xref: /dragonfly/sys/vm/vm_fault.c (revision e98bdfd3)
1 /*
2  * Copyright (c) 2003-2014 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * ---
35  *
36  * Copyright (c) 1991, 1993
37  *	The Regents of the University of California.  All rights reserved.
38  * Copyright (c) 1994 John S. Dyson
39  * All rights reserved.
40  * Copyright (c) 1994 David Greenman
41  * All rights reserved.
42  *
43  *
44  * This code is derived from software contributed to Berkeley by
45  * The Mach Operating System project at Carnegie-Mellon University.
46  *
47  * Redistribution and use in source and binary forms, with or without
48  * modification, are permitted provided that the following conditions
49  * are met:
50  * 1. Redistributions of source code must retain the above copyright
51  *    notice, this list of conditions and the following disclaimer.
52  * 2. Redistributions in binary form must reproduce the above copyright
53  *    notice, this list of conditions and the following disclaimer in the
54  *    documentation and/or other materials provided with the distribution.
55  * 3. Neither the name of the University nor the names of its contributors
56  *    may be used to endorse or promote products derived from this software
57  *    without specific prior written permission.
58  *
59  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69  * SUCH DAMAGE.
70  *
71  * ---
72  *
73  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
74  * All rights reserved.
75  *
76  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
77  *
78  * Permission to use, copy, modify and distribute this software and
79  * its documentation is hereby granted, provided that both the copyright
80  * notice and this permission notice appear in all copies of the
81  * software, derivative works or modified versions, and any portions
82  * thereof, and that both notices appear in supporting documentation.
83  *
84  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
85  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
86  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
87  *
88  * Carnegie Mellon requests users of this software to return to
89  *
90  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
91  *  School of Computer Science
92  *  Carnegie Mellon University
93  *  Pittsburgh PA 15213-3890
94  *
95  * any improvements or extensions that they make and grant Carnegie the
96  * rights to redistribute these changes.
97  */
98 
99 /*
100  *	Page fault handling module.
101  */
102 
103 #include <sys/param.h>
104 #include <sys/systm.h>
105 #include <sys/kernel.h>
106 #include <sys/proc.h>
107 #include <sys/vnode.h>
108 #include <sys/resourcevar.h>
109 #include <sys/vmmeter.h>
110 #include <sys/vkernel.h>
111 #include <sys/lock.h>
112 #include <sys/sysctl.h>
113 
114 #include <cpu/lwbuf.h>
115 
116 #include <vm/vm.h>
117 #include <vm/vm_param.h>
118 #include <vm/pmap.h>
119 #include <vm/vm_map.h>
120 #include <vm/vm_object.h>
121 #include <vm/vm_page.h>
122 #include <vm/vm_pageout.h>
123 #include <vm/vm_kern.h>
124 #include <vm/vm_pager.h>
125 #include <vm/vnode_pager.h>
126 #include <vm/vm_extern.h>
127 
128 #include <sys/thread2.h>
129 #include <vm/vm_page2.h>
130 
131 struct faultstate {
132 	vm_page_t m;
133 	vm_object_t object;
134 	vm_pindex_t pindex;
135 	vm_prot_t prot;
136 	vm_page_t first_m;
137 	vm_object_t first_object;
138 	vm_prot_t first_prot;
139 	vm_map_t map;
140 	vm_map_entry_t entry;
141 	int lookup_still_valid;
142 	int hardfault;
143 	int fault_flags;
144 	int map_generation;
145 	int shared;
146 	int first_shared;
147 	boolean_t wired;
148 	struct vnode *vp;
149 };
150 
151 static int debug_fault = 0;
152 SYSCTL_INT(_vm, OID_AUTO, debug_fault, CTLFLAG_RW, &debug_fault, 0, "");
153 static int debug_cluster = 0;
154 SYSCTL_INT(_vm, OID_AUTO, debug_cluster, CTLFLAG_RW, &debug_cluster, 0, "");
155 int vm_shared_fault = 1;
156 TUNABLE_INT("vm.shared_fault", &vm_shared_fault);
157 SYSCTL_INT(_vm, OID_AUTO, shared_fault, CTLFLAG_RW, &vm_shared_fault, 0,
158 	   "Allow shared token on vm_object");
159 static long vm_shared_hit = 0;
160 SYSCTL_LONG(_vm, OID_AUTO, shared_hit, CTLFLAG_RW, &vm_shared_hit, 0,
161 	   "Successful shared faults");
162 static long vm_shared_count = 0;
163 SYSCTL_LONG(_vm, OID_AUTO, shared_count, CTLFLAG_RW, &vm_shared_count, 0,
164 	   "Shared fault attempts");
165 static long vm_shared_miss = 0;
166 SYSCTL_LONG(_vm, OID_AUTO, shared_miss, CTLFLAG_RW, &vm_shared_miss, 0,
167 	   "Unsuccessful shared faults");
168 
169 static int vm_fault_object(struct faultstate *, vm_pindex_t, vm_prot_t, int);
170 static int vm_fault_vpagetable(struct faultstate *, vm_pindex_t *,
171 			vpte_t, int, int);
172 #if 0
173 static int vm_fault_additional_pages (vm_page_t, int, int, vm_page_t *, int *);
174 #endif
175 static void vm_set_nosync(vm_page_t m, vm_map_entry_t entry);
176 static void vm_prefault(pmap_t pmap, vm_offset_t addra,
177 			vm_map_entry_t entry, int prot, int fault_flags);
178 static void vm_prefault_quick(pmap_t pmap, vm_offset_t addra,
179 			vm_map_entry_t entry, int prot, int fault_flags);
180 
181 static __inline void
182 release_page(struct faultstate *fs)
183 {
184 	vm_page_deactivate(fs->m);
185 	vm_page_wakeup(fs->m);
186 	fs->m = NULL;
187 }
188 
189 /*
190  * NOTE: Once unlocked any cached fs->entry becomes invalid, any reuse
191  *	 requires relocking and then checking the timestamp.
192  *
193  * NOTE: vm_map_lock_read() does not bump fs->map->timestamp so we do
194  *	 not have to update fs->map_generation here.
195  *
196  * NOTE: This function can fail due to a deadlock against the caller's
197  *	 holding of a vm_page BUSY.
198  */
199 static __inline int
200 relock_map(struct faultstate *fs)
201 {
202 	int error;
203 
204 	if (fs->lookup_still_valid == FALSE && fs->map) {
205 		error = vm_map_lock_read_to(fs->map);
206 		if (error == 0)
207 			fs->lookup_still_valid = TRUE;
208 	} else {
209 		error = 0;
210 	}
211 	return error;
212 }
213 
214 static __inline void
215 unlock_map(struct faultstate *fs)
216 {
217 	if (fs->lookup_still_valid && fs->map) {
218 		vm_map_lookup_done(fs->map, fs->entry, 0);
219 		fs->lookup_still_valid = FALSE;
220 	}
221 }
222 
223 /*
224  * Clean up after a successful call to vm_fault_object() so another call
225  * to vm_fault_object() can be made.
226  */
227 static void
228 _cleanup_successful_fault(struct faultstate *fs, int relock)
229 {
230 	/*
231 	 * We allocated a junk page for a COW operation that did
232 	 * not occur, the page must be freed.
233 	 */
234 	if (fs->object != fs->first_object) {
235 		KKASSERT(fs->first_shared == 0);
236 		vm_page_free(fs->first_m);
237 		vm_object_pip_wakeup(fs->object);
238 		fs->first_m = NULL;
239 	}
240 
241 	/*
242 	 * Reset fs->object.
243 	 */
244 	fs->object = fs->first_object;
245 	if (relock && fs->lookup_still_valid == FALSE) {
246 		if (fs->map)
247 			vm_map_lock_read(fs->map);
248 		fs->lookup_still_valid = TRUE;
249 	}
250 }
251 
252 static void
253 _unlock_things(struct faultstate *fs, int dealloc)
254 {
255 	_cleanup_successful_fault(fs, 0);
256 	if (dealloc) {
257 		/*vm_object_deallocate(fs->first_object);*/
258 		/*fs->first_object = NULL; drop used later on */
259 	}
260 	unlock_map(fs);
261 	if (fs->vp != NULL) {
262 		vput(fs->vp);
263 		fs->vp = NULL;
264 	}
265 }
266 
267 #define unlock_things(fs) _unlock_things(fs, 0)
268 #define unlock_and_deallocate(fs) _unlock_things(fs, 1)
269 #define cleanup_successful_fault(fs) _cleanup_successful_fault(fs, 1)
270 
271 /*
272  * TRYPAGER
273  *
274  * Determine if the pager for the current object *might* contain the page.
275  *
276  * We only need to try the pager if this is not a default object (default
277  * objects are zero-fill and have no real pager), and if we are not taking
278  * a wiring fault or if the FS entry is wired.
279  */
280 #define TRYPAGER(fs)	\
281 		(fs->object->type != OBJT_DEFAULT && \
282 		(((fs->fault_flags & VM_FAULT_WIRE_MASK) == 0) || fs->wired))
283 
284 /*
285  * vm_fault:
286  *
287  * Handle a page fault occuring at the given address, requiring the given
288  * permissions, in the map specified.  If successful, the page is inserted
289  * into the associated physical map.
290  *
291  * NOTE: The given address should be truncated to the proper page address.
292  *
293  * KERN_SUCCESS is returned if the page fault is handled; otherwise,
294  * a standard error specifying why the fault is fatal is returned.
295  *
296  * The map in question must be referenced, and remains so.
297  * The caller may hold no locks.
298  * No other requirements.
299  */
300 int
301 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, int fault_flags)
302 {
303 	int result;
304 	vm_pindex_t first_pindex;
305 	struct faultstate fs;
306 	struct lwp *lp;
307 	int growstack;
308 	int retry = 0;
309 	int inherit_prot;
310 
311 	inherit_prot = fault_type & VM_PROT_NOSYNC;
312 	vm_page_pcpu_cache();
313 	fs.hardfault = 0;
314 	fs.fault_flags = fault_flags;
315 	fs.vp = NULL;
316 	fs.shared = vm_shared_fault;
317 	fs.first_shared = vm_shared_fault;
318 	growstack = 1;
319 	if (vm_shared_fault)
320 		++vm_shared_count;
321 
322 	/*
323 	 * vm_map interactions
324 	 */
325 	if ((lp = curthread->td_lwp) != NULL)
326 		lp->lwp_flags |= LWP_PAGING;
327 	lwkt_gettoken(&map->token);
328 
329 RetryFault:
330 	/*
331 	 * Find the vm_map_entry representing the backing store and resolve
332 	 * the top level object and page index.  This may have the side
333 	 * effect of executing a copy-on-write on the map entry and/or
334 	 * creating a shadow object, but will not COW any actual VM pages.
335 	 *
336 	 * On success fs.map is left read-locked and various other fields
337 	 * are initialized but not otherwise referenced or locked.
338 	 *
339 	 * NOTE!  vm_map_lookup will try to upgrade the fault_type to
340 	 * VM_FAULT_WRITE if the map entry is a virtual page table and also
341 	 * writable, so we can set the 'A'accessed bit in the virtual page
342 	 * table entry.
343 	 */
344 	fs.map = map;
345 	result = vm_map_lookup(&fs.map, vaddr, fault_type,
346 			       &fs.entry, &fs.first_object,
347 			       &first_pindex, &fs.first_prot, &fs.wired);
348 
349 	/*
350 	 * If the lookup failed or the map protections are incompatible,
351 	 * the fault generally fails.
352 	 *
353 	 * The failure could be due to TDF_NOFAULT if vm_map_lookup()
354 	 * tried to do a COW fault.
355 	 *
356 	 * If the caller is trying to do a user wiring we have more work
357 	 * to do.
358 	 */
359 	if (result != KERN_SUCCESS) {
360 		if (result == KERN_FAILURE_NOFAULT) {
361 			result = KERN_FAILURE;
362 			goto done;
363 		}
364 		if (result != KERN_PROTECTION_FAILURE ||
365 		    (fs.fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE)
366 		{
367 			if (result == KERN_INVALID_ADDRESS && growstack &&
368 			    map != &kernel_map && curproc != NULL) {
369 				result = vm_map_growstack(curproc, vaddr);
370 				if (result == KERN_SUCCESS) {
371 					growstack = 0;
372 					++retry;
373 					goto RetryFault;
374 				}
375 				result = KERN_FAILURE;
376 			}
377 			goto done;
378 		}
379 
380 		/*
381    		 * If we are user-wiring a r/w segment, and it is COW, then
382    		 * we need to do the COW operation.  Note that we don't
383 		 * currently COW RO sections now, because it is NOT desirable
384    		 * to COW .text.  We simply keep .text from ever being COW'ed
385    		 * and take the heat that one cannot debug wired .text sections.
386    		 */
387 		result = vm_map_lookup(&fs.map, vaddr,
388 				       VM_PROT_READ|VM_PROT_WRITE|
389 				        VM_PROT_OVERRIDE_WRITE,
390 				       &fs.entry, &fs.first_object,
391 				       &first_pindex, &fs.first_prot,
392 				       &fs.wired);
393 		if (result != KERN_SUCCESS) {
394 			/* could also be KERN_FAILURE_NOFAULT */
395 			result = KERN_FAILURE;
396 			goto done;
397 		}
398 
399 		/*
400 		 * If we don't COW now, on a user wire, the user will never
401 		 * be able to write to the mapping.  If we don't make this
402 		 * restriction, the bookkeeping would be nearly impossible.
403 		 *
404 		 * XXX We have a shared lock, this will have a MP race but
405 		 * I don't see how it can hurt anything.
