xref: /dragonfly/sys/vm/vm_fault.c (revision d709358f)
1 /*
2  * Copyright (c) 2003-2014 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * ---
35  *
36  * Copyright (c) 1991, 1993
37  *	The Regents of the University of California.  All rights reserved.
38  * Copyright (c) 1994 John S. Dyson
39  * All rights reserved.
40  * Copyright (c) 1994 David Greenman
41  * All rights reserved.
42  *
43  *
44  * This code is derived from software contributed to Berkeley by
45  * The Mach Operating System project at Carnegie-Mellon University.
46  *
47  * Redistribution and use in source and binary forms, with or without
48  * modification, are permitted provided that the following conditions
49  * are met:
50  * 1. Redistributions of source code must retain the above copyright
51  *    notice, this list of conditions and the following disclaimer.
52  * 2. Redistributions in binary form must reproduce the above copyright
53  *    notice, this list of conditions and the following disclaimer in the
54  *    documentation and/or other materials provided with the distribution.
55  * 3. Neither the name of the University nor the names of its contributors
56  *    may be used to endorse or promote products derived from this software
57  *    without specific prior written permission.
58  *
59  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69  * SUCH DAMAGE.
70  *
71  * ---
72  *
73  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
74  * All rights reserved.
75  *
76  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
77  *
78  * Permission to use, copy, modify and distribute this software and
79  * its documentation is hereby granted, provided that both the copyright
80  * notice and this permission notice appear in all copies of the
81  * software, derivative works or modified versions, and any portions
82  * thereof, and that both notices appear in supporting documentation.
83  *
84  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
85  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
86  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
87  *
88  * Carnegie Mellon requests users of this software to return to
89  *
90  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
91  *  School of Computer Science
92  *  Carnegie Mellon University
93  *  Pittsburgh PA 15213-3890
94  *
95  * any improvements or extensions that they make and grant Carnegie the
96  * rights to redistribute these changes.
97  */
98 
99 /*
100  *	Page fault handling module.
101  */
102 
103 #include <sys/param.h>
104 #include <sys/systm.h>
105 #include <sys/kernel.h>
106 #include <sys/proc.h>
107 #include <sys/vnode.h>
108 #include <sys/resourcevar.h>
109 #include <sys/vmmeter.h>
110 #include <sys/vkernel.h>
111 #include <sys/lock.h>
112 #include <sys/sysctl.h>
113 
114 #include <cpu/lwbuf.h>
115 
116 #include <vm/vm.h>
117 #include <vm/vm_param.h>
118 #include <vm/pmap.h>
119 #include <vm/vm_map.h>
120 #include <vm/vm_object.h>
121 #include <vm/vm_page.h>
122 #include <vm/vm_pageout.h>
123 #include <vm/vm_kern.h>
124 #include <vm/vm_pager.h>
125 #include <vm/vnode_pager.h>
126 #include <vm/vm_extern.h>
127 
128 #include <sys/thread2.h>
129 #include <vm/vm_page2.h>
130 
131 struct faultstate {
132 	vm_page_t m;
133 	vm_object_t object;
134 	vm_pindex_t pindex;
135 	vm_prot_t prot;
136 	vm_page_t first_m;
137 	vm_object_t first_object;
138 	vm_prot_t first_prot;
139 	vm_map_t map;
140 	vm_map_entry_t entry;
141 	int lookup_still_valid;
142 	int hardfault;
143 	int fault_flags;
144 	int map_generation;
145 	int shared;
146 	int first_shared;
147 	int wflags;
148 	struct vnode *vp;
149 };
150 
151 static int debug_fault = 0;
152 SYSCTL_INT(_vm, OID_AUTO, debug_fault, CTLFLAG_RW, &debug_fault, 0, "");
153 static int debug_cluster = 0;
154 SYSCTL_INT(_vm, OID_AUTO, debug_cluster, CTLFLAG_RW, &debug_cluster, 0, "");
155 static int virtual_copy_enable = 1;
156 SYSCTL_INT(_vm, OID_AUTO, virtual_copy_enable, CTLFLAG_RW,
157 		&virtual_copy_enable, 0, "");
158 int vm_shared_fault = 1;
159 TUNABLE_INT("vm.shared_fault", &vm_shared_fault);
160 SYSCTL_INT(_vm, OID_AUTO, shared_fault, CTLFLAG_RW,
161 		&vm_shared_fault, 0, "Allow shared token on vm_object");
162 
163 static int vm_fault_object(struct faultstate *, vm_pindex_t, vm_prot_t, int);
164 static int vm_fault_vpagetable(struct faultstate *, vm_pindex_t *,
165 			vpte_t, int, int);
166 #if 0
167 static int vm_fault_additional_pages (vm_page_t, int, int, vm_page_t *, int *);
168 #endif
169 static void vm_set_nosync(vm_page_t m, vm_map_entry_t entry);
170 static void vm_prefault(pmap_t pmap, vm_offset_t addra,
171 			vm_map_entry_t entry, int prot, int fault_flags);
172 static void vm_prefault_quick(pmap_t pmap, vm_offset_t addra,
173 			vm_map_entry_t entry, int prot, int fault_flags);
174 
175 static __inline void
176 release_page(struct faultstate *fs)
177 {
178 	vm_page_deactivate(fs->m);
179 	vm_page_wakeup(fs->m);
180 	fs->m = NULL;
181 }
182 
183 /*
184  * NOTE: Once unlocked any cached fs->entry becomes invalid, any reuse
185  *	 requires relocking and then checking the timestamp.
186  *
187  * NOTE: vm_map_lock_read() does not bump fs->map->timestamp so we do
188  *	 not have to update fs->map_generation here.
189  *
190  * NOTE: This function can fail due to a deadlock against the caller's
191  *	 holding of a vm_page BUSY.
192  */
193 static __inline int
194 relock_map(struct faultstate *fs)
195 {
196 	int error;
197 
198 	if (fs->lookup_still_valid == FALSE && fs->map) {
199 		error = vm_map_lock_read_to(fs->map);
200 		if (error == 0)
201 			fs->lookup_still_valid = TRUE;
202 	} else {
203 		error = 0;
204 	}
205 	return error;
206 }
207 
208 static __inline void
209 unlock_map(struct faultstate *fs)
210 {
211 	if (fs->lookup_still_valid && fs->map) {
212 		vm_map_lookup_done(fs->map, fs->entry, 0);
213 		fs->lookup_still_valid = FALSE;
214 	}
215 }
216 
217 /*
218  * Clean up after a successful call to vm_fault_object() so another call
219  * to vm_fault_object() can be made.
220  */
221 static void
222 _cleanup_successful_fault(struct faultstate *fs, int relock)
223 {
224 	/*
225 	 * We allocated a junk page for a COW operation that did
226 	 * not occur, the page must be freed.
227 	 */
228 	if (fs->object != fs->first_object) {
229 		KKASSERT(fs->first_shared == 0);
230 		vm_page_free(fs->first_m);
231 		vm_object_pip_wakeup(fs->object);
232 		fs->first_m = NULL;
233 	}
234 
235 	/*
236 	 * Reset fs->object.
237 	 */
238 	fs->object = fs->first_object;
239 	if (relock && fs->lookup_still_valid == FALSE) {
240 		if (fs->map)
241 			vm_map_lock_read(fs->map);
242 		fs->lookup_still_valid = TRUE;
243 	}
244 }
245 
246 static void
247 _unlock_things(struct faultstate *fs, int dealloc)
248 {
249 	_cleanup_successful_fault(fs, 0);
250 	if (dealloc) {
251 		/*vm_object_deallocate(fs->first_object);*/
252 		/*fs->first_object = NULL; drop used later on */
253 	}
254 	unlock_map(fs);
255 	if (fs->vp != NULL) {
256 		vput(fs->vp);
257 		fs->vp = NULL;
258 	}
259 }
260 
261 #define unlock_things(fs) _unlock_things(fs, 0)
262 #define unlock_and_deallocate(fs) _unlock_things(fs, 1)
263 #define cleanup_successful_fault(fs) _cleanup_successful_fault(fs, 1)
264 
265 /*
266  * Virtual copy tests.   Used by the fault code to determine if a
267  * page can be moved from an orphan vm_object into its shadow
268  * instead of copying its contents.
269  */
270 static __inline int
271 virtual_copy_test(struct faultstate *fs)
272 {
273 	/*
274 	 * Must be holding exclusive locks
275 	 */
276 	if (fs->first_shared || fs->shared || virtual_copy_enable == 0)
277 		return 0;
278 
279 	/*
280 	 * Map, if present, has not changed
281 	 */
282 	if (fs->map && fs->map_generation != fs->map->timestamp)
283 		return 0;
284 
285 	/*
286 	 * Only one shadow object
287 	 */
288 	if (fs->object->shadow_count != 1)
289 		return 0;
290 
291 	/*
292 	 * No COW refs, except us
293 	 */
294 	if (fs->object->ref_count != 1)
295 		return 0;
296 
297 	/*
298 	 * No one else can look this object up
299 	 */
300 	if (fs->object->handle != NULL)
301 		return 0;
302 
303 	/*
304 	 * No other ways to look the object up
305 	 */
306 	if (fs->object->type != OBJT_DEFAULT &&
307 	    fs->object->type != OBJT_SWAP)
308 		return 0;
309 
310 	/*
311 	 * We don't chase down the shadow chain
312 	 */
313 	if (fs->object != fs->first_object->backing_object)
314 		return 0;
315 
316 	return 1;
317 }
318 
319 static __inline int
320 virtual_copy_ok(struct faultstate *fs)
321 {
322 	if (virtual_copy_test(fs)) {
323 		/*
324 		 * Grab the lock and re-test changeable items.
325 		 */
326 		if (fs->lookup_still_valid == FALSE && fs->map) {
327 			if (lockmgr(&fs->map->lock, LK_EXCLUSIVE|LK_NOWAIT))
328 				return 0;
329 			fs->lookup_still_valid = TRUE;
330 			if (virtual_copy_test(fs)) {
331 				fs->map_generation = ++fs->map->timestamp;
332 				return 1;
333 			}
334 			fs->lookup_still_valid = FALSE;
335 			lockmgr(&fs->map->lock, LK_RELEASE);
336 		}
337 	}
338 	return 0;
339 }
340 
341 /*
342  * TRYPAGER
343  *
344  * Determine if the pager for the current object *might* contain the page.
345  *
346  * We only need to try the pager if this is not a default object (default
347  * objects are zero-fill and have no real pager), and if we are not taking
348  * a wiring fault or if the FS entry is wired.
349  */
350 #define TRYPAGER(fs)	\
351 		(fs->object->type != OBJT_DEFAULT &&			\
352 		(((fs->fault_flags & VM_FAULT_WIRE_MASK) == 0) ||	\
353 		 (fs->wflags & FW_WIRED)))
354 
355 /*
356  * vm_fault:
357  *
358  * Handle a page fault occuring at the given address, requiring the given
359  * permissions, in the map specified.  If successful, the page is inserted
360  * into the associated physical map.
361  *
362  * NOTE: The given address should be truncated to the proper page address.
363  *
364  * KERN_SUCCESS is returned if the page fault is handled; otherwise,
365  * a standard error specifying why the fault is fatal is returned.
366  *
367  * The map in question must be referenced, and remains so.
368  * The caller may hold no locks.
369  * No other requirements.
370  */
371 int
372 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, int fault_flags)
373 {
374 	int result;
375 	vm_pindex_t first_pindex;
376 	struct faultstate fs;
377 	struct lwp *lp;
378 	struct proc *p;
379 	thread_t td;
380 	struct vm_map_ilock ilock;
381 	int didilock;
382 	int growstack;
383 	int retry = 0;
384 	int inherit_prot;
385 
386 	inherit_prot = fault_type & VM_PROT_NOSYNC;
387 	fs.hardfault = 0;
388 	fs.fault_flags = fault_flags;
389 	fs.vp = NULL;
390 	fs.shared = vm_shared_fault;
391 	fs.first_shared = vm_shared_fault;
392 	growstack = 1;
393 
394 	/*
395 	 * vm_map interactions
396 	 */
397 	td = curthread;
398 	if ((lp = td->td_lwp) != NULL)
399 		lp->lwp_flags |= LWP_PAGING;
400 
401 RetryFault:
402 	/*
403 	 * Find the vm_map_entry representing the backing store and resolve
404 	 * the top level object and page index.  This may have the side
405 	 * effect of executing a copy-on-write on the map entry,
406 	 * creating a shadow object, or splitting an anonymous entry for
407 	 * performance, but will not COW any actual VM pages.
408 	 *
409 	 * On success fs.map is left read-locked and various other fields
410 	 * are initialized but not otherwise referenced or locked.
411 	 *
412 	 * NOTE!  vm_map_lookup will try to upgrade the fault_type to
413 	 *	  VM_FAULT_WRITE if the map entry is a virtual page table
414 	 *	  and also writable, so we can set the 'A'accessed bit in
415 	 *	  the virtual page table entry.
416 	 */
417 	fs.map = map;
418 	result = vm_map_lookup(&fs.map, vaddr, fault_type,
419 			       &fs.entry, &fs.first_object,
420 			       &first_pindex, &fs.first_prot, &fs.wflags);
421 
422 	/*
423 	 * If the lookup failed or the map protections are incompatible,
424 	 * the fault generally fails.
425 	 *
426 	 * The failure could be due to TDF_NOFAULT if vm_map_lookup()
427 	 * tried to do a COW fault.
428 	 *
429 	 * If the caller is trying to do a user wiring we have more work
430 	 * to do.
431 	 */
432 	if (result != KERN_SUCCESS) {
433 		if (result == KERN_FAILURE_NOFAULT) {
434 			result = KERN_FAILURE;
435 			goto done;
436 		}
437 		if (result != KERN_PROTECTION_FAILURE ||
438 		    (fs.fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE)
439 		{
440 			if (result == KERN_INVALID_ADDRESS && growstack &&
441 			    map != &kernel_map && curproc != NULL) {
442 				result = vm_map_growstack(map, vaddr);
443 				if (result == KERN_SUCCESS) {
444 					growstack = 0;
445 					++retry;
446 					goto RetryFault;
447 				}
448 				result = KERN_FAILURE;
449 			}
450 			goto done;
451 		}
452 
453 		/*
454 		 * If we are user-wiring a r/w segment, and it is COW, then
455 		 * we need to do the COW operation.  Note that we don't
456 		 * currently COW RO sections now, because it is NOT desirable
457 		 * to COW .text.  We simply keep .text from ever being COW'ed
458 		 * and take the heat that one cannot debug wired .text sections.
459 		 *
460 		 * XXX Try to allow the above by specifying OVERRIDE_WRITE.
461 		 */
462 		result = vm_map_lookup(&fs.map, vaddr,
463 				       VM_PROT_READ|VM_PROT_WRITE|
464 				        VM_PROT_OVERRIDE_WRITE,
465 				       &fs.entry, &fs.first_object,
466 				       &first_pindex, &fs.first_prot,
467 				       &fs.wflags);
468 		if (result != KERN_SUCCESS) {
469 			/* could also be KERN_FAILURE_NOFAULT */
470 			result = KERN_FAILURE;
471 			goto done;
472 		}
473 
474 		/*
475 		 * If we don't COW now, on a user wire, the user will never
476 		 * be able to write to the mapping.  If we don't make this
477 		 * restriction, the bookkeeping would be nearly impossible.
