xref: /dragonfly/sys/vm/vm_fault.c (revision b0041c55)
1 /*
2  * Copyright (c) 2003-2019 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * ---
35  *
36  * Copyright (c) 1991, 1993
37  *	The Regents of the University of California.  All rights reserved.
38  * Copyright (c) 1994 John S. Dyson
39  * All rights reserved.
40  * Copyright (c) 1994 David Greenman
41  * All rights reserved.
42  *
43  *
44  * This code is derived from software contributed to Berkeley by
45  * The Mach Operating System project at Carnegie-Mellon University.
46  *
47  * Redistribution and use in source and binary forms, with or without
48  * modification, are permitted provided that the following conditions
49  * are met:
50  * 1. Redistributions of source code must retain the above copyright
51  *    notice, this list of conditions and the following disclaimer.
52  * 2. Redistributions in binary form must reproduce the above copyright
53  *    notice, this list of conditions and the following disclaimer in the
54  *    documentation and/or other materials provided with the distribution.
55  * 3. Neither the name of the University nor the names of its contributors
56  *    may be used to endorse or promote products derived from this software
57  *    without specific prior written permission.
58  *
59  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69  * SUCH DAMAGE.
70  *
71  * ---
72  *
73  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
74  * All rights reserved.
75  *
76  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
77  *
78  * Permission to use, copy, modify and distribute this software and
79  * its documentation is hereby granted, provided that both the copyright
80  * notice and this permission notice appear in all copies of the
81  * software, derivative works or modified versions, and any portions
82  * thereof, and that both notices appear in supporting documentation.
83  *
84  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
85  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
86  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
87  *
88  * Carnegie Mellon requests users of this software to return to
89  *
90  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
91  *  School of Computer Science
92  *  Carnegie Mellon University
93  *  Pittsburgh PA 15213-3890
94  *
95  * any improvements or extensions that they make and grant Carnegie the
96  * rights to redistribute these changes.
97  */
98 
99 /*
100  *	Page fault handling module.
101  */
102 
103 #include <sys/param.h>
104 #include <sys/systm.h>
105 #include <sys/kernel.h>
106 #include <sys/proc.h>
107 #include <sys/vnode.h>
108 #include <sys/resourcevar.h>
109 #include <sys/vmmeter.h>
110 #include <sys/vkernel.h>
111 #include <sys/lock.h>
112 #include <sys/sysctl.h>
113 
114 #include <cpu/lwbuf.h>
115 
116 #include <vm/vm.h>
117 #include <vm/vm_param.h>
118 #include <vm/pmap.h>
119 #include <vm/vm_map.h>
120 #include <vm/vm_object.h>
121 #include <vm/vm_page.h>
122 #include <vm/vm_pageout.h>
123 #include <vm/vm_kern.h>
124 #include <vm/vm_pager.h>
125 #include <vm/vnode_pager.h>
126 #include <vm/swap_pager.h>
127 #include <vm/vm_extern.h>
128 
129 #include <vm/vm_page2.h>
130 
131 struct faultstate {
132 	vm_page_t m;
133 	vm_map_backing_t ba;
134 	vm_prot_t prot;
135 	vm_page_t first_m;
136 	vm_map_backing_t first_ba;
137 	vm_prot_t first_prot;
138 	vm_map_t map;
139 	vm_map_entry_t entry;
140 	int lookup_still_valid;	/* 0=inv 1=valid/rel -1=valid/atomic */
141 	int hardfault;
142 	int fault_flags;
143 	int shared;
144 	int msoftonly;
145 	int first_shared;
146 	int wflags;
147 	int first_ba_held;	/* 0=unlocked 1=locked/rel -1=lock/atomic */
148 	struct vnode *vp;
149 };
150 
151 __read_mostly static int debug_fault = 0;
152 SYSCTL_INT(_vm, OID_AUTO, debug_fault, CTLFLAG_RW, &debug_fault, 0, "");
153 __read_mostly static int debug_cluster = 0;
154 SYSCTL_INT(_vm, OID_AUTO, debug_cluster, CTLFLAG_RW, &debug_cluster, 0, "");
155 #if 0
156 static int virtual_copy_enable = 1;
157 SYSCTL_INT(_vm, OID_AUTO, virtual_copy_enable, CTLFLAG_RW,
158 		&virtual_copy_enable, 0, "");
159 #endif
160 __read_mostly int vm_shared_fault = 1;
161 TUNABLE_INT("vm.shared_fault", &vm_shared_fault);
162 SYSCTL_INT(_vm, OID_AUTO, shared_fault, CTLFLAG_RW,
163 		&vm_shared_fault, 0, "Allow shared token on vm_object");
164 __read_mostly static int vm_fault_quick_enable = 1;
165 TUNABLE_INT("vm.fault_quick", &vm_fault_quick_enable);
166 SYSCTL_INT(_vm, OID_AUTO, fault_quick, CTLFLAG_RW,
167 		&vm_fault_quick_enable, 0, "Allow fast vm_fault shortcut");
168 
169 /*
170  * Define here for debugging ioctls.  Note that these are globals, so
171  * they were cause a ton of cache line bouncing.  Only use for debugging
172  * purposes.
173  */
174 /*#define VM_FAULT_QUICK_DEBUG */
175 #ifdef VM_FAULT_QUICK_DEBUG
176 static long vm_fault_quick_success_count = 0;
177 SYSCTL_LONG(_vm, OID_AUTO, fault_quick_success_count, CTLFLAG_RW,
178 		&vm_fault_quick_success_count, 0, "");
179 static long vm_fault_quick_failure_count1 = 0;
180 SYSCTL_LONG(_vm, OID_AUTO, fault_quick_failure_count1, CTLFLAG_RW,
181 		&vm_fault_quick_failure_count1, 0, "");
182 static long vm_fault_quick_failure_count2 = 0;
183 SYSCTL_LONG(_vm, OID_AUTO, fault_quick_failure_count2, CTLFLAG_RW,
184 		&vm_fault_quick_failure_count2, 0, "");
185 static long vm_fault_quick_failure_count3 = 0;
186 SYSCTL_LONG(_vm, OID_AUTO, fault_quick_failure_count3, CTLFLAG_RW,
187 		&vm_fault_quick_failure_count3, 0, "");
188 static long vm_fault_quick_failure_count4 = 0;
189 SYSCTL_LONG(_vm, OID_AUTO, fault_quick_failure_count4, CTLFLAG_RW,
190 		&vm_fault_quick_failure_count4, 0, "");
191 #endif
192 
193 static int vm_fault_quick(struct faultstate *fs, vm_pindex_t first_pindex,
194 			vm_prot_t fault_type);
195 static int vm_fault_object(struct faultstate *, vm_pindex_t, vm_prot_t, int);
196 static int vm_fault_vpagetable(struct faultstate *, vm_pindex_t *,
197 			vpte_t, int, int);
198 #if 0
199 static int vm_fault_additional_pages (vm_page_t, int, int, vm_page_t *, int *);
200 #endif
201 static void vm_set_nosync(vm_page_t m, vm_map_entry_t entry);
202 static void vm_prefault(pmap_t pmap, vm_offset_t addra,
203 			vm_map_entry_t entry, int prot, int fault_flags);
204 static void vm_prefault_quick(pmap_t pmap, vm_offset_t addra,
205 			vm_map_entry_t entry, int prot, int fault_flags);
206 
207 static __inline void
208 release_page(struct faultstate *fs)
209 {
210 	vm_page_deactivate(fs->m);
211 	vm_page_wakeup(fs->m);
212 	fs->m = NULL;
213 }
214 
215 static __inline void
216 unlock_map(struct faultstate *fs)
217 {
218 	if (fs->ba != fs->first_ba)
219 		vm_object_drop(fs->ba->object);
220 	if (fs->first_ba && fs->first_ba_held == 1) {
221 		vm_object_drop(fs->first_ba->object);
222 		fs->first_ba_held = 0;
223 		fs->first_ba = NULL;
224 	}
225 	fs->ba = NULL;
226 
227 	/*
228 	 * NOTE: If lookup_still_valid == -1 the map is assumed to be locked
229 	 *	 and caller expects it to remain locked atomically.
230 	 */
231 	if (fs->lookup_still_valid == 1 && fs->map) {
232 		vm_map_lookup_done(fs->map, fs->entry, 0);
233 		fs->lookup_still_valid = 0;
234 		fs->entry = NULL;
235 	}
236 }
237 
238 /*
239  * Clean up after a successful call to vm_fault_object() so another call
240  * to vm_fault_object() can be made.
241  */
242 static void
243 cleanup_fault(struct faultstate *fs)
244 {
245 	/*
246 	 * We allocated a junk page for a COW operation that did
247 	 * not occur, the page must be freed.
248 	 */
249 	if (fs->ba != fs->first_ba) {
250 		KKASSERT(fs->first_shared == 0);
251 
252 		/*
253 		 * first_m could be completely valid and we got here
254 		 * because of a PG_RAM, don't mistakenly free it!
255 		 */
256 		if ((fs->first_m->valid & VM_PAGE_BITS_ALL) ==
257 		    VM_PAGE_BITS_ALL) {
258 			vm_page_wakeup(fs->first_m);
259 		} else {
260 			vm_page_free(fs->first_m);
261 		}
262 		vm_object_pip_wakeup(fs->ba->object);
263 		fs->first_m = NULL;
264 
265 		/*
266 		 * Reset fs->ba (used by vm_fault_vpagetahble() without
267 		 * calling unlock_map(), so we need a little duplication.
268 		 */
269 		vm_object_drop(fs->ba->object);
270 		fs->ba = fs->first_ba;
271 	}
272 }
273 
274 static void
275 unlock_things(struct faultstate *fs)
276 {
277 	cleanup_fault(fs);
278 	unlock_map(fs);
279 	if (fs->vp != NULL) {
280 		vput(fs->vp);
281 		fs->vp = NULL;
282 	}
283 }
284 
285 #if 0
286 /*
287  * Virtual copy tests.   Used by the fault code to determine if a
288  * page can be moved from an orphan vm_object into its shadow
289  * instead of copying its contents.
290  */
291 static __inline int
292 virtual_copy_test(struct faultstate *fs)
293 {
294 	/*
295 	 * Must be holding exclusive locks
296 	 */
297 	if (fs->first_shared || fs->shared || virtual_copy_enable == 0)
298 		return 0;
299 
300 	/*
301 	 * Map, if present, has not changed
302 	 */
303 	if (fs->map && fs->map_generation != fs->map->timestamp)
304 		return 0;
305 
306 	/*
307 	 * No refs, except us
308 	 */
309 	if (fs->ba->object->ref_count != 1)
310 		return 0;
311 
312 	/*
313 	 * No one else can look this object up
314 	 */
315 	if (fs->ba->object->handle != NULL)
316 		return 0;
317 
318 	/*
319 	 * No other ways to look the object up
320 	 */
321 	if (fs->ba->object->type != OBJT_DEFAULT &&
322 	    fs->ba->object->type != OBJT_SWAP)
323 		return 0;
324 
325 	/*
326 	 * We don't chase down the shadow chain
327 	 */
328 	if (fs->ba != fs->first_ba->backing_ba)
329 		return 0;
330 
331 	return 1;
332 }
333 
334 static __inline int
335 virtual_copy_ok(struct faultstate *fs)
336 {
337 	if (virtual_copy_test(fs)) {
338 		/*
339 		 * Grab the lock and re-test changeable items.
340 		 */
341 		if (fs->lookup_still_valid == 0 && fs->map) {
342 			if (lockmgr(&fs->map->lock, LK_EXCLUSIVE|LK_NOWAIT))
343 				return 0;
344 			fs->lookup_still_valid = 1;
345 			if (virtual_copy_test(fs)) {
346 				fs->map_generation = ++fs->map->timestamp;
347 				return 1;
348 			}
349 			fs->lookup_still_valid = 0;
350 			lockmgr(&fs->map->lock, LK_RELEASE);
351 		}
352 	}
353 	return 0;
354 }
355 #endif
356 
357 /*
358  * TRYPAGER
359  *
360  * Determine if the pager for the current object *might* contain the page.
361  *
362  * We only need to try the pager if this is not a default object (default
363  * objects are zero-fill and have no real pager), and if we are not taking
364  * a wiring fault or if the FS entry is wired.
365  */
366 #define TRYPAGER(fs)	\
367 		(fs->ba->object->type != OBJT_DEFAULT &&		\
368 		(((fs->fault_flags & VM_FAULT_WIRE_MASK) == 0) ||	\
369 		 (fs->wflags & FW_WIRED)))
370 
371 /*
372  * vm_fault:
373  *
374  * Handle a page fault occuring at the given address, requiring the given
375  * permissions, in the map specified.  If successful, the page is inserted
376  * into the associated physical map.
377  *
378  * NOTE: The given address should be truncated to the proper page address.
379  *
380  * KERN_SUCCESS is returned if the page fault is handled; otherwise,
381  * a standard error specifying why the fault is fatal is returned.
382  *
383  * The map in question must be referenced, and remains so.
384  * The caller may hold no locks.
385  * No other requirements.
386  */
387 int
388 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, int fault_flags)
389 {
390 	int result;
391 	vm_pindex_t first_pindex;
392 	struct faultstate fs;
393 	struct lwp *lp;
394 	struct proc *p;
395 	thread_t td;
396 	struct vm_map_ilock ilock;
397 	int didilock;
398 	int growstack;
399 	int retry = 0;
400 	int inherit_prot;
401 
402 	inherit_prot = fault_type & VM_PROT_NOSYNC;
403 	fs.hardfault = 0;
404 	fs.fault_flags = fault_flags;
405 	fs.vp = NULL;
406 	fs.shared = vm_shared_fault;
407 	fs.first_shared = vm_shared_fault;
408 	growstack = 1;
409 
410 	/*
411 	 * vm_map interactions
412 	 */
413 	td = curthread;
414 	if ((lp = td->td_lwp) != NULL)
415 		lp->lwp_flags |= LWP_PAGING;
416 
417 RetryFault:
418 	/*
419 	 * vm_fault_quick() can shortcut us.
420 	 */
421 	fs.msoftonly = 0;
422 	fs.first_ba_held = 0;
423 
424 	/*
425 	 * Find the vm_map_entry representing the backing store and resolve
426 	 * the top level object and page index.  This may have the side
427 	 * effect of executing a copy-on-write on the map entry,
428 	 * creating a shadow object, or splitting an anonymous entry for
429 	 * performance, but will not COW any actual VM pages.
430 	 *
431 	 * On success fs.map is left read-locked and various other fields
432 	 * are initialized but not otherwise referenced or locked.
433 	 *
434 	 * NOTE!  vm_map_lookup will try to upgrade the fault_type to
435 	 *	  VM_FAULT_WRITE if the map entry is a virtual page table
436 	 *	  and also writable, so we can set the 'A'accessed bit in
437 	 *	  the virtual page table entry.
438 	 */
439 	fs.map = map;
440 	result = vm_map_lookup(&fs.map, vaddr, fault_type,
441 			       &fs.entry, &fs.first_ba,
442 			       &first_pindex, &fs.first_prot, &fs.wflags);
443 
444 	/*
445 	 * If the lookup failed or the map protections are incompatible,
446 	 * the fault generally fails.
447 	 *
448 	 * The failure could be due to TDF_NOFAULT if vm_map_lookup()
449 	 * tried to do a COW fault.
450 	 *
451 	 * If the caller is trying to do a user wiring we have more work
452 	 * to do.
453 	 */
454 	if (result != KERN_SUCCESS) {
455 		if (result == KERN_FAILURE_NOFAULT) {
456 			result = KERN_FAILURE;
457 			goto done;
458 		}
459 		if (result != KERN_PROTECTION_FAILURE ||
460 		    (fs.fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE)
461 		{
462 			if (result == KERN_INVALID_ADDRESS && growstack &&
463 			    map != &kernel_map && curproc != NULL) {
464 				result = vm_map_growstack(map, vaddr);
465 				if (result == KERN_SUCCESS) {
466 					growstack = 0;
467 					++retry;
468 					goto RetryFault;
469 				}
470 				result = KERN_FAILURE;
471 			}
472 			goto done;
473 		}
474 
475 		/*
476 		 * If we are user-wiring a r/w segment, and it is COW, then
477 		 * we need to do the COW operation.  Note that we don't
478 		 * currently COW RO sections now, because it is NOT desirable
479 		 * to COW .text.  We simply keep .text from ever being COW'ed
480 		 * and take the heat that one cannot debug wired .text sections.
