xref: /dragonfly/sys/vm/vm_fault.c (revision 8f2ce533)
1 /*
2  * Copyright (c) 2003-2022 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * ---
35  *
36  * Copyright (c) 1991, 1993
37  *	The Regents of the University of California.  All rights reserved.
38  * Copyright (c) 1994 John S. Dyson
39  * All rights reserved.
40  * Copyright (c) 1994 David Greenman
41  * All rights reserved.
42  *
43  *
44  * This code is derived from software contributed to Berkeley by
45  * The Mach Operating System project at Carnegie-Mellon University.
46  *
47  * Redistribution and use in source and binary forms, with or without
48  * modification, are permitted provided that the following conditions
49  * are met:
50  * 1. Redistributions of source code must retain the above copyright
51  *    notice, this list of conditions and the following disclaimer.
52  * 2. Redistributions in binary form must reproduce the above copyright
53  *    notice, this list of conditions and the following disclaimer in the
54  *    documentation and/or other materials provided with the distribution.
55  * 3. Neither the name of the University nor the names of its contributors
56  *    may be used to endorse or promote products derived from this software
57  *    without specific prior written permission.
58  *
59  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69  * SUCH DAMAGE.
70  *
71  * ---
72  *
73  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
74  * All rights reserved.
75  *
76  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
77  *
78  * Permission to use, copy, modify and distribute this software and
79  * its documentation is hereby granted, provided that both the copyright
80  * notice and this permission notice appear in all copies of the
81  * software, derivative works or modified versions, and any portions
82  * thereof, and that both notices appear in supporting documentation.
83  *
84  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
85  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
86  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
87  *
88  * Carnegie Mellon requests users of this software to return to
89  *
90  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
91  *  School of Computer Science
92  *  Carnegie Mellon University
93  *  Pittsburgh PA 15213-3890
94  *
95  * any improvements or extensions that they make and grant Carnegie the
96  * rights to redistribute these changes.
97  */
98 
99 /*
100  *	Page fault handling module.
101  */
102 
103 #include <sys/param.h>
104 #include <sys/systm.h>
105 #include <sys/kernel.h>
106 #include <sys/proc.h>
107 #include <sys/vnode.h>
108 #include <sys/resourcevar.h>
109 #include <sys/vmmeter.h>
110 #include <sys/vkernel.h>
111 #include <sys/lock.h>
112 #include <sys/sysctl.h>
113 
114 #include <cpu/lwbuf.h>
115 
116 #include <vm/vm.h>
117 #include <vm/vm_param.h>
118 #include <vm/pmap.h>
119 #include <vm/vm_map.h>
120 #include <vm/vm_object.h>
121 #include <vm/vm_page.h>
122 #include <vm/vm_pageout.h>
123 #include <vm/vm_kern.h>
124 #include <vm/vm_pager.h>
125 #include <vm/vnode_pager.h>
126 #include <vm/swap_pager.h>
127 #include <vm/vm_extern.h>
128 
129 #include <vm/vm_page2.h>
130 
131 #define VM_FAULT_MAX_QUICK	16
132 
133 struct faultstate {
134 	vm_page_t mary[VM_FAULT_MAX_QUICK];
135 	vm_map_backing_t ba;
136 	vm_prot_t prot;
137 	vm_page_t first_m;
138 	vm_map_backing_t first_ba;
139 	vm_prot_t first_prot;
140 	vm_map_t map;
141 	vm_map_entry_t entry;
142 	int lookup_still_valid;	/* 0=inv 1=valid/rel -1=valid/atomic */
143 	int hardfault;
144 	int fault_flags;
145 	int shared;
146 	int msoftonly;
147 	int first_shared;
148 	int wflags;
149 	int first_ba_held;	/* 0=unlocked 1=locked/rel -1=lock/atomic */
150 	struct vnode *vp;
151 };
152 
153 __read_mostly static int debug_fault = 0;
154 SYSCTL_INT(_vm, OID_AUTO, debug_fault, CTLFLAG_RW, &debug_fault, 0, "");
155 __read_mostly static int debug_cluster = 0;
156 SYSCTL_INT(_vm, OID_AUTO, debug_cluster, CTLFLAG_RW, &debug_cluster, 0, "");
157 #if 0
158 static int virtual_copy_enable = 1;
159 SYSCTL_INT(_vm, OID_AUTO, virtual_copy_enable, CTLFLAG_RW,
160 		&virtual_copy_enable, 0, "");
161 #endif
162 __read_mostly int vm_shared_fault = 1;
163 TUNABLE_INT("vm.shared_fault", &vm_shared_fault);
164 SYSCTL_INT(_vm, OID_AUTO, shared_fault, CTLFLAG_RW,
165 		&vm_shared_fault, 0, "Allow shared token on vm_object");
166 __read_mostly static int vm_fault_bypass_count = 1;
167 TUNABLE_INT("vm.fault_bypass", &vm_fault_bypass_count);
168 SYSCTL_INT(_vm, OID_AUTO, fault_bypass, CTLFLAG_RW,
169 		&vm_fault_bypass_count, 0, "Allow fast vm_fault shortcut");
170 
171 /*
172  * Define here for debugging ioctls.  Note that these are globals, so
173  * they were cause a ton of cache line bouncing.  Only use for debugging
174  * purposes.
175  */
176 /*#define VM_FAULT_QUICK_DEBUG */
177 #ifdef VM_FAULT_QUICK_DEBUG
178 static long vm_fault_bypass_success_count = 0;
179 SYSCTL_LONG(_vm, OID_AUTO, fault_bypass_success_count, CTLFLAG_RW,
180 		&vm_fault_bypass_success_count, 0, "");
181 static long vm_fault_bypass_failure_count1 = 0;
182 SYSCTL_LONG(_vm, OID_AUTO, fault_bypass_failure_count1, CTLFLAG_RW,
183 		&vm_fault_bypass_failure_count1, 0, "");
184 static long vm_fault_bypass_failure_count2 = 0;
185 SYSCTL_LONG(_vm, OID_AUTO, fault_bypass_failure_count2, CTLFLAG_RW,
186 		&vm_fault_bypass_failure_count2, 0, "");
187 static long vm_fault_bypass_failure_count3 = 0;
188 SYSCTL_LONG(_vm, OID_AUTO, fault_bypass_failure_count3, CTLFLAG_RW,
189 		&vm_fault_bypass_failure_count3, 0, "");
190 static long vm_fault_bypass_failure_count4 = 0;
191 SYSCTL_LONG(_vm, OID_AUTO, fault_bypass_failure_count4, CTLFLAG_RW,
192 		&vm_fault_bypass_failure_count4, 0, "");
193 #endif
194 
195 static int vm_fault_bypass(struct faultstate *fs, vm_pindex_t first_pindex,
196 			vm_pindex_t first_count, int *mextcountp,
197 			vm_prot_t fault_type);
198 static int vm_fault_object(struct faultstate *, vm_pindex_t, vm_prot_t, int);
199 static void vm_set_nosync(vm_page_t m, vm_map_entry_t entry);
200 static void vm_prefault(pmap_t pmap, vm_offset_t addra,
201 			vm_map_entry_t entry, int prot, int fault_flags);
202 static void vm_prefault_quick(pmap_t pmap, vm_offset_t addra,
203 			vm_map_entry_t entry, int prot, int fault_flags);
204 
205 static __inline void
206 release_page(struct faultstate *fs)
207 {
208 	vm_page_deactivate(fs->mary[0]);
209 	vm_page_wakeup(fs->mary[0]);
210 	fs->mary[0] = NULL;
211 }
212 
213 static __inline void
214 unlock_map(struct faultstate *fs)
215 {
216 	if (fs->ba != fs->first_ba)
217 		vm_object_drop(fs->ba->object);
218 	if (fs->first_ba && fs->first_ba_held == 1) {
219 		vm_object_drop(fs->first_ba->object);
220 		fs->first_ba_held = 0;
221 		fs->first_ba = NULL;
222 	}
223 	fs->ba = NULL;
224 
225 	/*
226 	 * NOTE: If lookup_still_valid == -1 the map is assumed to be locked
227 	 *	 and caller expects it to remain locked atomically.
228 	 */
229 	if (fs->lookup_still_valid == 1 && fs->map) {
230 		vm_map_lookup_done(fs->map, fs->entry, 0);
231 		fs->lookup_still_valid = 0;
232 		fs->entry = NULL;
233 	}
234 }
235 
236 /*
237  * Clean up after a successful call to vm_fault_object() so another call
238  * to vm_fault_object() can be made.
239  */
240 static void
241 cleanup_fault(struct faultstate *fs)
242 {
243 	/*
244 	 * We allocated a junk page for a COW operation that did
245 	 * not occur, the page must be freed.
246 	 */
247 	if (fs->ba != fs->first_ba) {
248 		KKASSERT(fs->first_shared == 0);
249 
250 		/*
251 		 * first_m could be completely valid and we got here
252 		 * because of a PG_RAM, don't mistakenly free it!
253 		 */
254 		if ((fs->first_m->valid & VM_PAGE_BITS_ALL) ==
255 		    VM_PAGE_BITS_ALL) {
256 			vm_page_wakeup(fs->first_m);
257 		} else {
258 			vm_page_free(fs->first_m);
259 		}
260 		vm_object_pip_wakeup(fs->ba->object);
261 		fs->first_m = NULL;
262 
263 		/*
264 		 * Reset fs->ba without calling unlock_map(), so we need a
265 		 * little duplication.
266 		 */
267 		vm_object_drop(fs->ba->object);
268 		fs->ba = fs->first_ba;
269 	}
270 }
271 
272 static void
273 unlock_things(struct faultstate *fs)
274 {
275 	cleanup_fault(fs);
276 	unlock_map(fs);
277 	if (fs->vp != NULL) {
278 		vput(fs->vp);
279 		fs->vp = NULL;
280 	}
281 }
282 
283 #if 0
284 /*
285  * Virtual copy tests.   Used by the fault code to determine if a
286  * page can be moved from an orphan vm_object into its shadow
287  * instead of copying its contents.
288  */
289 static __inline int
290 virtual_copy_test(struct faultstate *fs)
291 {
292 	/*
293 	 * Must be holding exclusive locks
294 	 */
295 	if (fs->first_shared || fs->shared || virtual_copy_enable == 0)
296 		return 0;
297 
298 	/*
299 	 * Map, if present, has not changed
300 	 */
301 	if (fs->map && fs->map_generation != fs->map->timestamp)
302 		return 0;
303 
304 	/*
305 	 * No refs, except us
306 	 */
307 	if (fs->ba->object->ref_count != 1)
308 		return 0;
309 
310 	/*
311 	 * No one else can look this object up
312 	 */
313 	if (fs->ba->object->handle != NULL)
314 		return 0;
315 
316 	/*
317 	 * No other ways to look the object up
318 	 */
319 	if (fs->ba->object->type != OBJT_DEFAULT &&
320 	    fs->ba->object->type != OBJT_SWAP)
321 		return 0;
322 
323 	/*
324 	 * We don't chase down the shadow chain
325 	 */
326 	if (fs->ba != fs->first_ba->backing_ba)
327 		return 0;
328 
329 	return 1;
330 }
331 
332 static __inline int
333 virtual_copy_ok(struct faultstate *fs)
334 {
335 	if (virtual_copy_test(fs)) {
336 		/*
337 		 * Grab the lock and re-test changeable items.
338 		 */
339 		if (fs->lookup_still_valid == 0 && fs->map) {
340 			if (lockmgr(&fs->map->lock, LK_EXCLUSIVE|LK_NOWAIT))
341 				return 0;
342 			fs->lookup_still_valid = 1;
343 			if (virtual_copy_test(fs)) {
344 				fs->map_generation = ++fs->map->timestamp;
345 				return 1;
346 			}
347 			fs->lookup_still_valid = 0;
348 			lockmgr(&fs->map->lock, LK_RELEASE);
349 		}
350 	}
351 	return 0;
352 }
353 #endif
354 
355 /*
356  * TRYPAGER
357  *
358  * Determine if the pager for the current object *might* contain the page.
359  *
360  * We only need to try the pager if this is not a default object (default
361  * objects are zero-fill and have no real pager), and if we are not taking
362  * a wiring fault or if the FS entry is wired.
363  */
364 #define TRYPAGER(fs)	\
365 		(fs->ba->object->type != OBJT_DEFAULT &&		\
366 		(((fs->fault_flags & VM_FAULT_WIRE_MASK) == 0) ||	\
367 		 (fs->wflags & FW_WIRED)))
368 
369 /*
370  * vm_fault:
371  *
372  * Handle a page fault occuring at the given address, requiring the given
373  * permissions, in the map specified.  If successful, the page is inserted
374  * into the associated physical map.
375  *
376  * NOTE: The given address should be truncated to the proper page address.
377  *
378  * KERN_SUCCESS is returned if the page fault is handled; otherwise,
379  * a standard error specifying why the fault is fatal is returned.
380  *
381  * The map in question must be referenced, and remains so.
382  * The caller may hold no locks.
383  * No other requirements.
384  */
385 int
386 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, int fault_flags)
387 {
388 	vm_pindex_t first_pindex;
389 	vm_pindex_t first_count;
390 	struct faultstate fs;
391 	struct lwp *lp;
392 	struct proc *p;
393 	thread_t td;
394 	int mextcount;
395 	int growstack;
396 	int retry = 0;
397 	int inherit_prot;
398 	int result;
399 	int n;
400 
401 	inherit_prot = fault_type & VM_PROT_NOSYNC;
402 	fs.hardfault = 0;
403 	fs.fault_flags = fault_flags;
404 	fs.vp = NULL;
405 	fs.shared = vm_shared_fault;
406 	fs.first_shared = vm_shared_fault;
407 	growstack = 1;
408 
409 	/*
410 	 * vm_map interactions
411 	 */
412 	td = curthread;
413 	if ((lp = td->td_lwp) != NULL)
414 		lp->lwp_flags |= LWP_PAGING;
415 
416 RetryFault:
417 	/*
418 	 * vm_fault_bypass() can shortcut us.
419 	 */
420 	fs.msoftonly = 0;
421 	fs.first_ba_held = 0;
422 	mextcount = 1;
423 
424 	/*
425 	 * Find the vm_map_entry representing the backing store and resolve
426 	 * the top level object and page index.  This may have the side
427 	 * effect of executing a copy-on-write on the map entry,
428 	 * creating a shadow object, or splitting an anonymous entry for
429 	 * performance, but will not COW any actual VM pages.
430 	 *
431 	 * On success fs.map is left read-locked and various other fields
432 	 * are initialized but not otherwise referenced or locked.
433 	 *
434 	 * NOTE!  vm_map_lookup will try to upgrade the fault_type to
435 	 *	  VM_FAULT_WRITE if the map entry is a virtual page table
436 	 *	  and also writable, so we can set the 'A'accessed bit in
437 	 *	  the virtual page table entry.
438 	 */
439 	fs.map = map;
440 	result = vm_map_lookup(&fs.map, vaddr, fault_type,
441 			       &fs.entry, &fs.first_ba,
442 			       &first_pindex, &first_count,
443 			       &fs.first_prot, &fs.wflags);
444 
445 	/*
446 	 * If the lookup failed or the map protections are incompatible,
447 	 * the fault generally fails.
448 	 *
449 	 * The failure could be due to TDF_NOFAULT if vm_map_lookup()
450 	 * tried to do a COW fault.
451 	 *
452 	 * If the caller is trying to do a user wiring we have more work
453 	 * to do.