478 		 *
479 		 * XXX We have a shared lock, this will have a MP race but
480 		 * I don't see how it can hurt anything.
481 		 */
482 		if ((fs.entry->protection & VM_PROT_WRITE) == 0) {
483 			atomic_clear_char(&fs.entry->max_protection,
484 					  VM_PROT_WRITE);
485 		}
486 	}
487 
488 	/*
489 	 * fs.map is read-locked
490 	 *
491 	 * Misc checks.  Save the map generation number to detect races.
492 	 */
493 	fs.map_generation = fs.map->timestamp;
494 	fs.lookup_still_valid = TRUE;
495 	fs.first_m = NULL;
496 	fs.object = fs.first_object;	/* so unlock_and_deallocate works */
497 	fs.prot = fs.first_prot;	/* default (used by uksmap) */
498 
499 	if (fs.entry->eflags & (MAP_ENTRY_NOFAULT | MAP_ENTRY_KSTACK)) {
500 		if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
501 			panic("vm_fault: fault on nofault entry, addr: %p",
502 			      (void *)vaddr);
503 		}
504 		if ((fs.entry->eflags & MAP_ENTRY_KSTACK) &&
505 		    vaddr >= fs.entry->start &&
506 		    vaddr < fs.entry->start + PAGE_SIZE) {
507 			panic("vm_fault: fault on stack guard, addr: %p",
508 			      (void *)vaddr);
509 		}
510 	}
511 
512 	/*
513 	 * A user-kernel shared map has no VM object and bypasses
514 	 * everything.  We execute the uksmap function with a temporary
515 	 * fictitious vm_page.  The address is directly mapped with no
516 	 * management.
517 	 */
518 	if (fs.entry->maptype == VM_MAPTYPE_UKSMAP) {
519 		struct vm_page fakem;
520 
521 		bzero(&fakem, sizeof(fakem));
522 		fakem.pindex = first_pindex;
523 		fakem.flags = PG_FICTITIOUS | PG_UNMANAGED;
524 		fakem.busy_count = PBUSY_LOCKED;
525 		fakem.valid = VM_PAGE_BITS_ALL;
526 		fakem.pat_mode = VM_MEMATTR_DEFAULT;
527 		if (fs.entry->object.uksmap(fs.entry->aux.dev, &fakem)) {
528 			result = KERN_FAILURE;
529 			unlock_things(&fs);
530 			goto done2;
531 		}
532 		pmap_enter(fs.map->pmap, vaddr, &fakem, fs.prot | inherit_prot,
533 			   (fs.wflags & FW_WIRED), fs.entry);
534 		goto done_success;
535 	}
536 
537 	/*
538 	 * A system map entry may return a NULL object.  No object means
539 	 * no pager means an unrecoverable kernel fault.
540 	 */
541 	if (fs.first_object == NULL) {
542 		panic("vm_fault: unrecoverable fault at %p in entry %p",
543 			(void *)vaddr, fs.entry);
544 	}
545 
546 	/*
547 	 * Fail here if not a trivial anonymous page fault and TDF_NOFAULT
548 	 * is set.
549 	 *
550 	 * Unfortunately a deadlock can occur if we are forced to page-in
551 	 * from swap, but diving all the way into the vm_pager_get_page()
552 	 * function to find out is too much.  Just check the object type.
553 	 *
554 	 * The deadlock is a CAM deadlock on a busy VM page when trying
555 	 * to finish an I/O if another process gets stuck in
556 	 * vop_helper_read_shortcut() due to a swap fault.
557 	 */
558 	if ((td->td_flags & TDF_NOFAULT) &&
559 	    (retry ||
560 	     fs.first_object->type == OBJT_VNODE ||
561 	     fs.first_object->type == OBJT_SWAP ||
562 	     fs.first_object->backing_object)) {
563 		result = KERN_FAILURE;
564 		unlock_things(&fs);
565 		goto done2;
566 	}
567 
568 	/*
569 	 * If the entry is wired we cannot change the page protection.
570 	 */
571 	if (fs.wflags & FW_WIRED)
572 		fault_type = fs.first_prot;
573 
574 	/*
575 	 * We generally want to avoid unnecessary exclusive modes on backing
576 	 * and terminal objects because this can seriously interfere with
577 	 * heavily fork()'d processes (particularly /bin/sh scripts).
578 	 *
579 	 * However, we also want to avoid unnecessary retries due to needed
580 	 * shared->exclusive promotion for common faults.  Exclusive mode is
581 	 * always needed if any page insertion, rename, or free occurs in an
582 	 * object (and also indirectly if any I/O is done).
583 	 *
584 	 * The main issue here is going to be fs.first_shared.  If the
585 	 * first_object has a backing object which isn't shadowed and the
586 	 * process is single-threaded we might as well use an exclusive
587 	 * lock/chain right off the bat.
588 	 */
589 	if (fs.first_shared && fs.first_object->backing_object &&
590 	    LIST_EMPTY(&fs.first_object->shadow_head) &&
591 	    td->td_proc && td->td_proc->p_nthreads == 1) {
592 		fs.first_shared = 0;
593 	}
594 
595 	/*
596 	 * VM_FAULT_UNSWAP - swap_pager_unswapped() needs an exclusive object
597 	 * VM_FAULT_DIRTY  - may require swap_pager_unswapped() later, but
598 	 *		     we can try shared first.
599 	 */
600 	if (fault_flags & VM_FAULT_UNSWAP) {
601 		fs.first_shared = 0;
602 	}
603 
604 	/*
605 	 * Obtain a top-level object lock, shared or exclusive depending
606 	 * on fs.first_shared.  If a shared lock winds up being insufficient
607 	 * we will retry with an exclusive lock.
608 	 *
609 	 * The vnode pager lock is always shared.
610 	 */
611 	if (fs.first_shared)
612 		vm_object_hold_shared(fs.first_object);
613 	else
614 		vm_object_hold(fs.first_object);
615 	if (fs.vp == NULL)
616 		fs.vp = vnode_pager_lock(fs.first_object);
617 
618 	/*
619 	 * The page we want is at (first_object, first_pindex), but if the
620 	 * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the
621 	 * page table to figure out the actual pindex.
622 	 *
623 	 * NOTE!  DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION
624 	 * ONLY
625 	 */
626 	didilock = 0;
627 	if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
628 		vm_map_interlock(fs.map, &ilock, vaddr, vaddr + PAGE_SIZE);
629 		didilock = 1;
630 		result = vm_fault_vpagetable(&fs, &first_pindex,
631 					     fs.entry->aux.master_pde,
632 					     fault_type, 1);
633 		if (result == KERN_TRY_AGAIN) {
634 			vm_map_deinterlock(fs.map, &ilock);
635 			vm_object_drop(fs.first_object);
636 			++retry;
637 			goto RetryFault;
638 		}
639 		if (result != KERN_SUCCESS) {
640 			vm_map_deinterlock(fs.map, &ilock);
641 			goto done;
642 		}
643 	}
644 
645 	/*
646 	 * Now we have the actual (object, pindex), fault in the page.  If
647 	 * vm_fault_object() fails it will unlock and deallocate the FS
648 	 * data.   If it succeeds everything remains locked and fs->object
649 	 * will have an additional PIP count if it is not equal to
650 	 * fs->first_object
651 	 *
652 	 * vm_fault_object will set fs->prot for the pmap operation.  It is
653 	 * allowed to set VM_PROT_WRITE if fault_type == VM_PROT_READ if the
654 	 * page can be safely written.  However, it will force a read-only
655 	 * mapping for a read fault if the memory is managed by a virtual
656 	 * page table.
657 	 *
658 	 * If the fault code uses the shared object lock shortcut
659 	 * we must not try to burst (we can't allocate VM pages).
660 	 */
661 	result = vm_fault_object(&fs, first_pindex, fault_type, 1);
662 
663 	if (debug_fault > 0) {
664 		--debug_fault;
665 		kprintf("VM_FAULT result %d addr=%jx type=%02x flags=%02x "
666 			"fs.m=%p fs.prot=%02x fs.wflags=%02x fs.entry=%p\n",
667 			result, (intmax_t)vaddr, fault_type, fault_flags,
668 			fs.m, fs.prot, fs.wflags, fs.entry);
669 	}
670 
671 	if (result == KERN_TRY_AGAIN) {
672 		if (didilock)
673 			vm_map_deinterlock(fs.map, &ilock);
674 		vm_object_drop(fs.first_object);
675 		++retry;
676 		goto RetryFault;
677 	}
678 	if (result != KERN_SUCCESS) {
679 		if (didilock)
680 			vm_map_deinterlock(fs.map, &ilock);
681 		goto done;
682 	}
683 
684 	/*
685 	 * On success vm_fault_object() does not unlock or deallocate, and fs.m
686 	 * will contain a busied page.
687 	 *
688 	 * Enter the page into the pmap and do pmap-related adjustments.
689 	 */
690 	KKASSERT(fs.lookup_still_valid == TRUE);
691 	vm_page_flag_set(fs.m, PG_REFERENCED);
692 	pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot | inherit_prot,
693 		   fs.wflags & FW_WIRED, fs.entry);
694 
695 	if (didilock)
696 		vm_map_deinterlock(fs.map, &ilock);
697 
698 	/*KKASSERT(fs.m->queue == PQ_NONE); page-in op may deactivate page */
699 	KKASSERT(fs.m->busy_count & PBUSY_LOCKED);
700 
701 	/*
702 	 * If the page is not wired down, then put it where the pageout daemon
703 	 * can find it.
704 	 */
705 	if (fs.fault_flags & VM_FAULT_WIRE_MASK) {
706 		if (fs.wflags & FW_WIRED)
707 			vm_page_wire(fs.m);
708 		else
709 			vm_page_unwire(fs.m, 1);
710 	} else {
711 		vm_page_activate(fs.m);
712 	}
713 	vm_page_wakeup(fs.m);
714 
715 	/*
716 	 * Burst in a few more pages if possible.  The fs.map should still
717 	 * be locked.  To avoid interlocking against a vnode->getblk
718 	 * operation we had to be sure to unbusy our primary vm_page above
719 	 * first.
720 	 *
721 	 * A normal burst can continue down backing store, only execute
722 	 * if we are holding an exclusive lock, otherwise the exclusive
723 	 * locks the burst code gets might cause excessive SMP collisions.
724 	 *
725 	 * A quick burst can be utilized when there is no backing object
726 	 * (i.e. a shared file mmap).
727 	 */
728 	if ((fault_flags & VM_FAULT_BURST) &&
729 	    (fs.fault_flags & VM_FAULT_WIRE_MASK) == 0 &&
730 	    (fs.wflags & FW_WIRED) == 0) {
731 		if (fs.first_shared == 0 && fs.shared == 0) {
732 			vm_prefault(fs.map->pmap, vaddr,
733 				    fs.entry, fs.prot, fault_flags);
734 		} else {
735 			vm_prefault_quick(fs.map->pmap, vaddr,
736 					  fs.entry, fs.prot, fault_flags);
737 		}
738 	}
739 
740 done_success:
741 	mycpu->gd_cnt.v_vm_faults++;
742 	if (td->td_lwp)
743 		++td->td_lwp->lwp_ru.ru_minflt;
744 
745 	/*
746 	 * Unlock everything, and return
747 	 */
748 	unlock_things(&fs);
749 
750 	if (td->td_lwp) {
751 		if (fs.hardfault) {
752 			td->td_lwp->lwp_ru.ru_majflt++;
753 		} else {
754 			td->td_lwp->lwp_ru.ru_minflt++;
755 		}
756 	}
757 
758 	/*vm_object_deallocate(fs.first_object);*/
759 	/*fs.m = NULL; */
760 	/*fs.first_object = NULL; must still drop later */
761 
762 	result = KERN_SUCCESS;
763 done:
764 	if (fs.first_object)
765 		vm_object_drop(fs.first_object);
766 done2:
767 	if (lp)
768 		lp->lwp_flags &= ~LWP_PAGING;
769 
770 #if !defined(NO_SWAPPING)
771 	/*
772 	 * Check the process RSS limit and force deactivation and
773 	 * (asynchronous) paging if necessary.  This is a complex operation,
774 	 * only do it for direct user-mode faults, for now.
775 	 *
776 	 * To reduce overhead implement approximately a ~16MB hysteresis.
777 	 */
778 	p = td->td_proc;
779 	if ((fault_flags & VM_FAULT_USERMODE) && lp &&
780 	    p->p_limit && map->pmap && vm_pageout_memuse_mode >= 1 &&
781 	    map != &kernel_map) {
782 		vm_pindex_t limit;
783 		vm_pindex_t size;
784 
785 		limit = OFF_TO_IDX(qmin(p->p_rlimit[RLIMIT_RSS].rlim_cur,
786 					p->p_rlimit[RLIMIT_RSS].rlim_max));
787 		size = pmap_resident_tlnw_count(map->pmap);
788 		if (limit >= 0 && size > 4096 && size - 4096 >= limit) {
789 			vm_pageout_map_deactivate_pages(map, limit);
790 		}
791 	}
792 #endif
793 
794 	return (result);
795 }
796 
797 /*
798  * Fault in the specified virtual address in the current process map,
799  * returning a held VM page or NULL.  See vm_fault_page() for more
800  * information.
801  *
802  * No requirements.
803  */
804 vm_page_t
805 vm_fault_page_quick(vm_offset_t va, vm_prot_t fault_type,
806 		    int *errorp, int *busyp)
807 {
808 	struct lwp *lp = curthread->td_lwp;
809 	vm_page_t m;
810 
811 	m = vm_fault_page(&lp->lwp_vmspace->vm_map, va,
812 			  fault_type, VM_FAULT_NORMAL,
813 			  errorp, busyp);
814 	return(m);
815 }
816 
817 /*
818  * Fault in the specified virtual address in the specified map, doing all
819  * necessary manipulation of the object store and all necessary I/O.  Return
820  * a held VM page or NULL, and set *errorp.  The related pmap is not
821  * updated.
822  *
823  * If busyp is not NULL then *busyp will be set to TRUE if this routine
824  * decides to return a busied page (aka VM_PROT_WRITE), or FALSE if it
825  * does not (VM_PROT_WRITE not specified or busyp is NULL).  If busyp is
826  * NULL the returned page is only held.
827  *
828  * If the caller has no intention of writing to the page's contents, busyp
829  * can be passed as NULL along with VM_PROT_WRITE to force a COW operation
830  * without busying the page.
831  *
832  * The returned page will also be marked PG_REFERENCED.
833  *
834  * If the page cannot be faulted writable and VM_PROT_WRITE was specified, an
835  * error will be returned.
836  *
837  * No requirements.