406 		 */
407 		if ((fs.entry->protection & VM_PROT_WRITE) == 0)
408 			fs.entry->max_protection &= ~VM_PROT_WRITE;
409 	}
410 
411 	/*
412 	 * fs.map is read-locked
413 	 *
414 	 * Misc checks.  Save the map generation number to detect races.
415 	 */
416 	fs.map_generation = fs.map->timestamp;
417 	fs.lookup_still_valid = TRUE;
418 	fs.first_m = NULL;
419 	fs.object = fs.first_object;	/* so unlock_and_deallocate works */
420 	fs.prot = fs.first_prot;	/* default (used by uksmap) */
421 
422 	if (fs.entry->eflags & (MAP_ENTRY_NOFAULT | MAP_ENTRY_KSTACK)) {
423 		if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
424 			panic("vm_fault: fault on nofault entry, addr: %p",
425 			      (void *)vaddr);
426 		}
427 		if ((fs.entry->eflags & MAP_ENTRY_KSTACK) &&
428 		    vaddr >= fs.entry->start &&
429 		    vaddr < fs.entry->start + PAGE_SIZE) {
430 			panic("vm_fault: fault on stack guard, addr: %p",
431 			      (void *)vaddr);
432 		}
433 	}
434 
435 	/*
436 	 * A user-kernel shared map has no VM object and bypasses
437 	 * everything.  We execute the uksmap function with a temporary
438 	 * fictitious vm_page.  The address is directly mapped with no
439 	 * management.
440 	 */
441 	if (fs.entry->maptype == VM_MAPTYPE_UKSMAP) {
442 		struct vm_page fakem;
443 
444 		bzero(&fakem, sizeof(fakem));
445 		fakem.pindex = first_pindex;
446 		fakem.flags = PG_BUSY | PG_FICTITIOUS | PG_UNMANAGED;
447 		fakem.valid = VM_PAGE_BITS_ALL;
448 		fakem.pat_mode = VM_MEMATTR_DEFAULT;
449 		if (fs.entry->object.uksmap(fs.entry->aux.dev, &fakem)) {
450 			result = KERN_FAILURE;
451 			unlock_things(&fs);
452 			goto done2;
453 		}
454 		pmap_enter(fs.map->pmap, vaddr, &fakem, fs.prot | inherit_prot,
455 			   fs.wired, fs.entry);
456 		goto done_success;
457 	}
458 
459 	/*
460 	 * A system map entry may return a NULL object.  No object means
461 	 * no pager means an unrecoverable kernel fault.
462 	 */
463 	if (fs.first_object == NULL) {
464 		panic("vm_fault: unrecoverable fault at %p in entry %p",
465 			(void *)vaddr, fs.entry);
466 	}
467 
468 	/*
469 	 * Fail here if not a trivial anonymous page fault and TDF_NOFAULT
470 	 * is set.
471 	 */
472 	if ((curthread->td_flags & TDF_NOFAULT) &&
473 	    (retry ||
474 	     fs.first_object->type == OBJT_VNODE ||
475 	     fs.first_object->backing_object)) {
476 		result = KERN_FAILURE;
477 		unlock_things(&fs);
478 		goto done2;
479 	}
480 
481 	/*
482 	 * If the entry is wired we cannot change the page protection.
483 	 */
484 	if (fs.wired)
485 		fault_type = fs.first_prot;
486 
487 	/*
488 	 * We generally want to avoid unnecessary exclusive modes on backing
489 	 * and terminal objects because this can seriously interfere with
490 	 * heavily fork()'d processes (particularly /bin/sh scripts).
491 	 *
492 	 * However, we also want to avoid unnecessary retries due to needed
493 	 * shared->exclusive promotion for common faults.  Exclusive mode is
494 	 * always needed if any page insertion, rename, or free occurs in an
495 	 * object (and also indirectly if any I/O is done).
496 	 *
497 	 * The main issue here is going to be fs.first_shared.  If the
498 	 * first_object has a backing object which isn't shadowed and the
499 	 * process is single-threaded we might as well use an exclusive
500 	 * lock/chain right off the bat.
501 	 */
502 	if (fs.first_shared && fs.first_object->backing_object &&
503 	    LIST_EMPTY(&fs.first_object->shadow_head) &&
504 	    curthread->td_proc && curthread->td_proc->p_nthreads == 1) {
505 		fs.first_shared = 0;
506 	}
507 
508 	/*
509 	 * swap_pager_unswapped() needs an exclusive object
510 	 */
511 	if (fault_flags & (VM_FAULT_UNSWAP | VM_FAULT_DIRTY)) {
512 		fs.first_shared = 0;
513 	}
514 
515 	/*
516 	 * Obtain a top-level object lock, shared or exclusive depending
517 	 * on fs.first_shared.  If a shared lock winds up being insufficient
518 	 * we will retry with an exclusive lock.
519 	 *
520 	 * The vnode pager lock is always shared.
521 	 */
522 	if (fs.first_shared)
523 		vm_object_hold_shared(fs.first_object);
524 	else
525 		vm_object_hold(fs.first_object);
526 	if (fs.vp == NULL)
527 		fs.vp = vnode_pager_lock(fs.first_object);
528 
529 	/*
530 	 * The page we want is at (first_object, first_pindex), but if the
531 	 * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the
532 	 * page table to figure out the actual pindex.
533 	 *
534 	 * NOTE!  DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION
535 	 * ONLY
536 	 */
537 	if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
538 		result = vm_fault_vpagetable(&fs, &first_pindex,
539 					     fs.entry->aux.master_pde,
540 					     fault_type, 1);
541 		if (result == KERN_TRY_AGAIN) {
542 			vm_object_drop(fs.first_object);
543 			++retry;
544 			goto RetryFault;
545 		}
546 		if (result != KERN_SUCCESS)
547 			goto done;
548 	}
549 
550 	/*
551 	 * Now we have the actual (object, pindex), fault in the page.  If
552 	 * vm_fault_object() fails it will unlock and deallocate the FS
553 	 * data.   If it succeeds everything remains locked and fs->object
554 	 * will have an additional PIP count if it is not equal to
555 	 * fs->first_object
556 	 *
557 	 * vm_fault_object will set fs->prot for the pmap operation.  It is
558 	 * allowed to set VM_PROT_WRITE if fault_type == VM_PROT_READ if the
559 	 * page can be safely written.  However, it will force a read-only
560 	 * mapping for a read fault if the memory is managed by a virtual
561 	 * page table.
562 	 *
563 	 * If the fault code uses the shared object lock shortcut
564 	 * we must not try to burst (we can't allocate VM pages).
565 	 */
566 	result = vm_fault_object(&fs, first_pindex, fault_type, 1);
567 
568 	if (debug_fault > 0) {
569 		--debug_fault;
570 		kprintf("VM_FAULT result %d addr=%jx type=%02x flags=%02x "
571 			"fs.m=%p fs.prot=%02x fs.wired=%02x fs.entry=%p\n",
572 			result, (intmax_t)vaddr, fault_type, fault_flags,
573 			fs.m, fs.prot, fs.wired, fs.entry);
574 	}
575 
576 	if (result == KERN_TRY_AGAIN) {
577 		vm_object_drop(fs.first_object);
578 		++retry;
579 		goto RetryFault;
580 	}
581 	if (result != KERN_SUCCESS)
582 		goto done;
583 
584 	/*
585 	 * On success vm_fault_object() does not unlock or deallocate, and fs.m
586 	 * will contain a busied page.
587 	 *
588 	 * Enter the page into the pmap and do pmap-related adjustments.
589 	 */
590 	KKASSERT(fs.lookup_still_valid == TRUE);
591 	vm_page_flag_set(fs.m, PG_REFERENCED);
592 	pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot | inherit_prot,
593 		   fs.wired, fs.entry);
594 
595 	/*KKASSERT(fs.m->queue == PQ_NONE); page-in op may deactivate page */
596 	KKASSERT(fs.m->flags & PG_BUSY);
597 
598 	/*
599 	 * If the page is not wired down, then put it where the pageout daemon
600 	 * can find it.
601 	 */
602 	if (fs.fault_flags & VM_FAULT_WIRE_MASK) {
603 		if (fs.wired)
604 			vm_page_wire(fs.m);
605 		else
606 			vm_page_unwire(fs.m, 1);
607 	} else {
608 		vm_page_activate(fs.m);
609 	}
610 	vm_page_wakeup(fs.m);
611 
612 	/*
613 	 * Burst in a few more pages if possible.  The fs.map should still
614 	 * be locked.  To avoid interlocking against a vnode->getblk
615 	 * operation we had to be sure to unbusy our primary vm_page above
616 	 * first.
617 	 *
618 	 * A normal burst can continue down backing store, only execute
619 	 * if we are holding an exclusive lock, otherwise the exclusive
620 	 * locks the burst code gets might cause excessive SMP collisions.
621 	 *
622 	 * A quick burst can be utilized when there is no backing object
623 	 * (i.e. a shared file mmap).
624 	 */
625 	if ((fault_flags & VM_FAULT_BURST) &&
626 	    (fs.fault_flags & VM_FAULT_WIRE_MASK) == 0 &&
627 	    fs.wired == 0) {
628 		if (fs.first_shared == 0 && fs.shared == 0) {
629 			vm_prefault(fs.map->pmap, vaddr,
630 				    fs.entry, fs.prot, fault_flags);
631 		} else {
632 			vm_prefault_quick(fs.map->pmap, vaddr,
633 					  fs.entry, fs.prot, fault_flags);
634 		}
635 	}
636 
637 done_success:
638 	mycpu->gd_cnt.v_vm_faults++;
639 	if (curthread->td_lwp)
640 		++curthread->td_lwp->lwp_ru.ru_minflt;
641 
642 	/*
643 	 * Unlock everything, and return
644 	 */
645 	unlock_things(&fs);
646 
647 	if (curthread->td_lwp) {
648 		if (fs.hardfault) {
649 			curthread->td_lwp->lwp_ru.ru_majflt++;
650 		} else {
651 			curthread->td_lwp->lwp_ru.ru_minflt++;
652 		}
653 	}
654 
655 	/*vm_object_deallocate(fs.first_object);*/
656 	/*fs.m = NULL; */
657 	/*fs.first_object = NULL; must still drop later */
658 
659 	result = KERN_SUCCESS;
660 done:
661 	if (fs.first_object)
662 		vm_object_drop(fs.first_object);
663 done2:
664 	lwkt_reltoken(&map->token);
665 	if (lp)
666 		lp->lwp_flags &= ~LWP_PAGING;
667 	if (vm_shared_fault && fs.shared == 0)
668 		++vm_shared_miss;
669 	return (result);
670 }
671 
672 /*
673  * Fault in the specified virtual address in the current process map,
674  * returning a held VM page or NULL.  See vm_fault_page() for more
675  * information.
676  *
677  * No requirements.
678  */
679 vm_page_t
680 vm_fault_page_quick(vm_offset_t va, vm_prot_t fault_type, int *errorp)
681 {
682 	struct lwp *lp = curthread->td_lwp;
683 	vm_page_t m;
684 
685 	m = vm_fault_page(&lp->lwp_vmspace->vm_map, va,
686 			  fault_type, VM_FAULT_NORMAL, errorp);
687 	return(m);
688 }
689 
690 /*
691  * Fault in the specified virtual address in the specified map, doing all
692  * necessary manipulation of the object store and all necessary I/O.  Return
693  * a held VM page or NULL, and set *errorp.  The related pmap is not
694  * updated.
695  *
696  * The returned page will be properly dirtied if VM_PROT_WRITE was specified,
697  * and marked PG_REFERENCED as well.
698  *
699  * If the page cannot be faulted writable and VM_PROT_WRITE was specified, an
700  * error will be returned.
701  *
702  * No requirements.
703  */
704 vm_page_t
705 vm_fault_page(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
706 	      int fault_flags, int *errorp)
707 {
708 	vm_pindex_t first_pindex;
709 	struct faultstate fs;
710 	int result;
711 	int retry = 0;
712 	vm_prot_t orig_fault_type = fault_type;
713 
714 	fs.hardfault = 0;
715 	fs.fault_flags = fault_flags;
716 	KKASSERT((fault_flags & VM_FAULT_WIRE_MASK) == 0);
717 
718 	/*
719 	 * Dive the pmap (concurrency possible).  If we find the
720 	 * appropriate page we can terminate early and quickly.
721 	 */
722 	fs.m = pmap_fault_page_quick(map->pmap, vaddr, fault_type);
723 	if (fs.m) {
724 		*errorp = 0;
725 		return(fs.m);
726 	}
727 
728 	/*
729 	 * Otherwise take a concurrency hit and do a formal page
730 	 * fault.
731 	 */
732 	fs.shared = vm_shared_fault;
733 	fs.first_shared = vm_shared_fault;
734 	fs.vp = NULL;
735 	lwkt_gettoken(&map->token);
736 
737 	/*
738 	 * swap_pager_unswapped() needs an exclusive object
739 	 */
740 	if (fault_flags & (VM_FAULT_UNSWAP | VM_FAULT_DIRTY)) {
741 		fs.first_shared = 0;
742 	}
743 
744 RetryFault:
745 	/*
746 	 * Find the vm_map_entry representing the backing store and resolve
747 	 * the top level object and page index.  This may have the side
748 	 * effect of executing a copy-on-write on the map entry and/or
749 	 * creating a shadow object, but will not COW any actual VM pages.
750 	 *
751 	 * On success fs.map is left read-locked and various other fields
752 	 * are initialized but not otherwise referenced or locked.
753 	 *
754 	 * NOTE!  vm_map_lookup will upgrade the fault_type to VM_FAULT_WRITE
755 	 * if the map entry is a virtual page table and also writable,
756 	 * so we can set the 'A'accessed bit in the virtual page table entry.
