xref: /dragonfly/sys/vm/vm_fault.c (revision 984263bc)
1 /*
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  *
9  *
10  * This code is derived from software contributed to Berkeley by
11  * The Mach Operating System project at Carnegie-Mellon University.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. All advertising materials mentioning features or use of this software
22  *    must display the following acknowledgement:
23  *	This product includes software developed by the University of
24  *	California, Berkeley and its contributors.
25  * 4. Neither the name of the University nor the names of its contributors
26  *    may be used to endorse or promote products derived from this software
27  *    without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39  * SUCH DAMAGE.
40  *
41  *	from: @(#)vm_fault.c	8.4 (Berkeley) 1/12/94
42  *
43  *
44  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
45  * All rights reserved.
46  *
47  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
48  *
49  * Permission to use, copy, modify and distribute this software and
50  * its documentation is hereby granted, provided that both the copyright
51  * notice and this permission notice appear in all copies of the
52  * software, derivative works or modified versions, and any portions
53  * thereof, and that both notices appear in supporting documentation.
54  *
55  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58  *
59  * Carnegie Mellon requests users of this software to return to
60  *
61  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
62  *  School of Computer Science
63  *  Carnegie Mellon University
64  *  Pittsburgh PA 15213-3890
65  *
66  * any improvements or extensions that they make and grant Carnegie the
67  * rights to redistribute these changes.
68  *
69  * $FreeBSD: src/sys/vm/vm_fault.c,v 1.108.2.8 2002/02/26 05:49:27 silby Exp $
70  */
71 
72 /*
73  *	Page fault handling module.
74  */
75 
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/proc.h>
79 #include <sys/vnode.h>
80 #include <sys/resourcevar.h>
81 #include <sys/vmmeter.h>
82 
83 #include <vm/vm.h>
84 #include <vm/vm_param.h>
85 #include <sys/lock.h>
86 #include <vm/pmap.h>
87 #include <vm/vm_map.h>
88 #include <vm/vm_object.h>
89 #include <vm/vm_page.h>
90 #include <vm/vm_pageout.h>
91 #include <vm/vm_kern.h>
92 #include <vm/vm_pager.h>
93 #include <vm/vnode_pager.h>
94 #include <vm/vm_extern.h>
95 
96 static int vm_fault_additional_pages __P((vm_page_t, int,
97 					  int, vm_page_t *, int *));
98 
99 #define VM_FAULT_READ_AHEAD 8
100 #define VM_FAULT_READ_BEHIND 7
101 #define VM_FAULT_READ (VM_FAULT_READ_AHEAD+VM_FAULT_READ_BEHIND+1)
102 
103 struct faultstate {
104 	vm_page_t m;
105 	vm_object_t object;
106 	vm_pindex_t pindex;
107 	vm_page_t first_m;
108 	vm_object_t	first_object;
109 	vm_pindex_t first_pindex;
110 	vm_map_t map;
111 	vm_map_entry_t entry;
112 	int lookup_still_valid;
113 	struct vnode *vp;
114 };
115 
116 static __inline void
117 release_page(struct faultstate *fs)
118 {
119 	vm_page_wakeup(fs->m);
120 	vm_page_deactivate(fs->m);
121 	fs->m = NULL;
122 }
123 
124 static __inline void
125 unlock_map(struct faultstate *fs)
126 {
127 	if (fs->lookup_still_valid) {
128 		vm_map_lookup_done(fs->map, fs->entry);
129 		fs->lookup_still_valid = FALSE;
130 	}
131 }
132 
133 static void
134 _unlock_things(struct faultstate *fs, int dealloc)
135 {
136 	vm_object_pip_wakeup(fs->object);
137 	if (fs->object != fs->first_object) {
138 		vm_page_free(fs->first_m);
139 		vm_object_pip_wakeup(fs->first_object);
140 		fs->first_m = NULL;
141 	}
142 	if (dealloc) {
143 		vm_object_deallocate(fs->first_object);
144 	}
145 	unlock_map(fs);
146 	if (fs->vp != NULL) {
147 		vput(fs->vp);
148 		fs->vp = NULL;
149 	}
150 }
151 
152 #define unlock_things(fs) _unlock_things(fs, 0)
153 #define unlock_and_deallocate(fs) _unlock_things(fs, 1)
154 
155 /*
156  * TRYPAGER - used by vm_fault to calculate whether the pager for the
157  *	      current object *might* contain the page.
158  *
159  *	      default objects are zero-fill, there is no real pager.
160  */
161 
162 #define TRYPAGER	(fs.object->type != OBJT_DEFAULT && \
163 			(((fault_flags & VM_FAULT_WIRE_MASK) == 0) || wired))
164 
165 /*
166  *	vm_fault:
167  *
168  *	Handle a page fault occurring at the given address,
169  *	requiring the given permissions, in the map specified.
170  *	If successful, the page is inserted into the
171  *	associated physical map.
172  *
173  *	NOTE: the given address should be truncated to the
174  *	proper page address.
175  *
176  *	KERN_SUCCESS is returned if the page fault is handled; otherwise,
177  *	a standard error specifying why the fault is fatal is returned.
178  *
179  *
180  *	The map in question must be referenced, and remains so.
181  *	Caller may hold no locks.
