xref: /dragonfly/sys/vm/vm_fault.c (revision 896f2e3a)
1 /*
2  * Copyright (c) 2003-2014 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * ---
35  *
36  * Copyright (c) 1991, 1993
37  *	The Regents of the University of California.  All rights reserved.
38  * Copyright (c) 1994 John S. Dyson
39  * All rights reserved.
40  * Copyright (c) 1994 David Greenman
41  * All rights reserved.
42  *
43  *
44  * This code is derived from software contributed to Berkeley by
45  * The Mach Operating System project at Carnegie-Mellon University.
46  *
47  * Redistribution and use in source and binary forms, with or without
48  * modification, are permitted provided that the following conditions
49  * are met:
50  * 1. Redistributions of source code must retain the above copyright
51  *    notice, this list of conditions and the following disclaimer.
52  * 2. Redistributions in binary form must reproduce the above copyright
53  *    notice, this list of conditions and the following disclaimer in the
54  *    documentation and/or other materials provided with the distribution.
55  * 3. Neither the name of the University nor the names of its contributors
56  *    may be used to endorse or promote products derived from this software
57  *    without specific prior written permission.
58  *
59  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69  * SUCH DAMAGE.
70  *
71  * ---
72  *
73  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
74  * All rights reserved.
75  *
76  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
77  *
78  * Permission to use, copy, modify and distribute this software and
79  * its documentation is hereby granted, provided that both the copyright
80  * notice and this permission notice appear in all copies of the
81  * software, derivative works or modified versions, and any portions
82  * thereof, and that both notices appear in supporting documentation.
83  *
84  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
85  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
86  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
87  *
88  * Carnegie Mellon requests users of this software to return to
89  *
90  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
91  *  School of Computer Science
92  *  Carnegie Mellon University
93  *  Pittsburgh PA 15213-3890
94  *
95  * any improvements or extensions that they make and grant Carnegie the
96  * rights to redistribute these changes.
97  */
98 
99 /*
100  *	Page fault handling module.
101  */
102 
103 #include <sys/param.h>
104 #include <sys/systm.h>
105 #include <sys/kernel.h>
106 #include <sys/proc.h>
107 #include <sys/vnode.h>
108 #include <sys/resourcevar.h>
109 #include <sys/vmmeter.h>
110 #include <sys/vkernel.h>
111 #include <sys/lock.h>
112 #include <sys/sysctl.h>
113 
114 #include <cpu/lwbuf.h>
115 
116 #include <vm/vm.h>
117 #include <vm/vm_param.h>
118 #include <vm/pmap.h>
119 #include <vm/vm_map.h>
120 #include <vm/vm_object.h>
121 #include <vm/vm_page.h>
122 #include <vm/vm_pageout.h>
123 #include <vm/vm_kern.h>
124 #include <vm/vm_pager.h>
125 #include <vm/vnode_pager.h>
126 #include <vm/vm_extern.h>
127 
128 #include <sys/thread2.h>
129 #include <vm/vm_page2.h>
130 
131 struct faultstate {
132 	vm_page_t m;
133 	vm_object_t object;
134 	vm_pindex_t pindex;
135 	vm_prot_t prot;
136 	vm_page_t first_m;
137 	vm_object_t first_object;
138 	vm_prot_t first_prot;
139 	vm_map_t map;
140 	vm_map_entry_t entry;
141 	int lookup_still_valid;
142 	int hardfault;
143 	int fault_flags;
144 	int map_generation;
145 	int shared;
146 	int first_shared;
147 	boolean_t wired;
148 	struct vnode *vp;
149 };
150 
151 static int debug_fault = 0;
152 SYSCTL_INT(_vm, OID_AUTO, debug_fault, CTLFLAG_RW, &debug_fault, 0, "");
153 static int debug_cluster = 0;
154 SYSCTL_INT(_vm, OID_AUTO, debug_cluster, CTLFLAG_RW, &debug_cluster, 0, "");
155 int vm_shared_fault = 1;
156 TUNABLE_INT("vm.shared_fault", &vm_shared_fault);
157 SYSCTL_INT(_vm, OID_AUTO, shared_fault, CTLFLAG_RW, &vm_shared_fault, 0,
158 	   "Allow shared token on vm_object");
159 static long vm_shared_hit = 0;
160 SYSCTL_LONG(_vm, OID_AUTO, shared_hit, CTLFLAG_RW, &vm_shared_hit, 0,
161 	   "Successful shared faults");
162 static long vm_shared_count = 0;
163 SYSCTL_LONG(_vm, OID_AUTO, shared_count, CTLFLAG_RW, &vm_shared_count, 0,
164 	   "Shared fault attempts");
165 static long vm_shared_miss = 0;
166 SYSCTL_LONG(_vm, OID_AUTO, shared_miss, CTLFLAG_RW, &vm_shared_miss, 0,
167 	   "Unsuccessful shared faults");
168 
169 static int vm_fault_object(struct faultstate *, vm_pindex_t, vm_prot_t, int);
170 static int vm_fault_vpagetable(struct faultstate *, vm_pindex_t *,
171 			vpte_t, int, int);
172 #if 0
173 static int vm_fault_additional_pages (vm_page_t, int, int, vm_page_t *, int *);
174 #endif
175 static void vm_set_nosync(vm_page_t m, vm_map_entry_t entry);
176 static void vm_prefault(pmap_t pmap, vm_offset_t addra,
177 			vm_map_entry_t entry, int prot, int fault_flags);
178 static void vm_prefault_quick(pmap_t pmap, vm_offset_t addra,
179 			vm_map_entry_t entry, int prot, int fault_flags);
180 
181 static __inline void
182 release_page(struct faultstate *fs)
183 {
184 	vm_page_deactivate(fs->m);
185 	vm_page_wakeup(fs->m);
186 	fs->m = NULL;
187 }
188 
189 /*
190  * NOTE: Once unlocked any cached fs->entry becomes invalid, any reuse
191  *	 requires relocking and then checking the timestamp.
192  *
193  * NOTE: vm_map_lock_read() does not bump fs->map->timestamp so we do
194  *	 not have to update fs->map_generation here.
195  *
196  * NOTE: This function can fail due to a deadlock against the caller's
197  *	 holding of a vm_page BUSY.
198  */
199 static __inline int
200 relock_map(struct faultstate *fs)
201 {
202 	int error;
203 
204 	if (fs->lookup_still_valid == FALSE && fs->map) {
205 		error = vm_map_lock_read_to(fs->map);
206 		if (error == 0)
207 			fs->lookup_still_valid = TRUE;
208 	} else {
209 		error = 0;
210 	}
211 	return error;
212 }
213 
214 static __inline void
215 unlock_map(struct faultstate *fs)
216 {
217 	if (fs->lookup_still_valid && fs->map) {
218 		vm_map_lookup_done(fs->map, fs->entry, 0);
219 		fs->lookup_still_valid = FALSE;
220 	}
221 }
222 
223 /*
224  * Clean up after a successful call to vm_fault_object() so another call
225  * to vm_fault_object() can be made.
226  */
227 static void
228 _cleanup_successful_fault(struct faultstate *fs, int relock)
229 {
230 	/*
231 	 * We allocated a junk page for a COW operation that did
232 	 * not occur, the page must be freed.
233 	 */
234 	if (fs->object != fs->first_object) {
235 		KKASSERT(fs->first_shared == 0);
236 		vm_page_free(fs->first_m);
237 		vm_object_pip_wakeup(fs->object);
238 		fs->first_m = NULL;
239 	}
240 
241 	/*
242 	 * Reset fs->object.
243 	 */
244 	fs->object = fs->first_object;
245 	if (relock && fs->lookup_still_valid == FALSE) {
246 		if (fs->map)
247 			vm_map_lock_read(fs->map);
248 		fs->lookup_still_valid = TRUE;
249 	}
250 }
251 
252 static void
253 _unlock_things(struct faultstate *fs, int dealloc)
254 {
255 	_cleanup_successful_fault(fs, 0);
256 	if (dealloc) {
257 		/*vm_object_deallocate(fs->first_object);*/
258 		/*fs->first_object = NULL; drop used later on */
259 	}
260 	unlock_map(fs);
261 	if (fs->vp != NULL) {
262 		vput(fs->vp);
263 		fs->vp = NULL;
264 	}
265 }
266 
267 #define unlock_things(fs) _unlock_things(fs, 0)
268 #define unlock_and_deallocate(fs) _unlock_things(fs, 1)
269 #define cleanup_successful_fault(fs) _cleanup_successful_fault(fs, 1)
270 
271 /*
272  * TRYPAGER
273  *
274  * Determine if the pager for the current object *might* contain the page.
275  *
276  * We only need to try the pager if this is not a default object (default
277  * objects are zero-fill and have no real pager), and if we are not taking
278  * a wiring fault or if the FS entry is wired.
279  */
280 #define TRYPAGER(fs)	\
281 		(fs->object->type != OBJT_DEFAULT && \
282 		(((fs->fault_flags & VM_FAULT_WIRE_MASK) == 0) || fs->wired))
283 
284 /*
285  * vm_fault:
286  *
287  * Handle a page fault occuring at the given address, requiring the given
288  * permissions, in the map specified.  If successful, the page is inserted
289  * into the associated physical map.
290  *
291  * NOTE: The given address should be truncated to the proper page address.
292  *
293  * KERN_SUCCESS is returned if the page fault is handled; otherwise,
294  * a standard error specifying why the fault is fatal is returned.
295  *
296  * The map in question must be referenced, and remains so.
297  * The caller may hold no locks.
298  * No other requirements.
299  */
300 int
301 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, int fault_flags)
302 {
303 	int result;
304 	vm_pindex_t first_pindex;
305 	struct faultstate fs;
306 	struct lwp *lp;
307 	int growstack;
308 	int retry = 0;
309 	int inherit_prot;
310 
311 	inherit_prot = fault_type & VM_PROT_NOSYNC;
312 	vm_page_pcpu_cache();
313 	fs.hardfault = 0;
314 	fs.fault_flags = fault_flags;
315 	fs.vp = NULL;
316 	fs.shared = vm_shared_fault;
317 	fs.first_shared = vm_shared_fault;
318 	growstack = 1;
319 	if (vm_shared_fault)
320 		++vm_shared_count;
321 
322 	/*
323 	 * vm_map interactions
324 	 */
325 	if ((lp = curthread->td_lwp) != NULL)
326 		lp->lwp_flags |= LWP_PAGING;
327 	lwkt_gettoken(&map->token);
328 
329 RetryFault:
330 	/*
331 	 * Find the vm_map_entry representing the backing store and resolve
332 	 * the top level object and page index.  This may have the side
333 	 * effect of executing a copy-on-write on the map entry and/or
334 	 * creating a shadow object, but will not COW any actual VM pages.
335 	 *
336 	 * On success fs.map is left read-locked and various other fields
337 	 * are initialized but not otherwise referenced or locked.
338 	 *
339 	 * NOTE!  vm_map_lookup will try to upgrade the fault_type to
340 	 * VM_FAULT_WRITE if the map entry is a virtual page table and also
341 	 * writable, so we can set the 'A'accessed bit in the virtual page
342 	 * table entry.
343 	 */
344 	fs.map = map;
345 	result = vm_map_lookup(&fs.map, vaddr, fault_type,
346 			       &fs.entry, &fs.first_object,
347 			       &first_pindex, &fs.first_prot, &fs.wired);
348 
349 	/*
350 	 * If the lookup failed or the map protections are incompatible,
351 	 * the fault generally fails.  However, if the caller is trying
352 	 * to do a user wiring we have more work to do.
353 	 */
354 	if (result != KERN_SUCCESS) {
355 		if (result != KERN_PROTECTION_FAILURE ||
356 		    (fs.fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE)
357 		{
358 			if (result == KERN_INVALID_ADDRESS && growstack &&
359 			    map != &kernel_map && curproc != NULL) {
360 				result = vm_map_growstack(curproc, vaddr);
361 				if (result == KERN_SUCCESS) {
362 					growstack = 0;
363 					++retry;
364 					goto RetryFault;
365 				}
366 				result = KERN_FAILURE;
367 			}
368 			goto done;
369 		}
370 
371 		/*
372    		 * If we are user-wiring a r/w segment, and it is COW, then
373    		 * we need to do the COW operation.  Note that we don't
374 		 * currently COW RO sections now, because it is NOT desirable
375    		 * to COW .text.  We simply keep .text from ever being COW'ed
376    		 * and take the heat that one cannot debug wired .text sections.
377    		 */
378 		result = vm_map_lookup(&fs.map, vaddr,
379 				       VM_PROT_READ|VM_PROT_WRITE|
380 				        VM_PROT_OVERRIDE_WRITE,
381 				       &fs.entry, &fs.first_object,
382 				       &first_pindex, &fs.first_prot,
383 				       &fs.wired);
384 		if (result != KERN_SUCCESS) {
385 			result = KERN_FAILURE;
386 			goto done;
387 		}
388 
389 		/*
390 		 * If we don't COW now, on a user wire, the user will never
391 		 * be able to write to the mapping.  If we don't make this
392 		 * restriction, the bookkeeping would be nearly impossible.
393 		 *
394 		 * XXX We have a shared lock, this will have a MP race but
395 		 * I don't see how it can hurt anything.
396 		 */
397 		if ((fs.entry->protection & VM_PROT_WRITE) == 0)
398 			fs.entry->max_protection &= ~VM_PROT_WRITE;
399 	}
400 
401 	/*
402 	 * fs.map is read-locked
403 	 *
404 	 * Misc checks.  Save the map generation number to detect races.
