xref: /dragonfly/sys/vm/vm_fault.c (revision 71990c18)
1 /*
2  * Copyright (c) 2003-2014 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * ---
35  *
36  * Copyright (c) 1991, 1993
37  *	The Regents of the University of California.  All rights reserved.
38  * Copyright (c) 1994 John S. Dyson
39  * All rights reserved.
40  * Copyright (c) 1994 David Greenman
41  * All rights reserved.
42  *
43  *
44  * This code is derived from software contributed to Berkeley by
45  * The Mach Operating System project at Carnegie-Mellon University.
46  *
47  * Redistribution and use in source and binary forms, with or without
48  * modification, are permitted provided that the following conditions
49  * are met:
50  * 1. Redistributions of source code must retain the above copyright
51  *    notice, this list of conditions and the following disclaimer.
52  * 2. Redistributions in binary form must reproduce the above copyright
53  *    notice, this list of conditions and the following disclaimer in the
54  *    documentation and/or other materials provided with the distribution.
55  * 3. Neither the name of the University nor the names of its contributors
56  *    may be used to endorse or promote products derived from this software
57  *    without specific prior written permission.
58  *
59  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69  * SUCH DAMAGE.
70  *
71  * ---
72  *
73  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
74  * All rights reserved.
75  *
76  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
77  *
78  * Permission to use, copy, modify and distribute this software and
79  * its documentation is hereby granted, provided that both the copyright
80  * notice and this permission notice appear in all copies of the
81  * software, derivative works or modified versions, and any portions
82  * thereof, and that both notices appear in supporting documentation.
83  *
84  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
85  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
86  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
87  *
88  * Carnegie Mellon requests users of this software to return to
89  *
90  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
91  *  School of Computer Science
92  *  Carnegie Mellon University
93  *  Pittsburgh PA 15213-3890
94  *
95  * any improvements or extensions that they make and grant Carnegie the
96  * rights to redistribute these changes.
97  */
98 
99 /*
100  *	Page fault handling module.
101  */
102 
103 #include <sys/param.h>
104 #include <sys/systm.h>
105 #include <sys/kernel.h>
106 #include <sys/proc.h>
107 #include <sys/vnode.h>
108 #include <sys/resourcevar.h>
109 #include <sys/vmmeter.h>
110 #include <sys/vkernel.h>
111 #include <sys/lock.h>
112 #include <sys/sysctl.h>
113 
114 #include <cpu/lwbuf.h>
115 
116 #include <vm/vm.h>
117 #include <vm/vm_param.h>
118 #include <vm/pmap.h>
119 #include <vm/vm_map.h>
120 #include <vm/vm_object.h>
121 #include <vm/vm_page.h>
122 #include <vm/vm_pageout.h>
123 #include <vm/vm_kern.h>
124 #include <vm/vm_pager.h>
125 #include <vm/vnode_pager.h>
126 #include <vm/vm_extern.h>
127 
128 #include <sys/thread2.h>
129 #include <vm/vm_page2.h>
130 
131 struct faultstate {
132 	vm_page_t m;
133 	vm_object_t object;
134 	vm_pindex_t pindex;
135 	vm_prot_t prot;
136 	vm_page_t first_m;
137 	vm_object_t first_object;
138 	vm_prot_t first_prot;
139 	vm_map_t map;
140 	vm_map_entry_t entry;
141 	int lookup_still_valid;
142 	int hardfault;
143 	int fault_flags;
144 	int map_generation;
145 	int shared;
146 	int first_shared;
147 	boolean_t wired;
148 	struct vnode *vp;
149 };
150 
151 static int debug_fault = 0;
152 SYSCTL_INT(_vm, OID_AUTO, debug_fault, CTLFLAG_RW, &debug_fault, 0, "");
153 static int debug_cluster = 0;
154 SYSCTL_INT(_vm, OID_AUTO, debug_cluster, CTLFLAG_RW, &debug_cluster, 0, "");
155 int vm_shared_fault = 1;
156 TUNABLE_INT("vm.shared_fault", &vm_shared_fault);
157 SYSCTL_INT(_vm, OID_AUTO, shared_fault, CTLFLAG_RW, &vm_shared_fault, 0,
158 	   "Allow shared token on vm_object");
159 static long vm_shared_hit = 0;
160 SYSCTL_LONG(_vm, OID_AUTO, shared_hit, CTLFLAG_RW, &vm_shared_hit, 0,
161 	   "Successful shared faults");
162 static long vm_shared_count = 0;
163 SYSCTL_LONG(_vm, OID_AUTO, shared_count, CTLFLAG_RW, &vm_shared_count, 0,
164 	   "Shared fault attempts");
165 static long vm_shared_miss = 0;
166 SYSCTL_LONG(_vm, OID_AUTO, shared_miss, CTLFLAG_RW, &vm_shared_miss, 0,
167 	   "Unsuccessful shared faults");
168 
169 static int vm_fault_object(struct faultstate *, vm_pindex_t, vm_prot_t, int);
170 static int vm_fault_vpagetable(struct faultstate *, vm_pindex_t *,
171 			vpte_t, int, int);
172 #if 0
173 static int vm_fault_additional_pages (vm_page_t, int, int, vm_page_t *, int *);
174 #endif
175 static void vm_set_nosync(vm_page_t m, vm_map_entry_t entry);
176 static void vm_prefault(pmap_t pmap, vm_offset_t addra,
177 			vm_map_entry_t entry, int prot, int fault_flags);
178 static void vm_prefault_quick(pmap_t pmap, vm_offset_t addra,
179 			vm_map_entry_t entry, int prot, int fault_flags);
180 
181 static __inline void
182 release_page(struct faultstate *fs)
183 {
184 	vm_page_deactivate(fs->m);
185 	vm_page_wakeup(fs->m);
186 	fs->m = NULL;
187 }
188 
189 /*
190  * NOTE: Once unlocked any cached fs->entry becomes invalid, any reuse
191  *	 requires relocking and then checking the timestamp.
192  *
193  * NOTE: vm_map_lock_read() does not bump fs->map->timestamp so we do
194  *	 not have to update fs->map_generation here.
195  *
196  * NOTE: This function can fail due to a deadlock against the caller's
197  *	 holding of a vm_page BUSY.
198  */
199 static __inline int
200 relock_map(struct faultstate *fs)
201 {
202 	int error;
203 
204 	if (fs->lookup_still_valid == FALSE && fs->map) {
205 		error = vm_map_lock_read_to(fs->map);
206 		if (error == 0)
207 			fs->lookup_still_valid = TRUE;
208 	} else {
209 		error = 0;
210 	}
211 	return error;
212 }
213 
214 static __inline void
215 unlock_map(struct faultstate *fs)
216 {
217 	if (fs->lookup_still_valid && fs->map) {
218 		vm_map_lookup_done(fs->map, fs->entry, 0);
219 		fs->lookup_still_valid = FALSE;
220 	}
221 }
222 
223 /*
224  * Clean up after a successful call to vm_fault_object() so another call
225  * to vm_fault_object() can be made.
226  */
227 static void
228 _cleanup_successful_fault(struct faultstate *fs, int relock)
229 {
230 	/*
231 	 * We allocated a junk page for a COW operation that did
232 	 * not occur, the page must be freed.
233 	 */
234 	if (fs->object != fs->first_object) {
235 		KKASSERT(fs->first_shared == 0);
236 		vm_page_free(fs->first_m);
237 		vm_object_pip_wakeup(fs->object);
238 		fs->first_m = NULL;
239 	}
240 
241 	/*
242 	 * Reset fs->object.
243 	 */
244 	fs->object = fs->first_object;
245 	if (relock && fs->lookup_still_valid == FALSE) {
246 		if (fs->map)
247 			vm_map_lock_read(fs->map);
248 		fs->lookup_still_valid = TRUE;
249 	}
250 }
251 
252 static void
253 _unlock_things(struct faultstate *fs, int dealloc)
254 {
255 	_cleanup_successful_fault(fs, 0);
256 	if (dealloc) {
257 		/*vm_object_deallocate(fs->first_object);*/
258 		/*fs->first_object = NULL; drop used later on */
259 	}
260 	unlock_map(fs);
261 	if (fs->vp != NULL) {
262 		vput(fs->vp);
263 		fs->vp = NULL;
264 	}
265 }
266 
267 #define unlock_things(fs) _unlock_things(fs, 0)
268 #define unlock_and_deallocate(fs) _unlock_things(fs, 1)
269 #define cleanup_successful_fault(fs) _cleanup_successful_fault(fs, 1)
270 
271 /*
272  * TRYPAGER
273  *
274  * Determine if the pager for the current object *might* contain the page.
275  *
276  * We only need to try the pager if this is not a default object (default
277  * objects are zero-fill and have no real pager), and if we are not taking
278  * a wiring fault or if the FS entry is wired.
279  */
280 #define TRYPAGER(fs)	\
281 		(fs->object->type != OBJT_DEFAULT && \
282 		(((fs->fault_flags & VM_FAULT_WIRE_MASK) == 0) || fs->wired))
283 
284 /*
285  * vm_fault:
286  *
287  * Handle a page fault occuring at the given address, requiring the given
288  * permissions, in the map specified.  If successful, the page is inserted
289  * into the associated physical map.
290  *
291  * NOTE: The given address should be truncated to the proper page address.
292  *
293  * KERN_SUCCESS is returned if the page fault is handled; otherwise,
294  * a standard error specifying why the fault is fatal is returned.
295  *
296  * The map in question must be referenced, and remains so.
297  * The caller may hold no locks.
298  * No other requirements.
299  */
300 int
301 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, int fault_flags)
302 {
303 	int result;
304 	vm_pindex_t first_pindex;
305 	struct faultstate fs;
306 	struct lwp *lp;
307 	int growstack;
308 	int retry = 0;
309 	int inherit_prot;
310 
311 	inherit_prot = fault_type & VM_PROT_NOSYNC;
312 	fs.hardfault = 0;
313 	fs.fault_flags = fault_flags;
314 	fs.vp = NULL;
315 	fs.shared = vm_shared_fault;
316 	fs.first_shared = vm_shared_fault;
317 	growstack = 1;
318 	if (vm_shared_fault)
319 		++vm_shared_count;
320 
321 	/*
322 	 * vm_map interactions
323 	 */
324 	if ((lp = curthread->td_lwp) != NULL)
325 		lp->lwp_flags |= LWP_PAGING;
326 	lwkt_gettoken(&map->token);
327 
328 RetryFault:
329 	/*
330 	 * Find the vm_map_entry representing the backing store and resolve
331 	 * the top level object and page index.  This may have the side
332 	 * effect of executing a copy-on-write on the map entry and/or
333 	 * creating a shadow object, but will not COW any actual VM pages.
334 	 *
335 	 * On success fs.map is left read-locked and various other fields
336 	 * are initialized but not otherwise referenced or locked.
337 	 *
338 	 * NOTE!  vm_map_lookup will try to upgrade the fault_type to
339 	 * VM_FAULT_WRITE if the map entry is a virtual page table and also
340 	 * writable, so we can set the 'A'accessed bit in the virtual page
341 	 * table entry.
342 	 */
343 	fs.map = map;
344 	result = vm_map_lookup(&fs.map, vaddr, fault_type,
345 			       &fs.entry, &fs.first_object,
346 			       &first_pindex, &fs.first_prot, &fs.wired);
347 
348 	/*
349 	 * If the lookup failed or the map protections are incompatible,
350 	 * the fault generally fails.
351 	 *
352 	 * The failure could be due to TDF_NOFAULT if vm_map_lookup()
353 	 * tried to do a COW fault.
354 	 *
355 	 * If the caller is trying to do a user wiring we have more work
356 	 * to do.
357 	 */
358 	if (result != KERN_SUCCESS) {
359 		if (result == KERN_FAILURE_NOFAULT) {
360 			result = KERN_FAILURE;
361 			goto done;
362 		}
363 		if (result != KERN_PROTECTION_FAILURE ||
364 		    (fs.fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE)
365 		{
366 			if (result == KERN_INVALID_ADDRESS && growstack &&
367 			    map != &kernel_map && curproc != NULL) {
368 				result = vm_map_growstack(curproc, vaddr);
369 				if (result == KERN_SUCCESS) {
370 					growstack = 0;
371 					++retry;
372 					goto RetryFault;
373 				}
374 				result = KERN_FAILURE;
375 			}
376 			goto done;
377 		}
378 
379 		/*
380    		 * If we are user-wiring a r/w segment, and it is COW, then
381    		 * we need to do the COW operation.  Note that we don't
382 		 * currently COW RO sections now, because it is NOT desirable
383    		 * to COW .text.  We simply keep .text from ever being COW'ed
384    		 * and take the heat that one cannot debug wired .text sections.
385    		 */
386 		result = vm_map_lookup(&fs.map, vaddr,
387 				       VM_PROT_READ|VM_PROT_WRITE|
388 				        VM_PROT_OVERRIDE_WRITE,
389 				       &fs.entry, &fs.first_object,
390 				       &first_pindex, &fs.first_prot,
391 				       &fs.wired);
392 		if (result != KERN_SUCCESS) {
393 			/* could also be KERN_FAILURE_NOFAULT */
394 			result = KERN_FAILURE;
395 			goto done;
396 		}
397 
398 		/*
399 		 * If we don't COW now, on a user wire, the user will never
400 		 * be able to write to the mapping.  If we don't make this
401 		 * restriction, the bookkeeping would be nearly impossible.
402 		 *
403 		 * XXX We have a shared lock, this will have a MP race but
404 		 * I don't see how it can hurt anything.
405 		 */
406 		if ((fs.entry->protection & VM_PROT_WRITE) == 0)
407 			fs.entry->max_protection &= ~VM_PROT_WRITE;
408 	}
409 
410 	/*
411 	 * fs.map is read-locked
412 	 *
413 	 * Misc checks.  Save the map generation number to detect races.
