xref: /dragonfly/sys/vm/vm_fault.c (revision f503b4c4)
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * Copyright (c) 1994 John S. Dyson
7  * All rights reserved.
8  * Copyright (c) 1994 David Greenman
9  * All rights reserved.
10  *
11  *
12  * This code is derived from software contributed to Berkeley by
13  * The Mach Operating System project at Carnegie-Mellon University.
14  *
15  * Redistribution and use in source and binary forms, with or without
16  * modification, are permitted provided that the following conditions
17  * are met:
18  * 1. Redistributions of source code must retain the above copyright
19  *    notice, this list of conditions and the following disclaimer.
20  * 2. Redistributions in binary form must reproduce the above copyright
21  *    notice, this list of conditions and the following disclaimer in the
22  *    documentation and/or other materials provided with the distribution.
23  * 3. Neither the name of the University nor the names of its contributors
24  *    may be used to endorse or promote products derived from this software
25  *    without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37  * SUCH DAMAGE.
38  *
39  *	from: @(#)vm_fault.c	8.4 (Berkeley) 1/12/94
40  *
41  *
42  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
43  * All rights reserved.
44  *
45  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
46  *
47  * Permission to use, copy, modify and distribute this software and
48  * its documentation is hereby granted, provided that both the copyright
49  * notice and this permission notice appear in all copies of the
50  * software, derivative works or modified versions, and any portions
51  * thereof, and that both notices appear in supporting documentation.
52  *
53  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
54  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
55  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
56  *
57  * Carnegie Mellon requests users of this software to return to
58  *
59  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
60  *  School of Computer Science
61  *  Carnegie Mellon University
62  *  Pittsburgh PA 15213-3890
63  *
64  * any improvements or extensions that they make and grant Carnegie the
65  * rights to redistribute these changes.
66  *
67  * $FreeBSD: src/sys/vm/vm_fault.c,v 1.108.2.8 2002/02/26 05:49:27 silby Exp $
68  * $DragonFly: src/sys/vm/vm_fault.c,v 1.47 2008/07/01 02:02:56 dillon Exp $
69  */
70 
71 /*
72  *	Page fault handling module.
73  */
74 
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/kernel.h>
78 #include <sys/proc.h>
79 #include <sys/vnode.h>
80 #include <sys/resourcevar.h>
81 #include <sys/vmmeter.h>
82 #include <sys/vkernel.h>
83 #include <sys/lock.h>
84 #include <sys/sysctl.h>
85 
86 #include <cpu/lwbuf.h>
87 
88 #include <vm/vm.h>
89 #include <vm/vm_param.h>
90 #include <vm/pmap.h>
91 #include <vm/vm_map.h>
92 #include <vm/vm_object.h>
93 #include <vm/vm_page.h>
94 #include <vm/vm_pageout.h>
95 #include <vm/vm_kern.h>
96 #include <vm/vm_pager.h>
97 #include <vm/vnode_pager.h>
98 #include <vm/vm_extern.h>
99 
100 #include <sys/thread2.h>
101 #include <vm/vm_page2.h>
102 
103 struct faultstate {
104 	vm_page_t m;
105 	vm_object_t object;
106 	vm_pindex_t pindex;
107 	vm_prot_t prot;
108 	vm_page_t first_m;
109 	vm_object_t first_object;
110 	vm_prot_t first_prot;
111 	vm_map_t map;
112 	vm_map_entry_t entry;
113 	int lookup_still_valid;
114 	int hardfault;
115 	int fault_flags;
116 	int map_generation;
117 	int shared;
118 	int first_shared;
119 	boolean_t wired;
120 	struct vnode *vp;
121 };
122 
123 static int debug_fault = 0;
124 SYSCTL_INT(_vm, OID_AUTO, debug_fault, CTLFLAG_RW, &debug_fault, 0, "");
125 static int debug_cluster = 0;
126 SYSCTL_INT(_vm, OID_AUTO, debug_cluster, CTLFLAG_RW, &debug_cluster, 0, "");
127 int vm_shared_fault = 1;
128 TUNABLE_INT("vm.shared_fault", &vm_shared_fault);
129 SYSCTL_INT(_vm, OID_AUTO, shared_fault, CTLFLAG_RW, &vm_shared_fault, 0,
130 	   "Allow shared token on vm_object");
131 static long vm_shared_hit = 0;
132 SYSCTL_LONG(_vm, OID_AUTO, shared_hit, CTLFLAG_RW, &vm_shared_hit, 0,
133 	   "Successful shared faults");
134 static long vm_shared_count = 0;
135 SYSCTL_LONG(_vm, OID_AUTO, shared_count, CTLFLAG_RW, &vm_shared_count, 0,
136 	   "Shared fault attempts");
137 static long vm_shared_miss = 0;
138 SYSCTL_LONG(_vm, OID_AUTO, shared_miss, CTLFLAG_RW, &vm_shared_miss, 0,
139 	   "Unsuccessful shared faults");
140 
141 static int vm_fault_object(struct faultstate *, vm_pindex_t, vm_prot_t, int);
142 static int vm_fault_vpagetable(struct faultstate *, vm_pindex_t *,
143 			vpte_t, int, int);
144 #if 0
145 static int vm_fault_additional_pages (vm_page_t, int, int, vm_page_t *, int *);
146 #endif
147 static void vm_set_nosync(vm_page_t m, vm_map_entry_t entry);
148 static void vm_prefault(pmap_t pmap, vm_offset_t addra,
149 			vm_map_entry_t entry, int prot, int fault_flags);
150 static void vm_prefault_quick(pmap_t pmap, vm_offset_t addra,
151 			vm_map_entry_t entry, int prot, int fault_flags);
152 
153 static __inline void
154 release_page(struct faultstate *fs)
155 {
156 	vm_page_deactivate(fs->m);
157 	vm_page_wakeup(fs->m);
158 	fs->m = NULL;
159 }
160 
161 /*
162  * NOTE: Once unlocked any cached fs->entry becomes invalid, any reuse
163  *	 requires relocking and then checking the timestamp.
164  *
165  * NOTE: vm_map_lock_read() does not bump fs->map->timestamp so we do
166  *	 not have to update fs->map_generation here.
167  *
168  * NOTE: This function can fail due to a deadlock against the caller's
169  *	 holding of a vm_page BUSY.
170  */
171 static __inline int
172 relock_map(struct faultstate *fs)
173 {
174 	int error;
175 
176 	if (fs->lookup_still_valid == FALSE && fs->map) {
177 		error = vm_map_lock_read_to(fs->map);
178 		if (error == 0)
179 			fs->lookup_still_valid = TRUE;
180 	} else {
181 		error = 0;
182 	}
183 	return error;
184 }
185 
186 static __inline void
187 unlock_map(struct faultstate *fs)
188 {
189 	if (fs->lookup_still_valid && fs->map) {
190 		vm_map_lookup_done(fs->map, fs->entry, 0);
191 		fs->lookup_still_valid = FALSE;
192 	}
193 }
194 
195 /*
196  * Clean up after a successful call to vm_fault_object() so another call
197  * to vm_fault_object() can be made.
198  */
199 static void
200 _cleanup_successful_fault(struct faultstate *fs, int relock)
201 {
202 	/*
203 	 * We allocated a junk page for a COW operation that did
204 	 * not occur, the page must be freed.