182  */
183 int
184 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, int fault_flags)
185 {
186 	vm_prot_t prot;
187 	int result;
188 	boolean_t wired;
189 	int map_generation;
190 	vm_object_t next_object;
191 	vm_page_t marray[VM_FAULT_READ];
192 	int hardfault;
193 	int faultcount;
194 	struct faultstate fs;
195 
196 	cnt.v_vm_faults++;	/* needs lock XXX */
197 	hardfault = 0;
198 
199 RetryFault:;
200 
201 	/*
202 	 * Find the backing store object and offset into it to begin the
203 	 * search.
204 	 */
205 	fs.map = map;
206 	if ((result = vm_map_lookup(&fs.map, vaddr,
207 		fault_type, &fs.entry, &fs.first_object,
208 		&fs.first_pindex, &prot, &wired)) != KERN_SUCCESS) {
209 		if ((result != KERN_PROTECTION_FAILURE) ||
210 			((fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE)) {
211 			return result;
212 		}
213 
214 		/*
215    		 * If we are user-wiring a r/w segment, and it is COW, then
216    		 * we need to do the COW operation.  Note that we don't COW
217    		 * currently RO sections now, because it is NOT desirable
218    		 * to COW .text.  We simply keep .text from ever being COW'ed
219    		 * and take the heat that one cannot debug wired .text sections.
220    		 */
221 		result = vm_map_lookup(&fs.map, vaddr,
222 			VM_PROT_READ|VM_PROT_WRITE|VM_PROT_OVERRIDE_WRITE,
223 			&fs.entry, &fs.first_object, &fs.first_pindex, &prot, &wired);
224 		if (result != KERN_SUCCESS) {
225 			return result;
226 		}
227 
228 		/*
229 		 * If we don't COW now, on a user wire, the user will never
230 		 * be able to write to the mapping.  If we don't make this
231 		 * restriction, the bookkeeping would be nearly impossible.
232 		 */
233 		if ((fs.entry->protection & VM_PROT_WRITE) == 0)
234 			fs.entry->max_protection &= ~VM_PROT_WRITE;
235 	}
236 
237 	map_generation = fs.map->timestamp;
238 
239 	if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
240 		panic("vm_fault: fault on nofault entry, addr: %lx",
241 		    (u_long)vaddr);
242 	}
243 
244 	/*
245 	 * Make a reference to this object to prevent its disposal while we
246 	 * are messing with it.  Once we have the reference, the map is free
247 	 * to be diddled.  Since objects reference their shadows (and copies),
248 	 * they will stay around as well.
249 	 *
250 	 * Bump the paging-in-progress count to prevent size changes (e.g.
251 	 * truncation operations) during I/O.  This must be done after
252 	 * obtaining the vnode lock in order to avoid possible deadlocks.
253 	 */
254 	vm_object_reference(fs.first_object);
255 	fs.vp = vnode_pager_lock(fs.first_object);
256 	vm_object_pip_add(fs.first_object, 1);
257 
258 	if ((fault_type & VM_PROT_WRITE) &&
259 		(fs.first_object->type == OBJT_VNODE)) {
260 		vm_freeze_copyopts(fs.first_object,
261 			fs.first_pindex, fs.first_pindex + 1);
262 	}
263 
264 	fs.lookup_still_valid = TRUE;
265 
266 	if (wired)
267 		fault_type = prot;
268 
269 	fs.first_m = NULL;
270 
271 	/*
272 	 * Search for the page at object/offset.
273 	 */
274 
275 	fs.object = fs.first_object;
276 	fs.pindex = fs.first_pindex;
277 
278 	while (TRUE) {
279 		/*
280 		 * If the object is dead, we stop here
281 		 */
282 
283 		if (fs.object->flags & OBJ_DEAD) {
284 			unlock_and_deallocate(&fs);
285 			return (KERN_PROTECTION_FAILURE);
286 		}
287 
288 		/*
289 		 * See if page is resident
290 		 */
291 
292 		fs.m = vm_page_lookup(fs.object, fs.pindex);
293 		if (fs.m != NULL) {
294 			int queue, s;
295 			/*
296 			 * Wait/Retry if the page is busy.  We have to do this
297 			 * if the page is busy via either PG_BUSY or
298 			 * vm_page_t->busy because the vm_pager may be using
299 			 * vm_page_t->busy for pageouts ( and even pageins if
300 			 * it is the vnode pager ), and we could end up trying
301 			 * to pagein and pageout the same page simultaneously.
302 			 *
303 			 * We can theoretically allow the busy case on a read
304 			 * fault if the page is marked valid, but since such
305 			 * pages are typically already pmap'd, putting that
306 			 * special case in might be more effort then it is
307 			 * worth.  We cannot under any circumstances mess
308 			 * around with a vm_page_t->busy page except, perhaps,
309 			 * to pmap it.