481 		 *
482 		 * XXX Try to allow the above by specifying OVERRIDE_WRITE.
483 		 */
484 		result = vm_map_lookup(&fs.map, vaddr,
485 				       VM_PROT_READ|VM_PROT_WRITE|
486 				        VM_PROT_OVERRIDE_WRITE,
487 				       &fs.entry, &fs.first_ba,
488 				       &first_pindex, &fs.first_prot,
489 				       &fs.wflags);
490 		if (result != KERN_SUCCESS) {
491 			/* could also be KERN_FAILURE_NOFAULT */
492 			result = KERN_FAILURE;
493 			goto done;
494 		}
495 
496 		/*
497 		 * If we don't COW now, on a user wire, the user will never
498 		 * be able to write to the mapping.  If we don't make this
499 		 * restriction, the bookkeeping would be nearly impossible.
500 		 *
501 		 * XXX We have a shared lock, this will have a MP race but
502 		 * I don't see how it can hurt anything.
503 		 */
504 		if ((fs.entry->protection & VM_PROT_WRITE) == 0) {
505 			atomic_clear_char(&fs.entry->max_protection,
506 					  VM_PROT_WRITE);
507 		}
508 	}
509 
510 	/*
511 	 * fs.map is read-locked
512 	 *
513 	 * Misc checks.  Save the map generation number to detect races.
514 	 */
515 	fs.lookup_still_valid = 1;
516 	fs.first_m = NULL;
517 	fs.ba = fs.first_ba;		/* so unlock_things() works */
518 	fs.prot = fs.first_prot;	/* default (used by uksmap) */
519 
520 	if (fs.entry->eflags & (MAP_ENTRY_NOFAULT | MAP_ENTRY_KSTACK)) {
521 		if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
522 			panic("vm_fault: fault on nofault entry, addr: %p",
523 			      (void *)vaddr);
524 		}
525 		if ((fs.entry->eflags & MAP_ENTRY_KSTACK) &&
526 		    vaddr >= fs.entry->ba.start &&
527 		    vaddr < fs.entry->ba.start + PAGE_SIZE) {
528 			panic("vm_fault: fault on stack guard, addr: %p",
529 			      (void *)vaddr);
530 		}
531 	}
532 
533 	/*
534 	 * A user-kernel shared map has no VM object and bypasses
535 	 * everything.  We execute the uksmap function with a temporary
536 	 * fictitious vm_page.  The address is directly mapped with no
537 	 * management.
538 	 */
539 	if (fs.entry->maptype == VM_MAPTYPE_UKSMAP) {
540 		struct vm_page fakem;
541 
542 		bzero(&fakem, sizeof(fakem));
543 		fakem.pindex = first_pindex;
544 		fakem.flags = PG_FICTITIOUS | PG_UNQUEUED;
545 		fakem.busy_count = PBUSY_LOCKED;
546 		fakem.valid = VM_PAGE_BITS_ALL;
547 		fakem.pat_mode = VM_MEMATTR_DEFAULT;
548 		if (fs.entry->ba.uksmap(fs.entry->aux.dev, &fakem)) {
549 			result = KERN_FAILURE;
550 			unlock_things(&fs);
551 			goto done2;
552 		}
553 		pmap_enter(fs.map->pmap, vaddr, &fakem, fs.prot | inherit_prot,
554 			   (fs.wflags & FW_WIRED), fs.entry);
555 		goto done_success;
556 	}
557 
558 	/*
559 	 * A system map entry may return a NULL object.  No object means
560 	 * no pager means an unrecoverable kernel fault.
561 	 */
562 	if (fs.first_ba == NULL) {
563 		panic("vm_fault: unrecoverable fault at %p in entry %p",
564 			(void *)vaddr, fs.entry);
565 	}
566 
567 	/*
568 	 * Fail here if not a trivial anonymous page fault and TDF_NOFAULT
569 	 * is set.
570 	 *
571 	 * Unfortunately a deadlock can occur if we are forced to page-in
572 	 * from swap, but diving all the way into the vm_pager_get_page()
573 	 * function to find out is too much.  Just check the object type.
574 	 *
575 	 * The deadlock is a CAM deadlock on a busy VM page when trying
576 	 * to finish an I/O if another process gets stuck in
577 	 * vop_helper_read_shortcut() due to a swap fault.
578 	 */
579 	if ((td->td_flags & TDF_NOFAULT) &&
580 	    (retry ||
581 	     fs.first_ba->object->type == OBJT_VNODE ||
582 	     fs.first_ba->object->type == OBJT_SWAP ||
583 	     fs.first_ba->backing_ba)) {
584 		result = KERN_FAILURE;
585 		unlock_things(&fs);
586 		goto done2;
587 	}
588 
589 	/*
590 	 * If the entry is wired we cannot change the page protection.
591 	 */
592 	if (fs.wflags & FW_WIRED)
593 		fault_type = fs.first_prot;
594 
595 	/*
596 	 * We generally want to avoid unnecessary exclusive modes on backing
597 	 * and terminal objects because this can seriously interfere with
598 	 * heavily fork()'d processes (particularly /bin/sh scripts).
599 	 *
600 	 * However, we also want to avoid unnecessary retries due to needed
601 	 * shared->exclusive promotion for common faults.  Exclusive mode is
602 	 * always needed if any page insertion, rename, or free occurs in an
603 	 * object (and also indirectly if any I/O is done).
604 	 *
605 	 * The main issue here is going to be fs.first_shared.  If the
606 	 * first_object has a backing object which isn't shadowed and the
607 	 * process is single-threaded we might as well use an exclusive
608 	 * lock/chain right off the bat.
609 	 */
610 #if 0
611 	/* WORK IN PROGRESS, CODE REMOVED */
612 	if (fs.first_shared && fs.first_object->backing_object &&
613 	    LIST_EMPTY(&fs.first_object->shadow_head) &&
614 	    td->td_proc && td->td_proc->p_nthreads == 1) {
615 		fs.first_shared = 0;
616 	}
617 #endif
618 
619 	/*
620 	 * VM_FAULT_UNSWAP - swap_pager_unswapped() needs an exclusive object
621 	 * VM_FAULT_DIRTY  - may require swap_pager_unswapped() later, but
622 	 *		     we can try shared first.
623 	 */
624 	if (fault_flags & VM_FAULT_UNSWAP)
625 		fs.first_shared = 0;
626 
627 	/*
628 	 * Try to shortcut the entire mess and run the fault lockless.
629 	 */
630 	if (vm_fault_quick_enable &&
631 	    vm_fault_quick(&fs, first_pindex, fault_type) == KERN_SUCCESS) {
632 		didilock = 0;
633 		fault_flags &= ~VM_FAULT_BURST;
634 		goto success;
635 	}
636 
637 	/*
638 	 * Exclusive heuristic (alloc page vs page exists)
639 	 */
640 	if (fs.first_ba->flags & VM_MAP_BACK_EXCL_HEUR)
641 		fs.first_shared = 0;
642 
643 	/*
644 	 * Obtain a top-level object lock, shared or exclusive depending
645 	 * on fs.first_shared.  If a shared lock winds up being insufficient
646 	 * we will retry with an exclusive lock.
647 	 *
648 	 * The vnode pager lock is always shared.
649 	 */
650 	if (fs.first_shared)
651 		vm_object_hold_shared(fs.first_ba->object);
652 	else
653 		vm_object_hold(fs.first_ba->object);
654 	if (fs.vp == NULL)
655 		fs.vp = vnode_pager_lock(fs.first_ba);
656 	fs.first_ba_held = 1;
657 
658 	/*
659 	 * The page we want is at (first_object, first_pindex), but if the
660 	 * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the
661 	 * page table to figure out the actual pindex.
662 	 *
663 	 * NOTE!  DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION
664 	 * ONLY
665 	 */
666 	didilock = 0;
667 	if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
668 		vm_map_interlock(fs.map, &ilock, vaddr, vaddr + PAGE_SIZE);
669 		didilock = 1;
670 		result = vm_fault_vpagetable(&fs, &first_pindex,
671 					     fs.entry->aux.master_pde,
672 					     fault_type, 1);
673 		if (result == KERN_TRY_AGAIN) {
674 			vm_map_deinterlock(fs.map, &ilock);
675 			++retry;
676 			goto RetryFault;
677 		}
678 		if (result != KERN_SUCCESS) {
679 			vm_map_deinterlock(fs.map, &ilock);
680 			goto done;
681 		}
682 	}
683 
684 	/*
685 	 * Now we have the actual (object, pindex), fault in the page.  If
686 	 * vm_fault_object() fails it will unlock and deallocate the FS
687 	 * data.   If it succeeds everything remains locked and fs->ba->object
688 	 * will have an additional PIP count if fs->ba != fs->first_ba.
689 	 *
690 	 * vm_fault_object will set fs->prot for the pmap operation.  It is
691 	 * allowed to set VM_PROT_WRITE if fault_type == VM_PROT_READ if the
692 	 * page can be safely written.  However, it will force a read-only
693 	 * mapping for a read fault if the memory is managed by a virtual
694 	 * page table.
695 	 *
696 	 * If the fault code uses the shared object lock shortcut
697 	 * we must not try to burst (we can't allocate VM pages).
698 	 */
699 	result = vm_fault_object(&fs, first_pindex, fault_type, 1);
700 
701 	if (debug_fault > 0) {
702 		--debug_fault;
703 		kprintf("VM_FAULT result %d addr=%jx type=%02x flags=%02x "
704 			"fs.m=%p fs.prot=%02x fs.wflags=%02x fs.entry=%p\n",
705 			result, (intmax_t)vaddr, fault_type, fault_flags,
706 			fs.m, fs.prot, fs.wflags, fs.entry);
707 	}
708 
709 	if (result == KERN_TRY_AGAIN) {
710 		if (didilock)
711 			vm_map_deinterlock(fs.map, &ilock);
712 		++retry;
713 		goto RetryFault;
714 	}
715 	if (result != KERN_SUCCESS) {
716 		if (didilock)
717 			vm_map_deinterlock(fs.map, &ilock);
718 		goto done;
719 	}
720 
721 success:
722 	/*
723 	 * On success vm_fault_object() does not unlock or deallocate, and fs.m
724 	 * will contain a busied page.  It does drop fs->ba if appropriate.
725 	 *
726 	 * Enter the page into the pmap and do pmap-related adjustments.
727 	 *
728 	 * WARNING! Soft-busied fs.m's can only be manipulated in limited
729 	 *	    ways.
730 	 */
731 	KKASSERT(fs.lookup_still_valid != 0);
732 	vm_page_flag_set(fs.m, PG_REFERENCED);
733 	pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot | inherit_prot,
734 		   fs.wflags & FW_WIRED, fs.entry);
735 
736 	if (didilock)
737 		vm_map_deinterlock(fs.map, &ilock);
738 
739 	/*
740 	 * If the page is not wired down, then put it where the pageout daemon
741 	 * can find it.
742 	 *
743 	 * NOTE: We cannot safely wire, unwire, or adjust queues for a
744 	 *	 soft-busied page.
745 	 */
746 	if (fs.msoftonly) {
747 		KKASSERT(fs.m->busy_count & PBUSY_MASK);
748 		KKASSERT((fs.fault_flags & VM_FAULT_WIRE_MASK) == 0);
749 		vm_page_sbusy_drop(fs.m);
750 	} else {
751 		if (fs.fault_flags & VM_FAULT_WIRE_MASK) {
752 			if (fs.wflags & FW_WIRED)
753 				vm_page_wire(fs.m);
754 			else
755 				vm_page_unwire(fs.m, 1);
756 		} else {
757 			vm_page_activate(fs.m);
758 		}
759 		KKASSERT(fs.m->busy_count & PBUSY_LOCKED);
760 		vm_page_wakeup(fs.m);
761 	}
762 
763 	/*
764 	 * Burst in a few more pages if possible.  The fs.map should still
765 	 * be locked.  To avoid interlocking against a vnode->getblk
766 	 * operation we had to be sure to unbusy our primary vm_page above
767 	 * first.
768 	 *
769 	 * A normal burst can continue down backing store, only execute
770 	 * if we are holding an exclusive lock, otherwise the exclusive
771 	 * locks the burst code gets might cause excessive SMP collisions.
772 	 *
773 	 * A quick burst can be utilized when there is no backing object
774 	 * (i.e. a shared file mmap).
775 	 */
776 	if ((fault_flags & VM_FAULT_BURST) &&
777 	    (fs.fault_flags & VM_FAULT_WIRE_MASK) == 0 &&
778 	    (fs.wflags & FW_WIRED) == 0) {
779 		if (fs.first_shared == 0 && fs.shared == 0) {
780 			vm_prefault(fs.map->pmap, vaddr,
781 				    fs.entry, fs.prot, fault_flags);
782 		} else {
783 			vm_prefault_quick(fs.map->pmap, vaddr,
784 					  fs.entry, fs.prot, fault_flags);
785 		}
786 	}
787 
788 done_success:
789 	mycpu->gd_cnt.v_vm_faults++;
790 	if (td->td_lwp)
791 		++td->td_lwp->lwp_ru.ru_minflt;
792 
793 	/*
794 	 * Unlock everything, and return
795 	 */
796 	unlock_things(&fs);
797 
798 	if (td->td_lwp) {
799 		if (fs.hardfault) {
800 			td->td_lwp->lwp_ru.ru_majflt++;
801 		} else {
802 			td->td_lwp->lwp_ru.ru_minflt++;
803 		}
804 	}
805 
806 	/*vm_object_deallocate(fs.first_ba->object);*/
807 	/*fs.m = NULL; */
808 
809 	result = KERN_SUCCESS;
810 done:
811 	if (fs.first_ba && fs.first_ba->object && fs.first_ba_held == 1) {
812 		vm_object_drop(fs.first_ba->object);
813 		fs.first_ba_held = 0;
814 	}
815 done2:
816 	if (lp)
817 		lp->lwp_flags &= ~LWP_PAGING;
818 
819 #if !defined(NO_SWAPPING)
820 	/*
821 	 * Check the process RSS limit and force deactivation and
822 	 * (asynchronous) paging if necessary.  This is a complex operation,
823 	 * only do it for direct user-mode faults, for now.
824 	 *
825 	 * To reduce overhead implement approximately a ~16MB hysteresis.
826 	 */
827 	p = td->td_proc;
828 	if ((fault_flags & VM_FAULT_USERMODE) && lp &&
829 	    p->p_limit && map->pmap && vm_pageout_memuse_mode >= 1 &&
830 	    map != &kernel_map) {
831 		vm_pindex_t limit;
832 		vm_pindex_t size;
833 
834 		limit = OFF_TO_IDX(qmin(p->p_rlimit[RLIMIT_RSS].rlim_cur,
835 					p->p_rlimit[RLIMIT_RSS].rlim_max));
836 		size = pmap_resident_tlnw_count(map->pmap);
837 		if (limit >= 0 && size > 4096 && size - 4096 >= limit) {
838 			vm_pageout_map_deactivate_pages(map, limit);
839 		}
840 	}
841 #endif
842 
843 	if (result != KERN_SUCCESS && debug_fault < 0) {
844 		kprintf("VM_FAULT %d:%d (%s) result %d "
845 			"addr=%jx type=%02x flags=%02x "
846 			"fs.m=%p fs.prot=%02x fs.wflags=%02x fs.entry=%p\n",
847 			(curthread->td_proc ? curthread->td_proc->p_pid : -1),
848 			(curthread->td_lwp ? curthread->td_lwp->lwp_tid : -1),
849 			curthread->td_comm,
850 			result,
851 			(intmax_t)vaddr, fault_type, fault_flags,
852 			fs.m, fs.prot, fs.wflags, fs.entry);
853 		while (debug_fault < 0 && (debug_fault & 1))
854 			tsleep(&debug_fault, 0, "DEBUG", hz);
855 	}
856 
857 	return (result);
858 }
859 
860 /*
861  * Attempt a lockless vm_fault() shortcut.  The stars have to align for this
862  * to work.  But if it does we can get our page only soft-busied and not
863  * have to touch the vm_object or vnode locks at all.
