xref: /dragonfly/sys/vm/vm_fault.c (revision 68b2c890)
1 /*
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  *
9  *
10  * This code is derived from software contributed to Berkeley by
11  * The Mach Operating System project at Carnegie-Mellon University.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. All advertising materials mentioning features or use of this software
22  *    must display the following acknowledgement:
23  *	This product includes software developed by the University of
24  *	California, Berkeley and its contributors.
25  * 4. Neither the name of the University nor the names of its contributors
26  *    may be used to endorse or promote products derived from this software
27  *    without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39  * SUCH DAMAGE.
40  *
41  *	from: @(#)vm_fault.c	8.4 (Berkeley) 1/12/94
42  *
43  *
44  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
45  * All rights reserved.
46  *
47  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
48  *
49  * Permission to use, copy, modify and distribute this software and
50  * its documentation is hereby granted, provided that both the copyright
51  * notice and this permission notice appear in all copies of the
52  * software, derivative works or modified versions, and any portions
53  * thereof, and that both notices appear in supporting documentation.
54  *
55  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58  *
59  * Carnegie Mellon requests users of this software to return to
60  *
61  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
62  *  School of Computer Science
63  *  Carnegie Mellon University
64  *  Pittsburgh PA 15213-3890
65  *
66  * any improvements or extensions that they make and grant Carnegie the
67  * rights to redistribute these changes.
68  *
69  * $FreeBSD: src/sys/vm/vm_fault.c,v 1.108.2.8 2002/02/26 05:49:27 silby Exp $
70  * $DragonFly: src/sys/vm/vm_fault.c,v 1.44 2007/08/28 01:09:07 dillon Exp $
71  */
72 
73 /*
74  *	Page fault handling module.
75  */
76 
77 #include <sys/param.h>
78 #include <sys/systm.h>
79 #include <sys/kernel.h>
80 #include <sys/proc.h>
81 #include <sys/vnode.h>
82 #include <sys/resourcevar.h>
83 #include <sys/vmmeter.h>
84 #include <sys/vkernel.h>
85 #include <sys/sfbuf.h>
86 #include <sys/lock.h>
87 
88 #include <vm/vm.h>
89 #include <vm/vm_param.h>
90 #include <vm/pmap.h>
91 #include <vm/vm_map.h>
92 #include <vm/vm_object.h>
93 #include <vm/vm_page.h>
94 #include <vm/vm_pageout.h>
95 #include <vm/vm_kern.h>
96 #include <vm/vm_pager.h>
97 #include <vm/vnode_pager.h>
98 #include <vm/vm_extern.h>
99 
100 #include <sys/thread2.h>
101 #include <vm/vm_page2.h>
102 
103 #define VM_FAULT_READ_AHEAD 8
104 #define VM_FAULT_READ_BEHIND 7
105 #define VM_FAULT_READ (VM_FAULT_READ_AHEAD+VM_FAULT_READ_BEHIND+1)
106 
107 struct faultstate {
108 	vm_page_t m;
109 	vm_object_t object;
110 	vm_pindex_t pindex;
111 	vm_prot_t prot;
112 	vm_page_t first_m;
113 	vm_object_t first_object;
114 	vm_prot_t first_prot;
115 	vm_map_t map;
116 	vm_map_entry_t entry;
117 	int lookup_still_valid;
118 	int didlimit;
119 	int hardfault;
120 	int fault_flags;
121 	int map_generation;
122 	boolean_t wired;
123 	struct vnode *vp;
124 };
125 
126 static int vm_fault_object(struct faultstate *, vm_pindex_t, vm_prot_t);
127 static int vm_fault_vpagetable(struct faultstate *, vm_pindex_t *, vpte_t, int);
128 static int vm_fault_additional_pages (vm_page_t, int, int, vm_page_t *, int *);
129 static int vm_fault_ratelimit(struct vmspace *);
130 
131 static __inline void
132 release_page(struct faultstate *fs)
133 {
134 	vm_page_wakeup(fs->m);
135 	vm_page_deactivate(fs->m);
136 	fs->m = NULL;
137 }
138 
139 static __inline void
140 unlock_map(struct faultstate *fs)
141 {
142 	if (fs->lookup_still_valid && fs->map) {
143 		vm_map_lookup_done(fs->map, fs->entry, 0);
144 		fs->lookup_still_valid = FALSE;
145 	}
146 }
147 
148 /*
149  * Clean up after a successful call to vm_fault_object() so another call
150  * to vm_fault_object() can be made.
151  */
152 static void
153 _cleanup_successful_fault(struct faultstate *fs, int relock)
154 {
155 	if (fs->object != fs->first_object) {
156 		vm_page_free(fs->first_m);
157 		vm_object_pip_wakeup(fs->object);
158 		fs->first_m = NULL;
159 	}
160 	fs->object = fs->first_object;
161 	if (relock && fs->lookup_still_valid == FALSE) {
162 		if (fs->map)
163 			vm_map_lock_read(fs->map);
164 		fs->lookup_still_valid = TRUE;
165 	}
166 }
167 
168 static void
169 _unlock_things(struct faultstate *fs, int dealloc)
170 {
171 	vm_object_pip_wakeup(fs->first_object);
172 	_cleanup_successful_fault(fs, 0);
173 	if (dealloc) {
174 		vm_object_deallocate(fs->first_object);
175 	}
176 	unlock_map(fs);
177 	if (fs->vp != NULL) {
178 		vput(fs->vp);
179 		fs->vp = NULL;
180 	}
181 }
182 
183 #define unlock_things(fs) _unlock_things(fs, 0)
184 #define unlock_and_deallocate(fs) _unlock_things(fs, 1)
185 #define cleanup_successful_fault(fs) _cleanup_successful_fault(fs, 1)
186 
187 /*
188  * TRYPAGER
189  *
190  * Determine if the pager for the current object *might* contain the page.
191  *
192  * We only need to try the pager if this is not a default object (default
193  * objects are zero-fill and have no real pager), and if we are not taking
194  * a wiring fault or if the FS entry is wired.
195  */
196 #define TRYPAGER(fs)	\
197 		(fs->object->type != OBJT_DEFAULT && \
198 		(((fs->fault_flags & VM_FAULT_WIRE_MASK) == 0) || fs->wired))
199 
200 /*
201  * vm_fault:
202  *
203  * Handle a page fault occuring at the given address, requiring the given
204  * permissions, in the map specified.  If successful, the page is inserted
205  * into the associated physical map.
206  *
207  * NOTE: The given address should be truncated to the proper page address.
208  *
209  * KERN_SUCCESS is returned if the page fault is handled; otherwise,
210  * a standard error specifying why the fault is fatal is returned.
211  *
212  * The map in question must be referenced, and remains so.
213  * The caller may hold no locks.
214  */
215 int
216 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, int fault_flags)
217 {
218 	int result;
219 	vm_pindex_t first_pindex;
220 	struct faultstate fs;
221 
222 	mycpu->gd_cnt.v_vm_faults++;
223 
224 	fs.didlimit = 0;
225 	fs.hardfault = 0;
226 	fs.fault_flags = fault_flags;
227 
228 RetryFault:
229 	/*
230 	 * Find the vm_map_entry representing the backing store and resolve
231 	 * the top level object and page index.  This may have the side
232 	 * effect of executing a copy-on-write on the map entry and/or
233 	 * creating a shadow object, but will not COW any actual VM pages.
234 	 *
235 	 * On success fs.map is left read-locked and various other fields
236 	 * are initialized but not otherwise referenced or locked.
237 	 *
238 	 * NOTE!  vm_map_lookup will try to upgrade the fault_type to
239 	 * VM_FAULT_WRITE if the map entry is a virtual page table and also
240 	 * writable, so we can set the 'A'accessed bit in the virtual page
241 	 * table entry.
242 	 */
243 	fs.map = map;
244 	result = vm_map_lookup(&fs.map, vaddr, fault_type,
245 			       &fs.entry, &fs.first_object,
246 			       &first_pindex, &fs.first_prot, &fs.wired);
247 
248 	/*
249 	 * If the lookup failed or the map protections are incompatible,
250 	 * the fault generally fails.  However, if the caller is trying
251 	 * to do a user wiring we have more work to do.