310 			 */
311 			if ((fs.m->flags & PG_BUSY) || fs.m->busy) {
312 				unlock_things(&fs);
313 				(void)vm_page_sleep_busy(fs.m, TRUE, "vmpfw");
314 				cnt.v_intrans++;
315 				vm_object_deallocate(fs.first_object);
316 				goto RetryFault;
317 			}
318 
319 			queue = fs.m->queue;
320 			s = splvm();
321 			vm_page_unqueue_nowakeup(fs.m);
322 			splx(s);
323 
324 			if ((queue - fs.m->pc) == PQ_CACHE && vm_page_count_severe()) {
325 				vm_page_activate(fs.m);
326 				unlock_and_deallocate(&fs);
327 				VM_WAITPFAULT;
328 				goto RetryFault;
329 			}
330 
331 			/*
332 			 * Mark page busy for other processes, and the
333 			 * pagedaemon.  If it still isn't completely valid
334 			 * (readable), jump to readrest, else break-out ( we
335 			 * found the page ).
336 			 */
337 
338 			vm_page_busy(fs.m);
339 			if (((fs.m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL) &&
340 				fs.m->object != kernel_object && fs.m->object != kmem_object) {
341 				goto readrest;
342 			}
343 
344 			break;
345 		}
346 
347 		/*
348 		 * Page is not resident, If this is the search termination
349 		 * or the pager might contain the page, allocate a new page.
350 		 */
351 
352 		if (TRYPAGER || fs.object == fs.first_object) {
353 			if (fs.pindex >= fs.object->size) {
354 				unlock_and_deallocate(&fs);
355 				return (KERN_PROTECTION_FAILURE);
356 			}
357 
358 			/*
359 			 * Allocate a new page for this object/offset pair.
360 			 */
361 			fs.m = NULL;
362 			if (!vm_page_count_severe()) {
363 				fs.m = vm_page_alloc(fs.object, fs.pindex,
364 				    (fs.vp || fs.object->backing_object)? VM_ALLOC_NORMAL: VM_ALLOC_ZERO);
365 			}
366 			if (fs.m == NULL) {
367 				unlock_and_deallocate(&fs);
368 				VM_WAITPFAULT;
369 				goto RetryFault;
370 			}
371 		}
372 
373 readrest:
374 		/*
375 		 * We have found a valid page or we have allocated a new page.
376 		 * The page thus may not be valid or may not be entirely
377 		 * valid.
378 		 *
379 		 * Attempt to fault-in the page if there is a chance that the
380 		 * pager has it, and potentially fault in additional pages
381 		 * at the same time.
382 		 */
383 
384 		if (TRYPAGER) {
385 			int rv;
386 			int reqpage;
387 			int ahead, behind;
388 			u_char behavior = vm_map_entry_behavior(fs.entry);
389 
390 			if (behavior == MAP_ENTRY_BEHAV_RANDOM) {
391 				ahead = 0;
392 				behind = 0;
393 			} else {
394 				behind = (vaddr - fs.entry->start) >> PAGE_SHIFT;
395 				if (behind > VM_FAULT_READ_BEHIND)
396 					behind = VM_FAULT_READ_BEHIND;
397 
398 				ahead = ((fs.entry->end - vaddr) >> PAGE_SHIFT) - 1;
399 				if (ahead > VM_FAULT_READ_AHEAD)
400 					ahead = VM_FAULT_READ_AHEAD;
401 			}
402 
403 			if ((fs.first_object->type != OBJT_DEVICE) &&
404 			    (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL ||
405                                 (behavior != MAP_ENTRY_BEHAV_RANDOM &&
406                                 fs.pindex >= fs.entry->lastr &&
407                                 fs.pindex < fs.entry->lastr + VM_FAULT_READ))
408 			) {
409 				vm_pindex_t firstpindex, tmppindex;
410 
411 				if (fs.first_pindex < 2 * VM_FAULT_READ)
412 					firstpindex = 0;
413 				else
414 					firstpindex = fs.first_pindex - 2 * VM_FAULT_READ;
415 
416 				/*
417 				 * note: partially valid pages cannot be
418 				 * included in the lookahead - NFS piecemeal
419 				 * writes will barf on it badly.
420 				 */
421 
422 				for(tmppindex = fs.first_pindex - 1;
423 					tmppindex >= firstpindex;
424 					--tmppindex) {
425 					vm_page_t mt;
426 					mt = vm_page_lookup( fs.first_object, tmppindex);
427 					if (mt == NULL || (mt->valid != VM_PAGE_BITS_ALL))
428 						break;
429 					if (mt->busy ||
430 						(mt->flags & (PG_BUSY | PG_FICTITIOUS | PG_UNMANAGED)) ||
431 						mt->hold_count ||
432 						mt->wire_count)
433 						continue;
434 					if (mt->dirty == 0)
435 						vm_page_test_dirty(mt);
436 					if (mt->dirty) {
437 						vm_page_protect(mt, VM_PROT_NONE);
438 						vm_page_deactivate(mt);
439 					} else {
440 						vm_page_cache(mt);
441 					}
442 				}
443 
444 				ahead += behind;
445 				behind = 0;
446 			}
447 
448 			/*
449 			 * now we find out if any other pages should be paged
450 			 * in at this time this routine checks to see if the
451 			 * pages surrounding this fault reside in the same
452 			 * object as the page for this fault.  If they do,
453 			 * then they are faulted in also into the object.  The
454 			 * array "marray" returned contains an array of
455 			 * vm_page_t structs where one of them is the
456 			 * vm_page_t passed to the routine.  The reqpage
457 			 * return value is the index into the marray for the
458 			 * vm_page_t passed to the routine.
459 			 *
460 			 * fs.m plus the additional pages are PG_BUSY'd.