414 	 */
415 	fs.map_generation = fs.map->timestamp;
416 	fs.lookup_still_valid = TRUE;
417 	fs.first_m = NULL;
418 	fs.object = fs.first_object;	/* so unlock_and_deallocate works */
419 	fs.prot = fs.first_prot;	/* default (used by uksmap) */
420 
421 	if (fs.entry->eflags & (MAP_ENTRY_NOFAULT | MAP_ENTRY_KSTACK)) {
422 		if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
423 			panic("vm_fault: fault on nofault entry, addr: %p",
424 			      (void *)vaddr);
425 		}
426 		if ((fs.entry->eflags & MAP_ENTRY_KSTACK) &&
427 		    vaddr >= fs.entry->start &&
428 		    vaddr < fs.entry->start + PAGE_SIZE) {
429 			panic("vm_fault: fault on stack guard, addr: %p",
430 			      (void *)vaddr);
431 		}
432 	}
433 
434 	/*
435 	 * A user-kernel shared map has no VM object and bypasses
436 	 * everything.  We execute the uksmap function with a temporary
437 	 * fictitious vm_page.  The address is directly mapped with no
438 	 * management.
439 	 */
440 	if (fs.entry->maptype == VM_MAPTYPE_UKSMAP) {
441 		struct vm_page fakem;
442 
443 		bzero(&fakem, sizeof(fakem));
444 		fakem.pindex = first_pindex;
445 		fakem.flags = PG_BUSY | PG_FICTITIOUS | PG_UNMANAGED;
446 		fakem.valid = VM_PAGE_BITS_ALL;
447 		fakem.pat_mode = VM_MEMATTR_DEFAULT;
448 		if (fs.entry->object.uksmap(fs.entry->aux.dev, &fakem)) {
449 			result = KERN_FAILURE;
450 			unlock_things(&fs);
451 			goto done2;
452 		}
453 		pmap_enter(fs.map->pmap, vaddr, &fakem, fs.prot | inherit_prot,
454 			   fs.wired, fs.entry);
455 		goto done_success;
456 	}
457 
458 	/*
459 	 * A system map entry may return a NULL object.  No object means
460 	 * no pager means an unrecoverable kernel fault.
461 	 */
462 	if (fs.first_object == NULL) {
463 		panic("vm_fault: unrecoverable fault at %p in entry %p",
464 			(void *)vaddr, fs.entry);
465 	}
466 
467 	/*
468 	 * Fail here if not a trivial anonymous page fault and TDF_NOFAULT
469 	 * is set.
470 	 *
471 	 * Unfortunately a deadlock can occur if we are forced to page-in
472 	 * from swap, but diving all the way into the vm_pager_get_page()
473 	 * function to find out is too much.  Just check the object type.
474 	 *
475 	 * The deadlock is a CAM deadlock on a busy VM page when trying
476 	 * to finish an I/O if another process gets stuck in
477 	 * vop_helper_read_shortcut() due to a swap fault.
478 	 */
479 	if ((curthread->td_flags & TDF_NOFAULT) &&
480 	    (retry ||
481 	     fs.first_object->type == OBJT_VNODE ||
482 	     fs.first_object->type == OBJT_SWAP ||
483 	     fs.first_object->backing_object)) {
484 		result = KERN_FAILURE;
485 		unlock_things(&fs);
486 		goto done2;
487 	}
488 
489 	/*
490 	 * If the entry is wired we cannot change the page protection.
491 	 */
492 	if (fs.wired)
493 		fault_type = fs.first_prot;
494 
495 	/*
496 	 * We generally want to avoid unnecessary exclusive modes on backing
497 	 * and terminal objects because this can seriously interfere with
498 	 * heavily fork()'d processes (particularly /bin/sh scripts).
499 	 *
500 	 * However, we also want to avoid unnecessary retries due to needed
501 	 * shared->exclusive promotion for common faults.  Exclusive mode is
502 	 * always needed if any page insertion, rename, or free occurs in an
503 	 * object (and also indirectly if any I/O is done).
504 	 *
505 	 * The main issue here is going to be fs.first_shared.  If the
506 	 * first_object has a backing object which isn't shadowed and the
507 	 * process is single-threaded we might as well use an exclusive
508 	 * lock/chain right off the bat.
509 	 */
510 	if (fs.first_shared && fs.first_object->backing_object &&
511 	    LIST_EMPTY(&fs.first_object->shadow_head) &&
512 	    curthread->td_proc && curthread->td_proc->p_nthreads == 1) {
513 		fs.first_shared = 0;
514 	}
515 
516 	/*
517 	 * swap_pager_unswapped() needs an exclusive object
518 	 */
519 	if (fault_flags & (VM_FAULT_UNSWAP | VM_FAULT_DIRTY)) {
520 		fs.first_shared = 0;
521 	}
522 
523 	/*
524 	 * Obtain a top-level object lock, shared or exclusive depending
525 	 * on fs.first_shared.  If a shared lock winds up being insufficient
526 	 * we will retry with an exclusive lock.
527 	 *
528 	 * The vnode pager lock is always shared.
529 	 */
530 	if (fs.first_shared)
531 		vm_object_hold_shared(fs.first_object);
532 	else
533 		vm_object_hold(fs.first_object);
534 	if (fs.vp == NULL)
535 		fs.vp = vnode_pager_lock(fs.first_object);
536 
537 	/*
538 	 * The page we want is at (first_object, first_pindex), but if the
539 	 * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the
540 	 * page table to figure out the actual pindex.
541 	 *
542 	 * NOTE!  DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION
543 	 * ONLY
544 	 */
545 	if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
546 		result = vm_fault_vpagetable(&fs, &first_pindex,
547 					     fs.entry->aux.master_pde,
548 					     fault_type, 1);
549 		if (result == KERN_TRY_AGAIN) {
550 			vm_object_drop(fs.first_object);
551 			++retry;
552 			goto RetryFault;
553 		}
554 		if (result != KERN_SUCCESS)
555 			goto done;
556 	}
557 
558 	/*
559 	 * Now we have the actual (object, pindex), fault in the page.  If
560 	 * vm_fault_object() fails it will unlock and deallocate the FS
561 	 * data.   If it succeeds everything remains locked and fs->object
562 	 * will have an additional PIP count if it is not equal to
563 	 * fs->first_object
564 	 *
565 	 * vm_fault_object will set fs->prot for the pmap operation.  It is
566 	 * allowed to set VM_PROT_WRITE if fault_type == VM_PROT_READ if the
567 	 * page can be safely written.  However, it will force a read-only
568 	 * mapping for a read fault if the memory is managed by a virtual
569 	 * page table.
570 	 *
571 	 * If the fault code uses the shared object lock shortcut
572 	 * we must not try to burst (we can't allocate VM pages).
573 	 */
574 	result = vm_fault_object(&fs, first_pindex, fault_type, 1);
575 
576 	if (debug_fault > 0) {
577 		--debug_fault;
578 		kprintf("VM_FAULT result %d addr=%jx type=%02x flags=%02x "
579 			"fs.m=%p fs.prot=%02x fs.wired=%02x fs.entry=%p\n",
580 			result, (intmax_t)vaddr, fault_type, fault_flags,
581 			fs.m, fs.prot, fs.wired, fs.entry);
582 	}
583 
584 	if (result == KERN_TRY_AGAIN) {
585 		vm_object_drop(fs.first_object);
586 		++retry;
587 		goto RetryFault;
588 	}
589 	if (result != KERN_SUCCESS)
590 		goto done;
591 
592 	/*
593 	 * On success vm_fault_object() does not unlock or deallocate, and fs.m
594 	 * will contain a busied page.
595 	 *
596 	 * Enter the page into the pmap and do pmap-related adjustments.
597 	 */
598 	KKASSERT(fs.lookup_still_valid == TRUE);
599 	vm_page_flag_set(fs.m, PG_REFERENCED);
600 	pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot | inherit_prot,
601 		   fs.wired, fs.entry);
602 
603 	/*KKASSERT(fs.m->queue == PQ_NONE); page-in op may deactivate page */
604 	KKASSERT(fs.m->flags & PG_BUSY);
605 
606 	/*
607 	 * If the page is not wired down, then put it where the pageout daemon
608 	 * can find it.
609 	 */
610 	if (fs.fault_flags & VM_FAULT_WIRE_MASK) {
611 		if (fs.wired)
612 			vm_page_wire(fs.m);
613 		else
614 			vm_page_unwire(fs.m, 1);
615 	} else {
616 		vm_page_activate(fs.m);
617 	}
618 	vm_page_wakeup(fs.m);
619 
620 	/*
621 	 * Burst in a few more pages if possible.  The fs.map should still
622 	 * be locked.  To avoid interlocking against a vnode->getblk
623 	 * operation we had to be sure to unbusy our primary vm_page above
624 	 * first.
625 	 *
626 	 * A normal burst can continue down backing store, only execute
627 	 * if we are holding an exclusive lock, otherwise the exclusive
628 	 * locks the burst code gets might cause excessive SMP collisions.
629 	 *
630 	 * A quick burst can be utilized when there is no backing object
631 	 * (i.e. a shared file mmap).
632 	 */
633 	if ((fault_flags & VM_FAULT_BURST) &&
634 	    (fs.fault_flags & VM_FAULT_WIRE_MASK) == 0 &&
635 	    fs.wired == 0) {
636 		if (fs.first_shared == 0 && fs.shared == 0) {
637 			vm_prefault(fs.map->pmap, vaddr,
638 				    fs.entry, fs.prot, fault_flags);
639 		} else {
640 			vm_prefault_quick(fs.map->pmap, vaddr,
641 					  fs.entry, fs.prot, fault_flags);
642 		}
643 	}
644 
645 done_success:
646 	mycpu->gd_cnt.v_vm_faults++;
647 	if (curthread->td_lwp)
648 		++curthread->td_lwp->lwp_ru.ru_minflt;
649 
650 	/*
651 	 * Unlock everything, and return
652 	 */
653 	unlock_things(&fs);
654 
655 	if (curthread->td_lwp) {
656 		if (fs.hardfault) {
657 			curthread->td_lwp->lwp_ru.ru_majflt++;
658 		} else {
659 			curthread->td_lwp->lwp_ru.ru_minflt++;
660 		}
661 	}
662 
663 	/*vm_object_deallocate(fs.first_object);*/
664 	/*fs.m = NULL; */
665 	/*fs.first_object = NULL; must still drop later */
666 
667 	result = KERN_SUCCESS;
668 done:
669 	if (fs.first_object)
670 		vm_object_drop(fs.first_object);
671 done2:
672 	lwkt_reltoken(&map->token);
673 	if (lp)
674 		lp->lwp_flags &= ~LWP_PAGING;
675 	if (vm_shared_fault && fs.shared == 0)
676 		++vm_shared_miss;
677 	return (result);
678 }
679 
680 /*
681  * Fault in the specified virtual address in the current process map,
682  * returning a held VM page or NULL.  See vm_fault_page() for more
683  * information.
684  *
685  * No requirements.
686  */
687 vm_page_t
688 vm_fault_page_quick(vm_offset_t va, vm_prot_t fault_type, int *errorp)
689 {
690 	struct lwp *lp = curthread->td_lwp;
691 	vm_page_t m;
692 
693 	m = vm_fault_page(&lp->lwp_vmspace->vm_map, va,
694 			  fault_type, VM_FAULT_NORMAL, errorp);
695 	return(m);
696 }
697 
698 /*
699  * Fault in the specified virtual address in the specified map, doing all
700  * necessary manipulation of the object store and all necessary I/O.  Return
701  * a held VM page or NULL, and set *errorp.  The related pmap is not
702  * updated.
703  *
704  * The returned page will be properly dirtied if VM_PROT_WRITE was specified,
705  * and marked PG_REFERENCED as well.
706  *
707  * If the page cannot be faulted writable and VM_PROT_WRITE was specified, an
708  * error will be returned.
709  *
710  * No requirements.
711  */
712 vm_page_t
713 vm_fault_page(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
714 	      int fault_flags, int *errorp)
715 {
716 	vm_pindex_t first_pindex;
717 	struct faultstate fs;
718 	int result;
719 	int retry = 0;
720 	vm_prot_t orig_fault_type = fault_type;
721 
722 	fs.hardfault = 0;
723 	fs.fault_flags = fault_flags;
724 	KKASSERT((fault_flags & VM_FAULT_WIRE_MASK) == 0);
725 
726 	/*
727 	 * Dive the pmap (concurrency possible).  If we find the
728 	 * appropriate page we can terminate early and quickly.
729 	 */
730 	fs.m = pmap_fault_page_quick(map->pmap, vaddr, fault_type);
731 	if (fs.m) {
732 		*errorp = 0;
733 		return(fs.m);
734 	}
735 
736 	/*
737 	 * Otherwise take a concurrency hit and do a formal page
738 	 * fault.
739 	 */
740 	fs.shared = vm_shared_fault;
741 	fs.first_shared = vm_shared_fault;
742 	fs.vp = NULL;
743 	lwkt_gettoken(&map->token);
744 
745 	/*
746 	 * swap_pager_unswapped() needs an exclusive object
747 	 */
748 	if (fault_flags & (VM_FAULT_UNSWAP | VM_FAULT_DIRTY)) {
749 		fs.first_shared = 0;
750 	}
751 
752 RetryFault:
753 	/*
754 	 * Find the vm_map_entry representing the backing store and resolve
755 	 * the top level object and page index.  This may have the side
756 	 * effect of executing a copy-on-write on the map entry and/or
757 	 * creating a shadow object, but will not COW any actual VM pages.
758 	 *
759 	 * On success fs.map is left read-locked and various other fields
760 	 * are initialized but not otherwise referenced or locked.