838  */
839 vm_page_t
840 vm_fault_page(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
841 	      int fault_flags, int *errorp, int *busyp)
842 {
843 	vm_pindex_t first_pindex;
844 	struct faultstate fs;
845 	int result;
846 	int retry;
847 	int growstack;
848 	int didcow;
849 	vm_prot_t orig_fault_type = fault_type;
850 
851 	retry = 0;
852 	didcow = 0;
853 	fs.hardfault = 0;
854 	fs.fault_flags = fault_flags;
855 	KKASSERT((fault_flags & VM_FAULT_WIRE_MASK) == 0);
856 
857 	/*
858 	 * Dive the pmap (concurrency possible).  If we find the
859 	 * appropriate page we can terminate early and quickly.
860 	 *
861 	 * This works great for normal programs but will always return
862 	 * NULL for host lookups of vkernel maps in VMM mode.
863 	 *
864 	 * NOTE: pmap_fault_page_quick() might not busy the page.  If
865 	 *	 VM_PROT_WRITE is set in fault_type and pmap_fault_page_quick()
866 	 *	 returns non-NULL, it will safely dirty the returned vm_page_t
867 	 *	 for us.  We cannot safely dirty it here (it might not be
868 	 *	 busy).
869 	 */
870 	fs.m = pmap_fault_page_quick(map->pmap, vaddr, fault_type, busyp);
871 	if (fs.m) {
872 		*errorp = 0;
873 		return(fs.m);
874 	}
875 
876 	/*
877 	 * Otherwise take a concurrency hit and do a formal page
878 	 * fault.
879 	 */
880 	fs.vp = NULL;
881 	fs.shared = vm_shared_fault;
882 	fs.first_shared = vm_shared_fault;
883 	growstack = 1;
884 
885 	/*
886 	 * VM_FAULT_UNSWAP - swap_pager_unswapped() needs an exclusive object
887 	 * VM_FAULT_DIRTY  - may require swap_pager_unswapped() later, but
888 	 *		     we can try shared first.
889 	 */
890 	if (fault_flags & VM_FAULT_UNSWAP) {
891 		fs.first_shared = 0;
892 	}
893 
894 RetryFault:
895 	/*
896 	 * Find the vm_map_entry representing the backing store and resolve
897 	 * the top level object and page index.  This may have the side
898 	 * effect of executing a copy-on-write on the map entry and/or
899 	 * creating a shadow object, but will not COW any actual VM pages.
900 	 *
901 	 * On success fs.map is left read-locked and various other fields
902 	 * are initialized but not otherwise referenced or locked.
903 	 *
904 	 * NOTE!  vm_map_lookup will upgrade the fault_type to VM_FAULT_WRITE
905 	 *	  if the map entry is a virtual page table and also writable,
906 	 *	  so we can set the 'A'accessed bit in the virtual page table
907 	 *	  entry.
908 	 */
909 	fs.map = map;
910 	result = vm_map_lookup(&fs.map, vaddr, fault_type,
911 			       &fs.entry, &fs.first_object,
912 			       &first_pindex, &fs.first_prot, &fs.wflags);
913 
914 	if (result != KERN_SUCCESS) {
915 		if (result == KERN_FAILURE_NOFAULT) {
916 			*errorp = KERN_FAILURE;
917 			fs.m = NULL;
918 			goto done;
919 		}
920 		if (result != KERN_PROTECTION_FAILURE ||
921 		    (fs.fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE)
922 		{
923 			if (result == KERN_INVALID_ADDRESS && growstack &&
924 			    map != &kernel_map && curproc != NULL) {
925 				result = vm_map_growstack(map, vaddr);
926 				if (result == KERN_SUCCESS) {
927 					growstack = 0;
928 					++retry;
929 					goto RetryFault;
930 				}
931 				result = KERN_FAILURE;
932 			}
933 			fs.m = NULL;
934 			*errorp = result;
935 			goto done;
936 		}
937 
938 		/*
939 		 * If we are user-wiring a r/w segment, and it is COW, then
940 		 * we need to do the COW operation.  Note that we don't
941 		 * currently COW RO sections now, because it is NOT desirable
942 		 * to COW .text.  We simply keep .text from ever being COW'ed
943 		 * and take the heat that one cannot debug wired .text sections.
944 		 */
945 		result = vm_map_lookup(&fs.map, vaddr,
946 				       VM_PROT_READ|VM_PROT_WRITE|
947 				        VM_PROT_OVERRIDE_WRITE,
948 				       &fs.entry, &fs.first_object,
949 				       &first_pindex, &fs.first_prot,
950 				       &fs.wflags);
951 		if (result != KERN_SUCCESS) {
952 			/* could also be KERN_FAILURE_NOFAULT */
953 			*errorp = KERN_FAILURE;
954 			fs.m = NULL;
955 			goto done;
956 		}
957 
958 		/*
959 		 * If we don't COW now, on a user wire, the user will never
960 		 * be able to write to the mapping.  If we don't make this
961 		 * restriction, the bookkeeping would be nearly impossible.
962 		 *
963 		 * XXX We have a shared lock, this will have a MP race but
964 		 * I don't see how it can hurt anything.
965 		 */
966 		if ((fs.entry->protection & VM_PROT_WRITE) == 0) {
967 			atomic_clear_char(&fs.entry->max_protection,
968 					  VM_PROT_WRITE);
969 		}
970 	}
971 
972 	/*
973 	 * fs.map is read-locked
974 	 *
975 	 * Misc checks.  Save the map generation number to detect races.
976 	 */
977 	fs.map_generation = fs.map->timestamp;
978 	fs.lookup_still_valid = TRUE;
979 	fs.first_m = NULL;
980 	fs.object = fs.first_object;	/* so unlock_and_deallocate works */
981 
982 	if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
983 		panic("vm_fault: fault on nofault entry, addr: %lx",
984 		    (u_long)vaddr);
985 	}
986 
987 	/*
988 	 * A user-kernel shared map has no VM object and bypasses
989 	 * everything.  We execute the uksmap function with a temporary
990 	 * fictitious vm_page.  The address is directly mapped with no
991 	 * management.
992 	 */
993 	if (fs.entry->maptype == VM_MAPTYPE_UKSMAP) {
994 		struct vm_page fakem;
995 
996 		bzero(&fakem, sizeof(fakem));
997 		fakem.pindex = first_pindex;
998 		fakem.flags = PG_FICTITIOUS | PG_UNMANAGED;
999 		fakem.busy_count = PBUSY_LOCKED;
1000 		fakem.valid = VM_PAGE_BITS_ALL;
1001 		fakem.pat_mode = VM_MEMATTR_DEFAULT;
1002 		if (fs.entry->object.uksmap(fs.entry->aux.dev, &fakem)) {
1003 			*errorp = KERN_FAILURE;
1004 			fs.m = NULL;
1005 			unlock_things(&fs);
1006 			goto done2;
1007 		}
1008 		fs.m = PHYS_TO_VM_PAGE(fakem.phys_addr);
1009 		vm_page_hold(fs.m);
1010 		if (busyp)
1011 			*busyp = 0;	/* don't need to busy R or W */
1012 		unlock_things(&fs);
1013 		*errorp = 0;
1014 		goto done;
1015 	}
1016 
1017 
1018 	/*
1019 	 * A system map entry may return a NULL object.  No object means
1020 	 * no pager means an unrecoverable kernel fault.
1021 	 */
1022 	if (fs.first_object == NULL) {
1023 		panic("vm_fault: unrecoverable fault at %p in entry %p",
1024 			(void *)vaddr, fs.entry);
1025 	}
1026 
1027 	/*
1028 	 * Fail here if not a trivial anonymous page fault and TDF_NOFAULT
1029 	 * is set.
1030 	 *
1031 	 * Unfortunately a deadlock can occur if we are forced to page-in
1032 	 * from swap, but diving all the way into the vm_pager_get_page()
1033 	 * function to find out is too much.  Just check the object type.
1034 	 */
1035 	if ((curthread->td_flags & TDF_NOFAULT) &&
1036 	    (retry ||
1037 	     fs.first_object->type == OBJT_VNODE ||
1038 	     fs.first_object->type == OBJT_SWAP ||
1039 	     fs.first_object->backing_object)) {
1040 		*errorp = KERN_FAILURE;
1041 		unlock_things(&fs);
1042 		fs.m = NULL;
1043 		goto done2;
1044 	}
1045 
1046 	/*
1047 	 * If the entry is wired we cannot change the page protection.
1048 	 */
1049 	if (fs.wflags & FW_WIRED)
1050 		fault_type = fs.first_prot;
1051 
1052 	/*
1053 	 * Make a reference to this object to prevent its disposal while we
1054 	 * are messing with it.  Once we have the reference, the map is free
1055 	 * to be diddled.  Since objects reference their shadows (and copies),
1056 	 * they will stay around as well.
1057 	 *
1058 	 * The reference should also prevent an unexpected collapse of the
1059 	 * parent that might move pages from the current object into the
1060 	 * parent unexpectedly, resulting in corruption.
1061 	 *
1062 	 * Bump the paging-in-progress count to prevent size changes (e.g.
1063 	 * truncation operations) during I/O.  This must be done after
1064 	 * obtaining the vnode lock in order to avoid possible deadlocks.
1065 	 */
1066 	if (fs.first_shared)
1067 		vm_object_hold_shared(fs.first_object);
1068 	else
1069 		vm_object_hold(fs.first_object);
1070 	if (fs.vp == NULL)
1071 		fs.vp = vnode_pager_lock(fs.first_object);	/* shared */
1072 
1073 	/*
1074 	 * The page we want is at (first_object, first_pindex), but if the
1075 	 * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the
1076 	 * page table to figure out the actual pindex.
1077 	 *
1078 	 * NOTE!  DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION
1079 	 * ONLY
1080 	 */
1081 	if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
1082 		result = vm_fault_vpagetable(&fs, &first_pindex,
1083 					     fs.entry->aux.master_pde,
1084 					     fault_type, 1);
1085 		if (result == KERN_TRY_AGAIN) {
1086 			vm_object_drop(fs.first_object);
1087 			++retry;
1088 			goto RetryFault;
1089 		}
1090 		if (result != KERN_SUCCESS) {
1091 			*errorp = result;
1092 			fs.m = NULL;
1093 			goto done;
1094 		}
1095 	}
1096 
1097 	/*
1098 	 * Now we have the actual (object, pindex), fault in the page.  If
1099 	 * vm_fault_object() fails it will unlock and deallocate the FS
1100 	 * data.   If it succeeds everything remains locked and fs->object
1101 	 * will have an additinal PIP count if it is not equal to
1102 	 * fs->first_object
1103 	 */
1104 	fs.m = NULL;
1105 	result = vm_fault_object(&fs, first_pindex, fault_type, 1);
1106 
1107 	if (result == KERN_TRY_AGAIN) {
1108 		vm_object_drop(fs.first_object);
1109 		++retry;
1110 		didcow |= fs.wflags & FW_DIDCOW;
1111 		goto RetryFault;
1112 	}
1113 	if (result != KERN_SUCCESS) {
1114 		*errorp = result;
1115 		fs.m = NULL;
1116 		goto done;
1117 	}
1118 
1119 	if ((orig_fault_type & VM_PROT_WRITE) &&
1120 	    (fs.prot & VM_PROT_WRITE) == 0) {
1121 		*errorp = KERN_PROTECTION_FAILURE;
1122 		unlock_and_deallocate(&fs);
1123 		fs.m = NULL;
1124 		goto done;
1125 	}
1126 
1127 	/*
1128 	 * Generally speaking we don't want to update the pmap because
1129 	 * this routine can be called many times for situations that do
1130 	 * not require updating the pmap, not to mention the page might
1131 	 * already be in the pmap.
1132 	 *
1133 	 * However, if our vm_map_lookup() results in a COW, we need to
1134 	 * at least remove the pte from the pmap to guarantee proper
1135 	 * visibility of modifications made to the process.  For example,
1136 	 * modifications made by vkernel uiocopy/related routines and
1137 	 * modifications made by ptrace().
1138 	 */
1139 	vm_page_flag_set(fs.m, PG_REFERENCED);
1140 #if 0
1141 	pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot,
1142 		   fs.wflags & FW_WIRED, NULL);
1143 	mycpu->gd_cnt.v_vm_faults++;
1144 	if (curthread->td_lwp)
1145 		++curthread->td_lwp->lwp_ru.ru_minflt;
1146 #endif
1147 	if ((fs.wflags | didcow) | FW_DIDCOW) {
1148 		pmap_remove(fs.map->pmap,
1149 			    vaddr & ~PAGE_MASK,
1150 			    (vaddr & ~PAGE_MASK) + PAGE_SIZE);
1151 	}
1152 
1153 	/*
1154 	 * On success vm_fault_object() does not unlock or deallocate, and fs.m
1155 	 * will contain a busied page.  So we must unlock here after having
1156 	 * messed with the pmap.
1157 	 */
1158 	unlock_things(&fs);
1159 
1160 	/*
1161 	 * Return a held page.  We are not doing any pmap manipulation so do
1162 	 * not set PG_MAPPED.  However, adjust the page flags according to
1163 	 * the fault type because the caller may not use a managed pmapping
1164 	 * (so we don't want to lose the fact that the page will be dirtied
1165 	 * if a write fault was specified).
1166 	 */
1167 	if (fault_type & VM_PROT_WRITE)
1168 		vm_page_dirty(fs.m);
1169 	vm_page_activate(fs.m);
1170 
1171 	if (curthread->td_lwp) {
1172 		if (fs.hardfault) {
1173 			curthread->td_lwp->lwp_ru.ru_majflt++;
1174 		} else {
1175 			curthread->td_lwp->lwp_ru.ru_minflt++;
1176 		}
1177 	}
1178 
1179 	/*
1180 	 * Unlock everything, and return the held or busied page.
1181 	 */
1182 	if (busyp) {
1183 		if (fault_type & VM_PROT_WRITE) {
1184 			vm_page_dirty(fs.m);
1185 			*busyp = 1;
1186 		} else {
1187 			*busyp = 0;
1188 			vm_page_hold(fs.m);
1189 			vm_page_wakeup(fs.m);
1190 		}
1191 	} else {
1192 		vm_page_hold(fs.m);
1193 		vm_page_wakeup(fs.m);
1194 	}
1195 	/*vm_object_deallocate(fs.first_object);*/
1196 	/*fs.first_object = NULL; */
1197 	*errorp = 0;
1198 
1199 done:
1200 	if (fs.first_object)
1201 		vm_object_drop(fs.first_object);
1202 done2:
1203 	return(fs.m);
1204 }
1205 
1206 /*
1207  * Fault in the specified (object,offset), dirty the returned page as
1208  * needed.  If the requested fault_type cannot be done NULL and an
1209  * error is returned.
1210  *
1211  * A held (but not busied) page is returned.
1212  *
1213  * The passed in object must be held as specified by the shared
1214  * argument.