405 	 */
406 	fs.map_generation = fs.map->timestamp;
407 	fs.lookup_still_valid = TRUE;
408 	fs.first_m = NULL;
409 	fs.object = fs.first_object;	/* so unlock_and_deallocate works */
410 	fs.prot = fs.first_prot;	/* default (used by uksmap) */
411 
412 	if (fs.entry->eflags & (MAP_ENTRY_NOFAULT | MAP_ENTRY_KSTACK)) {
413 		if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
414 			panic("vm_fault: fault on nofault entry, addr: %p",
415 			      (void *)vaddr);
416 		}
417 		if ((fs.entry->eflags & MAP_ENTRY_KSTACK) &&
418 		    vaddr >= fs.entry->start &&
419 		    vaddr < fs.entry->start + PAGE_SIZE) {
420 			panic("vm_fault: fault on stack guard, addr: %p",
421 			      (void *)vaddr);
422 		}
423 	}
424 
425 	/*
426 	 * A user-kernel shared map has no VM object and bypasses
427 	 * everything.  We execute the uksmap function with a temporary
428 	 * fictitious vm_page.  The address is directly mapped with no
429 	 * management.
430 	 */
431 	if (fs.entry->maptype == VM_MAPTYPE_UKSMAP) {
432 		struct vm_page fakem;
433 
434 		bzero(&fakem, sizeof(fakem));
435 		fakem.pindex = first_pindex;
436 		fakem.flags = PG_BUSY | PG_FICTITIOUS | PG_UNMANAGED;
437 		fakem.valid = VM_PAGE_BITS_ALL;
438 		fakem.pat_mode = VM_MEMATTR_DEFAULT;
439 		if (fs.entry->object.uksmap(fs.entry->aux.dev, &fakem)) {
440 			result = KERN_FAILURE;
441 			unlock_things(&fs);
442 			goto done2;
443 		}
444 		pmap_enter(fs.map->pmap, vaddr, &fakem, fs.prot | inherit_prot,
445 			   fs.wired, fs.entry);
446 		goto done_success;
447 	}
448 
449 	/*
450 	 * A system map entry may return a NULL object.  No object means
451 	 * no pager means an unrecoverable kernel fault.
452 	 */
453 	if (fs.first_object == NULL) {
454 		panic("vm_fault: unrecoverable fault at %p in entry %p",
455 			(void *)vaddr, fs.entry);
456 	}
457 
458 	/*
459 	 * Fail here if not a trivial anonymous page fault and TDF_NOFAULT
460 	 * is set.
461 	 */
462 	if ((curthread->td_flags & TDF_NOFAULT) &&
463 	    (retry ||
464 	     fs.first_object->type == OBJT_VNODE ||
465 	     fs.first_object->backing_object)) {
466 		result = KERN_FAILURE;
467 		unlock_things(&fs);
468 		goto done2;
469 	}
470 
471 	/*
472 	 * If the entry is wired we cannot change the page protection.
473 	 */
474 	if (fs.wired)
475 		fault_type = fs.first_prot;
476 
477 	/*
478 	 * We generally want to avoid unnecessary exclusive modes on backing
479 	 * and terminal objects because this can seriously interfere with
480 	 * heavily fork()'d processes (particularly /bin/sh scripts).
481 	 *
482 	 * However, we also want to avoid unnecessary retries due to needed
483 	 * shared->exclusive promotion for common faults.  Exclusive mode is
484 	 * always needed if any page insertion, rename, or free occurs in an
485 	 * object (and also indirectly if any I/O is done).
486 	 *
487 	 * The main issue here is going to be fs.first_shared.  If the
488 	 * first_object has a backing object which isn't shadowed and the
489 	 * process is single-threaded we might as well use an exclusive
490 	 * lock/chain right off the bat.
491 	 */
492 	if (fs.first_shared && fs.first_object->backing_object &&
493 	    LIST_EMPTY(&fs.first_object->shadow_head) &&
494 	    curthread->td_proc && curthread->td_proc->p_nthreads == 1) {
495 		fs.first_shared = 0;
496 	}
497 
498 	/*
499 	 * swap_pager_unswapped() needs an exclusive object
500 	 */
501 	if (fault_flags & (VM_FAULT_UNSWAP | VM_FAULT_DIRTY)) {
502 		fs.first_shared = 0;
503 	}
504 
505 	/*
506 	 * Obtain a top-level object lock, shared or exclusive depending
507 	 * on fs.first_shared.  If a shared lock winds up being insufficient
508 	 * we will retry with an exclusive lock.
509 	 *
510 	 * The vnode pager lock is always shared.
511 	 */
512 	if (fs.first_shared)
513 		vm_object_hold_shared(fs.first_object);
514 	else
515 		vm_object_hold(fs.first_object);
516 	if (fs.vp == NULL)
517 		fs.vp = vnode_pager_lock(fs.first_object);
518 
519 	/*
520 	 * The page we want is at (first_object, first_pindex), but if the
521 	 * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the
522 	 * page table to figure out the actual pindex.
523 	 *
524 	 * NOTE!  DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION
525 	 * ONLY
526 	 */
527 	if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
528 		result = vm_fault_vpagetable(&fs, &first_pindex,
529 					     fs.entry->aux.master_pde,
530 					     fault_type, 1);
531 		if (result == KERN_TRY_AGAIN) {
532 			vm_object_drop(fs.first_object);
533 			++retry;
534 			goto RetryFault;
535 		}
536 		if (result != KERN_SUCCESS)
537 			goto done;
538 	}
539 
540 	/*
541 	 * Now we have the actual (object, pindex), fault in the page.  If
542 	 * vm_fault_object() fails it will unlock and deallocate the FS
543 	 * data.   If it succeeds everything remains locked and fs->object
544 	 * will have an additional PIP count if it is not equal to
545 	 * fs->first_object
546 	 *
547 	 * vm_fault_object will set fs->prot for the pmap operation.  It is
548 	 * allowed to set VM_PROT_WRITE if fault_type == VM_PROT_READ if the
549 	 * page can be safely written.  However, it will force a read-only
550 	 * mapping for a read fault if the memory is managed by a virtual
551 	 * page table.
552 	 *
553 	 * If the fault code uses the shared object lock shortcut
554 	 * we must not try to burst (we can't allocate VM pages).
555 	 */
556 	result = vm_fault_object(&fs, first_pindex, fault_type, 1);
557 
558 	if (debug_fault > 0) {
559 		--debug_fault;
560 		kprintf("VM_FAULT result %d addr=%jx type=%02x flags=%02x "
561 			"fs.m=%p fs.prot=%02x fs.wired=%02x fs.entry=%p\n",
562 			result, (intmax_t)vaddr, fault_type, fault_flags,
563 			fs.m, fs.prot, fs.wired, fs.entry);
564 	}
565 
566 	if (result == KERN_TRY_AGAIN) {
567 		vm_object_drop(fs.first_object);
568 		++retry;
569 		goto RetryFault;
570 	}
571 	if (result != KERN_SUCCESS)
572 		goto done;
573 
574 	/*
575 	 * On success vm_fault_object() does not unlock or deallocate, and fs.m
576 	 * will contain a busied page.
577 	 *
578 	 * Enter the page into the pmap and do pmap-related adjustments.
579 	 */
580 	KKASSERT(fs.lookup_still_valid == TRUE);
581 	vm_page_flag_set(fs.m, PG_REFERENCED);
582 	pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot | inherit_prot,
583 		   fs.wired, fs.entry);
584 
585 	/*KKASSERT(fs.m->queue == PQ_NONE); page-in op may deactivate page */
586 	KKASSERT(fs.m->flags & PG_BUSY);
587 
588 	/*
589 	 * If the page is not wired down, then put it where the pageout daemon
590 	 * can find it.
591 	 */
592 	if (fs.fault_flags & VM_FAULT_WIRE_MASK) {
593 		if (fs.wired)
594 			vm_page_wire(fs.m);
595 		else
596 			vm_page_unwire(fs.m, 1);
597 	} else {
598 		vm_page_activate(fs.m);
599 	}
600 	vm_page_wakeup(fs.m);
601 
602 	/*
603 	 * Burst in a few more pages if possible.  The fs.map should still
604 	 * be locked.  To avoid interlocking against a vnode->getblk
605 	 * operation we had to be sure to unbusy our primary vm_page above
606 	 * first.
607 	 *
608 	 * A normal burst can continue down backing store, only execute
609 	 * if we are holding an exclusive lock, otherwise the exclusive
610 	 * locks the burst code gets might cause excessive SMP collisions.
611 	 *
612 	 * A quick burst can be utilized when there is no backing object
613 	 * (i.e. a shared file mmap).
614 	 */
615 	if ((fault_flags & VM_FAULT_BURST) &&
616 	    (fs.fault_flags & VM_FAULT_WIRE_MASK) == 0 &&
617 	    fs.wired == 0) {
618 		if (fs.first_shared == 0 && fs.shared == 0) {
619 			vm_prefault(fs.map->pmap, vaddr,
620 				    fs.entry, fs.prot, fault_flags);
621 		} else {
622 			vm_prefault_quick(fs.map->pmap, vaddr,
623 					  fs.entry, fs.prot, fault_flags);
624 		}
625 	}
626 
627 done_success:
628 	mycpu->gd_cnt.v_vm_faults++;
629 	if (curthread->td_lwp)
630 		++curthread->td_lwp->lwp_ru.ru_minflt;
631 
632 	/*
633 	 * Unlock everything, and return
634 	 */
635 	unlock_things(&fs);
636 
637 	if (curthread->td_lwp) {
638 		if (fs.hardfault) {
639 			curthread->td_lwp->lwp_ru.ru_majflt++;
640 		} else {
641 			curthread->td_lwp->lwp_ru.ru_minflt++;
642 		}
643 	}
644 
645 	/*vm_object_deallocate(fs.first_object);*/
646 	/*fs.m = NULL; */
647 	/*fs.first_object = NULL; must still drop later */
648 
649 	result = KERN_SUCCESS;
650 done:
651 	if (fs.first_object)
652 		vm_object_drop(fs.first_object);
653 done2:
654 	lwkt_reltoken(&map->token);
655 	if (lp)
656 		lp->lwp_flags &= ~LWP_PAGING;
657 	if (vm_shared_fault && fs.shared == 0)
658 		++vm_shared_miss;
659 	return (result);
660 }
661 
662 /*
663  * Fault in the specified virtual address in the current process map,
664  * returning a held VM page or NULL.  See vm_fault_page() for more
665  * information.
666  *
667  * No requirements.
668  */
669 vm_page_t
670 vm_fault_page_quick(vm_offset_t va, vm_prot_t fault_type, int *errorp)
671 {
672 	struct lwp *lp = curthread->td_lwp;
673 	vm_page_t m;
674 
675 	m = vm_fault_page(&lp->lwp_vmspace->vm_map, va,
676 			  fault_type, VM_FAULT_NORMAL, errorp);
677 	return(m);
678 }
679 
680 /*
681  * Fault in the specified virtual address in the specified map, doing all
682  * necessary manipulation of the object store and all necessary I/O.  Return
683  * a held VM page or NULL, and set *errorp.  The related pmap is not
684  * updated.
685  *
686  * The returned page will be properly dirtied if VM_PROT_WRITE was specified,
687  * and marked PG_REFERENCED as well.
688  *
689  * If the page cannot be faulted writable and VM_PROT_WRITE was specified, an
690  * error will be returned.
691  *
692  * No requirements.
693  */
694 vm_page_t
695 vm_fault_page(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
696 	      int fault_flags, int *errorp)
697 {
698 	vm_pindex_t first_pindex;
699 	struct faultstate fs;
700 	int result;
701 	int retry = 0;
702 	vm_prot_t orig_fault_type = fault_type;
703 
704 	fs.hardfault = 0;
705 	fs.fault_flags = fault_flags;
706 	KKASSERT((fault_flags & VM_FAULT_WIRE_MASK) == 0);
707 
708 	/*
709 	 * Dive the pmap (concurrency possible).  If we find the
710 	 * appropriate page we can terminate early and quickly.
711 	 */
712 	fs.m = pmap_fault_page_quick(map->pmap, vaddr, fault_type);
713 	if (fs.m) {
714 		*errorp = 0;
715 		return(fs.m);
716 	}
717 
718 	/*
719 	 * Otherwise take a concurrency hit and do a formal page
720 	 * fault.
721 	 */
722 	fs.shared = vm_shared_fault;
723 	fs.first_shared = vm_shared_fault;
724 	fs.vp = NULL;
725 	lwkt_gettoken(&map->token);
726 
727 	/*
728 	 * swap_pager_unswapped() needs an exclusive object
729 	 */
730 	if (fault_flags & (VM_FAULT_UNSWAP | VM_FAULT_DIRTY)) {
731 		fs.first_shared = 0;
732 	}
733 
734 RetryFault:
735 	/*
736 	 * Find the vm_map_entry representing the backing store and resolve
737 	 * the top level object and page index.  This may have the side
738 	 * effect of executing a copy-on-write on the map entry and/or
739 	 * creating a shadow object, but will not COW any actual VM pages.
740 	 *
741 	 * On success fs.map is left read-locked and various other fields
742 	 * are initialized but not otherwise referenced or locked.
743 	 *
744 	 * NOTE!  vm_map_lookup will upgrade the fault_type to VM_FAULT_WRITE
745 	 * if the map entry is a virtual page table and also writable,
746 	 * so we can set the 'A'accessed bit in the virtual page table entry.
747 	 */
748 	fs.map = map;
749 	result = vm_map_lookup(&fs.map, vaddr, fault_type,
750 			       &fs.entry, &fs.first_object,
751 			       &first_pindex, &fs.first_prot, &fs.wired);
752 
753 	if (result != KERN_SUCCESS) {
754 		*errorp = result;
755 		fs.m = NULL;
756 		goto done;
757 	}
758 
759 	/*
760 	 * fs.map is read-locked
761 	 *
762 	 * Misc checks.  Save the map generation number to detect races.