205 	 */
206 	if (fs->object != fs->first_object) {
207 		KKASSERT(fs->first_shared == 0);
208 		vm_page_free(fs->first_m);
209 		vm_object_pip_wakeup(fs->object);
210 		fs->first_m = NULL;
211 	}
212 
213 	/*
214 	 * Reset fs->object.
215 	 */
216 	fs->object = fs->first_object;
217 	if (relock && fs->lookup_still_valid == FALSE) {
218 		if (fs->map)
219 			vm_map_lock_read(fs->map);
220 		fs->lookup_still_valid = TRUE;
221 	}
222 }
223 
224 static void
225 _unlock_things(struct faultstate *fs, int dealloc)
226 {
227 	_cleanup_successful_fault(fs, 0);
228 	if (dealloc) {
229 		/*vm_object_deallocate(fs->first_object);*/
230 		/*fs->first_object = NULL; drop used later on */
231 	}
232 	unlock_map(fs);
233 	if (fs->vp != NULL) {
234 		vput(fs->vp);
235 		fs->vp = NULL;
236 	}
237 }
238 
239 #define unlock_things(fs) _unlock_things(fs, 0)
240 #define unlock_and_deallocate(fs) _unlock_things(fs, 1)
241 #define cleanup_successful_fault(fs) _cleanup_successful_fault(fs, 1)
242 
243 /*
244  * TRYPAGER
245  *
246  * Determine if the pager for the current object *might* contain the page.
247  *
248  * We only need to try the pager if this is not a default object (default
249  * objects are zero-fill and have no real pager), and if we are not taking
250  * a wiring fault or if the FS entry is wired.
251  */
252 #define TRYPAGER(fs)	\
253 		(fs->object->type != OBJT_DEFAULT && \
254 		(((fs->fault_flags & VM_FAULT_WIRE_MASK) == 0) || fs->wired))
255 
256 /*
257  * vm_fault:
258  *
259  * Handle a page fault occuring at the given address, requiring the given
260  * permissions, in the map specified.  If successful, the page is inserted
261  * into the associated physical map.
262  *
263  * NOTE: The given address should be truncated to the proper page address.
264  *
265  * KERN_SUCCESS is returned if the page fault is handled; otherwise,
266  * a standard error specifying why the fault is fatal is returned.
267  *
268  * The map in question must be referenced, and remains so.
269  * The caller may hold no locks.
270  * No other requirements.
271  */
272 int
273 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, int fault_flags)
274 {
275 	int result;
276 	vm_pindex_t first_pindex;
277 	struct faultstate fs;
278 	struct lwp *lp;
279 	int growstack;
280 	int retry = 0;
281 	int inherit_prot;
282 
283 	inherit_prot = fault_type & VM_PROT_NOSYNC;
284 	vm_page_pcpu_cache();
285 	fs.hardfault = 0;
286 	fs.fault_flags = fault_flags;
287 	fs.vp = NULL;
288 	fs.shared = vm_shared_fault;
289 	fs.first_shared = vm_shared_fault;
290 	growstack = 1;
291 	if (vm_shared_fault)
292 		++vm_shared_count;
293 
294 	/*
295 	 * vm_map interactions
296 	 */
297 	if ((lp = curthread->td_lwp) != NULL)
298 		lp->lwp_flags |= LWP_PAGING;
299 	lwkt_gettoken(&map->token);
300 
301 RetryFault:
302 	/*
303 	 * Find the vm_map_entry representing the backing store and resolve
304 	 * the top level object and page index.  This may have the side
305 	 * effect of executing a copy-on-write on the map entry and/or
306 	 * creating a shadow object, but will not COW any actual VM pages.
307 	 *
308 	 * On success fs.map is left read-locked and various other fields
309 	 * are initialized but not otherwise referenced or locked.
310 	 *
311 	 * NOTE!  vm_map_lookup will try to upgrade the fault_type to
312 	 * VM_FAULT_WRITE if the map entry is a virtual page table and also
313 	 * writable, so we can set the 'A'accessed bit in the virtual page
314 	 * table entry.
315 	 */
316 	fs.map = map;
317 	result = vm_map_lookup(&fs.map, vaddr, fault_type,
318 			       &fs.entry, &fs.first_object,
319 			       &first_pindex, &fs.first_prot, &fs.wired);
320 
321 	/*
322 	 * If the lookup failed or the map protections are incompatible,
323 	 * the fault generally fails.  However, if the caller is trying
324 	 * to do a user wiring we have more work to do.
325 	 */
326 	if (result != KERN_SUCCESS) {
327 		if (result != KERN_PROTECTION_FAILURE ||
328 		    (fs.fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE)
329 		{
330 			if (result == KERN_INVALID_ADDRESS && growstack &&
331 			    map != &kernel_map && curproc != NULL) {
332 				result = vm_map_growstack(curproc, vaddr);
333 				if (result == KERN_SUCCESS) {
334 					growstack = 0;
335 					++retry;
336 					goto RetryFault;
337 				}
338 				result = KERN_FAILURE;
339 			}
340 			goto done;
341 		}
342 
343 		/*
344    		 * If we are user-wiring a r/w segment, and it is COW, then
345    		 * we need to do the COW operation.  Note that we don't
346 		 * currently COW RO sections now, because it is NOT desirable
347    		 * to COW .text.  We simply keep .text from ever being COW'ed
348    		 * and take the heat that one cannot debug wired .text sections.
349    		 */
350 		result = vm_map_lookup(&fs.map, vaddr,
351 				       VM_PROT_READ|VM_PROT_WRITE|
352 				        VM_PROT_OVERRIDE_WRITE,
353 				       &fs.entry, &fs.first_object,
354 				       &first_pindex, &fs.first_prot,
355 				       &fs.wired);
356 		if (result != KERN_SUCCESS) {
357 			result = KERN_FAILURE;
358 			goto done;
359 		}
360 
361 		/*
362 		 * If we don't COW now, on a user wire, the user will never
363 		 * be able to write to the mapping.  If we don't make this
364 		 * restriction, the bookkeeping would be nearly impossible.
365 		 *
366 		 * XXX We have a shared lock, this will have a MP race but
367 		 * I don't see how it can hurt anything.
368 		 */
369 		if ((fs.entry->protection & VM_PROT_WRITE) == 0)
370 			fs.entry->max_protection &= ~VM_PROT_WRITE;
371 	}
372 
373 	/*
374 	 * fs.map is read-locked
375 	 *
376 	 * Misc checks.  Save the map generation number to detect races.
377 	 */
378 	fs.map_generation = fs.map->timestamp;
379 	fs.lookup_still_valid = TRUE;
380 	fs.first_m = NULL;
381 	fs.object = fs.first_object;	/* so unlock_and_deallocate works */
382 
383 	if (fs.entry->eflags & (MAP_ENTRY_NOFAULT | MAP_ENTRY_KSTACK)) {
384 		if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
385 			panic("vm_fault: fault on nofault entry, addr: %p",
386 			      (void *)vaddr);
387 		}
388 		if ((fs.entry->eflags & MAP_ENTRY_KSTACK) &&
389 		    vaddr >= fs.entry->start &&
390 		    vaddr < fs.entry->start + PAGE_SIZE) {
391 			panic("vm_fault: fault on stack guard, addr: %p",
392 			      (void *)vaddr);
393 		}
394 	}
395 
396 	/*
397 	 * A system map entry may return a NULL object.  No object means
398 	 * no pager means an unrecoverable kernel fault.