454 	 */
455 	if (result != KERN_SUCCESS) {
456 		if (result == KERN_FAILURE_NOFAULT) {
457 			result = KERN_FAILURE;
458 			goto done;
459 		}
460 		if (result != KERN_PROTECTION_FAILURE ||
461 		    (fs.fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE)
462 		{
463 			if (result == KERN_INVALID_ADDRESS && growstack &&
464 			    map != kernel_map && curproc != NULL) {
465 				result = vm_map_growstack(map, vaddr);
466 				if (result == KERN_SUCCESS) {
467 					growstack = 0;
468 					++retry;
469 					goto RetryFault;
470 				}
471 				result = KERN_FAILURE;
472 			}
473 			goto done;
474 		}
475 
476 		/*
477 		 * If we are user-wiring a r/w segment, and it is COW, then
478 		 * we need to do the COW operation.  Note that we don't
479 		 * currently COW RO sections now, because it is NOT desirable
480 		 * to COW .text.  We simply keep .text from ever being COW'ed
481 		 * and take the heat that one cannot debug wired .text sections.
482 		 *
483 		 * XXX Try to allow the above by specifying OVERRIDE_WRITE.
484 		 */
485 		result = vm_map_lookup(&fs.map, vaddr,
486 				       VM_PROT_READ | VM_PROT_WRITE |
487 				        VM_PROT_OVERRIDE_WRITE,
488 				       &fs.entry, &fs.first_ba,
489 				       &first_pindex, &first_count,
490 				       &fs.first_prot, &fs.wflags);
491 		if (result != KERN_SUCCESS) {
492 			/* could also be KERN_FAILURE_NOFAULT */
493 			result = KERN_FAILURE;
494 			goto done;
495 		}
496 
497 		/*
498 		 * If we don't COW now, on a user wire, the user will never
499 		 * be able to write to the mapping.  If we don't make this
500 		 * restriction, the bookkeeping would be nearly impossible.
501 		 *
502 		 * XXX We have a shared lock, this will have a MP race but
503 		 * I don't see how it can hurt anything.
504 		 */
505 		if ((fs.first_prot & VM_PROT_WRITE) == 0) {
506 			atomic_clear_char(&fs.entry->max_protection,
507 					  VM_PROT_WRITE);
508 		}
509 	}
510 
511 	/*
512 	 * fs.map is read-locked
513 	 *
514 	 * Misc checks.  Save the map generation number to detect races.
515 	 */
516 	fs.lookup_still_valid = 1;
517 	fs.first_m = NULL;
518 	fs.ba = fs.first_ba;		/* so unlock_things() works */
519 	fs.prot = fs.first_prot;	/* default (used by uksmap) */
520 
521 	if (fs.entry->eflags & (MAP_ENTRY_NOFAULT | MAP_ENTRY_KSTACK)) {
522 		if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
523 			panic("vm_fault: fault on nofault entry, addr: %p",
524 			      (void *)vaddr);
525 		}
526 		if ((fs.entry->eflags & MAP_ENTRY_KSTACK) &&
527 		    vaddr >= fs.entry->ba.start &&
528 		    vaddr < fs.entry->ba.start + PAGE_SIZE) {
529 			panic("vm_fault: fault on stack guard, addr: %p",
530 			      (void *)vaddr);
531 		}
532 	}
533 
534 	/*
535 	 * A user-kernel shared map has no VM object and bypasses
536 	 * everything.  We execute the uksmap function with a temporary
537 	 * fictitious vm_page.  The address is directly mapped with no
538 	 * management.
539 	 */
540 	if (fs.entry->maptype == VM_MAPTYPE_UKSMAP) {
541 		struct vm_page fakem;
542 
543 		bzero(&fakem, sizeof(fakem));
544 		fakem.pindex = first_pindex;
545 		fakem.flags = PG_FICTITIOUS | PG_UNQUEUED;
546 		fakem.busy_count = PBUSY_LOCKED;
547 		fakem.valid = VM_PAGE_BITS_ALL;
548 		fakem.pat_mode = VM_MEMATTR_DEFAULT;
549 		if (fs.entry->ba.uksmap(&fs.entry->ba, UKSMAPOP_FAULT,
550 					fs.entry->aux.dev, &fakem)) {
551 			result = KERN_FAILURE;
552 			unlock_things(&fs);
553 			goto done2;
554 		}
555 		pmap_enter(fs.map->pmap, vaddr, &fakem, fs.prot | inherit_prot,
556 			   (fs.wflags & FW_WIRED), fs.entry);
557 		goto done_success;
558 	}
559 
560 	/*
561 	 * A system map entry may return a NULL object.  No object means
562 	 * no pager means an unrecoverable kernel fault.
563 	 */
564 	if (fs.first_ba == NULL) {
565 		panic("vm_fault: unrecoverable fault at %p in entry %p",
566 			(void *)vaddr, fs.entry);
567 	}
568 
569 	/*
570 	 * Fail here if not a trivial anonymous page fault and TDF_NOFAULT
571 	 * is set.
572 	 *
573 	 * Unfortunately a deadlock can occur if we are forced to page-in
574 	 * from swap, but diving all the way into the vm_pager_get_page()
575 	 * function to find out is too much.  Just check the object type.
576 	 *
577 	 * The deadlock is a CAM deadlock on a busy VM page when trying
578 	 * to finish an I/O if another process gets stuck in
579 	 * vop_helper_read_shortcut() due to a swap fault.
580 	 */
581 	if ((td->td_flags & TDF_NOFAULT) &&
582 	    (retry ||
583 	     fs.first_ba->object->type == OBJT_VNODE ||
584 	     fs.first_ba->object->type == OBJT_SWAP ||
585 	     fs.first_ba->backing_ba)) {
586 		result = KERN_FAILURE;
587 		unlock_things(&fs);
588 		goto done2;
589 	}
590 
591 	/*
592 	 * If the entry is wired the page protection level is limited to
593 	 * what the vm_map_lookup() allowed us.
594 	 *
595 	 * XXX it is unclear if this code is still needed as vm_map_lookup()
596 	 * no longer prevents protection changes on locked memory.  REMOVE
597 	 * IF WE DETERMINE THAT THIS CODE IS NO LONGER NEEDED.
598 	 */
599 	if (fs.wflags & FW_WIRED)
600 		fault_type = fs.first_prot;
601 
602 	/*
603 	 * We generally want to avoid unnecessary exclusive modes on backing
604 	 * and terminal objects because this can seriously interfere with
605 	 * heavily fork()'d processes (particularly /bin/sh scripts).
606 	 *
607 	 * However, we also want to avoid unnecessary retries due to needed
608 	 * shared->exclusive promotion for common faults.  Exclusive mode is
609 	 * always needed if any page insertion, rename, or free occurs in an
610 	 * object (and also indirectly if any I/O is done).
611 	 *
612 	 * The main issue here is going to be fs.first_shared.  If the
613 	 * first_object has a backing object which isn't shadowed and the
614 	 * process is single-threaded we might as well use an exclusive
615 	 * lock/chain right off the bat.
616 	 */
617 #if 0
618 	/* WORK IN PROGRESS, CODE REMOVED */
619 	if (fs.first_shared && fs.first_object->backing_object &&
620 	    LIST_EMPTY(&fs.first_object->shadow_head) &&
621 	    td->td_proc && td->td_proc->p_nthreads == 1) {
622 		fs.first_shared = 0;
623 	}
624 #endif
625 
626 	/*
627 	 * VM_FAULT_UNSWAP - swap_pager_unswapped() needs an exclusive object
628 	 * VM_FAULT_DIRTY  - may require swap_pager_unswapped() later, but
629 	 *		     we can try shared first.
630 	 */
631 	if (fault_flags & VM_FAULT_UNSWAP)
632 		fs.first_shared = 0;
633 
634 	/*
635 	 * Try to shortcut the entire mess and run the fault lockless.
636 	 * This will burst in multiple pages via fs->mary[].
637 	 */
638 	if (vm_fault_bypass_count &&
639 	    vm_fault_bypass(&fs, first_pindex, first_count,
640 			   &mextcount, fault_type) == KERN_SUCCESS) {
641 		fault_flags &= ~VM_FAULT_BURST;
642 		goto success;
643 	}
644 
645 	/*
646 	 * Exclusive heuristic (alloc page vs page exists)
647 	 */
648 	if (fs.first_ba->flags & VM_MAP_BACK_EXCL_HEUR)
649 		fs.first_shared = 0;
650 
651 	/*
652 	 * Obtain a top-level object lock, shared or exclusive depending
653 	 * on fs.first_shared.  If a shared lock winds up being insufficient
654 	 * we will retry with an exclusive lock.
655 	 *
656 	 * The vnode pager lock is always shared.
657 	 */
658 	if (fs.first_shared)
659 		vm_object_hold_shared(fs.first_ba->object);
660 	else
661 		vm_object_hold(fs.first_ba->object);
662 	if (fs.vp == NULL)
663 		fs.vp = vnode_pager_lock(fs.first_ba);
664 	fs.first_ba_held = 1;
665 
666 	/*
667 	 * The page we want is at (first_object, first_pindex).
668 	 *
669 	 * Now we have the actual (object, pindex), fault in the page.  If
670 	 * vm_fault_object() fails it will unlock and deallocate the FS
671 	 * data.   If it succeeds everything remains locked and fs->ba->object
672 	 * will have an additional PIP count if fs->ba != fs->first_ba.
673 	 *
674 	 * vm_fault_object will set fs->prot for the pmap operation.  It is
675 	 * allowed to set VM_PROT_WRITE if fault_type == VM_PROT_READ if the
676 	 * page can be safely written.  However, it will force a read-only
677 	 * mapping for a read fault if the memory is managed by a virtual
678 	 * page table.
679 	 *
680 	 * If the fault code uses the shared object lock shortcut
681 	 * we must not try to burst (we can't allocate VM pages).
682 	 */
683 	result = vm_fault_object(&fs, first_pindex, fault_type, 1);
684 
685 	if (debug_fault > 0) {
686 		--debug_fault;
687 		kprintf("VM_FAULT result %d addr=%jx type=%02x flags=%02x "
688 			"fs.m=%p fs.prot=%02x fs.wflags=%02x fs.entry=%p\n",
689 			result, (intmax_t)vaddr, fault_type, fault_flags,
690 			fs.mary[0], fs.prot, fs.wflags, fs.entry);
691 	}
692 
693 	if (result == KERN_TRY_AGAIN) {
694 		++retry;
695 		goto RetryFault;
696 	}
697 	if (result != KERN_SUCCESS) {
698 		goto done;
699 	}
700 
701 success:
702 	/*
703 	 * On success vm_fault_object() does not unlock or deallocate, and fs.m
704 	 * will contain a busied page.  It does drop fs->ba if appropriate.
705 	 *
706 	 * Enter the page into the pmap and do pmap-related adjustments.
707 	 *
708 	 * WARNING! Soft-busied fs.m's can only be manipulated in limited
709 	 *	    ways.
710 	 */
711 	KKASSERT(fs.lookup_still_valid != 0);
712 	vm_page_flag_set(fs.mary[0], PG_REFERENCED);
713 
714 	for (n = 0; n < mextcount; ++n) {
715 		pmap_enter(fs.map->pmap, vaddr + (n << PAGE_SHIFT),
716 			   fs.mary[n], fs.prot | inherit_prot,
717 			   fs.wflags & FW_WIRED, fs.entry);
718 	}
719 
720 	/*
721 	 * If the page is not wired down, then put it where the pageout daemon
722 	 * can find it.
723 	 *
724 	 * NOTE: We cannot safely wire, unwire, or adjust queues for a
725 	 *	 soft-busied page.
726 	 */
727 	for (n = 0; n < mextcount; ++n) {
728 		if (fs.msoftonly) {
729 			KKASSERT(fs.mary[n]->busy_count & PBUSY_MASK);
730 			KKASSERT((fs.fault_flags & VM_FAULT_WIRE_MASK) == 0);
731 			vm_page_sbusy_drop(fs.mary[n]);
732 		} else {
733 			if (fs.fault_flags & VM_FAULT_WIRE_MASK) {
734 				if (fs.wflags & FW_WIRED)
735 					vm_page_wire(fs.mary[n]);
736 				else
737 					vm_page_unwire(fs.mary[n], 1);
738 			} else {
739 				vm_page_activate(fs.mary[n]);
740 			}
741 			KKASSERT(fs.mary[n]->busy_count & PBUSY_LOCKED);
742 			vm_page_wakeup(fs.mary[n]);
743 		}
744 	}
745 
746 	/*
747 	 * Burst in a few more pages if possible.  The fs.map should still
748 	 * be locked.  To avoid interlocking against a vnode->getblk
749 	 * operation we had to be sure to unbusy our primary vm_page above
750 	 * first.
751 	 *
752 	 * A normal burst can continue down backing store, only execute
753 	 * if we are holding an exclusive lock, otherwise the exclusive
754 	 * locks the burst code gets might cause excessive SMP collisions.
755 	 *
756 	 * A quick burst can be utilized when there is no backing object
757 	 * (i.e. a shared file mmap).
758 	 */
759 	if ((fault_flags & VM_FAULT_BURST) &&
760 	    (fs.fault_flags & VM_FAULT_WIRE_MASK) == 0 &&
761 	    (fs.wflags & FW_WIRED) == 0) {
762 		if (fs.first_shared == 0 && fs.shared == 0) {
763 			vm_prefault(fs.map->pmap, vaddr,
764 				    fs.entry, fs.prot, fault_flags);
765 		} else {
766 			vm_prefault_quick(fs.map->pmap, vaddr,
767 					  fs.entry, fs.prot, fault_flags);
768 		}
769 	}
770 
771 done_success:
772 	/*
773 	 * Unlock everything, and return
774 	 */
775 	unlock_things(&fs);
776 
777 	mycpu->gd_cnt.v_vm_faults++;
778 	if (td->td_lwp) {
779 		if (fs.hardfault) {
780 			++td->td_lwp->lwp_ru.ru_majflt;
781 		} else {
782 			++td->td_lwp->lwp_ru.ru_minflt;
783 		}
784 	}
785 
786 	/*vm_object_deallocate(fs.first_ba->object);*/
787 	/*fs.m = NULL; */
788 
789 	result = KERN_SUCCESS;
790 done:
791 	if (fs.first_ba && fs.first_ba->object && fs.first_ba_held == 1) {
792 		vm_object_drop(fs.first_ba->object);
793 		fs.first_ba_held = 0;
794 	}
795 done2:
796 	if (lp)
797 		lp->lwp_flags &= ~LWP_PAGING;
798 
799 #if !defined(NO_SWAPPING)
800 	/*
801 	 * Check the process RSS limit and force deactivation and
802 	 * (asynchronous) paging if necessary.  This is a complex operation,
803 	 * only do it for direct user-mode faults, for now.
804 	 *
805 	 * To reduce overhead implement approximately a ~16MB hysteresis.
806 	 */
807 	p = td->td_proc;
808 	if ((fault_flags & VM_FAULT_USERMODE) && lp &&
809 	    p->p_limit && map->pmap && vm_pageout_memuse_mode >= 1 &&
810 	    map != kernel_map) {
811 		vm_pindex_t limit;
812 		vm_pindex_t size;
813 
814 		limit = OFF_TO_IDX(qmin(p->p_rlimit[RLIMIT_RSS].rlim_cur,
815 					p->p_rlimit[RLIMIT_RSS].rlim_max));
816 		size = pmap_resident_tlnw_count(map->pmap);
817 		if (limit >= 0 && size > 4096 && size - 4096 >= limit) {
818 			vm_pageout_map_deactivate_pages(map, limit);
819 		}
820 	}
821 #endif
822 
823 	if (result != KERN_SUCCESS && debug_fault < 0) {
824 		kprintf("VM_FAULT %d:%d (%s) result %d "
825 			"addr=%jx type=%02x flags=%02x "
826 			"fs.m=%p fs.prot=%02x fs.wflags=%02x fs.entry=%p\n",
827 			(curthread->td_proc ? curthread->td_proc->p_pid : -1),
828 			(curthread->td_lwp ? curthread->td_lwp->lwp_tid : -1),
829 			curthread->td_comm,
830 			result,
831 			(intmax_t)vaddr, fault_type, fault_flags,
832 			fs.mary[0], fs.prot, fs.wflags, fs.entry);
833 		while (debug_fault < 0 && (debug_fault & 1))
834 			tsleep(&debug_fault, 0, "DEBUG", hz);
835 	}
836 
837 	return (result);
838 }
839 
840 /*
841  * Attempt a lockless vm_fault() shortcut.  The stars have to align for this
842  * to work.  But if it does we can get our page only soft-busied and not
843  * have to touch the vm_object or vnode locks at all.