757 	 */
758 	fs.map = map;
759 	result = vm_map_lookup(&fs.map, vaddr, fault_type,
760 			       &fs.entry, &fs.first_object,
761 			       &first_pindex, &fs.first_prot, &fs.wired);
762 
763 	if (result != KERN_SUCCESS) {
764 		*errorp = result;
765 		fs.m = NULL;
766 		goto done;
767 	}
768 
769 	/*
770 	 * fs.map is read-locked
771 	 *
772 	 * Misc checks.  Save the map generation number to detect races.
773 	 */
774 	fs.map_generation = fs.map->timestamp;
775 	fs.lookup_still_valid = TRUE;
776 	fs.first_m = NULL;
777 	fs.object = fs.first_object;	/* so unlock_and_deallocate works */
778 
779 	if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
780 		panic("vm_fault: fault on nofault entry, addr: %lx",
781 		    (u_long)vaddr);
782 	}
783 
784 	/*
785 	 * A user-kernel shared map has no VM object and bypasses
786 	 * everything.  We execute the uksmap function with a temporary
787 	 * fictitious vm_page.  The address is directly mapped with no
788 	 * management.
789 	 */
790 	if (fs.entry->maptype == VM_MAPTYPE_UKSMAP) {
791 		struct vm_page fakem;
792 
793 		bzero(&fakem, sizeof(fakem));
794 		fakem.pindex = first_pindex;
795 		fakem.flags = PG_BUSY | PG_FICTITIOUS | PG_UNMANAGED;
796 		fakem.valid = VM_PAGE_BITS_ALL;
797 		fakem.pat_mode = VM_MEMATTR_DEFAULT;
798 		if (fs.entry->object.uksmap(fs.entry->aux.dev, &fakem)) {
799 			*errorp = KERN_FAILURE;
800 			fs.m = NULL;
801 			unlock_things(&fs);
802 			goto done2;
803 		}
804 		fs.m = PHYS_TO_VM_PAGE(fakem.phys_addr);
805 		vm_page_hold(fs.m);
806 
807 		unlock_things(&fs);
808 		*errorp = 0;
809 		goto done;
810 	}
811 
812 
813 	/*
814 	 * A system map entry may return a NULL object.  No object means
815 	 * no pager means an unrecoverable kernel fault.
816 	 */
817 	if (fs.first_object == NULL) {
818 		panic("vm_fault: unrecoverable fault at %p in entry %p",
819 			(void *)vaddr, fs.entry);
820 	}
821 
822 	/*
823 	 * Fail here if not a trivial anonymous page fault and TDF_NOFAULT
824 	 * is set.
825 	 */
826 	if ((curthread->td_flags & TDF_NOFAULT) &&
827 	    (retry ||
828 	     fs.first_object->type == OBJT_VNODE ||
829 	     fs.first_object->backing_object)) {
830 		*errorp = KERN_FAILURE;
831 		unlock_things(&fs);
832 		goto done2;
833 	}
834 
835 	/*
836 	 * If the entry is wired we cannot change the page protection.
837 	 */
838 	if (fs.wired)
839 		fault_type = fs.first_prot;
840 
841 	/*
842 	 * Make a reference to this object to prevent its disposal while we
843 	 * are messing with it.  Once we have the reference, the map is free
844 	 * to be diddled.  Since objects reference their shadows (and copies),
845 	 * they will stay around as well.
846 	 *
847 	 * The reference should also prevent an unexpected collapse of the
848 	 * parent that might move pages from the current object into the
849 	 * parent unexpectedly, resulting in corruption.
850 	 *
851 	 * Bump the paging-in-progress count to prevent size changes (e.g.
852 	 * truncation operations) during I/O.  This must be done after
853 	 * obtaining the vnode lock in order to avoid possible deadlocks.
854 	 */
855 	if (fs.first_shared)
856 		vm_object_hold_shared(fs.first_object);
857 	else
858 		vm_object_hold(fs.first_object);
859 	if (fs.vp == NULL)
860 		fs.vp = vnode_pager_lock(fs.first_object);	/* shared */
861 
862 	/*
863 	 * The page we want is at (first_object, first_pindex), but if the
864 	 * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the
865 	 * page table to figure out the actual pindex.
866 	 *
867 	 * NOTE!  DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION
868 	 * ONLY
869 	 */
870 	if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
871 		result = vm_fault_vpagetable(&fs, &first_pindex,
872 					     fs.entry->aux.master_pde,
873 					     fault_type, 1);
874 		if (result == KERN_TRY_AGAIN) {
875 			vm_object_drop(fs.first_object);
876 			++retry;
877 			goto RetryFault;
878 		}
879 		if (result != KERN_SUCCESS) {
880 			*errorp = result;
881 			fs.m = NULL;
882 			goto done;
883 		}
884 	}
885 
886 	/*
887 	 * Now we have the actual (object, pindex), fault in the page.  If
888 	 * vm_fault_object() fails it will unlock and deallocate the FS
889 	 * data.   If it succeeds everything remains locked and fs->object
890 	 * will have an additinal PIP count if it is not equal to
891 	 * fs->first_object
892 	 */
893 	fs.m = NULL;
894 	result = vm_fault_object(&fs, first_pindex, fault_type, 1);
895 
896 	if (result == KERN_TRY_AGAIN) {
897 		vm_object_drop(fs.first_object);
898 		++retry;
899 		goto RetryFault;
900 	}
901 	if (result != KERN_SUCCESS) {
902 		*errorp = result;
903 		fs.m = NULL;
904 		goto done;
905 	}
906 
907 	if ((orig_fault_type & VM_PROT_WRITE) &&
908 	    (fs.prot & VM_PROT_WRITE) == 0) {
909 		*errorp = KERN_PROTECTION_FAILURE;
910 		unlock_and_deallocate(&fs);
911 		fs.m = NULL;
912 		goto done;
913 	}
914 
915 	/*
916 	 * DO NOT UPDATE THE PMAP!!!  This function may be called for
917 	 * a pmap unrelated to the current process pmap, in which case
918 	 * the current cpu core will not be listed in the pmap's pm_active
919 	 * mask.  Thus invalidation interlocks will fail to work properly.
920 	 *
921 	 * (for example, 'ps' uses procfs to read program arguments from
922 	 * each process's stack).
923 	 *
924 	 * In addition to the above this function will be called to acquire
925 	 * a page that might already be faulted in, re-faulting it
926 	 * continuously is a waste of time.
927 	 *
928 	 * XXX could this have been the cause of our random seg-fault
929 	 *     issues?  procfs accesses user stacks.
930 	 */
931 	vm_page_flag_set(fs.m, PG_REFERENCED);
932 #if 0
933 	pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot, fs.wired, NULL);
934 	mycpu->gd_cnt.v_vm_faults++;
935 	if (curthread->td_lwp)
936 		++curthread->td_lwp->lwp_ru.ru_minflt;
937 #endif
938 
939 	/*
940 	 * On success vm_fault_object() does not unlock or deallocate, and fs.m
941 	 * will contain a busied page.  So we must unlock here after having
942 	 * messed with the pmap.
943 	 */
944 	unlock_things(&fs);
945 
946 	/*
947 	 * Return a held page.  We are not doing any pmap manipulation so do
948 	 * not set PG_MAPPED.  However, adjust the page flags according to
949 	 * the fault type because the caller may not use a managed pmapping
950 	 * (so we don't want to lose the fact that the page will be dirtied
951 	 * if a write fault was specified).
952 	 */
953 	vm_page_hold(fs.m);
954 	vm_page_activate(fs.m);
955 	if (fault_type & VM_PROT_WRITE)
956 		vm_page_dirty(fs.m);
957 
958 	if (curthread->td_lwp) {
959 		if (fs.hardfault) {
960 			curthread->td_lwp->lwp_ru.ru_majflt++;
961 		} else {
962 			curthread->td_lwp->lwp_ru.ru_minflt++;
963 		}
964 	}
965 
966 	/*
967 	 * Unlock everything, and return the held page.
968 	 */
969 	vm_page_wakeup(fs.m);
970 	/*vm_object_deallocate(fs.first_object);*/
971 	/*fs.first_object = NULL; */
972 	*errorp = 0;
973 
974 done:
975 	if (fs.first_object)
976 		vm_object_drop(fs.first_object);
977 done2:
978 	lwkt_reltoken(&map->token);
979 	return(fs.m);
980 }
981 
982 /*
983  * Fault in the specified (object,offset), dirty the returned page as
984  * needed.  If the requested fault_type cannot be done NULL and an
985  * error is returned.
986  *
987  * A held (but not busied) page is returned.
988  *
989  * The passed in object must be held as specified by the shared
990  * argument.
991  */
992 vm_page_t
993 vm_fault_object_page(vm_object_t object, vm_ooffset_t offset,
994 		     vm_prot_t fault_type, int fault_flags,
995 		     int *sharedp, int *errorp)
996 {
997 	int result;
998 	vm_pindex_t first_pindex;
999 	struct faultstate fs;
1000 	struct vm_map_entry entry;
1001 
1002 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1003 	bzero(&entry, sizeof(entry));
1004 	entry.object.vm_object = object;
1005 	entry.maptype = VM_MAPTYPE_NORMAL;
1006 	entry.protection = entry.max_protection = fault_type;
1007 
1008 	fs.hardfault = 0;
1009 	fs.fault_flags = fault_flags;
1010 	fs.map = NULL;
1011 	fs.shared = vm_shared_fault;
1012 	fs.first_shared = *sharedp;
1013 	fs.vp = NULL;
1014 	KKASSERT((fault_flags & VM_FAULT_WIRE_MASK) == 0);
1015 
1016 	/*
1017 	 * Might require swap block adjustments
1018 	 */
1019 	if (fs.first_shared && (fault_flags & (VM_FAULT_UNSWAP | VM_FAULT_DIRTY))) {
1020 		fs.first_shared = 0;
1021 		vm_object_upgrade(object);
1022 	}
1023 
1024 	/*
1025 	 * Retry loop as needed (typically for shared->exclusive transitions)
1026 	 */
1027 RetryFault:
1028 	*sharedp = fs.first_shared;
1029 	first_pindex = OFF_TO_IDX(offset);
1030 	fs.first_object = object;
1031 	fs.entry = &entry;
1032 	fs.first_prot = fault_type;
1033 	fs.wired = 0;
1034 	/*fs.map_generation = 0; unused */
1035 
1036 	/*
1037 	 * Make a reference to this object to prevent its disposal while we
1038 	 * are messing with it.  Once we have the reference, the map is free
1039 	 * to be diddled.  Since objects reference their shadows (and copies),
1040 	 * they will stay around as well.
1041 	 *
1042 	 * The reference should also prevent an unexpected collapse of the
1043 	 * parent that might move pages from the current object into the
1044 	 * parent unexpectedly, resulting in corruption.
1045 	 *
1046 	 * Bump the paging-in-progress count to prevent size changes (e.g.
1047 	 * truncation operations) during I/O.  This must be done after
1048 	 * obtaining the vnode lock in order to avoid possible deadlocks.
1049 	 */
1050 	if (fs.vp == NULL)
1051 		fs.vp = vnode_pager_lock(fs.first_object);
1052 
1053 	fs.lookup_still_valid = TRUE;
1054 	fs.first_m = NULL;
1055 	fs.object = fs.first_object;	/* so unlock_and_deallocate works */
1056 
1057 #if 0
1058 	/* XXX future - ability to operate on VM object using vpagetable */
1059 	if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
1060 		result = vm_fault_vpagetable(&fs, &first_pindex,
1061 					     fs.entry->aux.master_pde,
1062 					     fault_type, 0);
1063 		if (result == KERN_TRY_AGAIN) {
1064 			if (fs.first_shared == 0 && *sharedp)
1065 				vm_object_upgrade(object);
1066 			goto RetryFault;
1067 		}
1068 		if (result != KERN_SUCCESS) {
1069 			*errorp = result;
1070 			return (NULL);
1071 		}
1072 	}
1073 #endif
1074 
1075 	/*
1076 	 * Now we have the actual (object, pindex), fault in the page.  If
1077 	 * vm_fault_object() fails it will unlock and deallocate the FS
1078 	 * data.   If it succeeds everything remains locked and fs->object
1079 	 * will have an additinal PIP count if it is not equal to
1080 	 * fs->first_object
1081 	 *
1082 	 * On KERN_TRY_AGAIN vm_fault_object() leaves fs.first_object intact.
1083 	 * We may have to upgrade its lock to handle the requested fault.
1084 	 */
1085 	result = vm_fault_object(&fs, first_pindex, fault_type, 0);
1086 
1087 	if (result == KERN_TRY_AGAIN) {
1088 		if (fs.first_shared == 0 && *sharedp)
1089 			vm_object_upgrade(object);
1090 		goto RetryFault;
1091 	}
1092 	if (result != KERN_SUCCESS) {
1093 		*errorp = result;
1094 		return(NULL);
1095 	}
1096 
1097 	if ((fault_type & VM_PROT_WRITE) && (fs.prot & VM_PROT_WRITE) == 0) {
1098 		*errorp = KERN_PROTECTION_FAILURE;
1099 		unlock_and_deallocate(&fs);
1100 		return(NULL);
1101 	}
1102 
1103 	/*
1104 	 * On success vm_fault_object() does not unlock or deallocate, so we
1105 	 * do it here.  Note that the returned fs.m will be busied.
1106 	 */
1107 	unlock_things(&fs);
1108 
1109 	/*
1110 	 * Return a held page.  We are not doing any pmap manipulation so do
1111 	 * not set PG_MAPPED.  However, adjust the page flags according to
1112 	 * the fault type because the caller may not use a managed pmapping
1113 	 * (so we don't want to lose the fact that the page will be dirtied
1114 	 * if a write fault was specified).