763 	 */
764 	fs.map_generation = fs.map->timestamp;
765 	fs.lookup_still_valid = TRUE;
766 	fs.first_m = NULL;
767 	fs.object = fs.first_object;	/* so unlock_and_deallocate works */
768 
769 	if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
770 		panic("vm_fault: fault on nofault entry, addr: %lx",
771 		    (u_long)vaddr);
772 	}
773 
774 	/*
775 	 * A user-kernel shared map has no VM object and bypasses
776 	 * everything.  We execute the uksmap function with a temporary
777 	 * fictitious vm_page.  The address is directly mapped with no
778 	 * management.
779 	 */
780 	if (fs.entry->maptype == VM_MAPTYPE_UKSMAP) {
781 		struct vm_page fakem;
782 
783 		bzero(&fakem, sizeof(fakem));
784 		fakem.pindex = first_pindex;
785 		fakem.flags = PG_BUSY | PG_FICTITIOUS | PG_UNMANAGED;
786 		fakem.valid = VM_PAGE_BITS_ALL;
787 		fakem.pat_mode = VM_MEMATTR_DEFAULT;
788 		if (fs.entry->object.uksmap(fs.entry->aux.dev, &fakem)) {
789 			*errorp = KERN_FAILURE;
790 			fs.m = NULL;
791 			unlock_things(&fs);
792 			goto done2;
793 		}
794 		fs.m = PHYS_TO_VM_PAGE(fakem.phys_addr);
795 		vm_page_hold(fs.m);
796 
797 		unlock_things(&fs);
798 		*errorp = 0;
799 		goto done;
800 	}
801 
802 
803 	/*
804 	 * A system map entry may return a NULL object.  No object means
805 	 * no pager means an unrecoverable kernel fault.
806 	 */
807 	if (fs.first_object == NULL) {
808 		panic("vm_fault: unrecoverable fault at %p in entry %p",
809 			(void *)vaddr, fs.entry);
810 	}
811 
812 	/*
813 	 * Fail here if not a trivial anonymous page fault and TDF_NOFAULT
814 	 * is set.
815 	 */
816 	if ((curthread->td_flags & TDF_NOFAULT) &&
817 	    (retry ||
818 	     fs.first_object->type == OBJT_VNODE ||
819 	     fs.first_object->backing_object)) {
820 		*errorp = KERN_FAILURE;
821 		unlock_things(&fs);
822 		goto done2;
823 	}
824 
825 	/*
826 	 * If the entry is wired we cannot change the page protection.
827 	 */
828 	if (fs.wired)
829 		fault_type = fs.first_prot;
830 
831 	/*
832 	 * Make a reference to this object to prevent its disposal while we
833 	 * are messing with it.  Once we have the reference, the map is free
834 	 * to be diddled.  Since objects reference their shadows (and copies),
835 	 * they will stay around as well.
836 	 *
837 	 * The reference should also prevent an unexpected collapse of the
838 	 * parent that might move pages from the current object into the
839 	 * parent unexpectedly, resulting in corruption.
840 	 *
841 	 * Bump the paging-in-progress count to prevent size changes (e.g.
842 	 * truncation operations) during I/O.  This must be done after
843 	 * obtaining the vnode lock in order to avoid possible deadlocks.
844 	 */
845 	if (fs.first_shared)
846 		vm_object_hold_shared(fs.first_object);
847 	else
848 		vm_object_hold(fs.first_object);
849 	if (fs.vp == NULL)
850 		fs.vp = vnode_pager_lock(fs.first_object);	/* shared */
851 
852 	/*
853 	 * The page we want is at (first_object, first_pindex), but if the
854 	 * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the
855 	 * page table to figure out the actual pindex.
856 	 *
857 	 * NOTE!  DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION
858 	 * ONLY
859 	 */
860 	if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
861 		result = vm_fault_vpagetable(&fs, &first_pindex,
862 					     fs.entry->aux.master_pde,
863 					     fault_type, 1);
864 		if (result == KERN_TRY_AGAIN) {
865 			vm_object_drop(fs.first_object);
866 			++retry;
867 			goto RetryFault;
868 		}
869 		if (result != KERN_SUCCESS) {
870 			*errorp = result;
871 			fs.m = NULL;
872 			goto done;
873 		}
874 	}
875 
876 	/*
877 	 * Now we have the actual (object, pindex), fault in the page.  If
878 	 * vm_fault_object() fails it will unlock and deallocate the FS
879 	 * data.   If it succeeds everything remains locked and fs->object
880 	 * will have an additinal PIP count if it is not equal to
881 	 * fs->first_object
882 	 */
883 	fs.m = NULL;
884 	result = vm_fault_object(&fs, first_pindex, fault_type, 1);
885 
886 	if (result == KERN_TRY_AGAIN) {
887 		vm_object_drop(fs.first_object);
888 		++retry;
889 		goto RetryFault;
890 	}
891 	if (result != KERN_SUCCESS) {
892 		*errorp = result;
893 		fs.m = NULL;
894 		goto done;
895 	}
896 
897 	if ((orig_fault_type & VM_PROT_WRITE) &&
898 	    (fs.prot & VM_PROT_WRITE) == 0) {
899 		*errorp = KERN_PROTECTION_FAILURE;
900 		unlock_and_deallocate(&fs);
901 		fs.m = NULL;
902 		goto done;
903 	}
904 
905 	/*
906 	 * DO NOT UPDATE THE PMAP!!!  This function may be called for
907 	 * a pmap unrelated to the current process pmap, in which case
908 	 * the current cpu core will not be listed in the pmap's pm_active
909 	 * mask.  Thus invalidation interlocks will fail to work properly.
910 	 *
911 	 * (for example, 'ps' uses procfs to read program arguments from
912 	 * each process's stack).
913 	 *
914 	 * In addition to the above this function will be called to acquire
915 	 * a page that might already be faulted in, re-faulting it
916 	 * continuously is a waste of time.
917 	 *
918 	 * XXX could this have been the cause of our random seg-fault
919 	 *     issues?  procfs accesses user stacks.
920 	 */
921 	vm_page_flag_set(fs.m, PG_REFERENCED);
922 #if 0
923 	pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot, fs.wired, NULL);
924 	mycpu->gd_cnt.v_vm_faults++;
925 	if (curthread->td_lwp)
926 		++curthread->td_lwp->lwp_ru.ru_minflt;
927 #endif
928 
929 	/*
930 	 * On success vm_fault_object() does not unlock or deallocate, and fs.m
931 	 * will contain a busied page.  So we must unlock here after having
932 	 * messed with the pmap.
933 	 */
934 	unlock_things(&fs);
935 
936 	/*
937 	 * Return a held page.  We are not doing any pmap manipulation so do
938 	 * not set PG_MAPPED.  However, adjust the page flags according to
939 	 * the fault type because the caller may not use a managed pmapping
940 	 * (so we don't want to lose the fact that the page will be dirtied
941 	 * if a write fault was specified).
942 	 */
943 	vm_page_hold(fs.m);
944 	vm_page_activate(fs.m);
945 	if (fault_type & VM_PROT_WRITE)
946 		vm_page_dirty(fs.m);
947 
948 	if (curthread->td_lwp) {
949 		if (fs.hardfault) {
950 			curthread->td_lwp->lwp_ru.ru_majflt++;
951 		} else {
952 			curthread->td_lwp->lwp_ru.ru_minflt++;
953 		}
954 	}
955 
956 	/*
957 	 * Unlock everything, and return the held page.
958 	 */
959 	vm_page_wakeup(fs.m);
960 	/*vm_object_deallocate(fs.first_object);*/
961 	/*fs.first_object = NULL; */
962 	*errorp = 0;
963 
964 done:
965 	if (fs.first_object)
966 		vm_object_drop(fs.first_object);
967 done2:
968 	lwkt_reltoken(&map->token);
969 	return(fs.m);
970 }
971 
972 /*
973  * Fault in the specified (object,offset), dirty the returned page as
974  * needed.  If the requested fault_type cannot be done NULL and an
975  * error is returned.
976  *
977  * A held (but not busied) page is returned.
978  *
979  * The passed in object must be held as specified by the shared
980  * argument.
981  */
982 vm_page_t
983 vm_fault_object_page(vm_object_t object, vm_ooffset_t offset,
984 		     vm_prot_t fault_type, int fault_flags,
985 		     int *sharedp, int *errorp)
986 {
987 	int result;
988 	vm_pindex_t first_pindex;
989 	struct faultstate fs;
990 	struct vm_map_entry entry;
991 
992 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
993 	bzero(&entry, sizeof(entry));
994 	entry.object.vm_object = object;
995 	entry.maptype = VM_MAPTYPE_NORMAL;
996 	entry.protection = entry.max_protection = fault_type;
997 
998 	fs.hardfault = 0;
999 	fs.fault_flags = fault_flags;
1000 	fs.map = NULL;
1001 	fs.shared = vm_shared_fault;
1002 	fs.first_shared = *sharedp;
1003 	fs.vp = NULL;
1004 	KKASSERT((fault_flags & VM_FAULT_WIRE_MASK) == 0);
1005 
1006 	/*
1007 	 * Might require swap block adjustments
1008 	 */
1009 	if (fs.first_shared && (fault_flags & (VM_FAULT_UNSWAP | VM_FAULT_DIRTY))) {
1010 		fs.first_shared = 0;
1011 		vm_object_upgrade(object);
1012 	}
1013 
1014 	/*
1015 	 * Retry loop as needed (typically for shared->exclusive transitions)
1016 	 */
1017 RetryFault:
1018 	*sharedp = fs.first_shared;
1019 	first_pindex = OFF_TO_IDX(offset);
1020 	fs.first_object = object;
1021 	fs.entry = &entry;
1022 	fs.first_prot = fault_type;
1023 	fs.wired = 0;
1024 	/*fs.map_generation = 0; unused */
1025 
1026 	/*
1027 	 * Make a reference to this object to prevent its disposal while we
1028 	 * are messing with it.  Once we have the reference, the map is free
1029 	 * to be diddled.  Since objects reference their shadows (and copies),
1030 	 * they will stay around as well.
1031 	 *
1032 	 * The reference should also prevent an unexpected collapse of the
1033 	 * parent that might move pages from the current object into the
1034 	 * parent unexpectedly, resulting in corruption.
1035 	 *
1036 	 * Bump the paging-in-progress count to prevent size changes (e.g.
1037 	 * truncation operations) during I/O.  This must be done after
1038 	 * obtaining the vnode lock in order to avoid possible deadlocks.
1039 	 */
1040 	if (fs.vp == NULL)
1041 		fs.vp = vnode_pager_lock(fs.first_object);
1042 
1043 	fs.lookup_still_valid = TRUE;
1044 	fs.first_m = NULL;
1045 	fs.object = fs.first_object;	/* so unlock_and_deallocate works */
1046 
1047 #if 0
1048 	/* XXX future - ability to operate on VM object using vpagetable */
1049 	if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
1050 		result = vm_fault_vpagetable(&fs, &first_pindex,
1051 					     fs.entry->aux.master_pde,
1052 					     fault_type, 0);
1053 		if (result == KERN_TRY_AGAIN) {
1054 			if (fs.first_shared == 0 && *sharedp)
1055 				vm_object_upgrade(object);
1056 			goto RetryFault;
1057 		}
1058 		if (result != KERN_SUCCESS) {
1059 			*errorp = result;
1060 			return (NULL);
1061 		}
1062 	}
1063 #endif
1064 
1065 	/*
1066 	 * Now we have the actual (object, pindex), fault in the page.  If
1067 	 * vm_fault_object() fails it will unlock and deallocate the FS
1068 	 * data.   If it succeeds everything remains locked and fs->object
1069 	 * will have an additinal PIP count if it is not equal to
1070 	 * fs->first_object
1071 	 *
1072 	 * On KERN_TRY_AGAIN vm_fault_object() leaves fs.first_object intact.
1073 	 * We may have to upgrade its lock to handle the requested fault.
1074 	 */
1075 	result = vm_fault_object(&fs, first_pindex, fault_type, 0);
1076 
1077 	if (result == KERN_TRY_AGAIN) {
1078 		if (fs.first_shared == 0 && *sharedp)
1079 			vm_object_upgrade(object);
1080 		goto RetryFault;
1081 	}
1082 	if (result != KERN_SUCCESS) {
1083 		*errorp = result;
1084 		return(NULL);
1085 	}
1086 
1087 	if ((fault_type & VM_PROT_WRITE) && (fs.prot & VM_PROT_WRITE) == 0) {
1088 		*errorp = KERN_PROTECTION_FAILURE;
1089 		unlock_and_deallocate(&fs);
1090 		return(NULL);
1091 	}
1092 
1093 	/*
1094 	 * On success vm_fault_object() does not unlock or deallocate, so we
1095 	 * do it here.  Note that the returned fs.m will be busied.
1096 	 */
1097 	unlock_things(&fs);
1098 
1099 	/*
1100 	 * Return a held page.  We are not doing any pmap manipulation so do
1101 	 * not set PG_MAPPED.  However, adjust the page flags according to
1102 	 * the fault type because the caller may not use a managed pmapping
1103 	 * (so we don't want to lose the fact that the page will be dirtied
1104 	 * if a write fault was specified).
1105 	 */
1106 	vm_page_hold(fs.m);
1107 	vm_page_activate(fs.m);
1108 	if ((fault_type & VM_PROT_WRITE) || (fault_flags & VM_FAULT_DIRTY))
1109 		vm_page_dirty(fs.m);
1110 	if (fault_flags & VM_FAULT_UNSWAP)
1111 		swap_pager_unswapped(fs.m);
1112 
1113 	/*
1114 	 * Indicate that the page was accessed.