864  */
865 static
866 int
867 vm_fault_quick(struct faultstate *fs, vm_pindex_t first_pindex,
868 	       vm_prot_t fault_type)
869 {
870 	vm_page_t m;
871 	vm_object_t obj;	/* NOT LOCKED */
872 
873 	/*
874 	 * Don't waste time if the object is only being used by one vm_map.
875 	 */
876 	obj = fs->first_ba->object;
877 	if (obj->flags & OBJ_ONEMAPPING)
878 		return KERN_FAILURE;
879 
880 	/*
881 	 * This will try to wire/unwire a page, which can't be done with
882 	 * a soft-busied page.
883 	 */
884 	if (fs->fault_flags & VM_FAULT_WIRE_MASK)
885 		return KERN_FAILURE;
886 
887 	/*
888 	 * Ick, can't handle this
889 	 */
890 	if (fs->entry->maptype == VM_MAPTYPE_VPAGETABLE) {
891 #ifdef VM_FAULT_QUICK_DEBUG
892 		++vm_fault_quick_failure_count1;
893 #endif
894 		return KERN_FAILURE;
895 	}
896 
897 	/*
898 	 * Ok, try to get the vm_page quickly via the hash table.  The
899 	 * page will be soft-busied on success (NOT hard-busied).
900 	 */
901 	m = vm_page_hash_get(obj, first_pindex);
902 	if (m == NULL) {
903 #ifdef VM_FAULT_QUICK_DEBUG
904 		++vm_fault_quick_failure_count2;
905 #endif
906 		return KERN_FAILURE;
907 	}
908 	if ((obj->flags & OBJ_DEAD) ||
909 	    m->valid != VM_PAGE_BITS_ALL ||
910 	    m->queue - m->pc == PQ_CACHE ||
911 	    (m->flags & PG_SWAPPED)) {
912 		vm_page_sbusy_drop(m);
913 #ifdef VM_FAULT_QUICK_DEBUG
914 		++vm_fault_quick_failure_count3;
915 #endif
916 		return KERN_FAILURE;
917 	}
918 
919 	/*
920 	 * The page is already fully valid, ACTIVE, and is not PG_SWAPPED.
921 	 *
922 	 * Don't map the page writable when emulating the dirty bit, a
923 	 * fault must be taken for proper emulation (vkernel).
924 	 */
925 	if (curthread->td_lwp && curthread->td_lwp->lwp_vmspace &&
926 	    pmap_emulate_ad_bits(&curthread->td_lwp->lwp_vmspace->vm_pmap)) {
927 		if ((fault_type & VM_PROT_WRITE) == 0)
928 			fs->prot &= ~VM_PROT_WRITE;
929 	}
930 
931 	/*
932 	 * If this is a write fault the object and the page must already
933 	 * be writable.  Since we don't hold an object lock and only a
934 	 * soft-busy on the page, we cannot manipulate the object or
935 	 * the page state (other than the page queue).
936 	 */
937 	if (fs->prot & VM_PROT_WRITE) {
938 		if ((obj->flags & (OBJ_WRITEABLE | OBJ_MIGHTBEDIRTY)) !=
939 		    (OBJ_WRITEABLE | OBJ_MIGHTBEDIRTY) ||
940 		    m->dirty != VM_PAGE_BITS_ALL) {
941 			vm_page_sbusy_drop(m);
942 #ifdef VM_FAULT_QUICK_DEBUG
943 			++vm_fault_quick_failure_count4;
944 #endif
945 			return KERN_FAILURE;
946 		}
947 		vm_set_nosync(m, fs->entry);
948 	}
949 
950 	/*
951 	 * Even though we are only soft-busied we can still move pages
952 	 * around in the normal queue(s).  The soft-busy prevents the
953 	 * page from being removed from the object, etc (normal operation).
954 	 *
955 	 * However, in this fast path it is excessively important to avoid
956 	 * any hard locks, so we use a special passive version of activate.
957 	 */
958 	vm_page_soft_activate(m);
959 	fs->m = m;
960 	fs->msoftonly = 1;
961 #ifdef VM_FAULT_QUICK_DEBUG
962 	++vm_fault_quick_success_count;
963 #endif
964 
965 	return KERN_SUCCESS;
966 }
967 
968 /*
969  * Fault in the specified virtual address in the current process map,
970  * returning a held VM page or NULL.  See vm_fault_page() for more
971  * information.
972  *
973  * No requirements.
974  */
975 vm_page_t
976 vm_fault_page_quick(vm_offset_t va, vm_prot_t fault_type,
977 		    int *errorp, int *busyp)
978 {
979 	struct lwp *lp = curthread->td_lwp;
980 	vm_page_t m;
981 
982 	m = vm_fault_page(&lp->lwp_vmspace->vm_map, va,
983 			  fault_type, VM_FAULT_NORMAL,
984 			  errorp, busyp);
985 	return(m);
986 }
987 
988 /*
989  * Fault in the specified virtual address in the specified map, doing all
990  * necessary manipulation of the object store and all necessary I/O.  Return
991  * a held VM page or NULL, and set *errorp.  The related pmap is not
992  * updated.
993  *
994  * If busyp is not NULL then *busyp will be set to TRUE if this routine
995  * decides to return a busied page (aka VM_PROT_WRITE), or FALSE if it
996  * does not (VM_PROT_WRITE not specified or busyp is NULL).  If busyp is
997  * NULL the returned page is only held.
998  *
999  * If the caller has no intention of writing to the page's contents, busyp
1000  * can be passed as NULL along with VM_PROT_WRITE to force a COW operation
1001  * without busying the page.
1002  *
1003  * The returned page will also be marked PG_REFERENCED.
1004  *
1005  * If the page cannot be faulted writable and VM_PROT_WRITE was specified, an
1006  * error will be returned.
1007  *
1008  * No requirements.
1009  */
1010 vm_page_t
1011 vm_fault_page(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
1012 	      int fault_flags, int *errorp, int *busyp)
1013 {
1014 	vm_pindex_t first_pindex;
1015 	struct faultstate fs;
1016 	int result;
1017 	int retry;
1018 	int growstack;
1019 	int didcow;
1020 	vm_prot_t orig_fault_type = fault_type;
1021 
1022 	retry = 0;
1023 	didcow = 0;
1024 	fs.hardfault = 0;
1025 	fs.fault_flags = fault_flags;
1026 	KKASSERT((fault_flags & VM_FAULT_WIRE_MASK) == 0);
1027 
1028 	/*
1029 	 * Dive the pmap (concurrency possible).  If we find the
1030 	 * appropriate page we can terminate early and quickly.
1031 	 *
1032 	 * This works great for normal programs but will always return
1033 	 * NULL for host lookups of vkernel maps in VMM mode.
1034 	 *
1035 	 * NOTE: pmap_fault_page_quick() might not busy the page.  If
1036 	 *	 VM_PROT_WRITE is set in fault_type and pmap_fault_page_quick()
1037 	 *	 returns non-NULL, it will safely dirty the returned vm_page_t
1038 	 *	 for us.  We cannot safely dirty it here (it might not be
1039 	 *	 busy).
1040 	 */
1041 	fs.m = pmap_fault_page_quick(map->pmap, vaddr, fault_type, busyp);
1042 	if (fs.m) {
1043 		*errorp = 0;
1044 		return(fs.m);
1045 	}
1046 
1047 	/*
1048 	 * Otherwise take a concurrency hit and do a formal page
1049 	 * fault.
1050 	 */
1051 	fs.vp = NULL;
1052 	fs.shared = vm_shared_fault;
1053 	fs.first_shared = vm_shared_fault;
1054 	fs.msoftonly = 0;
1055 	growstack = 1;
1056 
1057 	/*
1058 	 * VM_FAULT_UNSWAP - swap_pager_unswapped() needs an exclusive object
1059 	 * VM_FAULT_DIRTY  - may require swap_pager_unswapped() later, but
1060 	 *		     we can try shared first.
1061 	 */
1062 	if (fault_flags & VM_FAULT_UNSWAP) {
1063 		fs.first_shared = 0;
1064 	}
1065 
1066 RetryFault:
1067 	/*
1068 	 * Find the vm_map_entry representing the backing store and resolve
1069 	 * the top level object and page index.  This may have the side
1070 	 * effect of executing a copy-on-write on the map entry and/or
1071 	 * creating a shadow object, but will not COW any actual VM pages.
1072 	 *
1073 	 * On success fs.map is left read-locked and various other fields
1074 	 * are initialized but not otherwise referenced or locked.
1075 	 *
1076 	 * NOTE!  vm_map_lookup will upgrade the fault_type to VM_FAULT_WRITE
1077 	 *	  if the map entry is a virtual page table and also writable,
1078 	 *	  so we can set the 'A'accessed bit in the virtual page table
1079 	 *	  entry.
1080 	 */
1081 	fs.map = map;
1082 	fs.first_ba_held = 0;
1083 	result = vm_map_lookup(&fs.map, vaddr, fault_type,
1084 			       &fs.entry, &fs.first_ba,
1085 			       &first_pindex, &fs.first_prot, &fs.wflags);
1086 
1087 	if (result != KERN_SUCCESS) {
1088 		if (result == KERN_FAILURE_NOFAULT) {
1089 			*errorp = KERN_FAILURE;
1090 			fs.m = NULL;
1091 			goto done;
1092 		}
1093 		if (result != KERN_PROTECTION_FAILURE ||
1094 		    (fs.fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE)
1095 		{
1096 			if (result == KERN_INVALID_ADDRESS && growstack &&
1097 			    map != &kernel_map && curproc != NULL) {
1098 				result = vm_map_growstack(map, vaddr);
1099 				if (result == KERN_SUCCESS) {
1100 					growstack = 0;
1101 					++retry;
1102 					goto RetryFault;
1103 				}
1104 				result = KERN_FAILURE;
1105 			}
1106 			fs.m = NULL;
1107 			*errorp = result;
1108 			goto done;
1109 		}
1110 
1111 		/*
1112 		 * If we are user-wiring a r/w segment, and it is COW, then
1113 		 * we need to do the COW operation.  Note that we don't
1114 		 * currently COW RO sections now, because it is NOT desirable
1115 		 * to COW .text.  We simply keep .text from ever being COW'ed
1116 		 * and take the heat that one cannot debug wired .text sections.
1117 		 */
1118 		result = vm_map_lookup(&fs.map, vaddr,
1119 				       VM_PROT_READ|VM_PROT_WRITE|
1120 				        VM_PROT_OVERRIDE_WRITE,
1121 				       &fs.entry, &fs.first_ba,
1122 				       &first_pindex, &fs.first_prot,
1123 				       &fs.wflags);
1124 		if (result != KERN_SUCCESS) {
1125 			/* could also be KERN_FAILURE_NOFAULT */
1126 			*errorp = KERN_FAILURE;
1127 			fs.m = NULL;
1128 			goto done;
1129 		}
1130 
1131 		/*
1132 		 * If we don't COW now, on a user wire, the user will never
1133 		 * be able to write to the mapping.  If we don't make this
1134 		 * restriction, the bookkeeping would be nearly impossible.
1135 		 *
1136 		 * XXX We have a shared lock, this will have a MP race but
1137 		 * I don't see how it can hurt anything.
1138 		 */
1139 		if ((fs.entry->protection & VM_PROT_WRITE) == 0) {
1140 			atomic_clear_char(&fs.entry->max_protection,
1141 					  VM_PROT_WRITE);
1142 		}
1143 	}
1144 
1145 	/*
1146 	 * fs.map is read-locked
1147 	 *
1148 	 * Misc checks.  Save the map generation number to detect races.
1149 	 */
1150 	fs.lookup_still_valid = 1;
1151 	fs.first_m = NULL;
1152 	fs.ba = fs.first_ba;
1153 
1154 	if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
1155 		panic("vm_fault: fault on nofault entry, addr: %lx",
1156 		    (u_long)vaddr);
1157 	}
1158 
1159 	/*
1160 	 * A user-kernel shared map has no VM object and bypasses
1161 	 * everything.  We execute the uksmap function with a temporary
1162 	 * fictitious vm_page.  The address is directly mapped with no
1163 	 * management.
1164 	 */
1165 	if (fs.entry->maptype == VM_MAPTYPE_UKSMAP) {
1166 		struct vm_page fakem;
1167 
1168 		bzero(&fakem, sizeof(fakem));
1169 		fakem.pindex = first_pindex;
1170 		fakem.flags = PG_FICTITIOUS | PG_UNQUEUED;
1171 		fakem.busy_count = PBUSY_LOCKED;
1172 		fakem.valid = VM_PAGE_BITS_ALL;
1173 		fakem.pat_mode = VM_MEMATTR_DEFAULT;
1174 		if (fs.entry->ba.uksmap(fs.entry->aux.dev, &fakem)) {
1175 			*errorp = KERN_FAILURE;
1176 			fs.m = NULL;
1177 			unlock_things(&fs);
1178 			goto done2;
1179 		}
1180 		fs.m = PHYS_TO_VM_PAGE(fakem.phys_addr);
1181 		vm_page_hold(fs.m);
1182 		if (busyp)
1183 			*busyp = 0;	/* don't need to busy R or W */
1184 		unlock_things(&fs);
1185 		*errorp = 0;
1186 		goto done;
1187 	}
1188 
1189 
1190 	/*
1191 	 * A system map entry may return a NULL object.  No object means
1192 	 * no pager means an unrecoverable kernel fault.
1193 	 */
1194 	if (fs.first_ba == NULL) {
1195 		panic("vm_fault: unrecoverable fault at %p in entry %p",
1196 			(void *)vaddr, fs.entry);
1197 	}
1198 
1199 	/*
1200 	 * Fail here if not a trivial anonymous page fault and TDF_NOFAULT
1201 	 * is set.
1202 	 *
1203 	 * Unfortunately a deadlock can occur if we are forced to page-in
1204 	 * from swap, but diving all the way into the vm_pager_get_page()
1205 	 * function to find out is too much.  Just check the object type.
1206 	 */
1207 	if ((curthread->td_flags & TDF_NOFAULT) &&
1208 	    (retry ||
1209 	     fs.first_ba->object->type == OBJT_VNODE ||
1210 	     fs.first_ba->object->type == OBJT_SWAP ||
1211 	     fs.first_ba->backing_ba)) {
1212 		*errorp = KERN_FAILURE;
1213 		unlock_things(&fs);
1214 		fs.m = NULL;
1215 		goto done2;
1216 	}
1217 
1218 	/*
1219 	 * If the entry is wired we cannot change the page protection.
1220 	 */
1221 	if (fs.wflags & FW_WIRED)
1222 		fault_type = fs.first_prot;
1223 
1224 	/*
1225 	 * Make a reference to this object to prevent its disposal while we
1226 	 * are messing with it.  Once we have the reference, the map is free
1227 	 * to be diddled.  Since objects reference their shadows (and copies),
1228 	 * they will stay around as well.
1229 	 *
1230 	 * The reference should also prevent an unexpected collapse of the
1231 	 * parent that might move pages from the current object into the
1232 	 * parent unexpectedly, resulting in corruption.
1233 	 *
1234 	 * Bump the paging-in-progress count to prevent size changes (e.g.
1235 	 * truncation operations) during I/O.  This must be done after
1236 	 * obtaining the vnode lock in order to avoid possible deadlocks.
1237 	 */
1238 	if (fs.first_ba->flags & VM_MAP_BACK_EXCL_HEUR)
1239 		fs.first_shared = 0;
1240 
1241 	if (fs.first_shared)
1242 		vm_object_hold_shared(fs.first_ba->object);
1243 	else
1244 		vm_object_hold(fs.first_ba->object);
1245 	fs.first_ba_held = 1;
1246 	if (fs.vp == NULL)
1247 		fs.vp = vnode_pager_lock(fs.first_ba);	/* shared */
1248 
1249 	/*
1250 	 * The page we want is at (first_object, first_pindex), but if the
1251 	 * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the
1252 	 * page table to figure out the actual pindex.