761 	 *
762 	 * NOTE!  vm_map_lookup will upgrade the fault_type to VM_FAULT_WRITE
763 	 * if the map entry is a virtual page table and also writable,
764 	 * so we can set the 'A'accessed bit in the virtual page table entry.
765 	 */
766 	fs.map = map;
767 	result = vm_map_lookup(&fs.map, vaddr, fault_type,
768 			       &fs.entry, &fs.first_object,
769 			       &first_pindex, &fs.first_prot, &fs.wired);
770 
771 	if (result != KERN_SUCCESS) {
772 		*errorp = result;
773 		fs.m = NULL;
774 		goto done;
775 	}
776 
777 	/*
778 	 * fs.map is read-locked
779 	 *
780 	 * Misc checks.  Save the map generation number to detect races.
781 	 */
782 	fs.map_generation = fs.map->timestamp;
783 	fs.lookup_still_valid = TRUE;
784 	fs.first_m = NULL;
785 	fs.object = fs.first_object;	/* so unlock_and_deallocate works */
786 
787 	if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
788 		panic("vm_fault: fault on nofault entry, addr: %lx",
789 		    (u_long)vaddr);
790 	}
791 
792 	/*
793 	 * A user-kernel shared map has no VM object and bypasses
794 	 * everything.  We execute the uksmap function with a temporary
795 	 * fictitious vm_page.  The address is directly mapped with no
796 	 * management.
797 	 */
798 	if (fs.entry->maptype == VM_MAPTYPE_UKSMAP) {
799 		struct vm_page fakem;
800 
801 		bzero(&fakem, sizeof(fakem));
802 		fakem.pindex = first_pindex;
803 		fakem.flags = PG_BUSY | PG_FICTITIOUS | PG_UNMANAGED;
804 		fakem.valid = VM_PAGE_BITS_ALL;
805 		fakem.pat_mode = VM_MEMATTR_DEFAULT;
806 		if (fs.entry->object.uksmap(fs.entry->aux.dev, &fakem)) {
807 			*errorp = KERN_FAILURE;
808 			fs.m = NULL;
809 			unlock_things(&fs);
810 			goto done2;
811 		}
812 		fs.m = PHYS_TO_VM_PAGE(fakem.phys_addr);
813 		vm_page_hold(fs.m);
814 
815 		unlock_things(&fs);
816 		*errorp = 0;
817 		goto done;
818 	}
819 
820 
821 	/*
822 	 * A system map entry may return a NULL object.  No object means
823 	 * no pager means an unrecoverable kernel fault.
824 	 */
825 	if (fs.first_object == NULL) {
826 		panic("vm_fault: unrecoverable fault at %p in entry %p",
827 			(void *)vaddr, fs.entry);
828 	}
829 
830 	/*
831 	 * Fail here if not a trivial anonymous page fault and TDF_NOFAULT
832 	 * is set.
833 	 *
834 	 * Unfortunately a deadlock can occur if we are forced to page-in
835 	 * from swap, but diving all the way into the vm_pager_get_page()
836 	 * function to find out is too much.  Just check the object type.
837 	 */
838 	if ((curthread->td_flags & TDF_NOFAULT) &&
839 	    (retry ||
840 	     fs.first_object->type == OBJT_VNODE ||
841 	     fs.first_object->type == OBJT_SWAP ||
842 	     fs.first_object->backing_object)) {
843 		*errorp = KERN_FAILURE;
844 		unlock_things(&fs);
845 		goto done2;
846 	}
847 
848 	/*
849 	 * If the entry is wired we cannot change the page protection.
850 	 */
851 	if (fs.wired)
852 		fault_type = fs.first_prot;
853 
854 	/*
855 	 * Make a reference to this object to prevent its disposal while we
856 	 * are messing with it.  Once we have the reference, the map is free
857 	 * to be diddled.  Since objects reference their shadows (and copies),
858 	 * they will stay around as well.
859 	 *
860 	 * The reference should also prevent an unexpected collapse of the
861 	 * parent that might move pages from the current object into the
862 	 * parent unexpectedly, resulting in corruption.
863 	 *
864 	 * Bump the paging-in-progress count to prevent size changes (e.g.
865 	 * truncation operations) during I/O.  This must be done after
866 	 * obtaining the vnode lock in order to avoid possible deadlocks.
867 	 */
868 	if (fs.first_shared)
869 		vm_object_hold_shared(fs.first_object);
870 	else
871 		vm_object_hold(fs.first_object);
872 	if (fs.vp == NULL)
873 		fs.vp = vnode_pager_lock(fs.first_object);	/* shared */
874 
875 	/*
876 	 * The page we want is at (first_object, first_pindex), but if the
877 	 * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the
878 	 * page table to figure out the actual pindex.
879 	 *
880 	 * NOTE!  DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION
881 	 * ONLY
882 	 */
883 	if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
884 		result = vm_fault_vpagetable(&fs, &first_pindex,
885 					     fs.entry->aux.master_pde,
886 					     fault_type, 1);
887 		if (result == KERN_TRY_AGAIN) {
888 			vm_object_drop(fs.first_object);
889 			++retry;
890 			goto RetryFault;
891 		}
892 		if (result != KERN_SUCCESS) {
893 			*errorp = result;
894 			fs.m = NULL;
895 			goto done;
896 		}
897 	}
898 
899 	/*
900 	 * Now we have the actual (object, pindex), fault in the page.  If
901 	 * vm_fault_object() fails it will unlock and deallocate the FS
902 	 * data.   If it succeeds everything remains locked and fs->object
903 	 * will have an additinal PIP count if it is not equal to
904 	 * fs->first_object
905 	 */
906 	fs.m = NULL;
907 	result = vm_fault_object(&fs, first_pindex, fault_type, 1);
908 
909 	if (result == KERN_TRY_AGAIN) {
910 		vm_object_drop(fs.first_object);
911 		++retry;
912 		goto RetryFault;
913 	}
914 	if (result != KERN_SUCCESS) {
915 		*errorp = result;
916 		fs.m = NULL;
917 		goto done;
918 	}
919 
920 	if ((orig_fault_type & VM_PROT_WRITE) &&
921 	    (fs.prot & VM_PROT_WRITE) == 0) {
922 		*errorp = KERN_PROTECTION_FAILURE;
923 		unlock_and_deallocate(&fs);
924 		fs.m = NULL;
925 		goto done;
926 	}
927 
928 	/*
929 	 * DO NOT UPDATE THE PMAP!!!  This function may be called for
930 	 * a pmap unrelated to the current process pmap, in which case
931 	 * the current cpu core will not be listed in the pmap's pm_active
932 	 * mask.  Thus invalidation interlocks will fail to work properly.
933 	 *
934 	 * (for example, 'ps' uses procfs to read program arguments from
935 	 * each process's stack).
936 	 *
937 	 * In addition to the above this function will be called to acquire
938 	 * a page that might already be faulted in, re-faulting it
939 	 * continuously is a waste of time.
940 	 *
941 	 * XXX could this have been the cause of our random seg-fault
942 	 *     issues?  procfs accesses user stacks.
943 	 */
944 	vm_page_flag_set(fs.m, PG_REFERENCED);
945 #if 0
946 	pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot, fs.wired, NULL);
947 	mycpu->gd_cnt.v_vm_faults++;
948 	if (curthread->td_lwp)
949 		++curthread->td_lwp->lwp_ru.ru_minflt;
950 #endif
951 
952 	/*
953 	 * On success vm_fault_object() does not unlock or deallocate, and fs.m
954 	 * will contain a busied page.  So we must unlock here after having
955 	 * messed with the pmap.
956 	 */
957 	unlock_things(&fs);
958 
959 	/*
960 	 * Return a held page.  We are not doing any pmap manipulation so do
961 	 * not set PG_MAPPED.  However, adjust the page flags according to
962 	 * the fault type because the caller may not use a managed pmapping
963 	 * (so we don't want to lose the fact that the page will be dirtied
964 	 * if a write fault was specified).
965 	 */
966 	vm_page_hold(fs.m);
967 	vm_page_activate(fs.m);
968 	if (fault_type & VM_PROT_WRITE)
969 		vm_page_dirty(fs.m);
970 
971 	if (curthread->td_lwp) {
972 		if (fs.hardfault) {
973 			curthread->td_lwp->lwp_ru.ru_majflt++;
974 		} else {
975 			curthread->td_lwp->lwp_ru.ru_minflt++;
976 		}
977 	}
978 
979 	/*
980 	 * Unlock everything, and return the held page.
981 	 */
982 	vm_page_wakeup(fs.m);
983 	/*vm_object_deallocate(fs.first_object);*/
984 	/*fs.first_object = NULL; */
985 	*errorp = 0;
986 
987 done:
988 	if (fs.first_object)
989 		vm_object_drop(fs.first_object);
990 done2:
991 	lwkt_reltoken(&map->token);
992 	return(fs.m);
993 }
994 
995 /*
996  * Fault in the specified (object,offset), dirty the returned page as
997  * needed.  If the requested fault_type cannot be done NULL and an
998  * error is returned.
999  *
1000  * A held (but not busied) page is returned.
1001  *
1002  * The passed in object must be held as specified by the shared
1003  * argument.
1004  */
1005 vm_page_t
1006 vm_fault_object_page(vm_object_t object, vm_ooffset_t offset,
1007 		     vm_prot_t fault_type, int fault_flags,
1008 		     int *sharedp, int *errorp)
1009 {
1010 	int result;
1011 	vm_pindex_t first_pindex;
1012 	struct faultstate fs;
1013 	struct vm_map_entry entry;
1014 
1015 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1016 	bzero(&entry, sizeof(entry));
1017 	entry.object.vm_object = object;
1018 	entry.maptype = VM_MAPTYPE_NORMAL;
1019 	entry.protection = entry.max_protection = fault_type;
1020 
1021 	fs.hardfault = 0;
1022 	fs.fault_flags = fault_flags;
1023 	fs.map = NULL;
1024 	fs.shared = vm_shared_fault;
1025 	fs.first_shared = *sharedp;
1026 	fs.vp = NULL;
1027 	KKASSERT((fault_flags & VM_FAULT_WIRE_MASK) == 0);
1028 
1029 	/*
1030 	 * Might require swap block adjustments
1031 	 */
1032 	if (fs.first_shared && (fault_flags & (VM_FAULT_UNSWAP | VM_FAULT_DIRTY))) {
1033 		fs.first_shared = 0;
1034 		vm_object_upgrade(object);
1035 	}
1036 
1037 	/*
1038 	 * Retry loop as needed (typically for shared->exclusive transitions)
1039 	 */
1040 RetryFault:
1041 	*sharedp = fs.first_shared;
1042 	first_pindex = OFF_TO_IDX(offset);
1043 	fs.first_object = object;
1044 	fs.entry = &entry;
1045 	fs.first_prot = fault_type;
1046 	fs.wired = 0;
1047 	/*fs.map_generation = 0; unused */
1048 
1049 	/*
1050 	 * Make a reference to this object to prevent its disposal while we
1051 	 * are messing with it.  Once we have the reference, the map is free
1052 	 * to be diddled.  Since objects reference their shadows (and copies),
1053 	 * they will stay around as well.
1054 	 *
1055 	 * The reference should also prevent an unexpected collapse of the
1056 	 * parent that might move pages from the current object into the
1057 	 * parent unexpectedly, resulting in corruption.
1058 	 *
1059 	 * Bump the paging-in-progress count to prevent size changes (e.g.
1060 	 * truncation operations) during I/O.  This must be done after
1061 	 * obtaining the vnode lock in order to avoid possible deadlocks.
1062 	 */
1063 	if (fs.vp == NULL)
1064 		fs.vp = vnode_pager_lock(fs.first_object);
1065 
1066 	fs.lookup_still_valid = TRUE;
1067 	fs.first_m = NULL;
1068 	fs.object = fs.first_object;	/* so unlock_and_deallocate works */
1069 
1070 #if 0
1071 	/* XXX future - ability to operate on VM object using vpagetable */
1072 	if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
1073 		result = vm_fault_vpagetable(&fs, &first_pindex,
1074 					     fs.entry->aux.master_pde,
1075 					     fault_type, 0);
1076 		if (result == KERN_TRY_AGAIN) {
1077 			if (fs.first_shared == 0 && *sharedp)
1078 				vm_object_upgrade(object);
1079 			goto RetryFault;
1080 		}
1081 		if (result != KERN_SUCCESS) {
1082 			*errorp = result;
1083 			return (NULL);
1084 		}
1085 	}
1086 #endif
1087 
1088 	/*
1089 	 * Now we have the actual (object, pindex), fault in the page.  If
1090 	 * vm_fault_object() fails it will unlock and deallocate the FS
1091 	 * data.   If it succeeds everything remains locked and fs->object
1092 	 * will have an additinal PIP count if it is not equal to
1093 	 * fs->first_object
1094 	 *
1095 	 * On KERN_TRY_AGAIN vm_fault_object() leaves fs.first_object intact.
1096 	 * We may have to upgrade its lock to handle the requested fault.
1097 	 */
1098 	result = vm_fault_object(&fs, first_pindex, fault_type, 0);
1099 
1100 	if (result == KERN_TRY_AGAIN) {
1101 		if (fs.first_shared == 0 && *sharedp)
1102 			vm_object_upgrade(object);
1103 		goto RetryFault;
1104 	}
1105 	if (result != KERN_SUCCESS) {
1106 		*errorp = result;
1107 		return(NULL);
1108 	}
1109 
1110 	if ((fault_type & VM_PROT_WRITE) && (fs.prot & VM_PROT_WRITE) == 0) {
1111 		*errorp = KERN_PROTECTION_FAILURE;
1112 		unlock_and_deallocate(&fs);
1113 		return(NULL);
1114 	}
1115 
1116 	/*
1117 	 * On success vm_fault_object() does not unlock or deallocate, so we
1118 	 * do it here.  Note that the returned fs.m will be busied.
