE: If lookup_still_valid == -1 the map is assumed to be locked
229 	 *	 and caller expects it to remain locked atomically.
230 	 */
231 	if (fs->lookup_still_valid == 1 && fs->map) {
232 		vm_map_lookup_done(fs->map, fs->entry, 0);
233 		fs->lookup_still_valid = 0;
234 		fs->entry = NULL;
235 	}
236 }
237 
238 /*
239  * Clean up after a successful call to vm_fault_object() so another call
240  * to vm_fault_object() can be made.
241  */
242 static void
243 cleanup_fault(struct faultstate *fs)
244 {
245 	/*
246 	 * We allocated a junk page for a COW operation that did
247 	 * not occur, the page must be freed.
248 	 */
249 	if (fs->ba != fs->first_ba) {
250 		KKASSERT(fs->first_shared == 0);
251 
252 		/*
253 		 * first_m could be completely valid and we got here
254 		 * because of a PG_RAM, don't mistakenly free it!
255 		 */
256 		if ((fs->first_m->valid & VM_PAGE_BITS_ALL) ==
257 		    VM_PAGE_BITS_ALL) {
258 			vm_page_wakeup(fs->first_m);
259 		} else {
260 			vm_page_free(fs->first_m);
261 		}
262 		vm_object_pip_wakeup(fs->ba->object);
263 		fs->first_m = NULL;
264 
265 		/*
266 		 * Reset fs->ba without calling unlock_map(), so we need a
267 		 * little duplication.
268 		 */
269 		vm_object_drop(fs->ba->object);
270 		fs->ba = fs->first_ba;
271 	}
272 }
273 
274 static void
275 unlock_things(struct faultstate *fs)
276 {
277 	cleanup_fault(fs);
278 	unlock_map(fs);
279 	if (fs->vp != NULL) {
280 		vput(fs->vp);
281 		fs->vp = NULL;
282 	}
283 }
284 
285 #if 0
286 /*
287  * Virtual copy tests.   Used by the fault code to determine if a
288  * page can be moved from an orphan vm_object into its shadow
289  * instead of copying its contents.
290  */
291 static __inline int
292 virtual_copy_test(struct faultstate *fs)
293 {
294 	/*
295 	 * Must be holding exclusive locks
296 	 */
297 	if (fs->first_shared || fs->shared || virtual_copy_enable == 0)
298 		return 0;
299 
300 	/*
301 	 * Map, if present, has not changed
302 	 */
303 	if (fs->map && fs->map_generation != fs->map->timestamp)
304 		return 0;
305 
306 	/*
307 	 * No refs, except us
308 	 */
309 	if (fs->ba->object->ref_count != 1)
310 		return 0;
311 
312 	/*
313 	 * No one else can look this object up
314 	 */
315 	if (fs->ba->object->handle != NULL)
316 		return 0;
317 
318 	/*
319 	 * No other ways to look the object up
320 	 */
321 	if (fs->ba->object->type != OBJT_DEFAULT &&
322 	    fs->ba->object->type != OBJT_SWAP)
323 		return 0;
324 
325 	/*
326 	 * We don't chase down the shadow chain
327 	 */
328 	if (fs->ba != fs->first_ba->backing_ba)
329 		return 0;
330 
331 	return 1;
332 }
333 
334 static __inline int
335 virtual_copy_ok(struct faultstate *fs)
336 {
337 	if (virtual_copy_test(fs)) {
338 		/*
339 		 * Grab the lock and re-test changeable items.
340 		 */
341 		if (fs->lookup_still_valid == 0 && fs->map) {
342 			if (lockmgr(&fs->map->lock, LK_EXCLUSIVE|LK_NOWAIT))
343 				return 0;
344 			fs->lookup_still_valid = 1;
345 			if (virtual_copy_test(fs)) {
346 				fs->map_generation = ++fs->map->timestamp;
347 				return 1;
348 			}
349 			fs->lookup_still_valid = 0;
350 			lockmgr(&fs->map->lock, LK_RELEASE);
351 		}
352 	}
353 	return 0;
354 }
355 #endif
356 
357 /*
358  * TRYPAGER
359  *
360  * Determine if the pager for the current object *might* contain the page.
361  *
362  * We only need to try the pager if this is not a default object (default
363  * objects are zero-fill and have no real pager), and if we are not taking
364  * a wiring fault or if the FS entry is wired.
365  */
366 #define TRYPAGER(fs)	\
367 		(fs->ba->object->type != OBJT_DEFAULT &&		\
368 		(((fs->fault_flags & VM_FAULT_WIRE_MASK) == 0) ||	\
369 		 (fs->wflags & FW_WIRED)))
370 
371 /*
372  * vm_fault:
373  *
374  * Handle a page fault occuring at the given address, requiring the given
375  * permissions, in the map specified.  If successful, the page is inserted
376  * into the associated physical map.
377  *
378  * NOTE: The given address should be truncated to the proper page address.
379  *
380  * KERN_SUCCESS is returned if the page fault is handled; otherwise,
381  * a standard error specifying why the fault is fatal is returned.
382  *
383  * The map in question must be referenced, and remains so.
384  * The caller may hold no locks.
385  * No other requirements.
386  */
387 int
388 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, int fault_flags)
389 {
390 	vm_pindex_t first_pindex;
391 	vm_pindex_t first_count;
392 	struct faultstate fs;
393 	struct lwp *lp;
394 #if !defined(NO_SWAPPING)
395 	struct proc *p;
396 #endif
397 	thread_t td;
398 	int mextcount;
399 	int growstack;
400 	int retry = 0;
401 	int inherit_prot;
402 	int result;
403 	int n;
404 
405 	inherit_prot = fault_type & VM_PROT_NOSYNC;
406 	fs.hardfault = 0;
407 	fs.fault_flags = fault_flags;
408 	fs.vp = NULL;
409 	fs.shared = vm_shared_fault;
410 	fs.first_shared = vm_shared_fault;
411 	growstack = 1;
412 
413 	/*
414 	 * vm_map interactions
415 	 */
416 	td = curthread;
417 	if ((lp = td->td_lwp) != NULL)
418 		lp->lwp_flags |= LWP_PAGING;
419 
420 RetryFault:
421 	/*
422 	 * vm_fault_bypass() can shortcut us.
423 	 */
424 	fs.msoftonly = 0;
425 	fs.first_ba_held = 0;
426 	mextcount = 1;
427 
428 	/*
429 	 * Find the vm_map_entry representing the backing store and resolve
430 	 * the top level object and page index.  This may have the side
431 	 * effect of executing a copy-on-write on the map entry,
432 	 * creating a shadow object, or splitting an anonymous entry for
433 	 * performance, but will not COW any actual VM pages.
434 	 *
435 	 * On success fs.map is left read-locked and various other fields
436 	 * are initialized but not otherwise referenced or locked.
437 	 *
438 	 * NOTE!  vm_map_lookup will try to upgrade the fault_type to
439 	 *	  VM_FAULT_WRITE if the map entry is a virtual page table
440 	 *	  and also writable, so we can set the 'A'accessed bit in
441 	 *	  the virtual page table entry.
442 	 */
443 	fs.map = map;
444 	result = vm_map_lookup(&fs.map, vaddr, fault_type,
445 			       &fs.entry, &fs.first_ba,
446 			       &first_pindex, &first_count,
447 			       &fs.first_prot, &fs.wflags);
448 
449 	/*
450 	 * If the lookup failed or the map protections are incompatible,
451 	 * the fault generally fails.
452 	 *
453 	 * The failure could be due to TDF_NOFAULT if vm_map_lookup()
454 	 * tried to do a COW fault.
455 	 *
456 	 * If the caller is trying to do a user wiring we have more work
457 	 * to do.
458 	 */
459 	if (result != KERN_SUCCESS) {
460 		if (result == KERN_FAILURE_NOFAULT) {
461 			result = KERN_FAILURE;
462 			goto done;
463 		}
464 		if (result != KERN_PROTECTION_FAILURE ||
465 		    (fs.fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE)
466 		{
467 			if (result == KERN_INVALID_ADDRESS && growstack &&
468 			    map != kernel_map && curproc != NULL) {
469 				result = vm_map_growstack(map, vaddr);
470 				if (result == KERN_SUCCESS) {
471 					growstack = 0;
472 					++retry;
473 					goto RetryFault;
474 				}
475 				result = KERN_FAILURE;
476 			}
477 			goto done;
478 		}
479 
480 		/*
481 		 * If we are user-wiring a r/w segment, and it is COW, then
482 		 * we need to do the COW operation.  Note that we don't
483 		 * currently COW RO sections now, because it is NOT desirable
484 		 * to COW .text.  We simply keep .text from ever being COW'ed
485 		 * and take the heat that one cannot debug wired .text sections.
486 		 *
487 		 * XXX Try to allow the above by specifying OVERRIDE_WRITE.
488 		 */
489 		result = vm_map_lookup(&fs.map, vaddr,
490 				       VM_PROT_READ | VM_PROT_WRITE |
491 				        VM_PROT_OVERRIDE_WRITE,
492 				       &fs.entry, &fs.first_ba,
493 				       &first_pindex, &first_count,
494 				       &fs.first_prot, &fs.wflags);
495 		if (result != KERN_SUCCESS) {
496 			/* could also be KERN_FAILURE_NOFAULT */
497 			result = KERN_FAILURE;
498 			goto done;
499 		}
500 
501 		/*
502 		 * If we don't COW now, on a user wire, the user will never
503 		 * be able to write to the mapping.  If we don't make this
504 		 * restriction, the bookkeeping would be nearly impossible.
505 		 *
506 		 * XXX We have a shared lock, this will have a MP race but
507 		 * I don't see how it can hurt anything.
508 		 */
509 		if ((fs.first_prot & VM_PROT_WRITE) == 0) {
510 			atomic_clear_char(&fs.entry->max_protection,
511 					  VM_PROT_WRITE);
512 		}
513 	}
514 
515 	/*
516 	 * fs.map is read-locked
517 	 *
518 	 * Misc checks.  Save the map generation number to detect races.
519 	 */
520 	fs.lookup_still_valid = 1;
521 	fs.first_m = NULL;
522 	fs.ba = fs.first_ba;		/* so unlock_things() works */
523 	fs.prot = fs.first_prot;	/* default (used by uksmap) */
524 
525 	if (fs.entry->eflags & (MAP_ENTRY_NOFAULT | MAP_ENTRY_KSTACK)) {
526 		if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
527 			panic("vm_fault: fault on nofault entry, addr: %p",
528 			      (void *)vaddr);
529 		}
530 		if ((fs.entry->eflags & MAP_ENTRY_KSTACK) &&
531 		    vaddr >= fs.entry->ba.start &&
532 		    vaddr < fs.entry->ba.start + PAGE_SIZE) {
533 			panic("vm_fault: fault on stack guard, addr: %p",
534 			      (void *)vaddr);
535 		}
536 	}
537 
538 	/*
539 	 * A user-kernel shared map has no VM object and bypasses
540 	 * everything.  We execute the uksmap function with a temporary
541 	 * fictitious vm_page.  The address is directly mapped with no
542 	 * management.
543 	 */
544 	if (fs.entry->maptype == VM_MAPTYPE_UKSMAP) {
545 		struct vm_page fakem;
546 
547 		bzero(&fakem, sizeof(fakem));
548 		fakem.pindex = first_pindex;
549 		fakem.flags = PG_FICTITIOUS | PG_UNQUEUED;
550 		fakem.busy_count = PBUSY_LOCKED;
551 		fakem.valid = VM_PAGE_BITS_ALL;
552 		fakem.pat_mode = VM_MEMATTR_DEFAULT;
553 		if (fs.entry->ba.uksmap(&fs.entry->ba, UKSMAPOP_FAULT,
554 					fs.entry->aux.dev, &fakem)) {
555 			result = KERN_FAILURE;
556 			unlock_things(&fs);
557 			goto done2;
558 		}
559 		pmap_enter(fs.map->pmap, vaddr, &fakem, fs.prot | inherit_prot,
560 			   (fs.wflags & FW_WIRED), fs.entry);
561 		goto done_success;
562 	}
563 
564 	/*
565 	 * A system map entry may return a NULL object.  No object means
566 	 * no pager means an unrecoverable kernel fault.
567 	 */
568 	if (fs.first_ba == NULL) {
569 		panic("vm_fault: unrecoverable fault at %p in entry %p",
570 			(void *)vaddr, fs.entry);
571 	}
572 
573 	/*
574 	 * Fail here if not a trivial anonymous page fault and TDF_NOFAULT
575 	 * is set.
576 	 *
577 	 * Unfortunately a deadlock can occur if we are forced to page-in
578 	 * from swap, but diving all the way into the vm_pager_get_page()
579 	 * function to find out is too much.  Just check the object type.
580 	 *
581 	 * The deadlock is a CAM deadlock on a busy VM page when trying
582 	 * to finish an I/O if another process gets stuck in
583 	 * vop_helper_read_shortcut() due to a swap fault.
584 	 */
585 	if ((td->td_flags & TDF_NOFAULT) &&
586 	    (retry ||
587 	     fs.first_ba->object->type == OBJT_VNODE ||
588 	     fs.first_ba->object->type == OBJT_SWAP ||
589 	     fs.first_ba->backing_ba)) {
590 		result = KERN_FAILURE;
591 		unlock_things(&fs);
592 		goto done2;
593 	}
594 
595 	/*
596 	 * If the entry is wired the page protection level is limited to
597 	 * what the vm_map_lookup() allowed us.
598 	 *
599 	 * XXX it is unclear if this code is still needed as vm_map_lookup()
600 	 * no longer prevents protection changes on locked memory.  REMOVE
601 	 * IF WE DETERMINE THAT THIS CODE IS NO LONGER NEEDED.
602 	 */
603 	if (fs.wflags & FW_WIRED)
604 		fault_type = fs.first_prot;
605 
606 	/*
607 	 * We generally want to avoid unnecessary exclusive modes on backing
608 	 * and terminal objects because this can seriously interfere with
609 	 * heavily fork()'d processes (particularly /bin/sh scripts).
610 	 *
611 	 * However, we also want to avoid unnecessary retries due to needed
612 	 * shared->exclusive promotion for common faults.  Exclusive mode is
613 	 * always needed if any page insertion, rename, or free occurs in an
614 	 * object (and also indirectly if any I/O is done).
615 	 *
616 	 * The main issue here is going to be fs.first_shared.  If the
617 	 * first_object has a backing object which isn't shadowed and the
618 	 * process is single-threaded we might as well use an exclusive
619 	 * lock/chain right off the bat.