1253 	 *
1254 	 * NOTE!  DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION
1255 	 * ONLY
1256 	 */
1257 	if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
1258 		result = vm_fault_vpagetable(&fs, &first_pindex,
1259 					     fs.entry->aux.master_pde,
1260 					     fault_type, 1);
1261 		if (result == KERN_TRY_AGAIN) {
1262 			++retry;
1263 			goto RetryFault;
1264 		}
1265 		if (result != KERN_SUCCESS) {
1266 			*errorp = result;
1267 			fs.m = NULL;
1268 			goto done;
1269 		}
1270 	}
1271 
1272 	/*
1273 	 * Now we have the actual (object, pindex), fault in the page.  If
1274 	 * vm_fault_object() fails it will unlock and deallocate the FS
1275 	 * data.   If it succeeds everything remains locked and fs->ba->object
1276 	 * will have an additinal PIP count if fs->ba != fs->first_ba.
1277 	 */
1278 	fs.m = NULL;
1279 	result = vm_fault_object(&fs, first_pindex, fault_type, 1);
1280 
1281 	if (result == KERN_TRY_AGAIN) {
1282 		KKASSERT(fs.first_ba_held == 0);
1283 		++retry;
1284 		didcow |= fs.wflags & FW_DIDCOW;
1285 		goto RetryFault;
1286 	}
1287 	if (result != KERN_SUCCESS) {
1288 		*errorp = result;
1289 		fs.m = NULL;
1290 		goto done;
1291 	}
1292 
1293 	if ((orig_fault_type & VM_PROT_WRITE) &&
1294 	    (fs.prot & VM_PROT_WRITE) == 0) {
1295 		*errorp = KERN_PROTECTION_FAILURE;
1296 		unlock_things(&fs);
1297 		fs.m = NULL;
1298 		goto done;
1299 	}
1300 
1301 	/*
1302 	 * Generally speaking we don't want to update the pmap because
1303 	 * this routine can be called many times for situations that do
1304 	 * not require updating the pmap, not to mention the page might
1305 	 * already be in the pmap.
1306 	 *
1307 	 * However, if our vm_map_lookup() results in a COW, we need to
1308 	 * at least remove the pte from the pmap to guarantee proper
1309 	 * visibility of modifications made to the process.  For example,
1310 	 * modifications made by vkernel uiocopy/related routines and
1311 	 * modifications made by ptrace().
1312 	 */
1313 	vm_page_flag_set(fs.m, PG_REFERENCED);
1314 #if 0
1315 	pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot,
1316 		   fs.wflags & FW_WIRED, NULL);
1317 	mycpu->gd_cnt.v_vm_faults++;
1318 	if (curthread->td_lwp)
1319 		++curthread->td_lwp->lwp_ru.ru_minflt;
1320 #endif
1321 	if ((fs.wflags | didcow) | FW_DIDCOW) {
1322 		pmap_remove(fs.map->pmap,
1323 			    vaddr & ~PAGE_MASK,
1324 			    (vaddr & ~PAGE_MASK) + PAGE_SIZE);
1325 	}
1326 
1327 	/*
1328 	 * On success vm_fault_object() does not unlock or deallocate, and fs.m
1329 	 * will contain a busied page.  So we must unlock here after having
1330 	 * messed with the pmap.
1331 	 */
1332 	unlock_things(&fs);
1333 
1334 	/*
1335 	 * Return a held page.  We are not doing any pmap manipulation so do
1336 	 * not set PG_MAPPED.  However, adjust the page flags according to
1337 	 * the fault type because the caller may not use a managed pmapping
1338 	 * (so we don't want to lose the fact that the page will be dirtied
1339 	 * if a write fault was specified).
1340 	 */
1341 	if (fault_type & VM_PROT_WRITE)
1342 		vm_page_dirty(fs.m);
1343 	vm_page_activate(fs.m);
1344 
1345 	if (curthread->td_lwp) {
1346 		if (fs.hardfault) {
1347 			curthread->td_lwp->lwp_ru.ru_majflt++;
1348 		} else {
1349 			curthread->td_lwp->lwp_ru.ru_minflt++;
1350 		}
1351 	}
1352 
1353 	/*
1354 	 * Unlock everything, and return the held or busied page.
1355 	 */
1356 	if (busyp) {
1357 		if (fault_type & VM_PROT_WRITE) {
1358 			vm_page_dirty(fs.m);
1359 			*busyp = 1;
1360 		} else {
1361 			*busyp = 0;
1362 			vm_page_hold(fs.m);
1363 			vm_page_wakeup(fs.m);
1364 		}
1365 	} else {
1366 		vm_page_hold(fs.m);
1367 		vm_page_wakeup(fs.m);
1368 	}
1369 	/*vm_object_deallocate(fs.first_ba->object);*/
1370 	*errorp = 0;
1371 
1372 done:
1373 	KKASSERT(fs.first_ba_held == 0);
1374 done2:
1375 	return(fs.m);
1376 }
1377 
1378 /*
1379  * Fault in the specified (object,offset), dirty the returned page as
1380  * needed.  If the requested fault_type cannot be done NULL and an
1381  * error is returned.
1382  *
1383  * A held (but not busied) page is returned.
1384  *
1385  * The passed in object must be held as specified by the shared
1386  * argument.
1387  */
1388 vm_page_t
1389 vm_fault_object_page(vm_object_t object, vm_ooffset_t offset,
1390 		     vm_prot_t fault_type, int fault_flags,
1391 		     int *sharedp, int *errorp)
1392 {
1393 	int result;
1394 	vm_pindex_t first_pindex;
1395 	struct faultstate fs;
1396 	struct vm_map_entry entry;
1397 
1398 	/*
1399 	 * Since we aren't actually faulting the page into a
1400 	 * pmap we can just fake the entry.ba.
1401 	 */
1402 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1403 	bzero(&entry, sizeof(entry));
1404 	entry.maptype = VM_MAPTYPE_NORMAL;
1405 	entry.protection = entry.max_protection = fault_type;
1406 	entry.ba.backing_ba = NULL;
1407 	entry.ba.object = object;
1408 	entry.ba.offset = 0;
1409 
1410 	fs.hardfault = 0;
1411 	fs.fault_flags = fault_flags;
1412 	fs.map = NULL;
1413 	fs.shared = vm_shared_fault;
1414 	fs.first_shared = *sharedp;
1415 	fs.msoftonly = 0;
1416 	fs.vp = NULL;
1417 	fs.first_ba_held = -1;	/* object held across call, prevent drop */
1418 	KKASSERT((fault_flags & VM_FAULT_WIRE_MASK) == 0);
1419 
1420 	/*
1421 	 * VM_FAULT_UNSWAP - swap_pager_unswapped() needs an exclusive object
1422 	 * VM_FAULT_DIRTY  - may require swap_pager_unswapped() later, but
1423 	 *		     we can try shared first.
1424 	 */
1425 	if (fs.first_shared && (fault_flags & VM_FAULT_UNSWAP)) {
1426 		fs.first_shared = 0;
1427 		vm_object_upgrade(object);
1428 	}
1429 
1430 	/*
1431 	 * Retry loop as needed (typically for shared->exclusive transitions)
1432 	 */
1433 RetryFault:
1434 	*sharedp = fs.first_shared;
1435 	first_pindex = OFF_TO_IDX(offset);
1436 	fs.first_ba = &entry.ba;
1437 	fs.ba = fs.first_ba;
1438 	fs.entry = &entry;
1439 	fs.first_prot = fault_type;
1440 	fs.wflags = 0;
1441 
1442 	/*
1443 	 * Make a reference to this object to prevent its disposal while we
1444 	 * are messing with it.  Once we have the reference, the map is free
1445 	 * to be diddled.  Since objects reference their shadows (and copies),
1446 	 * they will stay around as well.
1447 	 *
1448 	 * The reference should also prevent an unexpected collapse of the
1449 	 * parent that might move pages from the current object into the
1450 	 * parent unexpectedly, resulting in corruption.
1451 	 *
1452 	 * Bump the paging-in-progress count to prevent size changes (e.g.
1453 	 * truncation operations) during I/O.  This must be done after
1454 	 * obtaining the vnode lock in order to avoid possible deadlocks.
1455 	 */
1456 	if (fs.vp == NULL)
1457 		fs.vp = vnode_pager_lock(fs.first_ba);
1458 
1459 	fs.lookup_still_valid = 1;
1460 	fs.first_m = NULL;
1461 
1462 #if 0
1463 	/* XXX future - ability to operate on VM object using vpagetable */
1464 	if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
1465 		result = vm_fault_vpagetable(&fs, &first_pindex,
1466 					     fs.entry->aux.master_pde,
1467 					     fault_type, 0);
1468 		if (result == KERN_TRY_AGAIN) {
1469 			if (fs.first_shared == 0 && *sharedp)
1470 				vm_object_upgrade(object);
1471 			goto RetryFault;
1472 		}
1473 		if (result != KERN_SUCCESS) {
1474 			*errorp = result;
1475 			return (NULL);
1476 		}
1477 	}
1478 #endif
1479 
1480 	/*
1481 	 * Now we have the actual (object, pindex), fault in the page.  If
1482 	 * vm_fault_object() fails it will unlock and deallocate the FS
1483 	 * data.   If it succeeds everything remains locked and fs->ba->object
1484 	 * will have an additinal PIP count if fs->ba != fs->first_ba.
1485 	 *
1486 	 * On KERN_TRY_AGAIN vm_fault_object() leaves fs.first_ba intact.
1487 	 * We may have to upgrade its lock to handle the requested fault.
1488 	 */
1489 	result = vm_fault_object(&fs, first_pindex, fault_type, 0);
1490 
1491 	if (result == KERN_TRY_AGAIN) {
1492 		if (fs.first_shared == 0 && *sharedp)
1493 			vm_object_upgrade(object);
1494 		goto RetryFault;
1495 	}
1496 	if (result != KERN_SUCCESS) {
1497 		*errorp = result;
1498 		return(NULL);
1499 	}
1500 
1501 	if ((fault_type & VM_PROT_WRITE) && (fs.prot & VM_PROT_WRITE) == 0) {
1502 		*errorp = KERN_PROTECTION_FAILURE;
1503 		unlock_things(&fs);
1504 		return(NULL);
1505 	}
1506 
1507 	/*
1508 	 * On success vm_fault_object() does not unlock or deallocate, so we
1509 	 * do it here.  Note that the returned fs.m will be busied.
1510 	 */
1511 	unlock_things(&fs);
1512 
1513 	/*
1514 	 * Return a held page.  We are not doing any pmap manipulation so do
1515 	 * not set PG_MAPPED.  However, adjust the page flags according to
1516 	 * the fault type because the caller may not use a managed pmapping
1517 	 * (so we don't want to lose the fact that the page will be dirtied
1518 	 * if a write fault was specified).
1519 	 */
1520 	vm_page_hold(fs.m);
1521 	vm_page_activate(fs.m);
1522 	if ((fault_type & VM_PROT_WRITE) || (fault_flags & VM_FAULT_DIRTY))
1523 		vm_page_dirty(fs.m);
1524 	if (fault_flags & VM_FAULT_UNSWAP)
1525 		swap_pager_unswapped(fs.m);
1526 
1527 	/*
1528 	 * Indicate that the page was accessed.
1529 	 */
1530 	vm_page_flag_set(fs.m, PG_REFERENCED);
1531 
1532 	if (curthread->td_lwp) {
1533 		if (fs.hardfault) {
1534 			curthread->td_lwp->lwp_ru.ru_majflt++;
1535 		} else {
1536 			curthread->td_lwp->lwp_ru.ru_minflt++;
1537 		}
1538 	}
1539 
1540 	/*
1541 	 * Unlock everything, and return the held page.
1542 	 */
1543 	vm_page_wakeup(fs.m);
1544 	/*vm_object_deallocate(fs.first_ba->object);*/
1545 
1546 	*errorp = 0;
1547 	return(fs.m);
1548 }
1549 
1550 /*
1551  * Translate the virtual page number (first_pindex) that is relative
1552  * to the address space into a logical page number that is relative to the
1553  * backing object.  Use the virtual page table pointed to by (vpte).
1554  *
1555  * Possibly downgrade the protection based on the vpte bits.
1556  *
1557  * This implements an N-level page table.  Any level can terminate the
1558  * scan by setting VPTE_PS.   A linear mapping is accomplished by setting
1559  * VPTE_PS in the master page directory entry set via mcontrol(MADV_SETMAP).
1560  */
1561 static
1562 int
1563 vm_fault_vpagetable(struct faultstate *fs, vm_pindex_t *pindex,
1564 		    vpte_t vpte, int fault_type, int allow_nofault)
1565 {
1566 	struct lwbuf *lwb;
1567 	struct lwbuf lwb_cache;
1568 	int vshift = VPTE_FRAME_END - PAGE_SHIFT; /* index bits remaining */
1569 	int result;
1570 	vpte_t *ptep;
1571 
1572 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(fs->first_ba->object));
1573 	for (;;) {
1574 		/*
1575 		 * We cannot proceed if the vpte is not valid, not readable
1576 		 * for a read fault, not writable for a write fault, or
1577 		 * not executable for an instruction execution fault.
1578 		 */
1579 		if ((vpte & VPTE_V) == 0) {
1580 			unlock_things(fs);
1581 			return (KERN_FAILURE);
1582 		}
1583 		if ((fault_type & VM_PROT_WRITE) && (vpte & VPTE_RW) == 0) {
1584 			unlock_things(fs);
1585 			return (KERN_FAILURE);
1586 		}
1587 		if ((fault_type & VM_PROT_EXECUTE) && (vpte & VPTE_NX)) {
1588 			unlock_things(fs);
1589 			return (KERN_FAILURE);
1590 		}
1591 		if ((vpte & VPTE_PS) || vshift == 0)
1592 			break;
1593 
1594 		/*
1595 		 * Get the page table page.  Nominally we only read the page
1596 		 * table, but since we are actively setting VPTE_M and VPTE_A,
1597 		 * tell vm_fault_object() that we are writing it.
1598 		 *
1599 		 * There is currently no real need to optimize this.
1600 		 */
1601 		result = vm_fault_object(fs, (vpte & VPTE_FRAME) >> PAGE_SHIFT,
1602 					 VM_PROT_READ|VM_PROT_WRITE,
1603 					 allow_nofault);
1604 		if (result != KERN_SUCCESS)
1605 			return (result);
1606 
1607 		/*
1608 		 * Process the returned fs.m and look up the page table
1609 		 * entry in the page table page.
1610 		 */
1611 		vshift -= VPTE_PAGE_BITS;
1612 		lwb = lwbuf_alloc(fs->m, &lwb_cache);
1613 		ptep = ((vpte_t *)lwbuf_kva(lwb) +
1614 		        ((*pindex >> vshift) & VPTE_PAGE_MASK));
1615 		vm_page_activate(fs->m);
1616 
1617 		/*
1618 		 * Page table write-back - entire operation including
1619 		 * validation of the pte must be atomic to avoid races
1620 		 * against the vkernel changing the pte.
1621 		 *
1622 		 * If the vpte is valid for the* requested operation, do
1623 		 * a write-back to the page table.
1624 		 *
1625 		 * XXX VPTE_M is not set properly for page directory pages.
1626 		 * It doesn't get set in the page directory if the page table
1627 		 * is modified during a read access.
1628 		 */
1629 		for (;;) {
1630 			vpte_t nvpte;
1631 
1632 			/*
1633 			 * Reload for the cmpset, but make sure the pte is
1634 			 * still valid.
1635 			 */
1636 			vpte = *ptep;
1637 			cpu_ccfence();
1638 			nvpte = vpte;
1639 
1640 			if ((vpte & VPTE_V) == 0)
1641 				break;
1642 
1643 			if ((fault_type & VM_PROT_WRITE) && (vpte & VPTE_RW))
1644 				nvpte |= VPTE_M | VPTE_A;
1645 			if (fault_type & (VM_PROT_READ | VM_PROT_EXECUTE))
1646 				nvpte |= VPTE_A;
1647 			if (vpte == nvpte)
1648 				break;
1649 			if (atomic_cmpset_long(ptep, vpte, nvpte)) {
1650 				vm_page_dirty(fs->m);
1651 				break;
1652 			}
1653 		}
1654 		lwbuf_free(lwb);
1655 		vm_page_flag_set(fs->m, PG_REFERENCED);
1656 		vm_page_wakeup(fs->m);
1657 		fs->m = NULL;
1658 		cleanup_fault(fs);
1659 	}
1660 
1661 	/*
1662 	 * When the vkernel sets VPTE_RW it expects the real kernel to
1663 	 * reflect VPTE_M back when the page is modified via the mapping.