1115 	 */
1116 	vm_page_hold(fs.m);
1117 	vm_page_activate(fs.m);
1118 	if ((fault_type & VM_PROT_WRITE) || (fault_flags & VM_FAULT_DIRTY))
1119 		vm_page_dirty(fs.m);
1120 	if (fault_flags & VM_FAULT_UNSWAP)
1121 		swap_pager_unswapped(fs.m);
1122 
1123 	/*
1124 	 * Indicate that the page was accessed.
1125 	 */
1126 	vm_page_flag_set(fs.m, PG_REFERENCED);
1127 
1128 	if (curthread->td_lwp) {
1129 		if (fs.hardfault) {
1130 			curthread->td_lwp->lwp_ru.ru_majflt++;
1131 		} else {
1132 			curthread->td_lwp->lwp_ru.ru_minflt++;
1133 		}
1134 	}
1135 
1136 	/*
1137 	 * Unlock everything, and return the held page.
1138 	 */
1139 	vm_page_wakeup(fs.m);
1140 	/*vm_object_deallocate(fs.first_object);*/
1141 	/*fs.first_object = NULL; */
1142 
1143 	*errorp = 0;
1144 	return(fs.m);
1145 }
1146 
1147 /*
1148  * Translate the virtual page number (first_pindex) that is relative
1149  * to the address space into a logical page number that is relative to the
1150  * backing object.  Use the virtual page table pointed to by (vpte).
1151  *
1152  * This implements an N-level page table.  Any level can terminate the
1153  * scan by setting VPTE_PS.   A linear mapping is accomplished by setting
1154  * VPTE_PS in the master page directory entry set via mcontrol(MADV_SETMAP).
1155  */
1156 static
1157 int
1158 vm_fault_vpagetable(struct faultstate *fs, vm_pindex_t *pindex,
1159 		    vpte_t vpte, int fault_type, int allow_nofault)
1160 {
1161 	struct lwbuf *lwb;
1162 	struct lwbuf lwb_cache;
1163 	int vshift = VPTE_FRAME_END - PAGE_SHIFT; /* index bits remaining */
1164 	int result = KERN_SUCCESS;
1165 	vpte_t *ptep;
1166 
1167 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(fs->first_object));
1168 	for (;;) {
1169 		/*
1170 		 * We cannot proceed if the vpte is not valid, not readable
1171 		 * for a read fault, or not writable for a write fault.
1172 		 */
1173 		if ((vpte & VPTE_V) == 0) {
1174 			unlock_and_deallocate(fs);
1175 			return (KERN_FAILURE);
1176 		}
1177 		if ((fault_type & VM_PROT_WRITE) && (vpte & VPTE_RW) == 0) {
1178 			unlock_and_deallocate(fs);
1179 			return (KERN_FAILURE);
1180 		}
1181 		if ((vpte & VPTE_PS) || vshift == 0)
1182 			break;
1183 		KKASSERT(vshift >= VPTE_PAGE_BITS);
1184 
1185 		/*
1186 		 * Get the page table page.  Nominally we only read the page
1187 		 * table, but since we are actively setting VPTE_M and VPTE_A,
1188 		 * tell vm_fault_object() that we are writing it.
1189 		 *
1190 		 * There is currently no real need to optimize this.
1191 		 */
1192 		result = vm_fault_object(fs, (vpte & VPTE_FRAME) >> PAGE_SHIFT,
1193 					 VM_PROT_READ|VM_PROT_WRITE,
1194 					 allow_nofault);
1195 		if (result != KERN_SUCCESS)
1196 			return (result);
1197 
1198 		/*
1199 		 * Process the returned fs.m and look up the page table
1200 		 * entry in the page table page.
1201 		 */
1202 		vshift -= VPTE_PAGE_BITS;
1203 		lwb = lwbuf_alloc(fs->m, &lwb_cache);
1204 		ptep = ((vpte_t *)lwbuf_kva(lwb) +
1205 		        ((*pindex >> vshift) & VPTE_PAGE_MASK));
1206 		vpte = *ptep;
1207 
1208 		/*
1209 		 * Page table write-back.  If the vpte is valid for the
1210 		 * requested operation, do a write-back to the page table.
1211 		 *
1212 		 * XXX VPTE_M is not set properly for page directory pages.
1213 		 * It doesn't get set in the page directory if the page table
1214 		 * is modified during a read access.
1215 		 */
1216 		vm_page_activate(fs->m);
1217 		if ((fault_type & VM_PROT_WRITE) && (vpte & VPTE_V) &&
1218 		    (vpte & VPTE_RW)) {
1219 			if ((vpte & (VPTE_M|VPTE_A)) != (VPTE_M|VPTE_A)) {
1220 				atomic_set_long(ptep, VPTE_M | VPTE_A);
1221 				vm_page_dirty(fs->m);
1222 			}
1223 		}
1224 		if ((fault_type & VM_PROT_READ) && (vpte & VPTE_V)) {
1225 			if ((vpte & VPTE_A) == 0) {
1226 				atomic_set_long(ptep, VPTE_A);
1227 				vm_page_dirty(fs->m);
1228 			}
1229 		}
1230 		lwbuf_free(lwb);
1231 		vm_page_flag_set(fs->m, PG_REFERENCED);
1232 		vm_page_wakeup(fs->m);
1233 		fs->m = NULL;
1234 		cleanup_successful_fault(fs);
1235 	}
1236 	/*
1237 	 * Combine remaining address bits with the vpte.
1238 	 */
1239 	/* JG how many bits from each? */
1240 	*pindex = ((vpte & VPTE_FRAME) >> PAGE_SHIFT) +
1241 		  (*pindex & ((1L << vshift) - 1));
1242 	return (KERN_SUCCESS);
1243 }
1244 
1245 
1246 /*
1247  * This is the core of the vm_fault code.
1248  *
1249  * Do all operations required to fault-in (fs.first_object, pindex).  Run
1250  * through the shadow chain as necessary and do required COW or virtual
1251  * copy operations.  The caller has already fully resolved the vm_map_entry
1252  * and, if appropriate, has created a copy-on-write layer.  All we need to
1253  * do is iterate the object chain.
1254  *
1255  * On failure (fs) is unlocked and deallocated and the caller may return or
1256  * retry depending on the failure code.  On success (fs) is NOT unlocked or
1257  * deallocated, fs.m will contained a resolved, busied page, and fs.object
1258  * will have an additional PIP count if it is not equal to fs.first_object.
1259  *
1260  * If locks based on fs->first_shared or fs->shared are insufficient,
1261  * clear the appropriate field(s) and return RETRY.  COWs require that
1262  * first_shared be 0, while page allocations (or frees) require that
1263  * shared be 0.  Renames require that both be 0.
1264  *
1265  * fs->first_object must be held on call.
1266  */
1267 static
1268 int
1269 vm_fault_object(struct faultstate *fs, vm_pindex_t first_pindex,
1270 		vm_prot_t fault_type, int allow_nofault)
1271 {
1272 	vm_object_t next_object;
1273 	vm_pindex_t pindex;
1274 	int error;
1275 
1276 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(fs->first_object));
1277 	fs->prot = fs->first_prot;
1278 	fs->object = fs->first_object;
1279 	pindex = first_pindex;
1280 
1281 	vm_object_chain_acquire(fs->first_object, fs->shared);
1282 	vm_object_pip_add(fs->first_object, 1);
1283 
1284 	/*
1285 	 * If a read fault occurs we try to make the page writable if
1286 	 * possible.  There are three cases where we cannot make the
1287 	 * page mapping writable:
1288 	 *
1289 	 * (1) The mapping is read-only or the VM object is read-only,
1290 	 *     fs->prot above will simply not have VM_PROT_WRITE set.
1291 	 *
1292 	 * (2) If the mapping is a virtual page table we need to be able
1293 	 *     to detect writes so we can set VPTE_M in the virtual page
1294 	 *     table.
1295 	 *
1296 	 * (3) If the VM page is read-only or copy-on-write, upgrading would
1297 	 *     just result in an unnecessary COW fault.
1298 	 *
1299 	 * VM_PROT_VPAGED is set if faulting via a virtual page table and
1300 	 * causes adjustments to the 'M'odify bit to also turn off write
1301 	 * access to force a re-fault.
1302 	 */
1303 	if (fs->entry->maptype == VM_MAPTYPE_VPAGETABLE) {
1304 		if ((fault_type & VM_PROT_WRITE) == 0)
1305 			fs->prot &= ~VM_PROT_WRITE;
1306 	}
1307 
1308 	if (curthread->td_lwp && curthread->td_lwp->lwp_vmspace &&
1309 	    pmap_emulate_ad_bits(&curthread->td_lwp->lwp_vmspace->vm_pmap)) {
1310 		if ((fault_type & VM_PROT_WRITE) == 0)
1311 			fs->prot &= ~VM_PROT_WRITE;
1312 	}
1313 
1314 	/* vm_object_hold(fs->object); implied b/c object == first_object */
1315 
1316 	for (;;) {
1317 		/*
1318 		 * The entire backing chain from first_object to object
1319 		 * inclusive is chainlocked.
1320 		 *
1321 		 * If the object is dead, we stop here
1322 		 */
1323 		if (fs->object->flags & OBJ_DEAD) {
1324 			vm_object_pip_wakeup(fs->first_object);
1325 			vm_object_chain_release_all(fs->first_object,
1326 						    fs->object);
1327 			if (fs->object != fs->first_object)
1328 				vm_object_drop(fs->object);
1329 			unlock_and_deallocate(fs);
1330 			return (KERN_PROTECTION_FAILURE);
1331 		}
1332 
1333 		/*
1334 		 * See if the page is resident.  Wait/Retry if the page is
1335 		 * busy (lots of stuff may have changed so we can't continue
1336 		 * in that case).
1337 		 *
1338 		 * We can theoretically allow the soft-busy case on a read
1339 		 * fault if the page is marked valid, but since such
1340 		 * pages are typically already pmap'd, putting that
1341 		 * special case in might be more effort then it is
1342 		 * worth.  We cannot under any circumstances mess
1343 		 * around with a vm_page_t->busy page except, perhaps,
1344 		 * to pmap it.
1345 		 */
1346 		fs->m = vm_page_lookup_busy_try(fs->object, pindex,
1347 						TRUE, &error);
1348 		if (error) {
1349 			vm_object_pip_wakeup(fs->first_object);
1350 			vm_object_chain_release_all(fs->first_object,
1351 						    fs->object);
1352 			if (fs->object != fs->first_object)
1353 				vm_object_drop(fs->object);
1354 			unlock_things(fs);
1355 			vm_page_sleep_busy(fs->m, TRUE, "vmpfw");
1356 			mycpu->gd_cnt.v_intrans++;
1357 			/*vm_object_deallocate(fs->first_object);*/
1358 			/*fs->first_object = NULL;*/
1359 			fs->m = NULL;
1360 			return (KERN_TRY_AGAIN);
1361 		}
1362 		if (fs->m) {
1363 			/*
1364 			 * The page is busied for us.
1365 			 *
1366 			 * If reactivating a page from PQ_CACHE we may have
1367 			 * to rate-limit.
1368 			 */
1369 			int queue = fs->m->queue;
1370 			vm_page_unqueue_nowakeup(fs->m);
1371 
1372 			if ((queue - fs->m->pc) == PQ_CACHE &&
1373 			    vm_page_count_severe()) {
1374 				vm_page_activate(fs->m);
1375 				vm_page_wakeup(fs->m);
1376 				fs->m = NULL;
1377 				vm_object_pip_wakeup(fs->first_object);
1378 				vm_object_chain_release_all(fs->first_object,
1379 							    fs->object);
1380 				if (fs->object != fs->first_object)
1381 					vm_object_drop(fs->object);
1382 				unlock_and_deallocate(fs);
1383 				if (allow_nofault == 0 ||
1384 				    (curthread->td_flags & TDF_NOFAULT) == 0) {
1385 					vm_wait_pfault();
1386 				}
1387 				return (KERN_TRY_AGAIN);
1388 			}
1389 
1390 			/*
1391 			 * If it still isn't completely valid (readable),
1392 			 * or if a read-ahead-mark is set on the VM page,
1393 			 * jump to readrest, else we found the page and
1394 			 * can return.
1395 			 *
1396 			 * We can release the spl once we have marked the
1397 			 * page busy.
1398 			 */
1399 			if (fs->m->object != &kernel_object) {
1400 				if ((fs->m->valid & VM_PAGE_BITS_ALL) !=
1401 				    VM_PAGE_BITS_ALL) {
1402 					goto readrest;
1403 				}
1404 				if (fs->m->flags & PG_RAM) {
1405 					if (debug_cluster)
1406 						kprintf("R");
1407 					vm_page_flag_clear(fs->m, PG_RAM);
1408 					goto readrest;
1409 				}
1410 			}
1411 			break; /* break to PAGE HAS BEEN FOUND */
1412 		}
1413 
1414 		/*
1415 		 * Page is not resident, If this is the search termination
1416 		 * or the pager might contain the page, allocate a new page.
1417 		 */
1418 		if (TRYPAGER(fs) || fs->object == fs->first_object) {
1419 			/*
1420 			 * Allocating, must be exclusive.