1115 	 */
1116 	vm_page_flag_set(fs.m, PG_REFERENCED);
1117 
1118 	if (curthread->td_lwp) {
1119 		if (fs.hardfault) {
1120 			curthread->td_lwp->lwp_ru.ru_majflt++;
1121 		} else {
1122 			curthread->td_lwp->lwp_ru.ru_minflt++;
1123 		}
1124 	}
1125 
1126 	/*
1127 	 * Unlock everything, and return the held page.
1128 	 */
1129 	vm_page_wakeup(fs.m);
1130 	/*vm_object_deallocate(fs.first_object);*/
1131 	/*fs.first_object = NULL; */
1132 
1133 	*errorp = 0;
1134 	return(fs.m);
1135 }
1136 
1137 /*
1138  * Translate the virtual page number (first_pindex) that is relative
1139  * to the address space into a logical page number that is relative to the
1140  * backing object.  Use the virtual page table pointed to by (vpte).
1141  *
1142  * This implements an N-level page table.  Any level can terminate the
1143  * scan by setting VPTE_PS.   A linear mapping is accomplished by setting
1144  * VPTE_PS in the master page directory entry set via mcontrol(MADV_SETMAP).
1145  */
1146 static
1147 int
1148 vm_fault_vpagetable(struct faultstate *fs, vm_pindex_t *pindex,
1149 		    vpte_t vpte, int fault_type, int allow_nofault)
1150 {
1151 	struct lwbuf *lwb;
1152 	struct lwbuf lwb_cache;
1153 	int vshift = VPTE_FRAME_END - PAGE_SHIFT; /* index bits remaining */
1154 	int result = KERN_SUCCESS;
1155 	vpte_t *ptep;
1156 
1157 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(fs->first_object));
1158 	for (;;) {
1159 		/*
1160 		 * We cannot proceed if the vpte is not valid, not readable
1161 		 * for a read fault, or not writable for a write fault.
1162 		 */
1163 		if ((vpte & VPTE_V) == 0) {
1164 			unlock_and_deallocate(fs);
1165 			return (KERN_FAILURE);
1166 		}
1167 		if ((fault_type & VM_PROT_WRITE) && (vpte & VPTE_RW) == 0) {
1168 			unlock_and_deallocate(fs);
1169 			return (KERN_FAILURE);
1170 		}
1171 		if ((vpte & VPTE_PS) || vshift == 0)
1172 			break;
1173 		KKASSERT(vshift >= VPTE_PAGE_BITS);
1174 
1175 		/*
1176 		 * Get the page table page.  Nominally we only read the page
1177 		 * table, but since we are actively setting VPTE_M and VPTE_A,
1178 		 * tell vm_fault_object() that we are writing it.
1179 		 *
1180 		 * There is currently no real need to optimize this.
1181 		 */
1182 		result = vm_fault_object(fs, (vpte & VPTE_FRAME) >> PAGE_SHIFT,
1183 					 VM_PROT_READ|VM_PROT_WRITE,
1184 					 allow_nofault);
1185 		if (result != KERN_SUCCESS)
1186 			return (result);
1187 
1188 		/*
1189 		 * Process the returned fs.m and look up the page table
1190 		 * entry in the page table page.
1191 		 */
1192 		vshift -= VPTE_PAGE_BITS;
1193 		lwb = lwbuf_alloc(fs->m, &lwb_cache);
1194 		ptep = ((vpte_t *)lwbuf_kva(lwb) +
1195 		        ((*pindex >> vshift) & VPTE_PAGE_MASK));
1196 		vpte = *ptep;
1197 
1198 		/*
1199 		 * Page table write-back.  If the vpte is valid for the
1200 		 * requested operation, do a write-back to the page table.
1201 		 *
1202 		 * XXX VPTE_M is not set properly for page directory pages.
1203 		 * It doesn't get set in the page directory if the page table
1204 		 * is modified during a read access.
1205 		 */
1206 		vm_page_activate(fs->m);
1207 		if ((fault_type & VM_PROT_WRITE) && (vpte & VPTE_V) &&
1208 		    (vpte & VPTE_RW)) {
1209 			if ((vpte & (VPTE_M|VPTE_A)) != (VPTE_M|VPTE_A)) {
1210 				atomic_set_long(ptep, VPTE_M | VPTE_A);
1211 				vm_page_dirty(fs->m);
1212 			}
1213 		}
1214 		if ((fault_type & VM_PROT_READ) && (vpte & VPTE_V)) {
1215 			if ((vpte & VPTE_A) == 0) {
1216 				atomic_set_long(ptep, VPTE_A);
1217 				vm_page_dirty(fs->m);
1218 			}
1219 		}
1220 		lwbuf_free(lwb);
1221 		vm_page_flag_set(fs->m, PG_REFERENCED);
1222 		vm_page_wakeup(fs->m);
1223 		fs->m = NULL;
1224 		cleanup_successful_fault(fs);
1225 	}
1226 	/*
1227 	 * Combine remaining address bits with the vpte.
1228 	 */
1229 	/* JG how many bits from each? */
1230 	*pindex = ((vpte & VPTE_FRAME) >> PAGE_SHIFT) +
1231 		  (*pindex & ((1L << vshift) - 1));
1232 	return (KERN_SUCCESS);
1233 }
1234 
1235 
1236 /*
1237  * This is the core of the vm_fault code.
1238  *
1239  * Do all operations required to fault-in (fs.first_object, pindex).  Run
1240  * through the shadow chain as necessary and do required COW or virtual
1241  * copy operations.  The caller has already fully resolved the vm_map_entry
1242  * and, if appropriate, has created a copy-on-write layer.  All we need to
1243  * do is iterate the object chain.
1244  *
1245  * On failure (fs) is unlocked and deallocated and the caller may return or
1246  * retry depending on the failure code.  On success (fs) is NOT unlocked or
1247  * deallocated, fs.m will contained a resolved, busied page, and fs.object
1248  * will have an additional PIP count if it is not equal to fs.first_object.
1249  *
1250  * If locks based on fs->first_shared or fs->shared are insufficient,
1251  * clear the appropriate field(s) and return RETRY.  COWs require that
1252  * first_shared be 0, while page allocations (or frees) require that
1253  * shared be 0.  Renames require that both be 0.
1254  *
1255  * fs->first_object must be held on call.
1256  */
1257 static
1258 int
1259 vm_fault_object(struct faultstate *fs, vm_pindex_t first_pindex,
1260 		vm_prot_t fault_type, int allow_nofault)
1261 {
1262 	vm_object_t next_object;
1263 	vm_pindex_t pindex;
1264 	int error;
1265 
1266 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(fs->first_object));
1267 	fs->prot = fs->first_prot;
1268 	fs->object = fs->first_object;
1269 	pindex = first_pindex;
1270 
1271 	vm_object_chain_acquire(fs->first_object, fs->shared);
1272 	vm_object_pip_add(fs->first_object, 1);
1273 
1274 	/*
1275 	 * If a read fault occurs we try to make the page writable if
1276 	 * possible.  There are three cases where we cannot make the
1277 	 * page mapping writable:
1278 	 *
1279 	 * (1) The mapping is read-only or the VM object is read-only,
1280 	 *     fs->prot above will simply not have VM_PROT_WRITE set.
1281 	 *
1282 	 * (2) If the mapping is a virtual page table we need to be able
1283 	 *     to detect writes so we can set VPTE_M in the virtual page
1284 	 *     table.
1285 	 *
1286 	 * (3) If the VM page is read-only or copy-on-write, upgrading would
1287 	 *     just result in an unnecessary COW fault.
1288 	 *
1289 	 * VM_PROT_VPAGED is set if faulting via a virtual page table and
1290 	 * causes adjustments to the 'M'odify bit to also turn off write
1291 	 * access to force a re-fault.
1292 	 */
1293 	if (fs->entry->maptype == VM_MAPTYPE_VPAGETABLE) {
1294 		if ((fault_type & VM_PROT_WRITE) == 0)
1295 			fs->prot &= ~VM_PROT_WRITE;
1296 	}
1297 
1298 	if (curthread->td_lwp && curthread->td_lwp->lwp_vmspace &&
1299 	    pmap_emulate_ad_bits(&curthread->td_lwp->lwp_vmspace->vm_pmap)) {
1300 		if ((fault_type & VM_PROT_WRITE) == 0)
1301 			fs->prot &= ~VM_PROT_WRITE;
1302 	}
1303 
1304 	/* vm_object_hold(fs->object); implied b/c object == first_object */
1305 
1306 	for (;;) {
1307 		/*
1308 		 * The entire backing chain from first_object to object
1309 		 * inclusive is chainlocked.
1310 		 *
1311 		 * If the object is dead, we stop here
1312 		 */
1313 		if (fs->object->flags & OBJ_DEAD) {
1314 			vm_object_pip_wakeup(fs->first_object);
1315 			vm_object_chain_release_all(fs->first_object,
1316 						    fs->object);
1317 			if (fs->object != fs->first_object)
1318 				vm_object_drop(fs->object);
1319 			unlock_and_deallocate(fs);
1320 			return (KERN_PROTECTION_FAILURE);
1321 		}
1322 
1323 		/*
1324 		 * See if the page is resident.  Wait/Retry if the page is
1325 		 * busy (lots of stuff may have changed so we can't continue
1326 		 * in that case).
1327 		 *
1328 		 * We can theoretically allow the soft-busy case on a read
1329 		 * fault if the page is marked valid, but since such
1330 		 * pages are typically already pmap'd, putting that
1331 		 * special case in might be more effort then it is
1332 		 * worth.  We cannot under any circumstances mess
1333 		 * around with a vm_page_t->busy page except, perhaps,
1334 		 * to pmap it.
1335 		 */
1336 		fs->m = vm_page_lookup_busy_try(fs->object, pindex,
1337 						TRUE, &error);
1338 		if (error) {
1339 			vm_object_pip_wakeup(fs->first_object);
1340 			vm_object_chain_release_all(fs->first_object,
1341 						    fs->object);
1342 			if (fs->object != fs->first_object)
1343 				vm_object_drop(fs->object);
1344 			unlock_things(fs);
1345 			vm_page_sleep_busy(fs->m, TRUE, "vmpfw");
1346 			mycpu->gd_cnt.v_intrans++;
1347 			/*vm_object_deallocate(fs->first_object);*/
1348 			/*fs->first_object = NULL;*/
1349 			fs->m = NULL;
1350 			return (KERN_TRY_AGAIN);
1351 		}
1352 		if (fs->m) {
1353 			/*
1354 			 * The page is busied for us.
1355 			 *
1356 			 * If reactivating a page from PQ_CACHE we may have
1357 			 * to rate-limit.
1358 			 */
1359 			int queue = fs->m->queue;
1360 			vm_page_unqueue_nowakeup(fs->m);
1361 
1362 			if ((queue - fs->m->pc) == PQ_CACHE &&
1363 			    vm_page_count_severe()) {
1364 				vm_page_activate(fs->m);
1365 				vm_page_wakeup(fs->m);
1366 				fs->m = NULL;
1367 				vm_object_pip_wakeup(fs->first_object);
1368 				vm_object_chain_release_all(fs->first_object,
1369 							    fs->object);
1370 				if (fs->object != fs->first_object)
1371 					vm_object_drop(fs->object);
1372 				unlock_and_deallocate(fs);
1373 				if (allow_nofault == 0 ||
1374 				    (curthread->td_flags & TDF_NOFAULT) == 0) {
1375 					vm_wait_pfault();
1376 				}
1377 				return (KERN_TRY_AGAIN);
1378 			}
1379 
1380 			/*
1381 			 * If it still isn't completely valid (readable),
1382 			 * or if a read-ahead-mark is set on the VM page,
1383 			 * jump to readrest, else we found the page and
1384 			 * can return.
1385 			 *
1386 			 * We can release the spl once we have marked the
1387 			 * page busy.
1388 			 */
1389 			if (fs->m->object != &kernel_object) {
1390 				if ((fs->m->valid & VM_PAGE_BITS_ALL) !=
1391 				    VM_PAGE_BITS_ALL) {
1392 					goto readrest;
1393 				}
1394 				if (fs->m->flags & PG_RAM) {
1395 					if (debug_cluster)
1396 						kprintf("R");
1397 					vm_page_flag_clear(fs->m, PG_RAM);
1398 					goto readrest;
1399 				}
1400 			}
1401 			break; /* break to PAGE HAS BEEN FOUND */
1402 		}
1403 
1404 		/*
1405 		 * Page is not resident, If this is the search termination
1406 		 * or the pager might contain the page, allocate a new page.
1407 		 */
1408 		if (TRYPAGER(fs) || fs->object == fs->first_object) {
1409 			/*
1410 			 * Allocating, must be exclusive.
1411 			 */
1412 			if (fs->object == fs->first_object &&
1413 			    fs->first_shared) {
1414 				fs->first_shared = 0;
1415 				vm_object_pip_wakeup(fs->first_object);
1416 				vm_object_chain_release_all(fs->first_object,
1417 							    fs->object);
1418 				if (fs->object != fs->first_object)
1419 					vm_object_drop(fs->object);
1420 				unlock_and_deallocate(fs);
1421 				return (KERN_TRY_AGAIN);
1422 			}
1423 			if (fs->object != fs->first_object &&
1424 			    fs->shared) {
1425 				fs->first_shared = 0;
1426 				fs->shared = 0;
1427 				vm_object_pip_wakeup(fs->first_object);
1428 				vm_object_chain_release_all(fs->first_object,
1429 							    fs->object);
1430 				if (fs->object != fs->first_object)
1431 					vm_object_drop(fs->object);
1432 				unlock_and_deallocate(fs);
1433 				return (KERN_TRY_AGAIN);
1434 			}
1435 
1436 			/*
1437 			 * If the page is beyond the object size we fail
1438 			 */
1439 			if (pindex >= fs->object->size) {
1440 				vm_object_pip_wakeup(fs->first_object);
1441 				vm_object_chain_release_all(fs->first_object,
1442 							    fs->object);
1443 				if (fs->object != fs->first_object)
1444 					vm_object_drop(fs->object);
1445 				unlock_and_deallocate(fs);
1446 				return (KERN_PROTECTION_FAILURE);
1447 			}
1448 
1449 			/*
1450 			 * Allocate a new page for this object/offset pair.