620 	 */
621 #if 0
622 	/* WORK IN PROGRESS, CODE REMOVED */
623 	if (fs.first_shared && fs.first_object->backing_object &&
624 	    LIST_EMPTY(&fs.first_object->shadow_head) &&
625 	    td->td_proc && td->td_proc->p_nthreads == 1) {
626 		fs.first_shared = 0;
627 	}
628 #endif
629 
630 	/*
631 	 * VM_FAULT_UNSWAP - swap_pager_unswapped() needs an exclusive object
632 	 * VM_FAULT_DIRTY  - may require swap_pager_unswapped() later, but
633 	 *		     we can try shared first.
634 	 */
635 	if (fault_flags & VM_FAULT_UNSWAP)
636 		fs.first_shared = 0;
637 
638 	/*
639 	 * Try to shortcut the entire mess and run the fault lockless.
640 	 * This will burst in multiple pages via fs->mary[].
641 	 */
642 	if (vm_fault_bypass_count &&
643 	    vm_fault_bypass(&fs, first_pindex, first_count,
644 			   &mextcount, fault_type) == KERN_SUCCESS) {
645 		fault_flags &= ~VM_FAULT_BURST;
646 		goto success;
647 	}
648 
649 	/*
650 	 * Exclusive heuristic (alloc page vs page exists)
651 	 */
652 	if (fs.first_ba->flags & VM_MAP_BACK_EXCL_HEUR)
653 		fs.first_shared = 0;
654 
655 	/*
656 	 * Obtain a top-level object lock, shared or exclusive depending
657 	 * on fs.first_shared.  If a shared lock winds up being insufficient
658 	 * we will retry with an exclusive lock.
659 	 *
660 	 * The vnode pager lock is always shared.
661 	 */
662 	if (fs.first_shared)
663 		vm_object_hold_shared(fs.first_ba->object);
664 	else
665 		vm_object_hold(fs.first_ba->object);
666 	if (fs.vp == NULL)
667 		fs.vp = vnode_pager_lock(fs.first_ba);
668 	fs.first_ba_held = 1;
669 
670 	/*
671 	 * The page we want is at (first_object, first_pindex).
672 	 *
673 	 * Now we have the actual (object, pindex), fault in the page.  If
674 	 * vm_fault_object() fails it will unlock and deallocate the FS
675 	 * data.   If it succeeds everything remains locked and fs->ba->object
676 	 * will have an additional PIP count if fs->ba != fs->first_ba.
677 	 *
678 	 * vm_fault_object will set fs->prot for the pmap operation.  It is
679 	 * allowed to set VM_PROT_WRITE if fault_type == VM_PROT_READ if the
680 	 * page can be safely written.  However, it will force a read-only
681 	 * mapping for a read fault if the memory is managed by a virtual
682 	 * page table.
683 	 *
684 	 * If the fault code uses the shared object lock shortcut
685 	 * we must not try to burst (we can't allocate VM pages).
686 	 */
687 	result = vm_fault_object(&fs, first_pindex, fault_type, 1);
688 
689 	if (debug_fault > 0) {
690 		--debug_fault;
691 		kprintf("VM_FAULT result %d addr=%jx type=%02x flags=%02x "
692 			"fs.m=%p fs.prot=%02x fs.wflags=%02x fs.entry=%p\n",
693 			result, (intmax_t)vaddr, fault_type, fault_flags,
694 			fs.mary[0], fs.prot, fs.wflags, fs.entry);
695 	}
696 
697 	if (result == KERN_TRY_AGAIN) {
698 		++retry;
699 		goto RetryFault;
700 	}
701 	if (result != KERN_SUCCESS) {
702 		goto done;
703 	}
704 
705 success:
706 	/*
707 	 * On success vm_fault_object() does not unlock or deallocate, and fs.m
708 	 * will contain a busied page.  It does drop fs->ba if appropriate.
709 	 *
710 	 * Enter the page into the pmap and do pmap-related adjustments.
711 	 *
712 	 * WARNING! Soft-busied fs.m's can only be manipulated in limited
713 	 *	    ways.
714 	 */
715 	KKASSERT(fs.lookup_still_valid != 0);
716 	vm_page_flag_set(fs.mary[0], PG_REFERENCED);
717 
718 	for (n = 0; n < mextcount; ++n) {
719 		pmap_enter(fs.map->pmap, vaddr + (n << PAGE_SHIFT),
720 			   fs.mary[n], fs.prot | inherit_prot,
721 			   fs.wflags & FW_WIRED, fs.entry);
722 	}
723 
724 	/*
725 	 * If the page is not wired down, then put it where the pageout daemon
726 	 * can find it.
727 	 *
728 	 * NOTE: We cannot safely wire, unwire, or adjust queues for a
729 	 *	 soft-busied page.
730 	 */
731 	for (n = 0; n < mextcount; ++n) {
732 		if (fs.msoftonly) {
733 			KKASSERT(fs.mary[n]->busy_count & PBUSY_MASK);
734 			KKASSERT((fs.fault_flags & VM_FAULT_WIRE_MASK) == 0);
735 			vm_page_sbusy_drop(fs.mary[n]);
736 		} else {
737 			if (fs.fault_flags & VM_FAULT_WIRE_MASK) {
738 				if (fs.wflags & FW_WIRED)
739 					vm_page_wire(fs.mary[n]);
740 				else
741 					vm_page_unwire(fs.mary[n], 1);
742 			} else {
743 				vm_page_activate(fs.mary[n]);
744 			}
745 			KKASSERT(fs.mary[n]->busy_count & PBUSY_LOCKED);
746 			vm_page_wakeup(fs.mary[n]);
747 		}
748 	}
749 
750 	/*
751 	 * Burst in a few more pages if possible.  The fs.map should still
752 	 * be locked.  To avoid interlocking against a vnode->getblk
753 	 * operation we had to be sure to unbusy our primary vm_page above
754 	 * first.
755 	 *
756 	 * A normal burst can continue down backing store, only execute
757 	 * if we are holding an exclusive lock, otherwise the exclusive
758 	 * locks the burst code gets might cause excessive SMP collisions.
759 	 *
760 	 * A quick burst can be utilized when there is no backing object
761 	 * (i.e. a shared file mmap).
762 	 */
763 	if ((fault_flags & VM_FAULT_BURST) &&
764 	    (fs.fault_flags & VM_FAULT_WIRE_MASK) == 0 &&
765 	    (fs.wflags & FW_WIRED) == 0) {
766 		if (fs.first_shared == 0 && fs.shared == 0) {
767 			vm_prefault(fs.map->pmap, vaddr,
768 				    fs.entry, fs.prot, fault_flags);
769 		} else {
770 			vm_prefault_quick(fs.map->pmap, vaddr,
771 					  fs.entry, fs.prot, fault_flags);
772 		}
773 	}
774 
775 done_success:
776 	/*
777 	 * Unlock everything, and return
778 	 */
779 	unlock_things(&fs);
780 
781 	mycpu->gd_cnt.v_vm_faults++;
782 	if (td->td_lwp) {
783 		if (fs.hardfault) {
784 			++td->td_lwp->lwp_ru.ru_majflt;
785 		} else {
786 			++td->td_lwp->lwp_ru.ru_minflt;
787 		}
788 	}
789 
790 	/*vm_object_deallocate(fs.first_ba->object);*/
791 	/*fs.m = NULL; */
792 
793 	result = KERN_SUCCESS;
794 done:
795 	if (fs.first_ba && fs.first_ba->object && fs.first_ba_held == 1) {
796 		vm_object_drop(fs.first_ba->object);
797 		fs.first_ba_held = 0;
798 	}
799 done2:
800 	if (lp)
801 		lp->lwp_flags &= ~LWP_PAGING;
802 
803 #if !defined(NO_SWAPPING)
804 	/*
805 	 * Check the process RSS limit and force deactivation and
806 	 * (asynchronous) paging if necessary.  This is a complex operation,
807 	 * only do it for direct user-mode faults, for now.
808 	 *
809 	 * To reduce overhead implement approximately a ~16MB hysteresis.
810 	 */
811 	p = td->td_proc;
812 	if ((fault_flags & VM_FAULT_USERMODE) && lp &&
813 	    p->p_limit && map->pmap && vm_pageout_memuse_mode >= 1 &&
814 	    map != kernel_map) {
815 		vm_pindex_t limit;
816 		vm_pindex_t size;
817 
818 		limit = OFF_TO_IDX(qmin(p->p_rlimit[RLIMIT_RSS].rlim_cur,
819 					p->p_rlimit[RLIMIT_RSS].rlim_max));
820 		size = pmap_resident_tlnw_count(map->pmap);
821 		if (limit >= 0 && size > 4096 && size - 4096 >= limit) {
822 			vm_pageout_map_deactivate_pages(map, limit);
823 		}
824 	}
825 #endif
826 
827 	if (result != KERN_SUCCESS && debug_fault < 0) {
828 		kprintf("VM_FAULT %d:%d (%s) result %d "
829 			"addr=%jx type=%02x flags=%02x "
830 			"fs.m=%p fs.prot=%02x fs.wflags=%02x fs.entry=%p\n",
831 			(curthread->td_proc ? curthread->td_proc->p_pid : -1),
832 			(curthread->td_lwp ? curthread->td_lwp->lwp_tid : -1),
833 			curthread->td_comm,
834 			result,
835 			(intmax_t)vaddr, fault_type, fault_flags,
836 			fs.mary[0], fs.prot, fs.wflags, fs.entry);
837 		while (debug_fault < 0 && (debug_fault & 1))
838 			tsleep(&debug_fault, 0, "DEBUG", hz);
839 	}
840 
841 	return (result);
842 }
843 
844 /*
845  * Attempt a lockless vm_fault() shortcut.  The stars have to align for this
846  * to work.  But if it does we can get our page only soft-busied and not
847  * have to touch the vm_object or vnode locks at all.
848  */
849 static
850 int
851 vm_fault_bypass(struct faultstate *fs, vm_pindex_t first_pindex,
852 	       vm_pindex_t first_count, int *mextcountp,
853 	       vm_prot_t fault_type)
854 {
855 	vm_page_t m;
856 	vm_object_t obj;	/* NOT LOCKED */
857 	int n;
858 	int nlim;
859 
860 	/*
861 	 * Don't waste time if the object is only being used by one vm_map.
862 	 */
863 	obj = fs->first_ba->object;
864 #if 0
865 	if (obj->flags & OBJ_ONEMAPPING)
866 		return KERN_FAILURE;
867 #endif
868 
869 	/*
870 	 * This will try to wire/unwire a page, which can't be done with
871 	 * a soft-busied page.
872 	 */
873 	if (fs->fault_flags & VM_FAULT_WIRE_MASK)
874 		return KERN_FAILURE;
875 
876 	/*
877 	 * Ok, try to get the vm_page quickly via the hash table.  The
878 	 * page will be soft-busied on success (NOT hard-busied).
879 	 */
880 	m = vm_page_hash_get(obj, first_pindex);
881 	if (m == NULL) {
882 #ifdef VM_FAULT_QUICK_DEBUG
883 		++vm_fault_bypass_failure_count2;
884 #endif
885 		return KERN_FAILURE;
886 	}
887 	if ((obj->flags & OBJ_DEAD) ||
888 	    m->valid != VM_PAGE_BITS_ALL ||
889 	    m->queue - m->pc != PQ_ACTIVE ||
890 	    (m->flags & PG_SWAPPED)) {
891 		vm_page_sbusy_drop(m);
892 #ifdef VM_FAULT_QUICK_DEBUG
893 		++vm_fault_bypass_failure_count3;
894 #endif
895 		return KERN_FAILURE;
896 	}
897 
898 	/*
899 	 * The page is already fully valid, ACTIVE, and is not PG_SWAPPED.
900 	 *
901 	 * Don't map the page writable when emulating the dirty bit, a
902 	 * fault must be taken for proper emulation (vkernel).
903 	 */
904 	if (curthread->td_lwp && curthread->td_lwp->lwp_vmspace &&
905 	    pmap_emulate_ad_bits(&curthread->td_lwp->lwp_vmspace->vm_pmap)) {
906 		if ((fault_type & VM_PROT_WRITE) == 0)
907 			fs->prot &= ~VM_PROT_WRITE;
908 	}
909 
910 	/*
911 	 * If this is a write fault the object and the page must already
912 	 * be writable.  Since we don't hold an object lock and only a
913 	 * soft-busy on the page, we cannot manipulate the object or
914 	 * the page state (other than the page queue).
915 	 */
916 	if (fs->prot & VM_PROT_WRITE) {
917 		if ((obj->flags & (OBJ_WRITEABLE | OBJ_MIGHTBEDIRTY)) !=
918 		    (OBJ_WRITEABLE | OBJ_MIGHTBEDIRTY) ||
919 		    m->dirty != VM_PAGE_BITS_ALL) {
920 			vm_page_sbusy_drop(m);
921 #ifdef VM_FAULT_QUICK_DEBUG
922 			++vm_fault_bypass_failure_count4;
923 #endif
924 			return KERN_FAILURE;
925 		}
926 		vm_set_nosync(m, fs->entry);
927 	}
928 
929 	/*
930 	 * Set page and potentially burst in more
931 	 *
932 	 * Even though we are only soft-busied we can still move pages
933 	 * around in the normal queue(s).  The soft-busy prevents the
934 	 * page from being removed from the object, etc (normal operation).
935 	 *
936 	 * However, in this fast path it is excessively important to avoid
937 	 * any hard locks, so we use a special passive version of activate.
938 	 */
939 	fs->msoftonly = 1;
940 	fs->mary[0] = m;
941 	vm_page_soft_activate(m);
942 
943 	if (vm_fault_bypass_count > 1) {
944 		nlim = vm_fault_bypass_count;
945 		if (nlim > VM_FAULT_MAX_QUICK)		/* array limit(+1) */
946 			nlim = VM_FAULT_MAX_QUICK;
947 		if (nlim > first_count)			/* user limit */
948 			nlim = first_count;
949 
950 		for (n = 1; n < nlim; ++n) {
951 			m = vm_page_hash_get(obj, first_pindex + n);
952 			if (m == NULL)
953 				break;
954 			if (m->valid != VM_PAGE_BITS_ALL ||
955 			    m->queue - m->pc != PQ_ACTIVE ||
956 			    (m->flags & PG_SWAPPED)) {
957 				vm_page_sbusy_drop(m);
958 				break;
959 			}
960 			if (fs->prot & VM_PROT_WRITE) {
961 				if ((obj->flags & (OBJ_WRITEABLE |
962 						   OBJ_MIGHTBEDIRTY)) !=
963 				    (OBJ_WRITEABLE | OBJ_MIGHTBEDIRTY) ||
964 				    m->dirty != VM_PAGE_BITS_ALL) {
965 					vm_page_sbusy_drop(m);
966 					break;
967 				}
968 			}
969 			vm_page_soft_activate(m);
970 			fs->mary[n] = m;
971 		}
972 		*mextcountp = n;
973 	}
974 
975 #ifdef VM_FAULT_QUICK_DEBUG
976 	++vm_fault_bypass_success_count;
977 #endif
978 
979 	return KERN_SUCCESS;
980 }
981 
982 /*
983  * Fault in the specified virtual address in the current process map,
984  * returning a held VM page or NULL.  See vm_fault_page() for more
985  * information.