252 	 */
253 	if (result != KERN_SUCCESS) {
254 		if (result != KERN_PROTECTION_FAILURE)
255 			return result;
256 		if ((fs.fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE)
257 			return result;
258 
259 		/*
260    		 * If we are user-wiring a r/w segment, and it is COW, then
261    		 * we need to do the COW operation.  Note that we don't
262 		 * currently COW RO sections now, because it is NOT desirable
263    		 * to COW .text.  We simply keep .text from ever being COW'ed
264    		 * and take the heat that one cannot debug wired .text sections.
265    		 */
266 		result = vm_map_lookup(&fs.map, vaddr,
267 				       VM_PROT_READ|VM_PROT_WRITE|
268 				        VM_PROT_OVERRIDE_WRITE,
269 				       &fs.entry, &fs.first_object,
270 				       &first_pindex, &fs.first_prot,
271 				       &fs.wired);
272 		if (result != KERN_SUCCESS)
273 			return result;
274 
275 		/*
276 		 * If we don't COW now, on a user wire, the user will never
277 		 * be able to write to the mapping.  If we don't make this
278 		 * restriction, the bookkeeping would be nearly impossible.
279 		 */
280 		if ((fs.entry->protection & VM_PROT_WRITE) == 0)
281 			fs.entry->max_protection &= ~VM_PROT_WRITE;
282 	}
283 
284 	/*
285 	 * fs.map is read-locked
286 	 *
287 	 * Misc checks.  Save the map generation number to detect races.
288 	 */
289 	fs.map_generation = fs.map->timestamp;
290 
291 	if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
292 		panic("vm_fault: fault on nofault entry, addr: %lx",
293 		    (u_long)vaddr);
294 	}
295 
296 	/*
297 	 * A system map entry may return a NULL object.  No object means
298 	 * no pager means an unrecoverable kernel fault.
299 	 */
300 	if (fs.first_object == NULL) {
301 		panic("vm_fault: unrecoverable fault at %p in entry %p",
302 			(void *)vaddr, fs.entry);
303 	}
304 
305 	/*
306 	 * Make a reference to this object to prevent its disposal while we
307 	 * are messing with it.  Once we have the reference, the map is free
308 	 * to be diddled.  Since objects reference their shadows (and copies),
309 	 * they will stay around as well.
310 	 *
311 	 * Bump the paging-in-progress count to prevent size changes (e.g.
312 	 * truncation operations) during I/O.  This must be done after
313 	 * obtaining the vnode lock in order to avoid possible deadlocks.
314 	 */
315 	vm_object_reference(fs.first_object);
316 	fs.vp = vnode_pager_lock(fs.first_object);
317 	vm_object_pip_add(fs.first_object, 1);
318 
319 	fs.lookup_still_valid = TRUE;
320 	fs.first_m = NULL;
321 	fs.object = fs.first_object;	/* so unlock_and_deallocate works */
322 
323 	/*
324 	 * If the entry is wired we cannot change the page protection.
325 	 */
326 	if (fs.wired)
327 		fault_type = fs.first_prot;
328 
329 	/*
330 	 * The page we want is at (first_object, first_pindex), but if the
331 	 * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the
332 	 * page table to figure out the actual pindex.
333 	 *
334 	 * NOTE!  DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION
335 	 * ONLY
336 	 */
337 	if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
338 		result = vm_fault_vpagetable(&fs, &first_pindex,
339 					     fs.entry->aux.master_pde,
340 					     fault_type);
341 		if (result == KERN_TRY_AGAIN)
342 			goto RetryFault;
343 		if (result != KERN_SUCCESS)
344 			return (result);
345 	}
346 
347 	/*
348 	 * Now we have the actual (object, pindex), fault in the page.  If
349 	 * vm_fault_object() fails it will unlock and deallocate the FS
350 	 * data.   If it succeeds everything remains locked and fs->object
351 	 * will have an additinal PIP count if it is not equal to
352 	 * fs->first_object
353 	 *
354 	 * vm_fault_object will set fs->prot for the pmap operation.  It is
355 	 * allowed to set VM_PROT_WRITE if fault_type == VM_PROT_READ if the
356 	 * page can be safely written.  However, it will force a read-only
357 	 * mapping for a read fault if the memory is managed by a virtual
358 	 * page table.
359 	 */
360 	result = vm_fault_object(&fs, first_pindex, fault_type);
361 
362 	if (result == KERN_TRY_AGAIN)
363 		goto RetryFault;
364 	if (result != KERN_SUCCESS)
365 		return (result);
366 
367 	/*
368 	 * On success vm_fault_object() does not unlock or deallocate, and fs.m
369 	 * will contain a busied page.
370 	 *
371 	 * Enter the page into the pmap and do pmap-related adjustments.
372 	 */
373 	unlock_things(&fs);
374 	pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot, fs.wired);
375 
376 	if (((fs.fault_flags & VM_FAULT_WIRE_MASK) == 0) && (fs.wired == 0)) {
377 		pmap_prefault(fs.map->pmap, vaddr, fs.entry);
378 	}
379 
380 	vm_page_flag_clear(fs.m, PG_ZERO);
381 	vm_page_flag_set(fs.m, PG_MAPPED|PG_REFERENCED);
382 
383 	/*
384 	 * If the page is not wired down, then put it where the pageout daemon
385 	 * can find it.
386 	 */
387 	if (fs.fault_flags & VM_FAULT_WIRE_MASK) {
388 		if (fs.wired)
389 			vm_page_wire(fs.m);
390 		else
391 			vm_page_unwire(fs.m, 1);
392 	} else {
393 		vm_page_activate(fs.m);
394 	}
395 
396 	if (curthread->td_lwp) {
397 		if (fs.hardfault) {
398 			curthread->td_lwp->lwp_ru.ru_majflt++;
399 		} else {
400 			curthread->td_lwp->lwp_ru.ru_minflt++;
401 		}
402 	}
403 
404 	/*
405 	 * Unlock everything, and return
406 	 */
407 	vm_page_wakeup(fs.m);
408 	vm_object_deallocate(fs.first_object);
409 
410 	return (KERN_SUCCESS);
411 }
412 
413 /*
414  * Fault in the specified virtual address in the current process map,
415  * returning a held VM page or NULL.  See vm_fault_page() for more
416  * information.
417  */
418 vm_page_t
419 vm_fault_page_quick(vm_offset_t va, vm_prot_t fault_type, int *errorp)
420 {
421 	struct lwp *lp = curthread->td_lwp;
422 	vm_page_t m;
423 
424 	m = vm_fault_page(&lp->lwp_vmspace->vm_map, va,
425 			  fault_type, VM_FAULT_NORMAL, errorp);
426 	return(m);
427 }
428 
429 /*
430  * Fault in the specified virtual address in the specified map, doing all
431  * necessary manipulation of the object store and all necessary I/O.  Return
432  * a held VM page or NULL, and set *errorp.  The related pmap is not
433  * updated.
434  *
435  * The returned page will be properly dirtied if VM_PROT_WRITE was specified,
436  * and marked PG_REFERENCED as well.
437  */
438 vm_page_t
439 vm_fault_page(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
440 	      int fault_flags, int *errorp)
441 {
442 	int result;
443 	vm_pindex_t first_pindex;
444 	struct faultstate fs;
445 
446 	mycpu->gd_cnt.v_vm_faults++;
447 
448 	fs.didlimit = 0;
449 	fs.hardfault = 0;
450 	fs.fault_flags = fault_flags;
451 	KKASSERT((fault_flags & VM_FAULT_WIRE_MASK) == 0);
452 
453 RetryFault:
454 	/*
455 	 * Find the vm_map_entry representing the backing store and resolve
456 	 * the top level object and page index.  This may have the side
457 	 * effect of executing a copy-on-write on the map entry and/or
458 	 * creating a shadow object, but will not COW any actual VM pages.
459 	 *
460 	 * On success fs.map is left read-locked and various other fields
461 	 * are initialized but not otherwise referenced or locked.
462 	 *
463 	 * NOTE!  vm_map_lookup will upgrade the fault_type to VM_FAULT_WRITE
464 	 * if the map entry is a virtual page table and also writable,
465 	 * so we can set the 'A'accessed bit in the virtual page table entry.
466 	 */
467 	fs.map = map;
468 	result = vm_map_lookup(&fs.map, vaddr, fault_type,
469 			       &fs.entry, &fs.first_object,
470 			       &first_pindex, &fs.first_prot, &fs.wired);
471 
472 	if (result != KERN_SUCCESS) {
473 		*errorp = result;
474 		return (NULL);
475 	}
476 
477 	/*
478 	 * fs.map is read-locked
479 	 *
480 	 * Misc checks.  Save the map generation number to detect races.