1451 			 *
1452 			 * It is possible for the allocation to race, so
1453 			 * handle the case.
1454 			 */
1455 			fs->m = NULL;
1456 			if (!vm_page_count_severe()) {
1457 				fs->m = vm_page_alloc(fs->object, pindex,
1458 				    ((fs->vp || fs->object->backing_object) ?
1459 					VM_ALLOC_NULL_OK | VM_ALLOC_NORMAL :
1460 					VM_ALLOC_NULL_OK | VM_ALLOC_NORMAL |
1461 					VM_ALLOC_USE_GD | VM_ALLOC_ZERO));
1462 			}
1463 			if (fs->m == NULL) {
1464 				vm_object_pip_wakeup(fs->first_object);
1465 				vm_object_chain_release_all(fs->first_object,
1466 							    fs->object);
1467 				if (fs->object != fs->first_object)
1468 					vm_object_drop(fs->object);
1469 				unlock_and_deallocate(fs);
1470 				if (allow_nofault == 0 ||
1471 				    (curthread->td_flags & TDF_NOFAULT) == 0) {
1472 					vm_wait_pfault();
1473 				}
1474 				return (KERN_TRY_AGAIN);
1475 			}
1476 
1477 			/*
1478 			 * Fall through to readrest.  We have a new page which
1479 			 * will have to be paged (since m->valid will be 0).
1480 			 */
1481 		}
1482 
1483 readrest:
1484 		/*
1485 		 * We have found an invalid or partially valid page, a
1486 		 * page with a read-ahead mark which might be partially or
1487 		 * fully valid (and maybe dirty too), or we have allocated
1488 		 * a new page.
1489 		 *
1490 		 * Attempt to fault-in the page if there is a chance that the
1491 		 * pager has it, and potentially fault in additional pages
1492 		 * at the same time.
1493 		 *
1494 		 * If TRYPAGER is true then fs.m will be non-NULL and busied
1495 		 * for us.
1496 		 */
1497 		if (TRYPAGER(fs)) {
1498 			int rv;
1499 			int seqaccess;
1500 			u_char behavior = vm_map_entry_behavior(fs->entry);
1501 
1502 			if (behavior == MAP_ENTRY_BEHAV_RANDOM)
1503 				seqaccess = 0;
1504 			else
1505 				seqaccess = -1;
1506 
1507 			/*
1508 			 * Doing I/O may synchronously insert additional
1509 			 * pages so we can't be shared at this point either.
1510 			 *
1511 			 * NOTE: We can't free fs->m here in the allocated
1512 			 *	 case (fs->object != fs->first_object) as
1513 			 *	 this would require an exclusively locked
1514 			 *	 VM object.
1515 			 */
1516 			if (fs->object == fs->first_object &&
1517 			    fs->first_shared) {
1518 				vm_page_deactivate(fs->m);
1519 				vm_page_wakeup(fs->m);
1520 				fs->m = NULL;
1521 				fs->first_shared = 0;
1522 				vm_object_pip_wakeup(fs->first_object);
1523 				vm_object_chain_release_all(fs->first_object,
1524 							    fs->object);
1525 				if (fs->object != fs->first_object)
1526 					vm_object_drop(fs->object);
1527 				unlock_and_deallocate(fs);
1528 				return (KERN_TRY_AGAIN);
1529 			}
1530 			if (fs->object != fs->first_object &&
1531 			    fs->shared) {
1532 				vm_page_deactivate(fs->m);
1533 				vm_page_wakeup(fs->m);
1534 				fs->m = NULL;
1535 				fs->first_shared = 0;
1536 				fs->shared = 0;
1537 				vm_object_pip_wakeup(fs->first_object);
1538 				vm_object_chain_release_all(fs->first_object,
1539 							    fs->object);
1540 				if (fs->object != fs->first_object)
1541 					vm_object_drop(fs->object);
1542 				unlock_and_deallocate(fs);
1543 				return (KERN_TRY_AGAIN);
1544 			}
1545 
1546 			/*
1547 			 * Avoid deadlocking against the map when doing I/O.
1548 			 * fs.object and the page is PG_BUSY'd.
1549 			 *
1550 			 * NOTE: Once unlocked, fs->entry can become stale
1551 			 *	 so this will NULL it out.
1552 			 *
1553 			 * NOTE: fs->entry is invalid until we relock the
1554 			 *	 map and verify that the timestamp has not
1555 			 *	 changed.
1556 			 */
1557 			unlock_map(fs);
1558 
1559 			/*
1560 			 * Acquire the page data.  We still hold a ref on
1561 			 * fs.object and the page has been PG_BUSY's.
1562 			 *
1563 			 * The pager may replace the page (for example, in
1564 			 * order to enter a fictitious page into the
1565 			 * object).  If it does so it is responsible for
1566 			 * cleaning up the passed page and properly setting
1567 			 * the new page PG_BUSY.
1568 			 *
1569 			 * If we got here through a PG_RAM read-ahead
1570 			 * mark the page may be partially dirty and thus
1571 			 * not freeable.  Don't bother checking to see
1572 			 * if the pager has the page because we can't free
1573 			 * it anyway.  We have to depend on the get_page
1574 			 * operation filling in any gaps whether there is
1575 			 * backing store or not.
1576 			 */
1577 			rv = vm_pager_get_page(fs->object, &fs->m, seqaccess);
1578 
1579 			if (rv == VM_PAGER_OK) {
1580 				/*
1581 				 * Relookup in case pager changed page. Pager
1582 				 * is responsible for disposition of old page
1583 				 * if moved.
1584 				 *
1585 				 * XXX other code segments do relookups too.
1586 				 * It's a bad abstraction that needs to be
1587 				 * fixed/removed.
1588 				 */
1589 				fs->m = vm_page_lookup(fs->object, pindex);
1590 				if (fs->m == NULL) {
1591 					vm_object_pip_wakeup(fs->first_object);
1592 					vm_object_chain_release_all(
1593 						fs->first_object, fs->object);
1594 					if (fs->object != fs->first_object)
1595 						vm_object_drop(fs->object);
1596 					unlock_and_deallocate(fs);
1597 					return (KERN_TRY_AGAIN);
1598 				}
1599 				++fs->hardfault;
1600 				break; /* break to PAGE HAS BEEN FOUND */
1601 			}
1602 
1603 			/*
1604 			 * Remove the bogus page (which does not exist at this
1605 			 * object/offset); before doing so, we must get back
1606 			 * our object lock to preserve our invariant.
1607 			 *
1608 			 * Also wake up any other process that may want to bring
1609 			 * in this page.
1610 			 *
1611 			 * If this is the top-level object, we must leave the
1612 			 * busy page to prevent another process from rushing
1613 			 * past us, and inserting the page in that object at
1614 			 * the same time that we are.
1615 			 */
1616 			if (rv == VM_PAGER_ERROR) {
1617 				if (curproc) {
1618 					kprintf("vm_fault: pager read error, "
1619 						"pid %d (%s)\n",
1620 						curproc->p_pid,
1621 						curproc->p_comm);
1622 				} else {
1623 					kprintf("vm_fault: pager read error, "
1624 						"thread %p (%s)\n",
1625 						curthread,
1626 						curproc->p_comm);
1627 				}
1628 			}
1629 
1630 			/*
1631 			 * Data outside the range of the pager or an I/O error
1632 			 *
1633 			 * The page may have been wired during the pagein,
1634 			 * e.g. by the buffer cache, and cannot simply be
1635 			 * freed.  Call vnode_pager_freepage() to deal with it.
1636 			 *
1637 			 * Also note that we cannot free the page if we are
1638 			 * holding the related object shared. XXX not sure
1639 			 * what to do in that case.
1640 			 */
1641 			if (fs->object != fs->first_object) {
1642 				vnode_pager_freepage(fs->m);
1643 				fs->m = NULL;
1644 				/*
1645 				 * XXX - we cannot just fall out at this
1646 				 * point, m has been freed and is invalid!
1647 				 */
1648 			}
1649 			/*
1650 			 * XXX - the check for kernel_map is a kludge to work
1651 			 * around having the machine panic on a kernel space
1652 			 * fault w/ I/O error.
1653 			 */
1654 			if (((fs->map != &kernel_map) &&
1655 			    (rv == VM_PAGER_ERROR)) || (rv == VM_PAGER_BAD)) {
1656 				if (fs->m) {
1657 					if (fs->first_shared) {
1658 						vm_page_deactivate(fs->m);
1659 						vm_page_wakeup(fs->m);
1660 					} else {
1661 						vnode_pager_freepage(fs->m);
1662 					}
1663 					fs->m = NULL;
1664 				}
1665 				vm_object_pip_wakeup(fs->first_object);
1666 				vm_object_chain_release_all(fs->first_object,
1667 							    fs->object);
1668 				if (fs->object != fs->first_object)
1669 					vm_object_drop(fs->object);
1670 				unlock_and_deallocate(fs);
1671 				if (rv == VM_PAGER_ERROR)
1672 					return (KERN_FAILURE);
1673 				else
1674 					return (KERN_PROTECTION_FAILURE);
1675 				/* NOT REACHED */
1676 			}
1677 		}
1678 
1679 		/*
1680 		 * We get here if the object has a default pager (or unwiring)
1681 		 * or the pager doesn't have the page.
1682 		 *
1683 		 * fs->first_m will be used for the COW unless we find a
1684 		 * deeper page to be mapped read-only, in which case the
1685 		 * unlock*(fs) will free first_m.
1686 		 */
1687 		if (fs->object == fs->first_object)
1688 			fs->first_m = fs->m;
1689 
1690 		/*
1691 		 * Move on to the next object.  The chain lock should prevent
1692 		 * the backing_object from getting ripped out from under us.
1693 		 *
1694 		 * The object lock for the next object is governed by
1695 		 * fs->shared.
1696 		 */
1697 		if ((next_object = fs->object->backing_object) != NULL) {
1698 			if (fs->shared)
1699 				vm_object_hold_shared(next_object);
1700 			else
1701 				vm_object_hold(next_object);
1702 			vm_object_chain_acquire(next_object, fs->shared);
1703 			KKASSERT(next_object == fs->object->backing_object);
1704 			pindex += OFF_TO_IDX(fs->object->backing_object_offset);
1705 		}
1706 
1707 		if (next_object == NULL) {
1708 			/*
1709 			 * If there's no object left, fill the page in the top
1710 			 * object with zeros.
1711 			 */
1712 			if (fs->object != fs->first_object) {
1713 #if 0
1714 				if (fs->first_object->backing_object !=
1715 				    fs->object) {
1716 					vm_object_hold(fs->first_object->backing_object);
1717 				}
1718 #endif
1719 				vm_object_chain_release_all(
1720 					fs->first_object->backing_object,
1721 					fs->object);
1722 #if 0
1723 				if (fs->first_object->backing_object !=
1724 				    fs->object) {
1725 					vm_object_drop(fs->first_object->backing_object);
1726 				}
1727 #endif
1728 				vm_object_pip_wakeup(fs->object);
1729 				vm_object_drop(fs->object);
1730 				fs->object = fs->first_object;
1731 				pindex = first_pindex;
1732 				fs->m = fs->first_m;
1733 			}
1734 			fs->first_m = NULL;
1735 
1736 			/*
1737 			 * Zero the page if necessary and mark it valid.
1738 			 */
1739 			if ((fs->m->flags & PG_ZERO) == 0) {
1740 				vm_page_zero_fill(fs->m);
1741 			} else {
1742 #ifdef PMAP_DEBUG
1743 				pmap_page_assertzero(VM_PAGE_TO_PHYS(fs->m));
1744 #endif
1745 				vm_page_flag_clear(fs->m, PG_ZERO);
1746 				mycpu->gd_cnt.v_ozfod++;
1747 			}
1748 			mycpu->gd_cnt.v_zfod++;
1749 			fs->m->valid = VM_PAGE_BITS_ALL;
1750 			break;	/* break to PAGE HAS BEEN FOUND */
1751 		}
1752 		if (fs->object != fs->first_object) {
1753 			vm_object_pip_wakeup(fs->object);
1754 			vm_object_lock_swap();
1755 			vm_object_drop(fs->object);
1756 		}
1757 		KASSERT(fs->object != next_object,
1758 			("object loop %p", next_object));
1759 		fs->object = next_object;
1760 		vm_object_pip_add(fs->object, 1);
1761 	}
1762 
1763 	/*
1764 	 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
1765 	 * is held.]
1766 	 *
1767 	 * object still held.
1768 	 *
1769 	 * local shared variable may be different from fs->shared.
1770 	 *
1771 	 * If the page is being written, but isn't already owned by the
1772 	 * top-level object, we have to copy it into a new page owned by the
1773 	 * top-level object.
1774 	 */
1775 	KASSERT((fs->m->flags & PG_BUSY) != 0,
1776 		("vm_fault: not busy after main loop"));
1777 
1778 	if (fs->object != fs->first_object) {
1779 		/*
1780 		 * We only really need to copy if we want to write it.