844  */
845 static
846 int
847 vm_fault_bypass(struct faultstate *fs, vm_pindex_t first_pindex,
848 	       vm_pindex_t first_count, int *mextcountp,
849 	       vm_prot_t fault_type)
850 {
851 	vm_page_t m;
852 	vm_object_t obj;	/* NOT LOCKED */
853 	int n;
854 	int nlim;
855 
856 	/*
857 	 * Don't waste time if the object is only being used by one vm_map.
858 	 */
859 	obj = fs->first_ba->object;
860 #if 0
861 	if (obj->flags & OBJ_ONEMAPPING)
862 		return KERN_FAILURE;
863 #endif
864 
865 	/*
866 	 * This will try to wire/unwire a page, which can't be done with
867 	 * a soft-busied page.
868 	 */
869 	if (fs->fault_flags & VM_FAULT_WIRE_MASK)
870 		return KERN_FAILURE;
871 
872 	/*
873 	 * Ok, try to get the vm_page quickly via the hash table.  The
874 	 * page will be soft-busied on success (NOT hard-busied).
875 	 */
876 	m = vm_page_hash_get(obj, first_pindex);
877 	if (m == NULL) {
878 #ifdef VM_FAULT_QUICK_DEBUG
879 		++vm_fault_bypass_failure_count2;
880 #endif
881 		return KERN_FAILURE;
882 	}
883 	if ((obj->flags & OBJ_DEAD) ||
884 	    m->valid != VM_PAGE_BITS_ALL ||
885 	    m->queue - m->pc != PQ_ACTIVE ||
886 	    (m->flags & PG_SWAPPED)) {
887 		vm_page_sbusy_drop(m);
888 #ifdef VM_FAULT_QUICK_DEBUG
889 		++vm_fault_bypass_failure_count3;
890 #endif
891 		return KERN_FAILURE;
892 	}
893 
894 	/*
895 	 * The page is already fully valid, ACTIVE, and is not PG_SWAPPED.
896 	 *
897 	 * Don't map the page writable when emulating the dirty bit, a
898 	 * fault must be taken for proper emulation (vkernel).
899 	 */
900 	if (curthread->td_lwp && curthread->td_lwp->lwp_vmspace &&
901 	    pmap_emulate_ad_bits(&curthread->td_lwp->lwp_vmspace->vm_pmap)) {
902 		if ((fault_type & VM_PROT_WRITE) == 0)
903 			fs->prot &= ~VM_PROT_WRITE;
904 	}
905 
906 	/*
907 	 * If this is a write fault the object and the page must already
908 	 * be writable.  Since we don't hold an object lock and only a
909 	 * soft-busy on the page, we cannot manipulate the object or
910 	 * the page state (other than the page queue).
911 	 */
912 	if (fs->prot & VM_PROT_WRITE) {
913 		if ((obj->flags & (OBJ_WRITEABLE | OBJ_MIGHTBEDIRTY)) !=
914 		    (OBJ_WRITEABLE | OBJ_MIGHTBEDIRTY) ||
915 		    m->dirty != VM_PAGE_BITS_ALL) {
916 			vm_page_sbusy_drop(m);
917 #ifdef VM_FAULT_QUICK_DEBUG
918 			++vm_fault_bypass_failure_count4;
919 #endif
920 			return KERN_FAILURE;
921 		}
922 		vm_set_nosync(m, fs->entry);
923 	}
924 
925 	/*
926 	 * Set page and potentially burst in more
927 	 *
928 	 * Even though we are only soft-busied we can still move pages
929 	 * around in the normal queue(s).  The soft-busy prevents the
930 	 * page from being removed from the object, etc (normal operation).
931 	 *
932 	 * However, in this fast path it is excessively important to avoid
933 	 * any hard locks, so we use a special passive version of activate.
934 	 */
935 	fs->msoftonly = 1;
936 	fs->mary[0] = m;
937 	vm_page_soft_activate(m);
938 
939 	if (vm_fault_bypass_count > 1) {
940 		nlim = vm_fault_bypass_count;
941 		if (nlim > VM_FAULT_MAX_QUICK)		/* array limit(+1) */
942 			nlim = VM_FAULT_MAX_QUICK;
943 		if (nlim > first_count)			/* user limit */
944 			nlim = first_count;
945 
946 		for (n = 1; n < nlim; ++n) {
947 			m = vm_page_hash_get(obj, first_pindex + n);
948 			if (m == NULL)
949 				break;
950 			if (m->valid != VM_PAGE_BITS_ALL ||
951 			    m->queue - m->pc != PQ_ACTIVE ||
952 			    (m->flags & PG_SWAPPED)) {
953 				vm_page_sbusy_drop(m);
954 				break;
955 			}
956 			if (fs->prot & VM_PROT_WRITE) {
957 				if ((obj->flags & (OBJ_WRITEABLE |
958 						   OBJ_MIGHTBEDIRTY)) !=
959 				    (OBJ_WRITEABLE | OBJ_MIGHTBEDIRTY) ||
960 				    m->dirty != VM_PAGE_BITS_ALL) {
961 					vm_page_sbusy_drop(m);
962 					break;
963 				}
964 			}
965 			vm_page_soft_activate(m);
966 			fs->mary[n] = m;
967 		}
968 		*mextcountp = n;
969 	}
970 
971 #ifdef VM_FAULT_QUICK_DEBUG
972 	++vm_fault_bypass_success_count;
973 #endif
974 
975 	return KERN_SUCCESS;
976 }
977 
978 /*
979  * Fault in the specified virtual address in the current process map,
980  * returning a held VM page or NULL.  See vm_fault_page() for more
981  * information.
982  *
983  * No requirements.
984  */
985 vm_page_t
986 vm_fault_page_quick(vm_offset_t va, vm_prot_t fault_type,
987 		    int *errorp, int *busyp)
988 {
989 	struct lwp *lp = curthread->td_lwp;
990 	vm_page_t m;
991 
992 	m = vm_fault_page(&lp->lwp_vmspace->vm_map, va,
993 			  fault_type, VM_FAULT_NORMAL,
994 			  errorp, busyp);
995 	return(m);
996 }
997 
998 /*
999  * Fault in the specified virtual address in the specified map, doing all
1000  * necessary manipulation of the object store and all necessary I/O.  Return
1001  * a held VM page or NULL, and set *errorp.  The related pmap is not
1002  * updated.
1003  *
1004  * If busyp is not NULL then *busyp will be set to TRUE if this routine
1005  * decides to return a busied page (aka VM_PROT_WRITE), or FALSE if it
1006  * does not (VM_PROT_WRITE not specified or busyp is NULL).  If busyp is
1007  * NULL the returned page is only held.
1008  *
1009  * If the caller has no intention of writing to the page's contents, busyp
1010  * can be passed as NULL along with VM_PROT_WRITE to force a COW operation
1011  * without busying the page.
1012  *
1013  * The returned page will also be marked PG_REFERENCED.
1014  *
1015  * If the page cannot be faulted writable and VM_PROT_WRITE was specified, an
1016  * error will be returned.
1017  *
1018  * No requirements.
1019  */
1020 vm_page_t
1021 vm_fault_page(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
1022 	      int fault_flags, int *errorp, int *busyp)
1023 {
1024 	vm_pindex_t first_pindex;
1025 	vm_pindex_t first_count;
1026 	struct faultstate fs;
1027 	int result;
1028 	int retry;
1029 	int growstack;
1030 	int didcow;
1031 	vm_prot_t orig_fault_type = fault_type;
1032 
1033 	retry = 0;
1034 	didcow = 0;
1035 	fs.hardfault = 0;
1036 	fs.fault_flags = fault_flags;
1037 	KKASSERT((fault_flags & VM_FAULT_WIRE_MASK) == 0);
1038 
1039 	/*
1040 	 * Dive the pmap (concurrency possible).  If we find the
1041 	 * appropriate page we can terminate early and quickly.
1042 	 *
1043 	 * This works great for normal programs but will always return
1044 	 * NULL for host lookups of vkernel maps in VMM mode.
1045 	 *
1046 	 * NOTE: pmap_fault_page_quick() might not busy the page.  If
1047 	 *	 VM_PROT_WRITE is set in fault_type and pmap_fault_page_quick()
1048 	 *	 returns non-NULL, it will safely dirty the returned vm_page_t
1049 	 *	 for us.  We cannot safely dirty it here (it might not be
1050 	 *	 busy).
1051 	 */
1052 	fs.mary[0] = pmap_fault_page_quick(map->pmap, vaddr, fault_type, busyp);
1053 	if (fs.mary[0]) {
1054 		*errorp = 0;
1055 		return(fs.mary[0]);
1056 	}
1057 
1058 	/*
1059 	 * Otherwise take a concurrency hit and do a formal page
1060 	 * fault.
1061 	 */
1062 	fs.vp = NULL;
1063 	fs.shared = vm_shared_fault;
1064 	fs.first_shared = vm_shared_fault;
1065 	fs.msoftonly = 0;
1066 	growstack = 1;
1067 
1068 	/*
1069 	 * VM_FAULT_UNSWAP - swap_pager_unswapped() needs an exclusive object
1070 	 * VM_FAULT_DIRTY  - may require swap_pager_unswapped() later, but
1071 	 *		     we can try shared first.
1072 	 */
1073 	if (fault_flags & VM_FAULT_UNSWAP) {
1074 		fs.first_shared = 0;
1075 	}
1076 
1077 RetryFault:
1078 	/*
1079 	 * Find the vm_map_entry representing the backing store and resolve
1080 	 * the top level object and page index.  This may have the side
1081 	 * effect of executing a copy-on-write on the map entry and/or
1082 	 * creating a shadow object, but will not COW any actual VM pages.
1083 	 *
1084 	 * On success fs.map is left read-locked and various other fields
1085 	 * are initialized but not otherwise referenced or locked.
1086 	 *
1087 	 * NOTE!  vm_map_lookup will upgrade the fault_type to VM_FAULT_WRITE
1088 	 *	  if the map entry is a virtual page table and also writable,
1089 	 *	  so we can set the 'A'accessed bit in the virtual page table
1090 	 *	  entry.
1091 	 */
1092 	fs.map = map;
1093 	fs.first_ba_held = 0;
1094 	result = vm_map_lookup(&fs.map, vaddr, fault_type,
1095 			       &fs.entry, &fs.first_ba,
1096 			       &first_pindex, &first_count,
1097 			       &fs.first_prot, &fs.wflags);
1098 
1099 	if (result != KERN_SUCCESS) {
1100 		if (result == KERN_FAILURE_NOFAULT) {
1101 			*errorp = KERN_FAILURE;
1102 			fs.mary[0] = NULL;
1103 			goto done;
1104 		}
1105 		if (result != KERN_PROTECTION_FAILURE ||
1106 		    (fs.fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE)
1107 		{
1108 			if (result == KERN_INVALID_ADDRESS && growstack &&
1109 			    map != kernel_map && curproc != NULL) {
1110 				result = vm_map_growstack(map, vaddr);
1111 				if (result == KERN_SUCCESS) {
1112 					growstack = 0;
1113 					++retry;
1114 					goto RetryFault;
1115 				}
1116 				result = KERN_FAILURE;
1117 			}
1118 			fs.mary[0] = NULL;
1119 			*errorp = result;
1120 			goto done;
1121 		}
1122 
1123 		/*
1124 		 * If we are user-wiring a r/w segment, and it is COW, then
1125 		 * we need to do the COW operation.  Note that we don't
1126 		 * currently COW RO sections now, because it is NOT desirable
1127 		 * to COW .text.  We simply keep .text from ever being COW'ed
1128 		 * and take the heat that one cannot debug wired .text sections.
1129 		 */
1130 		result = vm_map_lookup(&fs.map, vaddr,
1131 				       VM_PROT_READ | VM_PROT_WRITE |
1132 				        VM_PROT_OVERRIDE_WRITE,
1133 				       &fs.entry, &fs.first_ba,
1134 				       &first_pindex, &first_count,
1135 				       &fs.first_prot, &fs.wflags);
1136 		if (result != KERN_SUCCESS) {
1137 			/* could also be KERN_FAILURE_NOFAULT */
1138 			*errorp = KERN_FAILURE;
1139 			fs.mary[0] = NULL;
1140 			goto done;
1141 		}
1142 
1143 		/*
1144 		 * If we don't COW now, on a user wire, the user will never
1145 		 * be able to write to the mapping.  If we don't make this
1146 		 * restriction, the bookkeeping would be nearly impossible.
1147 		 *
1148 		 * XXX We have a shared lock, this will have a MP race but
1149 		 * I don't see how it can hurt anything.
1150 		 */
1151 		if ((fs.first_prot & VM_PROT_WRITE) == 0) {
1152 			atomic_clear_char(&fs.entry->max_protection,
1153 					  VM_PROT_WRITE);
1154 		}
1155 	}
1156 
1157 	/*
1158 	 * fs.map is read-locked
1159 	 *
1160 	 * Misc checks.  Save the map generation number to detect races.
1161 	 */
1162 	fs.lookup_still_valid = 1;
1163 	fs.first_m = NULL;
1164 	fs.ba = fs.first_ba;
1165 
1166 	if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
1167 		panic("vm_fault: fault on nofault entry, addr: %lx",
1168 		    (u_long)vaddr);
1169 	}
1170 
1171 	/*
1172 	 * A user-kernel shared map has no VM object and bypasses
1173 	 * everything.  We execute the uksmap function with a temporary
1174 	 * fictitious vm_page.  The address is directly mapped with no
1175 	 * management.
1176 	 */
1177 	if (fs.entry->maptype == VM_MAPTYPE_UKSMAP) {
1178 		struct vm_page fakem;
1179 
1180 		bzero(&fakem, sizeof(fakem));
1181 		fakem.pindex = first_pindex;
1182 		fakem.flags = PG_FICTITIOUS | PG_UNQUEUED;
1183 		fakem.busy_count = PBUSY_LOCKED;
1184 		fakem.valid = VM_PAGE_BITS_ALL;
1185 		fakem.pat_mode = VM_MEMATTR_DEFAULT;
1186 		if (fs.entry->ba.uksmap(&fs.entry->ba, UKSMAPOP_FAULT,
1187 					fs.entry->aux.dev, &fakem)) {
1188 			*errorp = KERN_FAILURE;
1189 			fs.mary[0] = NULL;
1190 			unlock_things(&fs);
1191 			goto done2;
1192 		}
1193 		fs.mary[0] = PHYS_TO_VM_PAGE(fakem.phys_addr);
1194 		vm_page_hold(fs.mary[0]);
1195 		if (busyp)
1196 			*busyp = 0;	/* don't need to busy R or W */
1197 		unlock_things(&fs);
1198 		*errorp = 0;
1199 		goto done;
1200 	}
1201 
1202 
1203 	/*
1204 	 * A system map entry may return a NULL object.  No object means
1205 	 * no pager means an unrecoverable kernel fault.
1206 	 */
1207 	if (fs.first_ba == NULL) {
1208 		panic("vm_fault: unrecoverable fault at %p in entry %p",
1209 			(void *)vaddr, fs.entry);
1210 	}
1211 
1212 	/*
1213 	 * Fail here if not a trivial anonymous page fault and TDF_NOFAULT
1214 	 * is set.