481 	 */
482 	fs.map_generation = fs.map->timestamp;
483 
484 	if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
485 		panic("vm_fault: fault on nofault entry, addr: %lx",
486 		    (u_long)vaddr);
487 	}
488 
489 	/*
490 	 * A system map entry may return a NULL object.  No object means
491 	 * no pager means an unrecoverable kernel fault.
492 	 */
493 	if (fs.first_object == NULL) {
494 		panic("vm_fault: unrecoverable fault at %p in entry %p",
495 			(void *)vaddr, fs.entry);
496 	}
497 
498 	/*
499 	 * Make a reference to this object to prevent its disposal while we
500 	 * are messing with it.  Once we have the reference, the map is free
501 	 * to be diddled.  Since objects reference their shadows (and copies),
502 	 * they will stay around as well.
503 	 *
504 	 * Bump the paging-in-progress count to prevent size changes (e.g.
505 	 * truncation operations) during I/O.  This must be done after
506 	 * obtaining the vnode lock in order to avoid possible deadlocks.
507 	 */
508 	vm_object_reference(fs.first_object);
509 	fs.vp = vnode_pager_lock(fs.first_object);
510 	vm_object_pip_add(fs.first_object, 1);
511 
512 	fs.lookup_still_valid = TRUE;
513 	fs.first_m = NULL;
514 	fs.object = fs.first_object;	/* so unlock_and_deallocate works */
515 
516 	/*
517 	 * If the entry is wired we cannot change the page protection.
518 	 */
519 	if (fs.wired)
520 		fault_type = fs.first_prot;
521 
522 	/*
523 	 * The page we want is at (first_object, first_pindex), but if the
524 	 * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the
525 	 * page table to figure out the actual pindex.
526 	 *
527 	 * NOTE!  DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION
528 	 * ONLY
529 	 */
530 	if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
531 		result = vm_fault_vpagetable(&fs, &first_pindex,
532 					     fs.entry->aux.master_pde,
533 					     fault_type);
534 		if (result == KERN_TRY_AGAIN)
535 			goto RetryFault;
536 		if (result != KERN_SUCCESS) {
537 			*errorp = result;
538 			return (NULL);
539 		}
540 	}
541 
542 	/*
543 	 * Now we have the actual (object, pindex), fault in the page.  If
544 	 * vm_fault_object() fails it will unlock and deallocate the FS
545 	 * data.   If it succeeds everything remains locked and fs->object
546 	 * will have an additinal PIP count if it is not equal to
547 	 * fs->first_object
548 	 */
549 	result = vm_fault_object(&fs, first_pindex, fault_type);
550 
551 	if (result == KERN_TRY_AGAIN)
552 		goto RetryFault;
553 	if (result != KERN_SUCCESS) {
554 		*errorp = result;
555 		return(NULL);
556 	}
557 
558 	/*
559 	 * On success vm_fault_object() does not unlock or deallocate, and fs.m
560 	 * will contain a busied page.
561 	 */
562 	unlock_things(&fs);
563 
564 	/*
565 	 * Return a held page.  We are not doing any pmap manipulation so do
566 	 * not set PG_MAPPED.  However, adjust the page flags according to
567 	 * the fault type because the caller may not use a managed pmapping
568 	 * (so we don't want to lose the fact that the page will be dirtied
569 	 * if a write fault was specified).
570 	 */
571 	vm_page_hold(fs.m);
572 	vm_page_flag_clear(fs.m, PG_ZERO);
573 	if (fault_type & VM_PROT_WRITE)
574 		vm_page_dirty(fs.m);
575 
576 	/*
577 	 * Update the pmap.  We really only have to do this if a COW
578 	 * occured to replace the read-only page with the new page.  For
579 	 * now just do it unconditionally. XXX
580 	 */
581 	pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot, fs.wired);
582 	vm_page_flag_set(fs.m, PG_REFERENCED|PG_MAPPED);
583 
584 	/*
585 	 * Unbusy the page by activating it.  It remains held and will not
586 	 * be reclaimed.
587 	 */
588 	vm_page_activate(fs.m);
589 
590 	if (curthread->td_lwp) {
591 		if (fs.hardfault) {
592 			curthread->td_lwp->lwp_ru.ru_majflt++;
593 		} else {
594 			curthread->td_lwp->lwp_ru.ru_minflt++;
595 		}
596 	}
597 
598 	/*
599 	 * Unlock everything, and return the held page.
600 	 */
601 	vm_page_wakeup(fs.m);
602 	vm_object_deallocate(fs.first_object);
603 
604 	*errorp = 0;
605 	return(fs.m);
606 }
607 
608 /*
609  * Fault in the specified
610  */
611 vm_page_t
612 vm_fault_object_page(vm_object_t object, vm_ooffset_t offset,
613 		     vm_prot_t fault_type, int fault_flags, int *errorp)
614 {
615 	int result;
616 	vm_pindex_t first_pindex;
617 	struct faultstate fs;
618 	struct vm_map_entry entry;
619 
620 	bzero(&entry, sizeof(entry));
621 	entry.object.vm_object = object;
622 	entry.maptype = VM_MAPTYPE_NORMAL;
623 	entry.protection = entry.max_protection = fault_type;
624 
625 	fs.didlimit = 0;
626 	fs.hardfault = 0;
627 	fs.fault_flags = fault_flags;
628 	fs.map = NULL;
629 	KKASSERT((fault_flags & VM_FAULT_WIRE_MASK) == 0);
630 
631 RetryFault:
632 
633 	fs.first_object = object;
634 	first_pindex = OFF_TO_IDX(offset);
635 	fs.entry = &entry;
636 	fs.first_prot = fault_type;
637 	fs.wired = 0;
638 	/*fs.map_generation = 0; unused */
639 
640 	/*
641 	 * Make a reference to this object to prevent its disposal while we
642 	 * are messing with it.  Once we have the reference, the map is free
643 	 * to be diddled.  Since objects reference their shadows (and copies),
644 	 * they will stay around as well.
645 	 *
646 	 * Bump the paging-in-progress count to prevent size changes (e.g.
647 	 * truncation operations) during I/O.  This must be done after
648 	 * obtaining the vnode lock in order to avoid possible deadlocks.
649 	 */
650 	vm_object_reference(fs.first_object);
651 	fs.vp = vnode_pager_lock(fs.first_object);
652 	vm_object_pip_add(fs.first_object, 1);
653 
654 	fs.lookup_still_valid = TRUE;
655 	fs.first_m = NULL;
656 	fs.object = fs.first_object;	/* so unlock_and_deallocate works */
657 
658 #if 0
659 	/* XXX future - ability to operate on VM object using vpagetable */
660 	if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
661 		result = vm_fault_vpagetable(&fs, &first_pindex,
662 					     fs.entry->aux.master_pde,
663 					     fault_type);
664 		if (result == KERN_TRY_AGAIN)
665 			goto RetryFault;
666 		if (result != KERN_SUCCESS) {
667 			*errorp = result;
668 			return (NULL);
669 		}
670 	}
671 #endif
672 
673 	/*
674 	 * Now we have the actual (object, pindex), fault in the page.  If
675 	 * vm_fault_object() fails it will unlock and deallocate the FS
676 	 * data.   If it succeeds everything remains locked and fs->object
677 	 * will have an additinal PIP count if it is not equal to
678 	 * fs->first_object
679 	 */
680 	result = vm_fault_object(&fs, first_pindex, fault_type);
681 
682 	if (result == KERN_TRY_AGAIN)
683 		goto RetryFault;
684 	if (result != KERN_SUCCESS) {
685 		*errorp = result;
686 		return(NULL);
687 	}
688 
689 	/*
690 	 * On success vm_fault_object() does not unlock or deallocate, and fs.m
691 	 * will contain a busied page.
692 	 */
693 	unlock_things(&fs);
694 
695 	/*
696 	 * Return a held page.  We are not doing any pmap manipulation so do
697 	 * not set PG_MAPPED.  However, adjust the page flags according to
698 	 * the fault type because the caller may not use a managed pmapping
699 	 * (so we don't want to lose the fact that the page will be dirtied
700 	 * if a write fault was specified).