1421 			 */
1422 			if (fs->object == fs->first_object &&
1423 			    fs->first_shared) {
1424 				fs->first_shared = 0;
1425 				vm_object_pip_wakeup(fs->first_object);
1426 				vm_object_chain_release_all(fs->first_object,
1427 							    fs->object);
1428 				if (fs->object != fs->first_object)
1429 					vm_object_drop(fs->object);
1430 				unlock_and_deallocate(fs);
1431 				return (KERN_TRY_AGAIN);
1432 			}
1433 			if (fs->object != fs->first_object &&
1434 			    fs->shared) {
1435 				fs->first_shared = 0;
1436 				fs->shared = 0;
1437 				vm_object_pip_wakeup(fs->first_object);
1438 				vm_object_chain_release_all(fs->first_object,
1439 							    fs->object);
1440 				if (fs->object != fs->first_object)
1441 					vm_object_drop(fs->object);
1442 				unlock_and_deallocate(fs);
1443 				return (KERN_TRY_AGAIN);
1444 			}
1445 
1446 			/*
1447 			 * If the page is beyond the object size we fail
1448 			 */
1449 			if (pindex >= fs->object->size) {
1450 				vm_object_pip_wakeup(fs->first_object);
1451 				vm_object_chain_release_all(fs->first_object,
1452 							    fs->object);
1453 				if (fs->object != fs->first_object)
1454 					vm_object_drop(fs->object);
1455 				unlock_and_deallocate(fs);
1456 				return (KERN_PROTECTION_FAILURE);
1457 			}
1458 
1459 			/*
1460 			 * Allocate a new page for this object/offset pair.
1461 			 *
1462 			 * It is possible for the allocation to race, so
1463 			 * handle the case.
1464 			 */
1465 			fs->m = NULL;
1466 			if (!vm_page_count_severe()) {
1467 				fs->m = vm_page_alloc(fs->object, pindex,
1468 				    ((fs->vp || fs->object->backing_object) ?
1469 					VM_ALLOC_NULL_OK | VM_ALLOC_NORMAL :
1470 					VM_ALLOC_NULL_OK | VM_ALLOC_NORMAL |
1471 					VM_ALLOC_USE_GD | VM_ALLOC_ZERO));
1472 			}
1473 			if (fs->m == NULL) {
1474 				vm_object_pip_wakeup(fs->first_object);
1475 				vm_object_chain_release_all(fs->first_object,
1476 							    fs->object);
1477 				if (fs->object != fs->first_object)
1478 					vm_object_drop(fs->object);
1479 				unlock_and_deallocate(fs);
1480 				if (allow_nofault == 0 ||
1481 				    (curthread->td_flags & TDF_NOFAULT) == 0) {
1482 					vm_wait_pfault();
1483 				}
1484 				return (KERN_TRY_AGAIN);
1485 			}
1486 
1487 			/*
1488 			 * Fall through to readrest.  We have a new page which
1489 			 * will have to be paged (since m->valid will be 0).
1490 			 */
1491 		}
1492 
1493 readrest:
1494 		/*
1495 		 * We have found an invalid or partially valid page, a
1496 		 * page with a read-ahead mark which might be partially or
1497 		 * fully valid (and maybe dirty too), or we have allocated
1498 		 * a new page.
1499 		 *
1500 		 * Attempt to fault-in the page if there is a chance that the
1501 		 * pager has it, and potentially fault in additional pages
1502 		 * at the same time.
1503 		 *
1504 		 * If TRYPAGER is true then fs.m will be non-NULL and busied
1505 		 * for us.
1506 		 */
1507 		if (TRYPAGER(fs)) {
1508 			int rv;
1509 			int seqaccess;
1510 			u_char behavior = vm_map_entry_behavior(fs->entry);
1511 
1512 			if (behavior == MAP_ENTRY_BEHAV_RANDOM)
1513 				seqaccess = 0;
1514 			else
1515 				seqaccess = -1;
1516 
1517 			/*
1518 			 * Doing I/O may synchronously insert additional
1519 			 * pages so we can't be shared at this point either.
1520 			 *
1521 			 * NOTE: We can't free fs->m here in the allocated
1522 			 *	 case (fs->object != fs->first_object) as
1523 			 *	 this would require an exclusively locked
1524 			 *	 VM object.
1525 			 */
1526 			if (fs->object == fs->first_object &&
1527 			    fs->first_shared) {
1528 				vm_page_deactivate(fs->m);
1529 				vm_page_wakeup(fs->m);
1530 				fs->m = NULL;
1531 				fs->first_shared = 0;
1532 				vm_object_pip_wakeup(fs->first_object);
1533 				vm_object_chain_release_all(fs->first_object,
1534 							    fs->object);
1535 				if (fs->object != fs->first_object)
1536 					vm_object_drop(fs->object);
1537 				unlock_and_deallocate(fs);
1538 				return (KERN_TRY_AGAIN);
1539 			}
1540 			if (fs->object != fs->first_object &&
1541 			    fs->shared) {
1542 				vm_page_deactivate(fs->m);
1543 				vm_page_wakeup(fs->m);
1544 				fs->m = NULL;
1545 				fs->first_shared = 0;
1546 				fs->shared = 0;
1547 				vm_object_pip_wakeup(fs->first_object);
1548 				vm_object_chain_release_all(fs->first_object,
1549 							    fs->object);
1550 				if (fs->object != fs->first_object)
1551 					vm_object_drop(fs->object);
1552 				unlock_and_deallocate(fs);
1553 				return (KERN_TRY_AGAIN);
1554 			}
1555 
1556 			/*
1557 			 * Avoid deadlocking against the map when doing I/O.
1558 			 * fs.object and the page is PG_BUSY'd.
1559 			 *
1560 			 * NOTE: Once unlocked, fs->entry can become stale
1561 			 *	 so this will NULL it out.
1562 			 *
1563 			 * NOTE: fs->entry is invalid until we relock the
1564 			 *	 map and verify that the timestamp has not
1565 			 *	 changed.
1566 			 */
1567 			unlock_map(fs);
1568 
1569 			/*
1570 			 * Acquire the page data.  We still hold a ref on
1571 			 * fs.object and the page has been PG_BUSY's.
1572 			 *
1573 			 * The pager may replace the page (for example, in
1574 			 * order to enter a fictitious page into the
1575 			 * object).  If it does so it is responsible for
1576 			 * cleaning up the passed page and properly setting
1577 			 * the new page PG_BUSY.
1578 			 *
1579 			 * If we got here through a PG_RAM read-ahead
1580 			 * mark the page may be partially dirty and thus
1581 			 * not freeable.  Don't bother checking to see
1582 			 * if the pager has the page because we can't free
1583 			 * it anyway.  We have to depend on the get_page
1584 			 * operation filling in any gaps whether there is
1585 			 * backing store or not.
1586 			 */
1587 			rv = vm_pager_get_page(fs->object, &fs->m, seqaccess);
1588 
1589 			if (rv == VM_PAGER_OK) {
1590 				/*
1591 				 * Relookup in case pager changed page. Pager
1592 				 * is responsible for disposition of old page
1593 				 * if moved.
1594 				 *
1595 				 * XXX other code segments do relookups too.
1596 				 * It's a bad abstraction that needs to be
1597 				 * fixed/removed.
1598 				 */
1599 				fs->m = vm_page_lookup(fs->object, pindex);
1600 				if (fs->m == NULL) {
1601 					vm_object_pip_wakeup(fs->first_object);
1602 					vm_object_chain_release_all(
1603 						fs->first_object, fs->object);
1604 					if (fs->object != fs->first_object)
1605 						vm_object_drop(fs->object);
1606 					unlock_and_deallocate(fs);
1607 					return (KERN_TRY_AGAIN);
1608 				}
1609 				++fs->hardfault;
1610 				break; /* break to PAGE HAS BEEN FOUND */
1611 			}
1612 
1613 			/*
1614 			 * Remove the bogus page (which does not exist at this
1615 			 * object/offset); before doing so, we must get back
1616 			 * our object lock to preserve our invariant.
1617 			 *
1618 			 * Also wake up any other process that may want to bring
1619 			 * in this page.
1620 			 *
1621 			 * If this is the top-level object, we must leave the
1622 			 * busy page to prevent another process from rushing
1623 			 * past us, and inserting the page in that object at
1624 			 * the same time that we are.
1625 			 */
1626 			if (rv == VM_PAGER_ERROR) {
1627 				if (curproc) {
1628 					kprintf("vm_fault: pager read error, "
1629 						"pid %d (%s)\n",
1630 						curproc->p_pid,
1631 						curproc->p_comm);
1632 				} else {
1633 					kprintf("vm_fault: pager read error, "
1634 						"thread %p (%s)\n",
1635 						curthread,
1636 						curproc->p_comm);
1637 				}
1638 			}
1639 
1640 			/*
1641 			 * Data outside the range of the pager or an I/O error
1642 			 *
1643 			 * The page may have been wired during the pagein,
1644 			 * e.g. by the buffer cache, and cannot simply be
1645 			 * freed.  Call vnode_pager_freepage() to deal with it.
1646 			 *
1647 			 * Also note that we cannot free the page if we are
1648 			 * holding the related object shared. XXX not sure
1649 			 * what to do in that case.
1650 			 */
1651 			if (fs->object != fs->first_object) {
1652 				vnode_pager_freepage(fs->m);
1653 				fs->m = NULL;
1654 				/*
1655 				 * XXX - we cannot just fall out at this
1656 				 * point, m has been freed and is invalid!
1657 				 */
1658 			}
1659 			/*
1660 			 * XXX - the check for kernel_map is a kludge to work
1661 			 * around having the machine panic on a kernel space
1662 			 * fault w/ I/O error.
1663 			 */
1664 			if (((fs->map != &kernel_map) &&
1665 			    (rv == VM_PAGER_ERROR)) || (rv == VM_PAGER_BAD)) {
1666 				if (fs->m) {
1667 					if (fs->first_shared) {
1668 						vm_page_deactivate(fs->m);
1669 						vm_page_wakeup(fs->m);
1670 					} else {
1671 						vnode_pager_freepage(fs->m);
1672 					}
1673 					fs->m = NULL;
1674 				}
1675 				vm_object_pip_wakeup(fs->first_object);
1676 				vm_object_chain_release_all(fs->first_object,
1677 							    fs->object);
1678 				if (fs->object != fs->first_object)
1679 					vm_object_drop(fs->object);
1680 				unlock_and_deallocate(fs);
1681 				if (rv == VM_PAGER_ERROR)
1682 					return (KERN_FAILURE);
1683 				else
1684 					return (KERN_PROTECTION_FAILURE);
1685 				/* NOT REACHED */
1686 			}
1687 		}
1688 
1689 		/*
1690 		 * We get here if the object has a default pager (or unwiring)
1691 		 * or the pager doesn't have the page.
1692 		 *
1693 		 * fs->first_m will be used for the COW unless we find a
1694 		 * deeper page to be mapped read-only, in which case the
1695 		 * unlock*(fs) will free first_m.
1696 		 */
1697 		if (fs->object == fs->first_object)
1698 			fs->first_m = fs->m;
1699 
1700 		/*
1701 		 * Move on to the next object.  The chain lock should prevent
1702 		 * the backing_object from getting ripped out from under us.
1703 		 *
1704 		 * The object lock for the next object is governed by
1705 		 * fs->shared.
1706 		 */
1707 		if ((next_object = fs->object->backing_object) != NULL) {
1708 			if (fs->shared)
1709 				vm_object_hold_shared(next_object);
1710 			else
1711 				vm_object_hold(next_object);
1712 			vm_object_chain_acquire(next_object, fs->shared);
1713 			KKASSERT(next_object == fs->object->backing_object);
1714 			pindex += OFF_TO_IDX(fs->object->backing_object_offset);
1715 		}
1716 
1717 		if (next_object == NULL) {
1718 			/*
1719 			 * If there's no object left, fill the page in the top
1720 			 * object with zeros.
1721 			 */
1722 			if (fs->object != fs->first_object) {
1723 #if 0
1724 				if (fs->first_object->backing_object !=
1725 				    fs->object) {
1726 					vm_object_hold(fs->first_object->backing_object);
1727 				}
1728 #endif
1729 				vm_object_chain_release_all(
1730 					fs->first_object->backing_object,
1731 					fs->object);
1732 #if 0
1733 				if (fs->first_object->backing_object !=
1734 				    fs->object) {
1735 					vm_object_drop(fs->first_object->backing_object);
1736 				}
1737 #endif
1738 				vm_object_pip_wakeup(fs->object);
1739 				vm_object_drop(fs->object);
1740 				fs->object = fs->first_object;
1741 				pindex = first_pindex;
1742 				fs->m = fs->first_m;
1743 			}
1744 			fs->first_m = NULL;
1745 
1746 			/*
1747 			 * Zero the page if necessary and mark it valid.
1748 			 */
1749 			if ((fs->m->flags & PG_ZERO) == 0) {
1750 				vm_page_zero_fill(fs->m);
1751 			} else {
1752 #ifdef PMAP_DEBUG
1753 				pmap_page_assertzero(VM_PAGE_TO_PHYS(fs->m));
1754 #endif
1755 				vm_page_flag_clear(fs->m, PG_ZERO);
1756 				mycpu->gd_cnt.v_ozfod++;
1757 			}
1758 			mycpu->gd_cnt.v_zfod++;
1759 			fs->m->valid = VM_PAGE_BITS_ALL;
1760 			break;	/* break to PAGE HAS BEEN FOUND */
1761 		}
1762 		if (fs->object != fs->first_object) {
1763 			vm_object_pip_wakeup(fs->object);
1764 			vm_object_lock_swap();
1765 			vm_object_drop(fs->object);
1766 		}
1767 		KASSERT(fs->object != next_object,
1768 			("object loop %p", next_object));
1769 		fs->object = next_object;
1770 		vm_object_pip_add(fs->object, 1);
1771 	}
1772 
1773 	/*
1774 	 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
1775 	 * is held.]
1776 	 *
1777 	 * object still held.
1778 	 *
1779 	 * local shared variable may be different from fs->shared.
1780 	 *
1781 	 * If the page is being written, but isn't already owned by the
1782 	 * top-level object, we have to copy it into a new page owned by the
1783 	 * top-level object.
1784 	 */
1785 	KASSERT((fs->m->flags & PG_BUSY) != 0,
1786 		("vm_fault: not busy after main loop"));
1787 
1788 	if (fs->object != fs->first_object) {
1789 		/*
1790 		 * We only really need to copy if we want to write it.