1215  */
1216 vm_page_t
1217 vm_fault_object_page(vm_object_t object, vm_ooffset_t offset,
1218 		     vm_prot_t fault_type, int fault_flags,
1219 		     int *sharedp, int *errorp)
1220 {
1221 	int result;
1222 	vm_pindex_t first_pindex;
1223 	struct faultstate fs;
1224 	struct vm_map_entry entry;
1225 
1226 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1227 	bzero(&entry, sizeof(entry));
1228 	entry.object.vm_object = object;
1229 	entry.maptype = VM_MAPTYPE_NORMAL;
1230 	entry.protection = entry.max_protection = fault_type;
1231 
1232 	fs.hardfault = 0;
1233 	fs.fault_flags = fault_flags;
1234 	fs.map = NULL;
1235 	fs.shared = vm_shared_fault;
1236 	fs.first_shared = *sharedp;
1237 	fs.vp = NULL;
1238 	KKASSERT((fault_flags & VM_FAULT_WIRE_MASK) == 0);
1239 
1240 	/*
1241 	 * VM_FAULT_UNSWAP - swap_pager_unswapped() needs an exclusive object
1242 	 * VM_FAULT_DIRTY  - may require swap_pager_unswapped() later, but
1243 	 *		     we can try shared first.
1244 	 */
1245 	if (fs.first_shared && (fault_flags & VM_FAULT_UNSWAP)) {
1246 		fs.first_shared = 0;
1247 		vm_object_upgrade(object);
1248 	}
1249 
1250 	/*
1251 	 * Retry loop as needed (typically for shared->exclusive transitions)
1252 	 */
1253 RetryFault:
1254 	*sharedp = fs.first_shared;
1255 	first_pindex = OFF_TO_IDX(offset);
1256 	fs.first_object = object;
1257 	fs.entry = &entry;
1258 	fs.first_prot = fault_type;
1259 	fs.wflags = 0;
1260 	/*fs.map_generation = 0; unused */
1261 
1262 	/*
1263 	 * Make a reference to this object to prevent its disposal while we
1264 	 * are messing with it.  Once we have the reference, the map is free
1265 	 * to be diddled.  Since objects reference their shadows (and copies),
1266 	 * they will stay around as well.
1267 	 *
1268 	 * The reference should also prevent an unexpected collapse of the
1269 	 * parent that might move pages from the current object into the
1270 	 * parent unexpectedly, resulting in corruption.
1271 	 *
1272 	 * Bump the paging-in-progress count to prevent size changes (e.g.
1273 	 * truncation operations) during I/O.  This must be done after
1274 	 * obtaining the vnode lock in order to avoid possible deadlocks.
1275 	 */
1276 	if (fs.vp == NULL)
1277 		fs.vp = vnode_pager_lock(fs.first_object);
1278 
1279 	fs.lookup_still_valid = TRUE;
1280 	fs.first_m = NULL;
1281 	fs.object = fs.first_object;	/* so unlock_and_deallocate works */
1282 
1283 #if 0
1284 	/* XXX future - ability to operate on VM object using vpagetable */
1285 	if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
1286 		result = vm_fault_vpagetable(&fs, &first_pindex,
1287 					     fs.entry->aux.master_pde,
1288 					     fault_type, 0);
1289 		if (result == KERN_TRY_AGAIN) {
1290 			if (fs.first_shared == 0 && *sharedp)
1291 				vm_object_upgrade(object);
1292 			goto RetryFault;
1293 		}
1294 		if (result != KERN_SUCCESS) {
1295 			*errorp = result;
1296 			return (NULL);
1297 		}
1298 	}
1299 #endif
1300 
1301 	/*
1302 	 * Now we have the actual (object, pindex), fault in the page.  If
1303 	 * vm_fault_object() fails it will unlock and deallocate the FS
1304 	 * data.   If it succeeds everything remains locked and fs->object
1305 	 * will have an additinal PIP count if it is not equal to
1306 	 * fs->first_object
1307 	 *
1308 	 * On KERN_TRY_AGAIN vm_fault_object() leaves fs.first_object intact.
1309 	 * We may have to upgrade its lock to handle the requested fault.
1310 	 */
1311 	result = vm_fault_object(&fs, first_pindex, fault_type, 0);
1312 
1313 	if (result == KERN_TRY_AGAIN) {
1314 		if (fs.first_shared == 0 && *sharedp)
1315 			vm_object_upgrade(object);
1316 		goto RetryFault;
1317 	}
1318 	if (result != KERN_SUCCESS) {
1319 		*errorp = result;
1320 		return(NULL);
1321 	}
1322 
1323 	if ((fault_type & VM_PROT_WRITE) && (fs.prot & VM_PROT_WRITE) == 0) {
1324 		*errorp = KERN_PROTECTION_FAILURE;
1325 		unlock_and_deallocate(&fs);
1326 		return(NULL);
1327 	}
1328 
1329 	/*
1330 	 * On success vm_fault_object() does not unlock or deallocate, so we
1331 	 * do it here.  Note that the returned fs.m will be busied.
1332 	 */
1333 	unlock_things(&fs);
1334 
1335 	/*
1336 	 * Return a held page.  We are not doing any pmap manipulation so do
1337 	 * not set PG_MAPPED.  However, adjust the page flags according to
1338 	 * the fault type because the caller may not use a managed pmapping
1339 	 * (so we don't want to lose the fact that the page will be dirtied
1340 	 * if a write fault was specified).
1341 	 */
1342 	vm_page_hold(fs.m);
1343 	vm_page_activate(fs.m);
1344 	if ((fault_type & VM_PROT_WRITE) || (fault_flags & VM_FAULT_DIRTY))
1345 		vm_page_dirty(fs.m);
1346 	if (fault_flags & VM_FAULT_UNSWAP)
1347 		swap_pager_unswapped(fs.m);
1348 
1349 	/*
1350 	 * Indicate that the page was accessed.
1351 	 */
1352 	vm_page_flag_set(fs.m, PG_REFERENCED);
1353 
1354 	if (curthread->td_lwp) {
1355 		if (fs.hardfault) {
1356 			curthread->td_lwp->lwp_ru.ru_majflt++;
1357 		} else {
1358 			curthread->td_lwp->lwp_ru.ru_minflt++;
1359 		}
1360 	}
1361 
1362 	/*
1363 	 * Unlock everything, and return the held page.
1364 	 */
1365 	vm_page_wakeup(fs.m);
1366 	/*vm_object_deallocate(fs.first_object);*/
1367 	/*fs.first_object = NULL; */
1368 
1369 	*errorp = 0;
1370 	return(fs.m);
1371 }
1372 
1373 /*
1374  * Translate the virtual page number (first_pindex) that is relative
1375  * to the address space into a logical page number that is relative to the
1376  * backing object.  Use the virtual page table pointed to by (vpte).
1377  *
1378  * Possibly downgrade the protection based on the vpte bits.
1379  *
1380  * This implements an N-level page table.  Any level can terminate the
1381  * scan by setting VPTE_PS.   A linear mapping is accomplished by setting
1382  * VPTE_PS in the master page directory entry set via mcontrol(MADV_SETMAP).
1383  */
1384 static
1385 int
1386 vm_fault_vpagetable(struct faultstate *fs, vm_pindex_t *pindex,
1387 		    vpte_t vpte, int fault_type, int allow_nofault)
1388 {
1389 	struct lwbuf *lwb;
1390 	struct lwbuf lwb_cache;
1391 	int vshift = VPTE_FRAME_END - PAGE_SHIFT; /* index bits remaining */
1392 	int result;
1393 	vpte_t *ptep;
1394 
1395 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(fs->first_object));
1396 	for (;;) {
1397 		/*
1398 		 * We cannot proceed if the vpte is not valid, not readable
1399 		 * for a read fault, not writable for a write fault, or
1400 		 * not executable for an instruction execution fault.
1401 		 */
1402 		if ((vpte & VPTE_V) == 0) {
1403 			unlock_and_deallocate(fs);
1404 			return (KERN_FAILURE);
1405 		}
1406 		if ((fault_type & VM_PROT_WRITE) && (vpte & VPTE_RW) == 0) {
1407 			unlock_and_deallocate(fs);
1408 			return (KERN_FAILURE);
1409 		}
1410 		if ((fault_type & VM_PROT_EXECUTE) && (vpte & VPTE_NX)) {
1411 			unlock_and_deallocate(fs);
1412 			return (KERN_FAILURE);
1413 		}
1414 		if ((vpte & VPTE_PS) || vshift == 0)
1415 			break;
1416 
1417 		/*
1418 		 * Get the page table page.  Nominally we only read the page
1419 		 * table, but since we are actively setting VPTE_M and VPTE_A,
1420 		 * tell vm_fault_object() that we are writing it.
1421 		 *
1422 		 * There is currently no real need to optimize this.
1423 		 */
1424 		result = vm_fault_object(fs, (vpte & VPTE_FRAME) >> PAGE_SHIFT,
1425 					 VM_PROT_READ|VM_PROT_WRITE,
1426 					 allow_nofault);
1427 		if (result != KERN_SUCCESS)
1428 			return (result);
1429 
1430 		/*
1431 		 * Process the returned fs.m and look up the page table
1432 		 * entry in the page table page.
1433 		 */
1434 		vshift -= VPTE_PAGE_BITS;
1435 		lwb = lwbuf_alloc(fs->m, &lwb_cache);
1436 		ptep = ((vpte_t *)lwbuf_kva(lwb) +
1437 		        ((*pindex >> vshift) & VPTE_PAGE_MASK));
1438 		vm_page_activate(fs->m);
1439 
1440 		/*
1441 		 * Page table write-back - entire operation including
1442 		 * validation of the pte must be atomic to avoid races
1443 		 * against the vkernel changing the pte.
1444 		 *
1445 		 * If the vpte is valid for the* requested operation, do
1446 		 * a write-back to the page table.
1447 		 *
1448 		 * XXX VPTE_M is not set properly for page directory pages.
1449 		 * It doesn't get set in the page directory if the page table
1450 		 * is modified during a read access.
1451 		 */
1452 		for (;;) {
1453 			vpte_t nvpte;
1454 
1455 			/*
1456 			 * Reload for the cmpset, but make sure the pte is
1457 			 * still valid.
1458 			 */
1459 			vpte = *ptep;
1460 			cpu_ccfence();
1461 			nvpte = vpte;
1462 
1463 			if ((vpte & VPTE_V) == 0)
1464 				break;
1465 
1466 			if ((fault_type & VM_PROT_WRITE) && (vpte & VPTE_RW))
1467 				nvpte |= VPTE_M | VPTE_A;
1468 			if (fault_type & (VM_PROT_READ | VM_PROT_EXECUTE))
1469 				nvpte |= VPTE_A;
1470 			if (vpte == nvpte)
1471 				break;
1472 			if (atomic_cmpset_long(ptep, vpte, nvpte)) {
1473 				vm_page_dirty(fs->m);
1474 				break;
1475 			}
1476 		}
1477 		lwbuf_free(lwb);
1478 		vm_page_flag_set(fs->m, PG_REFERENCED);
1479 		vm_page_wakeup(fs->m);
1480 		fs->m = NULL;
1481 		cleanup_successful_fault(fs);
1482 	}
1483 
1484 	/*
1485 	 * When the vkernel sets VPTE_RW it expects the real kernel to
1486 	 * reflect VPTE_M back when the page is modified via the mapping.
1487 	 * In order to accomplish this the real kernel must map the page
1488 	 * read-only for read faults and use write faults to reflect VPTE_M
1489 	 * back.
1490 	 *
1491 	 * Once VPTE_M has been set, the real kernel's pte allows writing.
1492 	 * If the vkernel clears VPTE_M the vkernel must be sure to
1493 	 * MADV_INVAL the real kernel's mappings to force the real kernel
1494 	 * to re-fault on the next write so oit can set VPTE_M again.
1495 	 */
1496 	if ((fault_type & VM_PROT_WRITE) == 0 &&
1497 	    (vpte & (VPTE_RW | VPTE_M)) != (VPTE_RW | VPTE_M)) {
1498 		fs->first_prot &= ~VM_PROT_WRITE;
1499 	}
1500 
1501 	/*
1502 	 * Disable EXECUTE perms if NX bit is set.
1503 	 */
1504 	if (vpte & VPTE_NX)
1505 		fs->first_prot &= ~VM_PROT_EXECUTE;
1506 
1507 	/*
1508 	 * Combine remaining address bits with the vpte.
1509 	 */
1510 	*pindex = ((vpte & VPTE_FRAME) >> PAGE_SHIFT) +
1511 		  (*pindex & ((1L << vshift) - 1));
1512 	return (KERN_SUCCESS);
1513 }
1514 
1515 
1516 /*
1517  * This is the core of the vm_fault code.
1518  *
1519  * Do all operations required to fault-in (fs.first_object, pindex).  Run
1520  * through the shadow chain as necessary and do required COW or virtual
1521  * copy operations.  The caller has already fully resolved the vm_map_entry
1522  * and, if appropriate, has created a copy-on-write layer.  All we need to
1523  * do is iterate the object chain.
1524  *
1525  * On failure (fs) is unlocked and deallocated and the caller may return or
1526  * retry depending on the failure code.  On success (fs) is NOT unlocked or
1527  * deallocated, fs.m will contained a resolved, busied page, and fs.object
1528  * will have an additional PIP count if it is not equal to fs.first_object.
1529  *
1530  * If locks based on fs->first_shared or fs->shared are insufficient,
1531  * clear the appropriate field(s) and return RETRY.  COWs require that
1532  * first_shared be 0, while page allocations (or frees) require that
1533  * shared be 0.  Renames require that both be 0.
1534  *
1535  * NOTE! fs->[first_]shared might be set with VM_FAULT_DIRTY also set.
1536  *	 we will have to retry with it exclusive if the vm_page is
1537  *	 PG_SWAPPED.
1538  *
1539  * fs->first_object must be held on call.
1540  */
1541 static
1542 int
1543 vm_fault_object(struct faultstate *fs, vm_pindex_t first_pindex,
1544 		vm_prot_t fault_type, int allow_nofault)
1545 {
1546 	vm_object_t next_object;
1547 	vm_pindex_t pindex;
1548 	int error;
1549 
1550 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(fs->first_object));
1551 	fs->prot = fs->first_prot;
1552 	fs->object = fs->first_object;
1553 	pindex = first_pindex;
1554 
1555 	vm_object_chain_acquire(fs->first_object, fs->shared);
1556 	vm_object_pip_add(fs->first_object, 1);
1557 
1558 	/*
1559 	 * If a read fault occurs we try to upgrade the page protection
1560 	 * and make it also writable if possible.  There are three cases
1561 	 * where we cannot make the page mapping writable:
1562 	 *
1563 	 * (1) The mapping is read-only or the VM object is read-only,
1564 	 *     fs->prot above will simply not have VM_PROT_WRITE set.
1565 	 *
1566 	 * (2) If the mapping is a virtual page table fs->first_prot will
1567 	 *     have already been properly adjusted by vm_fault_vpagetable().
1568 	 *     to detect writes so we can set VPTE_M in the virtual page
1569 	 *     table.  Used by vkernels.
1570 	 *
1571 	 * (3) If the VM page is read-only or copy-on-write, upgrading would
1572 	 *     just result in an unnecessary COW fault.
1573 	 *
1574 	 * (4) If the pmap specifically requests A/M bit emulation, downgrade
1575 	 *     here.