461 			 */
462 			faultcount = vm_fault_additional_pages(
463 			    fs.m, behind, ahead, marray, &reqpage);
464 
465 			/*
466 			 * update lastr imperfectly (we do not know how much
467 			 * getpages will actually read), but good enough.
468 			 */
469 			fs.entry->lastr = fs.pindex + faultcount - behind;
470 
471 			/*
472 			 * Call the pager to retrieve the data, if any, after
473 			 * releasing the lock on the map.  We hold a ref on
474 			 * fs.object and the pages are PG_BUSY'd.
475 			 */
476 			unlock_map(&fs);
477 
478 			rv = faultcount ?
479 			    vm_pager_get_pages(fs.object, marray, faultcount,
480 				reqpage) : VM_PAGER_FAIL;
481 
482 			if (rv == VM_PAGER_OK) {
483 				/*
484 				 * Found the page. Leave it busy while we play
485 				 * with it.
486 				 */
487 
488 				/*
489 				 * Relookup in case pager changed page. Pager
490 				 * is responsible for disposition of old page
491 				 * if moved.
492 				 */
493 				fs.m = vm_page_lookup(fs.object, fs.pindex);
494 				if(!fs.m) {
495 					unlock_and_deallocate(&fs);
496 					goto RetryFault;
497 				}
498 
499 				hardfault++;
500 				break; /* break to PAGE HAS BEEN FOUND */
501 			}
502 			/*
503 			 * Remove the bogus page (which does not exist at this
504 			 * object/offset); before doing so, we must get back
505 			 * our object lock to preserve our invariant.
506 			 *
507 			 * Also wake up any other process that may want to bring
508 			 * in this page.
509 			 *
510 			 * If this is the top-level object, we must leave the
511 			 * busy page to prevent another process from rushing
512 			 * past us, and inserting the page in that object at
513 			 * the same time that we are.
514 			 */
515 
516 			if (rv == VM_PAGER_ERROR)
517 				printf("vm_fault: pager read error, pid %d (%s)\n",
518 				    curproc->p_pid, curproc->p_comm);
519 			/*
520 			 * Data outside the range of the pager or an I/O error
521 			 */
522 			/*
523 			 * XXX - the check for kernel_map is a kludge to work
524 			 * around having the machine panic on a kernel space
525 			 * fault w/ I/O error.
526 			 */
527 			if (((fs.map != kernel_map) && (rv == VM_PAGER_ERROR)) ||
528 				(rv == VM_PAGER_BAD)) {
529 				vm_page_free(fs.m);
530 				fs.m = NULL;
531 				unlock_and_deallocate(&fs);
532 				return ((rv == VM_PAGER_ERROR) ? KERN_FAILURE : KERN_PROTECTION_FAILURE);
533 			}
534 			if (fs.object != fs.first_object) {
535 				vm_page_free(fs.m);
536 				fs.m = NULL;
537 				/*
538 				 * XXX - we cannot just fall out at this
539 				 * point, m has been freed and is invalid!
540 				 */
541 			}
542 		}
543 
544 		/*
545 		 * We get here if the object has default pager (or unwiring)
546 		 * or the pager doesn't have the page.
547 		 */
548 		if (fs.object == fs.first_object)
549 			fs.first_m = fs.m;
550 
551 		/*
552 		 * Move on to the next object.  Lock the next object before
553 		 * unlocking the current one.
554 		 */
555 
556 		fs.pindex += OFF_TO_IDX(fs.object->backing_object_offset);
557 		next_object = fs.object->backing_object;
558 		if (next_object == NULL) {
559 			/*
560 			 * If there's no object left, fill the page in the top
561 			 * object with zeros.
562 			 */
563 			if (fs.object != fs.first_object) {
564 				vm_object_pip_wakeup(fs.object);
565 
566 				fs.object = fs.first_object;
567 				fs.pindex = fs.first_pindex;
568 				fs.m = fs.first_m;
569 			}
570 			fs.first_m = NULL;
571 
572 			/*
573 			 * Zero the page if necessary and mark it valid.
574 			 */
575 			if ((fs.m->flags & PG_ZERO) == 0) {
576 				vm_page_zero_fill(fs.m);
577 			} else {
578 				cnt.v_ozfod++;
579 			}
580 			cnt.v_zfod++;
581 			fs.m->valid = VM_PAGE_BITS_ALL;
582 			break;	/* break to PAGE HAS BEEN FOUND */
583 		} else {
584 			if (fs.object != fs.first_object) {
585 				vm_object_pip_wakeup(fs.object);
586 			}
587 			KASSERT(fs.object != next_object, ("object loop %p", next_object));
588 			fs.object = next_object;
589 			vm_object_pip_add(fs.object, 1);
590 		}
591 	}
592 
593 	KASSERT((fs.m->flags & PG_BUSY) != 0,
594 	    ("vm_fault: not busy after main loop"));
595 
596 	/*
597 	 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
598 	 * is held.]
599 	 */
600 
601 	/*
602 	 * If the page is being written, but isn't already owned by the
603 	 * top-level object, we have to copy it into a new page owned by the
604 	 * top-level object.
605 	 */
606 
607 	if (fs.object != fs.first_object) {
608 		/*
609 		 * We only really need to copy if we want to write it.