1215 	 *
1216 	 * Unfortunately a deadlock can occur if we are forced to page-in
1217 	 * from swap, but diving all the way into the vm_pager_get_page()
1218 	 * function to find out is too much.  Just check the object type.
1219 	 */
1220 	if ((curthread->td_flags & TDF_NOFAULT) &&
1221 	    (retry ||
1222 	     fs.first_ba->object->type == OBJT_VNODE ||
1223 	     fs.first_ba->object->type == OBJT_SWAP ||
1224 	     fs.first_ba->backing_ba)) {
1225 		*errorp = KERN_FAILURE;
1226 		unlock_things(&fs);
1227 		fs.mary[0] = NULL;
1228 		goto done2;
1229 	}
1230 
1231 	/*
1232 	 * If the entry is wired the page protection level is limited to
1233 	 * what the vm_map_lookup() allowed us.
1234 	 *
1235 	 * XXX it is unclear if this code is still needed as vm_map_lookup()
1236 	 * no longer prevents protection changes on locked memory.  REMOVE
1237 	 * IF WE DETERMINE THAT THIS CODE IS NO LONGER NEEDED.
1238 	 */
1239 	if (fs.wflags & FW_WIRED)
1240 		fault_type = fs.first_prot;
1241 
1242 	/*
1243 	 * Make a reference to this object to prevent its disposal while we
1244 	 * are messing with it.  Once we have the reference, the map is free
1245 	 * to be diddled.  Since objects reference their shadows (and copies),
1246 	 * they will stay around as well.
1247 	 *
1248 	 * The reference should also prevent an unexpected collapse of the
1249 	 * parent that might move pages from the current object into the
1250 	 * parent unexpectedly, resulting in corruption.
1251 	 *
1252 	 * Bump the paging-in-progress count to prevent size changes (e.g.
1253 	 * truncation operations) during I/O.  This must be done after
1254 	 * obtaining the vnode lock in order to avoid possible deadlocks.
1255 	 */
1256 	if (fs.first_ba->flags & VM_MAP_BACK_EXCL_HEUR)
1257 		fs.first_shared = 0;
1258 
1259 	if (fs.first_shared)
1260 		vm_object_hold_shared(fs.first_ba->object);
1261 	else
1262 		vm_object_hold(fs.first_ba->object);
1263 	fs.first_ba_held = 1;
1264 	if (fs.vp == NULL)
1265 		fs.vp = vnode_pager_lock(fs.first_ba);	/* shared */
1266 
1267 	/*
1268 	 * The page we want is at (first_object, first_pindex).
1269 	 *
1270 	 * Now we have the actual (object, pindex), fault in the page.  If
1271 	 * vm_fault_object() fails it will unlock and deallocate the FS
1272 	 * data.   If it succeeds everything remains locked and fs->ba->object
1273 	 * will have an additinal PIP count if fs->ba != fs->first_ba.
1274 	 */
1275 	fs.mary[0] = NULL;
1276 	result = vm_fault_object(&fs, first_pindex, fault_type, 1);
1277 
1278 	if (result == KERN_TRY_AGAIN) {
1279 		KKASSERT(fs.first_ba_held == 0);
1280 		++retry;
1281 		didcow |= fs.wflags & FW_DIDCOW;
1282 		goto RetryFault;
1283 	}
1284 	if (result != KERN_SUCCESS) {
1285 		*errorp = result;
1286 		fs.mary[0] = NULL;
1287 		goto done;
1288 	}
1289 
1290 	if ((orig_fault_type & VM_PROT_WRITE) &&
1291 	    (fs.prot & VM_PROT_WRITE) == 0) {
1292 		*errorp = KERN_PROTECTION_FAILURE;
1293 		unlock_things(&fs);
1294 		fs.mary[0] = NULL;
1295 		goto done;
1296 	}
1297 
1298 	/*
1299 	 * Generally speaking we don't want to update the pmap because
1300 	 * this routine can be called many times for situations that do
1301 	 * not require updating the pmap, not to mention the page might
1302 	 * already be in the pmap.
1303 	 *
1304 	 * However, if our vm_map_lookup() results in a COW, we need to
1305 	 * at least remove the pte from the pmap to guarantee proper
1306 	 * visibility of modifications made to the process.  For example,
1307 	 * modifications made by vkernel uiocopy/related routines and
1308 	 * modifications made by ptrace().
1309 	 */
1310 	vm_page_flag_set(fs.mary[0], PG_REFERENCED);
1311 #if 0
1312 	pmap_enter(fs.map->pmap, vaddr, fs.mary[0], fs.prot,
1313 		   fs.wflags & FW_WIRED, NULL);
1314 	mycpu->gd_cnt.v_vm_faults++;
1315 	if (curthread->td_lwp)
1316 		++curthread->td_lwp->lwp_ru.ru_minflt;
1317 #endif
1318 	if ((fs.wflags | didcow) & FW_DIDCOW) {
1319 		pmap_remove(fs.map->pmap,
1320 			    vaddr & ~PAGE_MASK,
1321 			    (vaddr & ~PAGE_MASK) + PAGE_SIZE);
1322 	}
1323 
1324 	/*
1325 	 * On success vm_fault_object() does not unlock or deallocate, and
1326 	 * fs.mary[0] will contain a busied page.  So we must unlock here
1327 	 * after having messed with the pmap.
1328 	 */
1329 	unlock_things(&fs);
1330 
1331 	/*
1332 	 * Return a held page.  We are not doing any pmap manipulation so do
1333 	 * not set PG_MAPPED.  However, adjust the page flags according to
1334 	 * the fault type because the caller may not use a managed pmapping
1335 	 * (so we don't want to lose the fact that the page will be dirtied
1336 	 * if a write fault was specified).
1337 	 */
1338 	if (fault_type & VM_PROT_WRITE)
1339 		vm_page_dirty(fs.mary[0]);
1340 	vm_page_activate(fs.mary[0]);
1341 
1342 	if (curthread->td_lwp) {
1343 		if (fs.hardfault) {
1344 			curthread->td_lwp->lwp_ru.ru_majflt++;
1345 		} else {
1346 			curthread->td_lwp->lwp_ru.ru_minflt++;
1347 		}
1348 	}
1349 
1350 	/*
1351 	 * Unlock everything, and return the held or busied page.
1352 	 */
1353 	if (busyp) {
1354 		if (fault_type & VM_PROT_WRITE) {
1355 			vm_page_dirty(fs.mary[0]);
1356 			*busyp = 1;
1357 		} else {
1358 			*busyp = 0;
1359 			vm_page_hold(fs.mary[0]);
1360 			vm_page_wakeup(fs.mary[0]);
1361 		}
1362 	} else {
1363 		vm_page_hold(fs.mary[0]);
1364 		vm_page_wakeup(fs.mary[0]);
1365 	}
1366 	/*vm_object_deallocate(fs.first_ba->object);*/
1367 	*errorp = 0;
1368 
1369 done:
1370 	KKASSERT(fs.first_ba_held == 0);
1371 done2:
1372 	return(fs.mary[0]);
1373 }
1374 
1375 /*
1376  * Fault in the specified (object,offset), dirty the returned page as
1377  * needed.  If the requested fault_type cannot be done NULL and an
1378  * error is returned.
1379  *
1380  * A held (but not busied) page is returned.
1381  *
1382  * The passed in object must be held as specified by the shared
1383  * argument.
1384  */
1385 vm_page_t
1386 vm_fault_object_page(vm_object_t object, vm_ooffset_t offset,
1387 		     vm_prot_t fault_type, int fault_flags,
1388 		     int *sharedp, int *errorp)
1389 {
1390 	int result;
1391 	vm_pindex_t first_pindex;
1392 	vm_pindex_t first_count;
1393 	struct faultstate fs;
1394 	struct vm_map_entry entry;
1395 
1396 	/*
1397 	 * Since we aren't actually faulting the page into a
1398 	 * pmap we can just fake the entry.ba.
1399 	 */
1400 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1401 	bzero(&entry, sizeof(entry));
1402 	entry.maptype = VM_MAPTYPE_NORMAL;
1403 	entry.protection = entry.max_protection = fault_type;
1404 	entry.ba.backing_ba = NULL;
1405 	entry.ba.object = object;
1406 	entry.ba.offset = 0;
1407 
1408 	fs.hardfault = 0;
1409 	fs.fault_flags = fault_flags;
1410 	fs.map = NULL;
1411 	fs.shared = vm_shared_fault;
1412 	fs.first_shared = *sharedp;
1413 	fs.msoftonly = 0;
1414 	fs.vp = NULL;
1415 	fs.first_ba_held = -1;	/* object held across call, prevent drop */
1416 	KKASSERT((fault_flags & VM_FAULT_WIRE_MASK) == 0);
1417 
1418 	/*
1419 	 * VM_FAULT_UNSWAP - swap_pager_unswapped() needs an exclusive object
1420 	 * VM_FAULT_DIRTY  - may require swap_pager_unswapped() later, but
1421 	 *		     we can try shared first.
1422 	 */
1423 	if (fs.first_shared && (fault_flags & VM_FAULT_UNSWAP)) {
1424 		fs.first_shared = 0;
1425 		vm_object_upgrade(object);
1426 	}
1427 
1428 	/*
1429 	 * Retry loop as needed (typically for shared->exclusive transitions)
1430 	 */
1431 RetryFault:
1432 	*sharedp = fs.first_shared;
1433 	first_pindex = OFF_TO_IDX(offset);
1434 	first_count = 1;
1435 	fs.first_ba = &entry.ba;
1436 	fs.ba = fs.first_ba;
1437 	fs.entry = &entry;
1438 	fs.first_prot = fault_type;
1439 	fs.wflags = 0;
1440 
1441 	/*
1442 	 * Make a reference to this object to prevent its disposal while we
1443 	 * are messing with it.  Once we have the reference, the map is free
1444 	 * to be diddled.  Since objects reference their shadows (and copies),
1445 	 * they will stay around as well.
1446 	 *
1447 	 * The reference should also prevent an unexpected collapse of the
1448 	 * parent that might move pages from the current object into the
1449 	 * parent unexpectedly, resulting in corruption.
1450 	 *
1451 	 * Bump the paging-in-progress count to prevent size changes (e.g.
1452 	 * truncation operations) during I/O.  This must be done after
1453 	 * obtaining the vnode lock in order to avoid possible deadlocks.
1454 	 */
1455 	if (fs.vp == NULL)
1456 		fs.vp = vnode_pager_lock(fs.first_ba);
1457 
1458 	fs.lookup_still_valid = 1;
1459 	fs.first_m = NULL;
1460 
1461 	/*
1462 	 * Now we have the actual (object, pindex), fault in the page.  If
1463 	 * vm_fault_object() fails it will unlock and deallocate the FS
1464 	 * data.   If it succeeds everything remains locked and fs->ba->object
1465 	 * will have an additinal PIP count if fs->ba != fs->first_ba.
1466 	 *
1467 	 * On KERN_TRY_AGAIN vm_fault_object() leaves fs.first_ba intact.
1468 	 * We may have to upgrade its lock to handle the requested fault.
1469 	 */
1470 	result = vm_fault_object(&fs, first_pindex, fault_type, 0);
1471 
1472 	if (result == KERN_TRY_AGAIN) {
1473 		if (fs.first_shared == 0 && *sharedp)
1474 			vm_object_upgrade(object);
1475 		goto RetryFault;
1476 	}
1477 	if (result != KERN_SUCCESS) {
1478 		*errorp = result;
1479 		return(NULL);
1480 	}
1481 
1482 	if ((fault_type & VM_PROT_WRITE) && (fs.prot & VM_PROT_WRITE) == 0) {
1483 		*errorp = KERN_PROTECTION_FAILURE;
1484 		unlock_things(&fs);
1485 		return(NULL);
1486 	}
1487 
1488 	/*
1489 	 * On success vm_fault_object() does not unlock or deallocate, so we
1490 	 * do it here.  Note that the returned fs.m will be busied.
1491 	 */
1492 	unlock_things(&fs);
1493 
1494 	/*
1495 	 * Return a held page.  We are not doing any pmap manipulation so do
1496 	 * not set PG_MAPPED.  However, adjust the page flags according to
1497 	 * the fault type because the caller may not use a managed pmapping
1498 	 * (so we don't want to lose the fact that the page will be dirtied
1499 	 * if a write fault was specified).
1500 	 */
1501 	vm_page_hold(fs.mary[0]);
1502 	vm_page_activate(fs.mary[0]);
1503 	if ((fault_type & VM_PROT_WRITE) || (fault_flags & VM_FAULT_DIRTY))
1504 		vm_page_dirty(fs.mary[0]);
1505 	if (fault_flags & VM_FAULT_UNSWAP)
1506 		swap_pager_unswapped(fs.mary[0]);
1507 
1508 	/*
1509 	 * Indicate that the page was accessed.
1510 	 */
1511 	vm_page_flag_set(fs.mary[0], PG_REFERENCED);
1512 
1513 	if (curthread->td_lwp) {
1514 		if (fs.hardfault) {
1515 			curthread->td_lwp->lwp_ru.ru_majflt++;
1516 		} else {
1517 			curthread->td_lwp->lwp_ru.ru_minflt++;
1518 		}
1519 	}
1520 
1521 	/*
1522 	 * Unlock everything, and return the held page.
1523 	 */
1524 	vm_page_wakeup(fs.mary[0]);
1525 	/*vm_object_deallocate(fs.first_ba->object);*/
1526 
1527 	*errorp = 0;
1528 	return(fs.mary[0]);
1529 }
1530 
1531 /*
1532  * This is the core of the vm_fault code.
1533  *
1534  * Do all operations required to fault-in (fs.first_ba->object, pindex).
1535  * Run through the backing store as necessary and do required COW or virtual
1536  * copy operations.  The caller has already fully resolved the vm_map_entry
1537  * and, if appropriate, has created a copy-on-write layer.  All we need to
1538  * do is iterate the object chain.
1539  *
1540  * On failure (fs) is unlocked and deallocated and the caller may return or
1541  * retry depending on the failure code.  On success (fs) is NOT unlocked or
1542  * deallocated, fs.mary[0] will contained a resolved, busied page, and fs.ba's
1543  * object will have an additional PIP count if it is not equal to
1544  * fs.first_ba.
1545  *
1546  * If locks based on fs->first_shared or fs->shared are insufficient,
1547  * clear the appropriate field(s) and return RETRY.  COWs require that
1548  * first_shared be 0, while page allocations (or frees) require that
1549  * shared be 0.  Renames require that both be 0.
1550  *
1551  * NOTE! fs->[first_]shared might be set with VM_FAULT_DIRTY also set.
1552  *	 we will have to retry with it exclusive if the vm_page is
1553  *	 PG_SWAPPED.
1554  *
1555  * fs->first_ba->object must be held on call.
1556  */
1557 static
1558 int
1559 vm_fault_object(struct faultstate *fs, vm_pindex_t first_pindex,
1560 		vm_prot_t fault_type, int allow_nofault)
1561 {
1562 	vm_map_backing_t next_ba;
1563 	vm_pindex_t pindex;
1564 	int error;
1565 
1566 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(fs->first_ba->object));
1567 	fs->prot = fs->first_prot;
1568 	pindex = first_pindex;
1569 	KKASSERT(fs->ba == fs->first_ba);
1570 
1571 	vm_object_pip_add(fs->first_ba->object, 1);
1572 
1573 	/*
1574 	 * If a read fault occurs we try to upgrade the page protection
1575 	 * and make it also writable if possible.  There are three cases
1576 	 * where we cannot make the page mapping writable:
1577 	 *
1578 	 * (1) The mapping is read-only or the VM object is read-only,
1579 	 *     fs->prot above will simply not have VM_PROT_WRITE set.