1781 		 */
1782 		if (fault_type & VM_PROT_WRITE) {
1783 			/*
1784 			 * This allows pages to be virtually copied from a
1785 			 * backing_object into the first_object, where the
1786 			 * backing object has no other refs to it, and cannot
1787 			 * gain any more refs.  Instead of a bcopy, we just
1788 			 * move the page from the backing object to the
1789 			 * first object.  Note that we must mark the page
1790 			 * dirty in the first object so that it will go out
1791 			 * to swap when needed.
1792 			 */
1793 			if (
1794 				/*
1795 				 * Must be holding exclusive locks
1796 				 */
1797 				fs->first_shared == 0 &&
1798 				fs->shared == 0 &&
1799 				/*
1800 				 * Map, if present, has not changed
1801 				 */
1802 				(fs->map == NULL ||
1803 				fs->map_generation == fs->map->timestamp) &&
1804 				/*
1805 				 * Only one shadow object
1806 				 */
1807 				(fs->object->shadow_count == 1) &&
1808 				/*
1809 				 * No COW refs, except us
1810 				 */
1811 				(fs->object->ref_count == 1) &&
1812 				/*
1813 				 * No one else can look this object up
1814 				 */
1815 				(fs->object->handle == NULL) &&
1816 				/*
1817 				 * No other ways to look the object up
1818 				 */
1819 				((fs->object->type == OBJT_DEFAULT) ||
1820 				 (fs->object->type == OBJT_SWAP)) &&
1821 				/*
1822 				 * We don't chase down the shadow chain
1823 				 */
1824 				(fs->object == fs->first_object->backing_object) &&
1825 
1826 				/*
1827 				 * grab the lock if we need to
1828 				 */
1829 				(fs->lookup_still_valid ||
1830 				 fs->map == NULL ||
1831 				 lockmgr(&fs->map->lock, LK_EXCLUSIVE|LK_NOWAIT) == 0)
1832 			    ) {
1833 				/*
1834 				 * (first_m) and (m) are both busied.  We have
1835 				 * move (m) into (first_m)'s object/pindex
1836 				 * in an atomic fashion, then free (first_m).
1837 				 *
1838 				 * first_object is held so second remove
1839 				 * followed by the rename should wind
1840 				 * up being atomic.  vm_page_free() might
1841 				 * block so we don't do it until after the
1842 				 * rename.
1843 				 */
1844 				fs->lookup_still_valid = 1;
1845 				vm_page_protect(fs->first_m, VM_PROT_NONE);
1846 				vm_page_remove(fs->first_m);
1847 				vm_page_rename(fs->m, fs->first_object,
1848 					       first_pindex);
1849 				vm_page_free(fs->first_m);
1850 				fs->first_m = fs->m;
1851 				fs->m = NULL;
1852 				mycpu->gd_cnt.v_cow_optim++;
1853 			} else {
1854 				/*
1855 				 * Oh, well, lets copy it.
1856 				 *
1857 				 * Why are we unmapping the original page
1858 				 * here?  Well, in short, not all accessors
1859 				 * of user memory go through the pmap.  The
1860 				 * procfs code doesn't have access user memory
1861 				 * via a local pmap, so vm_fault_page*()
1862 				 * can't call pmap_enter().  And the umtx*()
1863 				 * code may modify the COW'd page via a DMAP
1864 				 * or kernel mapping and not via the pmap,
1865 				 * leaving the original page still mapped
1866 				 * read-only into the pmap.
1867 				 *
1868 				 * So we have to remove the page from at
1869 				 * least the current pmap if it is in it.
1870 				 * Just remove it from all pmaps.
1871 				 */
1872 				KKASSERT(fs->first_shared == 0);
1873 				vm_page_copy(fs->m, fs->first_m);
1874 				vm_page_protect(fs->m, VM_PROT_NONE);
1875 				vm_page_event(fs->m, VMEVENT_COW);
1876 			}
1877 
1878 			/*
1879 			 * We no longer need the old page or object.
1880 			 */
1881 			if (fs->m)
1882 				release_page(fs);
1883 
1884 			/*
1885 			 * We intend to revert to first_object, undo the
1886 			 * chain lock through to that.
1887 			 */
1888 #if 0
1889 			if (fs->first_object->backing_object != fs->object)
1890 				vm_object_hold(fs->first_object->backing_object);
1891 #endif
1892 			vm_object_chain_release_all(
1893 					fs->first_object->backing_object,
1894 					fs->object);
1895 #if 0
1896 			if (fs->first_object->backing_object != fs->object)
1897 				vm_object_drop(fs->first_object->backing_object);
1898 #endif
1899 
1900 			/*
1901 			 * fs->object != fs->first_object due to above
1902 			 * conditional
1903 			 */
1904 			vm_object_pip_wakeup(fs->object);
1905 			vm_object_drop(fs->object);
1906 
1907 			/*
1908 			 * Only use the new page below...
1909 			 */
1910 			mycpu->gd_cnt.v_cow_faults++;
1911 			fs->m = fs->first_m;
1912 			fs->object = fs->first_object;
1913 			pindex = first_pindex;
1914 		} else {
1915 			/*
1916 			 * If it wasn't a write fault avoid having to copy
1917 			 * the page by mapping it read-only.
1918 			 */
1919 			fs->prot &= ~VM_PROT_WRITE;
1920 		}
1921 	}
1922 
1923 	/*
1924 	 * Relock the map if necessary, then check the generation count.
1925 	 * relock_map() will update fs->timestamp to account for the
1926 	 * relocking if necessary.
1927 	 *
1928 	 * If the count has changed after relocking then all sorts of
1929 	 * crap may have happened and we have to retry.
1930 	 *
1931 	 * NOTE: The relock_map() can fail due to a deadlock against
1932 	 *	 the vm_page we are holding BUSY.
1933 	 */
1934 	if (fs->lookup_still_valid == FALSE && fs->map) {
1935 		if (relock_map(fs) ||
1936 		    fs->map->timestamp != fs->map_generation) {
1937 			release_page(fs);
1938 			vm_object_pip_wakeup(fs->first_object);
1939 			vm_object_chain_release_all(fs->first_object,
1940 						    fs->object);
1941 			if (fs->object != fs->first_object)
1942 				vm_object_drop(fs->object);
1943 			unlock_and_deallocate(fs);
1944 			return (KERN_TRY_AGAIN);
1945 		}
1946 	}
1947 
1948 	/*
1949 	 * If the fault is a write, we know that this page is being
1950 	 * written NOW so dirty it explicitly to save on pmap_is_modified()
1951 	 * calls later.
1952 	 *
1953 	 * If this is a NOSYNC mmap we do not want to set PG_NOSYNC
1954 	 * if the page is already dirty to prevent data written with
1955 	 * the expectation of being synced from not being synced.
1956 	 * Likewise if this entry does not request NOSYNC then make
1957 	 * sure the page isn't marked NOSYNC.  Applications sharing
1958 	 * data should use the same flags to avoid ping ponging.
1959 	 *
1960 	 * Also tell the backing pager, if any, that it should remove
1961 	 * any swap backing since the page is now dirty.
1962 	 */
1963 	vm_page_activate(fs->m);
1964 	if (fs->prot & VM_PROT_WRITE) {
1965 		vm_object_set_writeable_dirty(fs->m->object);
1966 		vm_set_nosync(fs->m, fs->entry);
1967 		if (fs->fault_flags & VM_FAULT_DIRTY) {
1968 			vm_page_dirty(fs->m);
1969 			swap_pager_unswapped(fs->m);
1970 		}
1971 	}
1972 
1973 	vm_object_pip_wakeup(fs->first_object);
1974 	vm_object_chain_release_all(fs->first_object, fs->object);
1975 	if (fs->object != fs->first_object)
1976 		vm_object_drop(fs->object);
1977 
1978 	/*
1979 	 * Page had better still be busy.  We are still locked up and
1980 	 * fs->object will have another PIP reference if it is not equal
1981 	 * to fs->first_object.
1982 	 */
1983 	KASSERT(fs->m->flags & PG_BUSY,
1984 		("vm_fault: page %p not busy!", fs->m));
1985 
1986 	/*
1987 	 * Sanity check: page must be completely valid or it is not fit to
1988 	 * map into user space.  vm_pager_get_pages() ensures this.
1989 	 */
1990 	if (fs->m->valid != VM_PAGE_BITS_ALL) {
1991 		vm_page_zero_invalid(fs->m, TRUE);
1992 		kprintf("Warning: page %p partially invalid on fault\n", fs->m);
1993 	}
1994 	vm_page_flag_clear(fs->m, PG_ZERO);
1995 
1996 	return (KERN_SUCCESS);
1997 }
1998 
1999 /*
2000  * Hold each of the physical pages that are mapped by the specified range of
2001  * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid
2002  * and allow the specified types of access, "prot".  If all of the implied
2003  * pages are successfully held, then the number of held pages is returned
2004  * together with pointers to those pages in the array "ma".  However, if any
2005  * of the pages cannot be held, -1 is returned.
2006  */
2007 int
2008 vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len,
2009     vm_prot_t prot, vm_page_t *ma, int max_count)
2010 {
2011 	vm_offset_t start, end;
2012 	int i, npages, error;
2013 
2014 	start = trunc_page(addr);
2015 	end = round_page(addr + len);
2016 
2017 	npages = howmany(end - start, PAGE_SIZE);
2018 
2019 	if (npages > max_count)
2020 		return -1;
2021 
2022 	for (i = 0; i < npages; i++) {
2023 		// XXX error handling
2024 		ma[i] = vm_fault_page_quick(start + (i * PAGE_SIZE),
2025 			prot,
2026 			&error);
2027 	}
2028 
2029 	return npages;
2030 }
2031 
2032 /*
2033  * Wire down a range of virtual addresses in a map.  The entry in question
2034  * should be marked in-transition and the map must be locked.  We must
2035  * release the map temporarily while faulting-in the page to avoid a
2036  * deadlock.  Note that the entry may be clipped while we are blocked but
2037  * will never be freed.
2038  *
2039  * No requirements.
2040  */
2041 int
2042 vm_fault_wire(vm_map_t map, vm_map_entry_t entry,
2043 	      boolean_t user_wire, int kmflags)
2044 {
2045 	boolean_t fictitious;
2046 	vm_offset_t start;
2047 	vm_offset_t end;
2048 	vm_offset_t va;
2049 	vm_paddr_t pa;
2050 	vm_page_t m;
2051 	pmap_t pmap;
2052 	int rv;
2053 	int wire_prot;
2054 	int fault_flags;
2055 
2056 	lwkt_gettoken(&map->token);
2057 
2058 	if (user_wire) {
2059 		wire_prot = VM_PROT_READ;
2060 		fault_flags = VM_FAULT_USER_WIRE;
2061 	} else {
2062 		wire_prot = VM_PROT_READ | VM_PROT_WRITE;
2063 		fault_flags = VM_FAULT_CHANGE_WIRING;
2064 	}
2065 	if (kmflags & KM_NOTLBSYNC)
2066 		wire_prot |= VM_PROT_NOSYNC;
2067 
2068 	pmap = vm_map_pmap(map);
2069 	start = entry->start;
2070 	end = entry->end;
2071 	switch(entry->maptype) {
2072 	case VM_MAPTYPE_NORMAL:
2073 	case VM_MAPTYPE_VPAGETABLE:
2074 		fictitious = entry->object.vm_object &&
2075 			    ((entry->object.vm_object->type == OBJT_DEVICE) ||
2076 			     (entry->object.vm_object->type == OBJT_MGTDEVICE));
2077 		break;
2078 	case VM_MAPTYPE_UKSMAP:
2079 		fictitious = TRUE;
2080 		break;
2081 	default:
2082 		fictitious = FALSE;
2083 		break;
2084 	}
2085 
2086 	if (entry->eflags & MAP_ENTRY_KSTACK)
2087 		start += PAGE_SIZE;
2088 	map->timestamp++;
2089 	vm_map_unlock(map);
2090 
2091 	/*
2092 	 * We simulate a fault to get the page and enter it in the physical
2093 	 * map.
2094 	 */
2095 	for (va = start; va < end; va += PAGE_SIZE) {
2096 		rv = vm_fault(map, va, wire_prot, fault_flags);
2097 		if (rv) {
2098 			while (va > start) {
2099 				va -= PAGE_SIZE;
2100 				if ((pa = pmap_extract(pmap, va)) == 0)
2101 					continue;
2102 				pmap_change_wiring(pmap, va, FALSE, entry);
2103 				if (!fictitious) {
2104 					m = PHYS_TO_VM_PAGE(pa);
2105 					vm_page_busy_wait(m, FALSE, "vmwrpg");
2106 					vm_page_unwire(m, 1);
2107 					vm_page_wakeup(m);
2108 				}
2109 			}
2110 			goto done;
2111 		}
2112 	}
2113 	rv = KERN_SUCCESS;
2114 done:
2115 	vm_map_lock(map);
2116 	lwkt_reltoken(&map->token);
2117 	return (rv);
2118 }
2119 
2120 /*
2121  * Unwire a range of virtual addresses in a map.  The map should be
2122  * locked.
2123  */
2124 void
2125 vm_fault_unwire(vm_map_t map, vm_map_entry_t entry)
2126 {
2127 	boolean_t fictitious;
2128 	vm_offset_t start;
2129 	vm_offset_t end;
2130 	vm_offset_t va;
2131 	vm_paddr_t pa;
2132 	vm_page_t m;
2133 	pmap_t pmap;
2134 
2135 	lwkt_gettoken(&map->token);
2136 
2137 	pmap = vm_map_pmap(map);
2138 	start = entry->start;
2139 	end = entry->end;
2140 	fictitious = entry->object.vm_object &&
2141 			((entry->object.vm_object->type == OBJT_DEVICE) ||
2142 			 (entry->object.vm_object->type == OBJT_MGTDEVICE));
2143 	if (entry->eflags & MAP_ENTRY_KSTACK)
2144 		start += PAGE_SIZE;
2145 
2146 	/*
2147 	 * Since the pages are wired down, we must be able to get their
2148 	 * mappings from the physical map system.