610 		 */
611 
612 		if (fault_type & VM_PROT_WRITE) {
613 			/*
614 			 * This allows pages to be virtually copied from a
615 			 * backing_object into the first_object, where the
616 			 * backing object has no other refs to it, and cannot
617 			 * gain any more refs.  Instead of a bcopy, we just
618 			 * move the page from the backing object to the
619 			 * first object.  Note that we must mark the page
620 			 * dirty in the first object so that it will go out
621 			 * to swap when needed.
622 			 */
623 			if (map_generation == fs.map->timestamp &&
624 				/*
625 				 * Only one shadow object
626 				 */
627 				(fs.object->shadow_count == 1) &&
628 				/*
629 				 * No COW refs, except us
630 				 */
631 				(fs.object->ref_count == 1) &&
632 				/*
633 				 * No one else can look this object up
634 				 */
635 				(fs.object->handle == NULL) &&
636 				/*
637 				 * No other ways to look the object up
638 				 */
639 				((fs.object->type == OBJT_DEFAULT) ||
640 				 (fs.object->type == OBJT_SWAP)) &&
641 				/*
642 				 * We don't chase down the shadow chain
643 				 */
644 				(fs.object == fs.first_object->backing_object) &&
645 
646 				/*
647 				 * grab the lock if we need to
648 				 */
649 				(fs.lookup_still_valid ||
650 				 lockmgr(&fs.map->lock, LK_EXCLUSIVE|LK_NOWAIT, (void *)0, curproc) == 0)
651 			    ) {
652 
653 				fs.lookup_still_valid = 1;
654 				/*
655 				 * get rid of the unnecessary page
656 				 */
657 				vm_page_protect(fs.first_m, VM_PROT_NONE);
658 				vm_page_free(fs.first_m);
659 				fs.first_m = NULL;
660 
661 				/*
662 				 * grab the page and put it into the
663 				 * process'es object.  The page is
664 				 * automatically made dirty.
665 				 */
666 				vm_page_rename(fs.m, fs.first_object, fs.first_pindex);
667 				fs.first_m = fs.m;
668 				vm_page_busy(fs.first_m);
669 				fs.m = NULL;
670 				cnt.v_cow_optim++;
671 			} else {
672 				/*
673 				 * Oh, well, lets copy it.
674 				 */
675 				vm_page_copy(fs.m, fs.first_m);
676 			}
677 
678 			if (fs.m) {
679 				/*
680 				 * We no longer need the old page or object.
681 				 */
682 				release_page(&fs);
683 			}
684 
685 			/*
686 			 * fs.object != fs.first_object due to above
687 			 * conditional
688 			 */
689 
690 			vm_object_pip_wakeup(fs.object);
691 
692 			/*
693 			 * Only use the new page below...
694 			 */
695 
696 			cnt.v_cow_faults++;
697 			fs.m = fs.first_m;
698 			fs.object = fs.first_object;
699 			fs.pindex = fs.first_pindex;
700 
701 		} else {
702 			prot &= ~VM_PROT_WRITE;
703 		}
704 	}
705 
706 	/*
707 	 * We must verify that the maps have not changed since our last
708 	 * lookup.
709 	 */
710 
711 	if (!fs.lookup_still_valid &&
712 		(fs.map->timestamp != map_generation)) {
713 		vm_object_t retry_object;
714 		vm_pindex_t retry_pindex;
715 		vm_prot_t retry_prot;
716 
717 		/*
718 		 * Since map entries may be pageable, make sure we can take a
719 		 * page fault on them.
720 		 */
721 
722 		/*
723 		 * Unlock vnode before the lookup to avoid deadlock.   E.G.
724 		 * avoid a deadlock between the inode and exec_map that can
725 		 * occur due to locks being obtained in different orders.
726 		 */
727 
728 		if (fs.vp != NULL) {
729 			vput(fs.vp);
730 			fs.vp = NULL;
731 		}
732 
733 		if (fs.map->infork) {
734 			release_page(&fs);
735 			unlock_and_deallocate(&fs);
736 			goto RetryFault;
737 		}
738 
739 		/*
740 		 * To avoid trying to write_lock the map while another process
741 		 * has it read_locked (in vm_map_pageable), we do not try for
742 		 * write permission.  If the page is still writable, we will
743 		 * get write permission.  If it is not, or has been marked
744 		 * needs_copy, we enter the mapping without write permission,
745 		 * and will merely take another fault.
746 		 */
747 		result = vm_map_lookup(&fs.map, vaddr, fault_type & ~VM_PROT_WRITE,
748 		    &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired);
749 		map_generation = fs.map->timestamp;
750 
751 		/*
752 		 * If we don't need the page any longer, put it on the active
753 		 * list (the easiest thing to do here).  If no one needs it,
754 		 * pageout will grab it eventually.
755 		 */
756 
757 		if (result != KERN_SUCCESS) {
758 			release_page(&fs);
759 			unlock_and_deallocate(&fs);
760 			return (result);
761 		}
762 		fs.lookup_still_valid = TRUE;
763 
764 		if ((retry_object != fs.first_object) ||
765 		    (retry_pindex != fs.first_pindex)) {
766 			release_page(&fs);
767 			unlock_and_deallocate(&fs);
768 			goto RetryFault;
769 		}
770 		/*
771 		 * Check whether the protection has changed or the object has
772 		 * been copied while we left the map unlocked. Changing from
773 		 * read to write permission is OK - we leave the page
774 		 * write-protected, and catch the write fault. Changing from
775 		 * write to read permission means that we can't mark the page
776 		 * write-enabled after all.