399 	 */
400 	if (fs.first_object == NULL) {
401 		panic("vm_fault: unrecoverable fault at %p in entry %p",
402 			(void *)vaddr, fs.entry);
403 	}
404 
405 	/*
406 	 * Fail here if not a trivial anonymous page fault and TDF_NOFAULT
407 	 * is set.
408 	 */
409 	if ((curthread->td_flags & TDF_NOFAULT) &&
410 	    (retry ||
411 	     fs.first_object->type == OBJT_VNODE ||
412 	     fs.first_object->backing_object)) {
413 		result = KERN_FAILURE;
414 		unlock_things(&fs);
415 		goto done2;
416 	}
417 
418 	/*
419 	 * If the entry is wired we cannot change the page protection.
420 	 */
421 	if (fs.wired)
422 		fault_type = fs.first_prot;
423 
424 	/*
425 	 * We generally want to avoid unnecessary exclusive modes on backing
426 	 * and terminal objects because this can seriously interfere with
427 	 * heavily fork()'d processes (particularly /bin/sh scripts).
428 	 *
429 	 * However, we also want to avoid unnecessary retries due to needed
430 	 * shared->exclusive promotion for common faults.  Exclusive mode is
431 	 * always needed if any page insertion, rename, or free occurs in an
432 	 * object (and also indirectly if any I/O is done).
433 	 *
434 	 * The main issue here is going to be fs.first_shared.  If the
435 	 * first_object has a backing object which isn't shadowed and the
436 	 * process is single-threaded we might as well use an exclusive
437 	 * lock/chain right off the bat.
438 	 */
439 	if (fs.first_shared && fs.first_object->backing_object &&
440 	    LIST_EMPTY(&fs.first_object->shadow_head) &&
441 	    curthread->td_proc && curthread->td_proc->p_nthreads == 1) {
442 		fs.first_shared = 0;
443 	}
444 
445 	/*
446 	 * swap_pager_unswapped() needs an exclusive object
447 	 */
448 	if (fault_flags & (VM_FAULT_UNSWAP | VM_FAULT_DIRTY)) {
449 		fs.first_shared = 0;
450 	}
451 
452 	/*
453 	 * Obtain a top-level object lock, shared or exclusive depending
454 	 * on fs.first_shared.  If a shared lock winds up being insufficient
455 	 * we will retry with an exclusive lock.
456 	 *
457 	 * The vnode pager lock is always shared.
458 	 */
459 	if (fs.first_shared)
460 		vm_object_hold_shared(fs.first_object);
461 	else
462 		vm_object_hold(fs.first_object);
463 	if (fs.vp == NULL)
464 		fs.vp = vnode_pager_lock(fs.first_object);
465 
466 	/*
467 	 * The page we want is at (first_object, first_pindex), but if the
468 	 * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the
469 	 * page table to figure out the actual pindex.
470 	 *
471 	 * NOTE!  DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION
472 	 * ONLY
473 	 */
474 	if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
475 		result = vm_fault_vpagetable(&fs, &first_pindex,
476 					     fs.entry->aux.master_pde,
477 					     fault_type, 1);
478 		if (result == KERN_TRY_AGAIN) {
479 			vm_object_drop(fs.first_object);
480 			++retry;
481 			goto RetryFault;
482 		}
483 		if (result != KERN_SUCCESS)
484 			goto done;
485 	}
486 
487 	/*
488 	 * Now we have the actual (object, pindex), fault in the page.  If
489 	 * vm_fault_object() fails it will unlock and deallocate the FS
490 	 * data.   If it succeeds everything remains locked and fs->object
491 	 * will have an additional PIP count if it is not equal to
492 	 * fs->first_object
493 	 *
494 	 * vm_fault_object will set fs->prot for the pmap operation.  It is
495 	 * allowed to set VM_PROT_WRITE if fault_type == VM_PROT_READ if the
496 	 * page can be safely written.  However, it will force a read-only
497 	 * mapping for a read fault if the memory is managed by a virtual
498 	 * page table.
499 	 *
500 	 * If the fault code uses the shared object lock shortcut
501 	 * we must not try to burst (we can't allocate VM pages).
502 	 */
503 	result = vm_fault_object(&fs, first_pindex, fault_type, 1);
504 
505 	if (debug_fault > 0) {
506 		--debug_fault;
507 		kprintf("VM_FAULT result %d addr=%jx type=%02x flags=%02x "
508 			"fs.m=%p fs.prot=%02x fs.wired=%02x fs.entry=%p\n",
509 			result, (intmax_t)vaddr, fault_type, fault_flags,
510 			fs.m, fs.prot, fs.wired, fs.entry);
511 	}
512 
513 	if (result == KERN_TRY_AGAIN) {
514 		vm_object_drop(fs.first_object);
515 		++retry;
516 		goto RetryFault;
517 	}
518 	if (result != KERN_SUCCESS)
519 		goto done;
520 
521 	/*
522 	 * On success vm_fault_object() does not unlock or deallocate, and fs.m
523 	 * will contain a busied page.
524 	 *
525 	 * Enter the page into the pmap and do pmap-related adjustments.
526 	 */
527 	KKASSERT(fs.lookup_still_valid == TRUE);
528 	vm_page_flag_set(fs.m, PG_REFERENCED);
529 	pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot | inherit_prot,
530 		   fs.wired, fs.entry);
531 	mycpu->gd_cnt.v_vm_faults++;
532 	if (curthread->td_lwp)
533 		++curthread->td_lwp->lwp_ru.ru_minflt;
534 
535 	/*KKASSERT(fs.m->queue == PQ_NONE); page-in op may deactivate page */
536 	KKASSERT(fs.m->flags & PG_BUSY);
537 
538 	/*
539 	 * If the page is not wired down, then put it where the pageout daemon
540 	 * can find it.
541 	 */
542 	if (fs.fault_flags & VM_FAULT_WIRE_MASK) {
543 		if (fs.wired)
544 			vm_page_wire(fs.m);
545 		else
546 			vm_page_unwire(fs.m, 1);
547 	} else {
548 		vm_page_activate(fs.m);
549 	}
550 	vm_page_wakeup(fs.m);
551 
552 	/*
553 	 * Burst in a few more pages if possible.  The fs.map should still
554 	 * be locked.  To avoid interlocking against a vnode->getblk
555 	 * operation we had to be sure to unbusy our primary vm_page above
556 	 * first.
557 	 *
558 	 * A normal burst can continue down backing store, only execute
559 	 * if we are holding an exclusive lock, otherwise the exclusive
560 	 * locks the burst code gets might cause excessive SMP collisions.
561 	 *
562 	 * A quick burst can be utilized when there is no backing object
563 	 * (i.e. a shared file mmap).