1576 	 */
1577 #if 0
1578 	/* see vpagetable code */
1579 	if (fs->entry->maptype == VM_MAPTYPE_VPAGETABLE) {
1580 		if ((fault_type & VM_PROT_WRITE) == 0)
1581 			fs->prot &= ~VM_PROT_WRITE;
1582 	}
1583 #endif
1584 
1585 	if (curthread->td_lwp && curthread->td_lwp->lwp_vmspace &&
1586 	    pmap_emulate_ad_bits(&curthread->td_lwp->lwp_vmspace->vm_pmap)) {
1587 		if ((fault_type & VM_PROT_WRITE) == 0)
1588 			fs->prot &= ~VM_PROT_WRITE;
1589 	}
1590 
1591 	/* vm_object_hold(fs->object); implied b/c object == first_object */
1592 
1593 	for (;;) {
1594 		/*
1595 		 * The entire backing chain from first_object to object
1596 		 * inclusive is chainlocked.
1597 		 *
1598 		 * If the object is dead, we stop here
1599 		 */
1600 		if (fs->object->flags & OBJ_DEAD) {
1601 			vm_object_pip_wakeup(fs->first_object);
1602 			vm_object_chain_release_all(fs->first_object,
1603 						    fs->object);
1604 			if (fs->object != fs->first_object)
1605 				vm_object_drop(fs->object);
1606 			unlock_and_deallocate(fs);
1607 			return (KERN_PROTECTION_FAILURE);
1608 		}
1609 
1610 		/*
1611 		 * See if the page is resident.  Wait/Retry if the page is
1612 		 * busy (lots of stuff may have changed so we can't continue
1613 		 * in that case).
1614 		 *
1615 		 * We can theoretically allow the soft-busy case on a read
1616 		 * fault if the page is marked valid, but since such
1617 		 * pages are typically already pmap'd, putting that
1618 		 * special case in might be more effort then it is
1619 		 * worth.  We cannot under any circumstances mess
1620 		 * around with a vm_page_t->busy page except, perhaps,
1621 		 * to pmap it.
1622 		 */
1623 		fs->m = vm_page_lookup_busy_try(fs->object, pindex,
1624 						TRUE, &error);
1625 		if (error) {
1626 			vm_object_pip_wakeup(fs->first_object);
1627 			vm_object_chain_release_all(fs->first_object,
1628 						    fs->object);
1629 			if (fs->object != fs->first_object)
1630 				vm_object_drop(fs->object);
1631 			unlock_things(fs);
1632 			vm_page_sleep_busy(fs->m, TRUE, "vmpfw");
1633 			mycpu->gd_cnt.v_intrans++;
1634 			/*vm_object_deallocate(fs->first_object);*/
1635 			/*fs->first_object = NULL;*/
1636 			fs->m = NULL;
1637 			return (KERN_TRY_AGAIN);
1638 		}
1639 		if (fs->m) {
1640 			/*
1641 			 * The page is busied for us.
1642 			 *
1643 			 * If reactivating a page from PQ_CACHE we may have
1644 			 * to rate-limit.
1645 			 */
1646 			int queue = fs->m->queue;
1647 			vm_page_unqueue_nowakeup(fs->m);
1648 
1649 			if ((queue - fs->m->pc) == PQ_CACHE &&
1650 			    vm_page_count_severe()) {
1651 				vm_page_activate(fs->m);
1652 				vm_page_wakeup(fs->m);
1653 				fs->m = NULL;
1654 				vm_object_pip_wakeup(fs->first_object);
1655 				vm_object_chain_release_all(fs->first_object,
1656 							    fs->object);
1657 				if (fs->object != fs->first_object)
1658 					vm_object_drop(fs->object);
1659 				unlock_and_deallocate(fs);
1660 				if (allow_nofault == 0 ||
1661 				    (curthread->td_flags & TDF_NOFAULT) == 0) {
1662 					thread_t td;
1663 
1664 					vm_wait_pfault();
1665 					td = curthread;
1666 					if (td->td_proc && (td->td_proc->p_flags & P_LOWMEMKILL))
1667 						return (KERN_PROTECTION_FAILURE);
1668 				}
1669 				return (KERN_TRY_AGAIN);
1670 			}
1671 
1672 			/*
1673 			 * If it still isn't completely valid (readable),
1674 			 * or if a read-ahead-mark is set on the VM page,
1675 			 * jump to readrest, else we found the page and
1676 			 * can return.
1677 			 *
1678 			 * We can release the spl once we have marked the
1679 			 * page busy.
1680 			 */
1681 			if (fs->m->object != &kernel_object) {
1682 				if ((fs->m->valid & VM_PAGE_BITS_ALL) !=
1683 				    VM_PAGE_BITS_ALL) {
1684 					goto readrest;
1685 				}
1686 				if (fs->m->flags & PG_RAM) {
1687 					if (debug_cluster)
1688 						kprintf("R");
1689 					vm_page_flag_clear(fs->m, PG_RAM);
1690 					goto readrest;
1691 				}
1692 			}
1693 			break; /* break to PAGE HAS BEEN FOUND */
1694 		}
1695 
1696 		/*
1697 		 * Page is not resident, If this is the search termination
1698 		 * or the pager might contain the page, allocate a new page.
1699 		 */
1700 		if (TRYPAGER(fs) || fs->object == fs->first_object) {
1701 			/*
1702 			 * Allocating, must be exclusive.
1703 			 */
1704 			if (fs->object == fs->first_object &&
1705 			    fs->first_shared) {
1706 				fs->first_shared = 0;
1707 				vm_object_pip_wakeup(fs->first_object);
1708 				vm_object_chain_release_all(fs->first_object,
1709 							    fs->object);
1710 				if (fs->object != fs->first_object)
1711 					vm_object_drop(fs->object);
1712 				unlock_and_deallocate(fs);
1713 				return (KERN_TRY_AGAIN);
1714 			}
1715 			if (fs->object != fs->first_object &&
1716 			    fs->shared) {
1717 				fs->first_shared = 0;
1718 				fs->shared = 0;
1719 				vm_object_pip_wakeup(fs->first_object);
1720 				vm_object_chain_release_all(fs->first_object,
1721 							    fs->object);
1722 				if (fs->object != fs->first_object)
1723 					vm_object_drop(fs->object);
1724 				unlock_and_deallocate(fs);
1725 				return (KERN_TRY_AGAIN);
1726 			}
1727 
1728 			/*
1729 			 * If the page is beyond the object size we fail
1730 			 */
1731 			if (pindex >= fs->object->size) {
1732 				vm_object_pip_wakeup(fs->first_object);
1733 				vm_object_chain_release_all(fs->first_object,
1734 							    fs->object);
1735 				if (fs->object != fs->first_object)
1736 					vm_object_drop(fs->object);
1737 				unlock_and_deallocate(fs);
1738 				return (KERN_PROTECTION_FAILURE);
1739 			}
1740 
1741 			/*
1742 			 * Allocate a new page for this object/offset pair.
1743 			 *
1744 			 * It is possible for the allocation to race, so
1745 			 * handle the case.
1746 			 */
1747 			fs->m = NULL;
1748 			if (!vm_page_count_severe()) {
1749 				fs->m = vm_page_alloc(fs->object, pindex,
1750 				    ((fs->vp || fs->object->backing_object) ?
1751 					VM_ALLOC_NULL_OK | VM_ALLOC_NORMAL :
1752 					VM_ALLOC_NULL_OK | VM_ALLOC_NORMAL |
1753 					VM_ALLOC_USE_GD | VM_ALLOC_ZERO));
1754 			}
1755 			if (fs->m == NULL) {
1756 				vm_object_pip_wakeup(fs->first_object);
1757 				vm_object_chain_release_all(fs->first_object,
1758 							    fs->object);
1759 				if (fs->object != fs->first_object)
1760 					vm_object_drop(fs->object);
1761 				unlock_and_deallocate(fs);
1762 				if (allow_nofault == 0 ||
1763 				    (curthread->td_flags & TDF_NOFAULT) == 0) {
1764 					thread_t td;
1765 
1766 					vm_wait_pfault();
1767 					td = curthread;
1768 					if (td->td_proc && (td->td_proc->p_flags & P_LOWMEMKILL))
1769 						return (KERN_PROTECTION_FAILURE);
1770 				}
1771 				return (KERN_TRY_AGAIN);
1772 			}
1773 
1774 			/*
1775 			 * Fall through to readrest.  We have a new page which
1776 			 * will have to be paged (since m->valid will be 0).
1777 			 */
1778 		}
1779 
1780 readrest:
1781 		/*
1782 		 * We have found an invalid or partially valid page, a
1783 		 * page with a read-ahead mark which might be partially or
1784 		 * fully valid (and maybe dirty too), or we have allocated
1785 		 * a new page.
1786 		 *
1787 		 * Attempt to fault-in the page if there is a chance that the
1788 		 * pager has it, and potentially fault in additional pages
1789 		 * at the same time.
1790 		 *
1791 		 * If TRYPAGER is true then fs.m will be non-NULL and busied
1792 		 * for us.
1793 		 */
1794 		if (TRYPAGER(fs)) {
1795 			int rv;
1796 			int seqaccess;
1797 			u_char behavior = vm_map_entry_behavior(fs->entry);
1798 
1799 			if (behavior == MAP_ENTRY_BEHAV_RANDOM)
1800 				seqaccess = 0;
1801 			else
1802 				seqaccess = -1;
1803 
1804 			/*
1805 			 * Doing I/O may synchronously insert additional
1806 			 * pages so we can't be shared at this point either.
1807 			 *
1808 			 * NOTE: We can't free fs->m here in the allocated
1809 			 *	 case (fs->object != fs->first_object) as
1810 			 *	 this would require an exclusively locked
1811 			 *	 VM object.
1812 			 */
1813 			if (fs->object == fs->first_object &&
1814 			    fs->first_shared) {
1815 				vm_page_deactivate(fs->m);
1816 				vm_page_wakeup(fs->m);
1817 				fs->m = NULL;
1818 				fs->first_shared = 0;
1819 				vm_object_pip_wakeup(fs->first_object);
1820 				vm_object_chain_release_all(fs->first_object,
1821 							    fs->object);
1822 				if (fs->object != fs->first_object)
1823 					vm_object_drop(fs->object);
1824 				unlock_and_deallocate(fs);
1825 				return (KERN_TRY_AGAIN);
1826 			}
1827 			if (fs->object != fs->first_object &&
1828 			    fs->shared) {
1829 				vm_page_deactivate(fs->m);
1830 				vm_page_wakeup(fs->m);
1831 				fs->m = NULL;
1832 				fs->first_shared = 0;
1833 				fs->shared = 0;
1834 				vm_object_pip_wakeup(fs->first_object);
1835 				vm_object_chain_release_all(fs->first_object,
1836 							    fs->object);
1837 				if (fs->object != fs->first_object)
1838 					vm_object_drop(fs->object);
1839 				unlock_and_deallocate(fs);
1840 				return (KERN_TRY_AGAIN);
1841 			}
1842 
1843 			/*
1844 			 * Avoid deadlocking against the map when doing I/O.
1845 			 * fs.object and the page is BUSY'd.
1846 			 *
1847 			 * NOTE: Once unlocked, fs->entry can become stale
1848 			 *	 so this will NULL it out.
1849 			 *
1850 			 * NOTE: fs->entry is invalid until we relock the
1851 			 *	 map and verify that the timestamp has not
1852 			 *	 changed.
1853 			 */
1854 			unlock_map(fs);
1855 
1856 			/*
1857 			 * Acquire the page data.  We still hold a ref on
1858 			 * fs.object and the page has been BUSY's.
1859 			 *
1860 			 * The pager may replace the page (for example, in
1861 			 * order to enter a fictitious page into the
1862 			 * object).  If it does so it is responsible for
1863 			 * cleaning up the passed page and properly setting
1864 			 * the new page BUSY.
1865 			 *
1866 			 * If we got here through a PG_RAM read-ahead
1867 			 * mark the page may be partially dirty and thus
1868 			 * not freeable.  Don't bother checking to see
1869 			 * if the pager has the page because we can't free
1870 			 * it anyway.  We have to depend on the get_page
1871 			 * operation filling in any gaps whether there is
1872 			 * backing store or not.
1873 			 */
1874 			rv = vm_pager_get_page(fs->object, &fs->m, seqaccess);
1875 
1876 			if (rv == VM_PAGER_OK) {
1877 				/*
1878 				 * Relookup in case pager changed page. Pager
1879 				 * is responsible for disposition of old page
1880 				 * if moved.
1881 				 *
1882 				 * XXX other code segments do relookups too.
1883 				 * It's a bad abstraction that needs to be
1884 				 * fixed/removed.
1885 				 */
1886 				fs->m = vm_page_lookup(fs->object, pindex);
1887 				if (fs->m == NULL) {
1888 					vm_object_pip_wakeup(fs->first_object);
1889 					vm_object_chain_release_all(
1890 						fs->first_object, fs->object);
1891 					if (fs->object != fs->first_object)
1892 						vm_object_drop(fs->object);
1893 					unlock_and_deallocate(fs);
1894 					return (KERN_TRY_AGAIN);
1895 				}
1896 				++fs->hardfault;
1897 				break; /* break to PAGE HAS BEEN FOUND */
1898 			}
1899 
1900 			/*
1901 			 * Remove the bogus page (which does not exist at this
1902 			 * object/offset); before doing so, we must get back
1903 			 * our object lock to preserve our invariant.
1904 			 *
1905 			 * Also wake up any other process that may want to bring
1906 			 * in this page.
1907 			 *
1908 			 * If this is the top-level object, we must leave the
1909 			 * busy page to prevent another process from rushing
1910 			 * past us, and inserting the page in that object at
1911 			 * the same time that we are.
1912 			 */
1913 			if (rv == VM_PAGER_ERROR) {
1914 				if (curproc) {
1915 					kprintf("vm_fault: pager read error, "
1916 						"pid %d (%s)\n",
1917 						curproc->p_pid,
1918 						curproc->p_comm);
1919 				} else {
1920 					kprintf("vm_fault: pager read error, "
1921 						"thread %p (%s)\n",
1922 						curthread,
1923 						curproc->p_comm);
1924 				}
1925 			}
1926 
1927 			/*
1928 			 * Data outside the range of the pager or an I/O error
1929 			 *
1930 			 * The page may have been wired during the pagein,
1931 			 * e.g. by the buffer cache, and cannot simply be
1932 			 * freed.  Call vnode_pager_freepage() to deal with it.
1933 			 *
1934 			 * Also note that we cannot free the page if we are
1935 			 * holding the related object shared. XXX not sure
1936 			 * what to do in that case.
1937 			 */
1938 			if (fs->object != fs->first_object) {
1939 				/*
1940 				 * Scrap the page.  Check to see if the
1941 				 * vm_pager_get_page() call has already
1942 				 * dealt with it.
1943 				 */
1944 				if (fs->m) {
1945 					vnode_pager_freepage(fs->m);
1946 					fs->m = NULL;
1947 				}
1948 
1949 				/*
1950 				 * XXX - we cannot just fall out at this
1951 				 * point, m has been freed and is invalid!
1952 				 */
1953 			}
1954 			/*
1955 			 * XXX - the check for kernel_map is a kludge to work
1956 			 * around having the machine panic on a kernel space
1957 			 * fault w/ I/O error.