777 		 */
778 		prot &= retry_prot;
779 	}
780 
781 	/*
782 	 * Put this page into the physical map. We had to do the unlock above
783 	 * because pmap_enter may cause other faults.   We don't put the page
784 	 * back on the active queue until later so that the page-out daemon
785 	 * won't find us (yet).
786 	 */
787 
788 	if (prot & VM_PROT_WRITE) {
789 		vm_page_flag_set(fs.m, PG_WRITEABLE);
790 		vm_object_set_writeable_dirty(fs.m->object);
791 
792 		/*
793 		 * If the fault is a write, we know that this page is being
794 		 * written NOW so dirty it explicitly to save on
795 		 * pmap_is_modified() calls later.
796 		 *
797 		 * If this is a NOSYNC mmap we do not want to set PG_NOSYNC
798 		 * if the page is already dirty to prevent data written with
799 		 * the expectation of being synced from not being synced.
800 		 * Likewise if this entry does not request NOSYNC then make
801 		 * sure the page isn't marked NOSYNC.  Applications sharing
802 		 * data should use the same flags to avoid ping ponging.
803 		 *
804 		 * Also tell the backing pager, if any, that it should remove
805 		 * any swap backing since the page is now dirty.
806 		 */
807 		if (fs.entry->eflags & MAP_ENTRY_NOSYNC) {
808 			if (fs.m->dirty == 0)
809 				vm_page_flag_set(fs.m, PG_NOSYNC);
810 		} else {
811 			vm_page_flag_clear(fs.m, PG_NOSYNC);
812 		}
813 		if (fault_flags & VM_FAULT_DIRTY) {
814 			int s;
815 			vm_page_dirty(fs.m);
816 			s = splvm();
817 			vm_pager_page_unswapped(fs.m);
818 			splx(s);
819 		}
820 	}
821 
822 	/*
823 	 * Page had better still be busy
824 	 */
825 
826 	KASSERT(fs.m->flags & PG_BUSY,
827 		("vm_fault: page %p not busy!", fs.m));
828 
829 	unlock_things(&fs);
830 
831 	/*
832 	 * Sanity check: page must be completely valid or it is not fit to
833 	 * map into user space.  vm_pager_get_pages() ensures this.
834 	 */
835 
836 	if (fs.m->valid != VM_PAGE_BITS_ALL) {
837 		vm_page_zero_invalid(fs.m, TRUE);
838 		printf("Warning: page %p partially invalid on fault\n", fs.m);
839 	}
840 
841 	pmap_enter(fs.map->pmap, vaddr, fs.m, prot, wired);
842 
843 	if (((fault_flags & VM_FAULT_WIRE_MASK) == 0) && (wired == 0)) {
844 		pmap_prefault(fs.map->pmap, vaddr, fs.entry);
845 	}
846 
847 	vm_page_flag_clear(fs.m, PG_ZERO);
848 	vm_page_flag_set(fs.m, PG_MAPPED|PG_REFERENCED);
849 	if (fault_flags & VM_FAULT_HOLD)
850 		vm_page_hold(fs.m);
851 
852 	/*
853 	 * If the page is not wired down, then put it where the pageout daemon
854 	 * can find it.
855 	 */
856 
857 	if (fault_flags & VM_FAULT_WIRE_MASK) {
858 		if (wired)
859 			vm_page_wire(fs.m);
860 		else
861 			vm_page_unwire(fs.m, 1);
862 	} else {
863 		vm_page_activate(fs.m);
864 	}
865 
866 	if (curproc && (curproc->p_flag & P_INMEM) && curproc->p_stats) {
867 		if (hardfault) {
868 			curproc->p_stats->p_ru.ru_majflt++;
869 		} else {
870 			curproc->p_stats->p_ru.ru_minflt++;
871 		}
872 	}
873 
874 	/*
875 	 * Unlock everything, and return
876 	 */
877 
878 	vm_page_wakeup(fs.m);
879 	vm_object_deallocate(fs.first_object);
880 
881 	return (KERN_SUCCESS);
882 
883 }
884 
885 /*
886  *	vm_fault_wire:
887  *
888  *	Wire down a range of virtual addresses in a map.
889  */
890 int
891 vm_fault_wire(map, start, end)
892 	vm_map_t map;
893 	vm_offset_t start, end;
894 {
895 
896 	register vm_offset_t va;
897 	register pmap_t pmap;
898 	int rv;
899 
900 	pmap = vm_map_pmap(map);
901 
902 	/*
903 	 * Inform the physical mapping system that the range of addresses may
904 	 * not fault, so that page tables and such can be locked down as well.
905 	 */
906 
907 	pmap_pageable(pmap, start, end, FALSE);
908 
909 	/*
910 	 * We simulate a fault to get the page and enter it in the physical
911 	 * map.