1119 	 */
1120 	unlock_things(&fs);
1121 
1122 	/*
1123 	 * Return a held page.  We are not doing any pmap manipulation so do
1124 	 * not set PG_MAPPED.  However, adjust the page flags according to
1125 	 * the fault type because the caller may not use a managed pmapping
1126 	 * (so we don't want to lose the fact that the page will be dirtied
1127 	 * if a write fault was specified).
1128 	 */
1129 	vm_page_hold(fs.m);
1130 	vm_page_activate(fs.m);
1131 	if ((fault_type & VM_PROT_WRITE) || (fault_flags & VM_FAULT_DIRTY))
1132 		vm_page_dirty(fs.m);
1133 	if (fault_flags & VM_FAULT_UNSWAP)
1134 		swap_pager_unswapped(fs.m);
1135 
1136 	/*
1137 	 * Indicate that the page was accessed.
1138 	 */
1139 	vm_page_flag_set(fs.m, PG_REFERENCED);
1140 
1141 	if (curthread->td_lwp) {
1142 		if (fs.hardfault) {
1143 			curthread->td_lwp->lwp_ru.ru_majflt++;
1144 		} else {
1145 			curthread->td_lwp->lwp_ru.ru_minflt++;
1146 		}
1147 	}
1148 
1149 	/*
1150 	 * Unlock everything, and return the held page.
1151 	 */
1152 	vm_page_wakeup(fs.m);
1153 	/*vm_object_deallocate(fs.first_object);*/
1154 	/*fs.first_object = NULL; */
1155 
1156 	*errorp = 0;
1157 	return(fs.m);
1158 }
1159 
1160 /*
1161  * Translate the virtual page number (first_pindex) that is relative
1162  * to the address space into a logical page number that is relative to the
1163  * backing object.  Use the virtual page table pointed to by (vpte).
1164  *
1165  * This implements an N-level page table.  Any level can terminate the
1166  * scan by setting VPTE_PS.   A linear mapping is accomplished by setting
1167  * VPTE_PS in the master page directory entry set via mcontrol(MADV_SETMAP).
1168  */
1169 static
1170 int
1171 vm_fault_vpagetable(struct faultstate *fs, vm_pindex_t *pindex,
1172 		    vpte_t vpte, int fault_type, int allow_nofault)
1173 {
1174 	struct lwbuf *lwb;
1175 	struct lwbuf lwb_cache;
1176 	int vshift = VPTE_FRAME_END - PAGE_SHIFT; /* index bits remaining */
1177 	int result = KERN_SUCCESS;
1178 	vpte_t *ptep;
1179 
1180 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(fs->first_object));
1181 	for (;;) {
1182 		/*
1183 		 * We cannot proceed if the vpte is not valid, not readable
1184 		 * for a read fault, or not writable for a write fault.
1185 		 */
1186 		if ((vpte & VPTE_V) == 0) {
1187 			unlock_and_deallocate(fs);
1188 			return (KERN_FAILURE);
1189 		}
1190 		if ((fault_type & VM_PROT_WRITE) && (vpte & VPTE_RW) == 0) {
1191 			unlock_and_deallocate(fs);
1192 			return (KERN_FAILURE);
1193 		}
1194 		if ((vpte & VPTE_PS) || vshift == 0)
1195 			break;
1196 		KKASSERT(vshift >= VPTE_PAGE_BITS);
1197 
1198 		/*
1199 		 * Get the page table page.  Nominally we only read the page
1200 		 * table, but since we are actively setting VPTE_M and VPTE_A,
1201 		 * tell vm_fault_object() that we are writing it.
1202 		 *
1203 		 * There is currently no real need to optimize this.
1204 		 */
1205 		result = vm_fault_object(fs, (vpte & VPTE_FRAME) >> PAGE_SHIFT,
1206 					 VM_PROT_READ|VM_PROT_WRITE,
1207 					 allow_nofault);
1208 		if (result != KERN_SUCCESS)
1209 			return (result);
1210 
1211 		/*
1212 		 * Process the returned fs.m and look up the page table
1213 		 * entry in the page table page.
1214 		 */
1215 		vshift -= VPTE_PAGE_BITS;
1216 		lwb = lwbuf_alloc(fs->m, &lwb_cache);
1217 		ptep = ((vpte_t *)lwbuf_kva(lwb) +
1218 		        ((*pindex >> vshift) & VPTE_PAGE_MASK));
1219 		vpte = *ptep;
1220 
1221 		/*
1222 		 * Page table write-back.  If the vpte is valid for the
1223 		 * requested operation, do a write-back to the page table.
1224 		 *
1225 		 * XXX VPTE_M is not set properly for page directory pages.
1226 		 * It doesn't get set in the page directory if the page table
1227 		 * is modified during a read access.
1228 		 */
1229 		vm_page_activate(fs->m);
1230 		if ((fault_type & VM_PROT_WRITE) && (vpte & VPTE_V) &&
1231 		    (vpte & VPTE_RW)) {
1232 			if ((vpte & (VPTE_M|VPTE_A)) != (VPTE_M|VPTE_A)) {
1233 				atomic_set_long(ptep, VPTE_M | VPTE_A);
1234 				vm_page_dirty(fs->m);
1235 			}
1236 		}
1237 		if ((fault_type & VM_PROT_READ) && (vpte & VPTE_V)) {
1238 			if ((vpte & VPTE_A) == 0) {
1239 				atomic_set_long(ptep, VPTE_A);
1240 				vm_page_dirty(fs->m);
1241 			}
1242 		}
1243 		lwbuf_free(lwb);
1244 		vm_page_flag_set(fs->m, PG_REFERENCED);
1245 		vm_page_wakeup(fs->m);
1246 		fs->m = NULL;
1247 		cleanup_successful_fault(fs);
1248 	}
1249 	/*
1250 	 * Combine remaining address bits with the vpte.
1251 	 */
1252 	/* JG how many bits from each? */
1253 	*pindex = ((vpte & VPTE_FRAME) >> PAGE_SHIFT) +
1254 		  (*pindex & ((1L << vshift) - 1));
1255 	return (KERN_SUCCESS);
1256 }
1257 
1258 
1259 /*
1260  * This is the core of the vm_fault code.
1261  *
1262  * Do all operations required to fault-in (fs.first_object, pindex).  Run
1263  * through the shadow chain as necessary and do required COW or virtual
1264  * copy operations.  The caller has already fully resolved the vm_map_entry
1265  * and, if appropriate, has created a copy-on-write layer.  All we need to
1266  * do is iterate the object chain.
1267  *
1268  * On failure (fs) is unlocked and deallocated and the caller may return or
1269  * retry depending on the failure code.  On success (fs) is NOT unlocked or
1270  * deallocated, fs.m will contained a resolved, busied page, and fs.object
1271  * will have an additional PIP count if it is not equal to fs.first_object.
1272  *
1273  * If locks based on fs->first_shared or fs->shared are insufficient,
1274  * clear the appropriate field(s) and return RETRY.  COWs require that
1275  * first_shared be 0, while page allocations (or frees) require that
1276  * shared be 0.  Renames require that both be 0.
1277  *
1278  * fs->first_object must be held on call.
1279  */
1280 static
1281 int
1282 vm_fault_object(struct faultstate *fs, vm_pindex_t first_pindex,
1283 		vm_prot_t fault_type, int allow_nofault)
1284 {
1285 	vm_object_t next_object;
1286 	vm_pindex_t pindex;
1287 	int error;
1288 
1289 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(fs->first_object));
1290 	fs->prot = fs->first_prot;
1291 	fs->object = fs->first_object;
1292 	pindex = first_pindex;
1293 
1294 	vm_object_chain_acquire(fs->first_object, fs->shared);
1295 	vm_object_pip_add(fs->first_object, 1);
1296 
1297 	/*
1298 	 * If a read fault occurs we try to make the page writable if
1299 	 * possible.  There are three cases where we cannot make the
1300 	 * page mapping writable:
1301 	 *
1302 	 * (1) The mapping is read-only or the VM object is read-only,
1303 	 *     fs->prot above will simply not have VM_PROT_WRITE set.
1304 	 *
1305 	 * (2) If the mapping is a virtual page table we need to be able
1306 	 *     to detect writes so we can set VPTE_M in the virtual page
1307 	 *     table.
1308 	 *
1309 	 * (3) If the VM page is read-only or copy-on-write, upgrading would
1310 	 *     just result in an unnecessary COW fault.
1311 	 *
1312 	 * VM_PROT_VPAGED is set if faulting via a virtual page table and
1313 	 * causes adjustments to the 'M'odify bit to also turn off write
1314 	 * access to force a re-fault.
1315 	 */
1316 	if (fs->entry->maptype == VM_MAPTYPE_VPAGETABLE) {
1317 		if ((fault_type & VM_PROT_WRITE) == 0)
1318 			fs->prot &= ~VM_PROT_WRITE;
1319 	}
1320 
1321 	if (curthread->td_lwp && curthread->td_lwp->lwp_vmspace &&
1322 	    pmap_emulate_ad_bits(&curthread->td_lwp->lwp_vmspace->vm_pmap)) {
1323 		if ((fault_type & VM_PROT_WRITE) == 0)
1324 			fs->prot &= ~VM_PROT_WRITE;
1325 	}
1326 
1327 	/* vm_object_hold(fs->object); implied b/c object == first_object */
1328 
1329 	for (;;) {
1330 		/*
1331 		 * The entire backing chain from first_object to object
1332 		 * inclusive is chainlocked.
1333 		 *
1334 		 * If the object is dead, we stop here
1335 		 */
1336 		if (fs->object->flags & OBJ_DEAD) {
1337 			vm_object_pip_wakeup(fs->first_object);
1338 			vm_object_chain_release_all(fs->first_object,
1339 						    fs->object);
1340 			if (fs->object != fs->first_object)
1341 				vm_object_drop(fs->object);
1342 			unlock_and_deallocate(fs);
1343 			return (KERN_PROTECTION_FAILURE);
1344 		}
1345 
1346 		/*
1347 		 * See if the page is resident.  Wait/Retry if the page is
1348 		 * busy (lots of stuff may have changed so we can't continue
1349 		 * in that case).
1350 		 *
1351 		 * We can theoretically allow the soft-busy case on a read
1352 		 * fault if the page is marked valid, but since such
1353 		 * pages are typically already pmap'd, putting that
1354 		 * special case in might be more effort then it is
1355 		 * worth.  We cannot under any circumstances mess
1356 		 * around with a vm_page_t->busy page except, perhaps,
1357 		 * to pmap it.
1358 		 */
1359 		fs->m = vm_page_lookup_busy_try(fs->object, pindex,
1360 						TRUE, &error);
1361 		if (error) {
1362 			vm_object_pip_wakeup(fs->first_object);
1363 			vm_object_chain_release_all(fs->first_object,
1364 						    fs->object);
1365 			if (fs->object != fs->first_object)
1366 				vm_object_drop(fs->object);
1367 			unlock_things(fs);
1368 			vm_page_sleep_busy(fs->m, TRUE, "vmpfw");
1369 			mycpu->gd_cnt.v_intrans++;
1370 			/*vm_object_deallocate(fs->first_object);*/
1371 			/*fs->first_object = NULL;*/
1372 			fs->m = NULL;
1373 			return (KERN_TRY_AGAIN);
1374 		}
1375 		if (fs->m) {
1376 			/*
1377 			 * The page is busied for us.
1378 			 *
1379 			 * If reactivating a page from PQ_CACHE we may have
1380 			 * to rate-limit.
1381 			 */
1382 			int queue = fs->m->queue;
1383 			vm_page_unqueue_nowakeup(fs->m);
1384 
1385 			if ((queue - fs->m->pc) == PQ_CACHE &&
1386 			    vm_page_count_severe()) {
1387 				vm_page_activate(fs->m);
1388 				vm_page_wakeup(fs->m);
1389 				fs->m = NULL;
1390 				vm_object_pip_wakeup(fs->first_object);
1391 				vm_object_chain_release_all(fs->first_object,
1392 							    fs->object);
1393 				if (fs->object != fs->first_object)
1394 					vm_object_drop(fs->object);
1395 				unlock_and_deallocate(fs);
1396 				if (allow_nofault == 0 ||
1397 				    (curthread->td_flags & TDF_NOFAULT) == 0) {
1398 					thread_t td;
1399 
1400 					vm_wait_pfault();
1401 					td = curthread;
1402 					if (td->td_proc && (td->td_proc->p_flags & P_LOWMEMKILL))
1403 						return (KERN_PROTECTION_FAILURE);
1404 				}
1405 				return (KERN_TRY_AGAIN);
1406 			}
1407 
1408 			/*
1409 			 * If it still isn't completely valid (readable),
1410 			 * or if a read-ahead-mark is set on the VM page,
1411 			 * jump to readrest, else we found the page and
1412 			 * can return.
1413 			 *
1414 			 * We can release the spl once we have marked the
1415 			 * page busy.
1416 			 */
1417 			if (fs->m->object != &kernel_object) {
1418 				if ((fs->m->valid & VM_PAGE_BITS_ALL) !=
1419 				    VM_PAGE_BITS_ALL) {
1420 					goto readrest;
1421 				}
1422 				if (fs->m->flags & PG_RAM) {
1423 					if (debug_cluster)
1424 						kprintf("R");
1425 					vm_page_flag_clear(fs->m, PG_RAM);
1426 					goto readrest;
1427 				}
1428 			}
1429 			break; /* break to PAGE HAS BEEN FOUND */
1430 		}
1431 
1432 		/*
1433 		 * Page is not resident, If this is the search termination
1434 		 * or the pager might contain the page, allocate a new page.
1435 		 */
1436 		if (TRYPAGER(fs) || fs->object == fs->first_object) {
1437 			/*
1438 			 * Allocating, must be exclusive.