1580 	 *
1581 	 * (2) If the VM page is read-only or copy-on-write, upgrading would
1582 	 *     just result in an unnecessary COW fault.
1583 	 *
1584 	 * (3) If the pmap specifically requests A/M bit emulation, downgrade
1585 	 *     here.
1586 	 */
1587 	if (curthread->td_lwp && curthread->td_lwp->lwp_vmspace &&
1588 	    pmap_emulate_ad_bits(&curthread->td_lwp->lwp_vmspace->vm_pmap)) {
1589 		if ((fault_type & VM_PROT_WRITE) == 0)
1590 			fs->prot &= ~VM_PROT_WRITE;
1591 	}
1592 
1593 	/* vm_object_hold(fs->ba->object); implied b/c ba == first_ba */
1594 
1595 	for (;;) {
1596 		/*
1597 		 * If the object is dead, we stop here
1598 		 */
1599 		if (fs->ba->object->flags & OBJ_DEAD) {
1600 			vm_object_pip_wakeup(fs->first_ba->object);
1601 			unlock_things(fs);
1602 			return (KERN_PROTECTION_FAILURE);
1603 		}
1604 
1605 		/*
1606 		 * See if the page is resident.  Wait/Retry if the page is
1607 		 * busy (lots of stuff may have changed so we can't continue
1608 		 * in that case).
1609 		 *
1610 		 * We can theoretically allow the soft-busy case on a read
1611 		 * fault if the page is marked valid, but since such
1612 		 * pages are typically already pmap'd, putting that
1613 		 * special case in might be more effort then it is
1614 		 * worth.  We cannot under any circumstances mess
1615 		 * around with a vm_page_t->busy page except, perhaps,
1616 		 * to pmap it.
1617 		 */
1618 		fs->mary[0] = vm_page_lookup_busy_try(fs->ba->object, pindex,
1619 						      TRUE, &error);
1620 		if (error) {
1621 			vm_object_pip_wakeup(fs->first_ba->object);
1622 			unlock_things(fs);
1623 			vm_page_sleep_busy(fs->mary[0], TRUE, "vmpfw");
1624 			mycpu->gd_cnt.v_intrans++;
1625 			fs->mary[0] = NULL;
1626 			return (KERN_TRY_AGAIN);
1627 		}
1628 		if (fs->mary[0]) {
1629 			/*
1630 			 * The page is busied for us.
1631 			 *
1632 			 * If reactivating a page from PQ_CACHE we may have
1633 			 * to rate-limit.
1634 			 */
1635 			int queue = fs->mary[0]->queue;
1636 			vm_page_unqueue_nowakeup(fs->mary[0]);
1637 
1638 			if ((queue - fs->mary[0]->pc) == PQ_CACHE &&
1639 			    vm_paging_severe()) {
1640 				vm_page_activate(fs->mary[0]);
1641 				vm_page_wakeup(fs->mary[0]);
1642 				fs->mary[0] = NULL;
1643 				vm_object_pip_wakeup(fs->first_ba->object);
1644 				unlock_things(fs);
1645 				if (allow_nofault == 0 ||
1646 				    (curthread->td_flags & TDF_NOFAULT) == 0) {
1647 					thread_t td;
1648 
1649 					vm_wait_pfault();
1650 					td = curthread;
1651 					if (td->td_proc && (td->td_proc->p_flags & P_LOWMEMKILL))
1652 						return (KERN_PROTECTION_FAILURE);
1653 				}
1654 				return (KERN_TRY_AGAIN);
1655 			}
1656 
1657 			/*
1658 			 * If it still isn't completely valid (readable),
1659 			 * or if a read-ahead-mark is set on the VM page,
1660 			 * jump to readrest, else we found the page and
1661 			 * can return.
1662 			 *
1663 			 * We can release the spl once we have marked the
1664 			 * page busy.
1665 			 */
1666 			if (fs->mary[0]->object != kernel_object) {
1667 				if ((fs->mary[0]->valid & VM_PAGE_BITS_ALL) !=
1668 				    VM_PAGE_BITS_ALL) {
1669 					goto readrest;
1670 				}
1671 				if (fs->mary[0]->flags & PG_RAM) {
1672 					if (debug_cluster)
1673 						kprintf("R");
1674 					vm_page_flag_clear(fs->mary[0], PG_RAM);
1675 					goto readrest;
1676 				}
1677 			}
1678 			atomic_clear_int(&fs->first_ba->flags,
1679 					 VM_MAP_BACK_EXCL_HEUR);
1680 			break; /* break to PAGE HAS BEEN FOUND */
1681 		}
1682 
1683 		/*
1684 		 * Page is not resident, If this is the search termination
1685 		 * or the pager might contain the page, allocate a new page.
1686 		 */
1687 		if (TRYPAGER(fs) || fs->ba == fs->first_ba) {
1688 			/*
1689 			 * If this is a SWAP object we can use the shared
1690 			 * lock to check existence of a swap block.  If
1691 			 * there isn't one we can skip to the next object.
1692 			 *
1693 			 * However, if this is the first object we allocate
1694 			 * a page now just in case we need to copy to it
1695 			 * later.
1696 			 */
1697 			if (fs->ba != fs->first_ba &&
1698 			    fs->ba->object->type == OBJT_SWAP) {
1699 				if (swap_pager_haspage_locked(fs->ba->object,
1700 							      pindex) == 0) {
1701 					goto next;
1702 				}
1703 			}
1704 
1705 			/*
1706 			 * Allocating, must be exclusive.
1707 			 */
1708 			atomic_set_int(&fs->first_ba->flags,
1709 				       VM_MAP_BACK_EXCL_HEUR);
1710 			if (fs->ba == fs->first_ba && fs->first_shared) {
1711 				fs->first_shared = 0;
1712 				vm_object_pip_wakeup(fs->first_ba->object);
1713 				unlock_things(fs);
1714 				return (KERN_TRY_AGAIN);
1715 			}
1716 			if (fs->ba != fs->first_ba && fs->shared) {
1717 				fs->first_shared = 0;
1718 				fs->shared = 0;
1719 				vm_object_pip_wakeup(fs->first_ba->object);
1720 				unlock_things(fs);
1721 				return (KERN_TRY_AGAIN);
1722 			}
1723 
1724 			/*
1725 			 * If the page is beyond the object size we fail
1726 			 */
1727 			if (pindex >= fs->ba->object->size) {
1728 				vm_object_pip_wakeup(fs->first_ba->object);
1729 				unlock_things(fs);
1730 				return (KERN_PROTECTION_FAILURE);
1731 			}
1732 
1733 			/*
1734 			 * Allocate a new page for this object/offset pair.
1735 			 *
1736 			 * It is possible for the allocation to race, so
1737 			 * handle the case.
1738 			 *
1739 			 * Does not apply to OBJT_MGTDEVICE (e.g. gpu / drm
1740 			 * subsystem).  For OBJT_MGTDEVICE the pages are not
1741 			 * indexed in the VM object at all but instead directly
1742 			 * entered into the pmap.
1743 			 */
1744 			fs->mary[0] = NULL;
1745 			if (fs->ba->object->type == OBJT_MGTDEVICE)
1746 				goto readrest;
1747 
1748 			if (!vm_paging_severe()) {
1749 				fs->mary[0] = vm_page_alloc(fs->ba->object,
1750 				    pindex,
1751 				    ((fs->vp || fs->ba->backing_ba) ?
1752 					VM_ALLOC_NULL_OK | VM_ALLOC_NORMAL :
1753 					VM_ALLOC_NULL_OK | VM_ALLOC_NORMAL |
1754 					VM_ALLOC_USE_GD | VM_ALLOC_ZERO));
1755 			}
1756 			if (fs->mary[0] == NULL) {
1757 				vm_object_pip_wakeup(fs->first_ba->object);
1758 				unlock_things(fs);
1759 				if (allow_nofault == 0 ||
1760 				    (curthread->td_flags & TDF_NOFAULT) == 0) {
1761 					thread_t td;
1762 
1763 					vm_wait_pfault();
1764 					td = curthread;
1765 					if (td->td_proc && (td->td_proc->p_flags & P_LOWMEMKILL))
1766 						return (KERN_PROTECTION_FAILURE);
1767 				}
1768 				return (KERN_TRY_AGAIN);
1769 			}
1770 
1771 			/*
1772 			 * Fall through to readrest.  We have a new page which
1773 			 * will have to be paged (since m->valid will be 0).
1774 			 */
1775 		}
1776 
1777 readrest:
1778 		/*
1779 		 * We have found an invalid or partially valid page, a
1780 		 * page with a read-ahead mark which might be partially or
1781 		 * fully valid (and maybe dirty too), or we have allocated
1782 		 * a new page.
1783 		 *
1784 		 * Attempt to fault-in the page if there is a chance that the
1785 		 * pager has it, and potentially fault in additional pages
1786 		 * at the same time.
1787 		 *
1788 		 * If TRYPAGER is true then fs.mary[0] will be non-NULL and
1789 		 * busied for us.
1790 		 */
1791 		if (TRYPAGER(fs)) {
1792 			u_char behavior = vm_map_entry_behavior(fs->entry);
1793 			vm_object_t object;
1794 			vm_page_t first_m;
1795 			int seqaccess;
1796 			int rv;
1797 
1798 			if (behavior == MAP_ENTRY_BEHAV_RANDOM)
1799 				seqaccess = 0;
1800 			else
1801 				seqaccess = -1;
1802 
1803 			/*
1804 			 * Doing I/O may synchronously insert additional
1805 			 * pages so we can't be shared at this point either.
1806 			 *
1807 			 * NOTE: We can't free fs->mary[0] here in the
1808 			 *	 allocated case (fs->ba != fs->first_ba) as
1809 			 *	 this would require an exclusively locked
1810 			 *	 VM object.
1811 			 */
1812 			if (fs->ba == fs->first_ba && fs->first_shared) {
1813 				if (fs->mary[0]) {
1814 					vm_page_deactivate(fs->mary[0]);
1815 					vm_page_wakeup(fs->mary[0]);
1816 					fs->mary[0]= NULL;
1817 				}
1818 				fs->first_shared = 0;
1819 				vm_object_pip_wakeup(fs->first_ba->object);
1820 				unlock_things(fs);
1821 				return (KERN_TRY_AGAIN);
1822 			}
1823 			if (fs->ba != fs->first_ba && fs->shared) {
1824 				if (fs->mary[0]) {
1825 					vm_page_deactivate(fs->mary[0]);
1826 					vm_page_wakeup(fs->mary[0]);
1827 					fs->mary[0] = NULL;
1828 				}
1829 				fs->first_shared = 0;
1830 				fs->shared = 0;
1831 				vm_object_pip_wakeup(fs->first_ba->object);
1832 				unlock_things(fs);
1833 				return (KERN_TRY_AGAIN);
1834 			}
1835 
1836 			object = fs->ba->object;
1837 			first_m = NULL;
1838 
1839 			/* object is held, no more access to entry or ba's */
1840 
1841 			/*
1842 			 * Acquire the page data.  We still hold object
1843 			 * and the page has been BUSY's.
1844 			 *
1845 			 * We own the page, but we must re-issue the lookup
1846 			 * because the pager may have replaced it (for example,
1847 			 * in order to enter a fictitious page into the
1848 			 * object).  In this situation the pager will have
1849 			 * cleaned up the old page and left the new one
1850 			 * busy for us.
1851 			 *
1852 			 * If we got here through a PG_RAM read-ahead
1853 			 * mark the page may be partially dirty and thus
1854 			 * not freeable.  Don't bother checking to see
1855 			 * if the pager has the page because we can't free
1856 			 * it anyway.  We have to depend on the get_page
1857 			 * operation filling in any gaps whether there is
1858 			 * backing store or not.
1859 			 *
1860 			 * We must dispose of the page (fs->mary[0]) and also
1861 			 * possibly first_m (the fronting layer).  If
1862 			 * this is a write fault leave the page intact
1863 			 * because we will probably have to copy fs->mary[0]
1864 			 * to fs->first_m on the retry.  If this is a
1865 			 * read fault we probably won't need the page.
1866 			 *
1867 			 * For OBJT_MGTDEVICE (and eventually all types),
1868 			 * fs->mary[0] is not pre-allocated and may be set
1869 			 * to a vm_page (busied for us) without being inserted
1870 			 * into the object.  In this case we want to return
1871 			 * the vm_page directly so the caller can issue the
1872 			 * pmap_enter().
1873 			 */
1874 			rv = vm_pager_get_page(object, pindex,
1875 					       &fs->mary[0], seqaccess);
1876 
1877 			if (rv == VM_PAGER_OK) {
1878 				++fs->hardfault;
1879 				if (object->type == OBJT_MGTDEVICE) {
1880 					break;
1881 				}
1882 
1883 				fs->mary[0] = vm_page_lookup(object, pindex);
1884 				if (fs->mary[0]) {
1885 					vm_page_activate(fs->mary[0]);
1886 					vm_page_wakeup(fs->mary[0]);
1887 					fs->mary[0] = NULL;
1888 				}
1889 
1890 				if (fs->mary[0]) {
1891 					/* NOT REACHED */
1892 					/* have page */
1893 					break;
1894 				}
1895 				vm_object_pip_wakeup(fs->first_ba->object);
1896 				unlock_things(fs);
1897 				return (KERN_TRY_AGAIN);
1898 			}
1899 
1900 			/*
1901 			 * If the pager doesn't have the page, continue on
1902 			 * to the next object.  Retain the vm_page if this
1903 			 * is the first object, we may need to copy into
1904 			 * it later.
1905 			 */
1906 			if (rv == VM_PAGER_FAIL) {
1907 				if (fs->ba != fs->first_ba) {
1908 					if (fs->mary[0]) {
1909 						vm_page_free(fs->mary[0]);
1910 						fs->mary[0] = NULL;
1911 					}
1912 				}
1913 				goto next;
1914 			}
1915 
1916 			/*
1917 			 * Remove the bogus page (which does not exist at this
1918 			 * object/offset).
1919 			 *
1920 			 * Also wake up any other process that may want to bring
1921 			 * in this page.
1922 			 *
1923 			 * If this is the top-level object, we must leave the
1924 			 * busy page to prevent another process from rushing
1925 			 * past us, and inserting the page in that object at
1926 			 * the same time that we are.
1927 			 */
1928 			if (rv == VM_PAGER_ERROR) {
1929 				if (curproc) {
1930 					kprintf("vm_fault: pager read error, "
1931 						"pid %d (%s)\n",
1932 						curproc->p_pid,
1933 						curproc->p_comm);
1934 				} else {
1935 					kprintf("vm_fault: pager read error, "
1936 						"thread %p (%s)\n",
1937 						curthread,
1938 						curthread->td_comm);
1939 				}
1940 			}
1941 
1942 			/*
1943 			 * I/O error or data outside pager's range.
1944 			 */
1945 			if (fs->mary[0]) {
1946 				vnode_pager_freepage(fs->mary[0]);
1947 				fs->mary[0] = NULL;
1948 			}
1949 			if (first_m) {
1950 				vm_page_free(first_m);
1951 				first_m = NULL;		/* safety */
1952 			}
1953 			vm_object_pip_wakeup(object);
1954 			unlock_things(fs);
1955 
1956 			switch(rv) {
1957 			case VM_PAGER_ERROR:
1958 				return (KERN_FAILURE);
1959 			case VM_PAGER_BAD:
1960 				return (KERN_PROTECTION_FAILURE);
1961 			default:
1962 				return (KERN_PROTECTION_FAILURE);
1963 			}
1964 
1965 #if 0
1966 			/*
1967 			 * Data outside the range of the pager or an I/O error
1968 			 *
1969 			 * The page may have been wired during the pagein,
1970 			 * e.g. by the buffer cache, and cannot simply be
1971 			 * freed.  Call vnode_pager_freepage() to deal with it.