2149 	 */
2150 	for (va = start; va < end; va += PAGE_SIZE) {
2151 		pa = pmap_extract(pmap, va);
2152 		if (pa != 0) {
2153 			pmap_change_wiring(pmap, va, FALSE, entry);
2154 			if (!fictitious) {
2155 				m = PHYS_TO_VM_PAGE(pa);
2156 				vm_page_busy_wait(m, FALSE, "vmwupg");
2157 				vm_page_unwire(m, 1);
2158 				vm_page_wakeup(m);
2159 			}
2160 		}
2161 	}
2162 	lwkt_reltoken(&map->token);
2163 }
2164 
2165 /*
2166  * Copy all of the pages from a wired-down map entry to another.
2167  *
2168  * The source and destination maps must be locked for write.
2169  * The source and destination maps token must be held
2170  * The source map entry must be wired down (or be a sharing map
2171  * entry corresponding to a main map entry that is wired down).
2172  *
2173  * No other requirements.
2174  *
2175  * XXX do segment optimization
2176  */
2177 void
2178 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
2179 		    vm_map_entry_t dst_entry, vm_map_entry_t src_entry)
2180 {
2181 	vm_object_t dst_object;
2182 	vm_object_t src_object;
2183 	vm_ooffset_t dst_offset;
2184 	vm_ooffset_t src_offset;
2185 	vm_prot_t prot;
2186 	vm_offset_t vaddr;
2187 	vm_page_t dst_m;
2188 	vm_page_t src_m;
2189 
2190 	src_object = src_entry->object.vm_object;
2191 	src_offset = src_entry->offset;
2192 
2193 	/*
2194 	 * Create the top-level object for the destination entry. (Doesn't
2195 	 * actually shadow anything - we copy the pages directly.)
2196 	 */
2197 	vm_map_entry_allocate_object(dst_entry);
2198 	dst_object = dst_entry->object.vm_object;
2199 
2200 	prot = dst_entry->max_protection;
2201 
2202 	/*
2203 	 * Loop through all of the pages in the entry's range, copying each
2204 	 * one from the source object (it should be there) to the destination
2205 	 * object.
2206 	 */
2207 	vm_object_hold(src_object);
2208 	vm_object_hold(dst_object);
2209 	for (vaddr = dst_entry->start, dst_offset = 0;
2210 	    vaddr < dst_entry->end;
2211 	    vaddr += PAGE_SIZE, dst_offset += PAGE_SIZE) {
2212 
2213 		/*
2214 		 * Allocate a page in the destination object
2215 		 */
2216 		do {
2217 			dst_m = vm_page_alloc(dst_object,
2218 					      OFF_TO_IDX(dst_offset),
2219 					      VM_ALLOC_NORMAL);
2220 			if (dst_m == NULL) {
2221 				vm_wait(0);
2222 			}
2223 		} while (dst_m == NULL);
2224 
2225 		/*
2226 		 * Find the page in the source object, and copy it in.
2227 		 * (Because the source is wired down, the page will be in
2228 		 * memory.)
2229 		 */
2230 		src_m = vm_page_lookup(src_object,
2231 				       OFF_TO_IDX(dst_offset + src_offset));
2232 		if (src_m == NULL)
2233 			panic("vm_fault_copy_wired: page missing");
2234 
2235 		vm_page_copy(src_m, dst_m);
2236 		vm_page_event(src_m, VMEVENT_COW);
2237 
2238 		/*
2239 		 * Enter it in the pmap...
2240 		 */
2241 
2242 		vm_page_flag_clear(dst_m, PG_ZERO);
2243 		pmap_enter(dst_map->pmap, vaddr, dst_m, prot, FALSE, dst_entry);
2244 
2245 		/*
2246 		 * Mark it no longer busy, and put it on the active list.
2247 		 */
2248 		vm_page_activate(dst_m);
2249 		vm_page_wakeup(dst_m);
2250 	}
2251 	vm_object_drop(dst_object);
2252 	vm_object_drop(src_object);
2253 }
2254 
2255 #if 0
2256 
2257 /*
2258  * This routine checks around the requested page for other pages that
2259  * might be able to be faulted in.  This routine brackets the viable
2260  * pages for the pages to be paged in.
2261  *
2262  * Inputs:
2263  *	m, rbehind, rahead
2264  *
2265  * Outputs:
2266  *  marray (array of vm_page_t), reqpage (index of requested page)
2267  *
2268  * Return value:
2269  *  number of pages in marray
2270  */
2271 static int
2272 vm_fault_additional_pages(vm_page_t m, int rbehind, int rahead,
2273 			  vm_page_t *marray, int *reqpage)
2274 {
2275 	int i,j;
2276 	vm_object_t object;
2277 	vm_pindex_t pindex, startpindex, endpindex, tpindex;
2278 	vm_page_t rtm;
2279 	int cbehind, cahead;
2280 
2281 	object = m->object;
2282 	pindex = m->pindex;
2283 
2284 	/*
2285 	 * we don't fault-ahead for device pager
2286 	 */
2287 	if ((object->type == OBJT_DEVICE) ||
2288 	    (object->type == OBJT_MGTDEVICE)) {
2289 		*reqpage = 0;
2290 		marray[0] = m;
2291 		return 1;
2292 	}
2293 
2294 	/*
2295 	 * if the requested page is not available, then give up now
2296 	 */
2297 	if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
2298 		*reqpage = 0;	/* not used by caller, fix compiler warn */
2299 		return 0;
2300 	}
2301 
2302 	if ((cbehind == 0) && (cahead == 0)) {
2303 		*reqpage = 0;
2304 		marray[0] = m;
2305 		return 1;
2306 	}
2307 
2308 	if (rahead > cahead) {
2309 		rahead = cahead;
2310 	}
2311 
2312 	if (rbehind > cbehind) {
2313 		rbehind = cbehind;
2314 	}
2315 
2316 	/*
2317 	 * Do not do any readahead if we have insufficient free memory.
2318 	 *
2319 	 * XXX code was broken disabled before and has instability
2320 	 * with this conditonal fixed, so shortcut for now.
2321 	 */
2322 	if (burst_fault == 0 || vm_page_count_severe()) {
2323 		marray[0] = m;
2324 		*reqpage = 0;
2325 		return 1;
2326 	}
2327 
2328 	/*
2329 	 * scan backward for the read behind pages -- in memory
2330 	 *
2331 	 * Assume that if the page is not found an interrupt will not
2332 	 * create it.  Theoretically interrupts can only remove (busy)
2333 	 * pages, not create new associations.
2334 	 */
2335 	if (pindex > 0) {
2336 		if (rbehind > pindex) {
2337 			rbehind = pindex;
2338 			startpindex = 0;
2339 		} else {
2340 			startpindex = pindex - rbehind;
2341 		}
2342 
2343 		vm_object_hold(object);
2344 		for (tpindex = pindex; tpindex > startpindex; --tpindex) {
2345 			if (vm_page_lookup(object, tpindex - 1))
2346 				break;
2347 		}
2348 
2349 		i = 0;
2350 		while (tpindex < pindex) {
2351 			rtm = vm_page_alloc(object, tpindex, VM_ALLOC_SYSTEM |
2352 							     VM_ALLOC_NULL_OK);
2353 			if (rtm == NULL) {
2354 				for (j = 0; j < i; j++) {
2355 					vm_page_free(marray[j]);
2356 				}
2357 				vm_object_drop(object);
2358 				marray[0] = m;
2359 				*reqpage = 0;
2360 				return 1;
2361 			}
2362 			marray[i] = rtm;
2363 			++i;
2364 			++tpindex;
2365 		}
2366 		vm_object_drop(object);
2367 	} else {
2368 		i = 0;
2369 	}
2370 
2371 	/*
2372 	 * Assign requested page
2373 	 */
2374 	marray[i] = m;
2375 	*reqpage = i;
2376 	++i;
2377 
2378 	/*
2379 	 * Scan forwards for read-ahead pages
2380 	 */
2381 	tpindex = pindex + 1;
2382 	endpindex = tpindex + rahead;
2383 	if (endpindex > object->size)
2384 		endpindex = object->size;
2385 
2386 	vm_object_hold(object);
2387 	while (tpindex < endpindex) {
2388 		if (vm_page_lookup(object, tpindex))
2389 			break;
2390 		rtm = vm_page_alloc(object, tpindex, VM_ALLOC_SYSTEM |
2391 						     VM_ALLOC_NULL_OK);
2392 		if (rtm == NULL)
2393 			break;
2394 		marray[i] = rtm;
2395 		++i;
2396 		++tpindex;
2397 	}
2398 	vm_object_drop(object);
2399 
2400 	return (i);
2401 }
2402 
2403 #endif
2404 
2405 /*
2406  * vm_prefault() provides a quick way of clustering pagefaults into a
2407  * processes address space.  It is a "cousin" of pmap_object_init_pt,
2408  * except it runs at page fault time instead of mmap time.
2409  *
2410  * vm.fast_fault	Enables pre-faulting zero-fill pages
2411  *
2412  * vm.prefault_pages	Number of pages (1/2 negative, 1/2 positive) to
2413  *			prefault.  Scan stops in either direction when
2414  *			a page is found to already exist.
2415  *
2416  * This code used to be per-platform pmap_prefault().  It is now
2417  * machine-independent and enhanced to also pre-fault zero-fill pages
2418  * (see vm.fast_fault) as well as make them writable, which greatly
2419  * reduces the number of page faults programs incur.
2420  *
2421  * Application performance when pre-faulting zero-fill pages is heavily
2422  * dependent on the application.  Very tiny applications like /bin/echo
2423  * lose a little performance while applications of any appreciable size
2424  * gain performance.  Prefaulting multiple pages also reduces SMP
2425  * congestion and can improve SMP performance significantly.
2426  *
2427  * NOTE!  prot may allow writing but this only applies to the top level
2428  *	  object.  If we wind up mapping a page extracted from a backing
2429  *	  object we have to make sure it is read-only.
2430  *
2431  * NOTE!  The caller has already handled any COW operations on the
2432  *	  vm_map_entry via the normal fault code.  Do NOT call this
2433  *	  shortcut unless the normal fault code has run on this entry.
2434  *
2435  * The related map must be locked.
2436  * No other requirements.
2437  */
2438 static int vm_prefault_pages = 8;
2439 SYSCTL_INT(_vm, OID_AUTO, prefault_pages, CTLFLAG_RW, &vm_prefault_pages, 0,
2440 	   "Maximum number of pages to pre-fault");
2441 static int vm_fast_fault = 1;
2442 SYSCTL_INT(_vm, OID_AUTO, fast_fault, CTLFLAG_RW, &vm_fast_fault, 0,
2443 	   "Burst fault zero-fill regions");
2444 
2445 /*
2446  * Set PG_NOSYNC if the map entry indicates so, but only if the page
2447  * is not already dirty by other means.  This will prevent passive
2448  * filesystem syncing as well as 'sync' from writing out the page.
2449  */
2450 static void
2451 vm_set_nosync(vm_page_t m, vm_map_entry_t entry)
2452 {
2453 	if (entry->eflags & MAP_ENTRY_NOSYNC) {
2454 		if (m->dirty == 0)
2455 			vm_page_flag_set(m, PG_NOSYNC);
2456 	} else {
2457 		vm_page_flag_clear(m, PG_NOSYNC);
2458 	}
2459 }
2460 
2461 static void
2462 vm_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry, int prot,
2463 	    int fault_flags)
2464 {
2465 	struct lwp *lp;
2466 	vm_page_t m;
2467 	vm_offset_t addr;
2468 	vm_pindex_t index;
2469 	vm_pindex_t pindex;
2470 	vm_object_t object;
2471 	int pprot;
2472 	int i;
2473 	int noneg;
2474 	int nopos;
2475 	int maxpages;
2476 
2477 	/*
2478 	 * Get stable max count value, disabled if set to 0
2479 	 */
2480 	maxpages = vm_prefault_pages;
2481 	cpu_ccfence();
2482 	if (maxpages <= 0)
2483 		return;
2484 
2485 	/*
2486 	 * We do not currently prefault mappings that use virtual page
2487 	 * tables.  We do not prefault foreign pmaps.
2488 	 */
2489 	if (entry->maptype != VM_MAPTYPE_NORMAL)
2490 		return;
2491 	lp = curthread->td_lwp;
2492 	if (lp == NULL || (pmap != vmspace_pmap(lp->lwp_vmspace)))
2493 		return;
2494 
2495 	/*
2496 	 * Limit pre-fault count to 1024 pages.
2497 	 */
2498 	if (maxpages > 1024)
2499 		maxpages = 1024;
2500 
2501 	object = entry->object.vm_object;
2502 	KKASSERT(object != NULL);
2503 	KKASSERT(object == entry->object.vm_object);
2504 	vm_object_hold(object);
2505 	vm_object_chain_acquire(object, 0);
2506 
2507 	noneg = 0;
2508 	nopos = 0;
2509 	for (i = 0; i < maxpages; ++i) {
2510 		vm_object_t lobject;
2511 		vm_object_t nobject;
2512 		int allocated = 0;
2513 		int error;
2514 
2515 		/*
2516 		 * This can eat a lot of time on a heavily contended
2517 		 * machine so yield on the tick if needed.
2518 		 */
2519 		if ((i & 7) == 7)
2520 			lwkt_yield();
2521 
2522 		/*
2523 		 * Calculate the page to pre-fault, stopping the scan in
2524 		 * each direction separately if the limit is reached.