1664 	 * In order to accomplish this the real kernel must map the page
1665 	 * read-only for read faults and use write faults to reflect VPTE_M
1666 	 * back.
1667 	 *
1668 	 * Once VPTE_M has been set, the real kernel's pte allows writing.
1669 	 * If the vkernel clears VPTE_M the vkernel must be sure to
1670 	 * MADV_INVAL the real kernel's mappings to force the real kernel
1671 	 * to re-fault on the next write so oit can set VPTE_M again.
1672 	 */
1673 	if ((fault_type & VM_PROT_WRITE) == 0 &&
1674 	    (vpte & (VPTE_RW | VPTE_M)) != (VPTE_RW | VPTE_M)) {
1675 		fs->first_prot &= ~VM_PROT_WRITE;
1676 	}
1677 
1678 	/*
1679 	 * Disable EXECUTE perms if NX bit is set.
1680 	 */
1681 	if (vpte & VPTE_NX)
1682 		fs->first_prot &= ~VM_PROT_EXECUTE;
1683 
1684 	/*
1685 	 * Combine remaining address bits with the vpte.
1686 	 */
1687 	*pindex = ((vpte & VPTE_FRAME) >> PAGE_SHIFT) +
1688 		  (*pindex & ((1L << vshift) - 1));
1689 	return (KERN_SUCCESS);
1690 }
1691 
1692 
1693 /*
1694  * This is the core of the vm_fault code.
1695  *
1696  * Do all operations required to fault-in (fs.first_ba->object, pindex).
1697  * Run through the backing store as necessary and do required COW or virtual
1698  * copy operations.  The caller has already fully resolved the vm_map_entry
1699  * and, if appropriate, has created a copy-on-write layer.  All we need to
1700  * do is iterate the object chain.
1701  *
1702  * On failure (fs) is unlocked and deallocated and the caller may return or
1703  * retry depending on the failure code.  On success (fs) is NOT unlocked or
1704  * deallocated, fs.m will contained a resolved, busied page, and fs.ba's
1705  * object will have an additional PIP count if it is not equal to
1706  * fs.first_ba.
1707  *
1708  * If locks based on fs->first_shared or fs->shared are insufficient,
1709  * clear the appropriate field(s) and return RETRY.  COWs require that
1710  * first_shared be 0, while page allocations (or frees) require that
1711  * shared be 0.  Renames require that both be 0.
1712  *
1713  * NOTE! fs->[first_]shared might be set with VM_FAULT_DIRTY also set.
1714  *	 we will have to retry with it exclusive if the vm_page is
1715  *	 PG_SWAPPED.
1716  *
1717  * fs->first_ba->object must be held on call.
1718  */
1719 static
1720 int
1721 vm_fault_object(struct faultstate *fs, vm_pindex_t first_pindex,
1722 		vm_prot_t fault_type, int allow_nofault)
1723 {
1724 	vm_map_backing_t next_ba;
1725 	vm_pindex_t pindex;
1726 	int error;
1727 
1728 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(fs->first_ba->object));
1729 	fs->prot = fs->first_prot;
1730 	pindex = first_pindex;
1731 	KKASSERT(fs->ba == fs->first_ba);
1732 
1733 	vm_object_pip_add(fs->first_ba->object, 1);
1734 
1735 	/*
1736 	 * If a read fault occurs we try to upgrade the page protection
1737 	 * and make it also writable if possible.  There are three cases
1738 	 * where we cannot make the page mapping writable:
1739 	 *
1740 	 * (1) The mapping is read-only or the VM object is read-only,
1741 	 *     fs->prot above will simply not have VM_PROT_WRITE set.
1742 	 *
1743 	 * (2) If the mapping is a virtual page table fs->first_prot will
1744 	 *     have already been properly adjusted by vm_fault_vpagetable().
1745 	 *     to detect writes so we can set VPTE_M in the virtual page
1746 	 *     table.  Used by vkernels.
1747 	 *
1748 	 * (3) If the VM page is read-only or copy-on-write, upgrading would
1749 	 *     just result in an unnecessary COW fault.
1750 	 *
1751 	 * (4) If the pmap specifically requests A/M bit emulation, downgrade
1752 	 *     here.
1753 	 */
1754 #if 0
1755 	/* see vpagetable code */
1756 	if (fs->entry->maptype == VM_MAPTYPE_VPAGETABLE) {
1757 		if ((fault_type & VM_PROT_WRITE) == 0)
1758 			fs->prot &= ~VM_PROT_WRITE;
1759 	}
1760 #endif
1761 
1762 	if (curthread->td_lwp && curthread->td_lwp->lwp_vmspace &&
1763 	    pmap_emulate_ad_bits(&curthread->td_lwp->lwp_vmspace->vm_pmap)) {
1764 		if ((fault_type & VM_PROT_WRITE) == 0)
1765 			fs->prot &= ~VM_PROT_WRITE;
1766 	}
1767 
1768 	/* vm_object_hold(fs->ba->object); implied b/c ba == first_ba */
1769 
1770 	for (;;) {
1771 		/*
1772 		 * If the object is dead, we stop here
1773 		 */
1774 		if (fs->ba->object->flags & OBJ_DEAD) {
1775 			vm_object_pip_wakeup(fs->first_ba->object);
1776 			unlock_things(fs);
1777 			return (KERN_PROTECTION_FAILURE);
1778 		}
1779 
1780 		/*
1781 		 * See if the page is resident.  Wait/Retry if the page is
1782 		 * busy (lots of stuff may have changed so we can't continue
1783 		 * in that case).
1784 		 *
1785 		 * We can theoretically allow the soft-busy case on a read
1786 		 * fault if the page is marked valid, but since such
1787 		 * pages are typically already pmap'd, putting that
1788 		 * special case in might be more effort then it is
1789 		 * worth.  We cannot under any circumstances mess
1790 		 * around with a vm_page_t->busy page except, perhaps,
1791 		 * to pmap it.
1792 		 */
1793 		fs->m = vm_page_lookup_busy_try(fs->ba->object, pindex,
1794 						TRUE, &error);
1795 		if (error) {
1796 			vm_object_pip_wakeup(fs->first_ba->object);
1797 			unlock_things(fs);
1798 			vm_page_sleep_busy(fs->m, TRUE, "vmpfw");
1799 			mycpu->gd_cnt.v_intrans++;
1800 			fs->m = NULL;
1801 			return (KERN_TRY_AGAIN);
1802 		}
1803 		if (fs->m) {
1804 			/*
1805 			 * The page is busied for us.
1806 			 *
1807 			 * If reactivating a page from PQ_CACHE we may have
1808 			 * to rate-limit.
1809 			 */
1810 			int queue = fs->m->queue;
1811 			vm_page_unqueue_nowakeup(fs->m);
1812 
1813 			if ((queue - fs->m->pc) == PQ_CACHE &&
1814 			    vm_page_count_severe()) {
1815 				vm_page_activate(fs->m);
1816 				vm_page_wakeup(fs->m);
1817 				fs->m = NULL;
1818 				vm_object_pip_wakeup(fs->first_ba->object);
1819 				unlock_things(fs);
1820 				if (allow_nofault == 0 ||
1821 				    (curthread->td_flags & TDF_NOFAULT) == 0) {
1822 					thread_t td;
1823 
1824 					vm_wait_pfault();
1825 					td = curthread;
1826 					if (td->td_proc && (td->td_proc->p_flags & P_LOWMEMKILL))
1827 						return (KERN_PROTECTION_FAILURE);
1828 				}
1829 				return (KERN_TRY_AGAIN);
1830 			}
1831 
1832 			/*
1833 			 * If it still isn't completely valid (readable),
1834 			 * or if a read-ahead-mark is set on the VM page,
1835 			 * jump to readrest, else we found the page and
1836 			 * can return.
1837 			 *
1838 			 * We can release the spl once we have marked the
1839 			 * page busy.
1840 			 */
1841 			if (fs->m->object != &kernel_object) {
1842 				if ((fs->m->valid & VM_PAGE_BITS_ALL) !=
1843 				    VM_PAGE_BITS_ALL) {
1844 					goto readrest;
1845 				}
1846 				if (fs->m->flags & PG_RAM) {
1847 					if (debug_cluster)
1848 						kprintf("R");
1849 					vm_page_flag_clear(fs->m, PG_RAM);
1850 					goto readrest;
1851 				}
1852 			}
1853 			fs->first_ba->flags &= ~VM_MAP_BACK_EXCL_HEUR;
1854 			break; /* break to PAGE HAS BEEN FOUND */
1855 		}
1856 
1857 		/*
1858 		 * Page is not resident, If this is the search termination
1859 		 * or the pager might contain the page, allocate a new page.
1860 		 */
1861 		if (TRYPAGER(fs) || fs->ba == fs->first_ba) {
1862 			/*
1863 			 * If this is a SWAP object we can use the shared
1864 			 * lock to check existence of a swap block.  If
1865 			 * there isn't one we can skip to the next object.
1866 			 *
1867 			 * However, if this is the first object we allocate
1868 			 * a page now just in case we need to copy to it
1869 			 * later.
1870 			 */
1871 			if (fs->ba != fs->first_ba &&
1872 			    fs->ba->object->type == OBJT_SWAP) {
1873 				if (swap_pager_haspage_locked(fs->ba->object,
1874 							      pindex) == 0) {
1875 					goto next;
1876 				}
1877 			}
1878 
1879 			/*
1880 			 * Allocating, must be exclusive.
1881 			 */
1882 			fs->first_ba->flags |= VM_MAP_BACK_EXCL_HEUR;
1883 			if (fs->ba == fs->first_ba && fs->first_shared) {
1884 				fs->first_shared = 0;
1885 				vm_object_pip_wakeup(fs->first_ba->object);
1886 				unlock_things(fs);
1887 				return (KERN_TRY_AGAIN);
1888 			}
1889 			if (fs->ba != fs->first_ba && fs->shared) {
1890 				fs->first_shared = 0;
1891 				fs->shared = 0;
1892 				vm_object_pip_wakeup(fs->first_ba->object);
1893 				unlock_things(fs);
1894 				return (KERN_TRY_AGAIN);
1895 			}
1896 
1897 			/*
1898 			 * If the page is beyond the object size we fail
1899 			 */
1900 			if (pindex >= fs->ba->object->size) {
1901 				vm_object_pip_wakeup(fs->first_ba->object);
1902 				unlock_things(fs);
1903 				return (KERN_PROTECTION_FAILURE);
1904 			}
1905 
1906 			/*
1907 			 * Allocate a new page for this object/offset pair.
1908 			 *
1909 			 * It is possible for the allocation to race, so
1910 			 * handle the case.
1911 			 */
1912 			fs->m = NULL;
1913 			if (!vm_page_count_severe()) {
1914 				fs->m = vm_page_alloc(fs->ba->object, pindex,
1915 				    ((fs->vp || fs->ba->backing_ba) ?
1916 					VM_ALLOC_NULL_OK | VM_ALLOC_NORMAL :
1917 					VM_ALLOC_NULL_OK | VM_ALLOC_NORMAL |
1918 					VM_ALLOC_USE_GD | VM_ALLOC_ZERO));
1919 			}
1920 			if (fs->m == NULL) {
1921 				vm_object_pip_wakeup(fs->first_ba->object);
1922 				unlock_things(fs);
1923 				if (allow_nofault == 0 ||
1924 				    (curthread->td_flags & TDF_NOFAULT) == 0) {
1925 					thread_t td;
1926 
1927 					vm_wait_pfault();
1928 					td = curthread;
1929 					if (td->td_proc && (td->td_proc->p_flags & P_LOWMEMKILL))
1930 						return (KERN_PROTECTION_FAILURE);
1931 				}
1932 				return (KERN_TRY_AGAIN);
1933 			}
1934 
1935 			/*
1936 			 * Fall through to readrest.  We have a new page which
1937 			 * will have to be paged (since m->valid will be 0).
1938 			 */
1939 		}
1940 
1941 readrest:
1942 		/*
1943 		 * We have found an invalid or partially valid page, a
1944 		 * page with a read-ahead mark which might be partially or
1945 		 * fully valid (and maybe dirty too), or we have allocated
1946 		 * a new page.
1947 		 *
1948 		 * Attempt to fault-in the page if there is a chance that the
1949 		 * pager has it, and potentially fault in additional pages
1950 		 * at the same time.
1951 		 *
1952 		 * If TRYPAGER is true then fs.m will be non-NULL and busied
1953 		 * for us.
1954 		 */
1955 		if (TRYPAGER(fs)) {
1956 			u_char behavior = vm_map_entry_behavior(fs->entry);
1957 			vm_object_t object;
1958 			vm_page_t first_m;
1959 			int seqaccess;
1960 			int rv;
1961 
1962 			if (behavior == MAP_ENTRY_BEHAV_RANDOM)
1963 				seqaccess = 0;
1964 			else
1965 				seqaccess = -1;
1966 
1967 			/*
1968 			 * Doing I/O may synchronously insert additional
1969 			 * pages so we can't be shared at this point either.
1970 			 *
1971 			 * NOTE: We can't free fs->m here in the allocated
1972 			 *	 case (fs->ba != fs->first_ba) as this
1973 			 *	 would require an exclusively locked
1974 			 *	 VM object.
1975 			 */
1976 			if (fs->ba == fs->first_ba && fs->first_shared) {
1977 				vm_page_deactivate(fs->m);
1978 				vm_page_wakeup(fs->m);
1979 				fs->m = NULL;
1980 				fs->first_shared = 0;
1981 				vm_object_pip_wakeup(fs->first_ba->object);
1982 				unlock_things(fs);
1983 				return (KERN_TRY_AGAIN);
1984 			}
1985 			if (fs->ba != fs->first_ba && fs->shared) {
1986 				vm_page_deactivate(fs->m);
1987 				vm_page_wakeup(fs->m);
1988 				fs->m = NULL;
1989 				fs->first_shared = 0;
1990 				fs->shared = 0;
1991 				vm_object_pip_wakeup(fs->first_ba->object);
1992 				unlock_things(fs);
1993 				return (KERN_TRY_AGAIN);
1994 			}
1995 
1996 			object = fs->ba->object;
1997 			first_m = NULL;
1998 
1999 			/* object is held, no more access to entry or ba's */
2000 
2001 			/*
2002 			 * Acquire the page data.  We still hold object
2003 			 * and the page has been BUSY's.
2004 			 *
2005 			 * We own the page, but we must re-issue the lookup
2006 			 * because the pager may have replaced it (for example,
2007 			 * in order to enter a fictitious page into the
2008 			 * object).  In this situation the pager will have
2009 			 * cleaned up the old page and left the new one
2010 			 * busy for us.
2011 			 *
2012 			 * If we got here through a PG_RAM read-ahead
2013 			 * mark the page may be partially dirty and thus
2014 			 * not freeable.  Don't bother checking to see
2015 			 * if the pager has the page because we can't free
2016 			 * it anyway.  We have to depend on the get_page
2017 			 * operation filling in any gaps whether there is
2018 			 * backing store or not.
2019 			 *
2020 			 * We must dispose of the page (fs->m) and also
2021 			 * possibly first_m (the fronting layer).  If
2022 			 * this is a write fault leave the page intact
2023 			 * because we will probably have to copy fs->m
2024 			 * to fs->first_m on the retry.  If this is a
2025 			 * read fault we probably won't need the page.
2026 			 */
2027 			rv = vm_pager_get_page(object, &fs->m, seqaccess);
2028 
2029 			if (rv == VM_PAGER_OK) {
2030 				++fs->hardfault;
2031 				fs->m = vm_page_lookup(object, pindex);
2032 				if (fs->m) {
2033 					vm_page_activate(fs->m);
2034 					vm_page_wakeup(fs->m);
2035 					fs->m = NULL;
2036 				}
2037 
2038 				if (fs->m) {
2039 					/* have page */
2040 					break;
2041 				}
2042 				vm_object_pip_wakeup(fs->first_ba->object);
2043 				unlock_things(fs);
2044 				return (KERN_TRY_AGAIN);
2045 			}
2046 
2047 			/*
2048 			 * If the pager doesn't have the page, continue on
2049 			 * to the next object.  Retain the vm_page if this
2050 			 * is the first object, we may need to copy into
2051 			 * it later.