564 	 */
565 	if ((fault_flags & VM_FAULT_BURST) &&
566 	    (fs.fault_flags & VM_FAULT_WIRE_MASK) == 0 &&
567 	    fs.wired == 0) {
568 		if (fs.first_shared == 0 && fs.shared == 0) {
569 			vm_prefault(fs.map->pmap, vaddr,
570 				    fs.entry, fs.prot, fault_flags);
571 		} else {
572 			vm_prefault_quick(fs.map->pmap, vaddr,
573 					  fs.entry, fs.prot, fault_flags);
574 		}
575 	}
576 
577 	/*
578 	 * Unlock everything, and return
579 	 */
580 	unlock_things(&fs);
581 
582 	if (curthread->td_lwp) {
583 		if (fs.hardfault) {
584 			curthread->td_lwp->lwp_ru.ru_majflt++;
585 		} else {
586 			curthread->td_lwp->lwp_ru.ru_minflt++;
587 		}
588 	}
589 
590 	/*vm_object_deallocate(fs.first_object);*/
591 	/*fs.m = NULL; */
592 	/*fs.first_object = NULL; must still drop later */
593 
594 	result = KERN_SUCCESS;
595 done:
596 	if (fs.first_object)
597 		vm_object_drop(fs.first_object);
598 done2:
599 	lwkt_reltoken(&map->token);
600 	if (lp)
601 		lp->lwp_flags &= ~LWP_PAGING;
602 	if (vm_shared_fault && fs.shared == 0)
603 		++vm_shared_miss;
604 	return (result);
605 }
606 
607 /*
608  * Fault in the specified virtual address in the current process map,
609  * returning a held VM page or NULL.  See vm_fault_page() for more
610  * information.
611  *
612  * No requirements.
613  */
614 vm_page_t
615 vm_fault_page_quick(vm_offset_t va, vm_prot_t fault_type, int *errorp)
616 {
617 	struct lwp *lp = curthread->td_lwp;
618 	vm_page_t m;
619 
620 	m = vm_fault_page(&lp->lwp_vmspace->vm_map, va,
621 			  fault_type, VM_FAULT_NORMAL, errorp);
622 	return(m);
623 }
624 
625 /*
626  * Fault in the specified virtual address in the specified map, doing all
627  * necessary manipulation of the object store and all necessary I/O.  Return
628  * a held VM page or NULL, and set *errorp.  The related pmap is not
629  * updated.
630  *
631  * The returned page will be properly dirtied if VM_PROT_WRITE was specified,
632  * and marked PG_REFERENCED as well.
633  *
634  * If the page cannot be faulted writable and VM_PROT_WRITE was specified, an
635  * error will be returned.
636  *
637  * No requirements.
638  */
639 vm_page_t
640 vm_fault_page(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
641 	      int fault_flags, int *errorp)
642 {
643 	vm_pindex_t first_pindex;
644 	struct faultstate fs;
645 	int result;
646 	int retry = 0;
647 	vm_prot_t orig_fault_type = fault_type;
648 
649 	fs.hardfault = 0;
650 	fs.fault_flags = fault_flags;
651 	KKASSERT((fault_flags & VM_FAULT_WIRE_MASK) == 0);
652 
653 	/*
654 	 * Dive the pmap (concurrency possible).  If we find the
655 	 * appropriate page we can terminate early and quickly.
656 	 */
657 	fs.m = pmap_fault_page_quick(map->pmap, vaddr, fault_type);
658 	if (fs.m) {
659 		*errorp = 0;
660 		return(fs.m);
661 	}
662 
663 	/*
664 	 * Otherwise take a concurrency hit and do a formal page
665 	 * fault.
666 	 */
667 	fs.shared = vm_shared_fault;
668 	fs.first_shared = vm_shared_fault;
669 	fs.vp = NULL;
670 	lwkt_gettoken(&map->token);
671 
672 	/*
673 	 * swap_pager_unswapped() needs an exclusive object
674 	 */
675 	if (fault_flags & (VM_FAULT_UNSWAP | VM_FAULT_DIRTY)) {
676 		fs.first_shared = 0;
677 	}
678 
679 RetryFault:
680 	/*
681 	 * Find the vm_map_entry representing the backing store and resolve
682 	 * the top level object and page index.  This may have the side
683 	 * effect of executing a copy-on-write on the map entry and/or
684 	 * creating a shadow object, but will not COW any actual VM pages.
685 	 *
686 	 * On success fs.map is left read-locked and various other fields
687 	 * are initialized but not otherwise referenced or locked.
688 	 *
689 	 * NOTE!  vm_map_lookup will upgrade the fault_type to VM_FAULT_WRITE
690 	 * if the map entry is a virtual page table and also writable,
691 	 * so we can set the 'A'accessed bit in the virtual page table entry.
692 	 */
693 	fs.map = map;
694 	result = vm_map_lookup(&fs.map, vaddr, fault_type,
695 			       &fs.entry, &fs.first_object,
696 			       &first_pindex, &fs.first_prot, &fs.wired);
697 
698 	if (result != KERN_SUCCESS) {
699 		*errorp = result;
700 		fs.m = NULL;
701 		goto done;
702 	}
703 
704 	/*
705 	 * fs.map is read-locked
706 	 *
707 	 * Misc checks.  Save the map generation number to detect races.
708 	 */
709 	fs.map_generation = fs.map->timestamp;
710 	fs.lookup_still_valid = TRUE;
711 	fs.first_m = NULL;
712 	fs.object = fs.first_object;	/* so unlock_and_deallocate works */
713 
714 	if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
715 		panic("vm_fault: fault on nofault entry, addr: %lx",
716 		    (u_long)vaddr);
717 	}
718 
719 	/*
720 	 * A system map entry may return a NULL object.  No object means
721 	 * no pager means an unrecoverable kernel fault.
722 	 */
723 	if (fs.first_object == NULL) {
724 		panic("vm_fault: unrecoverable fault at %p in entry %p",
725 			(void *)vaddr, fs.entry);
726 	}
727 
728 	/*
729 	 * Fail here if not a trivial anonymous page fault and TDF_NOFAULT
730 	 * is set.
731 	 */
732 	if ((curthread->td_flags & TDF_NOFAULT) &&
733 	    (retry ||
734 	     fs.first_object->type == OBJT_VNODE ||
735 	     fs.first_object->backing_object)) {
736 		*errorp = KERN_FAILURE;
737 		unlock_things(&fs);
738 		goto done2;
739 	}
740 
741 	/*
742 	 * If the entry is wired we cannot change the page protection.
743 	 */
744 	if (fs.wired)
745 		fault_type = fs.first_prot;
746 
747 	/*
748 	 * Make a reference to this object to prevent its disposal while we
749 	 * are messing with it.  Once we have the reference, the map is free
750 	 * to be diddled.  Since objects reference their shadows (and copies),
751 	 * they will stay around as well.
752 	 *
753 	 * The reference should also prevent an unexpected collapse of the
754 	 * parent that might move pages from the current object into the
755 	 * parent unexpectedly, resulting in corruption.
756 	 *
757 	 * Bump the paging-in-progress count to prevent size changes (e.g.
758 	 * truncation operations) during I/O.  This must be done after
759 	 * obtaining the vnode lock in order to avoid possible deadlocks.
760 	 */
761 	if (fs.first_shared)
762 		vm_object_hold_shared(fs.first_object);
763 	else
764 		vm_object_hold(fs.first_object);
765 	if (fs.vp == NULL)
766 		fs.vp = vnode_pager_lock(fs.first_object);	/* shared */
767 
768 	/*
769 	 * The page we want is at (first_object, first_pindex), but if the
770 	 * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the
771 	 * page table to figure out the actual pindex.