986  *
987  * No requirements.
988  */
989 vm_page_t
990 vm_fault_page_quick(vm_offset_t va, vm_prot_t fault_type,
991 		    int *errorp, int *busyp)
992 {
993 	struct lwp *lp = curthread->td_lwp;
994 	vm_page_t m;
995 
996 	m = vm_fault_page(&lp->lwp_vmspace->vm_map, va,
997 			  fault_type, VM_FAULT_NORMAL,
998 			  errorp, busyp);
999 	return(m);
1000 }
1001 
1002 /*
1003  * Fault in the specified virtual address in the specified map, doing all
1004  * necessary manipulation of the object store and all necessary I/O.  Return
1005  * a held VM page or NULL, and set *errorp.  The related pmap is not
1006  * updated.
1007  *
1008  * If busyp is not NULL then *busyp will be set to TRUE if this routine
1009  * decides to return a busied page (aka VM_PROT_WRITE), or FALSE if it
1010  * does not (VM_PROT_WRITE not specified or busyp is NULL).  If busyp is
1011  * NULL the returned page is only held.
1012  *
1013  * If the caller has no intention of writing to the page's contents, busyp
1014  * can be passed as NULL along with VM_PROT_WRITE to force a COW operation
1015  * without busying the page.
1016  *
1017  * The returned page will also be marked PG_REFERENCED.
1018  *
1019  * If the page cannot be faulted writable and VM_PROT_WRITE was specified, an
1020  * error will be returned.
1021  *
1022  * No requirements.
1023  */
1024 vm_page_t
1025 vm_fault_page(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
1026 	      int fault_flags, int *errorp, int *busyp)
1027 {
1028 	vm_pindex_t first_pindex;
1029 	vm_pindex_t first_count;
1030 	struct faultstate fs;
1031 	int result;
1032 	int retry;
1033 	int growstack;
1034 	int didcow;
1035 	vm_prot_t orig_fault_type = fault_type;
1036 
1037 	retry = 0;
1038 	didcow = 0;
1039 	fs.hardfault = 0;
1040 	fs.fault_flags = fault_flags;
1041 	KKASSERT((fault_flags & VM_FAULT_WIRE_MASK) == 0);
1042 
1043 	/*
1044 	 * Dive the pmap (concurrency possible).  If we find the
1045 	 * appropriate page we can terminate early and quickly.
1046 	 *
1047 	 * This works great for normal programs but will always return
1048 	 * NULL for host lookups of vkernel maps in VMM mode.
1049 	 *
1050 	 * NOTE: pmap_fault_page_quick() might not busy the page.  If
1051 	 *	 VM_PROT_WRITE is set in fault_type and pmap_fault_page_quick()
1052 	 *	 returns non-NULL, it will safely dirty the returned vm_page_t
1053 	 *	 for us.  We cannot safely dirty it here (it might not be
1054 	 *	 busy).
1055 	 */
1056 	fs.mary[0] = pmap_fault_page_quick(map->pmap, vaddr, fault_type, busyp);
1057 	if (fs.mary[0]) {
1058 		*errorp = 0;
1059 		return(fs.mary[0]);
1060 	}
1061 
1062 	/*
1063 	 * Otherwise take a concurrency hit and do a formal page
1064 	 * fault.
1065 	 */
1066 	fs.vp = NULL;
1067 	fs.shared = vm_shared_fault;
1068 	fs.first_shared = vm_shared_fault;
1069 	fs.msoftonly = 0;
1070 	growstack = 1;
1071 
1072 	/*
1073 	 * VM_FAULT_UNSWAP - swap_pager_unswapped() needs an exclusive object
1074 	 * VM_FAULT_DIRTY  - may require swap_pager_unswapped() later, but
1075 	 *		     we can try shared first.
1076 	 */
1077 	if (fault_flags & VM_FAULT_UNSWAP) {
1078 		fs.first_shared = 0;
1079 	}
1080 
1081 RetryFault:
1082 	/*
1083 	 * Find the vm_map_entry representing the backing store and resolve
1084 	 * the top level object and page index.  This may have the side
1085 	 * effect of executing a copy-on-write on the map entry and/or
1086 	 * creating a shadow object, but will not COW any actual VM pages.
1087 	 *
1088 	 * On success fs.map is left read-locked and various other fields
1089 	 * are initialized but not otherwise referenced or locked.
1090 	 *
1091 	 * NOTE!  vm_map_lookup will upgrade the fault_type to VM_FAULT_WRITE
1092 	 *	  if the map entry is a virtual page table and also writable,
1093 	 *	  so we can set the 'A'accessed bit in the virtual page table
1094 	 *	  entry.
1095 	 */
1096 	fs.map = map;
1097 	fs.first_ba_held = 0;
1098 	result = vm_map_lookup(&fs.map, vaddr, fault_type,
1099 			       &fs.entry, &fs.first_ba,
1100 			       &first_pindex, &first_count,
1101 			       &fs.first_prot, &fs.wflags);
1102 
1103 	if (result != KERN_SUCCESS) {
1104 		if (result == KERN_FAILURE_NOFAULT) {
1105 			*errorp = KERN_FAILURE;
1106 			fs.mary[0] = NULL;
1107 			goto done;
1108 		}
1109 		if (result != KERN_PROTECTION_FAILURE ||
1110 		    (fs.fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE)
1111 		{
1112 			if (result == KERN_INVALID_ADDRESS && growstack &&
1113 			    map != kernel_map && curproc != NULL) {
1114 				result = vm_map_growstack(map, vaddr);
1115 				if (result == KERN_SUCCESS) {
1116 					growstack = 0;
1117 					++retry;
1118 					goto RetryFault;
1119 				}
1120 				result = KERN_FAILURE;
1121 			}
1122 			fs.mary[0] = NULL;
1123 			*errorp = result;
1124 			goto done;
1125 		}
1126 
1127 		/*
1128 		 * If we are user-wiring a r/w segment, and it is COW, then
1129 		 * we need to do the COW operation.  Note that we don't
1130 		 * currently COW RO sections now, because it is NOT desirable
1131 		 * to COW .text.  We simply keep .text from ever being COW'ed
1132 		 * and take the heat that one cannot debug wired .text sections.
1133 		 */
1134 		result = vm_map_lookup(&fs.map, vaddr,
1135 				       VM_PROT_READ | VM_PROT_WRITE |
1136 				        VM_PROT_OVERRIDE_WRITE,
1137 				       &fs.entry, &fs.first_ba,
1138 				       &first_pindex, &first_count,
1139 				       &fs.first_prot, &fs.wflags);
1140 		if (result != KERN_SUCCESS) {
1141 			/* could also be KERN_FAILURE_NOFAULT */
1142 			*errorp = KERN_FAILURE;
1143 			fs.mary[0] = NULL;
1144 			goto done;
1145 		}
1146 
1147 		/*
1148 		 * If we don't COW now, on a user wire, the user will never
1149 		 * be able to write to the mapping.  If we don't make this
1150 		 * restriction, the bookkeeping would be nearly impossible.
1151 		 *
1152 		 * XXX We have a shared lock, this will have a MP race but
1153 		 * I don't see how it can hurt anything.
1154 		 */
1155 		if ((fs.first_prot & VM_PROT_WRITE) == 0) {
1156 			atomic_clear_char(&fs.entry->max_protection,
1157 					  VM_PROT_WRITE);
1158 		}
1159 	}
1160 
1161 	/*
1162 	 * fs.map is read-locked
1163 	 *
1164 	 * Misc checks.  Save the map generation number to detect races.
1165 	 */
1166 	fs.lookup_still_valid = 1;
1167 	fs.first_m = NULL;
1168 	fs.ba = fs.first_ba;
1169 
1170 	if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
1171 		panic("vm_fault: fault on nofault entry, addr: %lx",
1172 		    (u_long)vaddr);
1173 	}
1174 
1175 	/*
1176 	 * A user-kernel shared map has no VM object and bypasses
1177 	 * everything.  We execute the uksmap function with a temporary
1178 	 * fictitious vm_page.  The address is directly mapped with no
1179 	 * management.
1180 	 */
1181 	if (fs.entry->maptype == VM_MAPTYPE_UKSMAP) {
1182 		struct vm_page fakem;
1183 
1184 		bzero(&fakem, sizeof(fakem));
1185 		fakem.pindex = first_pindex;
1186 		fakem.flags = PG_FICTITIOUS | PG_UNQUEUED;
1187 		fakem.busy_count = PBUSY_LOCKED;
1188 		fakem.valid = VM_PAGE_BITS_ALL;
1189 		fakem.pat_mode = VM_MEMATTR_DEFAULT;
1190 		if (fs.entry->ba.uksmap(&fs.entry->ba, UKSMAPOP_FAULT,
1191 					fs.entry->aux.dev, &fakem)) {
1192 			*errorp = KERN_FAILURE;
1193 			fs.mary[0] = NULL;
1194 			unlock_things(&fs);
1195 			goto done2;
1196 		}
1197 		fs.mary[0] = PHYS_TO_VM_PAGE(fakem.phys_addr);
1198 		vm_page_hold(fs.mary[0]);
1199 		if (busyp)
1200 			*busyp = 0;	/* don't need to busy R or W */
1201 		unlock_things(&fs);
1202 		*errorp = 0;
1203 		goto done;
1204 	}
1205 
1206 
1207 	/*
1208 	 * A system map entry may return a NULL object.  No object means
1209 	 * no pager means an unrecoverable kernel fault.
1210 	 */
1211 	if (fs.first_ba == NULL) {
1212 		panic("vm_fault: unrecoverable fault at %p in entry %p",
1213 			(void *)vaddr, fs.entry);
1214 	}
1215 
1216 	/*
1217 	 * Fail here if not a trivial anonymous page fault and TDF_NOFAULT
1218 	 * is set.
1219 	 *
1220 	 * Unfortunately a deadlock can occur if we are forced to page-in
1221 	 * from swap, but diving all the way into the vm_pager_get_page()
1222 	 * function to find out is too much.  Just check the object type.
1223 	 */
1224 	if ((curthread->td_flags & TDF_NOFAULT) &&
1225 	    (retry ||
1226 	     fs.first_ba->object->type == OBJT_VNODE ||
1227 	     fs.first_ba->object->type == OBJT_SWAP ||
1228 	     fs.first_ba->backing_ba)) {
1229 		*errorp = KERN_FAILURE;
1230 		unlock_things(&fs);
1231 		fs.mary[0] = NULL;
1232 		goto done2;
1233 	}
1234 
1235 	/*
1236 	 * If the entry is wired the page protection level is limited to
1237 	 * what the vm_map_lookup() allowed us.
1238 	 *
1239 	 * XXX it is unclear if this code is still needed as vm_map_lookup()
1240 	 * no longer prevents protection changes on locked memory.  REMOVE
1241 	 * IF WE DETERMINE THAT THIS CODE IS NO LONGER NEEDED.
1242 	 */
1243 	if (fs.wflags & FW_WIRED)
1244 		fault_type = fs.first_prot;
1245 
1246 	/*
1247 	 * Make a reference to this object to prevent its disposal while we
1248 	 * are messing with it.  Once we have the reference, the map is free
1249 	 * to be diddled.  Since objects reference their shadows (and copies),
1250 	 * they will stay around as well.
1251 	 *
1252 	 * The reference should also prevent an unexpected collapse of the
1253 	 * parent that might move pages from the current object into the
1254 	 * parent unexpectedly, resulting in corruption.
1255 	 *
1256 	 * Bump the paging-in-progress count to prevent size changes (e.g.
1257 	 * truncation operations) during I/O.  This must be done after
1258 	 * obtaining the vnode lock in order to avoid possible deadlocks.
1259 	 */
1260 	if (fs.first_ba->flags & VM_MAP_BACK_EXCL_HEUR)
1261 		fs.first_shared = 0;
1262 
1263 	if (fs.first_shared)
1264 		vm_object_hold_shared(fs.first_ba->object);
1265 	else
1266 		vm_object_hold(fs.first_ba->object);
1267 	fs.first_ba_held = 1;
1268 	if (fs.vp == NULL)
1269 		fs.vp = vnode_pager_lock(fs.first_ba);	/* shared */
1270 
1271 	/*
1272 	 * The page we want is at (first_object, first_pindex).
1273 	 *
1274 	 * Now we have the actual (object, pindex), fault in the page.  If
1275 	 * vm_fault_object() fails it will unlock and deallocate the FS
1276 	 * data.   If it succeeds everything remains locked and fs->ba->object
1277 	 * will have an additinal PIP count if fs->ba != fs->first_ba.
1278 	 */
1279 	fs.mary[0] = NULL;
1280 	result = vm_fault_object(&fs, first_pindex, fault_type, 1);
1281 
1282 	if (result == KERN_TRY_AGAIN) {
1283 		KKASSERT(fs.first_ba_held == 0);
1284 		++retry;
1285 		didcow |= fs.wflags & FW_DIDCOW;
1286 		goto RetryFault;
1287 	}
1288 	if (result != KERN_SUCCESS) {
1289 		*errorp = result;
1290 		fs.mary[0] = NULL;
1291 		goto done;
1292 	}
1293 
1294 	if ((orig_fault_type & VM_PROT_WRITE) &&
1295 	    (fs.prot & VM_PROT_WRITE) == 0) {
1296 		*errorp = KERN_PROTECTION_FAILURE;
1297 		unlock_things(&fs);
1298 		fs.mary[0] = NULL;
1299 		goto done;
1300 	}
1301 
1302 	/*
1303 	 * Generally speaking we don't want to update the pmap because
1304 	 * this routine can be called many times for situations that do
1305 	 * not require updating the pmap, not to mention the page might
1306 	 * already be in the pmap.
1307 	 *
1308 	 * However, if our vm_map_lookup() results in a COW, we need to
1309 	 * at least remove the pte from the pmap to guarantee proper
1310 	 * visibility of modifications made to the process.  For example,
1311 	 * modifications made by vkernel uiocopy/related routines and
1312 	 * modifications made by ptrace().
1313 	 */
1314 	vm_page_flag_set(fs.mary[0], PG_REFERENCED);
1315 #if 0
1316 	pmap_enter(fs.map->pmap, vaddr, fs.mary[0], fs.prot,
1317 		   fs.wflags & FW_WIRED, NULL);
1318 	mycpu->gd_cnt.v_vm_faults++;
1319 	if (curthread->td_lwp)
1320 		++curthread->td_lwp->lwp_ru.ru_minflt;
1321 #endif
1322 	if ((fs.wflags | didcow) & FW_DIDCOW) {
1323 		pmap_remove(fs.map->pmap,
1324 			    vaddr & ~PAGE_MASK,
1325 			    (vaddr & ~PAGE_MASK) + PAGE_SIZE);
1326 	}
1327 
1328 	/*
1329 	 * On success vm_fault_object() does not unlock or deallocate, and
1330 	 * fs.mary[0] will contain a busied page.  So we must unlock here
1331 	 * after having messed with the pmap.