2052 			 */
2053 			if (rv == VM_PAGER_FAIL) {
2054 				if (fs->ba != fs->first_ba) {
2055 					vm_page_free(fs->m);
2056 					fs->m = NULL;
2057 				}
2058 				goto next;
2059 			}
2060 
2061 			/*
2062 			 * Remove the bogus page (which does not exist at this
2063 			 * object/offset).
2064 			 *
2065 			 * Also wake up any other process that may want to bring
2066 			 * in this page.
2067 			 *
2068 			 * If this is the top-level object, we must leave the
2069 			 * busy page to prevent another process from rushing
2070 			 * past us, and inserting the page in that object at
2071 			 * the same time that we are.
2072 			 */
2073 			if (rv == VM_PAGER_ERROR) {
2074 				if (curproc) {
2075 					kprintf("vm_fault: pager read error, "
2076 						"pid %d (%s)\n",
2077 						curproc->p_pid,
2078 						curproc->p_comm);
2079 				} else {
2080 					kprintf("vm_fault: pager read error, "
2081 						"thread %p (%s)\n",
2082 						curthread,
2083 						curthread->td_comm);
2084 				}
2085 			}
2086 
2087 			/*
2088 			 * I/O error or data outside pager's range.
2089 			 */
2090 			if (fs->m) {
2091 				vnode_pager_freepage(fs->m);
2092 				fs->m = NULL;
2093 			}
2094 			if (first_m) {
2095 				vm_page_free(first_m);
2096 				first_m = NULL;		/* safety */
2097 			}
2098 			vm_object_pip_wakeup(object);
2099 			unlock_things(fs);
2100 
2101 			switch(rv) {
2102 			case VM_PAGER_ERROR:
2103 				return (KERN_FAILURE);
2104 			case VM_PAGER_BAD:
2105 				return (KERN_PROTECTION_FAILURE);
2106 			default:
2107 				return (KERN_PROTECTION_FAILURE);
2108 			}
2109 
2110 #if 0
2111 			/*
2112 			 * Data outside the range of the pager or an I/O error
2113 			 *
2114 			 * The page may have been wired during the pagein,
2115 			 * e.g. by the buffer cache, and cannot simply be
2116 			 * freed.  Call vnode_pager_freepage() to deal with it.
2117 			 *
2118 			 * The object is not held shared so we can safely
2119 			 * free the page.
2120 			 */
2121 			if (fs->ba != fs->first_ba) {
2122 
2123 				/*
2124 				 * XXX - we cannot just fall out at this
2125 				 * point, m has been freed and is invalid!
2126 				 */
2127 			}
2128 
2129 			/*
2130 			 * XXX - the check for kernel_map is a kludge to work
2131 			 * around having the machine panic on a kernel space
2132 			 * fault w/ I/O error.
2133 			 */
2134 			if (((fs->map != &kernel_map) &&
2135 			    (rv == VM_PAGER_ERROR)) || (rv == VM_PAGER_BAD)) {
2136 				if (fs->m) {
2137 					/* from just above */
2138 					KKASSERT(fs->first_shared == 0);
2139 					vnode_pager_freepage(fs->m);
2140 					fs->m = NULL;
2141 				}
2142 				/* NOT REACHED */
2143 			}
2144 #endif
2145 		}
2146 
2147 next:
2148 		/*
2149 		 * We get here if the object has a default pager (or unwiring)
2150 		 * or the pager doesn't have the page.
2151 		 *
2152 		 * fs->first_m will be used for the COW unless we find a
2153 		 * deeper page to be mapped read-only, in which case the
2154 		 * unlock*(fs) will free first_m.
2155 		 */
2156 		if (fs->ba == fs->first_ba)
2157 			fs->first_m = fs->m;
2158 
2159 		/*
2160 		 * Move on to the next object.  The chain lock should prevent
2161 		 * the backing_object from getting ripped out from under us.
2162 		 *
2163 		 * The object lock for the next object is governed by
2164 		 * fs->shared.
2165 		 */
2166 		next_ba = fs->ba->backing_ba;
2167 		if (next_ba == NULL) {
2168 			/*
2169 			 * If there's no object left, fill the page in the top
2170 			 * object with zeros.
2171 			 */
2172 			if (fs->ba != fs->first_ba) {
2173 				vm_object_pip_wakeup(fs->ba->object);
2174 				vm_object_drop(fs->ba->object);
2175 				fs->ba = fs->first_ba;
2176 				pindex = first_pindex;
2177 				fs->m = fs->first_m;
2178 			}
2179 			fs->first_m = NULL;
2180 
2181 			/*
2182 			 * Zero the page and mark it valid.
2183 			 */
2184 			vm_page_zero_fill(fs->m);
2185 			mycpu->gd_cnt.v_zfod++;
2186 			fs->m->valid = VM_PAGE_BITS_ALL;
2187 			break;	/* break to PAGE HAS BEEN FOUND */
2188 		}
2189 
2190 		if (fs->shared)
2191 			vm_object_hold_shared(next_ba->object);
2192 		else
2193 			vm_object_hold(next_ba->object);
2194 		KKASSERT(next_ba == fs->ba->backing_ba);
2195 		pindex -= OFF_TO_IDX(fs->ba->offset);
2196 		pindex += OFF_TO_IDX(next_ba->offset);
2197 
2198 		if (fs->ba != fs->first_ba) {
2199 			vm_object_pip_wakeup(fs->ba->object);
2200 			vm_object_lock_swap();	/* flip ba/next_ba */
2201 			vm_object_drop(fs->ba->object);
2202 		}
2203 		fs->ba = next_ba;
2204 		vm_object_pip_add(next_ba->object, 1);
2205 	}
2206 
2207 	/*
2208 	 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
2209 	 * is held.]
2210 	 *
2211 	 * object still held.
2212 	 * vm_map may not be locked (determined by fs->lookup_still_valid)
2213 	 *
2214 	 * local shared variable may be different from fs->shared.
2215 	 *
2216 	 * If the page is being written, but isn't already owned by the
2217 	 * top-level object, we have to copy it into a new page owned by the
2218 	 * top-level object.
2219 	 */
2220 	KASSERT((fs->m->busy_count & PBUSY_LOCKED) != 0,
2221 		("vm_fault: not busy after main loop"));
2222 
2223 	if (fs->ba != fs->first_ba) {
2224 		/*
2225 		 * We only really need to copy if we want to write it.
2226 		 */
2227 		if (fault_type & VM_PROT_WRITE) {
2228 #if 0
2229 			/* CODE REFACTOR IN PROGRESS, REMOVE OPTIMIZATION */
2230 			/*
2231 			 * This allows pages to be virtually copied from a
2232 			 * backing_object into the first_object, where the
2233 			 * backing object has no other refs to it, and cannot
2234 			 * gain any more refs.  Instead of a bcopy, we just
2235 			 * move the page from the backing object to the
2236 			 * first object.  Note that we must mark the page
2237 			 * dirty in the first object so that it will go out
2238 			 * to swap when needed.
2239 			 */
2240 			if (virtual_copy_ok(fs)) {
2241 				/*
2242 				 * (first_m) and (m) are both busied.  We have
2243 				 * move (m) into (first_m)'s object/pindex
2244 				 * in an atomic fashion, then free (first_m).
2245 				 *
2246 				 * first_object is held so second remove
2247 				 * followed by the rename should wind
2248 				 * up being atomic.  vm_page_free() might
2249 				 * block so we don't do it until after the
2250 				 * rename.
2251 				 */
2252 				vm_page_protect(fs->first_m, VM_PROT_NONE);
2253 				vm_page_remove(fs->first_m);
2254 				vm_page_rename(fs->m,
2255 					       fs->first_ba->object,
2256 					       first_pindex);
2257 				vm_page_free(fs->first_m);
2258 				fs->first_m = fs->m;
2259 				fs->m = NULL;
2260 				mycpu->gd_cnt.v_cow_optim++;
2261 			} else
2262 #endif
2263 			{
2264 				/*
2265 				 * Oh, well, lets copy it.
2266 				 *
2267 				 * We used to unmap the original page here
2268 				 * because vm_fault_page() didn't and this
2269 				 * would cause havoc for the umtx*() code
2270 				 * and the procfs code.
2271 				 *
2272 				 * This is no longer necessary.  The
2273 				 * vm_fault_page() routine will now unmap the
2274 				 * page after a COW, and the umtx code will
2275 				 * recover on its own.
2276 				 */
2277 				/*
2278 				 * NOTE: Since fs->m is a backing page, it
2279 				 *	 is read-only, so there isn't any
2280 				 *	 copy race vs writers.
2281 				 */
2282 				KKASSERT(fs->first_shared == 0);
2283 				vm_page_copy(fs->m, fs->first_m);
2284 				/* pmap_remove_specific(
2285 				    &curthread->td_lwp->lwp_vmspace->vm_pmap,
2286 				    fs->m); */
2287 			}
2288 
2289 			/*
2290 			 * We no longer need the old page or object.
2291 			 */
2292 			if (fs->m)
2293 				release_page(fs);
2294 
2295 			/*
2296 			 * fs->ba != fs->first_ba due to above conditional
2297 			 */
2298 			vm_object_pip_wakeup(fs->ba->object);
2299 			vm_object_drop(fs->ba->object);
2300 			fs->ba = fs->first_ba;
2301 
2302 			/*
2303 			 * Only use the new page below...
2304 			 */
2305 			mycpu->gd_cnt.v_cow_faults++;
2306 			fs->m = fs->first_m;
2307 			pindex = first_pindex;
2308 		} else {
2309 			/*
2310 			 * If it wasn't a write fault avoid having to copy
2311 			 * the page by mapping it read-only from backing
2312 			 * store.  The process is not allowed to modify
2313 			 * backing pages.
2314 			 */
2315 			fs->prot &= ~VM_PROT_WRITE;
2316 		}
2317 	}
2318 
2319 	/*
2320 	 * Relock the map if necessary, then check the generation count.
2321 	 * relock_map() will update fs->timestamp to account for the
2322 	 * relocking if necessary.
2323 	 *
2324 	 * If the count has changed after relocking then all sorts of
2325 	 * crap may have happened and we have to retry.
2326 	 *
2327 	 * NOTE: The relock_map() can fail due to a deadlock against
2328 	 *	 the vm_page we are holding BUSY.
2329 	 */
2330 	KKASSERT(fs->lookup_still_valid != 0);
2331 #if 0
2332 	if (fs->lookup_still_valid == 0 && fs->map) {
2333 		if (relock_map(fs) ||
2334 		    fs->map->timestamp != fs->map_generation) {
2335 			release_page(fs);
2336 			vm_object_pip_wakeup(fs->first_ba->object);
2337 			unlock_things(fs);
2338 			return (KERN_TRY_AGAIN);
2339 		}
2340 	}
2341 #endif
2342 
2343 	/*
2344 	 * If the fault is a write, we know that this page is being
2345 	 * written NOW so dirty it explicitly to save on pmap_is_modified()
2346 	 * calls later.
2347 	 *
2348 	 * If this is a NOSYNC mmap we do not want to set PG_NOSYNC
2349 	 * if the page is already dirty to prevent data written with
2350 	 * the expectation of being synced from not being synced.
2351 	 * Likewise if this entry does not request NOSYNC then make
2352 	 * sure the page isn't marked NOSYNC.  Applications sharing
2353 	 * data should use the same flags to avoid ping ponging.
2354 	 *
2355 	 * Also tell the backing pager, if any, that it should remove
2356 	 * any swap backing since the page is now dirty.
2357 	 */
2358 	vm_page_activate(fs->m);
2359 	if (fs->prot & VM_PROT_WRITE) {
2360 		vm_object_set_writeable_dirty(fs->m->object);
2361 		vm_set_nosync(fs->m, fs->entry);
2362 		if (fs->fault_flags & VM_FAULT_DIRTY) {
2363 			vm_page_dirty(fs->m);
2364 			if (fs->m->flags & PG_SWAPPED) {
2365 				/*
2366 				 * If the page is swapped out we have to call
2367 				 * swap_pager_unswapped() which requires an
2368 				 * exclusive object lock.  If we are shared,
2369 				 * we must clear the shared flag and retry.
2370 				 */
2371 				if ((fs->ba == fs->first_ba &&
2372 				     fs->first_shared) ||
2373 				    (fs->ba != fs->first_ba && fs->shared)) {
2374 					vm_page_wakeup(fs->m);
2375 					fs->m = NULL;
2376 					if (fs->ba == fs->first_ba)
2377 						fs->first_shared = 0;
2378 					else
2379 						fs->shared = 0;
2380 					vm_object_pip_wakeup(
2381 							fs->first_ba->object);
2382 					unlock_things(fs);
2383 					return (KERN_TRY_AGAIN);
2384 				}
2385 				swap_pager_unswapped(fs->m);
2386 			}
2387 		}
2388 	}
2389 
2390 	/*
2391 	 * We found our page at backing layer ba.  Leave the layer state
2392 	 * intact.
2393 	 */
2394 
2395 	vm_object_pip_wakeup(fs->first_ba->object);
2396 #if 0
2397 	if (fs->ba != fs->first_ba)
2398 		vm_object_drop(fs->ba->object);
2399 #endif
2400 
2401 	/*
2402 	 * Page had better still be busy.  We are still locked up and
2403 	 * fs->ba->object will have another PIP reference for the case
2404 	 * where fs->ba != fs->first_ba.
2405 	 */
2406 	KASSERT(fs->m->busy_count & PBUSY_LOCKED,
2407 		("vm_fault: page %p not busy!", fs->m));
2408 
2409 	/*
2410 	 * Sanity check: page must be completely valid or it is not fit to
2411 	 * map into user space.  vm_pager_get_pages() ensures this.
2412 	 */
2413 	if (fs->m->valid != VM_PAGE_BITS_ALL) {
2414 		vm_page_zero_invalid(fs->m, TRUE);
2415 		kprintf("Warning: page %p partially invalid on fault\n", fs->m);
2416 	}
2417 
2418 	return (KERN_SUCCESS);
2419 }
2420 
2421 /*
2422  * Wire down a range of virtual addresses in a map.  The entry in question
2423  * should be marked in-transition and the map must be locked.  We must
2424  * release the map temporarily while faulting-in the page to avoid a
2425  * deadlock.  Note that the entry may be clipped while we are blocked but
2426  * will never be freed.
2427  *
2428  * map must be locked on entry.
2429  */
2430 int
2431 vm_fault_wire(vm_map_t map, vm_map_entry_t entry,
2432 	      boolean_t user_wire, int kmflags)
2433 {
2434 	boolean_t fictitious;
2435 	vm_offset_t start;
2436 	vm_offset_t end;
2437 	vm_offset_t va;
2438 	pmap_t pmap;
2439 	int rv;
2440 	int wire_prot;
2441 	int fault_flags;
2442 	vm_page_t m;
2443 
2444 	if (user_wire) {
2445 		wire_prot = VM_PROT_READ;
2446 		fault_flags = VM_FAULT_USER_WIRE;
2447 	} else {
2448 		wire_prot = VM_PROT_READ | VM_PROT_WRITE;
2449 		fault_flags = VM_FAULT_CHANGE_WIRING;
2450 	}
2451 	if (kmflags & KM_NOTLBSYNC)
2452 		wire_prot |= VM_PROT_NOSYNC;
2453 
2454 	pmap = vm_map_pmap(map);
2455 	start = entry->ba.start;
2456 	end = entry->ba.end;
2457 
2458 	switch(entry->maptype) {
2459 	case VM_MAPTYPE_NORMAL:
2460 	case VM_MAPTYPE_VPAGETABLE:
2461 		fictitious = entry->ba.object &&
2462 			    ((entry->ba.object->type == OBJT_DEVICE) ||
2463 			     (entry->ba.object->type == OBJT_MGTDEVICE));
2464 		break;
2465 	case VM_MAPTYPE_UKSMAP:
2466 		fictitious = TRUE;
2467 		break;
2468 	default:
2469 		fictitious = FALSE;
2470 		break;
2471 	}
2472 
2473 	if (entry->eflags & MAP_ENTRY_KSTACK)
2474 		start += PAGE_SIZE;
2475 	map->timestamp++;
2476 	vm_map_unlock(map);
2477 
2478 	/*
2479 	 * We simulate a fault to get the page and enter it in the physical
2480 	 * map.