772 	 *
773 	 * NOTE!  DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION
774 	 * ONLY
775 	 */
776 	if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
777 		result = vm_fault_vpagetable(&fs, &first_pindex,
778 					     fs.entry->aux.master_pde,
779 					     fault_type, 1);
780 		if (result == KERN_TRY_AGAIN) {
781 			vm_object_drop(fs.first_object);
782 			++retry;
783 			goto RetryFault;
784 		}
785 		if (result != KERN_SUCCESS) {
786 			*errorp = result;
787 			fs.m = NULL;
788 			goto done;
789 		}
790 	}
791 
792 	/*
793 	 * Now we have the actual (object, pindex), fault in the page.  If
794 	 * vm_fault_object() fails it will unlock and deallocate the FS
795 	 * data.   If it succeeds everything remains locked and fs->object
796 	 * will have an additinal PIP count if it is not equal to
797 	 * fs->first_object
798 	 */
799 	fs.m = NULL;
800 	result = vm_fault_object(&fs, first_pindex, fault_type, 1);
801 
802 	if (result == KERN_TRY_AGAIN) {
803 		vm_object_drop(fs.first_object);
804 		++retry;
805 		goto RetryFault;
806 	}
807 	if (result != KERN_SUCCESS) {
808 		*errorp = result;
809 		fs.m = NULL;
810 		goto done;
811 	}
812 
813 	if ((orig_fault_type & VM_PROT_WRITE) &&
814 	    (fs.prot & VM_PROT_WRITE) == 0) {
815 		*errorp = KERN_PROTECTION_FAILURE;
816 		unlock_and_deallocate(&fs);
817 		fs.m = NULL;
818 		goto done;
819 	}
820 
821 	/*
822 	 * DO NOT UPDATE THE PMAP!!!  This function may be called for
823 	 * a pmap unrelated to the current process pmap, in which case
824 	 * the current cpu core will not be listed in the pmap's pm_active
825 	 * mask.  Thus invalidation interlocks will fail to work properly.
826 	 *
827 	 * (for example, 'ps' uses procfs to read program arguments from
828 	 * each process's stack).
829 	 *
830 	 * In addition to the above this function will be called to acquire
831 	 * a page that might already be faulted in, re-faulting it
832 	 * continuously is a waste of time.
833 	 *
834 	 * XXX could this have been the cause of our random seg-fault
835 	 *     issues?  procfs accesses user stacks.
836 	 */
837 	vm_page_flag_set(fs.m, PG_REFERENCED);
838 #if 0
839 	pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot, fs.wired, NULL);
840 	mycpu->gd_cnt.v_vm_faults++;
841 	if (curthread->td_lwp)
842 		++curthread->td_lwp->lwp_ru.ru_minflt;
843 #endif
844 
845 	/*
846 	 * On success vm_fault_object() does not unlock or deallocate, and fs.m
847 	 * will contain a busied page.  So we must unlock here after having
848 	 * messed with the pmap.
849 	 */
850 	unlock_things(&fs);
851 
852 	/*
853 	 * Return a held page.  We are not doing any pmap manipulation so do
854 	 * not set PG_MAPPED.  However, adjust the page flags according to
855 	 * the fault type because the caller may not use a managed pmapping
856 	 * (so we don't want to lose the fact that the page will be dirtied
857 	 * if a write fault was specified).
858 	 */
859 	vm_page_hold(fs.m);
860 	vm_page_activate(fs.m);
861 	if (fault_type & VM_PROT_WRITE)
862 		vm_page_dirty(fs.m);
863 
864 	if (curthread->td_lwp) {
865 		if (fs.hardfault) {
866 			curthread->td_lwp->lwp_ru.ru_majflt++;
867 		} else {
868 			curthread->td_lwp->lwp_ru.ru_minflt++;
869 		}
870 	}
871 
872 	/*
873 	 * Unlock everything, and return the held page.
874 	 */
875 	vm_page_wakeup(fs.m);
876 	/*vm_object_deallocate(fs.first_object);*/
877 	/*fs.first_object = NULL; */
878 	*errorp = 0;
879 
880 done:
881 	if (fs.first_object)
882 		vm_object_drop(fs.first_object);
883 done2:
884 	lwkt_reltoken(&map->token);
885 	return(fs.m);
886 }
887 
888 /*
889  * Fault in the specified (object,offset), dirty the returned page as
890  * needed.  If the requested fault_type cannot be done NULL and an
891  * error is returned.
892  *
893  * A held (but not busied) page is returned.
894  *
895  * The passed in object must be held as specified by the shared
896  * argument.
897  */
898 vm_page_t
899 vm_fault_object_page(vm_object_t object, vm_ooffset_t offset,
900 		     vm_prot_t fault_type, int fault_flags,
901 		     int *sharedp, int *errorp)
902 {
903 	int result;
904 	vm_pindex_t first_pindex;
905 	struct faultstate fs;
906 	struct vm_map_entry entry;
907 
908 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
909 	bzero(&entry, sizeof(entry));
910 	entry.object.vm_object = object;
911 	entry.maptype = VM_MAPTYPE_NORMAL;
912 	entry.protection = entry.max_protection = fault_type;
913 
914 	fs.hardfault = 0;
915 	fs.fault_flags = fault_flags;
916 	fs.map = NULL;
917 	fs.shared = vm_shared_fault;
918 	fs.first_shared = *sharedp;
919 	fs.vp = NULL;
920 	KKASSERT((fault_flags & VM_FAULT_WIRE_MASK) == 0);
921 
922 	/*
923 	 * Might require swap block adjustments
924 	 */
925 	if (fs.first_shared && (fault_flags & (VM_FAULT_UNSWAP | VM_FAULT_DIRTY))) {
926 		fs.first_shared = 0;
927 		vm_object_upgrade(object);
928 	}
929 
930 	/*
931 	 * Retry loop as needed (typically for shared->exclusive transitions)
932 	 */
933 RetryFault:
934 	*sharedp = fs.first_shared;
935 	first_pindex = OFF_TO_IDX(offset);
936 	fs.first_object = object;
937 	fs.entry = &entry;
938 	fs.first_prot = fault_type;
939 	fs.wired = 0;
940 	/*fs.map_generation = 0; unused */
941 
942 	/*
943 	 * Make a reference to this object to prevent its disposal while we
944 	 * are messing with it.  Once we have the reference, the map is free
945 	 * to be diddled.  Since objects reference their shadows (and copies),
946 	 * they will stay around as well.
947 	 *
948 	 * The reference should also prevent an unexpected collapse of the
949 	 * parent that might move pages from the current object into the
950 	 * parent unexpectedly, resulting in corruption.
951 	 *
952 	 * Bump the paging-in-progress count to prevent size changes (e.g.
953 	 * truncation operations) during I/O.  This must be done after
954 	 * obtaining the vnode lock in order to avoid possible deadlocks.
955 	 */
956 	if (fs.vp == NULL)
957 		fs.vp = vnode_pager_lock(fs.first_object);
958 
959 	fs.lookup_still_valid = TRUE;
960 	fs.first_m = NULL;
961 	fs.object = fs.first_object;	/* so unlock_and_deallocate works */
962 
963 #if 0
964 	/* XXX future - ability to operate on VM object using vpagetable */
965 	if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
966 		result = vm_fault_vpagetable(&fs, &first_pindex,
967 					     fs.entry->aux.master_pde,
968 					     fault_type, 0);
969 		if (result == KERN_TRY_AGAIN) {
970 			if (fs.first_shared == 0 && *sharedp)
971 				vm_object_upgrade(object);
972 			goto RetryFault;
973 		}
974 		if (result != KERN_SUCCESS) {
975 			*errorp = result;
976 			return (NULL);
977 		}
978 	}
979 #endif
980 
981 	/*
982 	 * Now we have the actual (object, pindex), fault in the page.  If
983 	 * vm_fault_object() fails it will unlock and deallocate the FS
984 	 * data.   If it succeeds everything remains locked and fs->object
985 	 * will have an additinal PIP count if it is not equal to
986 	 * fs->first_object
987 	 *
988 	 * On KERN_TRY_AGAIN vm_fault_object() leaves fs.first_object intact.