912 	 */
913 
914 	for (va = start; va < end; va += PAGE_SIZE) {
915 		rv = vm_fault(map, va, VM_PROT_READ|VM_PROT_WRITE,
916 			VM_FAULT_CHANGE_WIRING);
917 		if (rv) {
918 			if (va != start)
919 				vm_fault_unwire(map, start, va);
920 			return (rv);
921 		}
922 	}
923 	return (KERN_SUCCESS);
924 }
925 
926 /*
927  *	vm_fault_user_wire:
928  *
929  *	Wire down a range of virtual addresses in a map.  This
930  *	is for user mode though, so we only ask for read access
931  *	on currently read only sections.
932  */
933 int
934 vm_fault_user_wire(map, start, end)
935 	vm_map_t map;
936 	vm_offset_t start, end;
937 {
938 
939 	register vm_offset_t va;
940 	register pmap_t pmap;
941 	int rv;
942 
943 	pmap = vm_map_pmap(map);
944 
945 	/*
946 	 * Inform the physical mapping system that the range of addresses may
947 	 * not fault, so that page tables and such can be locked down as well.
948 	 */
949 
950 	pmap_pageable(pmap, start, end, FALSE);
951 
952 	/*
953 	 * We simulate a fault to get the page and enter it in the physical
954 	 * map.
955 	 */
956 	for (va = start; va < end; va += PAGE_SIZE) {
957 		rv = vm_fault(map, va, VM_PROT_READ, VM_FAULT_USER_WIRE);
958 		if (rv) {
959 			if (va != start)
960 				vm_fault_unwire(map, start, va);
961 			return (rv);
962 		}
963 	}
964 	return (KERN_SUCCESS);
965 }
966 
967 
968 /*
969  *	vm_fault_unwire:
970  *
971  *	Unwire a range of virtual addresses in a map.
972  */
973 void
974 vm_fault_unwire(map, start, end)
975 	vm_map_t map;
976 	vm_offset_t start, end;
977 {
978 
979 	register vm_offset_t va, pa;
980 	register pmap_t pmap;
981 
982 	pmap = vm_map_pmap(map);
983 
984 	/*
985 	 * Since the pages are wired down, we must be able to get their
986 	 * mappings from the physical map system.
987 	 */
988 
989 	for (va = start; va < end; va += PAGE_SIZE) {
990 		pa = pmap_extract(pmap, va);
991 		if (pa != (vm_offset_t) 0) {
992 			pmap_change_wiring(pmap, va, FALSE);
993 			vm_page_unwire(PHYS_TO_VM_PAGE(pa), 1);
994 		}
995 	}
996 
997 	/*
998 	 * Inform the physical mapping system that the range of addresses may
999 	 * fault, so that page tables and such may be unwired themselves.
1000 	 */
1001 
1002 	pmap_pageable(pmap, start, end, TRUE);
1003 
1004 }
1005 
1006 /*
1007  *	Routine:
1008  *		vm_fault_copy_entry
1009  *	Function:
1010  *		Copy all of the pages from a wired-down map entry to another.
1011  *
1012  *	In/out conditions:
1013  *		The source and destination maps must be locked for write.
1014  *		The source map entry must be wired down (or be a sharing map
1015  *		entry corresponding to a main map entry that is wired down).
1016  */
1017 
1018 void
1019 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry)
1020 	vm_map_t dst_map;
1021 	vm_map_t src_map;
1022 	vm_map_entry_t dst_entry;
1023 	vm_map_entry_t src_entry;
1024 {
1025 	vm_object_t dst_object;
1026 	vm_object_t src_object;
1027 	vm_ooffset_t dst_offset;
1028 	vm_ooffset_t src_offset;
1029 	vm_prot_t prot;
1030 	vm_offset_t vaddr;
1031 	vm_page_t dst_m;
1032 	vm_page_t src_m;
1033 
1034 #ifdef	lint
1035 	src_map++;
1036 #endif	/* lint */
1037 
1038 	src_object = src_entry->object.vm_object;
1039 	src_offset = src_entry->offset;
1040 
1041 	/*
1042 	 * Create the top-level object for the destination entry. (Doesn't
1043 	 * actually shadow anything - we copy the pages directly.)
1044 	 */
1045 	dst_object = vm_object_allocate(OBJT_DEFAULT,
1046 	    (vm_size_t) OFF_TO_IDX(dst_entry->end - dst_entry->start));
1047 
1048 	dst_entry->object.vm_object = dst_object;
1049 	dst_entry->offset = 0;
1050 
1051 	prot = dst_entry->max_protection;
1052 
1053 	/*
1054 	 * Loop through all of the pages in the entry's range, copying each
1055 	 * one from the source object (it should be there) to the destination
1056 	 * object.
1057 	 */
1058 	for (vaddr = dst_entry->start, dst_offset = 0;
1059 	    vaddr < dst_entry->end;
1060 	    vaddr += PAGE_SIZE, dst_offset += PAGE_SIZE) {
1061 
1062 		/*
1063 		 * Allocate a page in the destination object
1064 		 */
1065 		do {
1066 			dst_m = vm_page_alloc(dst_object,
1067 				OFF_TO_IDX(dst_offset), VM_ALLOC_NORMAL);
1068 			if (dst_m == NULL) {
1069 				VM_WAIT;
1070 			}
1071 		} while (dst_m == NULL);
1072 
1073 		/*
1074 		 * Find the page in the source object, and copy it in.