1972 			 *
1973 			 * The object is not held shared so we can safely
1974 			 * free the page.
1975 			 */
1976 			if (fs->ba != fs->first_ba) {
1977 
1978 				/*
1979 				 * XXX - we cannot just fall out at this
1980 				 * point, m has been freed and is invalid!
1981 				 */
1982 			}
1983 
1984 			/*
1985 			 * XXX - the check for kernel_map is a kludge to work
1986 			 * around having the machine panic on a kernel space
1987 			 * fault w/ I/O error.
1988 			 */
1989 			if (((fs->map != kernel_map) &&
1990 			    (rv == VM_PAGER_ERROR)) || (rv == VM_PAGER_BAD)) {
1991 				if (fs->m) {
1992 					/* from just above */
1993 					KKASSERT(fs->first_shared == 0);
1994 					vnode_pager_freepage(fs->m);
1995 					fs->m = NULL;
1996 				}
1997 				/* NOT REACHED */
1998 			}
1999 #endif
2000 		}
2001 
2002 next:
2003 		/*
2004 		 * We get here if the object has a default pager (or unwiring)
2005 		 * or the pager doesn't have the page.
2006 		 *
2007 		 * fs->first_m will be used for the COW unless we find a
2008 		 * deeper page to be mapped read-only, in which case the
2009 		 * unlock*(fs) will free first_m.
2010 		 */
2011 		if (fs->ba == fs->first_ba)
2012 			fs->first_m = fs->mary[0];
2013 
2014 		/*
2015 		 * Move on to the next object.  The chain lock should prevent
2016 		 * the backing_object from getting ripped out from under us.
2017 		 *
2018 		 * The object lock for the next object is governed by
2019 		 * fs->shared.
2020 		 */
2021 		next_ba = fs->ba->backing_ba;
2022 		if (next_ba == NULL) {
2023 			/*
2024 			 * If there's no object left, fill the page in the top
2025 			 * object with zeros.
2026 			 */
2027 			if (fs->ba != fs->first_ba) {
2028 				vm_object_pip_wakeup(fs->ba->object);
2029 				vm_object_drop(fs->ba->object);
2030 				fs->ba = fs->first_ba;
2031 				pindex = first_pindex;
2032 				fs->mary[0] = fs->first_m;
2033 			}
2034 			fs->first_m = NULL;
2035 
2036 			/*
2037 			 * Zero the page and mark it valid.
2038 			 */
2039 			vm_page_zero_fill(fs->mary[0]);
2040 			mycpu->gd_cnt.v_zfod++;
2041 			fs->mary[0]->valid = VM_PAGE_BITS_ALL;
2042 			break;	/* break to PAGE HAS BEEN FOUND */
2043 		}
2044 
2045 		if (fs->shared)
2046 			vm_object_hold_shared(next_ba->object);
2047 		else
2048 			vm_object_hold(next_ba->object);
2049 		KKASSERT(next_ba == fs->ba->backing_ba);
2050 		pindex -= OFF_TO_IDX(fs->ba->offset);
2051 		pindex += OFF_TO_IDX(next_ba->offset);
2052 
2053 		if (fs->ba != fs->first_ba) {
2054 			vm_object_pip_wakeup(fs->ba->object);
2055 			vm_object_lock_swap();	/* flip ba/next_ba */
2056 			vm_object_drop(fs->ba->object);
2057 		}
2058 		fs->ba = next_ba;
2059 		vm_object_pip_add(next_ba->object, 1);
2060 	}
2061 
2062 	/*
2063 	 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
2064 	 * is held.]
2065 	 *
2066 	 * object still held.
2067 	 * vm_map may not be locked (determined by fs->lookup_still_valid)
2068 	 *
2069 	 * local shared variable may be different from fs->shared.
2070 	 *
2071 	 * If the page is being written, but isn't already owned by the
2072 	 * top-level object, we have to copy it into a new page owned by the
2073 	 * top-level object.
2074 	 */
2075 	KASSERT((fs->mary[0]->busy_count & PBUSY_LOCKED) != 0,
2076 		("vm_fault: not busy after main loop"));
2077 
2078 	if (fs->ba != fs->first_ba) {
2079 		/*
2080 		 * We only really need to copy if we want to write it.
2081 		 */
2082 		if (fault_type & VM_PROT_WRITE) {
2083 #if 0
2084 			/* CODE REFACTOR IN PROGRESS, REMOVE OPTIMIZATION */
2085 			/*
2086 			 * This allows pages to be virtually copied from a
2087 			 * backing_object into the first_object, where the
2088 			 * backing object has no other refs to it, and cannot
2089 			 * gain any more refs.  Instead of a bcopy, we just
2090 			 * move the page from the backing object to the
2091 			 * first object.  Note that we must mark the page
2092 			 * dirty in the first object so that it will go out
2093 			 * to swap when needed.
2094 			 */
2095 			if (virtual_copy_ok(fs)) {
2096 				/*
2097 				 * (first_m) and (m) are both busied.  We have
2098 				 * move (m) into (first_m)'s object/pindex
2099 				 * in an atomic fashion, then free (first_m).
2100 				 *
2101 				 * first_object is held so second remove
2102 				 * followed by the rename should wind
2103 				 * up being atomic.  vm_page_free() might
2104 				 * block so we don't do it until after the
2105 				 * rename.
2106 				 */
2107 				vm_page_protect(fs->first_m, VM_PROT_NONE);
2108 				vm_page_remove(fs->first_m);
2109 				vm_page_rename(fs->mary[0],
2110 					       fs->first_ba->object,
2111 					       first_pindex);
2112 				vm_page_free(fs->first_m);
2113 				fs->first_m = fs->mary[0];
2114 				fs->mary[0] = NULL;
2115 				mycpu->gd_cnt.v_cow_optim++;
2116 			} else
2117 #endif
2118 			{
2119 				/*
2120 				 * Oh, well, lets copy it.
2121 				 *
2122 				 * We used to unmap the original page here
2123 				 * because vm_fault_page() didn't and this
2124 				 * would cause havoc for the umtx*() code
2125 				 * and the procfs code.
2126 				 *
2127 				 * This is no longer necessary.  The
2128 				 * vm_fault_page() routine will now unmap the
2129 				 * page after a COW, and the umtx code will
2130 				 * recover on its own.
2131 				 */
2132 				/*
2133 				 * NOTE: Since fs->mary[0] is a backing page,
2134 				 *	 it is read-only, so there isn't any
2135 				 *	 copy race vs writers.
2136 				 */
2137 				KKASSERT(fs->first_shared == 0);
2138 				vm_page_copy(fs->mary[0], fs->first_m);
2139 				/* pmap_remove_specific(
2140 				    &curthread->td_lwp->lwp_vmspace->vm_pmap,
2141 				    fs->mary[0]); */
2142 			}
2143 
2144 			/*
2145 			 * We no longer need the old page or object.
2146 			 */
2147 			if (fs->mary[0])
2148 				release_page(fs);
2149 
2150 			/*
2151 			 * fs->ba != fs->first_ba due to above conditional
2152 			 */
2153 			vm_object_pip_wakeup(fs->ba->object);
2154 			vm_object_drop(fs->ba->object);
2155 			fs->ba = fs->first_ba;
2156 
2157 			/*
2158 			 * Only use the new page below...
2159 			 */
2160 			mycpu->gd_cnt.v_cow_faults++;
2161 			fs->mary[0] = fs->first_m;
2162 			pindex = first_pindex;
2163 		} else {
2164 			/*
2165 			 * If it wasn't a write fault avoid having to copy
2166 			 * the page by mapping it read-only from backing
2167 			 * store.  The process is not allowed to modify
2168 			 * backing pages.
2169 			 */
2170 			fs->prot &= ~VM_PROT_WRITE;
2171 		}
2172 	}
2173 
2174 	/*
2175 	 * Relock the map if necessary, then check the generation count.
2176 	 * relock_map() will update fs->timestamp to account for the
2177 	 * relocking if necessary.
2178 	 *
2179 	 * If the count has changed after relocking then all sorts of
2180 	 * crap may have happened and we have to retry.
2181 	 *
2182 	 * NOTE: The relock_map() can fail due to a deadlock against
2183 	 *	 the vm_page we are holding BUSY.
2184 	 */
2185 	KKASSERT(fs->lookup_still_valid != 0);
2186 #if 0
2187 	if (fs->lookup_still_valid == 0 && fs->map) {
2188 		if (relock_map(fs) ||
2189 		    fs->map->timestamp != fs->map_generation) {
2190 			release_page(fs);
2191 			vm_object_pip_wakeup(fs->first_ba->object);
2192 			unlock_things(fs);
2193 			return (KERN_TRY_AGAIN);
2194 		}
2195 	}
2196 #endif
2197 
2198 	/*
2199 	 * If the fault is a write, we know that this page is being
2200 	 * written NOW so dirty it explicitly to save on pmap_is_modified()
2201 	 * calls later.
2202 	 *
2203 	 * If this is a NOSYNC mmap we do not want to set PG_NOSYNC
2204 	 * if the page is already dirty to prevent data written with
2205 	 * the expectation of being synced from not being synced.
2206 	 * Likewise if this entry does not request NOSYNC then make
2207 	 * sure the page isn't marked NOSYNC.  Applications sharing
2208 	 * data should use the same flags to avoid ping ponging.
2209 	 *
2210 	 * Also tell the backing pager, if any, that it should remove
2211 	 * any swap backing since the page is now dirty.
2212 	 */
2213 	vm_page_activate(fs->mary[0]);
2214 	if (fs->prot & VM_PROT_WRITE) {
2215 		vm_object_set_writeable_dirty(fs->first_ba->object);
2216 		vm_set_nosync(fs->mary[0], fs->entry);
2217 		if (fs->fault_flags & VM_FAULT_DIRTY) {
2218 			vm_page_dirty(fs->mary[0]);
2219 			if (fs->mary[0]->flags & PG_SWAPPED) {
2220 				/*
2221 				 * If the page is swapped out we have to call
2222 				 * swap_pager_unswapped() which requires an
2223 				 * exclusive object lock.  If we are shared,
2224 				 * we must clear the shared flag and retry.
2225 				 */
2226 				if ((fs->ba == fs->first_ba &&
2227 				     fs->first_shared) ||
2228 				    (fs->ba != fs->first_ba && fs->shared)) {
2229 					vm_page_wakeup(fs->mary[0]);
2230 					fs->mary[0] = NULL;
2231 					if (fs->ba == fs->first_ba)
2232 						fs->first_shared = 0;
2233 					else
2234 						fs->shared = 0;
2235 					vm_object_pip_wakeup(
2236 							fs->first_ba->object);
2237 					unlock_things(fs);
2238 					return (KERN_TRY_AGAIN);
2239 				}
2240 				swap_pager_unswapped(fs->mary[0]);
2241 			}
2242 		}
2243 	}
2244 
2245 	/*
2246 	 * We found our page at backing layer ba.  Leave the layer state
2247 	 * intact.
2248 	 */
2249 
2250 	vm_object_pip_wakeup(fs->first_ba->object);
2251 #if 0
2252 	if (fs->ba != fs->first_ba)
2253 		vm_object_drop(fs->ba->object);
2254 #endif
2255 
2256 	/*
2257 	 * Page had better still be busy.  We are still locked up and
2258 	 * fs->ba->object will have another PIP reference for the case
2259 	 * where fs->ba != fs->first_ba.
2260 	 */
2261 	KASSERT(fs->mary[0]->busy_count & PBUSY_LOCKED,
2262 		("vm_fault: page %p not busy!", fs->mary[0]));
2263 
2264 	/*
2265 	 * Sanity check: page must be completely valid or it is not fit to
2266 	 * map into user space.  vm_pager_get_pages() ensures this.
2267 	 */
2268 	if (fs->mary[0]->valid != VM_PAGE_BITS_ALL) {
2269 		vm_page_zero_invalid(fs->mary[0], TRUE);
2270 		kprintf("Warning: page %p partially invalid on fault\n",
2271 			fs->mary[0]);
2272 	}
2273 
2274 	return (KERN_SUCCESS);
2275 }
2276 
2277 /*
2278  * Wire down a range of virtual addresses in a map.  The entry in question
2279  * should be marked in-transition and the map must be locked.  We must
2280  * release the map temporarily while faulting-in the page to avoid a
2281  * deadlock.  Note that the entry may be clipped while we are blocked but
2282  * will never be freed.
2283  *
2284  * map must be locked on entry.
2285  */
2286 int
2287 vm_fault_wire(vm_map_t map, vm_map_entry_t entry,
2288 	      boolean_t user_wire, int kmflags)
2289 {
2290 	boolean_t fictitious;
2291 	vm_offset_t start;
2292 	vm_offset_t end;
2293 	vm_offset_t va;
2294 	pmap_t pmap;
2295 	int rv;
2296 	int wire_prot;
2297 	int fault_flags;
2298 	vm_page_t m;
2299 
2300 	if (user_wire) {
2301 		wire_prot = VM_PROT_READ;
2302 		fault_flags = VM_FAULT_USER_WIRE;
2303 	} else {
2304 		wire_prot = VM_PROT_READ | VM_PROT_WRITE;
2305 		fault_flags = VM_FAULT_CHANGE_WIRING;
2306 	}
2307 	if (kmflags & KM_NOTLBSYNC)
2308 		wire_prot |= VM_PROT_NOSYNC;
2309 
2310 	pmap = vm_map_pmap(map);
2311 	start = entry->ba.start;
2312 	end = entry->ba.end;
2313 
2314 	switch(entry->maptype) {
2315 	case VM_MAPTYPE_NORMAL:
2316 		fictitious = entry->ba.object &&
2317 			    ((entry->ba.object->type == OBJT_DEVICE) ||
2318 			     (entry->ba.object->type == OBJT_MGTDEVICE));
2319 		break;
2320 	case VM_MAPTYPE_UKSMAP:
2321 		fictitious = TRUE;
2322 		break;
2323 	default:
2324 		fictitious = FALSE;
2325 		break;
2326 	}
2327 
2328 	if (entry->eflags & MAP_ENTRY_KSTACK)
2329 		start += PAGE_SIZE;
2330 	map->timestamp++;
2331 	vm_map_unlock(map);
2332 
2333 	/*
2334 	 * We simulate a fault to get the page and enter it in the physical
2335 	 * map.
2336 	 */
2337 	for (va = start; va < end; va += PAGE_SIZE) {
2338 		rv = vm_fault(map, va, wire_prot, fault_flags);
2339 		if (rv) {
2340 			while (va > start) {
2341 				va -= PAGE_SIZE;
2342 				m = pmap_unwire(pmap, va);
2343 				if (m && !fictitious) {
2344 					vm_page_busy_wait(m, FALSE, "vmwrpg");
2345 					vm_page_unwire(m, 1);
2346 					vm_page_wakeup(m);
2347 				}
2348 			}
2349 			goto done;
2350 		}
2351 	}
2352 	rv = KERN_SUCCESS;
2353 done:
2354 	vm_map_lock(map);
2355 
2356 	return (rv);
2357 }
2358 
2359 /*
2360  * Unwire a range of virtual addresses in a map.  The map should be
2361  * locked.
2362  */
2363 void
2364 vm_fault_unwire(vm_map_t map, vm_map_entry_t entry)
2365 {
2366 	boolean_t fictitious;
2367 	vm_offset_t start;
2368 	vm_offset_t end;
2369 	vm_offset_t va;
2370 	pmap_t pmap;
2371 	vm_page_t m;
2372 
2373 	pmap = vm_map_pmap(map);
2374 	start = entry->ba.start;
2375 	end = entry->ba.end;
2376 	fictitious = entry->ba.object &&
2377 			((entry->ba.object->type == OBJT_DEVICE) ||
2378 			 (entry->ba.object->type == OBJT_MGTDEVICE));
2379 	if (entry->eflags & MAP_ENTRY_KSTACK)
2380 		start += PAGE_SIZE;
2381 
2382 	/*
2383 	 * Since the pages are wired down, we must be able to get their
2384 	 * mappings from the physical map system.