1332 	 */
1333 	unlock_things(&fs);
1334 
1335 	/*
1336 	 * Return a held page.  We are not doing any pmap manipulation so do
1337 	 * not set PG_MAPPED.  However, adjust the page flags according to
1338 	 * the fault type because the caller may not use a managed pmapping
1339 	 * (so we don't want to lose the fact that the page will be dirtied
1340 	 * if a write fault was specified).
1341 	 */
1342 	if (fault_type & VM_PROT_WRITE)
1343 		vm_page_dirty(fs.mary[0]);
1344 	vm_page_activate(fs.mary[0]);
1345 
1346 	if (curthread->td_lwp) {
1347 		if (fs.hardfault) {
1348 			curthread->td_lwp->lwp_ru.ru_majflt++;
1349 		} else {
1350 			curthread->td_lwp->lwp_ru.ru_minflt++;
1351 		}
1352 	}
1353 
1354 	/*
1355 	 * Unlock everything, and return the held or busied page.
1356 	 */
1357 	if (busyp) {
1358 		if (fault_type & VM_PROT_WRITE) {
1359 			vm_page_dirty(fs.mary[0]);
1360 			*busyp = 1;
1361 		} else {
1362 			*busyp = 0;
1363 			vm_page_hold(fs.mary[0]);
1364 			vm_page_wakeup(fs.mary[0]);
1365 		}
1366 	} else {
1367 		vm_page_hold(fs.mary[0]);
1368 		vm_page_wakeup(fs.mary[0]);
1369 	}
1370 	/*vm_object_deallocate(fs.first_ba->object);*/
1371 	*errorp = 0;
1372 
1373 done:
1374 	KKASSERT(fs.first_ba_held == 0);
1375 done2:
1376 	return(fs.mary[0]);
1377 }
1378 
1379 /*
1380  * Fault in the specified (object,offset), dirty the returned page as
1381  * needed.  If the requested fault_type cannot be done NULL and an
1382  * error is returned.
1383  *
1384  * A held (but not busied) page is returned.
1385  *
1386  * The passed in object must be held as specified by the shared
1387  * argument.
1388  */
1389 vm_page_t
1390 vm_fault_object_page(vm_object_t object, vm_ooffset_t offset,
1391 		     vm_prot_t fault_type, int fault_flags,
1392 		     int *sharedp, int *errorp)
1393 {
1394 	int result;
1395 	vm_pindex_t first_pindex;
1396 	vm_pindex_t first_count;
1397 	struct faultstate fs;
1398 	struct vm_map_entry entry;
1399 
1400 	/*
1401 	 * Since we aren't actually faulting the page into a
1402 	 * pmap we can just fake the entry.ba.
1403 	 */
1404 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1405 	bzero(&entry, sizeof(entry));
1406 	entry.maptype = VM_MAPTYPE_NORMAL;
1407 	entry.protection = entry.max_protection = fault_type;
1408 	entry.ba.backing_ba = NULL;
1409 	entry.ba.object = object;
1410 	entry.ba.offset = 0;
1411 
1412 	fs.hardfault = 0;
1413 	fs.fault_flags = fault_flags;
1414 	fs.map = NULL;
1415 	fs.shared = vm_shared_fault;
1416 	fs.first_shared = *sharedp;
1417 	fs.msoftonly = 0;
1418 	fs.vp = NULL;
1419 	fs.first_ba_held = -1;	/* object held across call, prevent drop */
1420 	KKASSERT((fault_flags & VM_FAULT_WIRE_MASK) == 0);
1421 
1422 	/*
1423 	 * VM_FAULT_UNSWAP - swap_pager_unswapped() needs an exclusive object
1424 	 * VM_FAULT_DIRTY  - may require swap_pager_unswapped() later, but
1425 	 *		     we can try shared first.
1426 	 */
1427 	if (fs.first_shared && (fault_flags & VM_FAULT_UNSWAP)) {
1428 		fs.first_shared = 0;
1429 		vm_object_upgrade(object);
1430 	}
1431 
1432 	/*
1433 	 * Retry loop as needed (typically for shared->exclusive transitions)
1434 	 */
1435 RetryFault:
1436 	*sharedp = fs.first_shared;
1437 	first_pindex = OFF_TO_IDX(offset);
1438 	first_count = 1;
1439 	fs.first_ba = &entry.ba;
1440 	fs.ba = fs.first_ba;
1441 	fs.entry = &entry;
1442 	fs.first_prot = fault_type;
1443 	fs.wflags = 0;
1444 
1445 	/*
1446 	 * Make a reference to this object to prevent its disposal while we
1447 	 * are messing with it.  Once we have the reference, the map is free
1448 	 * to be diddled.  Since objects reference their shadows (and copies),
1449 	 * they will stay around as well.
1450 	 *
1451 	 * The reference should also prevent an unexpected collapse of the
1452 	 * parent that might move pages from the current object into the
1453 	 * parent unexpectedly, resulting in corruption.
1454 	 *
1455 	 * Bump the paging-in-progress count to prevent size changes (e.g.
1456 	 * truncation operations) during I/O.  This must be done after
1457 	 * obtaining the vnode lock in order to avoid possible deadlocks.
1458 	 */
1459 	if (fs.vp == NULL)
1460 		fs.vp = vnode_pager_lock(fs.first_ba);
1461 
1462 	fs.lookup_still_valid = 1;
1463 	fs.first_m = NULL;
1464 
1465 	/*
1466 	 * Now we have the actual (object, pindex), fault in the page.  If
1467 	 * vm_fault_object() fails it will unlock and deallocate the FS
1468 	 * data.   If it succeeds everything remains locked and fs->ba->object
1469 	 * will have an additinal PIP count if fs->ba != fs->first_ba.
1470 	 *
1471 	 * On KERN_TRY_AGAIN vm_fault_object() leaves fs.first_ba intact.
1472 	 * We may have to upgrade its lock to handle the requested fault.
1473 	 */
1474 	result = vm_fault_object(&fs, first_pindex, fault_type, 0);
1475 
1476 	if (result == KERN_TRY_AGAIN) {
1477 		if (fs.first_shared == 0 && *sharedp)
1478 			vm_object_upgrade(object);
1479 		goto RetryFault;
1480 	}
1481 	if (result != KERN_SUCCESS) {
1482 		*errorp = result;
1483 		return(NULL);
1484 	}
1485 
1486 	if ((fault_type & VM_PROT_WRITE) && (fs.prot & VM_PROT_WRITE) == 0) {
1487 		*errorp = KERN_PROTECTION_FAILURE;
1488 		unlock_things(&fs);
1489 		return(NULL);
1490 	}
1491 
1492 	/*
1493 	 * On success vm_fault_object() does not unlock or deallocate, so we
1494 	 * do it here.  Note that the returned fs.m will be busied.
1495 	 */
1496 	unlock_things(&fs);
1497 
1498 	/*
1499 	 * Return a held page.  We are not doing any pmap manipulation so do
1500 	 * not set PG_MAPPED.  However, adjust the page flags according to
1501 	 * the fault type because the caller may not use a managed pmapping
1502 	 * (so we don't want to lose the fact that the page will be dirtied
1503 	 * if a write fault was specified).
1504 	 */
1505 	vm_page_hold(fs.mary[0]);
1506 	vm_page_activate(fs.mary[0]);
1507 	if ((fault_type & VM_PROT_WRITE) || (fault_flags & VM_FAULT_DIRTY))
1508 		vm_page_dirty(fs.mary[0]);
1509 	if (fault_flags & VM_FAULT_UNSWAP)
1510 		swap_pager_unswapped(fs.mary[0]);
1511 
1512 	/*
1513 	 * Indicate that the page was accessed.
1514 	 */
1515 	vm_page_flag_set(fs.mary[0], PG_REFERENCED);
1516 
1517 	if (curthread->td_lwp) {
1518 		if (fs.hardfault) {
1519 			curthread->td_lwp->lwp_ru.ru_majflt++;
1520 		} else {
1521 			curthread->td_lwp->lwp_ru.ru_minflt++;
1522 		}
1523 	}
1524 
1525 	/*
1526 	 * Unlock everything, and return the held page.
1527 	 */
1528 	vm_page_wakeup(fs.mary[0]);
1529 	/*vm_object_deallocate(fs.first_ba->object);*/
1530 
1531 	*errorp = 0;
1532 	return(fs.mary[0]);
1533 }
1534 
1535 /*
1536  * This is the core of the vm_fault code.
1537  *
1538  * Do all operations required to fault-in (fs.first_ba->object, pindex).
1539  * Run through the backing store as necessary and do required COW or virtual
1540  * copy operations.  The caller has already fully resolved the vm_map_entry
1541  * and, if appropriate, has created a copy-on-write layer.  All we need to
1542  * do is iterate the object chain.
1543  *
1544  * On failure (fs) is unlocked and deallocated and the caller may return or
1545  * retry depending on the failure code.  On success (fs) is NOT unlocked or
1546  * deallocated, fs.mary[0] will contained a resolved, busied page, and fs.ba's
1547  * object will have an additional PIP count if it is not equal to
1548  * fs.first_ba.
1549  *
1550  * If locks based on fs->first_shared or fs->shared are insufficient,
1551  * clear the appropriate field(s) and return RETRY.  COWs require that
1552  * first_shared be 0, while page allocations (or frees) require that
1553  * shared be 0.  Renames require that both be 0.
1554  *
1555  * NOTE! fs->[first_]shared might be set with VM_FAULT_DIRTY also set.
1556  *	 we will have to retry with it exclusive if the vm_page is
1557  *	 PG_SWAPPED.
1558  *
1559  * fs->first_ba->object must be held on call.
1560  */
1561 static
1562 int
1563 vm_fault_object(struct faultstate *fs, vm_pindex_t first_pindex,
1564 		vm_prot_t fault_type, int allow_nofault)
1565 {
1566 	vm_map_backing_t next_ba;
1567 	vm_pindex_t pindex;
1568 	int error;
1569 
1570 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(fs->first_ba->object));
1571 	fs->prot = fs->first_prot;
1572 	pindex = first_pindex;
1573 	KKASSERT(fs->ba == fs->first_ba);
1574 
1575 	vm_object_pip_add(fs->first_ba->object, 1);
1576 
1577 	/*
1578 	 * If a read fault occurs we try to upgrade the page protection
1579 	 * and make it also writable if possible.  There are three cases
1580 	 * where we cannot make the page mapping writable:
1581 	 *
1582 	 * (1) The mapping is read-only or the VM object is read-only,
1583 	 *     fs->prot above will simply not have VM_PROT_WRITE set.
1584 	 *
1585 	 * (2) If the VM page is read-only or copy-on-write, upgrading would
1586 	 *     just result in an unnecessary COW fault.
1587 	 *
1588 	 * (3) If the pmap specifically requests A/M bit emulation, downgrade
1589 	 *     here.
1590 	 */
1591 	if (curthread->td_lwp && curthread->td_lwp->lwp_vmspace &&
1592 	    pmap_emulate_ad_bits(&curthread->td_lwp->lwp_vmspace->vm_pmap)) {
1593 		if ((fault_type & VM_PROT_WRITE) == 0)
1594 			fs->prot &= ~VM_PROT_WRITE;
1595 	}
1596 
1597 	/* vm_object_hold(fs->ba->object); implied b/c ba == first_ba */
1598 
1599 	for (;;) {
1600 		/*
1601 		 * If the object is dead, we stop here
1602 		 */
1603 		if (fs->ba->object->flags & OBJ_DEAD) {
1604 			vm_object_pip_wakeup(fs->first_ba->object);
1605 			unlock_things(fs);
1606 			return (KERN_PROTECTION_FAILURE);
1607 		}
1608 
1609 		/*
1610 		 * See if the page is resident.  Wait/Retry if the page is
1611 		 * busy (lots of stuff may have changed so we can't continue
1612 		 * in that case).
1613 		 *
1614 		 * We can theoretically allow the soft-busy case on a read
1615 		 * fault if the page is marked valid, but since such
1616 		 * pages are typically already pmap'd, putting that
1617 		 * special case in might be more effort then it is
1618 		 * worth.  We cannot under any circumstances mess
1619 		 * around with a vm_page_t->busy page except, perhaps,
1620 		 * to pmap it.
1621 		 */
1622 		fs->mary[0] = vm_page_lookup_busy_try(fs->ba->object, pindex,
1623 						      TRUE, &error);
1624 		if (error) {
1625 			vm_object_pip_wakeup(fs->first_ba->object);
1626 			unlock_things(fs);
1627 			vm_page_sleep_busy(fs->mary[0], TRUE, "vmpfw");
1628 			mycpu->gd_cnt.v_intrans++;
1629 			fs->mary[0] = NULL;
1630 			return (KERN_TRY_AGAIN);
1631 		}
1632 		if (fs->mary[0]) {
1633 			/*
1634 			 * The page is busied for us.
1635 			 *
1636 			 * If reactivating a page from PQ_CACHE we may have
1637 			 * to rate-limit.
1638 			 */
1639 			int queue = fs->mary[0]->queue;
1640 			vm_page_unqueue_nowakeup(fs->mary[0]);
1641 
1642 			if ((queue - fs->mary[0]->pc) == PQ_CACHE &&
1643 			    vm_paging_severe()) {
1644 				vm_page_activate(fs->mary[0]);
1645 				vm_page_wakeup(fs->mary[0]);
1646 				fs->mary[0] = NULL;
1647 				vm_object_pip_wakeup(fs->first_ba->object);
1648 				unlock_things(fs);
1649 				if (allow_nofault == 0 ||
1650 				    (curthread->td_flags & TDF_NOFAULT) == 0) {
1651 					thread_t td;
1652 
1653 					vm_wait_pfault();
1654 					td = curthread;
1655 					if (td->td_proc && (td->td_proc->p_flags & P_LOWMEMKILL))
1656 						return (KERN_PROTECTION_FAILURE);
1657 				}
1658 				return (KERN_TRY_AGAIN);
1659 			}
1660 
1661 			/*
1662 			 * If it still isn't completely valid (readable),
1663 			 * or if a read-ahead-mark is set on the VM page,
1664 			 * jump to readrest, else we found the page and
1665 			 * can return.
1666 			 *
1667 			 * We can release the spl once we have marked the
1668 			 * page busy.