1439 			 */
1440 			if (fs->object == fs->first_object &&
1441 			    fs->first_shared) {
1442 				fs->first_shared = 0;
1443 				vm_object_pip_wakeup(fs->first_object);
1444 				vm_object_chain_release_all(fs->first_object,
1445 							    fs->object);
1446 				if (fs->object != fs->first_object)
1447 					vm_object_drop(fs->object);
1448 				unlock_and_deallocate(fs);
1449 				return (KERN_TRY_AGAIN);
1450 			}
1451 			if (fs->object != fs->first_object &&
1452 			    fs->shared) {
1453 				fs->first_shared = 0;
1454 				fs->shared = 0;
1455 				vm_object_pip_wakeup(fs->first_object);
1456 				vm_object_chain_release_all(fs->first_object,
1457 							    fs->object);
1458 				if (fs->object != fs->first_object)
1459 					vm_object_drop(fs->object);
1460 				unlock_and_deallocate(fs);
1461 				return (KERN_TRY_AGAIN);
1462 			}
1463 
1464 			/*
1465 			 * If the page is beyond the object size we fail
1466 			 */
1467 			if (pindex >= fs->object->size) {
1468 				vm_object_pip_wakeup(fs->first_object);
1469 				vm_object_chain_release_all(fs->first_object,
1470 							    fs->object);
1471 				if (fs->object != fs->first_object)
1472 					vm_object_drop(fs->object);
1473 				unlock_and_deallocate(fs);
1474 				return (KERN_PROTECTION_FAILURE);
1475 			}
1476 
1477 			/*
1478 			 * Allocate a new page for this object/offset pair.
1479 			 *
1480 			 * It is possible for the allocation to race, so
1481 			 * handle the case.
1482 			 */
1483 			fs->m = NULL;
1484 			if (!vm_page_count_severe()) {
1485 				fs->m = vm_page_alloc(fs->object, pindex,
1486 				    ((fs->vp || fs->object->backing_object) ?
1487 					VM_ALLOC_NULL_OK | VM_ALLOC_NORMAL :
1488 					VM_ALLOC_NULL_OK | VM_ALLOC_NORMAL |
1489 					VM_ALLOC_USE_GD | VM_ALLOC_ZERO));
1490 			}
1491 			if (fs->m == NULL) {
1492 				vm_object_pip_wakeup(fs->first_object);
1493 				vm_object_chain_release_all(fs->first_object,
1494 							    fs->object);
1495 				if (fs->object != fs->first_object)
1496 					vm_object_drop(fs->object);
1497 				unlock_and_deallocate(fs);
1498 				if (allow_nofault == 0 ||
1499 				    (curthread->td_flags & TDF_NOFAULT) == 0) {
1500 					thread_t td;
1501 
1502 					vm_wait_pfault();
1503 					td = curthread;
1504 					if (td->td_proc && (td->td_proc->p_flags & P_LOWMEMKILL))
1505 						return (KERN_PROTECTION_FAILURE);
1506 				}
1507 				return (KERN_TRY_AGAIN);
1508 			}
1509 
1510 			/*
1511 			 * Fall through to readrest.  We have a new page which
1512 			 * will have to be paged (since m->valid will be 0).
1513 			 */
1514 		}
1515 
1516 readrest:
1517 		/*
1518 		 * We have found an invalid or partially valid page, a
1519 		 * page with a read-ahead mark which might be partially or
1520 		 * fully valid (and maybe dirty too), or we have allocated
1521 		 * a new page.
1522 		 *
1523 		 * Attempt to fault-in the page if there is a chance that the
1524 		 * pager has it, and potentially fault in additional pages
1525 		 * at the same time.
1526 		 *
1527 		 * If TRYPAGER is true then fs.m will be non-NULL and busied
1528 		 * for us.
1529 		 */
1530 		if (TRYPAGER(fs)) {
1531 			int rv;
1532 			int seqaccess;
1533 			u_char behavior = vm_map_entry_behavior(fs->entry);
1534 
1535 			if (behavior == MAP_ENTRY_BEHAV_RANDOM)
1536 				seqaccess = 0;
1537 			else
1538 				seqaccess = -1;
1539 
1540 			/*
1541 			 * Doing I/O may synchronously insert additional
1542 			 * pages so we can't be shared at this point either.
1543 			 *
1544 			 * NOTE: We can't free fs->m here in the allocated
1545 			 *	 case (fs->object != fs->first_object) as
1546 			 *	 this would require an exclusively locked
1547 			 *	 VM object.
1548 			 */
1549 			if (fs->object == fs->first_object &&
1550 			    fs->first_shared) {
1551 				vm_page_deactivate(fs->m);
1552 				vm_page_wakeup(fs->m);
1553 				fs->m = NULL;
1554 				fs->first_shared = 0;
1555 				vm_object_pip_wakeup(fs->first_object);
1556 				vm_object_chain_release_all(fs->first_object,
1557 							    fs->object);
1558 				if (fs->object != fs->first_object)
1559 					vm_object_drop(fs->object);
1560 				unlock_and_deallocate(fs);
1561 				return (KERN_TRY_AGAIN);
1562 			}
1563 			if (fs->object != fs->first_object &&
1564 			    fs->shared) {
1565 				vm_page_deactivate(fs->m);
1566 				vm_page_wakeup(fs->m);
1567 				fs->m = NULL;
1568 				fs->first_shared = 0;
1569 				fs->shared = 0;
1570 				vm_object_pip_wakeup(fs->first_object);
1571 				vm_object_chain_release_all(fs->first_object,
1572 							    fs->object);
1573 				if (fs->object != fs->first_object)
1574 					vm_object_drop(fs->object);
1575 				unlock_and_deallocate(fs);
1576 				return (KERN_TRY_AGAIN);
1577 			}
1578 
1579 			/*
1580 			 * Avoid deadlocking against the map when doing I/O.
1581 			 * fs.object and the page is PG_BUSY'd.
1582 			 *
1583 			 * NOTE: Once unlocked, fs->entry can become stale
1584 			 *	 so this will NULL it out.
1585 			 *
1586 			 * NOTE: fs->entry is invalid until we relock the
1587 			 *	 map and verify that the timestamp has not
1588 			 *	 changed.
1589 			 */
1590 			unlock_map(fs);
1591 
1592 			/*
1593 			 * Acquire the page data.  We still hold a ref on
1594 			 * fs.object and the page has been PG_BUSY's.
1595 			 *
1596 			 * The pager may replace the page (for example, in
1597 			 * order to enter a fictitious page into the
1598 			 * object).  If it does so it is responsible for
1599 			 * cleaning up the passed page and properly setting
1600 			 * the new page PG_BUSY.
1601 			 *
1602 			 * If we got here through a PG_RAM read-ahead
1603 			 * mark the page may be partially dirty and thus
1604 			 * not freeable.  Don't bother checking to see
1605 			 * if the pager has the page because we can't free
1606 			 * it anyway.  We have to depend on the get_page
1607 			 * operation filling in any gaps whether there is
1608 			 * backing store or not.
1609 			 */
1610 			rv = vm_pager_get_page(fs->object, &fs->m, seqaccess);
1611 
1612 			if (rv == VM_PAGER_OK) {
1613 				/*
1614 				 * Relookup in case pager changed page. Pager
1615 				 * is responsible for disposition of old page
1616 				 * if moved.
1617 				 *
1618 				 * XXX other code segments do relookups too.
1619 				 * It's a bad abstraction that needs to be
1620 				 * fixed/removed.
1621 				 */
1622 				fs->m = vm_page_lookup(fs->object, pindex);
1623 				if (fs->m == NULL) {
1624 					vm_object_pip_wakeup(fs->first_object);
1625 					vm_object_chain_release_all(
1626 						fs->first_object, fs->object);
1627 					if (fs->object != fs->first_object)
1628 						vm_object_drop(fs->object);
1629 					unlock_and_deallocate(fs);
1630 					return (KERN_TRY_AGAIN);
1631 				}
1632 				++fs->hardfault;
1633 				break; /* break to PAGE HAS BEEN FOUND */
1634 			}
1635 
1636 			/*
1637 			 * Remove the bogus page (which does not exist at this
1638 			 * object/offset); before doing so, we must get back
1639 			 * our object lock to preserve our invariant.
1640 			 *
1641 			 * Also wake up any other process that may want to bring
1642 			 * in this page.
1643 			 *
1644 			 * If this is the top-level object, we must leave the
1645 			 * busy page to prevent another process from rushing
1646 			 * past us, and inserting the page in that object at
1647 			 * the same time that we are.
1648 			 */
1649 			if (rv == VM_PAGER_ERROR) {
1650 				if (curproc) {
1651 					kprintf("vm_fault: pager read error, "
1652 						"pid %d (%s)\n",
1653 						curproc->p_pid,
1654 						curproc->p_comm);
1655 				} else {
1656 					kprintf("vm_fault: pager read error, "
1657 						"thread %p (%s)\n",
1658 						curthread,
1659 						curproc->p_comm);
1660 				}
1661 			}
1662 
1663 			/*
1664 			 * Data outside the range of the pager or an I/O error
1665 			 *
1666 			 * The page may have been wired during the pagein,
1667 			 * e.g. by the buffer cache, and cannot simply be
1668 			 * freed.  Call vnode_pager_freepage() to deal with it.
1669 			 *
1670 			 * Also note that we cannot free the page if we are
1671 			 * holding the related object shared. XXX not sure
1672 			 * what to do in that case.
1673 			 */
1674 			if (fs->object != fs->first_object) {
1675 				vnode_pager_freepage(fs->m);
1676 				fs->m = NULL;
1677 				/*
1678 				 * XXX - we cannot just fall out at this
1679 				 * point, m has been freed and is invalid!
1680 				 */
1681 			}
1682 			/*
1683 			 * XXX - the check for kernel_map is a kludge to work
1684 			 * around having the machine panic on a kernel space
1685 			 * fault w/ I/O error.
1686 			 */
1687 			if (((fs->map != &kernel_map) &&
1688 			    (rv == VM_PAGER_ERROR)) || (rv == VM_PAGER_BAD)) {
1689 				if (fs->m) {
1690 					if (fs->first_shared) {
1691 						vm_page_deactivate(fs->m);
1692 						vm_page_wakeup(fs->m);
1693 					} else {
1694 						vnode_pager_freepage(fs->m);
1695 					}
1696 					fs->m = NULL;
1697 				}
1698 				vm_object_pip_wakeup(fs->first_object);
1699 				vm_object_chain_release_all(fs->first_object,
1700 							    fs->object);
1701 				if (fs->object != fs->first_object)
1702 					vm_object_drop(fs->object);
1703 				unlock_and_deallocate(fs);
1704 				if (rv == VM_PAGER_ERROR)
1705 					return (KERN_FAILURE);
1706 				else
1707 					return (KERN_PROTECTION_FAILURE);
1708 				/* NOT REACHED */
1709 			}
1710 		}
1711 
1712 		/*
1713 		 * We get here if the object has a default pager (or unwiring)
1714 		 * or the pager doesn't have the page.
1715 		 *
1716 		 * fs->first_m will be used for the COW unless we find a
1717 		 * deeper page to be mapped read-only, in which case the
1718 		 * unlock*(fs) will free first_m.
1719 		 */
1720 		if (fs->object == fs->first_object)
1721 			fs->first_m = fs->m;
1722 
1723 		/*
1724 		 * Move on to the next object.  The chain lock should prevent
1725 		 * the backing_object from getting ripped out from under us.
1726 		 *
1727 		 * The object lock for the next object is governed by
1728 		 * fs->shared.
1729 		 */
1730 		if ((next_object = fs->object->backing_object) != NULL) {
1731 			if (fs->shared)
1732 				vm_object_hold_shared(next_object);
1733 			else
1734 				vm_object_hold(next_object);
1735 			vm_object_chain_acquire(next_object, fs->shared);
1736 			KKASSERT(next_object == fs->object->backing_object);
1737 			pindex += OFF_TO_IDX(fs->object->backing_object_offset);
1738 		}
1739 
1740 		if (next_object == NULL) {
1741 			/*
1742 			 * If there's no object left, fill the page in the top
1743 			 * object with zeros.
1744 			 */
1745 			if (fs->object != fs->first_object) {
1746 #if 0
1747 				if (fs->first_object->backing_object !=
1748 				    fs->object) {
1749 					vm_object_hold(fs->first_object->backing_object);
1750 				}
1751 #endif
1752 				vm_object_chain_release_all(
1753 					fs->first_object->backing_object,
1754 					fs->object);
1755 #if 0
1756 				if (fs->first_object->backing_object !=
1757 				    fs->object) {
1758 					vm_object_drop(fs->first_object->backing_object);
1759 				}
1760 #endif
1761 				vm_object_pip_wakeup(fs->object);
1762 				vm_object_drop(fs->object);
1763 				fs->object = fs->first_object;
1764 				pindex = first_pindex;
1765 				fs->m = fs->first_m;
1766 			}
1767 			fs->first_m = NULL;
1768 
1769 			/*
1770 			 * Zero the page and mark it valid.
1771 			 */
1772 			vm_page_zero_fill(fs->m);
1773 			mycpu->gd_cnt.v_zfod++;
1774 			fs->m->valid = VM_PAGE_BITS_ALL;
1775 			break;	/* break to PAGE HAS BEEN FOUND */
1776 		}
1777 		if (fs->object != fs->first_object) {
1778 			vm_object_pip_wakeup(fs->object);
1779 			vm_object_lock_swap();
1780 			vm_object_drop(fs->object);
1781 		}
1782 		KASSERT(fs->object != next_object,
1783 			("object loop %p", next_object));
1784 		fs->object = next_object;
1785 		vm_object_pip_add(fs->object, 1);
1786 	}
1787 
1788 	/*
1789 	 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
1790 	 * is held.]
1791 	 *
1792 	 * object still held.