2385 	 */
2386 	for (va = start; va < end; va += PAGE_SIZE) {
2387 		m = pmap_unwire(pmap, va);
2388 		if (m && !fictitious) {
2389 			vm_page_busy_wait(m, FALSE, "vmwrpg");
2390 			vm_page_unwire(m, 1);
2391 			vm_page_wakeup(m);
2392 		}
2393 	}
2394 }
2395 
2396 /*
2397  * Simulate write faults to bring all data into the head object, return
2398  * KERN_SUCCESS on success (which should be always unless the system runs
2399  * out of memory).
2400  *
2401  * The caller will handle destroying the backing_ba's.
2402  */
2403 int
2404 vm_fault_collapse(vm_map_t map, vm_map_entry_t entry)
2405 {
2406 	struct faultstate fs;
2407 	vm_ooffset_t scan;
2408 	vm_pindex_t pindex;
2409 	vm_object_t object;
2410 	int rv;
2411 	int all_shadowed;
2412 
2413 	bzero(&fs, sizeof(fs));
2414 	object = entry->ba.object;
2415 
2416 	fs.first_prot = entry->max_protection |	/* optional VM_PROT_EXECUTE */
2417 			VM_PROT_READ | VM_PROT_WRITE | VM_PROT_OVERRIDE_WRITE;
2418 	fs.fault_flags = VM_FAULT_NORMAL;
2419 	fs.map = map;
2420 	fs.entry = entry;
2421 	fs.lookup_still_valid = -1;	/* leave map atomically locked */
2422 	fs.first_ba = &entry->ba;
2423 	fs.first_ba_held = -1;		/* leave object held */
2424 
2425 	/* fs.hardfault */
2426 
2427 	vm_object_hold(object);
2428 	rv = KERN_SUCCESS;
2429 
2430 	scan = entry->ba.start;
2431 	all_shadowed = 1;
2432 
2433 	while (scan < entry->ba.end) {
2434 		pindex = OFF_TO_IDX(entry->ba.offset + (scan - entry->ba.start));
2435 
2436 		if (vm_page_lookup(object, pindex)) {
2437 			scan += PAGE_SIZE;
2438 			continue;
2439 		}
2440 
2441 		all_shadowed = 0;
2442 		fs.ba = fs.first_ba;
2443 		fs.prot = fs.first_prot;
2444 
2445 		rv = vm_fault_object(&fs, pindex, fs.first_prot, 1);
2446 		if (rv == KERN_TRY_AGAIN)
2447 			continue;
2448 		if (rv != KERN_SUCCESS)
2449 			break;
2450 		vm_page_flag_set(fs.mary[0], PG_REFERENCED);
2451 		vm_page_activate(fs.mary[0]);
2452 		vm_page_wakeup(fs.mary[0]);
2453 		scan += PAGE_SIZE;
2454 	}
2455 	KKASSERT(entry->ba.object == object);
2456 	vm_object_drop(object);
2457 
2458 	/*
2459 	 * If the fronting object did not have every page we have to clear
2460 	 * the pmap range due to the pages being changed so we can fault-in
2461 	 * the proper pages.
2462 	 */
2463 	if (all_shadowed == 0)
2464 		pmap_remove(map->pmap, entry->ba.start, entry->ba.end);
2465 
2466 	return rv;
2467 }
2468 
2469 /*
2470  * Copy all of the pages from one map entry to another.  If the source
2471  * is wired down we just use vm_page_lookup().  If not we use
2472  * vm_fault_object().
2473  *
2474  * The source and destination maps must be locked for write.
2475  * The source and destination maps token must be held
2476  *
2477  * No other requirements.
2478  *
2479  * XXX do segment optimization
2480  */
2481 void
2482 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
2483 		    vm_map_entry_t dst_entry, vm_map_entry_t src_entry)
2484 {
2485 	vm_object_t dst_object;
2486 	vm_object_t src_object;
2487 	vm_ooffset_t dst_offset;
2488 	vm_ooffset_t src_offset;
2489 	vm_prot_t prot;
2490 	vm_offset_t vaddr;
2491 	vm_page_t dst_m;
2492 	vm_page_t src_m;
2493 
2494 	src_object = src_entry->ba.object;
2495 	src_offset = src_entry->ba.offset;
2496 
2497 	/*
2498 	 * Create the top-level object for the destination entry. (Doesn't
2499 	 * actually shadow anything - we copy the pages directly.)
2500 	 */
2501 	vm_map_entry_allocate_object(dst_entry);
2502 	dst_object = dst_entry->ba.object;
2503 
2504 	prot = dst_entry->max_protection;
2505 
2506 	/*
2507 	 * Loop through all of the pages in the entry's range, copying each
2508 	 * one from the source object (it should be there) to the destination
2509 	 * object.
2510 	 */
2511 	vm_object_hold(src_object);
2512 	vm_object_hold(dst_object);
2513 
2514 	for (vaddr = dst_entry->ba.start, dst_offset = 0;
2515 	     vaddr < dst_entry->ba.end;
2516 	     vaddr += PAGE_SIZE, dst_offset += PAGE_SIZE) {
2517 
2518 		/*
2519 		 * Allocate a page in the destination object
2520 		 */
2521 		do {
2522 			dst_m = vm_page_alloc(dst_object,
2523 					      OFF_TO_IDX(dst_offset),
2524 					      VM_ALLOC_NORMAL);
2525 			if (dst_m == NULL) {
2526 				vm_wait(0);
2527 			}
2528 		} while (dst_m == NULL);
2529 
2530 		/*
2531 		 * Find the page in the source object, and copy it in.
2532 		 * (Because the source is wired down, the page will be in
2533 		 * memory.)
2534 		 */
2535 		src_m = vm_page_lookup(src_object,
2536 				       OFF_TO_IDX(dst_offset + src_offset));
2537 		if (src_m == NULL)
2538 			panic("vm_fault_copy_wired: page missing");
2539 
2540 		vm_page_copy(src_m, dst_m);
2541 
2542 		/*
2543 		 * Enter it in the pmap...
2544 		 */
2545 		pmap_enter(dst_map->pmap, vaddr, dst_m, prot, FALSE, dst_entry);
2546 
2547 		/*
2548 		 * Mark it no longer busy, and put it on the active list.
2549 		 */
2550 		vm_page_activate(dst_m);
2551 		vm_page_wakeup(dst_m);
2552 	}
2553 	vm_object_drop(dst_object);
2554 	vm_object_drop(src_object);
2555 }
2556 
2557 #if 0
2558 
2559 /*
2560  * This routine checks around the requested page for other pages that
2561  * might be able to be faulted in.  This routine brackets the viable
2562  * pages for the pages to be paged in.
2563  *
2564  * Inputs:
2565  *	m, rbehind, rahead
2566  *
2567  * Outputs:
2568  *  marray (array of vm_page_t), reqpage (index of requested page)
2569  *
2570  * Return value:
2571  *  number of pages in marray
2572  */
2573 static int
2574 vm_fault_additional_pages(vm_page_t m, int rbehind, int rahead,
2575 			  vm_page_t *marray, int *reqpage)
2576 {
2577 	int i,j;
2578 	vm_object_t object;
2579 	vm_pindex_t pindex, startpindex, endpindex, tpindex;
2580 	vm_page_t rtm;
2581 	int cbehind, cahead;
2582 
2583 	object = m->object;
2584 	pindex = m->pindex;
2585 
2586 	/*
2587 	 * we don't fault-ahead for device pager
2588 	 */
2589 	if ((object->type == OBJT_DEVICE) ||
2590 	    (object->type == OBJT_MGTDEVICE)) {
2591 		*reqpage = 0;
2592 		marray[0] = m;
2593 		return 1;
2594 	}
2595 
2596 	/*
2597 	 * if the requested page is not available, then give up now
2598 	 */
2599 	if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
2600 		*reqpage = 0;	/* not used by caller, fix compiler warn */
2601 		return 0;
2602 	}
2603 
2604 	if ((cbehind == 0) && (cahead == 0)) {
2605 		*reqpage = 0;
2606 		marray[0] = m;
2607 		return 1;
2608 	}
2609 
2610 	if (rahead > cahead) {
2611 		rahead = cahead;
2612 	}
2613 
2614 	if (rbehind > cbehind) {
2615 		rbehind = cbehind;
2616 	}
2617 
2618 	/*
2619 	 * Do not do any readahead if we have insufficient free memory.
2620 	 *
2621 	 * XXX code was broken disabled before and has instability
2622 	 * with this conditonal fixed, so shortcut for now.
2623 	 */
2624 	if (burst_fault == 0 || vm_page_count_severe()) {
2625 		marray[0] = m;
2626 		*reqpage = 0;
2627 		return 1;
2628 	}
2629 
2630 	/*
2631 	 * scan backward for the read behind pages -- in memory
2632 	 *
2633 	 * Assume that if the page is not found an interrupt will not
2634 	 * create it.  Theoretically interrupts can only remove (busy)
2635 	 * pages, not create new associations.
2636 	 */
2637 	if (pindex > 0) {
2638 		if (rbehind > pindex) {
2639 			rbehind = pindex;
2640 			startpindex = 0;
2641 		} else {
2642 			startpindex = pindex - rbehind;
2643 		}
2644 
2645 		vm_object_hold(object);
2646 		for (tpindex = pindex; tpindex > startpindex; --tpindex) {
2647 			if (vm_page_lookup(object, tpindex - 1))
2648 				break;
2649 		}
2650 
2651 		i = 0;
2652 		while (tpindex < pindex) {
2653 			rtm = vm_page_alloc(object, tpindex, VM_ALLOC_SYSTEM |
2654 							     VM_ALLOC_NULL_OK);
2655 			if (rtm == NULL) {
2656 				for (j = 0; j < i; j++) {
2657 					vm_page_free(marray[j]);
2658 				}
2659 				vm_object_drop(object);
2660 				marray[0] = m;
2661 				*reqpage = 0;
2662 				return 1;
2663 			}
2664 			marray[i] = rtm;
2665 			++i;
2666 			++tpindex;
2667 		}
2668 		vm_object_drop(object);
2669 	} else {
2670 		i = 0;
2671 	}
2672 
2673 	/*
2674 	 * Assign requested page
2675 	 */
2676 	marray[i] = m;
2677 	*reqpage = i;
2678 	++i;
2679 
2680 	/*
2681 	 * Scan forwards for read-ahead pages
2682 	 */
2683 	tpindex = pindex + 1;
2684 	endpindex = tpindex + rahead;
2685 	if (endpindex > object->size)
2686 		endpindex = object->size;
2687 
2688 	vm_object_hold(object);
2689 	while (tpindex < endpindex) {
2690 		if (vm_page_lookup(object, tpindex))
2691 			break;
2692 		rtm = vm_page_alloc(object, tpindex, VM_ALLOC_SYSTEM |
2693 						     VM_ALLOC_NULL_OK);
2694 		if (rtm == NULL)
2695 			break;
2696 		marray[i] = rtm;
2697 		++i;
2698 		++tpindex;
2699 	}
2700 	vm_object_drop(object);
2701 
2702 	return (i);
2703 }
2704 
2705 #endif
2706 
2707 /*
2708  * vm_prefault() provides a quick way of clustering pagefaults into a
2709  * processes address space.  It is a "cousin" of pmap_object_init_pt,
2710  * except it runs at page fault time instead of mmap time.
2711  *
2712  * vm.fast_fault	Enables pre-faulting zero-fill pages
2713  *
2714  * vm.prefault_pages	Number of pages (1/2 negative, 1/2 positive) to
2715  *			prefault.  Scan stops in either direction when
2716  *			a page is found to already exist.
2717  *
2718  * This code used to be per-platform pmap_prefault().  It is now
2719  * machine-independent and enhanced to also pre-fault zero-fill pages
2720  * (see vm.fast_fault) as well as make them writable, which greatly
2721  * reduces the number of page faults programs incur.
2722  *
2723  * Application performance when pre-faulting zero-fill pages is heavily
2724  * dependent on the application.  Very tiny applications like /bin/echo
2725  * lose a little performance while applications of any appreciable size
2726  * gain performance.  Prefaulting multiple pages also reduces SMP
2727  * congestion and can improve SMP performance significantly.
2728  *
2729  * NOTE!  prot may allow writing but this only applies to the top level
2730  *	  object.  If we wind up mapping a page extracted from a backing
2731  *	  object we have to make sure it is read-only.
2732  *
2733  * NOTE!  The caller has already handled any COW operations on the
2734  *	  vm_map_entry via the normal fault code.  Do NOT call this
2735  *	  shortcut unless the normal fault code has run on this entry.
2736  *
2737  * The related map must be locked.
2738  * No other requirements.
2739  */
2740 __read_mostly static int vm_prefault_pages = 8;
2741 SYSCTL_INT(_vm, OID_AUTO, prefault_pages, CTLFLAG_RW, &vm_prefault_pages, 0,
2742 	   "Maximum number of pages to pre-fault");
2743 __read_mostly static int vm_fast_fault = 1;
2744 SYSCTL_INT(_vm, OID_AUTO, fast_fault, CTLFLAG_RW, &vm_fast_fault, 0,
2745 	   "Burst fault zero-fill regions");
2746 
2747 /*
2748  * Set PG_NOSYNC if the map entry indicates so, but only if the page
2749  * is not already dirty by other means.  This will prevent passive
2750  * filesystem syncing as well as 'sync' from writing out the page.
2751  */
2752 static void
2753 vm_set_nosync(vm_page_t m, vm_map_entry_t entry)
2754 {
2755 	if (entry->eflags & MAP_ENTRY_NOSYNC) {
2756 		if (m->dirty == 0)
2757 			vm_page_flag_set(m, PG_NOSYNC);
2758 	} else {
2759 		vm_page_flag_clear(m, PG_NOSYNC);
2760 	}
2761 }
2762 
2763 static void
2764 vm_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry, int prot,
2765 	    int fault_flags)
2766 {
2767 	vm_map_backing_t ba;	/* first ba */
2768 	struct lwp *lp;
2769 	vm_page_t m;
2770 	vm_offset_t addr;
2771 	vm_pindex_t index;
2772 	vm_pindex_t pindex;
2773 	vm_object_t object;
2774 	int pprot;
2775 	int i;
2776 	int noneg;
2777 	int nopos;
2778 	int maxpages;
2779 
2780 	/*
2781 	 * Get stable max count value, disabled if set to 0
2782 	 */
2783 	maxpages = vm_prefault_pages;
2784 	cpu_ccfence();
2785 	if (maxpages <= 0)
2786 		return;
2787 
2788 	/*
2789 	 * We do not currently prefault mappings that use virtual page
2790 	 * tables.  We do not prefault foreign pmaps.
2791 	 */
2792 	if (entry->maptype != VM_MAPTYPE_NORMAL)
2793 		return;
2794 	lp = curthread->td_lwp;
2795 	if (lp == NULL || (pmap != vmspace_pmap(lp->lwp_vmspace)))
2796 		return;
2797 
2798 	/*
2799 	 * Limit pre-fault count to 1024 pages.
2800 	 */
2801 	if (maxpages > 1024)
2802 		maxpages = 1024;
2803 
2804 	ba = &entry->ba;
2805 	object = entry->ba.object;
2806 	KKASSERT(object != NULL);
2807 
2808 	/*
2809 	 * NOTE: VM_FAULT_DIRTY allowed later so must hold object exclusively
2810 	 *	 now (or do something more complex XXX).