1075 		 * (Because the source is wired down, the page will be in
1076 		 * memory.)
1077 		 */
1078 		src_m = vm_page_lookup(src_object,
1079 			OFF_TO_IDX(dst_offset + src_offset));
1080 		if (src_m == NULL)
1081 			panic("vm_fault_copy_wired: page missing");
1082 
1083 		vm_page_copy(src_m, dst_m);
1084 
1085 		/*
1086 		 * Enter it in the pmap...
1087 		 */
1088 
1089 		vm_page_flag_clear(dst_m, PG_ZERO);
1090 		pmap_enter(dst_map->pmap, vaddr, dst_m, prot, FALSE);
1091 		vm_page_flag_set(dst_m, PG_WRITEABLE|PG_MAPPED);
1092 
1093 		/*
1094 		 * Mark it no longer busy, and put it on the active list.
1095 		 */
1096 		vm_page_activate(dst_m);
1097 		vm_page_wakeup(dst_m);
1098 	}
1099 }
1100 
1101 
1102 /*
1103  * This routine checks around the requested page for other pages that
1104  * might be able to be faulted in.  This routine brackets the viable
1105  * pages for the pages to be paged in.
1106  *
1107  * Inputs:
1108  *	m, rbehind, rahead
1109  *
1110  * Outputs:
1111  *  marray (array of vm_page_t), reqpage (index of requested page)
1112  *
1113  * Return value:
1114  *  number of pages in marray
1115  */
1116 static int
1117 vm_fault_additional_pages(m, rbehind, rahead, marray, reqpage)
1118 	vm_page_t m;
1119 	int rbehind;
1120 	int rahead;
1121 	vm_page_t *marray;
1122 	int *reqpage;
1123 {
1124 	int i,j;
1125 	vm_object_t object;
1126 	vm_pindex_t pindex, startpindex, endpindex, tpindex;
1127 	vm_page_t rtm;
1128 	int cbehind, cahead;
1129 
1130 	object = m->object;
1131 	pindex = m->pindex;
1132 
1133 	/*
1134 	 * we don't fault-ahead for device pager
1135 	 */
1136 	if (object->type == OBJT_DEVICE) {
1137 		*reqpage = 0;
1138 		marray[0] = m;
1139 		return 1;
1140 	}
1141 
1142 	/*
1143 	 * if the requested page is not available, then give up now
1144 	 */
1145 
1146 	if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
1147 		return 0;
1148 	}
1149 
1150 	if ((cbehind == 0) && (cahead == 0)) {
1151 		*reqpage = 0;
1152 		marray[0] = m;
1153 		return 1;
1154 	}
1155 
1156 	if (rahead > cahead) {
1157 		rahead = cahead;
1158 	}
1159 
1160 	if (rbehind > cbehind) {
1161 		rbehind = cbehind;
1162 	}
1163 
1164 	/*
1165 	 * try to do any readahead that we might have free pages for.
1166 	 */
1167 	if ((rahead + rbehind) >
1168 		((cnt.v_free_count + cnt.v_cache_count) - cnt.v_free_reserved)) {
1169 		pagedaemon_wakeup();
1170 		marray[0] = m;
1171 		*reqpage = 0;
1172 		return 1;
1173 	}
1174 
1175 	/*
1176 	 * scan backward for the read behind pages -- in memory
1177 	 */
1178 	if (pindex > 0) {
1179 		if (rbehind > pindex) {
1180 			rbehind = pindex;
1181 			startpindex = 0;
1182 		} else {
1183 			startpindex = pindex - rbehind;
1184 		}
1185 
1186 		for ( tpindex = pindex - 1; tpindex >= startpindex; tpindex -= 1) {
1187 			if (vm_page_lookup( object, tpindex)) {
1188 				startpindex = tpindex + 1;
1189 				break;
1190 			}
1191 			if (tpindex == 0)
1192 				break;
1193 		}
1194 
1195 		for(i = 0, tpindex = startpindex; tpindex < pindex; i++, tpindex++) {
1196 
1197 			rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL);
1198 			if (rtm == NULL) {
1199 				for (j = 0; j < i; j++) {
1200 					vm_page_free(marray[j]);
1201 				}
1202 				marray[0] = m;
1203 				*reqpage = 0;
1204 				return 1;
1205 			}
1206 
1207 			marray[i] = rtm;
1208 		}
1209 	} else {
1210 		startpindex = 0;
1211 		i = 0;
1212 	}
1213 
1214 	marray[i] = m;
1215 	/* page offset of the required page */
1216 	*reqpage = i;
1217 
1218 	tpindex = pindex + 1;
1219 	i++;
1220 
1221 	/*
1222 	 * scan forward for the read ahead pages
1223 	 */
1224 	endpindex = tpindex + rahead;
1225 	if (endpindex > object->size)
1226 		endpindex = object->size;
1227 
1228 	for( ; tpindex < endpindex; i++, tpindex++) {
1229 
1230 		if (vm_page_lookup(object, tpindex)) {
1231 			break;
1232 		}
1233 
1234 		rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL);
1235 		if (rtm == NULL) {
1236 			break;
1237 		}
1238 
1239 		marray[i] = rtm;
1240 	}
1241 
1242 	/* return number of bytes of pages */
1243 	return i;
1244 }
1245