2525 		 */
2526 		if (i & 1) {
2527 			if (noneg)
2528 				continue;
2529 			addr = addra - ((i + 1) >> 1) * PAGE_SIZE;
2530 		} else {
2531 			if (nopos)
2532 				continue;
2533 			addr = addra + ((i + 2) >> 1) * PAGE_SIZE;
2534 		}
2535 		if (addr < entry->start) {
2536 			noneg = 1;
2537 			if (noneg && nopos)
2538 				break;
2539 			continue;
2540 		}
2541 		if (addr >= entry->end) {
2542 			nopos = 1;
2543 			if (noneg && nopos)
2544 				break;
2545 			continue;
2546 		}
2547 
2548 		/*
2549 		 * Skip pages already mapped, and stop scanning in that
2550 		 * direction.  When the scan terminates in both directions
2551 		 * we are done.
2552 		 */
2553 		if (pmap_prefault_ok(pmap, addr) == 0) {
2554 			if (i & 1)
2555 				noneg = 1;
2556 			else
2557 				nopos = 1;
2558 			if (noneg && nopos)
2559 				break;
2560 			continue;
2561 		}
2562 
2563 		/*
2564 		 * Follow the VM object chain to obtain the page to be mapped
2565 		 * into the pmap.
2566 		 *
2567 		 * If we reach the terminal object without finding a page
2568 		 * and we determine it would be advantageous, then allocate
2569 		 * a zero-fill page for the base object.  The base object
2570 		 * is guaranteed to be OBJT_DEFAULT for this case.
2571 		 *
2572 		 * In order to not have to check the pager via *haspage*()
2573 		 * we stop if any non-default object is encountered.  e.g.
2574 		 * a vnode or swap object would stop the loop.
2575 		 */
2576 		index = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
2577 		lobject = object;
2578 		pindex = index;
2579 		pprot = prot;
2580 
2581 		KKASSERT(lobject == entry->object.vm_object);
2582 		/*vm_object_hold(lobject); implied */
2583 
2584 		while ((m = vm_page_lookup_busy_try(lobject, pindex,
2585 						    TRUE, &error)) == NULL) {
2586 			if (lobject->type != OBJT_DEFAULT)
2587 				break;
2588 			if (lobject->backing_object == NULL) {
2589 				if (vm_fast_fault == 0)
2590 					break;
2591 				if ((prot & VM_PROT_WRITE) == 0 ||
2592 				    vm_page_count_min(0)) {
2593 					break;
2594 				}
2595 
2596 				/*
2597 				 * NOTE: Allocated from base object
2598 				 */
2599 				m = vm_page_alloc(object, index,
2600 						  VM_ALLOC_NORMAL |
2601 						  VM_ALLOC_ZERO |
2602 						  VM_ALLOC_USE_GD |
2603 						  VM_ALLOC_NULL_OK);
2604 				if (m == NULL)
2605 					break;
2606 				allocated = 1;
2607 				pprot = prot;
2608 				/* lobject = object .. not needed */
2609 				break;
2610 			}
2611 			if (lobject->backing_object_offset & PAGE_MASK)
2612 				break;
2613 			nobject = lobject->backing_object;
2614 			vm_object_hold(nobject);
2615 			KKASSERT(nobject == lobject->backing_object);
2616 			pindex += lobject->backing_object_offset >> PAGE_SHIFT;
2617 			if (lobject != object) {
2618 				vm_object_lock_swap();
2619 				vm_object_drop(lobject);
2620 			}
2621 			lobject = nobject;
2622 			pprot &= ~VM_PROT_WRITE;
2623 			vm_object_chain_acquire(lobject, 0);
2624 		}
2625 
2626 		/*
2627 		 * NOTE: A non-NULL (m) will be associated with lobject if
2628 		 *	 it was found there, otherwise it is probably a
2629 		 *	 zero-fill page associated with the base object.
2630 		 *
2631 		 * Give-up if no page is available.
2632 		 */
2633 		if (m == NULL) {
2634 			if (lobject != object) {
2635 #if 0
2636 				if (object->backing_object != lobject)
2637 					vm_object_hold(object->backing_object);
2638 #endif
2639 				vm_object_chain_release_all(
2640 					object->backing_object, lobject);
2641 #if 0
2642 				if (object->backing_object != lobject)
2643 					vm_object_drop(object->backing_object);
2644 #endif
2645 				vm_object_drop(lobject);
2646 			}
2647 			break;
2648 		}
2649 
2650 		/*
2651 		 * The object must be marked dirty if we are mapping a
2652 		 * writable page.  m->object is either lobject or object,
2653 		 * both of which are still held.  Do this before we
2654 		 * potentially drop the object.
2655 		 */
2656 		if (pprot & VM_PROT_WRITE)
2657 			vm_object_set_writeable_dirty(m->object);
2658 
2659 		/*
2660 		 * Do not conditionalize on PG_RAM.  If pages are present in
2661 		 * the VM system we assume optimal caching.  If caching is
2662 		 * not optimal the I/O gravy train will be restarted when we
2663 		 * hit an unavailable page.  We do not want to try to restart
2664 		 * the gravy train now because we really don't know how much
2665 		 * of the object has been cached.  The cost for restarting
2666 		 * the gravy train should be low (since accesses will likely
2667 		 * be I/O bound anyway).
2668 		 */
2669 		if (lobject != object) {
2670 #if 0
2671 			if (object->backing_object != lobject)
2672 				vm_object_hold(object->backing_object);
2673 #endif
2674 			vm_object_chain_release_all(object->backing_object,
2675 						    lobject);
2676 #if 0
2677 			if (object->backing_object != lobject)
2678 				vm_object_drop(object->backing_object);
2679 #endif
2680 			vm_object_drop(lobject);
2681 		}
2682 
2683 		/*
2684 		 * Enter the page into the pmap if appropriate.  If we had
2685 		 * allocated the page we have to place it on a queue.  If not
2686 		 * we just have to make sure it isn't on the cache queue
2687 		 * (pages on the cache queue are not allowed to be mapped).
2688 		 */
2689 		if (allocated) {
2690 			/*
2691 			 * Page must be zerod.
2692 			 */
2693 			if ((m->flags & PG_ZERO) == 0) {
2694 				vm_page_zero_fill(m);
2695 			} else {
2696 #ifdef PMAP_DEBUG
2697 				pmap_page_assertzero(
2698 						VM_PAGE_TO_PHYS(m));
2699 #endif
2700 				vm_page_flag_clear(m, PG_ZERO);
2701 				mycpu->gd_cnt.v_ozfod++;
2702 			}
2703 			mycpu->gd_cnt.v_zfod++;
2704 			m->valid = VM_PAGE_BITS_ALL;
2705 
2706 			/*
2707 			 * Handle dirty page case
2708 			 */
2709 			if (pprot & VM_PROT_WRITE)
2710 				vm_set_nosync(m, entry);
2711 			pmap_enter(pmap, addr, m, pprot, 0, entry);
2712 			mycpu->gd_cnt.v_vm_faults++;
2713 			if (curthread->td_lwp)
2714 				++curthread->td_lwp->lwp_ru.ru_minflt;
2715 			vm_page_deactivate(m);
2716 			if (pprot & VM_PROT_WRITE) {
2717 				/*vm_object_set_writeable_dirty(m->object);*/
2718 				vm_set_nosync(m, entry);
2719 				if (fault_flags & VM_FAULT_DIRTY) {
2720 					vm_page_dirty(m);
2721 					/*XXX*/
2722 					swap_pager_unswapped(m);
2723 				}
2724 			}
2725 			vm_page_wakeup(m);
2726 		} else if (error) {
2727 			/* couldn't busy page, no wakeup */
2728 		} else if (
2729 		    ((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2730 		    (m->flags & PG_FICTITIOUS) == 0) {
2731 			/*
2732 			 * A fully valid page not undergoing soft I/O can
2733 			 * be immediately entered into the pmap.
2734 			 */
2735 			if ((m->queue - m->pc) == PQ_CACHE)
2736 				vm_page_deactivate(m);
2737 			if (pprot & VM_PROT_WRITE) {
2738 				/*vm_object_set_writeable_dirty(m->object);*/
2739 				vm_set_nosync(m, entry);
2740 				if (fault_flags & VM_FAULT_DIRTY) {
2741 					vm_page_dirty(m);
2742 					/*XXX*/
2743 					swap_pager_unswapped(m);
2744 				}
2745 			}
2746 			if (pprot & VM_PROT_WRITE)
2747 				vm_set_nosync(m, entry);
2748 			pmap_enter(pmap, addr, m, pprot, 0, entry);
2749 			mycpu->gd_cnt.v_vm_faults++;
2750 			if (curthread->td_lwp)
2751 				++curthread->td_lwp->lwp_ru.ru_minflt;
2752 			vm_page_wakeup(m);
2753 		} else {
2754 			vm_page_wakeup(m);
2755 		}
2756 	}
2757 	vm_object_chain_release(object);
2758 	vm_object_drop(object);
2759 }
2760 
2761 /*
2762  * Object can be held shared
2763  */
2764 static void
2765 vm_prefault_quick(pmap_t pmap, vm_offset_t addra,
2766 		  vm_map_entry_t entry, int prot, int fault_flags)
2767 {
2768 	struct lwp *lp;
2769 	vm_page_t m;
2770 	vm_offset_t addr;
2771 	vm_pindex_t pindex;
2772 	vm_object_t object;
2773 	int i;
2774 	int noneg;
2775 	int nopos;
2776 	int maxpages;
2777 
2778 	/*
2779 	 * Get stable max count value, disabled if set to 0
2780 	 */
2781 	maxpages = vm_prefault_pages;
2782 	cpu_ccfence();
2783 	if (maxpages <= 0)
2784 		return;
2785 
2786 	/*
2787 	 * We do not currently prefault mappings that use virtual page
2788 	 * tables.  We do not prefault foreign pmaps.
2789 	 */
2790 	if (entry->maptype != VM_MAPTYPE_NORMAL)
2791 		return;
2792 	lp = curthread->td_lwp;
2793 	if (lp == NULL || (pmap != vmspace_pmap(lp->lwp_vmspace)))
2794 		return;
2795 	object = entry->object.vm_object;
2796 	if (object->backing_object != NULL)
2797 		return;
2798 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2799 
2800 	/*
2801 	 * Limit pre-fault count to 1024 pages.
2802 	 */
2803 	if (maxpages > 1024)
2804 		maxpages = 1024;
2805 
2806 	noneg = 0;
2807 	nopos = 0;
2808 	for (i = 0; i < maxpages; ++i) {
2809 		int error;
2810 
2811 		/*
2812 		 * Calculate the page to pre-fault, stopping the scan in
2813 		 * each direction separately if the limit is reached.
2814 		 */
2815 		if (i & 1) {
2816 			if (noneg)
2817 				continue;
2818 			addr = addra - ((i + 1) >> 1) * PAGE_SIZE;
2819 		} else {
2820 			if (nopos)
2821 				continue;
2822 			addr = addra + ((i + 2) >> 1) * PAGE_SIZE;
2823 		}
2824 		if (addr < entry->start) {
2825 			noneg = 1;
2826 			if (noneg && nopos)
2827 				break;
2828 			continue;
2829 		}
2830 		if (addr >= entry->end) {
2831 			nopos = 1;
2832 			if (noneg && nopos)
2833 				break;
2834 			continue;
2835 		}
2836 
2837 		/*
2838 		 * Skip pages already mapped, and stop scanning in that
2839 		 * direction.  When the scan terminates in both directions
2840 		 * we are done.
2841 		 */
2842 		if (pmap_prefault_ok(pmap, addr) == 0) {
2843 			if (i & 1)
2844 				noneg = 1;
2845 			else
2846 				nopos = 1;
2847 			if (noneg && nopos)
2848 				break;
2849 			continue;
2850 		}
2851 
2852 		/*
2853 		 * Follow the VM object chain to obtain the page to be mapped
2854 		 * into the pmap.  This version of the prefault code only
2855 		 * works with terminal objects.
2856 		 *
2857 		 * WARNING!  We cannot call swap_pager_unswapped() with a
2858 		 *	     shared token.
2859 		 */
2860 		pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
2861 
2862 		m = vm_page_lookup_busy_try(object, pindex, TRUE, &error);
2863 		if (m == NULL || error)
2864 			continue;
2865 
2866 		if (((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2867 		    (m->flags & PG_FICTITIOUS) == 0 &&
2868 		    ((m->flags & PG_SWAPPED) == 0 ||
2869 		     (prot & VM_PROT_WRITE) == 0 ||
2870 		     (fault_flags & VM_FAULT_DIRTY) == 0)) {
2871 			/*
2872 			 * A fully valid page not undergoing soft I/O can
2873 			 * be immediately entered into the pmap.
2874 			 */
2875 			if ((m->queue - m->pc) == PQ_CACHE)
2876 				vm_page_deactivate(m);
2877 			if (prot & VM_PROT_WRITE) {
2878 				vm_object_set_writeable_dirty(m->object);
2879 				vm_set_nosync(m, entry);
2880 				if (fault_flags & VM_FAULT_DIRTY) {
2881 					vm_page_dirty(m);
2882 					/*XXX*/
2883 					swap_pager_unswapped(m);
2884 				}
2885 			}
2886 			pmap_enter(pmap, addr, m, prot, 0, entry);
2887 			mycpu->gd_cnt.v_vm_faults++;
2888 			if (curthread->td_lwp)
2889 				++curthread->td_lwp->lwp_ru.ru_minflt;
2890 		}
2891 		vm_page_wakeup(m);
2892 	}
2893 }
2894