2811 	 */
2812 	vm_object_hold(object);
2813 
2814 	noneg = 0;
2815 	nopos = 0;
2816 	for (i = 0; i < maxpages; ++i) {
2817 		vm_object_t lobject;
2818 		vm_object_t nobject;
2819 		vm_map_backing_t last_ba;	/* last ba */
2820 		vm_map_backing_t next_ba;	/* last ba */
2821 		int allocated = 0;
2822 		int error;
2823 
2824 		/*
2825 		 * This can eat a lot of time on a heavily contended
2826 		 * machine so yield on the tick if needed.
2827 		 */
2828 		if ((i & 7) == 7)
2829 			lwkt_yield();
2830 
2831 		/*
2832 		 * Calculate the page to pre-fault, stopping the scan in
2833 		 * each direction separately if the limit is reached.
2834 		 */
2835 		if (i & 1) {
2836 			if (noneg)
2837 				continue;
2838 			addr = addra - ((i + 1) >> 1) * PAGE_SIZE;
2839 		} else {
2840 			if (nopos)
2841 				continue;
2842 			addr = addra + ((i + 2) >> 1) * PAGE_SIZE;
2843 		}
2844 		if (addr < entry->ba.start) {
2845 			noneg = 1;
2846 			if (noneg && nopos)
2847 				break;
2848 			continue;
2849 		}
2850 		if (addr >= entry->ba.end) {
2851 			nopos = 1;
2852 			if (noneg && nopos)
2853 				break;
2854 			continue;
2855 		}
2856 
2857 		/*
2858 		 * Skip pages already mapped, and stop scanning in that
2859 		 * direction.  When the scan terminates in both directions
2860 		 * we are done.
2861 		 */
2862 		if (pmap_prefault_ok(pmap, addr) == 0) {
2863 			if (i & 1)
2864 				noneg = 1;
2865 			else
2866 				nopos = 1;
2867 			if (noneg && nopos)
2868 				break;
2869 			continue;
2870 		}
2871 
2872 		/*
2873 		 * Follow the backing layers to obtain the page to be mapped
2874 		 * into the pmap.
2875 		 *
2876 		 * If we reach the terminal object without finding a page
2877 		 * and we determine it would be advantageous, then allocate
2878 		 * a zero-fill page for the base object.  The base object
2879 		 * is guaranteed to be OBJT_DEFAULT for this case.
2880 		 *
2881 		 * In order to not have to check the pager via *haspage*()
2882 		 * we stop if any non-default object is encountered.  e.g.
2883 		 * a vnode or swap object would stop the loop.
2884 		 */
2885 		index = ((addr - entry->ba.start) + entry->ba.offset) >>
2886 			PAGE_SHIFT;
2887 		last_ba = ba;
2888 		lobject = object;
2889 		pindex = index;
2890 		pprot = prot;
2891 
2892 		/*vm_object_hold(lobject); implied */
2893 
2894 		while ((m = vm_page_lookup_busy_try(lobject, pindex,
2895 						    TRUE, &error)) == NULL) {
2896 			if (lobject->type != OBJT_DEFAULT)
2897 				break;
2898 			if ((next_ba = last_ba->backing_ba) == NULL) {
2899 				if (vm_fast_fault == 0)
2900 					break;
2901 				if ((prot & VM_PROT_WRITE) == 0 ||
2902 				    vm_paging_min()) {
2903 					break;
2904 				}
2905 
2906 				/*
2907 				 * NOTE: Allocated from base object
2908 				 */
2909 				m = vm_page_alloc(object, index,
2910 						  VM_ALLOC_NORMAL |
2911 						  VM_ALLOC_ZERO |
2912 						  VM_ALLOC_USE_GD |
2913 						  VM_ALLOC_NULL_OK);
2914 				if (m == NULL)
2915 					break;
2916 				allocated = 1;
2917 				pprot = prot;
2918 				/* lobject = object .. not needed */
2919 				break;
2920 			}
2921 			if (next_ba->offset & PAGE_MASK)
2922 				break;
2923 			nobject = next_ba->object;
2924 			vm_object_hold(nobject);
2925 			pindex -= last_ba->offset >> PAGE_SHIFT;
2926 			pindex += next_ba->offset >> PAGE_SHIFT;
2927 			if (last_ba != ba) {
2928 				vm_object_lock_swap();
2929 				vm_object_drop(lobject);
2930 			}
2931 			lobject = nobject;
2932 			last_ba = next_ba;
2933 			pprot &= ~VM_PROT_WRITE;
2934 		}
2935 
2936 		/*
2937 		 * NOTE: A non-NULL (m) will be associated with lobject if
2938 		 *	 it was found there, otherwise it is probably a
2939 		 *	 zero-fill page associated with the base object.
2940 		 *
2941 		 * Give-up if no page is available.
2942 		 */
2943 		if (m == NULL) {
2944 			if (last_ba != ba)
2945 				vm_object_drop(lobject);
2946 			break;
2947 		}
2948 
2949 		/*
2950 		 * The object must be marked dirty if we are mapping a
2951 		 * writable page.  Note that (m) does not have to be
2952 		 * entered into the object, so use lobject or object
2953 		 * as appropriate instead of m->object.
2954 		 *
2955 		 * Do this before we potentially drop the object.
2956 		 */
2957 		if (pprot & VM_PROT_WRITE) {
2958 			vm_object_set_writeable_dirty(
2959 				(allocated ? object : lobject));
2960 		}
2961 
2962 		/*
2963 		 * Do not conditionalize on PG_RAM.  If pages are present in
2964 		 * the VM system we assume optimal caching.  If caching is
2965 		 * not optimal the I/O gravy train will be restarted when we
2966 		 * hit an unavailable page.  We do not want to try to restart
2967 		 * the gravy train now because we really don't know how much
2968 		 * of the object has been cached.  The cost for restarting
2969 		 * the gravy train should be low (since accesses will likely
2970 		 * be I/O bound anyway).
2971 		 */
2972 		if (last_ba != ba)
2973 			vm_object_drop(lobject);
2974 
2975 		/*
2976 		 * Enter the page into the pmap if appropriate.  If we had
2977 		 * allocated the page we have to place it on a queue.  If not
2978 		 * we just have to make sure it isn't on the cache queue
2979 		 * (pages on the cache queue are not allowed to be mapped).
2980 		 *
2981 		 * When allocated is TRUE, m corresponds to object,
2982 		 * not lobject.
2983 		 */
2984 		if (allocated) {
2985 			/*
2986 			 * Page must be zerod.
2987 			 */
2988 			vm_page_zero_fill(m);
2989 			mycpu->gd_cnt.v_zfod++;
2990 			m->valid = VM_PAGE_BITS_ALL;
2991 
2992 			/*
2993 			 * Handle dirty page case
2994 			 */
2995 			if (pprot & VM_PROT_WRITE)
2996 				vm_set_nosync(m, entry);
2997 			pmap_enter(pmap, addr, m, pprot, 0, entry);
2998 #if 0
2999 			/* REMOVE ME, a burst counts as one fault */
3000 			mycpu->gd_cnt.v_vm_faults++;
3001 			if (curthread->td_lwp)
3002 				++curthread->td_lwp->lwp_ru.ru_minflt;
3003 #endif
3004 			vm_page_deactivate(m);
3005 			if (pprot & VM_PROT_WRITE) {
3006 				/*vm_object_set_writeable_dirty(object);*/
3007 				vm_set_nosync(m, entry);
3008 				if (fault_flags & VM_FAULT_DIRTY) {
3009 					vm_page_dirty(m);
3010 					/*XXX*/
3011 					swap_pager_unswapped(m);
3012 				}
3013 			}
3014 			vm_page_wakeup(m);
3015 		} else if (error) {
3016 			/* couldn't busy page, no wakeup */
3017 		} else if (
3018 		    ((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
3019 		    (m->flags & PG_FICTITIOUS) == 0) {
3020 			/*
3021 			 * A fully valid page not undergoing soft I/O can
3022 			 * be immediately entered into the pmap.
3023 			 *
3024 			 * When allocated is false, m corresponds to lobject.
3025 			 */
3026 			if ((m->queue - m->pc) == PQ_CACHE)
3027 				vm_page_deactivate(m);
3028 			if (pprot & VM_PROT_WRITE) {
3029 				/*vm_object_set_writeable_dirty(lobject);*/
3030 				vm_set_nosync(m, entry);
3031 				if (fault_flags & VM_FAULT_DIRTY) {
3032 					vm_page_dirty(m);
3033 					/*XXX*/
3034 					swap_pager_unswapped(m);
3035 				}
3036 			}
3037 			if (pprot & VM_PROT_WRITE)
3038 				vm_set_nosync(m, entry);
3039 			pmap_enter(pmap, addr, m, pprot, 0, entry);
3040 #if 0
3041 			/* REMOVE ME, a burst counts as one fault */
3042 			mycpu->gd_cnt.v_vm_faults++;
3043 			if (curthread->td_lwp)
3044 				++curthread->td_lwp->lwp_ru.ru_minflt;
3045 #endif
3046 			vm_page_wakeup(m);
3047 		} else {
3048 			vm_page_wakeup(m);
3049 		}
3050 	}
3051 	vm_object_drop(object);
3052 }
3053 
3054 /*
3055  * Object can be held shared
3056  */
3057 static void
3058 vm_prefault_quick(pmap_t pmap, vm_offset_t addra,
3059 		  vm_map_entry_t entry, int prot, int fault_flags)
3060 {
3061 	struct lwp *lp;
3062 	vm_page_t m;
3063 	vm_offset_t addr;
3064 	vm_pindex_t pindex;
3065 	vm_object_t object;
3066 	int i;
3067 	int noneg;
3068 	int nopos;
3069 	int maxpages;
3070 
3071 	/*
3072 	 * Get stable max count value, disabled if set to 0
3073 	 */
3074 	maxpages = vm_prefault_pages;
3075 	cpu_ccfence();
3076 	if (maxpages <= 0)
3077 		return;
3078 
3079 	/*
3080 	 * We do not currently prefault mappings that use virtual page
3081 	 * tables.  We do not prefault foreign pmaps.
3082 	 */
3083 	if (entry->maptype != VM_MAPTYPE_NORMAL)
3084 		return;
3085 	lp = curthread->td_lwp;
3086 	if (lp == NULL || (pmap != vmspace_pmap(lp->lwp_vmspace)))
3087 		return;
3088 	object = entry->ba.object;
3089 	if (entry->ba.backing_ba != NULL)
3090 		return;
3091 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
3092 
3093 	/*
3094 	 * Limit pre-fault count to 1024 pages.
3095 	 */
3096 	if (maxpages > 1024)
3097 		maxpages = 1024;
3098 
3099 	noneg = 0;
3100 	nopos = 0;
3101 	for (i = 0; i < maxpages; ++i) {
3102 		int error;
3103 
3104 		/*
3105 		 * Calculate the page to pre-fault, stopping the scan in
3106 		 * each direction separately if the limit is reached.
3107 		 */
3108 		if (i & 1) {
3109 			if (noneg)
3110 				continue;
3111 			addr = addra - ((i + 1) >> 1) * PAGE_SIZE;
3112 		} else {
3113 			if (nopos)
3114 				continue;
3115 			addr = addra + ((i + 2) >> 1) * PAGE_SIZE;
3116 		}
3117 		if (addr < entry->ba.start) {
3118 			noneg = 1;
3119 			if (noneg && nopos)
3120 				break;
3121 			continue;
3122 		}
3123 		if (addr >= entry->ba.end) {
3124 			nopos = 1;
3125 			if (noneg && nopos)
3126 				break;
3127 			continue;
3128 		}
3129 
3130 		/*
3131 		 * Follow the VM object chain to obtain the page to be mapped
3132 		 * into the pmap.  This version of the prefault code only
3133 		 * works with terminal objects.
3134 		 *
3135 		 * The page must already exist.  If we encounter a problem
3136 		 * we stop here.
3137 		 *
3138 		 * WARNING!  We cannot call swap_pager_unswapped() or insert
3139 		 *	     a new vm_page with a shared token.
3140 		 */
3141 		pindex = ((addr - entry->ba.start) + entry->ba.offset) >>
3142 			 PAGE_SHIFT;
3143 
3144 		/*
3145 		 * Skip pages already mapped, and stop scanning in that
3146 		 * direction.  When the scan terminates in both directions
3147 		 * we are done.
3148 		 */
3149 		if (pmap_prefault_ok(pmap, addr) == 0) {
3150 			if (i & 1)
3151 				noneg = 1;
3152 			else
3153 				nopos = 1;
3154 			if (noneg && nopos)
3155 				break;
3156 			continue;
3157 		}
3158 
3159 		/*
3160 		 * Shortcut the read-only mapping case using the far more
3161 		 * efficient vm_page_lookup_sbusy_try() function.  This
3162 		 * allows us to acquire the page soft-busied only which
3163 		 * is especially nice for concurrent execs of the same
3164 		 * program.
3165 		 *
3166 		 * The lookup function also validates page suitability
3167 		 * (all valid bits set, and not fictitious).
3168 		 *
3169 		 * If the page is in PQ_CACHE we have to fall-through
3170 		 * and hard-busy it so we can move it out of PQ_CACHE.
3171 		 */
3172 		if ((prot & VM_PROT_WRITE) == 0) {
3173 			m = vm_page_lookup_sbusy_try(object, pindex,
3174 						     0, PAGE_SIZE);
3175 			if (m == NULL)
3176 				break;
3177 			if ((m->queue - m->pc) != PQ_CACHE) {
3178 				pmap_enter(pmap, addr, m, prot, 0, entry);
3179 #if 0
3180 			/* REMOVE ME, a burst counts as one fault */
3181 				mycpu->gd_cnt.v_vm_faults++;
3182 				if (curthread->td_lwp)
3183 					++curthread->td_lwp->lwp_ru.ru_minflt;
3184 #endif
3185 				vm_page_sbusy_drop(m);
3186 				continue;
3187 			}
3188 			vm_page_sbusy_drop(m);
3189 		}
3190 
3191 		/*
3192 		 * Fallback to normal vm_page lookup code.  This code
3193 		 * hard-busies the page.  Not only that, but the page
3194 		 * can remain in that state for a significant period
3195 		 * time due to pmap_enter()'s overhead.
3196 		 */
3197 		m = vm_page_lookup_busy_try(object, pindex, TRUE, &error);
3198 		if (m == NULL || error)
3199 			break;
3200 
3201 		/*
3202 		 * Stop if the page cannot be trivially entered into the
3203 		 * pmap.
3204 		 */
3205 		if (((m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL) ||
3206 		    (m->flags & PG_FICTITIOUS) ||
3207 		    ((m->flags & PG_SWAPPED) &&
3208 		     (prot & VM_PROT_WRITE) &&
3209 		     (fault_flags & VM_FAULT_DIRTY))) {
3210 			vm_page_wakeup(m);
3211 			break;
3212 		}
3213 
3214 		/*
3215 		 * Enter the page into the pmap.  The object might be held
3216 		 * shared so we can't do any (serious) modifying operation
3217 		 * on it.
3218 		 */
3219 		if ((m->queue - m->pc) == PQ_CACHE)
3220 			vm_page_deactivate(m);
3221 		if (prot & VM_PROT_WRITE) {
3222 			vm_object_set_writeable_dirty(m->object);
3223 			vm_set_nosync(m, entry);
3224 			if (fault_flags & VM_FAULT_DIRTY) {
3225 				vm_page_dirty(m);
3226 				/* can't happeen due to conditional above */
3227 				/* swap_pager_unswapped(m); */
3228 			}
3229 		}
3230 		pmap_enter(pmap, addr, m, prot, 0, entry);
3231 #if 0
3232 		/* REMOVE ME, a burst counts as one fault */
3233 		mycpu->gd_cnt.v_vm_faults++;
3234 		if (curthread->td_lwp)
3235 			++curthread->td_lwp->lwp_ru.ru_minflt;
3236 #endif
3237 		vm_page_wakeup(m);
3238 	}
3239 }
3240