701 	 */
702 	vm_page_hold(fs.m);
703 	vm_page_flag_clear(fs.m, PG_ZERO);
704 	if (fault_type & VM_PROT_WRITE)
705 		vm_page_dirty(fs.m);
706 
707 	/*
708 	 * Indicate that the page was accessed.
709 	 */
710 	vm_page_flag_set(fs.m, PG_REFERENCED);
711 
712 	/*
713 	 * Unbusy the page by activating it.  It remains held and will not
714 	 * be reclaimed.
715 	 */
716 	vm_page_activate(fs.m);
717 
718 	if (curthread->td_lwp) {
719 		if (fs.hardfault) {
720 			mycpu->gd_cnt.v_vm_faults++;
721 			curthread->td_lwp->lwp_ru.ru_majflt++;
722 		} else {
723 			curthread->td_lwp->lwp_ru.ru_minflt++;
724 		}
725 	}
726 
727 	/*
728 	 * Unlock everything, and return the held page.
729 	 */
730 	vm_page_wakeup(fs.m);
731 	vm_object_deallocate(fs.first_object);
732 
733 	*errorp = 0;
734 	return(fs.m);
735 }
736 
737 /*
738  * Translate the virtual page number (first_pindex) that is relative
739  * to the address space into a logical page number that is relative to the
740  * backing object.  Use the virtual page table pointed to by (vpte).
741  *
742  * This implements an N-level page table.  Any level can terminate the
743  * scan by setting VPTE_PS.   A linear mapping is accomplished by setting
744  * VPTE_PS in the master page directory entry set via mcontrol(MADV_SETMAP).
745  */
746 static
747 int
748 vm_fault_vpagetable(struct faultstate *fs, vm_pindex_t *pindex,
749 		    vpte_t vpte, int fault_type)
750 {
751 	struct sf_buf *sf;
752 	int vshift = 32 - PAGE_SHIFT;	/* page index bits remaining */
753 	int result = KERN_SUCCESS;
754 	vpte_t *ptep;
755 
756 	for (;;) {
757 		/*
758 		 * We cannot proceed if the vpte is not valid, not readable
759 		 * for a read fault, or not writable for a write fault.
760 		 */
761 		if ((vpte & VPTE_V) == 0) {
762 			unlock_and_deallocate(fs);
763 			return (KERN_FAILURE);
764 		}
765 		if ((fault_type & VM_PROT_READ) && (vpte & VPTE_R) == 0) {
766 			unlock_and_deallocate(fs);
767 			return (KERN_FAILURE);
768 		}
769 		if ((fault_type & VM_PROT_WRITE) && (vpte & VPTE_W) == 0) {
770 			unlock_and_deallocate(fs);
771 			return (KERN_FAILURE);
772 		}
773 		if ((vpte & VPTE_PS) || vshift == 0)
774 			break;
775 		KKASSERT(vshift >= VPTE_PAGE_BITS);
776 
777 		/*
778 		 * Get the page table page.  Nominally we only read the page
779 		 * table, but since we are actively setting VPTE_M and VPTE_A,
780 		 * tell vm_fault_object() that we are writing it.
781 		 *
782 		 * There is currently no real need to optimize this.
783 		 */
784 		result = vm_fault_object(fs, vpte >> PAGE_SHIFT,
785 					 VM_PROT_READ|VM_PROT_WRITE);
786 		if (result != KERN_SUCCESS)
787 			return (result);
788 
789 		/*
790 		 * Process the returned fs.m and look up the page table
791 		 * entry in the page table page.
792 		 */
793 		vshift -= VPTE_PAGE_BITS;
794 		sf = sf_buf_alloc(fs->m, SFB_CPUPRIVATE);
795 		ptep = ((vpte_t *)sf_buf_kva(sf) +
796 		        ((*pindex >> vshift) & VPTE_PAGE_MASK));
797 		vpte = *ptep;
798 
799 		/*
800 		 * Page table write-back.  If the vpte is valid for the
801 		 * requested operation, do a write-back to the page table.
802 		 *
803 		 * XXX VPTE_M is not set properly for page directory pages.
804 		 * It doesn't get set in the page directory if the page table
805 		 * is modified during a read access.
806 		 */
807 		if ((fault_type & VM_PROT_WRITE) && (vpte & VPTE_V) &&
808 		    (vpte & VPTE_W)) {
809 			if ((vpte & (VPTE_M|VPTE_A)) != (VPTE_M|VPTE_A)) {
810 				atomic_set_int(ptep, VPTE_M|VPTE_A);
811 				vm_page_dirty(fs->m);
812 			}
813 		}
814 		if ((fault_type & VM_PROT_READ) && (vpte & VPTE_V) &&
815 		    (vpte & VPTE_R)) {
816 			if ((vpte & VPTE_A) == 0) {
817 				atomic_set_int(ptep, VPTE_A);
818 				vm_page_dirty(fs->m);
819 			}
820 		}
821 		sf_buf_free(sf);
822 		vm_page_flag_set(fs->m, PG_REFERENCED);
823 		vm_page_activate(fs->m);
824 		vm_page_wakeup(fs->m);
825 		cleanup_successful_fault(fs);
826 	}
827 	/*
828 	 * Combine remaining address bits with the vpte.
829 	 */
830 	*pindex = (vpte >> PAGE_SHIFT) +
831 		  (*pindex & ((1 << vshift) - 1));
832 	return (KERN_SUCCESS);
833 }
834 
835 
836 /*
837  * Do all operations required to fault-in (fs.first_object, pindex).  Run
838  * through the shadow chain as necessary and do required COW or virtual
839  * copy operations.  The caller has already fully resolved the vm_map_entry
840  * and, if appropriate, has created a copy-on-write layer.  All we need to
841  * do is iterate the object chain.
842  *
843  * On failure (fs) is unlocked and deallocated and the caller may return or
844  * retry depending on the failure code.  On success (fs) is NOT unlocked or
845  * deallocated, fs.m will contained a resolved, busied page, and fs.object
846  * will have an additional PIP count if it is not equal to fs.first_object.
847  */
848 static
849 int
850 vm_fault_object(struct faultstate *fs,
851 		vm_pindex_t first_pindex, vm_prot_t fault_type)
852 {
853 	vm_object_t next_object;
854 	vm_page_t marray[VM_FAULT_READ];
855 	vm_pindex_t pindex;
856 	int faultcount;
857 
858 	fs->prot = fs->first_prot;
859 	fs->object = fs->first_object;
860 	pindex = first_pindex;
861 
862 	/*
863 	 * If a read fault occurs we try to make the page writable if
864 	 * possible.  There are three cases where we cannot make the
865 	 * page mapping writable:
866 	 *
867 	 * (1) The mapping is read-only or the VM object is read-only,
868 	 *     fs->prot above will simply not have VM_PROT_WRITE set.
869 	 *
870 	 * (2) If the mapping is a virtual page table we need to be able
871 	 *     to detect writes so we can set VPTE_M in the virtual page
872 	 *     table.
873 	 *
874 	 * (3) If the VM page is read-only or copy-on-write, upgrading would
875 	 *     just result in an unnecessary COW fault.
876 	 *
877 	 * VM_PROT_VPAGED is set if faulting via a virtual page table and
878 	 * causes adjustments to the 'M'odify bit to also turn off write
879 	 * access to force a re-fault.
880 	 */
881 	if (fs->entry->maptype == VM_MAPTYPE_VPAGETABLE) {
882 		if ((fault_type & VM_PROT_WRITE) == 0)
883 			fs->prot &= ~VM_PROT_WRITE;
884 	}
885 
886 	for (;;) {
887 		/*
888 		 * If the object is dead, we stop here
889 		 */
890 		if (fs->object->flags & OBJ_DEAD) {
891 			unlock_and_deallocate(fs);
892 			return (KERN_PROTECTION_FAILURE);
893 		}
894 
895 		/*
896 		 * See if page is resident.  spl protection is required
897 		 * to avoid an interrupt unbusy/free race against our
898 		 * lookup.  We must hold the protection through a page
899 		 * allocation or busy.
900 		 */
901 		crit_enter();
902 		fs->m = vm_page_lookup(fs->object, pindex);
903 		if (fs->m != NULL) {
904 			int queue;
905 			/*
906 			 * Wait/Retry if the page is busy.  We have to do this
907 			 * if the page is busy via either PG_BUSY or
908 			 * vm_page_t->busy because the vm_pager may be using
909 			 * vm_page_t->busy for pageouts ( and even pageins if
910 			 * it is the vnode pager ), and we could end up trying
911 			 * to pagein and pageout the same page simultaneously.