1791 		 */
1792 		if (fault_type & VM_PROT_WRITE) {
1793 			/*
1794 			 * This allows pages to be virtually copied from a
1795 			 * backing_object into the first_object, where the
1796 			 * backing object has no other refs to it, and cannot
1797 			 * gain any more refs.  Instead of a bcopy, we just
1798 			 * move the page from the backing object to the
1799 			 * first object.  Note that we must mark the page
1800 			 * dirty in the first object so that it will go out
1801 			 * to swap when needed.
1802 			 */
1803 			if (
1804 				/*
1805 				 * Must be holding exclusive locks
1806 				 */
1807 				fs->first_shared == 0 &&
1808 				fs->shared == 0 &&
1809 				/*
1810 				 * Map, if present, has not changed
1811 				 */
1812 				(fs->map == NULL ||
1813 				fs->map_generation == fs->map->timestamp) &&
1814 				/*
1815 				 * Only one shadow object
1816 				 */
1817 				(fs->object->shadow_count == 1) &&
1818 				/*
1819 				 * No COW refs, except us
1820 				 */
1821 				(fs->object->ref_count == 1) &&
1822 				/*
1823 				 * No one else can look this object up
1824 				 */
1825 				(fs->object->handle == NULL) &&
1826 				/*
1827 				 * No other ways to look the object up
1828 				 */
1829 				((fs->object->type == OBJT_DEFAULT) ||
1830 				 (fs->object->type == OBJT_SWAP)) &&
1831 				/*
1832 				 * We don't chase down the shadow chain
1833 				 */
1834 				(fs->object == fs->first_object->backing_object) &&
1835 
1836 				/*
1837 				 * grab the lock if we need to
1838 				 */
1839 				(fs->lookup_still_valid ||
1840 				 fs->map == NULL ||
1841 				 lockmgr(&fs->map->lock, LK_EXCLUSIVE|LK_NOWAIT) == 0)
1842 			    ) {
1843 				/*
1844 				 * (first_m) and (m) are both busied.  We have
1845 				 * move (m) into (first_m)'s object/pindex
1846 				 * in an atomic fashion, then free (first_m).
1847 				 *
1848 				 * first_object is held so second remove
1849 				 * followed by the rename should wind
1850 				 * up being atomic.  vm_page_free() might
1851 				 * block so we don't do it until after the
1852 				 * rename.
1853 				 */
1854 				fs->lookup_still_valid = 1;
1855 				vm_page_protect(fs->first_m, VM_PROT_NONE);
1856 				vm_page_remove(fs->first_m);
1857 				vm_page_rename(fs->m, fs->first_object,
1858 					       first_pindex);
1859 				vm_page_free(fs->first_m);
1860 				fs->first_m = fs->m;
1861 				fs->m = NULL;
1862 				mycpu->gd_cnt.v_cow_optim++;
1863 			} else {
1864 				/*
1865 				 * Oh, well, lets copy it.
1866 				 *
1867 				 * Why are we unmapping the original page
1868 				 * here?  Well, in short, not all accessors
1869 				 * of user memory go through the pmap.  The
1870 				 * procfs code doesn't have access user memory
1871 				 * via a local pmap, so vm_fault_page*()
1872 				 * can't call pmap_enter().  And the umtx*()
1873 				 * code may modify the COW'd page via a DMAP
1874 				 * or kernel mapping and not via the pmap,
1875 				 * leaving the original page still mapped
1876 				 * read-only into the pmap.
1877 				 *
1878 				 * So we have to remove the page from at
1879 				 * least the current pmap if it is in it.
1880 				 * Just remove it from all pmaps.
1881 				 */
1882 				KKASSERT(fs->first_shared == 0);
1883 				vm_page_copy(fs->m, fs->first_m);
1884 				vm_page_protect(fs->m, VM_PROT_NONE);
1885 				vm_page_event(fs->m, VMEVENT_COW);
1886 			}
1887 
1888 			/*
1889 			 * We no longer need the old page or object.
1890 			 */
1891 			if (fs->m)
1892 				release_page(fs);
1893 
1894 			/*
1895 			 * We intend to revert to first_object, undo the
1896 			 * chain lock through to that.
1897 			 */
1898 #if 0
1899 			if (fs->first_object->backing_object != fs->object)
1900 				vm_object_hold(fs->first_object->backing_object);
1901 #endif
1902 			vm_object_chain_release_all(
1903 					fs->first_object->backing_object,
1904 					fs->object);
1905 #if 0
1906 			if (fs->first_object->backing_object != fs->object)
1907 				vm_object_drop(fs->first_object->backing_object);
1908 #endif
1909 
1910 			/*
1911 			 * fs->object != fs->first_object due to above
1912 			 * conditional
1913 			 */
1914 			vm_object_pip_wakeup(fs->object);
1915 			vm_object_drop(fs->object);
1916 
1917 			/*
1918 			 * Only use the new page below...
1919 			 */
1920 			mycpu->gd_cnt.v_cow_faults++;
1921 			fs->m = fs->first_m;
1922 			fs->object = fs->first_object;
1923 			pindex = first_pindex;
1924 		} else {
1925 			/*
1926 			 * If it wasn't a write fault avoid having to copy
1927 			 * the page by mapping it read-only.
1928 			 */
1929 			fs->prot &= ~VM_PROT_WRITE;
1930 		}
1931 	}
1932 
1933 	/*
1934 	 * Relock the map if necessary, then check the generation count.
1935 	 * relock_map() will update fs->timestamp to account for the
1936 	 * relocking if necessary.
1937 	 *
1938 	 * If the count has changed after relocking then all sorts of
1939 	 * crap may have happened and we have to retry.
1940 	 *
1941 	 * NOTE: The relock_map() can fail due to a deadlock against
1942 	 *	 the vm_page we are holding BUSY.
1943 	 */
1944 	if (fs->lookup_still_valid == FALSE && fs->map) {
1945 		if (relock_map(fs) ||
1946 		    fs->map->timestamp != fs->map_generation) {
1947 			release_page(fs);
1948 			vm_object_pip_wakeup(fs->first_object);
1949 			vm_object_chain_release_all(fs->first_object,
1950 						    fs->object);
1951 			if (fs->object != fs->first_object)
1952 				vm_object_drop(fs->object);
1953 			unlock_and_deallocate(fs);
1954 			return (KERN_TRY_AGAIN);
1955 		}
1956 	}
1957 
1958 	/*
1959 	 * If the fault is a write, we know that this page is being
1960 	 * written NOW so dirty it explicitly to save on pmap_is_modified()
1961 	 * calls later.
1962 	 *
1963 	 * If this is a NOSYNC mmap we do not want to set PG_NOSYNC
1964 	 * if the page is already dirty to prevent data written with
1965 	 * the expectation of being synced from not being synced.
1966 	 * Likewise if this entry does not request NOSYNC then make
1967 	 * sure the page isn't marked NOSYNC.  Applications sharing
1968 	 * data should use the same flags to avoid ping ponging.
1969 	 *
1970 	 * Also tell the backing pager, if any, that it should remove
1971 	 * any swap backing since the page is now dirty.
1972 	 */
1973 	vm_page_activate(fs->m);
1974 	if (fs->prot & VM_PROT_WRITE) {
1975 		vm_object_set_writeable_dirty(fs->m->object);
1976 		vm_set_nosync(fs->m, fs->entry);
1977 		if (fs->fault_flags & VM_FAULT_DIRTY) {
1978 			vm_page_dirty(fs->m);
1979 			swap_pager_unswapped(fs->m);
1980 		}
1981 	}
1982 
1983 	vm_object_pip_wakeup(fs->first_object);
1984 	vm_object_chain_release_all(fs->first_object, fs->object);
1985 	if (fs->object != fs->first_object)
1986 		vm_object_drop(fs->object);
1987 
1988 	/*
1989 	 * Page had better still be busy.  We are still locked up and
1990 	 * fs->object will have another PIP reference if it is not equal
1991 	 * to fs->first_object.
1992 	 */
1993 	KASSERT(fs->m->flags & PG_BUSY,
1994 		("vm_fault: page %p not busy!", fs->m));
1995 
1996 	/*
1997 	 * Sanity check: page must be completely valid or it is not fit to
1998 	 * map into user space.  vm_pager_get_pages() ensures this.
1999 	 */
2000 	if (fs->m->valid != VM_PAGE_BITS_ALL) {
2001 		vm_page_zero_invalid(fs->m, TRUE);
2002 		kprintf("Warning: page %p partially invalid on fault\n", fs->m);
2003 	}
2004 	vm_page_flag_clear(fs->m, PG_ZERO);
2005 
2006 	return (KERN_SUCCESS);
2007 }
2008 
2009 /*
2010  * Hold each of the physical pages that are mapped by the specified range of
2011  * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid
2012  * and allow the specified types of access, "prot".  If all of the implied
2013  * pages are successfully held, then the number of held pages is returned
2014  * together with pointers to those pages in the array "ma".  However, if any
2015  * of the pages cannot be held, -1 is returned.
2016  */
2017 int
2018 vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len,
2019     vm_prot_t prot, vm_page_t *ma, int max_count)
2020 {
2021 	vm_offset_t start, end;
2022 	int i, npages, error;
2023 
2024 	start = trunc_page(addr);
2025 	end = round_page(addr + len);
2026 
2027 	npages = howmany(end - start, PAGE_SIZE);
2028 
2029 	if (npages > max_count)
2030 		return -1;
2031 
2032 	for (i = 0; i < npages; i++) {
2033 		// XXX error handling
2034 		ma[i] = vm_fault_page_quick(start + (i * PAGE_SIZE),
2035 			prot,
2036 			&error);
2037 	}
2038 
2039 	return npages;
2040 }
2041 
2042 /*
2043  * Wire down a range of virtual addresses in a map.  The entry in question
2044  * should be marked in-transition and the map must be locked.  We must
2045  * release the map temporarily while faulting-in the page to avoid a
2046  * deadlock.  Note that the entry may be clipped while we are blocked but
2047  * will never be freed.
2048  *
2049  * No requirements.
2050  */
2051 int
2052 vm_fault_wire(vm_map_t map, vm_map_entry_t entry,
2053 	      boolean_t user_wire, int kmflags)
2054 {
2055 	boolean_t fictitious;
2056 	vm_offset_t start;
2057 	vm_offset_t end;
2058 	vm_offset_t va;
2059 	vm_paddr_t pa;
2060 	vm_page_t m;
2061 	pmap_t pmap;
2062 	int rv;
2063 	int wire_prot;
2064 	int fault_flags;
2065 
2066 	lwkt_gettoken(&map->token);
2067 
2068 	if (user_wire) {
2069 		wire_prot = VM_PROT_READ;
2070 		fault_flags = VM_FAULT_USER_WIRE;
2071 	} else {
2072 		wire_prot = VM_PROT_READ | VM_PROT_WRITE;
2073 		fault_flags = VM_FAULT_CHANGE_WIRING;
2074 	}
2075 	if (kmflags & KM_NOTLBSYNC)
2076 		wire_prot |= VM_PROT_NOSYNC;
2077 
2078 	pmap = vm_map_pmap(map);
2079 	start = entry->start;
2080 	end = entry->end;
2081 	switch(entry->maptype) {
2082 	case VM_MAPTYPE_NORMAL:
2083 	case VM_MAPTYPE_VPAGETABLE:
2084 		fictitious = entry->object.vm_object &&
2085 			    ((entry->object.vm_object->type == OBJT_DEVICE) ||
2086 			     (entry->object.vm_object->type == OBJT_MGTDEVICE));
2087 		break;
2088 	case VM_MAPTYPE_UKSMAP:
2089 		fictitious = TRUE;
2090 		break;
2091 	default:
2092 		fictitious = FALSE;
2093 		break;
2094 	}
2095 
2096 	if (entry->eflags & MAP_ENTRY_KSTACK)
2097 		start += PAGE_SIZE;
2098 	map->timestamp++;
2099 	vm_map_unlock(map);
2100 
2101 	/*
2102 	 * We simulate a fault to get the page and enter it in the physical
2103 	 * map.
2104 	 */
2105 	for (va = start; va < end; va += PAGE_SIZE) {
2106 		rv = vm_fault(map, va, wire_prot, fault_flags);
2107 		if (rv) {
2108 			while (va > start) {
2109 				va -= PAGE_SIZE;
2110 				if ((pa = pmap_extract(pmap, va)) == 0)
2111 					continue;
2112 				pmap_change_wiring(pmap, va, FALSE, entry);
2113 				if (!fictitious) {
2114 					m = PHYS_TO_VM_PAGE(pa);
2115 					vm_page_busy_wait(m, FALSE, "vmwrpg");
2116 					vm_page_unwire(m, 1);
2117 					vm_page_wakeup(m);
2118 				}
2119 			}
2120 			goto done;
2121 		}
2122 	}
2123 	rv = KERN_SUCCESS;
2124 done:
2125 	vm_map_lock(map);
2126 	lwkt_reltoken(&map->token);
2127 	return (rv);
2128 }
2129 
2130 /*
2131  * Unwire a range of virtual addresses in a map.  The map should be
2132  * locked.
2133  */
2134 void
2135 vm_fault_unwire(vm_map_t map, vm_map_entry_t entry)
2136 {
2137 	boolean_t fictitious;
2138 	vm_offset_t start;
2139 	vm_offset_t end;
2140 	vm_offset_t va;
2141 	vm_paddr_t pa;
2142 	vm_page_t m;
2143 	pmap_t pmap;
2144 
2145 	lwkt_gettoken(&map->token);
2146 
2147 	pmap = vm_map_pmap(map);
2148 	start = entry->start;
2149 	end = entry->end;
2150 	fictitious = entry->object.vm_object &&
2151 			((entry->object.vm_object->type == OBJT_DEVICE) ||
2152 			 (entry->object.vm_object->type == OBJT_MGTDEVICE));
2153 	if (entry->eflags & MAP_ENTRY_KSTACK)
2154 		start += PAGE_SIZE;
2155 
2156 	/*
2157 	 * Since the pages are wired down, we must be able to get their
2158 	 * mappings from the physical map system.