1669 			 */
1670 			if (fs->mary[0]->object != kernel_object) {
1671 				if ((fs->mary[0]->valid & VM_PAGE_BITS_ALL) !=
1672 				    VM_PAGE_BITS_ALL) {
1673 					goto readrest;
1674 				}
1675 				if (fs->mary[0]->flags & PG_RAM) {
1676 					if (debug_cluster)
1677 						kprintf("R");
1678 					vm_page_flag_clear(fs->mary[0], PG_RAM);
1679 					goto readrest;
1680 				}
1681 			}
1682 			atomic_clear_int(&fs->first_ba->flags,
1683 					 VM_MAP_BACK_EXCL_HEUR);
1684 			break; /* break to PAGE HAS BEEN FOUND */
1685 		}
1686 
1687 		/*
1688 		 * Page is not resident, If this is the search termination
1689 		 * or the pager might contain the page, allocate a new page.
1690 		 */
1691 		if (TRYPAGER(fs) || fs->ba == fs->first_ba) {
1692 			/*
1693 			 * If this is a SWAP object we can use the shared
1694 			 * lock to check existence of a swap block.  If
1695 			 * there isn't one we can skip to the next object.
1696 			 *
1697 			 * However, if this is the first object we allocate
1698 			 * a page now just in case we need to copy to it
1699 			 * later.
1700 			 */
1701 			if (fs->ba != fs->first_ba &&
1702 			    fs->ba->object->type == OBJT_SWAP) {
1703 				if (swap_pager_haspage_locked(fs->ba->object,
1704 							      pindex) == 0) {
1705 					goto next;
1706 				}
1707 			}
1708 
1709 			/*
1710 			 * Allocating, must be exclusive.
1711 			 */
1712 			atomic_set_int(&fs->first_ba->flags,
1713 				       VM_MAP_BACK_EXCL_HEUR);
1714 			if (fs->ba == fs->first_ba && fs->first_shared) {
1715 				fs->first_shared = 0;
1716 				vm_object_pip_wakeup(fs->first_ba->object);
1717 				unlock_things(fs);
1718 				return (KERN_TRY_AGAIN);
1719 			}
1720 			if (fs->ba != fs->first_ba && fs->shared) {
1721 				fs->first_shared = 0;
1722 				fs->shared = 0;
1723 				vm_object_pip_wakeup(fs->first_ba->object);
1724 				unlock_things(fs);
1725 				return (KERN_TRY_AGAIN);
1726 			}
1727 
1728 			/*
1729 			 * If the page is beyond the object size we fail
1730 			 */
1731 			if (pindex >= fs->ba->object->size) {
1732 				vm_object_pip_wakeup(fs->first_ba->object);
1733 				unlock_things(fs);
1734 				return (KERN_PROTECTION_FAILURE);
1735 			}
1736 
1737 			/*
1738 			 * Allocate a new page for this object/offset pair.
1739 			 *
1740 			 * It is possible for the allocation to race, so
1741 			 * handle the case.
1742 			 *
1743 			 * Does not apply to OBJT_MGTDEVICE (e.g. gpu / drm
1744 			 * subsystem).  For OBJT_MGTDEVICE the pages are not
1745 			 * indexed in the VM object at all but instead directly
1746 			 * entered into the pmap.
1747 			 */
1748 			fs->mary[0] = NULL;
1749 			if (fs->ba->object->type == OBJT_MGTDEVICE)
1750 				goto readrest;
1751 
1752 			if (!vm_paging_severe()) {
1753 				fs->mary[0] = vm_page_alloc(fs->ba->object,
1754 				    pindex,
1755 				    ((fs->vp || fs->ba->backing_ba) ?
1756 					VM_ALLOC_NULL_OK | VM_ALLOC_NORMAL :
1757 					VM_ALLOC_NULL_OK | VM_ALLOC_NORMAL |
1758 					VM_ALLOC_USE_GD | VM_ALLOC_ZERO));
1759 			}
1760 			if (fs->mary[0] == NULL) {
1761 				vm_object_pip_wakeup(fs->first_ba->object);
1762 				unlock_things(fs);
1763 				if (allow_nofault == 0 ||
1764 				    (curthread->td_flags & TDF_NOFAULT) == 0) {
1765 					thread_t td;
1766 
1767 					vm_wait_pfault();
1768 					td = curthread;
1769 					if (td->td_proc && (td->td_proc->p_flags & P_LOWMEMKILL))
1770 						return (KERN_PROTECTION_FAILURE);
1771 				}
1772 				return (KERN_TRY_AGAIN);
1773 			}
1774 
1775 			/*
1776 			 * Fall through to readrest.  We have a new page which
1777 			 * will have to be paged (since m->valid will be 0).
1778 			 */
1779 		}
1780 
1781 readrest:
1782 		/*
1783 		 * We have found an invalid or partially valid page, a
1784 		 * page with a read-ahead mark which might be partially or
1785 		 * fully valid (and maybe dirty too), or we have allocated
1786 		 * a new page.
1787 		 *
1788 		 * Attempt to fault-in the page if there is a chance that the
1789 		 * pager has it, and potentially fault in additional pages
1790 		 * at the same time.
1791 		 *
1792 		 * If TRYPAGER is true then fs.mary[0] will be non-NULL and
1793 		 * busied for us.
1794 		 */
1795 		if (TRYPAGER(fs)) {
1796 			u_char behavior = vm_map_entry_behavior(fs->entry);
1797 			vm_object_t object;
1798 			vm_page_t first_m;
1799 			int seqaccess;
1800 			int rv;
1801 
1802 			if (behavior == MAP_ENTRY_BEHAV_RANDOM)
1803 				seqaccess = 0;
1804 			else
1805 				seqaccess = -1;
1806 
1807 			/*
1808 			 * Doing I/O may synchronously insert additional
1809 			 * pages so we can't be shared at this point either.
1810 			 *
1811 			 * NOTE: We can't free fs->mary[0] here in the
1812 			 *	 allocated case (fs->ba != fs->first_ba) as
1813 			 *	 this would require an exclusively locked
1814 			 *	 VM object.
1815 			 */
1816 			if (fs->ba == fs->first_ba && fs->first_shared) {
1817 				if (fs->mary[0]) {
1818 					vm_page_deactivate(fs->mary[0]);
1819 					vm_page_wakeup(fs->mary[0]);
1820 					fs->mary[0]= NULL;
1821 				}
1822 				fs->first_shared = 0;
1823 				vm_object_pip_wakeup(fs->first_ba->object);
1824 				unlock_things(fs);
1825 				return (KERN_TRY_AGAIN);
1826 			}
1827 			if (fs->ba != fs->first_ba && fs->shared) {
1828 				if (fs->mary[0]) {
1829 					vm_page_deactivate(fs->mary[0]);
1830 					vm_page_wakeup(fs->mary[0]);
1831 					fs->mary[0] = NULL;
1832 				}
1833 				fs->first_shared = 0;
1834 				fs->shared = 0;
1835 				vm_object_pip_wakeup(fs->first_ba->object);
1836 				unlock_things(fs);
1837 				return (KERN_TRY_AGAIN);
1838 			}
1839 
1840 			object = fs->ba->object;
1841 			first_m = NULL;
1842 
1843 			/* object is held, no more access to entry or ba's */
1844 
1845 			/*
1846 			 * Acquire the page data.  We still hold object
1847 			 * and the page has been BUSY's.
1848 			 *
1849 			 * We own the page, but we must re-issue the lookup
1850 			 * because the pager may have replaced it (for example,
1851 			 * in order to enter a fictitious page into the
1852 			 * object).  In this situation the pager will have
1853 			 * cleaned up the old page and left the new one
1854 			 * busy for us.
1855 			 *
1856 			 * If we got here through a PG_RAM read-ahead
1857 			 * mark the page may be partially dirty and thus
1858 			 * not freeable.  Don't bother checking to see
1859 			 * if the pager has the page because we can't free
1860 			 * it anyway.  We have to depend on the get_page
1861 			 * operation filling in any gaps whether there is
1862 			 * backing store or not.
1863 			 *
1864 			 * We must dispose of the page (fs->mary[0]) and also
1865 			 * possibly first_m (the fronting layer).  If
1866 			 * this is a write fault leave the page intact
1867 			 * because we will probably have to copy fs->mary[0]
1868 			 * to fs->first_m on the retry.  If this is a
1869 			 * read fault we probably won't need the page.
1870 			 *
1871 			 * For OBJT_MGTDEVICE (and eventually all types),
1872 			 * fs->mary[0] is not pre-allocated and may be set
1873 			 * to a vm_page (busied for us) without being inserted
1874 			 * into the object.  In this case we want to return
1875 			 * the vm_page directly so the caller can issue the
1876 			 * pmap_enter().
1877 			 */
1878 			rv = vm_pager_get_page(object, pindex,
1879 					       &fs->mary[0], seqaccess);
1880 
1881 			if (rv == VM_PAGER_OK) {
1882 				++fs->hardfault;
1883 				if (object->type == OBJT_MGTDEVICE) {
1884 					break;
1885 				}
1886 
1887 				fs->mary[0] = vm_page_lookup(object, pindex);
1888 				if (fs->mary[0]) {
1889 					vm_page_activate(fs->mary[0]);
1890 					vm_page_wakeup(fs->mary[0]);
1891 					fs->mary[0] = NULL;
1892 				}
1893 
1894 				if (fs->mary[0]) {
1895 					/* NOT REACHED */
1896 					/* have page */
1897 					break;
1898 				}
1899 				vm_object_pip_wakeup(fs->first_ba->object);
1900 				unlock_things(fs);
1901 				return (KERN_TRY_AGAIN);
1902 			}
1903 
1904 			/*
1905 			 * If the pager doesn't have the page, continue on
1906 			 * to the next object.  Retain the vm_page if this
1907 			 * is the first object, we may need to copy into
1908 			 * it later.
1909 			 */
1910 			if (rv == VM_PAGER_FAIL) {
1911 				if (fs->ba != fs->first_ba) {
1912 					if (fs->mary[0]) {
1913 						vm_page_free(fs->mary[0]);
1914 						fs->mary[0] = NULL;
1915 					}
1916 				}
1917 				goto next;
1918 			}
1919 
1920 			/*
1921 			 * Remove the bogus page (which does not exist at this
1922 			 * object/offset).
1923 			 *
1924 			 * Also wake up any other process that may want to bring
1925 			 * in this page.
1926 			 *
1927 			 * If this is the top-level object, we must leave the
1928 			 * busy page to prevent another process from rushing
1929 			 * past us, and inserting the page in that object at
1930 			 * the same time that we are.
1931 			 */
1932 			if (rv == VM_PAGER_ERROR) {
1933 				if (curproc) {
1934 					kprintf("vm_fault: pager read error, "
1935 						"pid %d (%s)\n",
1936 						curproc->p_pid,
1937 						curproc->p_comm);
1938 				} else {
1939 					kprintf("vm_fault: pager read error, "
1940 						"thread %p (%s)\n",
1941 						curthread,
1942 						curthread->td_comm);
1943 				}
1944 			}
1945 
1946 			/*
1947 			 * I/O error or data outside pager's range.
1948 			 */
1949 			if (fs->mary[0]) {
1950 				vnode_pager_freepage(fs->mary[0]);
1951 				fs->mary[0] = NULL;
1952 			}
1953 			if (first_m) {
1954 				vm_page_free(first_m);
1955 				first_m = NULL;		/* safety */
1956 			}
1957 			vm_object_pip_wakeup(object);
1958 			unlock_things(fs);
1959 
1960 			switch(rv) {
1961 			case VM_PAGER_ERROR:
1962 				return (KERN_FAILURE);
1963 			case VM_PAGER_BAD:
1964 				return (KERN_PROTECTION_FAILURE);
1965 			default:
1966 				return (KERN_PROTECTION_FAILURE);
1967 			}
1968 
1969 #if 0
1970 			/*
1971 			 * Data outside the range of the pager or an I/O error
1972 			 *
1973 			 * The page may have been wired during the pagein,
1974 			 * e.g. by the buffer cache, and cannot simply be
1975 			 * freed.  Call vnode_pager_freepage() to deal with it.
1976 			 *
1977 			 * The object is not held shared so we can safely
1978 			 * free the page.
1979 			 */
1980 			if (fs->ba != fs->first_ba) {
1981 
1982 				/*
1983 				 * XXX - we cannot just fall out at this
1984 				 * point, m has been freed and is invalid!
1985 				 */
1986 			}
1987 
1988 			/*
1989 			 * XXX - the check for kernel_map is a kludge to work
1990 			 * around having the machine panic on a kernel space
1991 			 * fault w/ I/O error.
1992 			 */
1993 			if (((fs->map != kernel_map) &&
1994 			    (rv == VM_PAGER_ERROR)) || (rv == VM_PAGER_BAD)) {
1995 				if (fs->m) {
1996 					/* from just above */
1997 					KKASSERT(fs->first_shared == 0);
1998 					vnode_pager_freepage(fs->m);
1999 					fs->m = NULL;
2000 				}
2001 				/* NOT REACHED */
2002 			}
2003 #endif
2004 		}
2005 
2006 next:
2007 		/*
2008 		 * We get here if the object has a default pager (or unwiring)
2009 		 * or the pager doesn't have the page.
2010 		 *
2011 		 * fs->first_m will be used for the COW unless we find a
2012 		 * deeper page to be mapped read-only, in which case the
2013 		 * unlock*(fs) will free first_m.
2014 		 */
2015 		if (fs->ba == fs->first_ba)
2016 			fs->first_m = fs->mary[0];
2017 
2018 		/*
2019 		 * Move on to the next object.  The chain lock should prevent
2020 		 * the backing_object from getting ripped out from under us.
2021 		 *
2022 		 * The object lock for the next object is governed by
2023 		 * fs->shared.
2024 		 */
2025 		next_ba = fs->ba->backing_ba;
2026 		if (next_ba == NULL) {
2027 			/*
2028 			 * If there's no object left, fill the page in the top
2029 			 * object with zeros.
2030 			 */
2031 			if (fs->ba != fs->first_ba) {
2032 				vm_object_pip_wakeup(fs->ba->object);
2033 				vm_object_drop(fs->ba->object);
2034 				fs->ba = fs->first_ba;
2035 				pindex = first_pindex;
2036 				fs->mary[0] = fs->first_m;
2037 			}
2038 			fs->first_m = NULL;
2039 
2040 			/*
2041 			 * Zero the page and mark it valid.
2042 			 */
2043 			vm_page_zero_fill(fs->mary[0]);
2044 			mycpu->gd_cnt.v_zfod++;
2045 			fs->mary[0]->valid = VM_PAGE_BITS_ALL;
2046 			break;	/* break to PAGE HAS BEEN FOUND */
2047 		}
2048 
2049 		if (fs->shared)
2050 			vm_object_hold_shared(next_ba->object);
2051 		else
2052 			vm_object_hold(next_ba->object);
2053 		KKASSERT(next_ba == fs->ba->backing_ba);
2054 		pindex -= OFF_TO_IDX(fs->ba->offset);
2055 		pindex += OFF_TO_IDX(next_ba->offset);
2056 
2057 		if (fs->ba != fs->first_ba) {
2058 			vm_object_pip_wakeup(fs->ba->object);
2059 			vm_object_lock_swap();	/* flip ba/next_ba */
2060 			vm_object_drop(fs->ba->object);
2061 		}
2062 		fs->ba = next_ba;
2063 		vm_object_pip_add(next_ba->object, 1);
2064 	}
2065 
2066 	/*
2067 	 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
2068 	 * is held.]