912 			 *
913 			 * We can theoretically allow the busy case on a read
914 			 * fault if the page is marked valid, but since such
915 			 * pages are typically already pmap'd, putting that
916 			 * special case in might be more effort then it is
917 			 * worth.  We cannot under any circumstances mess
918 			 * around with a vm_page_t->busy page except, perhaps,
919 			 * to pmap it.
920 			 */
921 			if ((fs->m->flags & PG_BUSY) || fs->m->busy) {
922 				unlock_things(fs);
923 				vm_page_sleep_busy(fs->m, TRUE, "vmpfw");
924 				mycpu->gd_cnt.v_intrans++;
925 				vm_object_deallocate(fs->first_object);
926 				crit_exit();
927 				return (KERN_TRY_AGAIN);
928 			}
929 
930 			/*
931 			 * If reactivating a page from PQ_CACHE we may have
932 			 * to rate-limit.
933 			 */
934 			queue = fs->m->queue;
935 			vm_page_unqueue_nowakeup(fs->m);
936 
937 			if ((queue - fs->m->pc) == PQ_CACHE &&
938 			    vm_page_count_severe()) {
939 				vm_page_activate(fs->m);
940 				unlock_and_deallocate(fs);
941 				vm_waitpfault();
942 				crit_exit();
943 				return (KERN_TRY_AGAIN);
944 			}
945 
946 			/*
947 			 * Mark page busy for other processes, and the
948 			 * pagedaemon.  If it still isn't completely valid
949 			 * (readable), jump to readrest, else we found the
950 			 * page and can return.
951 			 *
952 			 * We can release the spl once we have marked the
953 			 * page busy.
954 			 */
955 			vm_page_busy(fs->m);
956 			crit_exit();
957 
958 			if (((fs->m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL) &&
959 			    fs->m->object != &kernel_object) {
960 				goto readrest;
961 			}
962 			break; /* break to PAGE HAS BEEN FOUND */
963 		}
964 
965 		/*
966 		 * Page is not resident, If this is the search termination
967 		 * or the pager might contain the page, allocate a new page.
968 		 *
969 		 * NOTE: We are still in a critical section.
970 		 */
971 		if (TRYPAGER(fs) || fs->object == fs->first_object) {
972 			/*
973 			 * If the page is beyond the object size we fail
974 			 */
975 			if (pindex >= fs->object->size) {
976 				crit_exit();
977 				unlock_and_deallocate(fs);
978 				return (KERN_PROTECTION_FAILURE);
979 			}
980 
981 			/*
982 			 * Ratelimit.
983 			 */
984 			if (fs->didlimit == 0 && curproc != NULL) {
985 				int limticks;
986 
987 				limticks = vm_fault_ratelimit(curproc->p_vmspace);
988 				if (limticks) {
989 					crit_exit();
990 					unlock_and_deallocate(fs);
991 					tsleep(curproc, 0, "vmrate", limticks);
992 					fs->didlimit = 1;
993 					return (KERN_TRY_AGAIN);
994 				}
995 			}
996 
997 			/*
998 			 * Allocate a new page for this object/offset pair.
999 			 */
1000 			fs->m = NULL;
1001 			if (!vm_page_count_severe()) {
1002 				fs->m = vm_page_alloc(fs->object, pindex,
1003 				    (fs->vp || fs->object->backing_object) ? VM_ALLOC_NORMAL : VM_ALLOC_NORMAL | VM_ALLOC_ZERO);
1004 			}
1005 			if (fs->m == NULL) {
1006 				crit_exit();
1007 				unlock_and_deallocate(fs);
1008 				vm_waitpfault();
1009 				return (KERN_TRY_AGAIN);
1010 			}
1011 		}
1012 		crit_exit();
1013 
1014 readrest:
1015 		/*
1016 		 * We have found a valid page or we have allocated a new page.
1017 		 * The page thus may not be valid or may not be entirely
1018 		 * valid.
1019 		 *
1020 		 * Attempt to fault-in the page if there is a chance that the
1021 		 * pager has it, and potentially fault in additional pages
1022 		 * at the same time.
1023 		 *
1024 		 * We are NOT in splvm here and if TRYPAGER is true then
1025 		 * fs.m will be non-NULL and will be PG_BUSY for us.
1026 		 */
1027 
1028 		if (TRYPAGER(fs)) {
1029 			int rv;
1030 			int reqpage;
1031 			int ahead, behind;
1032 			u_char behavior = vm_map_entry_behavior(fs->entry);
1033 
1034 			if (behavior == MAP_ENTRY_BEHAV_RANDOM) {
1035 				ahead = 0;
1036 				behind = 0;
1037 			} else {
1038 				behind = pindex;
1039 				if (behind > VM_FAULT_READ_BEHIND)
1040 					behind = VM_FAULT_READ_BEHIND;
1041 
1042 				ahead = fs->object->size - pindex;
1043 				if (ahead < 1)
1044 					ahead = 1;
1045 				if (ahead > VM_FAULT_READ_AHEAD)
1046 					ahead = VM_FAULT_READ_AHEAD;
1047 			}
1048 
1049 			if ((fs->first_object->type != OBJT_DEVICE) &&
1050 			    (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL ||
1051                                 (behavior != MAP_ENTRY_BEHAV_RANDOM &&
1052                                 pindex >= fs->entry->lastr &&
1053                                 pindex < fs->entry->lastr + VM_FAULT_READ))
1054 			) {
1055 				vm_pindex_t firstpindex, tmppindex;
1056 
1057 				if (first_pindex < 2 * VM_FAULT_READ)
1058 					firstpindex = 0;
1059 				else
1060 					firstpindex = first_pindex - 2 * VM_FAULT_READ;
1061 
1062 				/*
1063 				 * note: partially valid pages cannot be
1064 				 * included in the lookahead - NFS piecemeal
1065 				 * writes will barf on it badly.
1066 				 *
1067 				 * spl protection is required to avoid races
1068 				 * between the lookup and an interrupt
1069 				 * unbusy/free sequence occuring prior to
1070 				 * our busy check.
1071 				 */
1072 				crit_enter();
1073 				for (tmppindex = first_pindex - 1;
1074 				    tmppindex >= firstpindex;
1075 				    --tmppindex
1076 				) {
1077 					vm_page_t mt;
1078 
1079 					mt = vm_page_lookup(fs->first_object, tmppindex);
1080 					if (mt == NULL || (mt->valid != VM_PAGE_BITS_ALL))
1081 						break;
1082 					if (mt->busy ||
1083 						(mt->flags & (PG_BUSY | PG_FICTITIOUS | PG_UNMANAGED)) ||
1084 						mt->hold_count ||
1085 						mt->wire_count)
1086 						continue;
1087 					if (mt->dirty == 0)
1088 						vm_page_test_dirty(mt);
1089 					if (mt->dirty) {
1090 						vm_page_protect(mt, VM_PROT_NONE);
1091 						vm_page_deactivate(mt);
1092 					} else {
1093 						vm_page_cache(mt);
1094 					}
1095 				}
1096 				crit_exit();
1097 
1098 				ahead += behind;
1099 				behind = 0;
1100 			}
1101 
1102 			/*
1103 			 * now we find out if any other pages should be paged
1104 			 * in at this time this routine checks to see if the
1105 			 * pages surrounding this fault reside in the same
1106 			 * object as the page for this fault.  If they do,
1107 			 * then they are faulted in also into the object.  The
1108 			 * array "marray" returned contains an array of
1109 			 * vm_page_t structs where one of them is the
1110 			 * vm_page_t passed to the routine.  The reqpage
1111 			 * return value is the index into the marray for the
1112 			 * vm_page_t passed to the routine.
1113 			 *
1114 			 * fs.m plus the additional pages are PG_BUSY'd.
1115 			 */
1116 			faultcount = vm_fault_additional_pages(
1117 			    fs->m, behind, ahead, marray, &reqpage);
1118 
1119 			/*
1120 			 * update lastr imperfectly (we do not know how much
1121 			 * getpages will actually read), but good enough.