2481 	 */
2482 	for (va = start; va < end; va += PAGE_SIZE) {
2483 		rv = vm_fault(map, va, wire_prot, fault_flags);
2484 		if (rv) {
2485 			while (va > start) {
2486 				va -= PAGE_SIZE;
2487 				m = pmap_unwire(pmap, va);
2488 				if (m && !fictitious) {
2489 					vm_page_busy_wait(m, FALSE, "vmwrpg");
2490 					vm_page_unwire(m, 1);
2491 					vm_page_wakeup(m);
2492 				}
2493 			}
2494 			goto done;
2495 		}
2496 	}
2497 	rv = KERN_SUCCESS;
2498 done:
2499 	vm_map_lock(map);
2500 
2501 	return (rv);
2502 }
2503 
2504 /*
2505  * Unwire a range of virtual addresses in a map.  The map should be
2506  * locked.
2507  */
2508 void
2509 vm_fault_unwire(vm_map_t map, vm_map_entry_t entry)
2510 {
2511 	boolean_t fictitious;
2512 	vm_offset_t start;
2513 	vm_offset_t end;
2514 	vm_offset_t va;
2515 	pmap_t pmap;
2516 	vm_page_t m;
2517 
2518 	pmap = vm_map_pmap(map);
2519 	start = entry->ba.start;
2520 	end = entry->ba.end;
2521 	fictitious = entry->ba.object &&
2522 			((entry->ba.object->type == OBJT_DEVICE) ||
2523 			 (entry->ba.object->type == OBJT_MGTDEVICE));
2524 	if (entry->eflags & MAP_ENTRY_KSTACK)
2525 		start += PAGE_SIZE;
2526 
2527 	/*
2528 	 * Since the pages are wired down, we must be able to get their
2529 	 * mappings from the physical map system.
2530 	 */
2531 	for (va = start; va < end; va += PAGE_SIZE) {
2532 		m = pmap_unwire(pmap, va);
2533 		if (m && !fictitious) {
2534 			vm_page_busy_wait(m, FALSE, "vmwrpg");
2535 			vm_page_unwire(m, 1);
2536 			vm_page_wakeup(m);
2537 		}
2538 	}
2539 }
2540 
2541 /*
2542  * Simulate write faults to bring all data into the head object, return
2543  * KERN_SUCCESS on success (which should be always unless the system runs
2544  * out of memory).
2545  *
2546  * The caller will handle destroying the backing_ba's.
2547  */
2548 int
2549 vm_fault_collapse(vm_map_t map, vm_map_entry_t entry)
2550 {
2551 	struct faultstate fs;
2552 	vm_ooffset_t scan;
2553 	vm_pindex_t pindex;
2554 	vm_object_t object;
2555 	int rv;
2556 	int all_shadowed;
2557 
2558 	bzero(&fs, sizeof(fs));
2559 	object = entry->ba.object;
2560 
2561 	fs.first_prot = entry->max_protection |	/* optional VM_PROT_EXECUTE */
2562 			VM_PROT_READ | VM_PROT_WRITE | VM_PROT_OVERRIDE_WRITE;
2563 	fs.fault_flags = VM_FAULT_NORMAL;
2564 	fs.map = map;
2565 	fs.entry = entry;
2566 	fs.lookup_still_valid = -1;	/* leave map atomically locked */
2567 	fs.first_ba = &entry->ba;
2568 	fs.first_ba_held = -1;		/* leave object held */
2569 
2570 	/* fs.hardfault */
2571 
2572 	vm_object_hold(object);
2573 	rv = KERN_SUCCESS;
2574 
2575 	scan = entry->ba.start;
2576 	all_shadowed = 1;
2577 
2578 	while (scan < entry->ba.end) {
2579 		pindex = OFF_TO_IDX(entry->ba.offset + (scan - entry->ba.start));
2580 
2581 		if (vm_page_lookup(object, pindex)) {
2582 			scan += PAGE_SIZE;
2583 			continue;
2584 		}
2585 
2586 		all_shadowed = 0;
2587 		fs.ba = fs.first_ba;
2588 		fs.prot = fs.first_prot;
2589 
2590 		rv = vm_fault_object(&fs, pindex, fs.first_prot, 1);
2591 		if (rv == KERN_TRY_AGAIN)
2592 			continue;
2593 		if (rv != KERN_SUCCESS)
2594 			break;
2595 		vm_page_flag_set(fs.m, PG_REFERENCED);
2596 		vm_page_activate(fs.m);
2597 		vm_page_wakeup(fs.m);
2598 		scan += PAGE_SIZE;
2599 	}
2600 	KKASSERT(entry->ba.object == object);
2601 	vm_object_drop(object);
2602 
2603 	/*
2604 	 * If the fronting object did not have every page we have to clear
2605 	 * the pmap range due to the pages being changed so we can fault-in
2606 	 * the proper pages.
2607 	 */
2608 	if (all_shadowed == 0)
2609 		pmap_remove(map->pmap, entry->ba.start, entry->ba.end);
2610 
2611 	return rv;
2612 }
2613 
2614 /*
2615  * Copy all of the pages from one map entry to another.  If the source
2616  * is wired down we just use vm_page_lookup().  If not we use
2617  * vm_fault_object().
2618  *
2619  * The source and destination maps must be locked for write.
2620  * The source and destination maps token must be held
2621  *
2622  * No other requirements.
2623  *
2624  * XXX do segment optimization
2625  */
2626 void
2627 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
2628 		    vm_map_entry_t dst_entry, vm_map_entry_t src_entry)
2629 {
2630 	vm_object_t dst_object;
2631 	vm_object_t src_object;
2632 	vm_ooffset_t dst_offset;
2633 	vm_ooffset_t src_offset;
2634 	vm_prot_t prot;
2635 	vm_offset_t vaddr;
2636 	vm_page_t dst_m;
2637 	vm_page_t src_m;
2638 
2639 	src_object = src_entry->ba.object;
2640 	src_offset = src_entry->ba.offset;
2641 
2642 	/*
2643 	 * Create the top-level object for the destination entry. (Doesn't
2644 	 * actually shadow anything - we copy the pages directly.)
2645 	 */
2646 	vm_map_entry_allocate_object(dst_entry);
2647 	dst_object = dst_entry->ba.object;
2648 
2649 	prot = dst_entry->max_protection;
2650 
2651 	/*
2652 	 * Loop through all of the pages in the entry's range, copying each
2653 	 * one from the source object (it should be there) to the destination
2654 	 * object.
2655 	 */
2656 	vm_object_hold(src_object);
2657 	vm_object_hold(dst_object);
2658 
2659 	for (vaddr = dst_entry->ba.start, dst_offset = 0;
2660 	     vaddr < dst_entry->ba.end;
2661 	     vaddr += PAGE_SIZE, dst_offset += PAGE_SIZE) {
2662 
2663 		/*
2664 		 * Allocate a page in the destination object
2665 		 */
2666 		do {
2667 			dst_m = vm_page_alloc(dst_object,
2668 					      OFF_TO_IDX(dst_offset),
2669 					      VM_ALLOC_NORMAL);
2670 			if (dst_m == NULL) {
2671 				vm_wait(0);
2672 			}
2673 		} while (dst_m == NULL);
2674 
2675 		/*
2676 		 * Find the page in the source object, and copy it in.
2677 		 * (Because the source is wired down, the page will be in
2678 		 * memory.)
2679 		 */
2680 		src_m = vm_page_lookup(src_object,
2681 				       OFF_TO_IDX(dst_offset + src_offset));
2682 		if (src_m == NULL)
2683 			panic("vm_fault_copy_wired: page missing");
2684 
2685 		vm_page_copy(src_m, dst_m);
2686 
2687 		/*
2688 		 * Enter it in the pmap...
2689 		 */
2690 		pmap_enter(dst_map->pmap, vaddr, dst_m, prot, FALSE, dst_entry);
2691 
2692 		/*
2693 		 * Mark it no longer busy, and put it on the active list.
2694 		 */
2695 		vm_page_activate(dst_m);
2696 		vm_page_wakeup(dst_m);
2697 	}
2698 	vm_object_drop(dst_object);
2699 	vm_object_drop(src_object);
2700 }
2701 
2702 #if 0
2703 
2704 /*
2705  * This routine checks around the requested page for other pages that
2706  * might be able to be faulted in.  This routine brackets the viable
2707  * pages for the pages to be paged in.
2708  *
2709  * Inputs:
2710  *	m, rbehind, rahead
2711  *
2712  * Outputs:
2713  *  marray (array of vm_page_t), reqpage (index of requested page)
2714  *
2715  * Return value:
2716  *  number of pages in marray
2717  */
2718 static int
2719 vm_fault_additional_pages(vm_page_t m, int rbehind, int rahead,
2720 			  vm_page_t *marray, int *reqpage)
2721 {
2722 	int i,j;
2723 	vm_object_t object;
2724 	vm_pindex_t pindex, startpindex, endpindex, tpindex;
2725 	vm_page_t rtm;
2726 	int cbehind, cahead;
2727 
2728 	object = m->object;
2729 	pindex = m->pindex;
2730 
2731 	/*
2732 	 * we don't fault-ahead for device pager
2733 	 */
2734 	if ((object->type == OBJT_DEVICE) ||
2735 	    (object->type == OBJT_MGTDEVICE)) {
2736 		*reqpage = 0;
2737 		marray[0] = m;
2738 		return 1;
2739 	}
2740 
2741 	/*
2742 	 * if the requested page is not available, then give up now
2743 	 */
2744 	if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
2745 		*reqpage = 0;	/* not used by caller, fix compiler warn */
2746 		return 0;
2747 	}
2748 
2749 	if ((cbehind == 0) && (cahead == 0)) {
2750 		*reqpage = 0;
2751 		marray[0] = m;
2752 		return 1;
2753 	}
2754 
2755 	if (rahead > cahead) {
2756 		rahead = cahead;
2757 	}
2758 
2759 	if (rbehind > cbehind) {
2760 		rbehind = cbehind;
2761 	}
2762 
2763 	/*
2764 	 * Do not do any readahead if we have insufficient free memory.
2765 	 *
2766 	 * XXX code was broken disabled before and has instability
2767 	 * with this conditonal fixed, so shortcut for now.
2768 	 */
2769 	if (burst_fault == 0 || vm_page_count_severe()) {
2770 		marray[0] = m;
2771 		*reqpage = 0;
2772 		return 1;
2773 	}
2774 
2775 	/*
2776 	 * scan backward for the read behind pages -- in memory
2777 	 *
2778 	 * Assume that if the page is not found an interrupt will not
2779 	 * create it.  Theoretically interrupts can only remove (busy)
2780 	 * pages, not create new associations.
2781 	 */
2782 	if (pindex > 0) {
2783 		if (rbehind > pindex) {
2784 			rbehind = pindex;
2785 			startpindex = 0;
2786 		} else {
2787 			startpindex = pindex - rbehind;
2788 		}
2789 
2790 		vm_object_hold(object);
2791 		for (tpindex = pindex; tpindex > startpindex; --tpindex) {
2792 			if (vm_page_lookup(object, tpindex - 1))
2793 				break;
2794 		}
2795 
2796 		i = 0;
2797 		while (tpindex < pindex) {
2798 			rtm = vm_page_alloc(object, tpindex, VM_ALLOC_SYSTEM |
2799 							     VM_ALLOC_NULL_OK);
2800 			if (rtm == NULL) {
2801 				for (j = 0; j < i; j++) {
2802 					vm_page_free(marray[j]);
2803 				}
2804 				vm_object_drop(object);
2805 				marray[0] = m;
2806 				*reqpage = 0;
2807 				return 1;
2808 			}
2809 			marray[i] = rtm;
2810 			++i;
2811 			++tpindex;
2812 		}
2813 		vm_object_drop(object);
2814 	} else {
2815 		i = 0;
2816 	}
2817 
2818 	/*
2819 	 * Assign requested page
2820 	 */
2821 	marray[i] = m;
2822 	*reqpage = i;
2823 	++i;
2824 
2825 	/*
2826 	 * Scan forwards for read-ahead pages
2827 	 */
2828 	tpindex = pindex + 1;
2829 	endpindex = tpindex + rahead;
2830 	if (endpindex > object->size)
2831 		endpindex = object->size;
2832 
2833 	vm_object_hold(object);
2834 	while (tpindex < endpindex) {
2835 		if (vm_page_lookup(object, tpindex))
2836 			break;
2837 		rtm = vm_page_alloc(object, tpindex, VM_ALLOC_SYSTEM |
2838 						     VM_ALLOC_NULL_OK);
2839 		if (rtm == NULL)
2840 			break;
2841 		marray[i] = rtm;
2842 		++i;
2843 		++tpindex;
2844 	}
2845 	vm_object_drop(object);
2846 
2847 	return (i);
2848 }
2849 
2850 #endif
2851 
2852 /*
2853  * vm_prefault() provides a quick way of clustering pagefaults into a
2854  * processes address space.  It is a "cousin" of pmap_object_init_pt,
2855  * except it runs at page fault time instead of mmap time.
2856  *
2857  * vm.fast_fault	Enables pre-faulting zero-fill pages
2858  *
2859  * vm.prefault_pages	Number of pages (1/2 negative, 1/2 positive) to
2860  *			prefault.  Scan stops in either direction when
2861  *			a page is found to already exist.
2862  *
2863  * This code used to be per-platform pmap_prefault().  It is now
2864  * machine-independent and enhanced to also pre-fault zero-fill pages
2865  * (see vm.fast_fault) as well as make them writable, which greatly
2866  * reduces the number of page faults programs incur.
2867  *
2868  * Application performance when pre-faulting zero-fill pages is heavily
2869  * dependent on the application.  Very tiny applications like /bin/echo
2870  * lose a little performance while applications of any appreciable size
2871  * gain performance.  Prefaulting multiple pages also reduces SMP
2872  * congestion and can improve SMP performance significantly.
2873  *
2874  * NOTE!  prot may allow writing but this only applies to the top level
2875  *	  object.  If we wind up mapping a page extracted from a backing
2876  *	  object we have to make sure it is read-only.
2877  *
2878  * NOTE!  The caller has already handled any COW operations on the
2879  *	  vm_map_entry via the normal fault code.  Do NOT call this
2880  *	  shortcut unless the normal fault code has run on this entry.
2881  *
2882  * The related map must be locked.
2883  * No other requirements.
2884  */
2885 __read_mostly static int vm_prefault_pages = 8;
2886 SYSCTL_INT(_vm, OID_AUTO, prefault_pages, CTLFLAG_RW, &vm_prefault_pages, 0,
2887 	   "Maximum number of pages to pre-fault");
2888 __read_mostly static int vm_fast_fault = 1;
2889 SYSCTL_INT(_vm, OID_AUTO, fast_fault, CTLFLAG_RW, &vm_fast_fault, 0,
2890 	   "Burst fault zero-fill regions");
2891 
2892 /*
2893  * Set PG_NOSYNC if the map entry indicates so, but only if the page
2894  * is not already dirty by other means.  This will prevent passive
2895  * filesystem syncing as well as 'sync' from writing out the page.
2896  */
2897 static void
2898 vm_set_nosync(vm_page_t m, vm_map_entry_t entry)
2899 {
2900 	if (entry->eflags & MAP_ENTRY_NOSYNC) {
2901 		if (m->dirty == 0)
2902 			vm_page_flag_set(m, PG_NOSYNC);
2903 	} else {
2904 		vm_page_flag_clear(m, PG_NOSYNC);
2905 	}
2906 }
2907 
2908 static void
2909 vm_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry, int prot,
2910 	    int fault_flags)
2911 {
2912 	vm_map_backing_t ba;	/* first ba */
2913 	struct lwp *lp;
2914 	vm_page_t m;
2915 	vm_offset_t addr;
2916 	vm_pindex_t index;
2917 	vm_pindex_t pindex;
2918 	vm_object_t object;
2919 	int pprot;
2920 	int i;
2921 	int noneg;
2922 	int nopos;
2923 	int maxpages;
2924 
2925 	/*
2926 	 * Get stable max count value, disabled if set to 0
2927 	 */
2928 	maxpages = vm_prefault_pages;
2929 	cpu_ccfence();
2930 	if (maxpages <= 0)
2931 		return;
2932 
2933 	/*
2934 	 * We do not currently prefault mappings that use virtual page
2935 	 * tables.  We do not prefault foreign pmaps.