1793 	 *
1794 	 * local shared variable may be different from fs->shared.
1795 	 *
1796 	 * If the page is being written, but isn't already owned by the
1797 	 * top-level object, we have to copy it into a new page owned by the
1798 	 * top-level object.
1799 	 */
1800 	KASSERT((fs->m->flags & PG_BUSY) != 0,
1801 		("vm_fault: not busy after main loop"));
1802 
1803 	if (fs->object != fs->first_object) {
1804 		/*
1805 		 * We only really need to copy if we want to write it.
1806 		 */
1807 		if (fault_type & VM_PROT_WRITE) {
1808 			/*
1809 			 * This allows pages to be virtually copied from a
1810 			 * backing_object into the first_object, where the
1811 			 * backing object has no other refs to it, and cannot
1812 			 * gain any more refs.  Instead of a bcopy, we just
1813 			 * move the page from the backing object to the
1814 			 * first object.  Note that we must mark the page
1815 			 * dirty in the first object so that it will go out
1816 			 * to swap when needed.
1817 			 */
1818 			if (
1819 				/*
1820 				 * Must be holding exclusive locks
1821 				 */
1822 				fs->first_shared == 0 &&
1823 				fs->shared == 0 &&
1824 				/*
1825 				 * Map, if present, has not changed
1826 				 */
1827 				(fs->map == NULL ||
1828 				fs->map_generation == fs->map->timestamp) &&
1829 				/*
1830 				 * Only one shadow object
1831 				 */
1832 				(fs->object->shadow_count == 1) &&
1833 				/*
1834 				 * No COW refs, except us
1835 				 */
1836 				(fs->object->ref_count == 1) &&
1837 				/*
1838 				 * No one else can look this object up
1839 				 */
1840 				(fs->object->handle == NULL) &&
1841 				/*
1842 				 * No other ways to look the object up
1843 				 */
1844 				((fs->object->type == OBJT_DEFAULT) ||
1845 				 (fs->object->type == OBJT_SWAP)) &&
1846 				/*
1847 				 * We don't chase down the shadow chain
1848 				 */
1849 				(fs->object == fs->first_object->backing_object) &&
1850 
1851 				/*
1852 				 * grab the lock if we need to
1853 				 */
1854 				(fs->lookup_still_valid ||
1855 				 fs->map == NULL ||
1856 				 lockmgr(&fs->map->lock, LK_EXCLUSIVE|LK_NOWAIT) == 0)
1857 			    ) {
1858 				/*
1859 				 * (first_m) and (m) are both busied.  We have
1860 				 * move (m) into (first_m)'s object/pindex
1861 				 * in an atomic fashion, then free (first_m).
1862 				 *
1863 				 * first_object is held so second remove
1864 				 * followed by the rename should wind
1865 				 * up being atomic.  vm_page_free() might
1866 				 * block so we don't do it until after the
1867 				 * rename.
1868 				 */
1869 				fs->lookup_still_valid = 1;
1870 				vm_page_protect(fs->first_m, VM_PROT_NONE);
1871 				vm_page_remove(fs->first_m);
1872 				vm_page_rename(fs->m, fs->first_object,
1873 					       first_pindex);
1874 				vm_page_free(fs->first_m);
1875 				fs->first_m = fs->m;
1876 				fs->m = NULL;
1877 				mycpu->gd_cnt.v_cow_optim++;
1878 			} else {
1879 				/*
1880 				 * Oh, well, lets copy it.
1881 				 *
1882 				 * Why are we unmapping the original page
1883 				 * here?  Well, in short, not all accessors
1884 				 * of user memory go through the pmap.  The
1885 				 * procfs code doesn't have access user memory
1886 				 * via a local pmap, so vm_fault_page*()
1887 				 * can't call pmap_enter().  And the umtx*()
1888 				 * code may modify the COW'd page via a DMAP
1889 				 * or kernel mapping and not via the pmap,
1890 				 * leaving the original page still mapped
1891 				 * read-only into the pmap.
1892 				 *
1893 				 * So we have to remove the page from at
1894 				 * least the current pmap if it is in it.
1895 				 * Just remove it from all pmaps.
1896 				 */
1897 				KKASSERT(fs->first_shared == 0);
1898 				vm_page_copy(fs->m, fs->first_m);
1899 				vm_page_protect(fs->m, VM_PROT_NONE);
1900 				vm_page_event(fs->m, VMEVENT_COW);
1901 			}
1902 
1903 			/*
1904 			 * We no longer need the old page or object.
1905 			 */
1906 			if (fs->m)
1907 				release_page(fs);
1908 
1909 			/*
1910 			 * We intend to revert to first_object, undo the
1911 			 * chain lock through to that.
1912 			 */
1913 #if 0
1914 			if (fs->first_object->backing_object != fs->object)
1915 				vm_object_hold(fs->first_object->backing_object);
1916 #endif
1917 			vm_object_chain_release_all(
1918 					fs->first_object->backing_object,
1919 					fs->object);
1920 #if 0
1921 			if (fs->first_object->backing_object != fs->object)
1922 				vm_object_drop(fs->first_object->backing_object);
1923 #endif
1924 
1925 			/*
1926 			 * fs->object != fs->first_object due to above
1927 			 * conditional
1928 			 */
1929 			vm_object_pip_wakeup(fs->object);
1930 			vm_object_drop(fs->object);
1931 
1932 			/*
1933 			 * Only use the new page below...
1934 			 */
1935 			mycpu->gd_cnt.v_cow_faults++;
1936 			fs->m = fs->first_m;
1937 			fs->object = fs->first_object;
1938 			pindex = first_pindex;
1939 		} else {
1940 			/*
1941 			 * If it wasn't a write fault avoid having to copy
1942 			 * the page by mapping it read-only.
1943 			 */
1944 			fs->prot &= ~VM_PROT_WRITE;
1945 		}
1946 	}
1947 
1948 	/*
1949 	 * Relock the map if necessary, then check the generation count.
1950 	 * relock_map() will update fs->timestamp to account for the
1951 	 * relocking if necessary.
1952 	 *
1953 	 * If the count has changed after relocking then all sorts of
1954 	 * crap may have happened and we have to retry.
1955 	 *
1956 	 * NOTE: The relock_map() can fail due to a deadlock against
1957 	 *	 the vm_page we are holding BUSY.
1958 	 */
1959 	if (fs->lookup_still_valid == FALSE && fs->map) {
1960 		if (relock_map(fs) ||
1961 		    fs->map->timestamp != fs->map_generation) {
1962 			release_page(fs);
1963 			vm_object_pip_wakeup(fs->first_object);
1964 			vm_object_chain_release_all(fs->first_object,
1965 						    fs->object);
1966 			if (fs->object != fs->first_object)
1967 				vm_object_drop(fs->object);
1968 			unlock_and_deallocate(fs);
1969 			return (KERN_TRY_AGAIN);
1970 		}
1971 	}
1972 
1973 	/*
1974 	 * If the fault is a write, we know that this page is being
1975 	 * written NOW so dirty it explicitly to save on pmap_is_modified()
1976 	 * calls later.
1977 	 *
1978 	 * If this is a NOSYNC mmap we do not want to set PG_NOSYNC
1979 	 * if the page is already dirty to prevent data written with
1980 	 * the expectation of being synced from not being synced.
1981 	 * Likewise if this entry does not request NOSYNC then make
1982 	 * sure the page isn't marked NOSYNC.  Applications sharing
1983 	 * data should use the same flags to avoid ping ponging.
1984 	 *
1985 	 * Also tell the backing pager, if any, that it should remove
1986 	 * any swap backing since the page is now dirty.
1987 	 */
1988 	vm_page_activate(fs->m);
1989 	if (fs->prot & VM_PROT_WRITE) {
1990 		vm_object_set_writeable_dirty(fs->m->object);
1991 		vm_set_nosync(fs->m, fs->entry);
1992 		if (fs->fault_flags & VM_FAULT_DIRTY) {
1993 			vm_page_dirty(fs->m);
1994 			swap_pager_unswapped(fs->m);
1995 		}
1996 	}
1997 
1998 	vm_object_pip_wakeup(fs->first_object);
1999 	vm_object_chain_release_all(fs->first_object, fs->object);
2000 	if (fs->object != fs->first_object)
2001 		vm_object_drop(fs->object);
2002 
2003 	/*
2004 	 * Page had better still be busy.  We are still locked up and
2005 	 * fs->object will have another PIP reference if it is not equal
2006 	 * to fs->first_object.
2007 	 */
2008 	KASSERT(fs->m->flags & PG_BUSY,
2009 		("vm_fault: page %p not busy!", fs->m));
2010 
2011 	/*
2012 	 * Sanity check: page must be completely valid or it is not fit to
2013 	 * map into user space.  vm_pager_get_pages() ensures this.
2014 	 */
2015 	if (fs->m->valid != VM_PAGE_BITS_ALL) {
2016 		vm_page_zero_invalid(fs->m, TRUE);
2017 		kprintf("Warning: page %p partially invalid on fault\n", fs->m);
2018 	}
2019 
2020 	return (KERN_SUCCESS);
2021 }
2022 
2023 /*
2024  * Hold each of the physical pages that are mapped by the specified range of
2025  * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid
2026  * and allow the specified types of access, "prot".  If all of the implied
2027  * pages are successfully held, then the number of held pages is returned
2028  * together with pointers to those pages in the array "ma".  However, if any
2029  * of the pages cannot be held, -1 is returned.
2030  */
2031 int
2032 vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len,
2033     vm_prot_t prot, vm_page_t *ma, int max_count)
2034 {
2035 	vm_offset_t start, end;
2036 	int i, npages, error;
2037 
2038 	start = trunc_page(addr);
2039 	end = round_page(addr + len);
2040 
2041 	npages = howmany(end - start, PAGE_SIZE);
2042 
2043 	if (npages > max_count)
2044 		return -1;
2045 
2046 	for (i = 0; i < npages; i++) {
2047 		// XXX error handling
2048 		ma[i] = vm_fault_page_quick(start + (i * PAGE_SIZE),
2049 			prot,
2050 			&error);
2051 	}
2052 
2053 	return npages;
2054 }
2055 
2056 /*
2057  * Wire down a range of virtual addresses in a map.  The entry in question
2058  * should be marked in-transition and the map must be locked.  We must
2059  * release the map temporarily while faulting-in the page to avoid a
2060  * deadlock.  Note that the entry may be clipped while we are blocked but
2061  * will never be freed.
2062  *
2063  * No requirements.
2064  */
2065 int
2066 vm_fault_wire(vm_map_t map, vm_map_entry_t entry,
2067 	      boolean_t user_wire, int kmflags)
2068 {
2069 	boolean_t fictitious;
2070 	vm_offset_t start;
2071 	vm_offset_t end;
2072 	vm_offset_t va;
2073 	vm_paddr_t pa;
2074 	vm_page_t m;
2075 	pmap_t pmap;
2076 	int rv;
2077 	int wire_prot;
2078 	int fault_flags;
2079 
2080 	lwkt_gettoken(&map->token);
2081 
2082 	if (user_wire) {
2083 		wire_prot = VM_PROT_READ;
2084 		fault_flags = VM_FAULT_USER_WIRE;
2085 	} else {
2086 		wire_prot = VM_PROT_READ | VM_PROT_WRITE;
2087 		fault_flags = VM_FAULT_CHANGE_WIRING;
2088 	}
2089 	if (kmflags & KM_NOTLBSYNC)
2090 		wire_prot |= VM_PROT_NOSYNC;
2091 
2092 	pmap = vm_map_pmap(map);
2093 	start = entry->start;
2094 	end = entry->end;
2095 	switch(entry->maptype) {
2096 	case VM_MAPTYPE_NORMAL:
2097 	case VM_MAPTYPE_VPAGETABLE:
2098 		fictitious = entry->object.vm_object &&
2099 			    ((entry->object.vm_object->type == OBJT_DEVICE) ||
2100 			     (entry->object.vm_object->type == OBJT_MGTDEVICE));
2101 		break;
2102 	case VM_MAPTYPE_UKSMAP:
2103 		fictitious = TRUE;
2104 		break;
2105 	default:
2106 		fictitious = FALSE;
2107 		break;
2108 	}
2109 
2110 	if (entry->eflags & MAP_ENTRY_KSTACK)
2111 		start += PAGE_SIZE;
2112 	map->timestamp++;
2113 	vm_map_unlock(map);
2114 
2115 	/*
2116 	 * We simulate a fault to get the page and enter it in the physical
2117 	 * map.
2118 	 */
2119 	for (va = start; va < end; va += PAGE_SIZE) {
2120 		rv = vm_fault(map, va, wire_prot, fault_flags);
2121 		if (rv) {
2122 			while (va > start) {
2123 				va -= PAGE_SIZE;
2124 				if ((pa = pmap_extract(pmap, va)) == 0)
2125 					continue;
2126 				pmap_change_wiring(pmap, va, FALSE, entry);
2127 				if (!fictitious) {
2128 					m = PHYS_TO_VM_PAGE(pa);
2129 					vm_page_busy_wait(m, FALSE, "vmwrpg");
2130 					vm_page_unwire(m, 1);
2131 					vm_page_wakeup(m);
2132 				}
2133 			}
2134 			goto done;
2135 		}
2136 	}
2137 	rv = KERN_SUCCESS;
2138 done:
2139 	vm_map_lock(map);
2140 	lwkt_reltoken(&map->token);
2141 	return (rv);
2142 }
2143 
2144 /*
2145  * Unwire a range of virtual addresses in a map.  The map should be
2146  * locked.