1122 			 */
1123 			fs->entry->lastr = pindex + faultcount - behind;
1124 
1125 			/*
1126 			 * Call the pager to retrieve the data, if any, after
1127 			 * releasing the lock on the map.  We hold a ref on
1128 			 * fs.object and the pages are PG_BUSY'd.
1129 			 */
1130 			unlock_map(fs);
1131 
1132 			if (faultcount) {
1133 				rv = vm_pager_get_pages(fs->object, marray,
1134 							faultcount, reqpage);
1135 			} else {
1136 				rv = VM_PAGER_FAIL;
1137 			}
1138 
1139 			if (rv == VM_PAGER_OK) {
1140 				/*
1141 				 * Found the page. Leave it busy while we play
1142 				 * with it.
1143 				 */
1144 
1145 				/*
1146 				 * Relookup in case pager changed page. Pager
1147 				 * is responsible for disposition of old page
1148 				 * if moved.
1149 				 *
1150 				 * XXX other code segments do relookups too.
1151 				 * It's a bad abstraction that needs to be
1152 				 * fixed/removed.
1153 				 */
1154 				fs->m = vm_page_lookup(fs->object, pindex);
1155 				if (fs->m == NULL) {
1156 					unlock_and_deallocate(fs);
1157 					return (KERN_TRY_AGAIN);
1158 				}
1159 
1160 				++fs->hardfault;
1161 				break; /* break to PAGE HAS BEEN FOUND */
1162 			}
1163 
1164 			/*
1165 			 * Remove the bogus page (which does not exist at this
1166 			 * object/offset); before doing so, we must get back
1167 			 * our object lock to preserve our invariant.
1168 			 *
1169 			 * Also wake up any other process that may want to bring
1170 			 * in this page.
1171 			 *
1172 			 * If this is the top-level object, we must leave the
1173 			 * busy page to prevent another process from rushing
1174 			 * past us, and inserting the page in that object at
1175 			 * the same time that we are.
1176 			 */
1177 			if (rv == VM_PAGER_ERROR) {
1178 				if (curproc)
1179 					kprintf("vm_fault: pager read error, pid %d (%s)\n", curproc->p_pid, curproc->p_comm);
1180 				else
1181 					kprintf("vm_fault: pager read error, thread %p (%s)\n", curthread, curproc->p_comm);
1182 			}
1183 			/*
1184 			 * Data outside the range of the pager or an I/O error
1185 			 *
1186 			 * The page may have been wired during the pagein,
1187 			 * e.g. by the buffer cache, and cannot simply be
1188 			 * freed.  Call vnode_pager_freepag() to deal with it.
1189 			 */
1190 			/*
1191 			 * XXX - the check for kernel_map is a kludge to work
1192 			 * around having the machine panic on a kernel space
1193 			 * fault w/ I/O error.
1194 			 */
1195 			if (((fs->map != &kernel_map) && (rv == VM_PAGER_ERROR)) ||
1196 				(rv == VM_PAGER_BAD)) {
1197 				vnode_pager_freepage(fs->m);
1198 				fs->m = NULL;
1199 				unlock_and_deallocate(fs);
1200 				if (rv == VM_PAGER_ERROR)
1201 					return (KERN_FAILURE);
1202 				else
1203 					return (KERN_PROTECTION_FAILURE);
1204 				/* NOT REACHED */
1205 			}
1206 			if (fs->object != fs->first_object) {
1207 				vnode_pager_freepage(fs->m);
1208 				fs->m = NULL;
1209 				/*
1210 				 * XXX - we cannot just fall out at this
1211 				 * point, m has been freed and is invalid!
1212 				 */
1213 			}
1214 		}
1215 
1216 		/*
1217 		 * We get here if the object has a default pager (or unwiring)
1218 		 * or the pager doesn't have the page.
1219 		 */
1220 		if (fs->object == fs->first_object)
1221 			fs->first_m = fs->m;
1222 
1223 		/*
1224 		 * Move on to the next object.  Lock the next object before
1225 		 * unlocking the current one.
1226 		 */
1227 		pindex += OFF_TO_IDX(fs->object->backing_object_offset);
1228 		next_object = fs->object->backing_object;
1229 		if (next_object == NULL) {
1230 			/*
1231 			 * If there's no object left, fill the page in the top
1232 			 * object with zeros.
1233 			 */
1234 			if (fs->object != fs->first_object) {
1235 				vm_object_pip_wakeup(fs->object);
1236 
1237 				fs->object = fs->first_object;
1238 				pindex = first_pindex;
1239 				fs->m = fs->first_m;
1240 			}
1241 			fs->first_m = NULL;
1242 
1243 			/*
1244 			 * Zero the page if necessary and mark it valid.
1245 			 */
1246 			if ((fs->m->flags & PG_ZERO) == 0) {
1247 				vm_page_zero_fill(fs->m);
1248 			} else {
1249 				mycpu->gd_cnt.v_ozfod++;
1250 			}
1251 			mycpu->gd_cnt.v_zfod++;
1252 			fs->m->valid = VM_PAGE_BITS_ALL;
1253 			break;	/* break to PAGE HAS BEEN FOUND */
1254 		} else {
1255 			if (fs->object != fs->first_object) {
1256 				vm_object_pip_wakeup(fs->object);
1257 			}
1258 			KASSERT(fs->object != next_object, ("object loop %p", next_object));
1259 			fs->object = next_object;
1260 			vm_object_pip_add(fs->object, 1);
1261 		}
1262 	}
1263 
1264 	KASSERT((fs->m->flags & PG_BUSY) != 0,
1265 		("vm_fault: not busy after main loop"));
1266 
1267 	/*
1268 	 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
1269 	 * is held.]
1270 	 */
1271 
1272 	/*
1273 	 * If the page is being written, but isn't already owned by the
1274 	 * top-level object, we have to copy it into a new page owned by the
1275 	 * top-level object.
1276 	 */
1277 	if (fs->object != fs->first_object) {
1278 		/*
1279 		 * We only really need to copy if we want to write it.
1280 		 */
1281 		if (fault_type & VM_PROT_WRITE) {
1282 			/*
1283 			 * This allows pages to be virtually copied from a
1284 			 * backing_object into the first_object, where the
1285 			 * backing object has no other refs to it, and cannot
1286 			 * gain any more refs.  Instead of a bcopy, we just
1287 			 * move the page from the backing object to the
1288 			 * first object.  Note that we must mark the page
1289 			 * dirty in the first object so that it will go out
1290 			 * to swap when needed.
1291 			 */
1292 			if (
1293 				/*
1294 				 * Map, if present, has not changed
1295 				 */
1296 				(fs->map == NULL ||
1297 				fs->map_generation == fs->map->timestamp) &&
1298 				/*
1299 				 * Only one shadow object
1300 				 */
1301 				(fs->object->shadow_count == 1) &&
1302 				/*
1303 				 * No COW refs, except us
1304 				 */
1305 				(fs->object->ref_count == 1) &&
1306 				/*
1307 				 * No one else can look this object up
1308 				 */
1309 				(fs->object->handle == NULL) &&
1310 				/*
1311 				 * No other ways to look the object up
1312 				 */
1313 				((fs->object->type == OBJT_DEFAULT) ||
1314 				 (fs->object->type == OBJT_SWAP)) &&
1315 				/*
1316 				 * We don't chase down the shadow chain
1317 				 */
1318 				(fs->object == fs->first_object->backing_object) &&
1319 
1320 				/*
1321 				 * grab the lock if we need to
1322 				 */
1323 				(fs->lookup_still_valid ||
1324 				 fs->map == NULL ||
1325 				 lockmgr(&fs->map->lock, LK_EXCLUSIVE|LK_NOWAIT) == 0)
1326 			    ) {
1327 
1328 				fs->lookup_still_valid = 1;
1329 				/*
1330 				 * get rid of the unnecessary page
1331 				 */
1332 				vm_page_protect(fs->first_m, VM_PROT_NONE);
1333 				vm_page_free(fs->first_m);
1334 				fs->first_m = NULL;
1335 
1336 				/*
1337 				 * grab the page and put it into the
1338 				 * process'es object.  The page is
1339 				 * automatically made dirty.
1340 				 */
1341 				vm_page_rename(fs->m, fs->first_object, first_pindex);
1342 				fs->first_m = fs->m;
1343 				vm_page_busy(fs->first_m);
1344 				fs->m = NULL;
1345 				mycpu->gd_cnt.v_cow_optim++;
1346 			} else {
1347 				/*
1348 				 * Oh, well, lets copy it.