2069 	 *
2070 	 * object still held.
2071 	 * vm_map may not be locked (determined by fs->lookup_still_valid)
2072 	 *
2073 	 * local shared variable may be different from fs->shared.
2074 	 *
2075 	 * If the page is being written, but isn't already owned by the
2076 	 * top-level object, we have to copy it into a new page owned by the
2077 	 * top-level object.
2078 	 */
2079 	KASSERT((fs->mary[0]->busy_count & PBUSY_LOCKED) != 0,
2080 		("vm_fault: not busy after main loop"));
2081 
2082 	if (fs->ba != fs->first_ba) {
2083 		/*
2084 		 * We only really need to copy if we want to write it.
2085 		 */
2086 		if (fault_type & VM_PROT_WRITE) {
2087 #if 0
2088 			/* CODE REFACTOR IN PROGRESS, REMOVE OPTIMIZATION */
2089 			/*
2090 			 * This allows pages to be virtually copied from a
2091 			 * backing_object into the first_object, where the
2092 			 * backing object has no other refs to it, and cannot
2093 			 * gain any more refs.  Instead of a bcopy, we just
2094 			 * move the page from the backing object to the
2095 			 * first object.  Note that we must mark the page
2096 			 * dirty in the first object so that it will go out
2097 			 * to swap when needed.
2098 			 */
2099 			if (virtual_copy_ok(fs)) {
2100 				/*
2101 				 * (first_m) and (m) are both busied.  We have
2102 				 * move (m) into (first_m)'s object/pindex
2103 				 * in an atomic fashion, then free (first_m).
2104 				 *
2105 				 * first_object is held so second remove
2106 				 * followed by the rename should wind
2107 				 * up being atomic.  vm_page_free() might
2108 				 * block so we don't do it until after the
2109 				 * rename.
2110 				 */
2111 				vm_page_protect(fs->first_m, VM_PROT_NONE);
2112 				vm_page_remove(fs->first_m);
2113 				vm_page_rename(fs->mary[0],
2114 					       fs->first_ba->object,
2115 					       first_pindex);
2116 				vm_page_free(fs->first_m);
2117 				fs->first_m = fs->mary[0];
2118 				fs->mary[0] = NULL;
2119 				mycpu->gd_cnt.v_cow_optim++;
2120 			} else
2121 #endif
2122 			{
2123 				/*
2124 				 * Oh, well, lets copy it.
2125 				 *
2126 				 * We used to unmap the original page here
2127 				 * because vm_fault_page() didn't and this
2128 				 * would cause havoc for the umtx*() code
2129 				 * and the procfs code.
2130 				 *
2131 				 * This is no longer necessary.  The
2132 				 * vm_fault_page() routine will now unmap the
2133 				 * page after a COW, and the umtx code will
2134 				 * recover on its own.
2135 				 */
2136 				/*
2137 				 * NOTE: Since fs->mary[0] is a backing page,
2138 				 *	 it is read-only, so there isn't any
2139 				 *	 copy race vs writers.
2140 				 */
2141 				KKASSERT(fs->first_shared == 0);
2142 				vm_page_copy(fs->mary[0], fs->first_m);
2143 				/* pmap_remove_specific(
2144 				    &curthread->td_lwp->lwp_vmspace->vm_pmap,
2145 				    fs->mary[0]); */
2146 			}
2147 
2148 			/*
2149 			 * We no longer need the old page or object.
2150 			 */
2151 			if (fs->mary[0])
2152 				release_page(fs);
2153 
2154 			/*
2155 			 * fs->ba != fs->first_ba due to above conditional
2156 			 */
2157 			vm_object_pip_wakeup(fs->ba->object);
2158 			vm_object_drop(fs->ba->object);
2159 			fs->ba = fs->first_ba;
2160 
2161 			/*
2162 			 * Only use the new page below...
2163 			 */
2164 			mycpu->gd_cnt.v_cow_faults++;
2165 			fs->mary[0] = fs->first_m;
2166 			pindex = first_pindex;
2167 		} else {
2168 			/*
2169 			 * If it wasn't a write fault avoid having to copy
2170 			 * the page by mapping it read-only from backing
2171 			 * store.  The process is not allowed to modify
2172 			 * backing pages.
2173 			 */
2174 			fs->prot &= ~VM_PROT_WRITE;
2175 		}
2176 	}
2177 
2178 	/*
2179 	 * Relock the map if necessary, then check the generation count.
2180 	 * relock_map() will update fs->timestamp to account for the
2181 	 * relocking if necessary.
2182 	 *
2183 	 * If the count has changed after relocking then all sorts of
2184 	 * crap may have happened and we have to retry.
2185 	 *
2186 	 * NOTE: The relock_map() can fail due to a deadlock against
2187 	 *	 the vm_page we are holding BUSY.
2188 	 */
2189 	KKASSERT(fs->lookup_still_valid != 0);
2190 #if 0
2191 	if (fs->lookup_still_valid == 0 && fs->map) {
2192 		if (relock_map(fs) ||
2193 		    fs->map->timestamp != fs->map_generation) {
2194 			release_page(fs);
2195 			vm_object_pip_wakeup(fs->first_ba->object);
2196 			unlock_things(fs);
2197 			return (KERN_TRY_AGAIN);
2198 		}
2199 	}
2200 #endif
2201 
2202 	/*
2203 	 * If the fault is a write, we know that this page is being
2204 	 * written NOW so dirty it explicitly to save on pmap_is_modified()
2205 	 * calls later.
2206 	 *
2207 	 * If this is a NOSYNC mmap we do not want to set PG_NOSYNC
2208 	 * if the page is already dirty to prevent data written with
2209 	 * the expectation of being synced from not being synced.
2210 	 * Likewise if this entry does not request NOSYNC then make
2211 	 * sure the page isn't marked NOSYNC.  Applications sharing
2212 	 * data should use the same flags to avoid ping ponging.
2213 	 *
2214 	 * Also tell the backing pager, if any, that it should remove
2215 	 * any swap backing since the page is now dirty.
2216 	 */
2217 	vm_page_activate(fs->mary[0]);
2218 	if (fs->prot & VM_PROT_WRITE) {
2219 		vm_object_set_writeable_dirty(fs->first_ba->object);
2220 		vm_set_nosync(fs->mary[0], fs->entry);
2221 		if (fs->fault_flags & VM_FAULT_DIRTY) {
2222 			vm_page_dirty(fs->mary[0]);
2223 			if (fs->mary[0]->flags & PG_SWAPPED) {
2224 				/*
2225 				 * If the page is swapped out we have to call
2226 				 * swap_pager_unswapped() which requires an
2227 				 * exclusive object lock.  If we are shared,
2228 				 * we must clear the shared flag and retry.
2229 				 */
2230 				if ((fs->ba == fs->first_ba &&
2231 				     fs->first_shared) ||
2232 				    (fs->ba != fs->first_ba && fs->shared)) {
2233 					vm_page_wakeup(fs->mary[0]);
2234 					fs->mary[0] = NULL;
2235 					if (fs->ba == fs->first_ba)
2236 						fs->first_shared = 0;
2237 					else
2238 						fs->shared = 0;
2239 					vm_object_pip_wakeup(
2240 							fs->first_ba->object);
2241 					unlock_things(fs);
2242 					return (KERN_TRY_AGAIN);
2243 				}
2244 				swap_pager_unswapped(fs->mary[0]);
2245 			}
2246 		}
2247 	}
2248 
2249 	/*
2250 	 * We found our page at backing layer ba.  Leave the layer state
2251 	 * intact.
2252 	 */
2253 
2254 	vm_object_pip_wakeup(fs->first_ba->object);
2255 #if 0
2256 	if (fs->ba != fs->first_ba)
2257 		vm_object_drop(fs->ba->object);
2258 #endif
2259 
2260 	/*
2261 	 * Page had better still be busy.  We are still locked up and
2262 	 * fs->ba->object will have another PIP reference for the case
2263 	 * where fs->ba != fs->first_ba.
2264 	 */
2265 	KASSERT(fs->mary[0]->busy_count & PBUSY_LOCKED,
2266 		("vm_fault: page %p not busy!", fs->mary[0]));
2267 
2268 	/*
2269 	 * Sanity check: page must be completely valid or it is not fit to
2270 	 * map into user space.  vm_pager_get_pages() ensures this.
2271 	 */
2272 	if (fs->mary[0]->valid != VM_PAGE_BITS_ALL) {
2273 		vm_page_zero_invalid(fs->mary[0], TRUE);
2274 		kprintf("Warning: page %p partially invalid on fault\n",
2275 			fs->mary[0]);
2276 	}
2277 
2278 	return (KERN_SUCCESS);
2279 }
2280 
2281 /*
2282  * Wire down a range of virtual addresses in a map.  The entry in question
2283  * should be marked in-transition and the map must be locked.  We must
2284  * release the map temporarily while faulting-in the page to avoid a
2285  * deadlock.  Note that the entry may be clipped while we are blocked but
2286  * will never be freed.
2287  *
2288  * map must be locked on entry.
2289  */
2290 int
2291 vm_fault_wire(vm_map_t map, vm_map_entry_t entry,
2292 	      boolean_t user_wire, int kmflags)
2293 {
2294 	boolean_t fictitious;
2295 	vm_offset_t start;
2296 	vm_offset_t end;
2297 	vm_offset_t va;
2298 	pmap_t pmap;
2299 	int rv;
2300 	int wire_prot;
2301 	int fault_flags;
2302 	vm_page_t m;
2303 
2304 	if (user_wire) {
2305 		wire_prot = VM_PROT_READ;
2306 		fault_flags = VM_FAULT_USER_WIRE;
2307 	} else {
2308 		wire_prot = VM_PROT_READ | VM_PROT_WRITE;
2309 		fault_flags = VM_FAULT_CHANGE_WIRING;
2310 	}
2311 	if (kmflags & KM_NOTLBSYNC)
2312 		wire_prot |= VM_PROT_NOSYNC;
2313 
2314 	pmap = vm_map_pmap(map);
2315 	start = entry->ba.start;
2316 	end = entry->ba.end;
2317 
2318 	switch(entry->maptype) {
2319 	case VM_MAPTYPE_NORMAL:
2320 		fictitious = entry->ba.object &&
2321 			    ((entry->ba.object->type == OBJT_DEVICE) ||
2322 			     (entry->ba.object->type == OBJT_MGTDEVICE));
2323 		break;
2324 	case VM_MAPTYPE_UKSMAP:
2325 		fictitious = TRUE;
2326 		break;
2327 	default:
2328 		fictitious = FALSE;
2329 		break;
2330 	}
2331 
2332 	if (entry->eflags & MAP_ENTRY_KSTACK)
2333 		start += PAGE_SIZE;
2334 	map->timestamp++;
2335 	vm_map_unlock(map);
2336 
2337 	/*
2338 	 * We simulate a fault to get the page and enter it in the physical
2339 	 * map.
2340 	 */
2341 	for (va = start; va < end; va += PAGE_SIZE) {
2342 		rv = vm_fault(map, va, wire_prot, fault_flags);
2343 		if (rv) {
2344 			while (va > start) {
2345 				va -= PAGE_SIZE;
2346 				m = pmap_unwire(pmap, va);
2347 				if (m && !fictitious) {
2348 					vm_page_busy_wait(m, FALSE, "vmwrpg");
2349 					vm_page_unwire(m, 1);
2350 					vm_page_wakeup(m);
2351 				}
2352 			}
2353 			goto done;
2354 		}
2355 	}
2356 	rv = KERN_SUCCESS;
2357 done:
2358 	vm_map_lock(map);
2359 
2360 	return (rv);
2361 }
2362 
2363 /*
2364  * Unwire a range of virtual addresses in a map.  The map should be
2365  * locked.
2366  */
2367 void
2368 vm_fault_unwire(vm_map_t map, vm_map_entry_t entry)
2369 {
2370 	boolean_t fictitious;
2371 	vm_offset_t start;
2372 	vm_offset_t end;
2373 	vm_offset_t va;
2374 	pmap_t pmap;
2375 	vm_page_t m;
2376 
2377 	pmap = vm_map_pmap(map);
2378 	start = entry->ba.start;
2379 	end = entry->ba.end;
2380 	fictitious = entry->ba.object &&
2381 			((entry->ba.object->type == OBJT_DEVICE) ||
2382 			 (entry->ba.object->type == OBJT_MGTDEVICE));
2383 	if (entry->eflags & MAP_ENTRY_KSTACK)
2384 		start += PAGE_SIZE;
2385 
2386 	/*
2387 	 * Since the pages are wired down, we must be able to get their
2388 	 * mappings from the physical map system.
2389 	 */
2390 	for (va = start; va < end; va += PAGE_SIZE) {
2391 		m = pmap_unwire(pmap, va);
2392 		if (m && !fictitious) {
2393 			vm_page_busy_wait(m, FALSE, "vmwrpg");
2394 			vm_page_unwire(m, 1);
2395 			vm_page_wakeup(m);
2396 		}
2397 	}
2398 }
2399 
2400 /*
2401  * Simulate write faults to bring all data into the head object, return
2402  * KERN_SUCCESS on success (which should be always unless the system runs
2403  * out of memory).
2404  *
2405  * The caller will handle destroying the backing_ba's.