2936 	 */
2937 	if (entry->maptype != VM_MAPTYPE_NORMAL)
2938 		return;
2939 	lp = curthread->td_lwp;
2940 	if (lp == NULL || (pmap != vmspace_pmap(lp->lwp_vmspace)))
2941 		return;
2942 
2943 	/*
2944 	 * Limit pre-fault count to 1024 pages.
2945 	 */
2946 	if (maxpages > 1024)
2947 		maxpages = 1024;
2948 
2949 	ba = &entry->ba;
2950 	object = entry->ba.object;
2951 	KKASSERT(object != NULL);
2952 
2953 	/*
2954 	 * NOTE: VM_FAULT_DIRTY allowed later so must hold object exclusively
2955 	 *	 now (or do something more complex XXX).
2956 	 */
2957 	vm_object_hold(object);
2958 
2959 	noneg = 0;
2960 	nopos = 0;
2961 	for (i = 0; i < maxpages; ++i) {
2962 		vm_object_t lobject;
2963 		vm_object_t nobject;
2964 		vm_map_backing_t last_ba;	/* last ba */
2965 		vm_map_backing_t next_ba;	/* last ba */
2966 		int allocated = 0;
2967 		int error;
2968 
2969 		/*
2970 		 * This can eat a lot of time on a heavily contended
2971 		 * machine so yield on the tick if needed.
2972 		 */
2973 		if ((i & 7) == 7)
2974 			lwkt_yield();
2975 
2976 		/*
2977 		 * Calculate the page to pre-fault, stopping the scan in
2978 		 * each direction separately if the limit is reached.
2979 		 */
2980 		if (i & 1) {
2981 			if (noneg)
2982 				continue;
2983 			addr = addra - ((i + 1) >> 1) * PAGE_SIZE;
2984 		} else {
2985 			if (nopos)
2986 				continue;
2987 			addr = addra + ((i + 2) >> 1) * PAGE_SIZE;
2988 		}
2989 		if (addr < entry->ba.start) {
2990 			noneg = 1;
2991 			if (noneg && nopos)
2992 				break;
2993 			continue;
2994 		}
2995 		if (addr >= entry->ba.end) {
2996 			nopos = 1;
2997 			if (noneg && nopos)
2998 				break;
2999 			continue;
3000 		}
3001 
3002 		/*
3003 		 * Skip pages already mapped, and stop scanning in that
3004 		 * direction.  When the scan terminates in both directions
3005 		 * we are done.
3006 		 */
3007 		if (pmap_prefault_ok(pmap, addr) == 0) {
3008 			if (i & 1)
3009 				noneg = 1;
3010 			else
3011 				nopos = 1;
3012 			if (noneg && nopos)
3013 				break;
3014 			continue;
3015 		}
3016 
3017 		/*
3018 		 * Follow the backing layers to obtain the page to be mapped
3019 		 * into the pmap.
3020 		 *
3021 		 * If we reach the terminal object without finding a page
3022 		 * and we determine it would be advantageous, then allocate
3023 		 * a zero-fill page for the base object.  The base object
3024 		 * is guaranteed to be OBJT_DEFAULT for this case.
3025 		 *
3026 		 * In order to not have to check the pager via *haspage*()
3027 		 * we stop if any non-default object is encountered.  e.g.
3028 		 * a vnode or swap object would stop the loop.
3029 		 */
3030 		index = ((addr - entry->ba.start) + entry->ba.offset) >>
3031 			PAGE_SHIFT;
3032 		last_ba = ba;
3033 		lobject = object;
3034 		pindex = index;
3035 		pprot = prot;
3036 
3037 		/*vm_object_hold(lobject); implied */
3038 
3039 		while ((m = vm_page_lookup_busy_try(lobject, pindex,
3040 						    TRUE, &error)) == NULL) {
3041 			if (lobject->type != OBJT_DEFAULT)
3042 				break;
3043 			if ((next_ba = last_ba->backing_ba) == NULL) {
3044 				if (vm_fast_fault == 0)
3045 					break;
3046 				if ((prot & VM_PROT_WRITE) == 0 ||
3047 				    vm_page_count_min(0)) {
3048 					break;
3049 				}
3050 
3051 				/*
3052 				 * NOTE: Allocated from base object
3053 				 */
3054 				m = vm_page_alloc(object, index,
3055 						  VM_ALLOC_NORMAL |
3056 						  VM_ALLOC_ZERO |
3057 						  VM_ALLOC_USE_GD |
3058 						  VM_ALLOC_NULL_OK);
3059 				if (m == NULL)
3060 					break;
3061 				allocated = 1;
3062 				pprot = prot;
3063 				/* lobject = object .. not needed */
3064 				break;
3065 			}
3066 			if (next_ba->offset & PAGE_MASK)
3067 				break;
3068 			nobject = next_ba->object;
3069 			vm_object_hold(nobject);
3070 			pindex -= last_ba->offset >> PAGE_SHIFT;
3071 			pindex += next_ba->offset >> PAGE_SHIFT;
3072 			if (last_ba != ba) {
3073 				vm_object_lock_swap();
3074 				vm_object_drop(lobject);
3075 			}
3076 			lobject = nobject;
3077 			last_ba = next_ba;
3078 			pprot &= ~VM_PROT_WRITE;
3079 		}
3080 
3081 		/*
3082 		 * NOTE: A non-NULL (m) will be associated with lobject if
3083 		 *	 it was found there, otherwise it is probably a
3084 		 *	 zero-fill page associated with the base object.
3085 		 *
3086 		 * Give-up if no page is available.
3087 		 */
3088 		if (m == NULL) {
3089 			if (last_ba != ba)
3090 				vm_object_drop(lobject);
3091 			break;
3092 		}
3093 
3094 		/*
3095 		 * The object must be marked dirty if we are mapping a
3096 		 * writable page.  m->object is either lobject or object,
3097 		 * both of which are still held.  Do this before we
3098 		 * potentially drop the object.
3099 		 */
3100 		if (pprot & VM_PROT_WRITE)
3101 			vm_object_set_writeable_dirty(m->object);
3102 
3103 		/*
3104 		 * Do not conditionalize on PG_RAM.  If pages are present in
3105 		 * the VM system we assume optimal caching.  If caching is
3106 		 * not optimal the I/O gravy train will be restarted when we
3107 		 * hit an unavailable page.  We do not want to try to restart
3108 		 * the gravy train now because we really don't know how much
3109 		 * of the object has been cached.  The cost for restarting
3110 		 * the gravy train should be low (since accesses will likely
3111 		 * be I/O bound anyway).
3112 		 */
3113 		if (last_ba != ba)
3114 			vm_object_drop(lobject);
3115 
3116 		/*
3117 		 * Enter the page into the pmap if appropriate.  If we had
3118 		 * allocated the page we have to place it on a queue.  If not
3119 		 * we just have to make sure it isn't on the cache queue
3120 		 * (pages on the cache queue are not allowed to be mapped).
3121 		 */
3122 		if (allocated) {
3123 			/*
3124 			 * Page must be zerod.
3125 			 */
3126 			vm_page_zero_fill(m);
3127 			mycpu->gd_cnt.v_zfod++;
3128 			m->valid = VM_PAGE_BITS_ALL;
3129 
3130 			/*
3131 			 * Handle dirty page case
3132 			 */
3133 			if (pprot & VM_PROT_WRITE)
3134 				vm_set_nosync(m, entry);
3135 			pmap_enter(pmap, addr, m, pprot, 0, entry);
3136 			mycpu->gd_cnt.v_vm_faults++;
3137 			if (curthread->td_lwp)
3138 				++curthread->td_lwp->lwp_ru.ru_minflt;
3139 			vm_page_deactivate(m);
3140 			if (pprot & VM_PROT_WRITE) {
3141 				/*vm_object_set_writeable_dirty(m->object);*/
3142 				vm_set_nosync(m, entry);
3143 				if (fault_flags & VM_FAULT_DIRTY) {
3144 					vm_page_dirty(m);
3145 					/*XXX*/
3146 					swap_pager_unswapped(m);
3147 				}
3148 			}
3149 			vm_page_wakeup(m);
3150 		} else if (error) {
3151 			/* couldn't busy page, no wakeup */
3152 		} else if (
3153 		    ((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
3154 		    (m->flags & PG_FICTITIOUS) == 0) {
3155 			/*
3156 			 * A fully valid page not undergoing soft I/O can
3157 			 * be immediately entered into the pmap.
3158 			 */
3159 			if ((m->queue - m->pc) == PQ_CACHE)
3160 				vm_page_deactivate(m);
3161 			if (pprot & VM_PROT_WRITE) {
3162 				/*vm_object_set_writeable_dirty(m->object);*/
3163 				vm_set_nosync(m, entry);
3164 				if (fault_flags & VM_FAULT_DIRTY) {
3165 					vm_page_dirty(m);
3166 					/*XXX*/
3167 					swap_pager_unswapped(m);
3168 				}
3169 			}
3170 			if (pprot & VM_PROT_WRITE)
3171 				vm_set_nosync(m, entry);
3172 			pmap_enter(pmap, addr, m, pprot, 0, entry);
3173 			mycpu->gd_cnt.v_vm_faults++;
3174 			if (curthread->td_lwp)
3175 				++curthread->td_lwp->lwp_ru.ru_minflt;
3176 			vm_page_wakeup(m);
3177 		} else {
3178 			vm_page_wakeup(m);
3179 		}
3180 	}
3181 	vm_object_drop(object);
3182 }
3183 
3184 /*
3185  * Object can be held shared
3186  */
3187 static void
3188 vm_prefault_quick(pmap_t pmap, vm_offset_t addra,
3189 		  vm_map_entry_t entry, int prot, int fault_flags)
3190 {
3191 	struct lwp *lp;
3192 	vm_page_t m;
3193 	vm_offset_t addr;
3194 	vm_pindex_t pindex;
3195 	vm_object_t object;
3196 	int i;
3197 	int noneg;
3198 	int nopos;
3199 	int maxpages;
3200 
3201 	/*
3202 	 * Get stable max count value, disabled if set to 0
3203 	 */
3204 	maxpages = vm_prefault_pages;
3205 	cpu_ccfence();
3206 	if (maxpages <= 0)
3207 		return;
3208 
3209 	/*
3210 	 * We do not currently prefault mappings that use virtual page
3211 	 * tables.  We do not prefault foreign pmaps.
3212 	 */
3213 	if (entry->maptype != VM_MAPTYPE_NORMAL)
3214 		return;
3215 	lp = curthread->td_lwp;
3216 	if (lp == NULL || (pmap != vmspace_pmap(lp->lwp_vmspace)))
3217 		return;
3218 	object = entry->ba.object;
3219 	if (entry->ba.backing_ba != NULL)
3220 		return;
3221 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
3222 
3223 	/*
3224 	 * Limit pre-fault count to 1024 pages.
3225 	 */
3226 	if (maxpages > 1024)
3227 		maxpages = 1024;
3228 
3229 	noneg = 0;
3230 	nopos = 0;
3231 	for (i = 0; i < maxpages; ++i) {
3232 		int error;
3233 
3234 		/*
3235 		 * Calculate the page to pre-fault, stopping the scan in
3236 		 * each direction separately if the limit is reached.
3237 		 */
3238 		if (i & 1) {
3239 			if (noneg)
3240 				continue;
3241 			addr = addra - ((i + 1) >> 1) * PAGE_SIZE;
3242 		} else {
3243 			if (nopos)
3244 				continue;
3245 			addr = addra + ((i + 2) >> 1) * PAGE_SIZE;
3246 		}
3247 		if (addr < entry->ba.start) {
3248 			noneg = 1;
3249 			if (noneg && nopos)
3250 				break;
3251 			continue;
3252 		}
3253 		if (addr >= entry->ba.end) {
3254 			nopos = 1;
3255 			if (noneg && nopos)
3256 				break;
3257 			continue;
3258 		}
3259 
3260 		/*
3261 		 * Follow the VM object chain to obtain the page to be mapped
3262 		 * into the pmap.  This version of the prefault code only
3263 		 * works with terminal objects.
3264 		 *
3265 		 * The page must already exist.  If we encounter a problem
3266 		 * we stop here.
3267 		 *
3268 		 * WARNING!  We cannot call swap_pager_unswapped() or insert
3269 		 *	     a new vm_page with a shared token.
3270 		 */
3271 		pindex = ((addr - entry->ba.start) + entry->ba.offset) >>
3272 			 PAGE_SHIFT;
3273 
3274 		/*
3275 		 * Skip pages already mapped, and stop scanning in that
3276 		 * direction.  When the scan terminates in both directions
3277 		 * we are done.
3278 		 */
3279 		if (pmap_prefault_ok(pmap, addr) == 0) {
3280 			if (i & 1)
3281 				noneg = 1;
3282 			else
3283 				nopos = 1;
3284 			if (noneg && nopos)
3285 				break;
3286 			continue;
3287 		}
3288 
3289 		/*
3290 		 * Shortcut the read-only mapping case using the far more
3291 		 * efficient vm_page_lookup_sbusy_try() function.  This
3292 		 * allows us to acquire the page soft-busied only which
3293 		 * is especially nice for concurrent execs of the same
3294 		 * program.
3295 		 *
3296 		 * The lookup function also validates page suitability
3297 		 * (all valid bits set, and not fictitious).
3298 		 *
3299 		 * If the page is in PQ_CACHE we have to fall-through
3300 		 * and hard-busy it so we can move it out of PQ_CACHE.
3301 		 */
3302 		if ((prot & VM_PROT_WRITE) == 0) {
3303 			m = vm_page_lookup_sbusy_try(object, pindex,
3304 						     0, PAGE_SIZE);
3305 			if (m == NULL)
3306 				break;
3307 			if ((m->queue - m->pc) != PQ_CACHE) {
3308 				pmap_enter(pmap, addr, m, prot, 0, entry);
3309 				mycpu->gd_cnt.v_vm_faults++;
3310 				if (curthread->td_lwp)
3311 					++curthread->td_lwp->lwp_ru.ru_minflt;
3312 				vm_page_sbusy_drop(m);
3313 				continue;
3314 			}
3315 			vm_page_sbusy_drop(m);
3316 		}
3317 
3318 		/*
3319 		 * Fallback to normal vm_page lookup code.  This code
3320 		 * hard-busies the page.  Not only that, but the page
3321 		 * can remain in that state for a significant period
3322 		 * time due to pmap_enter()'s overhead.
3323 		 */
3324 		m = vm_page_lookup_busy_try(object, pindex, TRUE, &error);
3325 		if (m == NULL || error)
3326 			break;
3327 
3328 		/*
3329 		 * Stop if the page cannot be trivially entered into the
3330 		 * pmap.
3331 		 */
3332 		if (((m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL) ||
3333 		    (m->flags & PG_FICTITIOUS) ||
3334 		    ((m->flags & PG_SWAPPED) &&
3335 		     (prot & VM_PROT_WRITE) &&
3336 		     (fault_flags & VM_FAULT_DIRTY))) {
3337 			vm_page_wakeup(m);
3338 			break;
3339 		}
3340 
3341 		/*
3342 		 * Enter the page into the pmap.  The object might be held
3343 		 * shared so we can't do any (serious) modifying operation
3344 		 * on it.
3345 		 */
3346 		if ((m->queue - m->pc) == PQ_CACHE)
3347 			vm_page_deactivate(m);
3348 		if (prot & VM_PROT_WRITE) {
3349 			vm_object_set_writeable_dirty(m->object);
3350 			vm_set_nosync(m, entry);
3351 			if (fault_flags & VM_FAULT_DIRTY) {
3352 				vm_page_dirty(m);
3353 				/* can't happeen due to conditional above */
3354 				/* swap_pager_unswapped(m); */
3355 			}
3356 		}
3357 		pmap_enter(pmap, addr, m, prot, 0, entry);
3358 		mycpu->gd_cnt.v_vm_faults++;
3359 		if (curthread->td_lwp)
3360 			++curthread->td_lwp->lwp_ru.ru_minflt;
3361 		vm_page_wakeup(m);
3362 	}
3363 }
3364