1958 			 */
1959 			if (((fs->map != &kernel_map) &&
1960 			    (rv == VM_PAGER_ERROR)) || (rv == VM_PAGER_BAD)) {
1961 				if (fs->m) {
1962 					if (fs->first_shared) {
1963 						vm_page_deactivate(fs->m);
1964 						vm_page_wakeup(fs->m);
1965 					} else {
1966 						vnode_pager_freepage(fs->m);
1967 					}
1968 					fs->m = NULL;
1969 				}
1970 				vm_object_pip_wakeup(fs->first_object);
1971 				vm_object_chain_release_all(fs->first_object,
1972 							    fs->object);
1973 				if (fs->object != fs->first_object)
1974 					vm_object_drop(fs->object);
1975 				unlock_and_deallocate(fs);
1976 				if (rv == VM_PAGER_ERROR)
1977 					return (KERN_FAILURE);
1978 				else
1979 					return (KERN_PROTECTION_FAILURE);
1980 				/* NOT REACHED */
1981 			}
1982 		}
1983 
1984 		/*
1985 		 * We get here if the object has a default pager (or unwiring)
1986 		 * or the pager doesn't have the page.
1987 		 *
1988 		 * fs->first_m will be used for the COW unless we find a
1989 		 * deeper page to be mapped read-only, in which case the
1990 		 * unlock*(fs) will free first_m.
1991 		 */
1992 		if (fs->object == fs->first_object)
1993 			fs->first_m = fs->m;
1994 
1995 		/*
1996 		 * Move on to the next object.  The chain lock should prevent
1997 		 * the backing_object from getting ripped out from under us.
1998 		 *
1999 		 * The object lock for the next object is governed by
2000 		 * fs->shared.
2001 		 */
2002 		if ((next_object = fs->object->backing_object) != NULL) {
2003 			if (fs->shared)
2004 				vm_object_hold_shared(next_object);
2005 			else
2006 				vm_object_hold(next_object);
2007 			vm_object_chain_acquire(next_object, fs->shared);
2008 			KKASSERT(next_object == fs->object->backing_object);
2009 			pindex += OFF_TO_IDX(fs->object->backing_object_offset);
2010 		}
2011 
2012 		if (next_object == NULL) {
2013 			/*
2014 			 * If there's no object left, fill the page in the top
2015 			 * object with zeros.
2016 			 */
2017 			if (fs->object != fs->first_object) {
2018 #if 0
2019 				if (fs->first_object->backing_object !=
2020 				    fs->object) {
2021 					vm_object_hold(fs->first_object->backing_object);
2022 				}
2023 #endif
2024 				vm_object_chain_release_all(
2025 					fs->first_object->backing_object,
2026 					fs->object);
2027 #if 0
2028 				if (fs->first_object->backing_object !=
2029 				    fs->object) {
2030 					vm_object_drop(fs->first_object->backing_object);
2031 				}
2032 #endif
2033 				vm_object_pip_wakeup(fs->object);
2034 				vm_object_drop(fs->object);
2035 				fs->object = fs->first_object;
2036 				pindex = first_pindex;
2037 				fs->m = fs->first_m;
2038 			}
2039 			fs->first_m = NULL;
2040 
2041 			/*
2042 			 * Zero the page and mark it valid.
2043 			 */
2044 			vm_page_zero_fill(fs->m);
2045 			mycpu->gd_cnt.v_zfod++;
2046 			fs->m->valid = VM_PAGE_BITS_ALL;
2047 			break;	/* break to PAGE HAS BEEN FOUND */
2048 		}
2049 		if (fs->object != fs->first_object) {
2050 			vm_object_pip_wakeup(fs->object);
2051 			vm_object_lock_swap();
2052 			vm_object_drop(fs->object);
2053 		}
2054 		KASSERT(fs->object != next_object,
2055 			("object loop %p", next_object));
2056 		fs->object = next_object;
2057 		vm_object_pip_add(fs->object, 1);
2058 	}
2059 
2060 	/*
2061 	 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
2062 	 * is held.]
2063 	 *
2064 	 * object still held.
2065 	 * vm_map may not be locked (determined by fs->lookup_still_valid)
2066 	 *
2067 	 * local shared variable may be different from fs->shared.
2068 	 *
2069 	 * If the page is being written, but isn't already owned by the
2070 	 * top-level object, we have to copy it into a new page owned by the
2071 	 * top-level object.
2072 	 */
2073 	KASSERT((fs->m->busy_count & PBUSY_LOCKED) != 0,
2074 		("vm_fault: not busy after main loop"));
2075 
2076 	if (fs->object != fs->first_object) {
2077 		/*
2078 		 * We only really need to copy if we want to write it.
2079 		 */
2080 		if (fault_type & VM_PROT_WRITE) {
2081 			/*
2082 			 * This allows pages to be virtually copied from a
2083 			 * backing_object into the first_object, where the
2084 			 * backing object has no other refs to it, and cannot
2085 			 * gain any more refs.  Instead of a bcopy, we just
2086 			 * move the page from the backing object to the
2087 			 * first object.  Note that we must mark the page
2088 			 * dirty in the first object so that it will go out
2089 			 * to swap when needed.
2090 			 */
2091 			if (virtual_copy_ok(fs)) {
2092 				/*
2093 				 * (first_m) and (m) are both busied.  We have
2094 				 * move (m) into (first_m)'s object/pindex
2095 				 * in an atomic fashion, then free (first_m).
2096 				 *
2097 				 * first_object is held so second remove
2098 				 * followed by the rename should wind
2099 				 * up being atomic.  vm_page_free() might
2100 				 * block so we don't do it until after the
2101 				 * rename.
2102 				 */
2103 				vm_page_protect(fs->first_m, VM_PROT_NONE);
2104 				vm_page_remove(fs->first_m);
2105 				vm_page_rename(fs->m, fs->first_object,
2106 					       first_pindex);
2107 				vm_page_free(fs->first_m);
2108 				fs->first_m = fs->m;
2109 				fs->m = NULL;
2110 				mycpu->gd_cnt.v_cow_optim++;
2111 			} else {
2112 				/*
2113 				 * Oh, well, lets copy it.
2114 				 *
2115 				 * Why are we unmapping the original page
2116 				 * here?  Well, in short, not all accessors
2117 				 * of user memory go through the pmap.  The
2118 				 * procfs code doesn't have access user memory
2119 				 * via a local pmap, so vm_fault_page*()
2120 				 * can't call pmap_enter().  And the umtx*()
2121 				 * code may modify the COW'd page via a DMAP
2122 				 * or kernel mapping and not via the pmap,
2123 				 * leaving the original page still mapped
2124 				 * read-only into the pmap.
2125 				 *
2126 				 * So we have to remove the page from at
2127 				 * least the current pmap if it is in it.
2128 				 *
2129 				 * We used to just remove it from all pmaps
2130 				 * but that creates inefficiencies on SMP,
2131 				 * particularly for COW program & library
2132 				 * mappings that are concurrently exec'd.
2133 				 * Only remove the page from the current
2134 				 * pmap.
2135 				 */
2136 				KKASSERT(fs->first_shared == 0);
2137 				vm_page_copy(fs->m, fs->first_m);
2138 				/*vm_page_protect(fs->m, VM_PROT_NONE);*/
2139 				pmap_remove_specific(
2140 				    &curthread->td_lwp->lwp_vmspace->vm_pmap,
2141 				    fs->m);
2142 			}
2143 
2144 			/*
2145 			 * We no longer need the old page or object.
2146 			 */
2147 			if (fs->m)
2148 				release_page(fs);
2149 
2150 			/*
2151 			 * We intend to revert to first_object, undo the
2152 			 * chain lock through to that.
2153 			 */
2154 #if 0
2155 			if (fs->first_object->backing_object != fs->object)
2156 				vm_object_hold(fs->first_object->backing_object);
2157 #endif
2158 			vm_object_chain_release_all(
2159 					fs->first_object->backing_object,
2160 					fs->object);
2161 #if 0
2162 			if (fs->first_object->backing_object != fs->object)
2163 				vm_object_drop(fs->first_object->backing_object);
2164 #endif
2165 
2166 			/*
2167 			 * fs->object != fs->first_object due to above
2168 			 * conditional
2169 			 */
2170 			vm_object_pip_wakeup(fs->object);
2171 			vm_object_drop(fs->object);
2172 
2173 			/*
2174 			 * Only use the new page below...
2175 			 */
2176 			mycpu->gd_cnt.v_cow_faults++;
2177 			fs->m = fs->first_m;
2178 			fs->object = fs->first_object;
2179 			pindex = first_pindex;
2180 		} else {
2181 			/*
2182 			 * If it wasn't a write fault avoid having to copy
2183 			 * the page by mapping it read-only.
2184 			 */
2185 			fs->prot &= ~VM_PROT_WRITE;
2186 		}
2187 	}
2188 
2189 	/*
2190 	 * Relock the map if necessary, then check the generation count.
2191 	 * relock_map() will update fs->timestamp to account for the
2192 	 * relocking if necessary.
2193 	 *
2194 	 * If the count has changed after relocking then all sorts of
2195 	 * crap may have happened and we have to retry.
2196 	 *
2197 	 * NOTE: The relock_map() can fail due to a deadlock against
2198 	 *	 the vm_page we are holding BUSY.
2199 	 */
2200 	if (fs->lookup_still_valid == FALSE && fs->map) {
2201 		if (relock_map(fs) ||
2202 		    fs->map->timestamp != fs->map_generation) {
2203 			release_page(fs);
2204 			vm_object_pip_wakeup(fs->first_object);
2205 			vm_object_chain_release_all(fs->first_object,
2206 						    fs->object);
2207 			if (fs->object != fs->first_object)
2208 				vm_object_drop(fs->object);
2209 			unlock_and_deallocate(fs);
2210 			return (KERN_TRY_AGAIN);
2211 		}
2212 	}
2213 
2214 	/*
2215 	 * If the fault is a write, we know that this page is being
2216 	 * written NOW so dirty it explicitly to save on pmap_is_modified()
2217 	 * calls later.
2218 	 *
2219 	 * If this is a NOSYNC mmap we do not want to set PG_NOSYNC
2220 	 * if the page is already dirty to prevent data written with
2221 	 * the expectation of being synced from not being synced.
2222 	 * Likewise if this entry does not request NOSYNC then make
2223 	 * sure the page isn't marked NOSYNC.  Applications sharing
2224 	 * data should use the same flags to avoid ping ponging.
2225 	 *
2226 	 * Also tell the backing pager, if any, that it should remove
2227 	 * any swap backing since the page is now dirty.
2228 	 */
2229 	vm_page_activate(fs->m);
2230 	if (fs->prot & VM_PROT_WRITE) {
2231 		vm_object_set_writeable_dirty(fs->m->object);
2232 		vm_set_nosync(fs->m, fs->entry);
2233 		if (fs->fault_flags & VM_FAULT_DIRTY) {
2234 			vm_page_dirty(fs->m);
2235 			if (fs->m->flags & PG_SWAPPED) {
2236 				/*
2237 				 * If the page is swapped out we have to call
2238 				 * swap_pager_unswapped() which requires an
2239 				 * exclusive object lock.  If we are shared,
2240 				 * we must clear the shared flag and retry.
2241 				 */
2242 				if ((fs->object == fs->first_object &&
2243 				     fs->first_shared) ||
2244 				    (fs->object != fs->first_object &&
2245 				     fs->shared)) {
2246 					vm_page_wakeup(fs->m);
2247 					fs->m = NULL;
2248 					if (fs->object == fs->first_object)
2249 						fs->first_shared = 0;
2250 					else
2251 						fs->shared = 0;
2252 					vm_object_pip_wakeup(fs->first_object);
2253 					vm_object_chain_release_all(
2254 						fs->first_object, fs->object);
2255 					if (fs->object != fs->first_object)
2256 						vm_object_drop(fs->object);
2257 					unlock_and_deallocate(fs);
2258 					return (KERN_TRY_AGAIN);
2259 				}
2260 				swap_pager_unswapped(fs->m);
2261 			}
2262 		}
2263 	}
2264 
2265 	vm_object_pip_wakeup(fs->first_object);
2266 	vm_object_chain_release_all(fs->first_object, fs->object);
2267 	if (fs->object != fs->first_object)
2268 		vm_object_drop(fs->object);
2269 
2270 	/*
2271 	 * Page had better still be busy.  We are still locked up and
2272 	 * fs->object will have another PIP reference if it is not equal
2273 	 * to fs->first_object.
2274 	 */
2275 	KASSERT(fs->m->busy_count & PBUSY_LOCKED,
2276 		("vm_fault: page %p not busy!", fs->m));
2277 
2278 	/*
2279 	 * Sanity check: page must be completely valid or it is not fit to
2280 	 * map into user space.  vm_pager_get_pages() ensures this.
2281 	 */
2282 	if (fs->m->valid != VM_PAGE_BITS_ALL) {
2283 		vm_page_zero_invalid(fs->m, TRUE);
2284 		kprintf("Warning: page %p partially invalid on fault\n", fs->m);
2285 	}
2286 
2287 	return (KERN_SUCCESS);
2288 }
2289 
2290 /*
2291  * Wire down a range of virtual addresses in a map.  The entry in question
2292  * should be marked in-transition and the map must be locked.  We must
2293  * release the map temporarily while faulting-in the page to avoid a
2294  * deadlock.  Note that the entry may be clipped while we are blocked but
2295  * will never be freed.
2296  *
2297  * No requirements.
2298  */
2299 int
2300 vm_fault_wire(vm_map_t map, vm_map_entry_t entry,
2301 	      boolean_t user_wire, int kmflags)
2302 {
2303 	boolean_t fictitious;
2304 	vm_offset_t start;
2305 	vm_offset_t end;
2306 	vm_offset_t va;
2307 	pmap_t pmap;
2308 	int rv;
2309 	int wire_prot;
2310 	int fault_flags;
2311 	vm_page_t m;
2312 
2313 	if (user_wire) {
2314 		wire_prot = VM_PROT_READ;
2315 		fault_flags = VM_FAULT_USER_WIRE;
2316 	} else {
2317 		wire_prot = VM_PROT_READ | VM_PROT_WRITE;
2318 		fault_flags = VM_FAULT_CHANGE_WIRING;
2319 	}
2320 	if (kmflags & KM_NOTLBSYNC)
2321 		wire_prot |= VM_PROT_NOSYNC;
2322 
2323 	pmap = vm_map_pmap(map);
2324 	start = entry->start;
2325 	end = entry->end;
2326 
2327 	switch(entry->maptype) {
2328 	case VM_MAPTYPE_NORMAL:
2329 	case VM_MAPTYPE_VPAGETABLE:
2330 		fictitious = entry->object.vm_object &&
2331 			    ((entry->object.vm_object->type == OBJT_DEVICE) ||
2332 			     (entry->object.vm_object->type == OBJT_MGTDEVICE));
2333 		break;
2334 	case VM_MAPTYPE_UKSMAP:
2335 		fictitious = TRUE;
2336 		break;
2337 	default:
2338 		fictitious = FALSE;
2339 		break;
2340 	}
2341 
2342 	if (entry->eflags & MAP_ENTRY_KSTACK)
2343 		start += PAGE_SIZE;
2344 	map->timestamp++;
2345 	vm_map_unlock(map);
2346 
2347 	/*
2348 	 * We simulate a fault to get the page and enter it in the physical
2349 	 * map.