2406  */
2407 int
2408 vm_fault_collapse(vm_map_t map, vm_map_entry_t entry)
2409 {
2410 	struct faultstate fs;
2411 	vm_ooffset_t scan;
2412 	vm_pindex_t pindex;
2413 	vm_object_t object;
2414 	int rv;
2415 	int all_shadowed;
2416 
2417 	bzero(&fs, sizeof(fs));
2418 	object = entry->ba.object;
2419 
2420 	fs.first_prot = entry->max_protection |	/* optional VM_PROT_EXECUTE */
2421 			VM_PROT_READ | VM_PROT_WRITE | VM_PROT_OVERRIDE_WRITE;
2422 	fs.fault_flags = VM_FAULT_NORMAL;
2423 	fs.map = map;
2424 	fs.entry = entry;
2425 	fs.lookup_still_valid = -1;	/* leave map atomically locked */
2426 	fs.first_ba = &entry->ba;
2427 	fs.first_ba_held = -1;		/* leave object held */
2428 
2429 	/* fs.hardfault */
2430 
2431 	vm_object_hold(object);
2432 	rv = KERN_SUCCESS;
2433 
2434 	scan = entry->ba.start;
2435 	all_shadowed = 1;
2436 
2437 	while (scan < entry->ba.end) {
2438 		pindex = OFF_TO_IDX(entry->ba.offset + (scan - entry->ba.start));
2439 
2440 		if (vm_page_lookup(object, pindex)) {
2441 			scan += PAGE_SIZE;
2442 			continue;
2443 		}
2444 
2445 		all_shadowed = 0;
2446 		fs.ba = fs.first_ba;
2447 		fs.prot = fs.first_prot;
2448 
2449 		rv = vm_fault_object(&fs, pindex, fs.first_prot, 1);
2450 		if (rv == KERN_TRY_AGAIN)
2451 			continue;
2452 		if (rv != KERN_SUCCESS)
2453 			break;
2454 		vm_page_flag_set(fs.mary[0], PG_REFERENCED);
2455 		vm_page_activate(fs.mary[0]);
2456 		vm_page_wakeup(fs.mary[0]);
2457 		scan += PAGE_SIZE;
2458 	}
2459 	KKASSERT(entry->ba.object == object);
2460 	vm_object_drop(object);
2461 
2462 	/*
2463 	 * If the fronting object did not have every page we have to clear
2464 	 * the pmap range due to the pages being changed so we can fault-in
2465 	 * the proper pages.
2466 	 */
2467 	if (all_shadowed == 0)
2468 		pmap_remove(map->pmap, entry->ba.start, entry->ba.end);
2469 
2470 	return rv;
2471 }
2472 
2473 /*
2474  * Copy all of the pages from one map entry to another.  If the source
2475  * is wired down we just use vm_page_lookup().  If not we use
2476  * vm_fault_object().
2477  *
2478  * The source and destination maps must be locked for write.
2479  * The source and destination maps token must be held
2480  *
2481  * No other requirements.
2482  *
2483  * XXX do segment optimization
2484  */
2485 void
2486 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
2487 		    vm_map_entry_t dst_entry, vm_map_entry_t src_entry)
2488 {
2489 	vm_object_t dst_object;
2490 	vm_object_t src_object;
2491 	vm_ooffset_t dst_offset;
2492 	vm_ooffset_t src_offset;
2493 	vm_prot_t prot;
2494 	vm_offset_t vaddr;
2495 	vm_page_t dst_m;
2496 	vm_page_t src_m;
2497 
2498 	src_object = src_entry->ba.object;
2499 	src_offset = src_entry->ba.offset;
2500 
2501 	/*
2502 	 * Create the top-level object for the destination entry. (Doesn't
2503 	 * actually shadow anything - we copy the pages directly.)
2504 	 */
2505 	vm_map_entry_allocate_object(dst_entry);
2506 	dst_object = dst_entry->ba.object;
2507 
2508 	prot = dst_entry->max_protection;
2509 
2510 	/*
2511 	 * Loop through all of the pages in the entry's range, copying each
2512 	 * one from the source object (it should be there) to the destination
2513 	 * object.
2514 	 */
2515 	vm_object_hold(src_object);
2516 	vm_object_hold(dst_object);
2517 
2518 	for (vaddr = dst_entry->ba.start, dst_offset = 0;
2519 	     vaddr < dst_entry->ba.end;
2520 	     vaddr += PAGE_SIZE, dst_offset += PAGE_SIZE) {
2521 
2522 		/*
2523 		 * Allocate a page in the destination object
2524 		 */
2525 		do {
2526 			dst_m = vm_page_alloc(dst_object,
2527 					      OFF_TO_IDX(dst_offset),
2528 					      VM_ALLOC_NORMAL);
2529 			if (dst_m == NULL) {
2530 				vm_wait(0);
2531 			}
2532 		} while (dst_m == NULL);
2533 
2534 		/*
2535 		 * Find the page in the source object, and copy it in.
2536 		 * (Because the source is wired down, the page will be in
2537 		 * memory.)
2538 		 */
2539 		src_m = vm_page_lookup(src_object,
2540 				       OFF_TO_IDX(dst_offset + src_offset));
2541 		if (src_m == NULL)
2542 			panic("vm_fault_copy_wired: page missing");
2543 
2544 		vm_page_copy(src_m, dst_m);
2545 
2546 		/*
2547 		 * Enter it in the pmap...
2548 		 */
2549 		pmap_enter(dst_map->pmap, vaddr, dst_m, prot, FALSE, dst_entry);
2550 
2551 		/*
2552 		 * Mark it no longer busy, and put it on the active list.
2553 		 */
2554 		vm_page_activate(dst_m);
2555 		vm_page_wakeup(dst_m);
2556 	}
2557 	vm_object_drop(dst_object);
2558 	vm_object_drop(src_object);
2559 }
2560 
2561 #if 0
2562 
2563 /*
2564  * This routine checks around the requested page for other pages that
2565  * might be able to be faulted in.  This routine brackets the viable
2566  * pages for the pages to be paged in.
2567  *
2568  * Inputs:
2569  *	m, rbehind, rahead
2570  *
2571  * Outputs:
2572  *  marray (array of vm_page_t), reqpage (index of requested page)
2573  *
2574  * Return value:
2575  *  number of pages in marray
2576  */
2577 static int
2578 vm_fault_additional_pages(vm_page_t m, int rbehind, int rahead,
2579 			  vm_page_t *marray, int *reqpage)
2580 {
2581 	int i,j;
2582 	vm_object_t object;
2583 	vm_pindex_t pindex, startpindex, endpindex, tpindex;
2584 	vm_page_t rtm;
2585 	int cbehind, cahead;
2586 
2587 	object = m->object;
2588 	pindex = m->pindex;
2589 
2590 	/*
2591 	 * we don't fault-ahead for device pager
2592 	 */
2593 	if ((object->type == OBJT_DEVICE) ||
2594 	    (object->type == OBJT_MGTDEVICE)) {
2595 		*reqpage = 0;
2596 		marray[0] = m;
2597 		return 1;
2598 	}
2599 
2600 	/*
2601 	 * if the requested page is not available, then give up now
2602 	 */
2603 	if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
2604 		*reqpage = 0;	/* not used by caller, fix compiler warn */
2605 		return 0;
2606 	}
2607 
2608 	if ((cbehind == 0) && (cahead == 0)) {
2609 		*reqpage = 0;
2610 		marray[0] = m;
2611 		return 1;
2612 	}
2613 
2614 	if (rahead > cahead) {
2615 		rahead = cahead;
2616 	}
2617 
2618 	if (rbehind > cbehind) {
2619 		rbehind = cbehind;
2620 	}
2621 
2622 	/*
2623 	 * Do not do any readahead if we have insufficient free memory.
2624 	 *
2625 	 * XXX code was broken disabled before and has instability
2626 	 * with this conditonal fixed, so shortcut for now.
2627 	 */
2628 	if (burst_fault == 0 || vm_page_count_severe()) {
2629 		marray[0] = m;
2630 		*reqpage = 0;
2631 		return 1;
2632 	}
2633 
2634 	/*
2635 	 * scan backward for the read behind pages -- in memory
2636 	 *
2637 	 * Assume that if the page is not found an interrupt will not
2638 	 * create it.  Theoretically interrupts can only remove (busy)
2639 	 * pages, not create new associations.
2640 	 */
2641 	if (pindex > 0) {
2642 		if (rbehind > pindex) {
2643 			rbehind = pindex;
2644 			startpindex = 0;
2645 		} else {
2646 			startpindex = pindex - rbehind;
2647 		}
2648 
2649 		vm_object_hold(object);
2650 		for (tpindex = pindex; tpindex > startpindex; --tpindex) {
2651 			if (vm_page_lookup(object, tpindex - 1))
2652 				break;
2653 		}
2654 
2655 		i = 0;
2656 		while (tpindex < pindex) {
2657 			rtm = vm_page_alloc(object, tpindex, VM_ALLOC_SYSTEM |
2658 							     VM_ALLOC_NULL_OK);
2659 			if (rtm == NULL) {
2660 				for (j = 0; j < i; j++) {
2661 					vm_page_free(marray[j]);
2662 				}
2663 				vm_object_drop(object);
2664 				marray[0] = m;
2665 				*reqpage = 0;
2666 				return 1;
2667 			}
2668 			marray[i] = rtm;
2669 			++i;
2670 			++tpindex;
2671 		}
2672 		vm_object_drop(object);
2673 	} else {
2674 		i = 0;
2675 	}
2676 
2677 	/*
2678 	 * Assign requested page
2679 	 */
2680 	marray[i] = m;
2681 	*reqpage = i;
2682 	++i;
2683 
2684 	/*
2685 	 * Scan forwards for read-ahead pages
2686 	 */
2687 	tpindex = pindex + 1;
2688 	endpindex = tpindex + rahead;
2689 	if (endpindex > object->size)
2690 		endpindex = object->size;
2691 
2692 	vm_object_hold(object);
2693 	while (tpindex < endpindex) {
2694 		if (vm_page_lookup(object, tpindex))
2695 			break;
2696 		rtm = vm_page_alloc(object, tpindex, VM_ALLOC_SYSTEM |
2697 						     VM_ALLOC_NULL_OK);
2698 		if (rtm == NULL)
2699 			break;
2700 		marray[i] = rtm;
2701 		++i;
2702 		++tpindex;
2703 	}
2704 	vm_object_drop(object);
2705 
2706 	return (i);
2707 }
2708 
2709 #endif
2710 
2711 /*
2712  * vm_prefault() provides a quick way of clustering pagefaults into a
2713  * processes address space.  It is a "cousin" of pmap_object_init_pt,
2714  * except it runs at page fault time instead of mmap time.
2715  *
2716  * vm.fast_fault	Enables pre-faulting zero-fill pages
2717  *
2718  * vm.prefault_pages	Number of pages (1/2 negative, 1/2 positive) to
2719  *			prefault.  Scan stops in either direction when
2720  *			a page is found to already exist.
2721  *
2722  * This code used to be per-platform pmap_prefault().  It is now
2723  * machine-independent and enhanced to also pre-fault zero-fill pages
2724  * (see vm.fast_fault) as well as make them writable, which greatly
2725  * reduces the number of page faults programs incur.
2726  *
2727  * Application performance when pre-faulting zero-fill pages is heavily
2728  * dependent on the application.  Very tiny applications like /bin/echo
2729  * lose a little performance while applications of any appreciable size
2730  * gain performance.  Prefaulting multiple pages also reduces SMP
2731  * congestion and can improve SMP performance significantly.
2732  *
2733  * NOTE!  prot may allow writing but this only applies to the top level
2734  *	  object.  If we wind up mapping a page extracted from a backing
2735  *	  object we have to make sure it is read-only.
2736  *
2737  * NOTE!  The caller has already handled any COW operations on the
2738  *	  vm_map_entry via the normal fault code.  Do NOT call this
2739  *	  shortcut unless the normal fault code has run on this entry.
2740  *
2741  * The related map must be locked.
2742  * No other requirements.
2743  */
2744 __read_mostly static int vm_prefault_pages = 8;
2745 SYSCTL_INT(_vm, OID_AUTO, prefault_pages, CTLFLAG_RW, &vm_prefault_pages, 0,
2746 	   "Maximum number of pages to pre-fault");
2747 __read_mostly static int vm_fast_fault = 1;
2748 SYSCTL_INT(_vm, OID_AUTO, fast_fault, CTLFLAG_RW, &vm_fast_fault, 0,
2749 	   "Burst fault zero-fill regions");
2750 
2751 /*
2752  * Set PG_NOSYNC if the map entry indicates so, but only if the page
2753  * is not already dirty by other means.  This will prevent passive
2754  * filesystem syncing as well as 'sync' from writing out the page.
2755  */
2756 static void
2757 vm_set_nosync(vm_page_t m, vm_map_entry_t entry)
2758 {
2759 	if (entry->eflags & MAP_ENTRY_NOSYNC) {
2760 		if (m->dirty == 0)
2761 			vm_page_flag_set(m, PG_NOSYNC);
2762 	} else {
2763 		vm_page_flag_clear(m, PG_NOSYNC);
2764 	}
2765 }
2766 
2767 static void
2768 vm_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry, int prot,
2769 	    int fault_flags)
2770 {
2771 	vm_map_backing_t ba;	/* first ba */
2772 	struct lwp *lp;
2773 	vm_page_t m;
2774 	vm_offset_t addr;
2775 	vm_pindex_t index;
2776 	vm_pindex_t pindex;
2777 	vm_object_t object;
2778 	int pprot;
2779 	int i;
2780 	int noneg;
2781 	int nopos;
2782 	int maxpages;
2783 
2784 	/*
2785 	 * Get stable max count value, disabled if set to 0
2786 	 */
2787 	maxpages = vm_prefault_pages;
2788 	cpu_ccfence();
2789 	if (maxpages <= 0)
2790 		return;
2791 
2792 	/*
2793 	 * We do not currently prefault mappings that use virtual page
2794 	 * tables.  We do not prefault foreign pmaps.
2795 	 */
2796 	if (entry->maptype != VM_MAPTYPE_NORMAL)
2797 		return;
2798 	lp = curthread->td_lwp;
2799 	if (lp == NULL || (pmap != vmspace_pmap(lp->lwp_vmspace)))
2800 		return;
2801 
2802 	/*
2803 	 * Limit pre-fault count to 1024 pages.
2804 	 */
2805 	if (maxpages > 1024)
2806 		maxpages = 1024;
2807 
2808 	ba = &entry->ba;
2809 	object = entry->ba.object;
2810 	KKASSERT(object != NULL);
2811 
2812 	/*
2813 	 * NOTE: VM_FAULT_DIRTY allowed later so must hold object exclusively
2814 	 *	 now (or do something more complex XXX).
2815 	 */
2816 	vm_object_hold(object);
2817 
2818 	noneg = 0;
2819 	nopos = 0;
2820 	for (i = 0; i < maxpages; ++i) {
2821 		vm_object_t lobject;
2822 		vm_object_t nobject;
2823 		vm_map_backing_t last_ba;	/* last ba */
2824 		vm_map_backing_t next_ba;	/* last ba */
2825 		int allocated = 0;
2826 		int error;
2827 
2828 		/*
2829 		 * This can eat a lot of time on a heavily contended
2830 		 * machine so yield on the tick if needed.
2831 		 */
2832 		if ((i & 7) == 7)
2833 			lwkt_yield();
2834 
2835 		/*
2836 		 * Calculate the page to pre-fault, stopping the scan in
2837 		 * each direction separately if the limit is reached.