2147  */
2148 void
2149 vm_fault_unwire(vm_map_t map, vm_map_entry_t entry)
2150 {
2151 	boolean_t fictitious;
2152 	vm_offset_t start;
2153 	vm_offset_t end;
2154 	vm_offset_t va;
2155 	vm_paddr_t pa;
2156 	vm_page_t m;
2157 	pmap_t pmap;
2158 
2159 	lwkt_gettoken(&map->token);
2160 
2161 	pmap = vm_map_pmap(map);
2162 	start = entry->start;
2163 	end = entry->end;
2164 	fictitious = entry->object.vm_object &&
2165 			((entry->object.vm_object->type == OBJT_DEVICE) ||
2166 			 (entry->object.vm_object->type == OBJT_MGTDEVICE));
2167 	if (entry->eflags & MAP_ENTRY_KSTACK)
2168 		start += PAGE_SIZE;
2169 
2170 	/*
2171 	 * Since the pages are wired down, we must be able to get their
2172 	 * mappings from the physical map system.
2173 	 */
2174 	for (va = start; va < end; va += PAGE_SIZE) {
2175 		pa = pmap_extract(pmap, va);
2176 		if (pa != 0) {
2177 			pmap_change_wiring(pmap, va, FALSE, entry);
2178 			if (!fictitious) {
2179 				m = PHYS_TO_VM_PAGE(pa);
2180 				vm_page_busy_wait(m, FALSE, "vmwupg");
2181 				vm_page_unwire(m, 1);
2182 				vm_page_wakeup(m);
2183 			}
2184 		}
2185 	}
2186 	lwkt_reltoken(&map->token);
2187 }
2188 
2189 /*
2190  * Copy all of the pages from a wired-down map entry to another.
2191  *
2192  * The source and destination maps must be locked for write.
2193  * The source and destination maps token must be held
2194  * The source map entry must be wired down (or be a sharing map
2195  * entry corresponding to a main map entry that is wired down).
2196  *
2197  * No other requirements.
2198  *
2199  * XXX do segment optimization
2200  */
2201 void
2202 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
2203 		    vm_map_entry_t dst_entry, vm_map_entry_t src_entry)
2204 {
2205 	vm_object_t dst_object;
2206 	vm_object_t src_object;
2207 	vm_ooffset_t dst_offset;
2208 	vm_ooffset_t src_offset;
2209 	vm_prot_t prot;
2210 	vm_offset_t vaddr;
2211 	vm_page_t dst_m;
2212 	vm_page_t src_m;
2213 
2214 	src_object = src_entry->object.vm_object;
2215 	src_offset = src_entry->offset;
2216 
2217 	/*
2218 	 * Create the top-level object for the destination entry. (Doesn't
2219 	 * actually shadow anything - we copy the pages directly.)
2220 	 */
2221 	vm_map_entry_allocate_object(dst_entry);
2222 	dst_object = dst_entry->object.vm_object;
2223 
2224 	prot = dst_entry->max_protection;
2225 
2226 	/*
2227 	 * Loop through all of the pages in the entry's range, copying each
2228 	 * one from the source object (it should be there) to the destination
2229 	 * object.
2230 	 */
2231 	vm_object_hold(src_object);
2232 	vm_object_hold(dst_object);
2233 	for (vaddr = dst_entry->start, dst_offset = 0;
2234 	    vaddr < dst_entry->end;
2235 	    vaddr += PAGE_SIZE, dst_offset += PAGE_SIZE) {
2236 
2237 		/*
2238 		 * Allocate a page in the destination object
2239 		 */
2240 		do {
2241 			dst_m = vm_page_alloc(dst_object,
2242 					      OFF_TO_IDX(dst_offset),
2243 					      VM_ALLOC_NORMAL);
2244 			if (dst_m == NULL) {
2245 				vm_wait(0);
2246 			}
2247 		} while (dst_m == NULL);
2248 
2249 		/*
2250 		 * Find the page in the source object, and copy it in.
2251 		 * (Because the source is wired down, the page will be in
2252 		 * memory.)
2253 		 */
2254 		src_m = vm_page_lookup(src_object,
2255 				       OFF_TO_IDX(dst_offset + src_offset));
2256 		if (src_m == NULL)
2257 			panic("vm_fault_copy_wired: page missing");
2258 
2259 		vm_page_copy(src_m, dst_m);
2260 		vm_page_event(src_m, VMEVENT_COW);
2261 
2262 		/*
2263 		 * Enter it in the pmap...
2264 		 */
2265 		pmap_enter(dst_map->pmap, vaddr, dst_m, prot, FALSE, dst_entry);
2266 
2267 		/*
2268 		 * Mark it no longer busy, and put it on the active list.
2269 		 */
2270 		vm_page_activate(dst_m);
2271 		vm_page_wakeup(dst_m);
2272 	}
2273 	vm_object_drop(dst_object);
2274 	vm_object_drop(src_object);
2275 }
2276 
2277 #if 0
2278 
2279 /*
2280  * This routine checks around the requested page for other pages that
2281  * might be able to be faulted in.  This routine brackets the viable
2282  * pages for the pages to be paged in.
2283  *
2284  * Inputs:
2285  *	m, rbehind, rahead
2286  *
2287  * Outputs:
2288  *  marray (array of vm_page_t), reqpage (index of requested page)
2289  *
2290  * Return value:
2291  *  number of pages in marray
2292  */
2293 static int
2294 vm_fault_additional_pages(vm_page_t m, int rbehind, int rahead,
2295 			  vm_page_t *marray, int *reqpage)
2296 {
2297 	int i,j;
2298 	vm_object_t object;
2299 	vm_pindex_t pindex, startpindex, endpindex, tpindex;
2300 	vm_page_t rtm;
2301 	int cbehind, cahead;
2302 
2303 	object = m->object;
2304 	pindex = m->pindex;
2305 
2306 	/*
2307 	 * we don't fault-ahead for device pager
2308 	 */
2309 	if ((object->type == OBJT_DEVICE) ||
2310 	    (object->type == OBJT_MGTDEVICE)) {
2311 		*reqpage = 0;
2312 		marray[0] = m;
2313 		return 1;
2314 	}
2315 
2316 	/*
2317 	 * if the requested page is not available, then give up now
2318 	 */
2319 	if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
2320 		*reqpage = 0;	/* not used by caller, fix compiler warn */
2321 		return 0;
2322 	}
2323 
2324 	if ((cbehind == 0) && (cahead == 0)) {
2325 		*reqpage = 0;
2326 		marray[0] = m;
2327 		return 1;
2328 	}
2329 
2330 	if (rahead > cahead) {
2331 		rahead = cahead;
2332 	}
2333 
2334 	if (rbehind > cbehind) {
2335 		rbehind = cbehind;
2336 	}
2337 
2338 	/*
2339 	 * Do not do any readahead if we have insufficient free memory.
2340 	 *
2341 	 * XXX code was broken disabled before and has instability
2342 	 * with this conditonal fixed, so shortcut for now.
2343 	 */
2344 	if (burst_fault == 0 || vm_page_count_severe()) {
2345 		marray[0] = m;
2346 		*reqpage = 0;
2347 		return 1;
2348 	}
2349 
2350 	/*
2351 	 * scan backward for the read behind pages -- in memory
2352 	 *
2353 	 * Assume that if the page is not found an interrupt will not
2354 	 * create it.  Theoretically interrupts can only remove (busy)
2355 	 * pages, not create new associations.
2356 	 */
2357 	if (pindex > 0) {
2358 		if (rbehind > pindex) {
2359 			rbehind = pindex;
2360 			startpindex = 0;
2361 		} else {
2362 			startpindex = pindex - rbehind;
2363 		}
2364 
2365 		vm_object_hold(object);
2366 		for (tpindex = pindex; tpindex > startpindex; --tpindex) {
2367 			if (vm_page_lookup(object, tpindex - 1))
2368 				break;
2369 		}
2370 
2371 		i = 0;
2372 		while (tpindex < pindex) {
2373 			rtm = vm_page_alloc(object, tpindex, VM_ALLOC_SYSTEM |
2374 							     VM_ALLOC_NULL_OK);
2375 			if (rtm == NULL) {
2376 				for (j = 0; j < i; j++) {
2377 					vm_page_free(marray[j]);
2378 				}
2379 				vm_object_drop(object);
2380 				marray[0] = m;
2381 				*reqpage = 0;
2382 				return 1;
2383 			}
2384 			marray[i] = rtm;
2385 			++i;
2386 			++tpindex;
2387 		}
2388 		vm_object_drop(object);
2389 	} else {
2390 		i = 0;
2391 	}
2392 
2393 	/*
2394 	 * Assign requested page
2395 	 */
2396 	marray[i] = m;
2397 	*reqpage = i;
2398 	++i;
2399 
2400 	/*
2401 	 * Scan forwards for read-ahead pages
2402 	 */
2403 	tpindex = pindex + 1;
2404 	endpindex = tpindex + rahead;
2405 	if (endpindex > object->size)
2406 		endpindex = object->size;
2407 
2408 	vm_object_hold(object);
2409 	while (tpindex < endpindex) {
2410 		if (vm_page_lookup(object, tpindex))
2411 			break;
2412 		rtm = vm_page_alloc(object, tpindex, VM_ALLOC_SYSTEM |
2413 						     VM_ALLOC_NULL_OK);
2414 		if (rtm == NULL)
2415 			break;
2416 		marray[i] = rtm;
2417 		++i;
2418 		++tpindex;
2419 	}
2420 	vm_object_drop(object);
2421 
2422 	return (i);
2423 }
2424 
2425 #endif
2426 
2427 /*
2428  * vm_prefault() provides a quick way of clustering pagefaults into a
2429  * processes address space.  It is a "cousin" of pmap_object_init_pt,
2430  * except it runs at page fault time instead of mmap time.
2431  *
2432  * vm.fast_fault	Enables pre-faulting zero-fill pages
2433  *
2434  * vm.prefault_pages	Number of pages (1/2 negative, 1/2 positive) to
2435  *			prefault.  Scan stops in either direction when
2436  *			a page is found to already exist.
2437  *
2438  * This code used to be per-platform pmap_prefault().  It is now
2439  * machine-independent and enhanced to also pre-fault zero-fill pages
2440  * (see vm.fast_fault) as well as make them writable, which greatly
2441  * reduces the number of page faults programs incur.
2442  *
2443  * Application performance when pre-faulting zero-fill pages is heavily
2444  * dependent on the application.  Very tiny applications like /bin/echo
2445  * lose a little performance while applications of any appreciable size
2446  * gain performance.  Prefaulting multiple pages also reduces SMP
2447  * congestion and can improve SMP performance significantly.
2448  *
2449  * NOTE!  prot may allow writing but this only applies to the top level
2450  *	  object.  If we wind up mapping a page extracted from a backing
2451  *	  object we have to make sure it is read-only.
2452  *
2453  * NOTE!  The caller has already handled any COW operations on the
2454  *	  vm_map_entry via the normal fault code.  Do NOT call this
2455  *	  shortcut unless the normal fault code has run on this entry.
2456  *
2457  * The related map must be locked.
2458  * No other requirements.
2459  */
2460 static int vm_prefault_pages = 8;
2461 SYSCTL_INT(_vm, OID_AUTO, prefault_pages, CTLFLAG_RW, &vm_prefault_pages, 0,
2462 	   "Maximum number of pages to pre-fault");
2463 static int vm_fast_fault = 1;
2464 SYSCTL_INT(_vm, OID_AUTO, fast_fault, CTLFLAG_RW, &vm_fast_fault, 0,
2465 	   "Burst fault zero-fill regions");
2466 
2467 /*
2468  * Set PG_NOSYNC if the map entry indicates so, but only if the page
2469  * is not already dirty by other means.  This will prevent passive
2470  * filesystem syncing as well as 'sync' from writing out the page.
2471  */
2472 static void
2473 vm_set_nosync(vm_page_t m, vm_map_entry_t entry)
2474 {
2475 	if (entry->eflags & MAP_ENTRY_NOSYNC) {
2476 		if (m->dirty == 0)
2477 			vm_page_flag_set(m, PG_NOSYNC);
2478 	} else {
2479 		vm_page_flag_clear(m, PG_NOSYNC);
2480 	}
2481 }
2482 
2483 static void
2484 vm_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry, int prot,
2485 	    int fault_flags)
2486 {
2487 	struct lwp *lp;
2488 	vm_page_t m;
2489 	vm_offset_t addr;
2490 	vm_pindex_t index;
2491 	vm_pindex_t pindex;
2492 	vm_object_t object;
2493 	int pprot;
2494 	int i;
2495 	int noneg;
2496 	int nopos;
2497 	int maxpages;
2498 
2499 	/*
2500 	 * Get stable max count value, disabled if set to 0
2501 	 */
2502 	maxpages = vm_prefault_pages;
2503 	cpu_ccfence();
2504 	if (maxpages <= 0)
2505 		return;
2506 
2507 	/*
2508 	 * We do not currently prefault mappings that use virtual page
2509 	 * tables.  We do not prefault foreign pmaps.
2510 	 */
2511 	if (entry->maptype != VM_MAPTYPE_NORMAL)
2512 		return;
2513 	lp = curthread->td_lwp;
2514 	if (lp == NULL || (pmap != vmspace_pmap(lp->lwp_vmspace)))
2515 		return;
2516 
2517 	/*
2518 	 * Limit pre-fault count to 1024 pages.
2519 	 */
2520 	if (maxpages > 1024)
2521 		maxpages = 1024;
2522 
2523 	object = entry->object.vm_object;
2524 	KKASSERT(object != NULL);
2525 	KKASSERT(object == entry->object.vm_object);
2526 	vm_object_hold(object);
2527 	vm_object_chain_acquire(object, 0);
2528 
2529 	noneg = 0;
2530 	nopos = 0;
2531 	for (i = 0; i < maxpages; ++i) {
2532 		vm_object_t lobject;
2533 		vm_object_t nobject;
2534 		int allocated = 0;
2535 		int error;
2536 
2537 		/*
2538 		 * This can eat a lot of time on a heavily contended
2539 		 * machine so yield on the tick if needed.