1349 				 */
1350 				vm_page_copy(fs->m, fs->first_m);
1351 			}
1352 
1353 			if (fs->m) {
1354 				/*
1355 				 * We no longer need the old page or object.
1356 				 */
1357 				release_page(fs);
1358 			}
1359 
1360 			/*
1361 			 * fs->object != fs->first_object due to above
1362 			 * conditional
1363 			 */
1364 			vm_object_pip_wakeup(fs->object);
1365 
1366 			/*
1367 			 * Only use the new page below...
1368 			 */
1369 
1370 			mycpu->gd_cnt.v_cow_faults++;
1371 			fs->m = fs->first_m;
1372 			fs->object = fs->first_object;
1373 			pindex = first_pindex;
1374 		} else {
1375 			/*
1376 			 * If it wasn't a write fault avoid having to copy
1377 			 * the page by mapping it read-only.
1378 			 */
1379 			fs->prot &= ~VM_PROT_WRITE;
1380 		}
1381 	}
1382 
1383 	/*
1384 	 * We may have had to unlock a map to do I/O.  If we did then
1385 	 * lookup_still_valid will be FALSE.  If the map generation count
1386 	 * also changed then all sorts of things could have happened while
1387 	 * we were doing the I/O and we need to retry.
1388 	 */
1389 
1390 	if (!fs->lookup_still_valid &&
1391 	    fs->map != NULL &&
1392 	    (fs->map->timestamp != fs->map_generation)) {
1393 		release_page(fs);
1394 		unlock_and_deallocate(fs);
1395 		return (KERN_TRY_AGAIN);
1396 	}
1397 
1398 	/*
1399 	 * Put this page into the physical map. We had to do the unlock above
1400 	 * because pmap_enter may cause other faults.   We don't put the page
1401 	 * back on the active queue until later so that the page-out daemon
1402 	 * won't find us (yet).
1403 	 */
1404 	if (fs->prot & VM_PROT_WRITE) {
1405 		vm_page_flag_set(fs->m, PG_WRITEABLE);
1406 		vm_object_set_writeable_dirty(fs->m->object);
1407 
1408 		/*
1409 		 * If the fault is a write, we know that this page is being
1410 		 * written NOW so dirty it explicitly to save on
1411 		 * pmap_is_modified() calls later.
1412 		 *
1413 		 * If this is a NOSYNC mmap we do not want to set PG_NOSYNC
1414 		 * if the page is already dirty to prevent data written with
1415 		 * the expectation of being synced from not being synced.
1416 		 * Likewise if this entry does not request NOSYNC then make
1417 		 * sure the page isn't marked NOSYNC.  Applications sharing
1418 		 * data should use the same flags to avoid ping ponging.
1419 		 *
1420 		 * Also tell the backing pager, if any, that it should remove
1421 		 * any swap backing since the page is now dirty.
1422 		 */
1423 		if (fs->entry->eflags & MAP_ENTRY_NOSYNC) {
1424 			if (fs->m->dirty == 0)
1425 				vm_page_flag_set(fs->m, PG_NOSYNC);
1426 		} else {
1427 			vm_page_flag_clear(fs->m, PG_NOSYNC);
1428 		}
1429 		if (fs->fault_flags & VM_FAULT_DIRTY) {
1430 			crit_enter();
1431 			vm_page_dirty(fs->m);
1432 			vm_pager_page_unswapped(fs->m);
1433 			crit_exit();
1434 		}
1435 	}
1436 
1437 	/*
1438 	 * Page had better still be busy.  We are still locked up and
1439 	 * fs->object will have another PIP reference if it is not equal
1440 	 * to fs->first_object.
1441 	 */
1442 	KASSERT(fs->m->flags & PG_BUSY,
1443 		("vm_fault: page %p not busy!", fs->m));
1444 
1445 	/*
1446 	 * Sanity check: page must be completely valid or it is not fit to
1447 	 * map into user space.  vm_pager_get_pages() ensures this.
1448 	 */
1449 	if (fs->m->valid != VM_PAGE_BITS_ALL) {
1450 		vm_page_zero_invalid(fs->m, TRUE);
1451 		kprintf("Warning: page %p partially invalid on fault\n", fs->m);
1452 	}
1453 
1454 	return (KERN_SUCCESS);
1455 }
1456 
1457 /*
1458  * Wire down a range of virtual addresses in a map.  The entry in question
1459  * should be marked in-transition and the map must be locked.  We must
1460  * release the map temporarily while faulting-in the page to avoid a
1461  * deadlock.  Note that the entry may be clipped while we are blocked but
1462  * will never be freed.
1463  */
1464 int
1465 vm_fault_wire(vm_map_t map, vm_map_entry_t entry, boolean_t user_wire)
1466 {
1467 	boolean_t fictitious;
1468 	vm_offset_t start;
1469 	vm_offset_t end;
1470 	vm_offset_t va;
1471 	vm_paddr_t pa;
1472 	pmap_t pmap;
1473 	int rv;
1474 
1475 	pmap = vm_map_pmap(map);
1476 	start = entry->start;
1477 	end = entry->end;
1478 	fictitious = entry->object.vm_object &&
1479 			(entry->object.vm_object->type == OBJT_DEVICE);
1480 
1481 	vm_map_unlock(map);
1482 	map->timestamp++;
1483 
1484 	/*
1485 	 * We simulate a fault to get the page and enter it in the physical
1486 	 * map.
1487 	 */
1488 	for (va = start; va < end; va += PAGE_SIZE) {
1489 		if (user_wire) {
1490 			rv = vm_fault(map, va, VM_PROT_READ,
1491 					VM_FAULT_USER_WIRE);
1492 		} else {
1493 			rv = vm_fault(map, va, VM_PROT_READ|VM_PROT_WRITE,
1494 					VM_FAULT_CHANGE_WIRING);
1495 		}
1496 		if (rv) {
1497 			while (va > start) {
1498 				va -= PAGE_SIZE;
1499 				if ((pa = pmap_extract(pmap, va)) == 0)
1500 					continue;
1501 				pmap_change_wiring(pmap, va, FALSE);
1502 				if (!fictitious)
1503 					vm_page_unwire(PHYS_TO_VM_PAGE(pa), 1);
1504 			}
1505 			vm_map_lock(map);
1506 			return (rv);
1507 		}
1508 	}
1509 	vm_map_lock(map);
1510 	return (KERN_SUCCESS);
1511 }
1512 
1513 /*
1514  * Unwire a range of virtual addresses in a map.  The map should be
1515  * locked.
1516  */
1517 void
1518 vm_fault_unwire(vm_map_t map, vm_map_entry_t entry)
1519 {
1520 	boolean_t fictitious;
1521 	vm_offset_t start;
1522 	vm_offset_t end;
1523 	vm_offset_t va;
1524 	vm_paddr_t pa;
1525 	pmap_t pmap;
1526 
1527 	pmap = vm_map_pmap(map);
1528 	start = entry->start;
1529 	end = entry->end;
1530 	fictitious = entry->object.vm_object &&
1531 			(entry->object.vm_object->type == OBJT_DEVICE);
1532 
1533 	/*
1534 	 * Since the pages are wired down, we must be able to get their
1535 	 * mappings from the physical map system.
1536 	 */
1537 	for (va = start; va < end; va += PAGE_SIZE) {
1538 		pa = pmap_extract(pmap, va);
1539 		if (pa != 0) {
1540 			pmap_change_wiring(pmap, va, FALSE);
1541 			if (!fictitious)
1542 				vm_page_unwire(PHYS_TO_VM_PAGE(pa), 1);
1543 		}
1544 	}
1545 }
1546 
1547 /*
1548  * Reduce the rate at which memory is allocated to a process based
1549  * on the perceived load on the VM system. As the load increases
1550  * the allocation burst rate goes down and the delay increases.
1551  *
1552  * Rate limiting does not apply when faulting active or inactive
1553  * pages.  When faulting 'cache' pages, rate limiting only applies
1554  * if the system currently has a severe page deficit.
1555  *
1556  * XXX vm_pagesupply should be increased when a page is freed.
1557  *
1558  * We sleep up to 1/10 of a second.