2838 		 */
2839 		if (i & 1) {
2840 			if (noneg)
2841 				continue;
2842 			addr = addra - ((i + 1) >> 1) * PAGE_SIZE;
2843 		} else {
2844 			if (nopos)
2845 				continue;
2846 			addr = addra + ((i + 2) >> 1) * PAGE_SIZE;
2847 		}
2848 		if (addr < entry->ba.start) {
2849 			noneg = 1;
2850 			if (noneg && nopos)
2851 				break;
2852 			continue;
2853 		}
2854 		if (addr >= entry->ba.end) {
2855 			nopos = 1;
2856 			if (noneg && nopos)
2857 				break;
2858 			continue;
2859 		}
2860 
2861 		/*
2862 		 * Skip pages already mapped, and stop scanning in that
2863 		 * direction.  When the scan terminates in both directions
2864 		 * we are done.
2865 		 */
2866 		if (pmap_prefault_ok(pmap, addr) == 0) {
2867 			if (i & 1)
2868 				noneg = 1;
2869 			else
2870 				nopos = 1;
2871 			if (noneg && nopos)
2872 				break;
2873 			continue;
2874 		}
2875 
2876 		/*
2877 		 * Follow the backing layers to obtain the page to be mapped
2878 		 * into the pmap.
2879 		 *
2880 		 * If we reach the terminal object without finding a page
2881 		 * and we determine it would be advantageous, then allocate
2882 		 * a zero-fill page for the base object.  The base object
2883 		 * is guaranteed to be OBJT_DEFAULT for this case.
2884 		 *
2885 		 * In order to not have to check the pager via *haspage*()
2886 		 * we stop if any non-default object is encountered.  e.g.
2887 		 * a vnode or swap object would stop the loop.
2888 		 */
2889 		index = ((addr - entry->ba.start) + entry->ba.offset) >>
2890 			PAGE_SHIFT;
2891 		last_ba = ba;
2892 		lobject = object;
2893 		pindex = index;
2894 		pprot = prot;
2895 
2896 		/*vm_object_hold(lobject); implied */
2897 
2898 		while ((m = vm_page_lookup_busy_try(lobject, pindex,
2899 						    TRUE, &error)) == NULL) {
2900 			if (lobject->type != OBJT_DEFAULT)
2901 				break;
2902 			if ((next_ba = last_ba->backing_ba) == NULL) {
2903 				if (vm_fast_fault == 0)
2904 					break;
2905 				if ((prot & VM_PROT_WRITE) == 0 ||
2906 				    vm_paging_min()) {
2907 					break;
2908 				}
2909 
2910 				/*
2911 				 * NOTE: Allocated from base object
2912 				 */
2913 				m = vm_page_alloc(object, index,
2914 						  VM_ALLOC_NORMAL |
2915 						  VM_ALLOC_ZERO |
2916 						  VM_ALLOC_USE_GD |
2917 						  VM_ALLOC_NULL_OK);
2918 				if (m == NULL)
2919 					break;
2920 				allocated = 1;
2921 				pprot = prot;
2922 				/* lobject = object .. not needed */
2923 				break;
2924 			}
2925 			if (next_ba->offset & PAGE_MASK)
2926 				break;
2927 			nobject = next_ba->object;
2928 			vm_object_hold(nobject);
2929 			pindex -= last_ba->offset >> PAGE_SHIFT;
2930 			pindex += next_ba->offset >> PAGE_SHIFT;
2931 			if (last_ba != ba) {
2932 				vm_object_lock_swap();
2933 				vm_object_drop(lobject);
2934 			}
2935 			lobject = nobject;
2936 			last_ba = next_ba;
2937 			pprot &= ~VM_PROT_WRITE;
2938 		}
2939 
2940 		/*
2941 		 * NOTE: A non-NULL (m) will be associated with lobject if
2942 		 *	 it was found there, otherwise it is probably a
2943 		 *	 zero-fill page associated with the base object.
2944 		 *
2945 		 * Give-up if no page is available.
2946 		 */
2947 		if (m == NULL) {
2948 			if (last_ba != ba)
2949 				vm_object_drop(lobject);
2950 			break;
2951 		}
2952 
2953 		/*
2954 		 * The object must be marked dirty if we are mapping a
2955 		 * writable page.  Note that (m) does not have to be
2956 		 * entered into the object, so use lobject or object
2957 		 * as appropriate instead of m->object.
2958 		 *
2959 		 * Do this before we potentially drop the object.
2960 		 */
2961 		if (pprot & VM_PROT_WRITE) {
2962 			vm_object_set_writeable_dirty(
2963 				(allocated ? object : lobject));
2964 		}
2965 
2966 		/*
2967 		 * Do not conditionalize on PG_RAM.  If pages are present in
2968 		 * the VM system we assume optimal caching.  If caching is
2969 		 * not optimal the I/O gravy train will be restarted when we
2970 		 * hit an unavailable page.  We do not want to try to restart
2971 		 * the gravy train now because we really don't know how much
2972 		 * of the object has been cached.  The cost for restarting
2973 		 * the gravy train should be low (since accesses will likely
2974 		 * be I/O bound anyway).
2975 		 */
2976 		if (last_ba != ba)
2977 			vm_object_drop(lobject);
2978 
2979 		/*
2980 		 * Enter the page into the pmap if appropriate.  If we had
2981 		 * allocated the page we have to place it on a queue.  If not
2982 		 * we just have to make sure it isn't on the cache queue
2983 		 * (pages on the cache queue are not allowed to be mapped).
2984 		 *
2985 		 * When allocated is TRUE, m corresponds to object,
2986 		 * not lobject.
2987 		 */
2988 		if (allocated) {
2989 			/*
2990 			 * Page must be zerod.
2991 			 */
2992 			vm_page_zero_fill(m);
2993 			mycpu->gd_cnt.v_zfod++;
2994 			m->valid = VM_PAGE_BITS_ALL;
2995 
2996 			/*
2997 			 * Handle dirty page case
2998 			 */
2999 			if (pprot & VM_PROT_WRITE)
3000 				vm_set_nosync(m, entry);
3001 			pmap_enter(pmap, addr, m, pprot, 0, entry);
3002 #if 0
3003 			/* REMOVE ME, a burst counts as one fault */
3004 			mycpu->gd_cnt.v_vm_faults++;
3005 			if (curthread->td_lwp)
3006 				++curthread->td_lwp->lwp_ru.ru_minflt;
3007 #endif
3008 			vm_page_deactivate(m);
3009 			if (pprot & VM_PROT_WRITE) {
3010 				/*vm_object_set_writeable_dirty(object);*/
3011 				vm_set_nosync(m, entry);
3012 				if (fault_flags & VM_FAULT_DIRTY) {
3013 					vm_page_dirty(m);
3014 					/*XXX*/
3015 					swap_pager_unswapped(m);
3016 				}
3017 			}
3018 			vm_page_wakeup(m);
3019 		} else if (error) {
3020 			/* couldn't busy page, no wakeup */
3021 		} else if (
3022 		    ((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
3023 		    (m->flags & PG_FICTITIOUS) == 0) {
3024 			/*
3025 			 * A fully valid page not undergoing soft I/O can
3026 			 * be immediately entered into the pmap.
3027 			 *
3028 			 * When allocated is false, m corresponds to lobject.
3029 			 */
3030 			if ((m->queue - m->pc) == PQ_CACHE)
3031 				vm_page_deactivate(m);
3032 			if (pprot & VM_PROT_WRITE) {
3033 				/*vm_object_set_writeable_dirty(lobject);*/
3034 				vm_set_nosync(m, entry);
3035 				if (fault_flags & VM_FAULT_DIRTY) {
3036 					vm_page_dirty(m);
3037 					/*XXX*/
3038 					swap_pager_unswapped(m);
3039 				}
3040 			}
3041 			if (pprot & VM_PROT_WRITE)
3042 				vm_set_nosync(m, entry);
3043 			pmap_enter(pmap, addr, m, pprot, 0, entry);
3044 #if 0
3045 			/* REMOVE ME, a burst counts as one fault */
3046 			mycpu->gd_cnt.v_vm_faults++;
3047 			if (curthread->td_lwp)
3048 				++curthread->td_lwp->lwp_ru.ru_minflt;
3049 #endif
3050 			vm_page_wakeup(m);
3051 		} else {
3052 			vm_page_wakeup(m);
3053 		}
3054 	}
3055 	vm_object_drop(object);
3056 }
3057 
3058 /*
3059  * Object can be held shared
3060  */
3061 static void
3062 vm_prefault_quick(pmap_t pmap, vm_offset_t addra,
3063 		  vm_map_entry_t entry, int prot, int fault_flags)
3064 {
3065 	struct lwp *lp;
3066 	vm_page_t m;
3067 	vm_offset_t addr;
3068 	vm_pindex_t pindex;
3069 	vm_object_t object;
3070 	int i;
3071 	int noneg;
3072 	int nopos;
3073 	int maxpages;
3074 
3075 	/*
3076 	 * Get stable max count value, disabled if set to 0
3077 	 */
3078 	maxpages = vm_prefault_pages;
3079 	cpu_ccfence();
3080 	if (maxpages <= 0)
3081 		return;
3082 
3083 	/*
3084 	 * We do not currently prefault mappings that use virtual page
3085 	 * tables.  We do not prefault foreign pmaps.
3086 	 */
3087 	if (entry->maptype != VM_MAPTYPE_NORMAL)
3088 		return;
3089 	lp = curthread->td_lwp;
3090 	if (lp == NULL || (pmap != vmspace_pmap(lp->lwp_vmspace)))
3091 		return;
3092 	object = entry->ba.object;
3093 	if (entry->ba.backing_ba != NULL)
3094 		return;
3095 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
3096 
3097 	/*
3098 	 * Limit pre-fault count to 1024 pages.
3099 	 */
3100 	if (maxpages > 1024)
3101 		maxpages = 1024;
3102 
3103 	noneg = 0;
3104 	nopos = 0;
3105 	for (i = 0; i < maxpages; ++i) {
3106 		int error;
3107 
3108 		/*
3109 		 * Calculate the page to pre-fault, stopping the scan in
3110 		 * each direction separately if the limit is reached.
3111 		 */
3112 		if (i & 1) {
3113 			if (noneg)
3114 				continue;
3115 			addr = addra - ((i + 1) >> 1) * PAGE_SIZE;
3116 		} else {
3117 			if (nopos)
3118 				continue;
3119 			addr = addra + ((i + 2) >> 1) * PAGE_SIZE;
3120 		}
3121 		if (addr < entry->ba.start) {
3122 			noneg = 1;
3123 			if (noneg && nopos)
3124 				break;
3125 			continue;
3126 		}
3127 		if (addr >= entry->ba.end) {
3128 			nopos = 1;
3129 			if (noneg && nopos)
3130 				break;
3131 			continue;
3132 		}
3133 
3134 		/*
3135 		 * Follow the VM object chain to obtain the page to be mapped
3136 		 * into the pmap.  This version of the prefault code only
3137 		 * works with terminal objects.
3138 		 *
3139 		 * The page must already exist.  If we encounter a problem
3140 		 * we stop here.
3141 		 *
3142 		 * WARNING!  We cannot call swap_pager_unswapped() or insert
3143 		 *	     a new vm_page with a shared token.
3144 		 */
3145 		pindex = ((addr - entry->ba.start) + entry->ba.offset) >>
3146 			 PAGE_SHIFT;
3147 
3148 		/*
3149 		 * Skip pages already mapped, and stop scanning in that
3150 		 * direction.  When the scan terminates in both directions
3151 		 * we are done.
3152 		 */
3153 		if (pmap_prefault_ok(pmap, addr) == 0) {
3154 			if (i & 1)
3155 				noneg = 1;
3156 			else
3157 				nopos = 1;
3158 			if (noneg && nopos)
3159 				break;
3160 			continue;
3161 		}
3162 
3163 		/*
3164 		 * Shortcut the read-only mapping case using the far more
3165 		 * efficient vm_page_lookup_sbusy_try() function.  This
3166 		 * allows us to acquire the page soft-busied only which
3167 		 * is especially nice for concurrent execs of the same
3168 		 * program.
3169 		 *
3170 		 * The lookup function also validates page suitability
3171 		 * (all valid bits set, and not fictitious).
3172 		 *
3173 		 * If the page is in PQ_CACHE we have to fall-through
3174 		 * and hard-busy it so we can move it out of PQ_CACHE.
3175 		 */
3176 		if ((prot & VM_PROT_WRITE) == 0) {
3177 			m = vm_page_lookup_sbusy_try(object, pindex,
3178 						     0, PAGE_SIZE);
3179 			if (m == NULL)
3180 				break;
3181 			if ((m->queue - m->pc) != PQ_CACHE) {
3182 				pmap_enter(pmap, addr, m, prot, 0, entry);
3183 #if 0
3184 			/* REMOVE ME, a burst counts as one fault */
3185 				mycpu->gd_cnt.v_vm_faults++;
3186 				if (curthread->td_lwp)
3187 					++curthread->td_lwp->lwp_ru.ru_minflt;
3188 #endif
3189 				vm_page_sbusy_drop(m);
3190 				continue;
3191 			}
3192 			vm_page_sbusy_drop(m);
3193 		}
3194 
3195 		/*
3196 		 * Fallback to normal vm_page lookup code.  This code
3197 		 * hard-busies the page.  Not only that, but the page
3198 		 * can remain in that state for a significant period
3199 		 * time due to pmap_enter()'s overhead.
3200 		 */
3201 		m = vm_page_lookup_busy_try(object, pindex, TRUE, &error);
3202 		if (m == NULL || error)
3203 			break;
3204 
3205 		/*
3206 		 * Stop if the page cannot be trivially entered into the
3207 		 * pmap.
3208 		 */
3209 		if (((m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL) ||
3210 		    (m->flags & PG_FICTITIOUS) ||
3211 		    ((m->flags & PG_SWAPPED) &&
3212 		     (prot & VM_PROT_WRITE) &&
3213 		     (fault_flags & VM_FAULT_DIRTY))) {
3214 			vm_page_wakeup(m);
3215 			break;
3216 		}
3217 
3218 		/*
3219 		 * Enter the page into the pmap.  The object might be held
3220 		 * shared so we can't do any (serious) modifying operation
3221 		 * on it.
3222 		 */
3223 		if ((m->queue - m->pc) == PQ_CACHE)
3224 			vm_page_deactivate(m);
3225 		if (prot & VM_PROT_WRITE) {
3226 			vm_object_set_writeable_dirty(m->object);
3227 			vm_set_nosync(m, entry);
3228 			if (fault_flags & VM_FAULT_DIRTY) {
3229 				vm_page_dirty(m);
3230 				/* can't happeen due to conditional above */
3231 				/* swap_pager_unswapped(m); */
3232 			}
3233 		}
3234 		pmap_enter(pmap, addr, m, prot, 0, entry);
3235 #if 0
3236 		/* REMOVE ME, a burst counts as one fault */
3237 		mycpu->gd_cnt.v_vm_faults++;
3238 		if (curthread->td_lwp)
3239 			++curthread->td_lwp->lwp_ru.ru_minflt;
3240 #endif
3241 		vm_page_wakeup(m);
3242 	}
3243 }
3244