989 	 * We may have to upgrade its lock to handle the requested fault.
990 	 */
991 	result = vm_fault_object(&fs, first_pindex, fault_type, 0);
992 
993 	if (result == KERN_TRY_AGAIN) {
994 		if (fs.first_shared == 0 && *sharedp)
995 			vm_object_upgrade(object);
996 		goto RetryFault;
997 	}
998 	if (result != KERN_SUCCESS) {
999 		*errorp = result;
1000 		return(NULL);
1001 	}
1002 
1003 	if ((fault_type & VM_PROT_WRITE) && (fs.prot & VM_PROT_WRITE) == 0) {
1004 		*errorp = KERN_PROTECTION_FAILURE;
1005 		unlock_and_deallocate(&fs);
1006 		return(NULL);
1007 	}
1008 
1009 	/*
1010 	 * On success vm_fault_object() does not unlock or deallocate, so we
1011 	 * do it here.  Note that the returned fs.m will be busied.
1012 	 */
1013 	unlock_things(&fs);
1014 
1015 	/*
1016 	 * Return a held page.  We are not doing any pmap manipulation so do
1017 	 * not set PG_MAPPED.  However, adjust the page flags according to
1018 	 * the fault type because the caller may not use a managed pmapping
1019 	 * (so we don't want to lose the fact that the page will be dirtied
1020 	 * if a write fault was specified).
1021 	 */
1022 	vm_page_hold(fs.m);
1023 	vm_page_activate(fs.m);
1024 	if ((fault_type & VM_PROT_WRITE) || (fault_flags & VM_FAULT_DIRTY))
1025 		vm_page_dirty(fs.m);
1026 	if (fault_flags & VM_FAULT_UNSWAP)
1027 		swap_pager_unswapped(fs.m);
1028 
1029 	/*
1030 	 * Indicate that the page was accessed.
1031 	 */
1032 	vm_page_flag_set(fs.m, PG_REFERENCED);
1033 
1034 	if (curthread->td_lwp) {
1035 		if (fs.hardfault) {
1036 			curthread->td_lwp->lwp_ru.ru_majflt++;
1037 		} else {
1038 			curthread->td_lwp->lwp_ru.ru_minflt++;
1039 		}
1040 	}
1041 
1042 	/*
1043 	 * Unlock everything, and return the held page.
1044 	 */
1045 	vm_page_wakeup(fs.m);
1046 	/*vm_object_deallocate(fs.first_object);*/
1047 	/*fs.first_object = NULL; */
1048 
1049 	*errorp = 0;
1050 	return(fs.m);
1051 }
1052 
1053 /*
1054  * Translate the virtual page number (first_pindex) that is relative
1055  * to the address space into a logical page number that is relative to the
1056  * backing object.  Use the virtual page table pointed to by (vpte).
1057  *
1058  * This implements an N-level page table.  Any level can terminate the
1059  * scan by setting VPTE_PS.   A linear mapping is accomplished by setting
1060  * VPTE_PS in the master page directory entry set via mcontrol(MADV_SETMAP).
1061  */
1062 static
1063 int
1064 vm_fault_vpagetable(struct faultstate *fs, vm_pindex_t *pindex,
1065 		    vpte_t vpte, int fault_type, int allow_nofault)
1066 {
1067 	struct lwbuf *lwb;
1068 	struct lwbuf lwb_cache;
1069 	int vshift = VPTE_FRAME_END - PAGE_SHIFT; /* index bits remaining */
1070 	int result = KERN_SUCCESS;
1071 	vpte_t *ptep;
1072 
1073 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(fs->first_object));
1074 	for (;;) {
1075 		/*
1076 		 * We cannot proceed if the vpte is not valid, not readable
1077 		 * for a read fault, or not writable for a write fault.
1078 		 */
1079 		if ((vpte & VPTE_V) == 0) {
1080 			unlock_and_deallocate(fs);
1081 			return (KERN_FAILURE);
1082 		}
1083 		if ((fault_type & VM_PROT_WRITE) && (vpte & VPTE_RW) == 0) {
1084 			unlock_and_deallocate(fs);
1085 			return (KERN_FAILURE);
1086 		}
1087 		if ((vpte & VPTE_PS) || vshift == 0)
1088 			break;
1089 		KKASSERT(vshift >= VPTE_PAGE_BITS);
1090 
1091 		/*
1092 		 * Get the page table page.  Nominally we only read the page
1093 		 * table, but since we are actively setting VPTE_M and VPTE_A,
1094 		 * tell vm_fault_object() that we are writing it.
1095 		 *
1096 		 * There is currently no real need to optimize this.
1097 		 */
1098 		result = vm_fault_object(fs, (vpte & VPTE_FRAME) >> PAGE_SHIFT,
1099 					 VM_PROT_READ|VM_PROT_WRITE,
1100 					 allow_nofault);
1101 		if (result != KERN_SUCCESS)
1102 			return (result);
1103 
1104 		/*
1105 		 * Process the returned fs.m and look up the page table
1106 		 * entry in the page table page.
1107 		 */
1108 		vshift -= VPTE_PAGE_BITS;
1109 		lwb = lwbuf_alloc(fs->m, &lwb_cache);
1110 		ptep = ((vpte_t *)lwbuf_kva(lwb) +
1111 		        ((*pindex >> vshift) & VPTE_PAGE_MASK));
1112 		vpte = *ptep;
1113 
1114 		/*
1115 		 * Page table write-back.  If the vpte is valid for the
1116 		 * requested operation, do a write-back to the page table.
1117 		 *
1118 		 * XXX VPTE_M is not set properly for page directory pages.
1119 		 * It doesn't get set in the page directory if the page table
1120 		 * is modified during a read access.
1121 		 */
1122 		vm_page_activate(fs->m);
1123 		if ((fault_type & VM_PROT_WRITE) && (vpte & VPTE_V) &&
1124 		    (vpte & VPTE_RW)) {
1125 			if ((vpte & (VPTE_M|VPTE_A)) != (VPTE_M|VPTE_A)) {
1126 				atomic_set_long(ptep, VPTE_M | VPTE_A);
1127 				vm_page_dirty(fs->m);
1128 			}
1129 		}
1130 		if ((fault_type & VM_PROT_READ) && (vpte & VPTE_V)) {
1131 			if ((vpte & VPTE_A) == 0) {
1132 				atomic_set_long(ptep, VPTE_A);
1133 				vm_page_dirty(fs->m);
1134 			}
1135 		}
1136 		lwbuf_free(lwb);
1137 		vm_page_flag_set(fs->m, PG_REFERENCED);
1138 		vm_page_wakeup(fs->m);
1139 		fs->m = NULL;
1140 		cleanup_successful_fault(fs);
1141 	}
1142 	/*
1143 	 * Combine remaining address bits with the vpte.