2350 	 */
2351 	for (va = start; va < end; va += PAGE_SIZE) {
2352 		rv = vm_fault(map, va, wire_prot, fault_flags);
2353 		if (rv) {
2354 			while (va > start) {
2355 				va -= PAGE_SIZE;
2356 				m = pmap_unwire(pmap, va);
2357 				if (m && !fictitious) {
2358 					vm_page_busy_wait(m, FALSE, "vmwrpg");
2359 					vm_page_unwire(m, 1);
2360 					vm_page_wakeup(m);
2361 				}
2362 			}
2363 			goto done;
2364 		}
2365 	}
2366 	rv = KERN_SUCCESS;
2367 done:
2368 	vm_map_lock(map);
2369 
2370 	return (rv);
2371 }
2372 
2373 /*
2374  * Unwire a range of virtual addresses in a map.  The map should be
2375  * locked.
2376  */
2377 void
2378 vm_fault_unwire(vm_map_t map, vm_map_entry_t entry)
2379 {
2380 	boolean_t fictitious;
2381 	vm_offset_t start;
2382 	vm_offset_t end;
2383 	vm_offset_t va;
2384 	pmap_t pmap;
2385 	vm_page_t m;
2386 
2387 	pmap = vm_map_pmap(map);
2388 	start = entry->start;
2389 	end = entry->end;
2390 	fictitious = entry->object.vm_object &&
2391 			((entry->object.vm_object->type == OBJT_DEVICE) ||
2392 			 (entry->object.vm_object->type == OBJT_MGTDEVICE));
2393 	if (entry->eflags & MAP_ENTRY_KSTACK)
2394 		start += PAGE_SIZE;
2395 
2396 	/*
2397 	 * Since the pages are wired down, we must be able to get their
2398 	 * mappings from the physical map system.
2399 	 */
2400 	for (va = start; va < end; va += PAGE_SIZE) {
2401 		m = pmap_unwire(pmap, va);
2402 		if (m && !fictitious) {
2403 			vm_page_busy_wait(m, FALSE, "vmwrpg");
2404 			vm_page_unwire(m, 1);
2405 			vm_page_wakeup(m);
2406 		}
2407 	}
2408 }
2409 
2410 /*
2411  * Copy all of the pages from a wired-down map entry to another.
2412  *
2413  * The source and destination maps must be locked for write.
2414  * The source and destination maps token must be held
2415  * The source map entry must be wired down (or be a sharing map
2416  * entry corresponding to a main map entry that is wired down).
2417  *
2418  * No other requirements.
2419  *
2420  * XXX do segment optimization
2421  */
2422 void
2423 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
2424 		    vm_map_entry_t dst_entry, vm_map_entry_t src_entry)
2425 {
2426 	vm_object_t dst_object;
2427 	vm_object_t src_object;
2428 	vm_ooffset_t dst_offset;
2429 	vm_ooffset_t src_offset;
2430 	vm_prot_t prot;
2431 	vm_offset_t vaddr;
2432 	vm_page_t dst_m;
2433 	vm_page_t src_m;
2434 
2435 	src_object = src_entry->object.vm_object;
2436 	src_offset = src_entry->offset;
2437 
2438 	/*
2439 	 * Create the top-level object for the destination entry. (Doesn't
2440 	 * actually shadow anything - we copy the pages directly.)
2441 	 */
2442 	vm_map_entry_allocate_object(dst_entry);
2443 	dst_object = dst_entry->object.vm_object;
2444 
2445 	prot = dst_entry->max_protection;
2446 
2447 	/*
2448 	 * Loop through all of the pages in the entry's range, copying each
2449 	 * one from the source object (it should be there) to the destination
2450 	 * object.
2451 	 */
2452 	vm_object_hold(src_object);
2453 	vm_object_hold(dst_object);
2454 
2455 	for (vaddr = dst_entry->start, dst_offset = 0;
2456 	     vaddr < dst_entry->end;
2457 	     vaddr += PAGE_SIZE, dst_offset += PAGE_SIZE) {
2458 
2459 		/*
2460 		 * Allocate a page in the destination object
2461 		 */
2462 		do {
2463 			dst_m = vm_page_alloc(dst_object,
2464 					      OFF_TO_IDX(dst_offset),
2465 					      VM_ALLOC_NORMAL);
2466 			if (dst_m == NULL) {
2467 				vm_wait(0);
2468 			}
2469 		} while (dst_m == NULL);
2470 
2471 		/*
2472 		 * Find the page in the source object, and copy it in.
2473 		 * (Because the source is wired down, the page will be in
2474 		 * memory.)
2475 		 */
2476 		src_m = vm_page_lookup(src_object,
2477 				       OFF_TO_IDX(dst_offset + src_offset));
2478 		if (src_m == NULL)
2479 			panic("vm_fault_copy_wired: page missing");
2480 
2481 		vm_page_copy(src_m, dst_m);
2482 
2483 		/*
2484 		 * Enter it in the pmap...
2485 		 */
2486 		pmap_enter(dst_map->pmap, vaddr, dst_m, prot, FALSE, dst_entry);
2487 
2488 		/*
2489 		 * Mark it no longer busy, and put it on the active list.
2490 		 */
2491 		vm_page_activate(dst_m);
2492 		vm_page_wakeup(dst_m);
2493 	}
2494 	vm_object_drop(dst_object);
2495 	vm_object_drop(src_object);
2496 }
2497 
2498 #if 0
2499 
2500 /*
2501  * This routine checks around the requested page for other pages that
2502  * might be able to be faulted in.  This routine brackets the viable
2503  * pages for the pages to be paged in.
2504  *
2505  * Inputs:
2506  *	m, rbehind, rahead
2507  *
2508  * Outputs:
2509  *  marray (array of vm_page_t), reqpage (index of requested page)
2510  *
2511  * Return value:
2512  *  number of pages in marray
2513  */
2514 static int
2515 vm_fault_additional_pages(vm_page_t m, int rbehind, int rahead,
2516 			  vm_page_t *marray, int *reqpage)
2517 {
2518 	int i,j;
2519 	vm_object_t object;
2520 	vm_pindex_t pindex, startpindex, endpindex, tpindex;
2521 	vm_page_t rtm;
2522 	int cbehind, cahead;
2523 
2524 	object = m->object;
2525 	pindex = m->pindex;
2526 
2527 	/*
2528 	 * we don't fault-ahead for device pager
2529 	 */
2530 	if ((object->type == OBJT_DEVICE) ||
2531 	    (object->type == OBJT_MGTDEVICE)) {
2532 		*reqpage = 0;
2533 		marray[0] = m;
2534 		return 1;
2535 	}
2536 
2537 	/*
2538 	 * if the requested page is not available, then give up now
2539 	 */
2540 	if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
2541 		*reqpage = 0;	/* not used by caller, fix compiler warn */
2542 		return 0;
2543 	}
2544 
2545 	if ((cbehind == 0) && (cahead == 0)) {
2546 		*reqpage = 0;
2547 		marray[0] = m;
2548 		return 1;
2549 	}
2550 
2551 	if (rahead > cahead) {
2552 		rahead = cahead;
2553 	}
2554 
2555 	if (rbehind > cbehind) {
2556 		rbehind = cbehind;
2557 	}
2558 
2559 	/*
2560 	 * Do not do any readahead if we have insufficient free memory.
2561 	 *
2562 	 * XXX code was broken disabled before and has instability
2563 	 * with this conditonal fixed, so shortcut for now.
2564 	 */
2565 	if (burst_fault == 0 || vm_page_count_severe()) {
2566 		marray[0] = m;
2567 		*reqpage = 0;
2568 		return 1;
2569 	}
2570 
2571 	/*
2572 	 * scan backward for the read behind pages -- in memory
2573 	 *
2574 	 * Assume that if the page is not found an interrupt will not
2575 	 * create it.  Theoretically interrupts can only remove (busy)
2576 	 * pages, not create new associations.
2577 	 */
2578 	if (pindex > 0) {
2579 		if (rbehind > pindex) {
2580 			rbehind = pindex;
2581 			startpindex = 0;
2582 		} else {
2583 			startpindex = pindex - rbehind;
2584 		}
2585 
2586 		vm_object_hold(object);
2587 		for (tpindex = pindex; tpindex > startpindex; --tpindex) {
2588 			if (vm_page_lookup(object, tpindex - 1))
2589 				break;
2590 		}
2591 
2592 		i = 0;
2593 		while (tpindex < pindex) {
2594 			rtm = vm_page_alloc(object, tpindex, VM_ALLOC_SYSTEM |
2595 							     VM_ALLOC_NULL_OK);
2596 			if (rtm == NULL) {
2597 				for (j = 0; j < i; j++) {
2598 					vm_page_free(marray[j]);
2599 				}
2600 				vm_object_drop(object);
2601 				marray[0] = m;
2602 				*reqpage = 0;
2603 				return 1;
2604 			}
2605 			marray[i] = rtm;
2606 			++i;
2607 			++tpindex;
2608 		}
2609 		vm_object_drop(object);
2610 	} else {
2611 		i = 0;
2612 	}
2613 
2614 	/*
2615 	 * Assign requested page
2616 	 */
2617 	marray[i] = m;
2618 	*reqpage = i;
2619 	++i;
2620 
2621 	/*
2622 	 * Scan forwards for read-ahead pages
2623 	 */
2624 	tpindex = pindex + 1;
2625 	endpindex = tpindex + rahead;
2626 	if (endpindex > object->size)
2627 		endpindex = object->size;
2628 
2629 	vm_object_hold(object);
2630 	while (tpindex < endpindex) {
2631 		if (vm_page_lookup(object, tpindex))
2632 			break;
2633 		rtm = vm_page_alloc(object, tpindex, VM_ALLOC_SYSTEM |
2634 						     VM_ALLOC_NULL_OK);
2635 		if (rtm == NULL)
2636 			break;
2637 		marray[i] = rtm;
2638 		++i;
2639 		++tpindex;
2640 	}
2641 	vm_object_drop(object);
2642 
2643 	return (i);
2644 }
2645 
2646 #endif
2647 
2648 /*
2649  * vm_prefault() provides a quick way of clustering pagefaults into a
2650  * processes address space.  It is a "cousin" of pmap_object_init_pt,
2651  * except it runs at page fault time instead of mmap time.
2652  *
2653  * vm.fast_fault	Enables pre-faulting zero-fill pages
2654  *
2655  * vm.prefault_pages	Number of pages (1/2 negative, 1/2 positive) to
2656  *			prefault.  Scan stops in either direction when
2657  *			a page is found to already exist.
2658  *
2659  * This code used to be per-platform pmap_prefault().  It is now
2660  * machine-independent and enhanced to also pre-fault zero-fill pages
2661  * (see vm.fast_fault) as well as make them writable, which greatly
2662  * reduces the number of page faults programs incur.
2663  *
2664  * Application performance when pre-faulting zero-fill pages is heavily
2665  * dependent on the application.  Very tiny applications like /bin/echo
2666  * lose a little performance while applications of any appreciable size
2667  * gain performance.  Prefaulting multiple pages also reduces SMP
2668  * congestion and can improve SMP performance significantly.
2669  *
2670  * NOTE!  prot may allow writing but this only applies to the top level
2671  *	  object.  If we wind up mapping a page extracted from a backing
2672  *	  object we have to make sure it is read-only.
2673  *
2674  * NOTE!  The caller has already handled any COW operations on the
2675  *	  vm_map_entry via the normal fault code.  Do NOT call this
2676  *	  shortcut unless the normal fault code has run on this entry.
2677  *
2678  * The related map must be locked.
2679  * No other requirements.
2680  */
2681 static int vm_prefault_pages = 8;
2682 SYSCTL_INT(_vm, OID_AUTO, prefault_pages, CTLFLAG_RW, &vm_prefault_pages, 0,
2683 	   "Maximum number of pages to pre-fault");
2684 static int vm_fast_fault = 1;
2685 SYSCTL_INT(_vm, OID_AUTO, fast_fault, CTLFLAG_RW, &vm_fast_fault, 0,
2686 	   "Burst fault zero-fill regions");
2687 
2688 /*
2689  * Set PG_NOSYNC if the map entry indicates so, but only if the page
2690  * is not already dirty by other means.  This will prevent passive
2691  * filesystem syncing as well as 'sync' from writing out the page.
2692  */
2693 static void
2694 vm_set_nosync(vm_page_t m, vm_map_entry_t entry)
2695 {
2696 	if (entry->eflags & MAP_ENTRY_NOSYNC) {
2697 		if (m->dirty == 0)
2698 			vm_page_flag_set(m, PG_NOSYNC);
2699 	} else {
2700 		vm_page_flag_clear(m, PG_NOSYNC);
2701 	}
2702 }
2703 
2704 static void
2705 vm_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry, int prot,
2706 	    int fault_flags)
2707 {
2708 	struct lwp *lp;
2709 	vm_page_t m;
2710 	vm_offset_t addr;
2711 	vm_pindex_t index;
2712 	vm_pindex_t pindex;
2713 	vm_object_t object;
2714 	int pprot;
2715 	int i;
2716 	int noneg;
2717 	int nopos;
2718 	int maxpages;
2719 
2720 	/*
2721 	 * Get stable max count value, disabled if set to 0
2722 	 */
2723 	maxpages = vm_prefault_pages;
2724 	cpu_ccfence();
2725 	if (maxpages <= 0)
2726 		return;
2727 
2728 	/*
2729 	 * We do not currently prefault mappings that use virtual page
2730 	 * tables.  We do not prefault foreign pmaps.
2731 	 */
2732 	if (entry->maptype != VM_MAPTYPE_NORMAL)
2733 		return;
2734 	lp = curthread->td_lwp;
2735 	if (lp == NULL || (pmap != vmspace_pmap(lp->lwp_vmspace)))
2736 		return;
2737 
2738 	/*
2739 	 * Limit pre-fault count to 1024 pages.
2740 	 */
2741 	if (maxpages > 1024)
2742 		maxpages = 1024;
2743 
2744 	object = entry->object.vm_object;
2745 	KKASSERT(object != NULL);
2746 	KKASSERT(object == entry->object.vm_object);
2747 
2748 	/*
2749 	 * NOTE: VM_FAULT_DIRTY allowed later so must hold object exclusively
2750 	 *	 now (or do something more complex XXX).
2751 	 */
2752 	vm_object_hold(object);
2753 	vm_object_chain_acquire(object, 0);
2754 
2755 	noneg = 0;
2756 	nopos = 0;
2757 	for (i = 0; i < maxpages; ++i) {
2758 		vm_object_t lobject;
2759 		vm_object_t nobject;
2760 		int allocated = 0;
2761 		int error;
2762 
2763 		/*
2764 		 * This can eat a lot of time on a heavily contended
2765 		 * machine so yield on the tick if needed.
2766 		 */
2767 		if ((i & 7) == 7)
2768 			lwkt_yield();
2769 
2770 		/*
2771 		 * Calculate the page to pre-fault, stopping the scan in
2772 		 * each direction separately if the limit is reached.