2540 		 */
2541 		if ((i & 7) == 7)
2542 			lwkt_yield();
2543 
2544 		/*
2545 		 * Calculate the page to pre-fault, stopping the scan in
2546 		 * each direction separately if the limit is reached.
2547 		 */
2548 		if (i & 1) {
2549 			if (noneg)
2550 				continue;
2551 			addr = addra - ((i + 1) >> 1) * PAGE_SIZE;
2552 		} else {
2553 			if (nopos)
2554 				continue;
2555 			addr = addra + ((i + 2) >> 1) * PAGE_SIZE;
2556 		}
2557 		if (addr < entry->start) {
2558 			noneg = 1;
2559 			if (noneg && nopos)
2560 				break;
2561 			continue;
2562 		}
2563 		if (addr >= entry->end) {
2564 			nopos = 1;
2565 			if (noneg && nopos)
2566 				break;
2567 			continue;
2568 		}
2569 
2570 		/*
2571 		 * Skip pages already mapped, and stop scanning in that
2572 		 * direction.  When the scan terminates in both directions
2573 		 * we are done.
2574 		 */
2575 		if (pmap_prefault_ok(pmap, addr) == 0) {
2576 			if (i & 1)
2577 				noneg = 1;
2578 			else
2579 				nopos = 1;
2580 			if (noneg && nopos)
2581 				break;
2582 			continue;
2583 		}
2584 
2585 		/*
2586 		 * Follow the VM object chain to obtain the page to be mapped
2587 		 * into the pmap.
2588 		 *
2589 		 * If we reach the terminal object without finding a page
2590 		 * and we determine it would be advantageous, then allocate
2591 		 * a zero-fill page for the base object.  The base object
2592 		 * is guaranteed to be OBJT_DEFAULT for this case.
2593 		 *
2594 		 * In order to not have to check the pager via *haspage*()
2595 		 * we stop if any non-default object is encountered.  e.g.
2596 		 * a vnode or swap object would stop the loop.
2597 		 */
2598 		index = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
2599 		lobject = object;
2600 		pindex = index;
2601 		pprot = prot;
2602 
2603 		KKASSERT(lobject == entry->object.vm_object);
2604 		/*vm_object_hold(lobject); implied */
2605 
2606 		while ((m = vm_page_lookup_busy_try(lobject, pindex,
2607 						    TRUE, &error)) == NULL) {
2608 			if (lobject->type != OBJT_DEFAULT)
2609 				break;
2610 			if (lobject->backing_object == NULL) {
2611 				if (vm_fast_fault == 0)
2612 					break;
2613 				if ((prot & VM_PROT_WRITE) == 0 ||
2614 				    vm_page_count_min(0)) {
2615 					break;
2616 				}
2617 
2618 				/*
2619 				 * NOTE: Allocated from base object
2620 				 */
2621 				m = vm_page_alloc(object, index,
2622 						  VM_ALLOC_NORMAL |
2623 						  VM_ALLOC_ZERO |
2624 						  VM_ALLOC_USE_GD |
2625 						  VM_ALLOC_NULL_OK);
2626 				if (m == NULL)
2627 					break;
2628 				allocated = 1;
2629 				pprot = prot;
2630 				/* lobject = object .. not needed */
2631 				break;
2632 			}
2633 			if (lobject->backing_object_offset & PAGE_MASK)
2634 				break;
2635 			nobject = lobject->backing_object;
2636 			vm_object_hold(nobject);
2637 			KKASSERT(nobject == lobject->backing_object);
2638 			pindex += lobject->backing_object_offset >> PAGE_SHIFT;
2639 			if (lobject != object) {
2640 				vm_object_lock_swap();
2641 				vm_object_drop(lobject);
2642 			}
2643 			lobject = nobject;
2644 			pprot &= ~VM_PROT_WRITE;
2645 			vm_object_chain_acquire(lobject, 0);
2646 		}
2647 
2648 		/*
2649 		 * NOTE: A non-NULL (m) will be associated with lobject if
2650 		 *	 it was found there, otherwise it is probably a
2651 		 *	 zero-fill page associated with the base object.
2652 		 *
2653 		 * Give-up if no page is available.
2654 		 */
2655 		if (m == NULL) {
2656 			if (lobject != object) {
2657 #if 0
2658 				if (object->backing_object != lobject)
2659 					vm_object_hold(object->backing_object);
2660 #endif
2661 				vm_object_chain_release_all(
2662 					object->backing_object, lobject);
2663 #if 0
2664 				if (object->backing_object != lobject)
2665 					vm_object_drop(object->backing_object);
2666 #endif
2667 				vm_object_drop(lobject);
2668 			}
2669 			break;
2670 		}
2671 
2672 		/*
2673 		 * The object must be marked dirty if we are mapping a
2674 		 * writable page.  m->object is either lobject or object,
2675 		 * both of which are still held.  Do this before we
2676 		 * potentially drop the object.
2677 		 */
2678 		if (pprot & VM_PROT_WRITE)
2679 			vm_object_set_writeable_dirty(m->object);
2680 
2681 		/*
2682 		 * Do not conditionalize on PG_RAM.  If pages are present in
2683 		 * the VM system we assume optimal caching.  If caching is
2684 		 * not optimal the I/O gravy train will be restarted when we
2685 		 * hit an unavailable page.  We do not want to try to restart
2686 		 * the gravy train now because we really don't know how much
2687 		 * of the object has been cached.  The cost for restarting
2688 		 * the gravy train should be low (since accesses will likely
2689 		 * be I/O bound anyway).
2690 		 */
2691 		if (lobject != object) {
2692 #if 0
2693 			if (object->backing_object != lobject)
2694 				vm_object_hold(object->backing_object);
2695 #endif
2696 			vm_object_chain_release_all(object->backing_object,
2697 						    lobject);
2698 #if 0
2699 			if (object->backing_object != lobject)
2700 				vm_object_drop(object->backing_object);
2701 #endif
2702 			vm_object_drop(lobject);
2703 		}
2704 
2705 		/*
2706 		 * Enter the page into the pmap if appropriate.  If we had
2707 		 * allocated the page we have to place it on a queue.  If not
2708 		 * we just have to make sure it isn't on the cache queue
2709 		 * (pages on the cache queue are not allowed to be mapped).
2710 		 */
2711 		if (allocated) {
2712 			/*
2713 			 * Page must be zerod.
2714 			 */
2715 			vm_page_zero_fill(m);
2716 			mycpu->gd_cnt.v_zfod++;
2717 			m->valid = VM_PAGE_BITS_ALL;
2718 
2719 			/*
2720 			 * Handle dirty page case
2721 			 */
2722 			if (pprot & VM_PROT_WRITE)
2723 				vm_set_nosync(m, entry);
2724 			pmap_enter(pmap, addr, m, pprot, 0, entry);
2725 			mycpu->gd_cnt.v_vm_faults++;
2726 			if (curthread->td_lwp)
2727 				++curthread->td_lwp->lwp_ru.ru_minflt;
2728 			vm_page_deactivate(m);
2729 			if (pprot & VM_PROT_WRITE) {
2730 				/*vm_object_set_writeable_dirty(m->object);*/
2731 				vm_set_nosync(m, entry);
2732 				if (fault_flags & VM_FAULT_DIRTY) {
2733 					vm_page_dirty(m);
2734 					/*XXX*/
2735 					swap_pager_unswapped(m);
2736 				}
2737 			}
2738 			vm_page_wakeup(m);
2739 		} else if (error) {
2740 			/* couldn't busy page, no wakeup */
2741 		} else if (
2742 		    ((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2743 		    (m->flags & PG_FICTITIOUS) == 0) {
2744 			/*
2745 			 * A fully valid page not undergoing soft I/O can
2746 			 * be immediately entered into the pmap.
2747 			 */
2748 			if ((m->queue - m->pc) == PQ_CACHE)
2749 				vm_page_deactivate(m);
2750 			if (pprot & VM_PROT_WRITE) {
2751 				/*vm_object_set_writeable_dirty(m->object);*/
2752 				vm_set_nosync(m, entry);
2753 				if (fault_flags & VM_FAULT_DIRTY) {
2754 					vm_page_dirty(m);
2755 					/*XXX*/
2756 					swap_pager_unswapped(m);
2757 				}
2758 			}
2759 			if (pprot & VM_PROT_WRITE)
2760 				vm_set_nosync(m, entry);
2761 			pmap_enter(pmap, addr, m, pprot, 0, entry);
2762 			mycpu->gd_cnt.v_vm_faults++;
2763 			if (curthread->td_lwp)
2764 				++curthread->td_lwp->lwp_ru.ru_minflt;
2765 			vm_page_wakeup(m);
2766 		} else {
2767 			vm_page_wakeup(m);
2768 		}
2769 	}
2770 	vm_object_chain_release(object);
2771 	vm_object_drop(object);
2772 }
2773 
2774 /*
2775  * Object can be held shared
2776  */
2777 static void
2778 vm_prefault_quick(pmap_t pmap, vm_offset_t addra,
2779 		  vm_map_entry_t entry, int prot, int fault_flags)
2780 {
2781 	struct lwp *lp;
2782 	vm_page_t m;
2783 	vm_offset_t addr;
2784 	vm_pindex_t pindex;
2785 	vm_object_t object;
2786 	int i;
2787 	int noneg;
2788 	int nopos;
2789 	int maxpages;
2790 
2791 	/*
2792 	 * Get stable max count value, disabled if set to 0
2793 	 */
2794 	maxpages = vm_prefault_pages;
2795 	cpu_ccfence();
2796 	if (maxpages <= 0)
2797 		return;
2798 
2799 	/*
2800 	 * We do not currently prefault mappings that use virtual page
2801 	 * tables.  We do not prefault foreign pmaps.
2802 	 */
2803 	if (entry->maptype != VM_MAPTYPE_NORMAL)
2804 		return;
2805 	lp = curthread->td_lwp;
2806 	if (lp == NULL || (pmap != vmspace_pmap(lp->lwp_vmspace)))
2807 		return;
2808 	object = entry->object.vm_object;
2809 	if (object->backing_object != NULL)
2810 		return;
2811 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2812 
2813 	/*
2814 	 * Limit pre-fault count to 1024 pages.
2815 	 */
2816 	if (maxpages > 1024)
2817 		maxpages = 1024;
2818 
2819 	noneg = 0;
2820 	nopos = 0;
2821 	for (i = 0; i < maxpages; ++i) {
2822 		int error;
2823 
2824 		/*
2825 		 * Calculate the page to pre-fault, stopping the scan in
2826 		 * each direction separately if the limit is reached.
2827 		 */
2828 		if (i & 1) {
2829 			if (noneg)
2830 				continue;
2831 			addr = addra - ((i + 1) >> 1) * PAGE_SIZE;
2832 		} else {
2833 			if (nopos)
2834 				continue;
2835 			addr = addra + ((i + 2) >> 1) * PAGE_SIZE;
2836 		}
2837 		if (addr < entry->start) {
2838 			noneg = 1;
2839 			if (noneg && nopos)
2840 				break;
2841 			continue;
2842 		}
2843 		if (addr >= entry->end) {
2844 			nopos = 1;
2845 			if (noneg && nopos)
2846 				break;
2847 			continue;
2848 		}
2849 
2850 		/*
2851 		 * Follow the VM object chain to obtain the page to be mapped
2852 		 * into the pmap.  This version of the prefault code only
2853 		 * works with terminal objects.
2854 		 *
2855 		 * The page must already exist.  If we encounter a problem
2856 		 * we stop here.
2857 		 *
2858 		 * WARNING!  We cannot call swap_pager_unswapped() or insert
2859 		 *	     a new vm_page with a shared token.
2860 		 */
2861 		pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
2862 
2863 		m = vm_page_lookup_busy_try(object, pindex, TRUE, &error);
2864 		if (m == NULL || error)
2865 			break;
2866 
2867 		/*
2868 		 * Skip pages already mapped, and stop scanning in that
2869 		 * direction.  When the scan terminates in both directions
2870 		 * we are done.
2871 		 */
2872 		if (pmap_prefault_ok(pmap, addr) == 0) {
2873 			vm_page_wakeup(m);
2874 			if (i & 1)
2875 				noneg = 1;
2876 			else
2877 				nopos = 1;
2878 			if (noneg && nopos)
2879 				break;
2880 			continue;
2881 		}
2882 
2883 		/*
2884 		 * Stop if the page cannot be trivially entered into the
2885 		 * pmap.
2886 		 */
2887 		if (((m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL) ||
2888 		    (m->flags & PG_FICTITIOUS) ||
2889 		    ((m->flags & PG_SWAPPED) &&
2890 		     (prot & VM_PROT_WRITE) &&
2891 		     (fault_flags & VM_FAULT_DIRTY))) {
2892 			vm_page_wakeup(m);
2893 			break;
2894 		}
2895 
2896 		/*
2897 		 * Enter the page into the pmap.  The object might be held
2898 		 * shared so we can't do any (serious) modifying operation
2899 		 * on it.
2900 		 */
2901 		if ((m->queue - m->pc) == PQ_CACHE)
2902 			vm_page_deactivate(m);
2903 		if (prot & VM_PROT_WRITE) {
2904 			vm_object_set_writeable_dirty(m->object);
2905 			vm_set_nosync(m, entry);
2906 			if (fault_flags & VM_FAULT_DIRTY) {
2907 				vm_page_dirty(m);
2908 				/* can't happeen due to conditional above */
2909 				/* swap_pager_unswapped(m); */
2910 			}
2911 		}
2912 		pmap_enter(pmap, addr, m, prot, 0, entry);
2913 		mycpu->gd_cnt.v_vm_faults++;
2914 		if (curthread->td_lwp)
2915 			++curthread->td_lwp->lwp_ru.ru_minflt;
2916 		vm_page_wakeup(m);
2917 	}
2918 }
2919