1144 	 */
1145 	/* JG how many bits from each? */
1146 	*pindex = ((vpte & VPTE_FRAME) >> PAGE_SHIFT) +
1147 		  (*pindex & ((1L << vshift) - 1));
1148 	return (KERN_SUCCESS);
1149 }
1150 
1151 
1152 /*
1153  * This is the core of the vm_fault code.
1154  *
1155  * Do all operations required to fault-in (fs.first_object, pindex).  Run
1156  * through the shadow chain as necessary and do required COW or virtual
1157  * copy operations.  The caller has already fully resolved the vm_map_entry
1158  * and, if appropriate, has created a copy-on-write layer.  All we need to
1159  * do is iterate the object chain.
1160  *
1161  * On failure (fs) is unlocked and deallocated and the caller may return or
1162  * retry depending on the failure code.  On success (fs) is NOT unlocked or
1163  * deallocated, fs.m will contained a resolved, busied page, and fs.object
1164  * will have an additional PIP count if it is not equal to fs.first_object.
1165  *
1166  * If locks based on fs->first_shared or fs->shared are insufficient,
1167  * clear the appropriate field(s) and return RETRY.  COWs require that
1168  * first_shared be 0, while page allocations (or frees) require that
1169  * shared be 0.  Renames require that both be 0.
1170  *
1171  * fs->first_object must be held on call.
1172  */
1173 static
1174 int
1175 vm_fault_object(struct faultstate *fs, vm_pindex_t first_pindex,
1176 		vm_prot_t fault_type, int allow_nofault)
1177 {
1178 	vm_object_t next_object;
1179 	vm_pindex_t pindex;
1180 	int error;
1181 
1182 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(fs->first_object));
1183 	fs->prot = fs->first_prot;
1184 	fs->object = fs->first_object;
1185 	pindex = first_pindex;
1186 
1187 	vm_object_chain_acquire(fs->first_object, fs->shared);
1188 	vm_object_pip_add(fs->first_object, 1);
1189 
1190 	/*
1191 	 * If a read fault occurs we try to make the page writable if
1192 	 * possible.  There are three cases where we cannot make the
1193 	 * page mapping writable:
1194 	 *
1195 	 * (1) The mapping is read-only or the VM object is read-only,
1196 	 *     fs->prot above will simply not have VM_PROT_WRITE set.
1197 	 *
1198 	 * (2) If the mapping is a virtual page table we need to be able
1199 	 *     to detect writes so we can set VPTE_M in the virtual page
1200 	 *     table.
1201 	 *
1202 	 * (3) If the VM page is read-only or copy-on-write, upgrading would
1203 	 *     just result in an unnecessary COW fault.
1204 	 *
1205 	 * VM_PROT_VPAGED is set if faulting via a virtual page table and
1206 	 * causes adjustments to the 'M'odify bit to also turn off write
1207 	 * access to force a re-fault.
1208 	 */
1209 	if (fs->entry->maptype == VM_MAPTYPE_VPAGETABLE) {
1210 		if ((fault_type & VM_PROT_WRITE) == 0)
1211 			fs->prot &= ~VM_PROT_WRITE;
1212 	}
1213 
1214 	if (curthread->td_lwp && curthread->td_lwp->lwp_vmspace &&
1215 	    pmap_emulate_ad_bits(&curthread->td_lwp->lwp_vmspace->vm_pmap)) {
1216 		if ((fault_type & VM_PROT_WRITE) == 0)
1217 			fs->prot &= ~VM_PROT_WRITE;
1218 	}
1219 
1220 	/* vm_object_hold(fs->object); implied b/c object == first_object */
1221 
1222 	for (;;) {
1223 		/*
1224 		 * The entire backing chain from first_object to object
1225 		 * inclusive is chainlocked.
1226 		 *
1227 		 * If the object is dead, we stop here
1228 		 */
1229 		if (fs->object->flags & OBJ_DEAD) {
1230 			vm_object_pip_wakeup(fs->first_object);
1231 			vm_object_chain_release_all(fs->first_object,
1232 						    fs->object);
1233 			if (fs->object != fs->first_object)
1234 				vm_object_drop(fs->object);
1235 			unlock_and_deallocate(fs);
1236 			return (KERN_PROTECTION_FAILURE);
1237 		}
1238 
1239 		/*
1240 		 * See if the page is resident.  Wait/Retry if the page is
1241 		 * busy (lots of stuff may have changed so we can't continue
1242 		 * in that case).
1243 		 *
1244 		 * We can theoretically allow the soft-busy case on a read
1245 		 * fault if the page is marked valid, but since such
1246 		 * pages are typically already pmap'd, putting that
1247 		 * special case in might be more effort then it is
1248 		 * worth.  We cannot under any circumstances mess
1249 		 * around with a vm_page_t->busy page except, perhaps,
1250 		 * to pmap it.
1251 		 */
1252 		fs->m = vm_page_lookup_busy_try(fs->object, pindex,
1253 						TRUE, &error);
1254 		if (error) {
1255 			vm_object_pip_wakeup(fs->first_object);
1256 			vm_object_chain_release_all(fs->first_object,
1257 						    fs->object);
1258 			if (fs->object != fs->first_object)
1259 				vm_object_drop(fs->object);
1260 			unlock_things(fs);
1261 			vm_page_sleep_busy(fs->m, TRUE, "vmpfw");
1262 			mycpu->gd_cnt.v_intrans++;
1263 			/*vm_object_deallocate(fs->first_object);*/
1264 			/*fs->first_object = NULL;*/
1265 			fs->m = NULL;
1266 			return (KERN_TRY_AGAIN);
1267 		}
1268 		if (fs->m) {
1269 			/*
1270 			 * The page is busied for us.
1271 			 *
1272 			 * If reactivating a page from PQ_CACHE we may have
1273 			 * to rate-limit.
1274 			 */
1275 			int queue = fs->m->queue;
1276 			vm_page_unqueue_nowakeup(fs->m);
1277 
1278 			if ((queue - fs->m->pc) == PQ_CACHE &&
1279 			    vm_page_count_severe()) {
1280 				vm_page_activate(fs->m);
1281 				vm_page_wakeup(fs->m);
1282 				fs->m = NULL;
1283 				vm_object_pip_wakeup(fs->first_object);
1284 				vm_object_chain_release_all(fs->first_object,
1285 							    fs->object);
1286 				if (fs->object != fs->first_object)
1287 					vm_object_drop(fs->object);
1288 				unlock_and_deallocate(fs);
1289 				if (allow_nofault == 0 ||
1290 				    (curthread->td_flags & TDF_NOFAULT) == 0) {
1291 					vm_wait_pfault();
1292 				}
1293 				return (KERN_TRY_AGAIN);
1294 			}
1295 
1296 			/*
1297 			 * If it still isn't completely valid (readable),
1298 			 * or if a read-ahead-mark is set on the VM page,
1299 			 * jump to readrest, else we found the page and
1300 			 * can return.
1301 			 *
1302 			 * We can release the spl once we have marked the
1303 			 * page busy.