2773 		 */
2774 		if (i & 1) {
2775 			if (noneg)
2776 				continue;
2777 			addr = addra - ((i + 1) >> 1) * PAGE_SIZE;
2778 		} else {
2779 			if (nopos)
2780 				continue;
2781 			addr = addra + ((i + 2) >> 1) * PAGE_SIZE;
2782 		}
2783 		if (addr < entry->start) {
2784 			noneg = 1;
2785 			if (noneg && nopos)
2786 				break;
2787 			continue;
2788 		}
2789 		if (addr >= entry->end) {
2790 			nopos = 1;
2791 			if (noneg && nopos)
2792 				break;
2793 			continue;
2794 		}
2795 
2796 		/*
2797 		 * Skip pages already mapped, and stop scanning in that
2798 		 * direction.  When the scan terminates in both directions
2799 		 * we are done.
2800 		 */
2801 		if (pmap_prefault_ok(pmap, addr) == 0) {
2802 			if (i & 1)
2803 				noneg = 1;
2804 			else
2805 				nopos = 1;
2806 			if (noneg && nopos)
2807 				break;
2808 			continue;
2809 		}
2810 
2811 		/*
2812 		 * Follow the VM object chain to obtain the page to be mapped
2813 		 * into the pmap.
2814 		 *
2815 		 * If we reach the terminal object without finding a page
2816 		 * and we determine it would be advantageous, then allocate
2817 		 * a zero-fill page for the base object.  The base object
2818 		 * is guaranteed to be OBJT_DEFAULT for this case.
2819 		 *
2820 		 * In order to not have to check the pager via *haspage*()
2821 		 * we stop if any non-default object is encountered.  e.g.
2822 		 * a vnode or swap object would stop the loop.
2823 		 */
2824 		index = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
2825 		lobject = object;
2826 		pindex = index;
2827 		pprot = prot;
2828 
2829 		KKASSERT(lobject == entry->object.vm_object);
2830 		/*vm_object_hold(lobject); implied */
2831 
2832 		while ((m = vm_page_lookup_busy_try(lobject, pindex,
2833 						    TRUE, &error)) == NULL) {
2834 			if (lobject->type != OBJT_DEFAULT)
2835 				break;
2836 			if (lobject->backing_object == NULL) {
2837 				if (vm_fast_fault == 0)
2838 					break;
2839 				if ((prot & VM_PROT_WRITE) == 0 ||
2840 				    vm_page_count_min(0)) {
2841 					break;
2842 				}
2843 
2844 				/*
2845 				 * NOTE: Allocated from base object
2846 				 */
2847 				m = vm_page_alloc(object, index,
2848 						  VM_ALLOC_NORMAL |
2849 						  VM_ALLOC_ZERO |
2850 						  VM_ALLOC_USE_GD |
2851 						  VM_ALLOC_NULL_OK);
2852 				if (m == NULL)
2853 					break;
2854 				allocated = 1;
2855 				pprot = prot;
2856 				/* lobject = object .. not needed */
2857 				break;
2858 			}
2859 			if (lobject->backing_object_offset & PAGE_MASK)
2860 				break;
2861 			nobject = lobject->backing_object;
2862 			vm_object_hold(nobject);
2863 			KKASSERT(nobject == lobject->backing_object);
2864 			pindex += lobject->backing_object_offset >> PAGE_SHIFT;
2865 			if (lobject != object) {
2866 				vm_object_lock_swap();
2867 				vm_object_drop(lobject);
2868 			}
2869 			lobject = nobject;
2870 			pprot &= ~VM_PROT_WRITE;
2871 			vm_object_chain_acquire(lobject, 0);
2872 		}
2873 
2874 		/*
2875 		 * NOTE: A non-NULL (m) will be associated with lobject if
2876 		 *	 it was found there, otherwise it is probably a
2877 		 *	 zero-fill page associated with the base object.
2878 		 *
2879 		 * Give-up if no page is available.
2880 		 */
2881 		if (m == NULL) {
2882 			if (lobject != object) {
2883 #if 0
2884 				if (object->backing_object != lobject)
2885 					vm_object_hold(object->backing_object);
2886 #endif
2887 				vm_object_chain_release_all(
2888 					object->backing_object, lobject);
2889 #if 0
2890 				if (object->backing_object != lobject)
2891 					vm_object_drop(object->backing_object);
2892 #endif
2893 				vm_object_drop(lobject);
2894 			}
2895 			break;
2896 		}
2897 
2898 		/*
2899 		 * The object must be marked dirty if we are mapping a
2900 		 * writable page.  m->object is either lobject or object,
2901 		 * both of which are still held.  Do this before we
2902 		 * potentially drop the object.
2903 		 */
2904 		if (pprot & VM_PROT_WRITE)
2905 			vm_object_set_writeable_dirty(m->object);
2906 
2907 		/*
2908 		 * Do not conditionalize on PG_RAM.  If pages are present in
2909 		 * the VM system we assume optimal caching.  If caching is
2910 		 * not optimal the I/O gravy train will be restarted when we
2911 		 * hit an unavailable page.  We do not want to try to restart
2912 		 * the gravy train now because we really don't know how much
2913 		 * of the object has been cached.  The cost for restarting
2914 		 * the gravy train should be low (since accesses will likely
2915 		 * be I/O bound anyway).
2916 		 */
2917 		if (lobject != object) {
2918 #if 0
2919 			if (object->backing_object != lobject)
2920 				vm_object_hold(object->backing_object);
2921 #endif
2922 			vm_object_chain_release_all(object->backing_object,
2923 						    lobject);
2924 #if 0
2925 			if (object->backing_object != lobject)
2926 				vm_object_drop(object->backing_object);
2927 #endif
2928 			vm_object_drop(lobject);
2929 		}
2930 
2931 		/*
2932 		 * Enter the page into the pmap if appropriate.  If we had
2933 		 * allocated the page we have to place it on a queue.  If not
2934 		 * we just have to make sure it isn't on the cache queue
2935 		 * (pages on the cache queue are not allowed to be mapped).
2936 		 */
2937 		if (allocated) {
2938 			/*
2939 			 * Page must be zerod.
2940 			 */
2941 			vm_page_zero_fill(m);
2942 			mycpu->gd_cnt.v_zfod++;
2943 			m->valid = VM_PAGE_BITS_ALL;
2944 
2945 			/*
2946 			 * Handle dirty page case
2947 			 */
2948 			if (pprot & VM_PROT_WRITE)
2949 				vm_set_nosync(m, entry);
2950 			pmap_enter(pmap, addr, m, pprot, 0, entry);
2951 			mycpu->gd_cnt.v_vm_faults++;
2952 			if (curthread->td_lwp)
2953 				++curthread->td_lwp->lwp_ru.ru_minflt;
2954 			vm_page_deactivate(m);
2955 			if (pprot & VM_PROT_WRITE) {
2956 				/*vm_object_set_writeable_dirty(m->object);*/
2957 				vm_set_nosync(m, entry);
2958 				if (fault_flags & VM_FAULT_DIRTY) {
2959 					vm_page_dirty(m);
2960 					/*XXX*/
2961 					swap_pager_unswapped(m);
2962 				}
2963 			}
2964 			vm_page_wakeup(m);
2965 		} else if (error) {
2966 			/* couldn't busy page, no wakeup */
2967 		} else if (
2968 		    ((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2969 		    (m->flags & PG_FICTITIOUS) == 0) {
2970 			/*
2971 			 * A fully valid page not undergoing soft I/O can
2972 			 * be immediately entered into the pmap.
2973 			 */
2974 			if ((m->queue - m->pc) == PQ_CACHE)
2975 				vm_page_deactivate(m);
2976 			if (pprot & VM_PROT_WRITE) {
2977 				/*vm_object_set_writeable_dirty(m->object);*/
2978 				vm_set_nosync(m, entry);
2979 				if (fault_flags & VM_FAULT_DIRTY) {
2980 					vm_page_dirty(m);
2981 					/*XXX*/
2982 					swap_pager_unswapped(m);
2983 				}
2984 			}
2985 			if (pprot & VM_PROT_WRITE)
2986 				vm_set_nosync(m, entry);
2987 			pmap_enter(pmap, addr, m, pprot, 0, entry);
2988 			mycpu->gd_cnt.v_vm_faults++;
2989 			if (curthread->td_lwp)
2990 				++curthread->td_lwp->lwp_ru.ru_minflt;
2991 			vm_page_wakeup(m);
2992 		} else {
2993 			vm_page_wakeup(m);
2994 		}
2995 	}
2996 	vm_object_chain_release(object);
2997 	vm_object_drop(object);
2998 }
2999 
3000 /*
3001  * Object can be held shared
3002  */
3003 static void
3004 vm_prefault_quick(pmap_t pmap, vm_offset_t addra,
3005 		  vm_map_entry_t entry, int prot, int fault_flags)
3006 {
3007 	struct lwp *lp;
3008 	vm_page_t m;
3009 	vm_offset_t addr;
3010 	vm_pindex_t pindex;
3011 	vm_object_t object;
3012 	int i;
3013 	int noneg;
3014 	int nopos;
3015 	int maxpages;
3016 
3017 	/*
3018 	 * Get stable max count value, disabled if set to 0
3019 	 */
3020 	maxpages = vm_prefault_pages;
3021 	cpu_ccfence();
3022 	if (maxpages <= 0)
3023 		return;
3024 
3025 	/*
3026 	 * We do not currently prefault mappings that use virtual page
3027 	 * tables.  We do not prefault foreign pmaps.
3028 	 */
3029 	if (entry->maptype != VM_MAPTYPE_NORMAL)
3030 		return;
3031 	lp = curthread->td_lwp;
3032 	if (lp == NULL || (pmap != vmspace_pmap(lp->lwp_vmspace)))
3033 		return;
3034 	object = entry->object.vm_object;
3035 	if (object->backing_object != NULL)
3036 		return;
3037 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
3038 
3039 	/*
3040 	 * Limit pre-fault count to 1024 pages.
3041 	 */
3042 	if (maxpages > 1024)
3043 		maxpages = 1024;
3044 
3045 	noneg = 0;
3046 	nopos = 0;
3047 	for (i = 0; i < maxpages; ++i) {
3048 		int error;
3049 
3050 		/*
3051 		 * Calculate the page to pre-fault, stopping the scan in
3052 		 * each direction separately if the limit is reached.
3053 		 */
3054 		if (i & 1) {
3055 			if (noneg)
3056 				continue;
3057 			addr = addra - ((i + 1) >> 1) * PAGE_SIZE;
3058 		} else {
3059 			if (nopos)
3060 				continue;
3061 			addr = addra + ((i + 2) >> 1) * PAGE_SIZE;
3062 		}
3063 		if (addr < entry->start) {
3064 			noneg = 1;
3065 			if (noneg && nopos)
3066 				break;
3067 			continue;
3068 		}
3069 		if (addr >= entry->end) {
3070 			nopos = 1;
3071 			if (noneg && nopos)
3072 				break;
3073 			continue;
3074 		}
3075 
3076 		/*
3077 		 * Follow the VM object chain to obtain the page to be mapped
3078 		 * into the pmap.  This version of the prefault code only
3079 		 * works with terminal objects.
3080 		 *
3081 		 * The page must already exist.  If we encounter a problem
3082 		 * we stop here.
3083 		 *
3084 		 * WARNING!  We cannot call swap_pager_unswapped() or insert
3085 		 *	     a new vm_page with a shared token.
3086 		 */
3087 		pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
3088 
3089 		/*
3090 		 * Skip pages already mapped, and stop scanning in that
3091 		 * direction.  When the scan terminates in both directions
3092 		 * we are done.
3093 		 */
3094 		if (pmap_prefault_ok(pmap, addr) == 0) {
3095 			if (i & 1)
3096 				noneg = 1;
3097 			else
3098 				nopos = 1;
3099 			if (noneg && nopos)
3100 				break;
3101 			continue;
3102 		}
3103 
3104 		/*
3105 		 * Shortcut the read-only mapping case using the far more
3106 		 * efficient vm_page_lookup_sbusy_try() function.  This
3107 		 * allows us to acquire the page soft-busied only which
3108 		 * is especially nice for concurrent execs of the same
3109 		 * program.
3110 		 *
3111 		 * The lookup function also validates page suitability
3112 		 * (all valid bits set, and not fictitious).
3113 		 *
3114 		 * If the page is in PQ_CACHE we have to fall-through
3115 		 * and hard-busy it so we can move it out of PQ_CACHE.
3116 		 */
3117 		if ((prot & VM_PROT_WRITE) == 0) {
3118 			m = vm_page_lookup_sbusy_try(object, pindex,
3119 						     0, PAGE_SIZE);
3120 			if (m == NULL)
3121 				break;
3122 			if ((m->queue - m->pc) != PQ_CACHE) {
3123 				pmap_enter(pmap, addr, m, prot, 0, entry);
3124 				mycpu->gd_cnt.v_vm_faults++;
3125 				if (curthread->td_lwp)
3126 					++curthread->td_lwp->lwp_ru.ru_minflt;
3127 				vm_page_sbusy_drop(m);
3128 				continue;
3129 			}
3130 			vm_page_sbusy_drop(m);
3131 		}
3132 
3133 		/*
3134 		 * Fallback to normal vm_page lookup code.  This code
3135 		 * hard-busies the page.  Not only that, but the page
3136 		 * can remain in that state for a significant period
3137 		 * time due to pmap_enter()'s overhead.
3138 		 */
3139 		m = vm_page_lookup_busy_try(object, pindex, TRUE, &error);
3140 		if (m == NULL || error)
3141 			break;
3142 
3143 		/*
3144 		 * Stop if the page cannot be trivially entered into the
3145 		 * pmap.
3146 		 */
3147 		if (((m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL) ||
3148 		    (m->flags & PG_FICTITIOUS) ||
3149 		    ((m->flags & PG_SWAPPED) &&
3150 		     (prot & VM_PROT_WRITE) &&
3151 		     (fault_flags & VM_FAULT_DIRTY))) {
3152 			vm_page_wakeup(m);
3153 			break;
3154 		}
3155 
3156 		/*
3157 		 * Enter the page into the pmap.  The object might be held
3158 		 * shared so we can't do any (serious) modifying operation
3159 		 * on it.
3160 		 */
3161 		if ((m->queue - m->pc) == PQ_CACHE)
3162 			vm_page_deactivate(m);
3163 		if (prot & VM_PROT_WRITE) {
3164 			vm_object_set_writeable_dirty(m->object);
3165 			vm_set_nosync(m, entry);
3166 			if (fault_flags & VM_FAULT_DIRTY) {
3167 				vm_page_dirty(m);
3168 				/* can't happeen due to conditional above */
3169 				/* swap_pager_unswapped(m); */
3170 			}
3171 		}
3172 		pmap_enter(pmap, addr, m, prot, 0, entry);
3173 		mycpu->gd_cnt.v_vm_faults++;
3174 		if (curthread->td_lwp)
3175 			++curthread->td_lwp->lwp_ru.ru_minflt;
3176 		vm_page_wakeup(m);
3177 	}
3178 }
3179