2159 	 */
2160 	for (va = start; va < end; va += PAGE_SIZE) {
2161 		pa = pmap_extract(pmap, va);
2162 		if (pa != 0) {
2163 			pmap_change_wiring(pmap, va, FALSE, entry);
2164 			if (!fictitious) {
2165 				m = PHYS_TO_VM_PAGE(pa);
2166 				vm_page_busy_wait(m, FALSE, "vmwupg");
2167 				vm_page_unwire(m, 1);
2168 				vm_page_wakeup(m);
2169 			}
2170 		}
2171 	}
2172 	lwkt_reltoken(&map->token);
2173 }
2174 
2175 /*
2176  * Copy all of the pages from a wired-down map entry to another.
2177  *
2178  * The source and destination maps must be locked for write.
2179  * The source and destination maps token must be held
2180  * The source map entry must be wired down (or be a sharing map
2181  * entry corresponding to a main map entry that is wired down).
2182  *
2183  * No other requirements.
2184  *
2185  * XXX do segment optimization
2186  */
2187 void
2188 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
2189 		    vm_map_entry_t dst_entry, vm_map_entry_t src_entry)
2190 {
2191 	vm_object_t dst_object;
2192 	vm_object_t src_object;
2193 	vm_ooffset_t dst_offset;
2194 	vm_ooffset_t src_offset;
2195 	vm_prot_t prot;
2196 	vm_offset_t vaddr;
2197 	vm_page_t dst_m;
2198 	vm_page_t src_m;
2199 
2200 	src_object = src_entry->object.vm_object;
2201 	src_offset = src_entry->offset;
2202 
2203 	/*
2204 	 * Create the top-level object for the destination entry. (Doesn't
2205 	 * actually shadow anything - we copy the pages directly.)
2206 	 */
2207 	vm_map_entry_allocate_object(dst_entry);
2208 	dst_object = dst_entry->object.vm_object;
2209 
2210 	prot = dst_entry->max_protection;
2211 
2212 	/*
2213 	 * Loop through all of the pages in the entry's range, copying each
2214 	 * one from the source object (it should be there) to the destination
2215 	 * object.
2216 	 */
2217 	vm_object_hold(src_object);
2218 	vm_object_hold(dst_object);
2219 	for (vaddr = dst_entry->start, dst_offset = 0;
2220 	    vaddr < dst_entry->end;
2221 	    vaddr += PAGE_SIZE, dst_offset += PAGE_SIZE) {
2222 
2223 		/*
2224 		 * Allocate a page in the destination object
2225 		 */
2226 		do {
2227 			dst_m = vm_page_alloc(dst_object,
2228 					      OFF_TO_IDX(dst_offset),
2229 					      VM_ALLOC_NORMAL);
2230 			if (dst_m == NULL) {
2231 				vm_wait(0);
2232 			}
2233 		} while (dst_m == NULL);
2234 
2235 		/*
2236 		 * Find the page in the source object, and copy it in.
2237 		 * (Because the source is wired down, the page will be in
2238 		 * memory.)
2239 		 */
2240 		src_m = vm_page_lookup(src_object,
2241 				       OFF_TO_IDX(dst_offset + src_offset));
2242 		if (src_m == NULL)
2243 			panic("vm_fault_copy_wired: page missing");
2244 
2245 		vm_page_copy(src_m, dst_m);
2246 		vm_page_event(src_m, VMEVENT_COW);
2247 
2248 		/*
2249 		 * Enter it in the pmap...
2250 		 */
2251 
2252 		vm_page_flag_clear(dst_m, PG_ZERO);
2253 		pmap_enter(dst_map->pmap, vaddr, dst_m, prot, FALSE, dst_entry);
2254 
2255 		/*
2256 		 * Mark it no longer busy, and put it on the active list.
2257 		 */
2258 		vm_page_activate(dst_m);
2259 		vm_page_wakeup(dst_m);
2260 	}
2261 	vm_object_drop(dst_object);
2262 	vm_object_drop(src_object);
2263 }
2264 
2265 #if 0
2266 
2267 /*
2268  * This routine checks around the requested page for other pages that
2269  * might be able to be faulted in.  This routine brackets the viable
2270  * pages for the pages to be paged in.
2271  *
2272  * Inputs:
2273  *	m, rbehind, rahead
2274  *
2275  * Outputs:
2276  *  marray (array of vm_page_t), reqpage (index of requested page)
2277  *
2278  * Return value:
2279  *  number of pages in marray
2280  */
2281 static int
2282 vm_fault_additional_pages(vm_page_t m, int rbehind, int rahead,
2283 			  vm_page_t *marray, int *reqpage)
2284 {
2285 	int i,j;
2286 	vm_object_t object;
2287 	vm_pindex_t pindex, startpindex, endpindex, tpindex;
2288 	vm_page_t rtm;
2289 	int cbehind, cahead;
2290 
2291 	object = m->object;
2292 	pindex = m->pindex;
2293 
2294 	/*
2295 	 * we don't fault-ahead for device pager
2296 	 */
2297 	if ((object->type == OBJT_DEVICE) ||
2298 	    (object->type == OBJT_MGTDEVICE)) {
2299 		*reqpage = 0;
2300 		marray[0] = m;
2301 		return 1;
2302 	}
2303 
2304 	/*
2305 	 * if the requested page is not available, then give up now
2306 	 */
2307 	if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
2308 		*reqpage = 0;	/* not used by caller, fix compiler warn */
2309 		return 0;
2310 	}
2311 
2312 	if ((cbehind == 0) && (cahead == 0)) {
2313 		*reqpage = 0;
2314 		marray[0] = m;
2315 		return 1;
2316 	}
2317 
2318 	if (rahead > cahead) {
2319 		rahead = cahead;
2320 	}
2321 
2322 	if (rbehind > cbehind) {
2323 		rbehind = cbehind;
2324 	}
2325 
2326 	/*
2327 	 * Do not do any readahead if we have insufficient free memory.
2328 	 *
2329 	 * XXX code was broken disabled before and has instability
2330 	 * with this conditonal fixed, so shortcut for now.
2331 	 */
2332 	if (burst_fault == 0 || vm_page_count_severe()) {
2333 		marray[0] = m;
2334 		*reqpage = 0;
2335 		return 1;
2336 	}
2337 
2338 	/*
2339 	 * scan backward for the read behind pages -- in memory
2340 	 *
2341 	 * Assume that if the page is not found an interrupt will not
2342 	 * create it.  Theoretically interrupts can only remove (busy)
2343 	 * pages, not create new associations.
2344 	 */
2345 	if (pindex > 0) {
2346 		if (rbehind > pindex) {
2347 			rbehind = pindex;
2348 			startpindex = 0;
2349 		} else {
2350 			startpindex = pindex - rbehind;
2351 		}
2352 
2353 		vm_object_hold(object);
2354 		for (tpindex = pindex; tpindex > startpindex; --tpindex) {
2355 			if (vm_page_lookup(object, tpindex - 1))
2356 				break;
2357 		}
2358 
2359 		i = 0;
2360 		while (tpindex < pindex) {
2361 			rtm = vm_page_alloc(object, tpindex, VM_ALLOC_SYSTEM |
2362 							     VM_ALLOC_NULL_OK);
2363 			if (rtm == NULL) {
2364 				for (j = 0; j < i; j++) {
2365 					vm_page_free(marray[j]);
2366 				}
2367 				vm_object_drop(object);
2368 				marray[0] = m;
2369 				*reqpage = 0;
2370 				return 1;
2371 			}
2372 			marray[i] = rtm;
2373 			++i;
2374 			++tpindex;
2375 		}
2376 		vm_object_drop(object);
2377 	} else {
2378 		i = 0;
2379 	}
2380 
2381 	/*
2382 	 * Assign requested page
2383 	 */
2384 	marray[i] = m;
2385 	*reqpage = i;
2386 	++i;
2387 
2388 	/*
2389 	 * Scan forwards for read-ahead pages
2390 	 */
2391 	tpindex = pindex + 1;
2392 	endpindex = tpindex + rahead;
2393 	if (endpindex > object->size)
2394 		endpindex = object->size;
2395 
2396 	vm_object_hold(object);
2397 	while (tpindex < endpindex) {
2398 		if (vm_page_lookup(object, tpindex))
2399 			break;
2400 		rtm = vm_page_alloc(object, tpindex, VM_ALLOC_SYSTEM |
2401 						     VM_ALLOC_NULL_OK);
2402 		if (rtm == NULL)
2403 			break;
2404 		marray[i] = rtm;
2405 		++i;
2406 		++tpindex;
2407 	}
2408 	vm_object_drop(object);
2409 
2410 	return (i);
2411 }
2412 
2413 #endif
2414 
2415 /*
2416  * vm_prefault() provides a quick way of clustering pagefaults into a
2417  * processes address space.  It is a "cousin" of pmap_object_init_pt,
2418  * except it runs at page fault time instead of mmap time.
2419  *
2420  * vm.fast_fault	Enables pre-faulting zero-fill pages
2421  *
2422  * vm.prefault_pages	Number of pages (1/2 negative, 1/2 positive) to
2423  *			prefault.  Scan stops in either direction when
2424  *			a page is found to already exist.
2425  *
2426  * This code used to be per-platform pmap_prefault().  It is now
2427  * machine-independent and enhanced to also pre-fault zero-fill pages
2428  * (see vm.fast_fault) as well as make them writable, which greatly
2429  * reduces the number of page faults programs incur.
2430  *
2431  * Application performance when pre-faulting zero-fill pages is heavily
2432  * dependent on the application.  Very tiny applications like /bin/echo
2433  * lose a little performance while applications of any appreciable size
2434  * gain performance.  Prefaulting multiple pages also reduces SMP
2435  * congestion and can improve SMP performance significantly.
2436  *
2437  * NOTE!  prot may allow writing but this only applies to the top level
2438  *	  object.  If we wind up mapping a page extracted from a backing
2439  *	  object we have to make sure it is read-only.
2440  *
2441  * NOTE!  The caller has already handled any COW operations on the
2442  *	  vm_map_entry via the normal fault code.  Do NOT call this
2443  *	  shortcut unless the normal fault code has run on this entry.
2444  *
2445  * The related map must be locked.
2446  * No other requirements.
2447  */
2448 static int vm_prefault_pages = 8;
2449 SYSCTL_INT(_vm, OID_AUTO, prefault_pages, CTLFLAG_RW, &vm_prefault_pages, 0,
2450 	   "Maximum number of pages to pre-fault");
2451 static int vm_fast_fault = 1;
2452 SYSCTL_INT(_vm, OID_AUTO, fast_fault, CTLFLAG_RW, &vm_fast_fault, 0,
2453 	   "Burst fault zero-fill regions");
2454 
2455 /*
2456  * Set PG_NOSYNC if the map entry indicates so, but only if the page
2457  * is not already dirty by other means.  This will prevent passive
2458  * filesystem syncing as well as 'sync' from writing out the page.
2459  */
2460 static void
2461 vm_set_nosync(vm_page_t m, vm_map_entry_t entry)
2462 {
2463 	if (entry->eflags & MAP_ENTRY_NOSYNC) {
2464 		if (m->dirty == 0)
2465 			vm_page_flag_set(m, PG_NOSYNC);
2466 	} else {
2467 		vm_page_flag_clear(m, PG_NOSYNC);
2468 	}
2469 }
2470 
2471 static void
2472 vm_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry, int prot,
2473 	    int fault_flags)
2474 {
2475 	struct lwp *lp;
2476 	vm_page_t m;
2477 	vm_offset_t addr;
2478 	vm_pindex_t index;
2479 	vm_pindex_t pindex;
2480 	vm_object_t object;
2481 	int pprot;
2482 	int i;
2483 	int noneg;
2484 	int nopos;
2485 	int maxpages;
2486 
2487 	/*
2488 	 * Get stable max count value, disabled if set to 0
2489 	 */
2490 	maxpages = vm_prefault_pages;
2491 	cpu_ccfence();
2492 	if (maxpages <= 0)
2493 		return;
2494 
2495 	/*
2496 	 * We do not currently prefault mappings that use virtual page
2497 	 * tables.  We do not prefault foreign pmaps.
2498 	 */
2499 	if (entry->maptype != VM_MAPTYPE_NORMAL)
2500 		return;
2501 	lp = curthread->td_lwp;
2502 	if (lp == NULL || (pmap != vmspace_pmap(lp->lwp_vmspace)))
2503 		return;
2504 
2505 	/*
2506 	 * Limit pre-fault count to 1024 pages.
2507 	 */
2508 	if (maxpages > 1024)
2509 		maxpages = 1024;
2510 
2511 	object = entry->object.vm_object;
2512 	KKASSERT(object != NULL);
2513 	KKASSERT(object == entry->object.vm_object);
2514 	vm_object_hold(object);
2515 	vm_object_chain_acquire(object, 0);
2516 
2517 	noneg = 0;
2518 	nopos = 0;
2519 	for (i = 0; i < maxpages; ++i) {
2520 		vm_object_t lobject;
2521 		vm_object_t nobject;
2522 		int allocated = 0;
2523 		int error;
2524 
2525 		/*
2526 		 * This can eat a lot of time on a heavily contended
2527 		 * machine so yield on the tick if needed.