1559  */
1560 static int
1561 vm_fault_ratelimit(struct vmspace *vmspace)
1562 {
1563 	if (vm_load_enable == 0)
1564 		return(0);
1565 	if (vmspace->vm_pagesupply > 0) {
1566 		--vmspace->vm_pagesupply;
1567 		return(0);
1568 	}
1569 #ifdef INVARIANTS
1570 	if (vm_load_debug) {
1571 		kprintf("load %-4d give %d pgs, wait %d, pid %-5d (%s)\n",
1572 			vm_load,
1573 			(1000 - vm_load ) / 10, vm_load * hz / 10000,
1574 			curproc->p_pid, curproc->p_comm);
1575 	}
1576 #endif
1577 	vmspace->vm_pagesupply = (1000 - vm_load) / 10;
1578 	return(vm_load * hz / 10000);
1579 }
1580 
1581 /*
1582  *	Routine:
1583  *		vm_fault_copy_entry
1584  *	Function:
1585  *		Copy all of the pages from a wired-down map entry to another.
1586  *
1587  *	In/out conditions:
1588  *		The source and destination maps must be locked for write.
1589  *		The source map entry must be wired down (or be a sharing map
1590  *		entry corresponding to a main map entry that is wired down).
1591  */
1592 
1593 void
1594 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
1595     vm_map_entry_t dst_entry, vm_map_entry_t src_entry)
1596 {
1597 	vm_object_t dst_object;
1598 	vm_object_t src_object;
1599 	vm_ooffset_t dst_offset;
1600 	vm_ooffset_t src_offset;
1601 	vm_prot_t prot;
1602 	vm_offset_t vaddr;
1603 	vm_page_t dst_m;
1604 	vm_page_t src_m;
1605 
1606 #ifdef	lint
1607 	src_map++;
1608 #endif	/* lint */
1609 
1610 	src_object = src_entry->object.vm_object;
1611 	src_offset = src_entry->offset;
1612 
1613 	/*
1614 	 * Create the top-level object for the destination entry. (Doesn't
1615 	 * actually shadow anything - we copy the pages directly.)
1616 	 */
1617 	vm_map_entry_allocate_object(dst_entry);
1618 	dst_object = dst_entry->object.vm_object;
1619 
1620 	prot = dst_entry->max_protection;
1621 
1622 	/*
1623 	 * Loop through all of the pages in the entry's range, copying each
1624 	 * one from the source object (it should be there) to the destination
1625 	 * object.
1626 	 */
1627 	for (vaddr = dst_entry->start, dst_offset = 0;
1628 	    vaddr < dst_entry->end;
1629 	    vaddr += PAGE_SIZE, dst_offset += PAGE_SIZE) {
1630 
1631 		/*
1632 		 * Allocate a page in the destination object
1633 		 */
1634 		do {
1635 			dst_m = vm_page_alloc(dst_object,
1636 				OFF_TO_IDX(dst_offset), VM_ALLOC_NORMAL);
1637 			if (dst_m == NULL) {
1638 				vm_wait();
1639 			}
1640 		} while (dst_m == NULL);
1641 
1642 		/*
1643 		 * Find the page in the source object, and copy it in.
1644 		 * (Because the source is wired down, the page will be in
1645 		 * memory.)
1646 		 */
1647 		src_m = vm_page_lookup(src_object,
1648 			OFF_TO_IDX(dst_offset + src_offset));
1649 		if (src_m == NULL)
1650 			panic("vm_fault_copy_wired: page missing");
1651 
1652 		vm_page_copy(src_m, dst_m);
1653 
1654 		/*
1655 		 * Enter it in the pmap...
1656 		 */
1657 
1658 		vm_page_flag_clear(dst_m, PG_ZERO);
1659 		pmap_enter(dst_map->pmap, vaddr, dst_m, prot, FALSE);
1660 		vm_page_flag_set(dst_m, PG_WRITEABLE|PG_MAPPED);
1661 
1662 		/*
1663 		 * Mark it no longer busy, and put it on the active list.
1664 		 */
1665 		vm_page_activate(dst_m);
1666 		vm_page_wakeup(dst_m);
1667 	}
1668 }
1669 
1670 
1671 /*
1672  * This routine checks around the requested page for other pages that
1673  * might be able to be faulted in.  This routine brackets the viable
1674  * pages for the pages to be paged in.
1675  *
1676  * Inputs:
1677  *	m, rbehind, rahead
1678  *
1679  * Outputs:
1680  *  marray (array of vm_page_t), reqpage (index of requested page)
1681  *
1682  * Return value:
1683  *  number of pages in marray
1684  */
1685 static int
1686 vm_fault_additional_pages(vm_page_t m, int rbehind, int rahead,
1687     vm_page_t *marray, int *reqpage)
1688 {
1689 	int i,j;
1690 	vm_object_t object;
1691 	vm_pindex_t pindex, startpindex, endpindex, tpindex;
1692 	vm_page_t rtm;
1693 	int cbehind, cahead;
1694 
1695 	object = m->object;
1696 	pindex = m->pindex;
1697 
1698 	/*
1699 	 * we don't fault-ahead for device pager
1700 	 */
1701 	if (object->type == OBJT_DEVICE) {
1702 		*reqpage = 0;
1703 		marray[0] = m;
1704 		return 1;
1705 	}
1706 
1707 	/*
1708 	 * if the requested page is not available, then give up now
1709 	 */
1710 
1711 	if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
1712 		return 0;
1713 	}
1714 
1715 	if ((cbehind == 0) && (cahead == 0)) {
1716 		*reqpage = 0;
1717 		marray[0] = m;
1718 		return 1;
1719 	}
1720 
1721 	if (rahead > cahead) {
1722 		rahead = cahead;
1723 	}
1724 
1725 	if (rbehind > cbehind) {
1726 		rbehind = cbehind;
1727 	}
1728 
1729 	/*
1730 	 * try to do any readahead that we might have free pages for.
1731 	 */
1732 	if ((rahead + rbehind) >
1733 		((vmstats.v_free_count + vmstats.v_cache_count) - vmstats.v_free_reserved)) {
1734 		pagedaemon_wakeup();
1735 		marray[0] = m;
1736 		*reqpage = 0;
1737 		return 1;
1738 	}
1739 
1740 	/*
1741 	 * scan backward for the read behind pages -- in memory
1742 	 *
1743 	 * Assume that if the page is not found an interrupt will not
1744 	 * create it.  Theoretically interrupts can only remove (busy)
1745 	 * pages, not create new associations.
1746 	 */
1747 	if (pindex > 0) {
1748 		if (rbehind > pindex) {
1749 			rbehind = pindex;
1750 			startpindex = 0;
1751 		} else {
1752 			startpindex = pindex - rbehind;
1753 		}
1754 
1755 		crit_enter();
1756 		for ( tpindex = pindex - 1; tpindex >= startpindex; tpindex -= 1) {
1757 			if (vm_page_lookup( object, tpindex)) {
1758 				startpindex = tpindex + 1;
1759 				break;
1760 			}
1761 			if (tpindex == 0)
1762 				break;
1763 		}
1764 
1765 		for(i = 0, tpindex = startpindex; tpindex < pindex; i++, tpindex++) {
1766 
1767 			rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL);
1768 			if (rtm == NULL) {
1769 				crit_exit();
1770 				for (j = 0; j < i; j++) {
1771 					vm_page_free(marray[j]);
1772 				}
1773 				marray[0] = m;
1774 				*reqpage = 0;
1775 				return 1;
1776 			}
1777 
1778 			marray[i] = rtm;
1779 		}
1780 		crit_exit();
1781 	} else {
1782 		startpindex = 0;
1783 		i = 0;
1784 	}
1785 
1786 	marray[i] = m;
1787 	/* page offset of the required page */
1788 	*reqpage = i;
1789 
1790 	tpindex = pindex + 1;
1791 	i++;
1792 
1793 	/*
1794 	 * scan forward for the read ahead pages
1795 	 */
1796 	endpindex = tpindex + rahead;
1797 	if (endpindex > object->size)
1798 		endpindex = object->size;
1799 
1800 	crit_enter();
1801 	for( ; tpindex < endpindex; i++, tpindex++) {
1802 
1803 		if (vm_page_lookup(object, tpindex)) {
1804 			break;
1805 		}
1806 
1807 		rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL);
1808 		if (rtm == NULL) {
1809 			break;
1810 		}
1811 
1812 		marray[i] = rtm;
1813 	}
1814 	crit_exit();
1815 
1816 	/* return number of bytes of pages */
1817 	return i;
1818 }
1819