2528 		 */
2529 		if ((i & 7) == 7)
2530 			lwkt_yield();
2531 
2532 		/*
2533 		 * Calculate the page to pre-fault, stopping the scan in
2534 		 * each direction separately if the limit is reached.
2535 		 */
2536 		if (i & 1) {
2537 			if (noneg)
2538 				continue;
2539 			addr = addra - ((i + 1) >> 1) * PAGE_SIZE;
2540 		} else {
2541 			if (nopos)
2542 				continue;
2543 			addr = addra + ((i + 2) >> 1) * PAGE_SIZE;
2544 		}
2545 		if (addr < entry->start) {
2546 			noneg = 1;
2547 			if (noneg && nopos)
2548 				break;
2549 			continue;
2550 		}
2551 		if (addr >= entry->end) {
2552 			nopos = 1;
2553 			if (noneg && nopos)
2554 				break;
2555 			continue;
2556 		}
2557 
2558 		/*
2559 		 * Skip pages already mapped, and stop scanning in that
2560 		 * direction.  When the scan terminates in both directions
2561 		 * we are done.
2562 		 */
2563 		if (pmap_prefault_ok(pmap, addr) == 0) {
2564 			if (i & 1)
2565 				noneg = 1;
2566 			else
2567 				nopos = 1;
2568 			if (noneg && nopos)
2569 				break;
2570 			continue;
2571 		}
2572 
2573 		/*
2574 		 * Follow the VM object chain to obtain the page to be mapped
2575 		 * into the pmap.
2576 		 *
2577 		 * If we reach the terminal object without finding a page
2578 		 * and we determine it would be advantageous, then allocate
2579 		 * a zero-fill page for the base object.  The base object
2580 		 * is guaranteed to be OBJT_DEFAULT for this case.
2581 		 *
2582 		 * In order to not have to check the pager via *haspage*()
2583 		 * we stop if any non-default object is encountered.  e.g.
2584 		 * a vnode or swap object would stop the loop.
2585 		 */
2586 		index = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
2587 		lobject = object;
2588 		pindex = index;
2589 		pprot = prot;
2590 
2591 		KKASSERT(lobject == entry->object.vm_object);
2592 		/*vm_object_hold(lobject); implied */
2593 
2594 		while ((m = vm_page_lookup_busy_try(lobject, pindex,
2595 						    TRUE, &error)) == NULL) {
2596 			if (lobject->type != OBJT_DEFAULT)
2597 				break;
2598 			if (lobject->backing_object == NULL) {
2599 				if (vm_fast_fault == 0)
2600 					break;
2601 				if ((prot & VM_PROT_WRITE) == 0 ||
2602 				    vm_page_count_min(0)) {
2603 					break;
2604 				}
2605 
2606 				/*
2607 				 * NOTE: Allocated from base object
2608 				 */
2609 				m = vm_page_alloc(object, index,
2610 						  VM_ALLOC_NORMAL |
2611 						  VM_ALLOC_ZERO |
2612 						  VM_ALLOC_USE_GD |
2613 						  VM_ALLOC_NULL_OK);
2614 				if (m == NULL)
2615 					break;
2616 				allocated = 1;
2617 				pprot = prot;
2618 				/* lobject = object .. not needed */
2619 				break;
2620 			}
2621 			if (lobject->backing_object_offset & PAGE_MASK)
2622 				break;
2623 			nobject = lobject->backing_object;
2624 			vm_object_hold(nobject);
2625 			KKASSERT(nobject == lobject->backing_object);
2626 			pindex += lobject->backing_object_offset >> PAGE_SHIFT;
2627 			if (lobject != object) {
2628 				vm_object_lock_swap();
2629 				vm_object_drop(lobject);
2630 			}
2631 			lobject = nobject;
2632 			pprot &= ~VM_PROT_WRITE;
2633 			vm_object_chain_acquire(lobject, 0);
2634 		}
2635 
2636 		/*
2637 		 * NOTE: A non-NULL (m) will be associated with lobject if
2638 		 *	 it was found there, otherwise it is probably a
2639 		 *	 zero-fill page associated with the base object.
2640 		 *
2641 		 * Give-up if no page is available.
2642 		 */
2643 		if (m == NULL) {
2644 			if (lobject != object) {
2645 #if 0
2646 				if (object->backing_object != lobject)
2647 					vm_object_hold(object->backing_object);
2648 #endif
2649 				vm_object_chain_release_all(
2650 					object->backing_object, lobject);
2651 #if 0
2652 				if (object->backing_object != lobject)
2653 					vm_object_drop(object->backing_object);
2654 #endif
2655 				vm_object_drop(lobject);
2656 			}
2657 			break;
2658 		}
2659 
2660 		/*
2661 		 * The object must be marked dirty if we are mapping a
2662 		 * writable page.  m->object is either lobject or object,
2663 		 * both of which are still held.  Do this before we
2664 		 * potentially drop the object.
2665 		 */
2666 		if (pprot & VM_PROT_WRITE)
2667 			vm_object_set_writeable_dirty(m->object);
2668 
2669 		/*
2670 		 * Do not conditionalize on PG_RAM.  If pages are present in
2671 		 * the VM system we assume optimal caching.  If caching is
2672 		 * not optimal the I/O gravy train will be restarted when we
2673 		 * hit an unavailable page.  We do not want to try to restart
2674 		 * the gravy train now because we really don't know how much
2675 		 * of the object has been cached.  The cost for restarting
2676 		 * the gravy train should be low (since accesses will likely
2677 		 * be I/O bound anyway).
2678 		 */
2679 		if (lobject != object) {
2680 #if 0
2681 			if (object->backing_object != lobject)
2682 				vm_object_hold(object->backing_object);
2683 #endif
2684 			vm_object_chain_release_all(object->backing_object,
2685 						    lobject);
2686 #if 0
2687 			if (object->backing_object != lobject)
2688 				vm_object_drop(object->backing_object);
2689 #endif
2690 			vm_object_drop(lobject);
2691 		}
2692 
2693 		/*
2694 		 * Enter the page into the pmap if appropriate.  If we had
2695 		 * allocated the page we have to place it on a queue.  If not
2696 		 * we just have to make sure it isn't on the cache queue
2697 		 * (pages on the cache queue are not allowed to be mapped).
2698 		 */
2699 		if (allocated) {
2700 			/*
2701 			 * Page must be zerod.
2702 			 */
2703 			if ((m->flags & PG_ZERO) == 0) {
2704 				vm_page_zero_fill(m);
2705 			} else {
2706 #ifdef PMAP_DEBUG
2707 				pmap_page_assertzero(
2708 						VM_PAGE_TO_PHYS(m));
2709 #endif
2710 				vm_page_flag_clear(m, PG_ZERO);
2711 				mycpu->gd_cnt.v_ozfod++;
2712 			}
2713 			mycpu->gd_cnt.v_zfod++;
2714 			m->valid = VM_PAGE_BITS_ALL;
2715 
2716 			/*
2717 			 * Handle dirty page case
2718 			 */
2719 			if (pprot & VM_PROT_WRITE)
2720 				vm_set_nosync(m, entry);
2721 			pmap_enter(pmap, addr, m, pprot, 0, entry);
2722 			mycpu->gd_cnt.v_vm_faults++;
2723 			if (curthread->td_lwp)
2724 				++curthread->td_lwp->lwp_ru.ru_minflt;
2725 			vm_page_deactivate(m);
2726 			if (pprot & VM_PROT_WRITE) {
2727 				/*vm_object_set_writeable_dirty(m->object);*/
2728 				vm_set_nosync(m, entry);
2729 				if (fault_flags & VM_FAULT_DIRTY) {
2730 					vm_page_dirty(m);
2731 					/*XXX*/
2732 					swap_pager_unswapped(m);
2733 				}
2734 			}
2735 			vm_page_wakeup(m);
2736 		} else if (error) {
2737 			/* couldn't busy page, no wakeup */
2738 		} else if (
2739 		    ((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2740 		    (m->flags & PG_FICTITIOUS) == 0) {
2741 			/*
2742 			 * A fully valid page not undergoing soft I/O can
2743 			 * be immediately entered into the pmap.
2744 			 */
2745 			if ((m->queue - m->pc) == PQ_CACHE)
2746 				vm_page_deactivate(m);
2747 			if (pprot & VM_PROT_WRITE) {
2748 				/*vm_object_set_writeable_dirty(m->object);*/
2749 				vm_set_nosync(m, entry);
2750 				if (fault_flags & VM_FAULT_DIRTY) {
2751 					vm_page_dirty(m);
2752 					/*XXX*/
2753 					swap_pager_unswapped(m);
2754 				}
2755 			}
2756 			if (pprot & VM_PROT_WRITE)
2757 				vm_set_nosync(m, entry);
2758 			pmap_enter(pmap, addr, m, pprot, 0, entry);
2759 			mycpu->gd_cnt.v_vm_faults++;
2760 			if (curthread->td_lwp)
2761 				++curthread->td_lwp->lwp_ru.ru_minflt;
2762 			vm_page_wakeup(m);
2763 		} else {
2764 			vm_page_wakeup(m);
2765 		}
2766 	}
2767 	vm_object_chain_release(object);
2768 	vm_object_drop(object);
2769 }
2770 
2771 /*
2772  * Object can be held shared
2773  */
2774 static void
2775 vm_prefault_quick(pmap_t pmap, vm_offset_t addra,
2776 		  vm_map_entry_t entry, int prot, int fault_flags)
2777 {
2778 	struct lwp *lp;
2779 	vm_page_t m;
2780 	vm_offset_t addr;
2781 	vm_pindex_t pindex;
2782 	vm_object_t object;
2783 	int i;
2784 	int noneg;
2785 	int nopos;
2786 	int maxpages;
2787 
2788 	/*
2789 	 * Get stable max count value, disabled if set to 0
2790 	 */
2791 	maxpages = vm_prefault_pages;
2792 	cpu_ccfence();
2793 	if (maxpages <= 0)
2794 		return;
2795 
2796 	/*
2797 	 * We do not currently prefault mappings that use virtual page
2798 	 * tables.  We do not prefault foreign pmaps.
2799 	 */
2800 	if (entry->maptype != VM_MAPTYPE_NORMAL)
2801 		return;
2802 	lp = curthread->td_lwp;
2803 	if (lp == NULL || (pmap != vmspace_pmap(lp->lwp_vmspace)))
2804 		return;
2805 	object = entry->object.vm_object;
2806 	if (object->backing_object != NULL)
2807 		return;
2808 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2809 
2810 	/*
2811 	 * Limit pre-fault count to 1024 pages.
2812 	 */
2813 	if (maxpages > 1024)
2814 		maxpages = 1024;
2815 
2816 	noneg = 0;
2817 	nopos = 0;
2818 	for (i = 0; i < maxpages; ++i) {
2819 		int error;
2820 
2821 		/*
2822 		 * Calculate the page to pre-fault, stopping the scan in
2823 		 * each direction separately if the limit is reached.
2824 		 */
2825 		if (i & 1) {
2826 			if (noneg)
2827 				continue;
2828 			addr = addra - ((i + 1) >> 1) * PAGE_SIZE;
2829 		} else {
2830 			if (nopos)
2831 				continue;
2832 			addr = addra + ((i + 2) >> 1) * PAGE_SIZE;
2833 		}
2834 		if (addr < entry->start) {
2835 			noneg = 1;
2836 			if (noneg && nopos)
2837 				break;
2838 			continue;
2839 		}
2840 		if (addr >= entry->end) {
2841 			nopos = 1;
2842 			if (noneg && nopos)
2843 				break;
2844 			continue;
2845 		}
2846 
2847 		/*
2848 		 * Skip pages already mapped, and stop scanning in that
2849 		 * direction.  When the scan terminates in both directions
2850 		 * we are done.
2851 		 */
2852 		if (pmap_prefault_ok(pmap, addr) == 0) {
2853 			if (i & 1)
2854 				noneg = 1;
2855 			else
2856 				nopos = 1;
2857 			if (noneg && nopos)
2858 				break;
2859 			continue;
2860 		}
2861 
2862 		/*
2863 		 * Follow the VM object chain to obtain the page to be mapped
2864 		 * into the pmap.  This version of the prefault code only
2865 		 * works with terminal objects.
2866 		 *
2867 		 * WARNING!  We cannot call swap_pager_unswapped() with a
2868 		 *	     shared token.
2869 		 */
2870 		pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
2871 
2872 		m = vm_page_lookup_busy_try(object, pindex, TRUE, &error);
2873 		if (m == NULL || error)
2874 			continue;
2875 
2876 		if (((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2877 		    (m->flags & PG_FICTITIOUS) == 0 &&
2878 		    ((m->flags & PG_SWAPPED) == 0 ||
2879 		     (prot & VM_PROT_WRITE) == 0 ||
2880 		     (fault_flags & VM_FAULT_DIRTY) == 0)) {
2881 			/*
2882 			 * A fully valid page not undergoing soft I/O can
2883 			 * be immediately entered into the pmap.
2884 			 */
2885 			if ((m->queue - m->pc) == PQ_CACHE)
2886 				vm_page_deactivate(m);
2887 			if (prot & VM_PROT_WRITE) {
2888 				vm_object_set_writeable_dirty(m->object);
2889 				vm_set_nosync(m, entry);
2890 				if (fault_flags & VM_FAULT_DIRTY) {
2891 					vm_page_dirty(m);
2892 					/*XXX*/
2893 					swap_pager_unswapped(m);
2894 				}
2895 			}
2896 			pmap_enter(pmap, addr, m, prot, 0, entry);
2897 			mycpu->gd_cnt.v_vm_faults++;
2898 			if (curthread->td_lwp)
2899 				++curthread->td_lwp->lwp_ru.ru_minflt;
2900 		}
2901 		vm_page_wakeup(m);
2902 	}
2903 }
2904