1304 			 */
1305 			if (fs->m->object != &kernel_object) {
1306 				if ((fs->m->valid & VM_PAGE_BITS_ALL) !=
1307 				    VM_PAGE_BITS_ALL) {
1308 					goto readrest;
1309 				}
1310 				if (fs->m->flags & PG_RAM) {
1311 					if (debug_cluster)
1312 						kprintf("R");
1313 					vm_page_flag_clear(fs->m, PG_RAM);
1314 					goto readrest;
1315 				}
1316 			}
1317 			break; /* break to PAGE HAS BEEN FOUND */
1318 		}
1319 
1320 		/*
1321 		 * Page is not resident, If this is the search termination
1322 		 * or the pager might contain the page, allocate a new page.
1323 		 */
1324 		if (TRYPAGER(fs) || fs->object == fs->first_object) {
1325 			/*
1326 			 * Allocating, must be exclusive.
1327 			 */
1328 			if (fs->object == fs->first_object &&
1329 			    fs->first_shared) {
1330 				fs->first_shared = 0;
1331 				vm_object_pip_wakeup(fs->first_object);
1332 				vm_object_chain_release_all(fs->first_object,
1333 							    fs->object);
1334 				if (fs->object != fs->first_object)
1335 					vm_object_drop(fs->object);
1336 				unlock_and_deallocate(fs);
1337 				return (KERN_TRY_AGAIN);
1338 			}
1339 			if (fs->object != fs->first_object &&
1340 			    fs->shared) {
1341 				fs->first_shared = 0;
1342 				fs->shared = 0;
1343 				vm_object_pip_wakeup(fs->first_object);
1344 				vm_object_chain_release_all(fs->first_object,
1345 							    fs->object);
1346 				if (fs->object != fs->first_object)
1347 					vm_object_drop(fs->object);
1348 				unlock_and_deallocate(fs);
1349 				return (KERN_TRY_AGAIN);
1350 			}
1351 
1352 			/*
1353 			 * If the page is beyond the object size we fail
1354 			 */
1355 			if (pindex >= fs->object->size) {
1356 				vm_object_pip_wakeup(fs->first_object);
1357 				vm_object_chain_release_all(fs->first_object,
1358 							    fs->object);
1359 				if (fs->object != fs->first_object)
1360 					vm_object_drop(fs->object);
1361 				unlock_and_deallocate(fs);
1362 				return (KERN_PROTECTION_FAILURE);
1363 			}
1364 
1365 			/*
1366 			 * Allocate a new page for this object/offset pair.
1367 			 *
1368 			 * It is possible for the allocation to race, so
1369 			 * handle the case.
1370 			 */
1371 			fs->m = NULL;
1372 			if (!vm_page_count_severe()) {
1373 				fs->m = vm_page_alloc(fs->object, pindex,
1374 				    ((fs->vp || fs->object->backing_object) ?
1375 					VM_ALLOC_NULL_OK | VM_ALLOC_NORMAL :
1376 					VM_ALLOC_NULL_OK | VM_ALLOC_NORMAL |
1377 					VM_ALLOC_USE_GD | VM_ALLOC_ZERO));
1378 			}
1379 			if (fs->m == NULL) {
1380 				vm_object_pip_wakeup(fs->first_object);
1381 				vm_object_chain_release_all(fs->first_object,
1382 							    fs->object);
1383 				if (fs->object != fs->first_object)
1384 					vm_object_drop(fs->object);
1385 				unlock_and_deallocate(fs);
1386 				if (allow_nofault == 0 ||
1387 				    (curthread->td_flags & TDF_NOFAULT) == 0) {
1388 					vm_wait_pfault();
1389 				}
1390 				return (KERN_TRY_AGAIN);
1391 			}
1392 
1393 			/*
1394 			 * Fall through to readrest.  We have a new page which
1395 			 * will have to be paged (since m->valid will be 0).
1396 			 */
1397 		}
1398 
1399 readrest:
1400 		/*
1401 		 * We have found an invalid or partially valid page, a
1402 		 * page with a read-ahead mark which might be partially or
1403 		 * fully valid (and maybe dirty too), or we have allocated
1404 		 * a new page.
1405 		 *
1406 		 * Attempt to fault-in the page if there is a chance that the
1407 		 * pager has it, and potentially fault in additional pages
1408 		 * at the same time.
1409 		 *
1410 		 * If TRYPAGER is true then fs.m will be non-NULL and busied
1411 		 * for us.
1412 		 */
1413 		if (TRYPAGER(fs)) {
1414 			int rv;
1415 			int seqaccess;
1416 			u_char behavior = vm_map_entry_behavior(fs->entry);
1417 
1418 			if (behavior == MAP_ENTRY_BEHAV_RANDOM)
1419 				seqaccess = 0;
1420 			else
1421 				seqaccess = -1;
1422 
1423 			/*
1424 			 * Doing I/O may synchronously insert additional
1425 			 * pages so we can't be shared at this point either.
1426 			 *
1427 			 * NOTE: We can't free fs->m here in the allocated
1428 			 *	 case (fs->object != fs->first_object) as
1429 			 *	 this would require an exclusively locked
1430 			 *	 VM object.
1431 			 */
1432 			if (fs->object == fs->first_object &&
1433 			    fs->first_shared) {
1434 				vm_page_deactivate(fs->m);
1435 				vm_page_wakeup(fs->m);
1436 				fs->m = NULL;
1437 				fs->first_shared = 0;
1438 				vm_object_pip_wakeup(fs->first_object);
1439 				vm_object_chain_release_all(fs->first_object,
1440 							    fs->object);
1441 				if (fs->object != fs->first_object)
1442 					vm_object_drop(fs->object);
1443 				unlock_and_deallocate(fs);
1444 				return (KERN_TRY_AGAIN);
1445 			}
1446 			if (fs->object != fs->first_object &&
1447 			    fs->shared) {
1448 				vm_page_deactivate(fs->m);
1449 				vm_page_wakeup(fs->m);
1450 				fs->m = NULL;
1451 				fs->first_shared = 0;
1452 				fs->shared = 0;
1453 				vm_object_pip_wakeup(fs->first_object);
1454 				vm_object_chain_release_all(fs->first_object,
1455 							    fs->object);
1456 				if (fs->object != fs->first_object)
1457 					vm_object_drop(fs->object);
1458 				unlock_and_deallocate(fs);
1459 				return (KERN_TRY_AGAIN);
1460 			}
1461 
1462 			/*
1463 			 * Avoid deadlocking against the map when doing I/O.
1464 			 * fs.object and the page is PG_BUSY'd.
1465 			 *
1466 			 * NOTE: Once unlocked, fs->entry can become stale
1467 			 *	 so this will NULL it out.
1468 			 *
1469 			 * NOTE: fs->entry is invalid until we relock the
1470 			 *	 map and verify that the timestamp has not
1471 			 *	 changed.
1472 			 */
1473 			unlock_map(fs);
1474 
1475 			/*
1476 			 * Acquire the page data.  We still hold a ref on
1477 			 * fs.object and the page has been PG_BUSY's.
1478 			 *
1479 			 * The pager may replace the page (for example, in
1480 			 * order to enter a fictitious page into the
1481 			 * object).  If it does so it is responsible for
1482 			 * cleaning up the passed page and properly setting
1483 			 * the new page PG_BUSY.
1484 			 *
1485 			 * If we got here through a PG_RAM read-ahead
1486 			 * mark the page may be partially dirty and thus
1487 			 * not freeable.  Don't bother checking to see
1488 			 * if the pager has the page because we can't free
1489 			 * it anyway.  We have to depend on the get_page
1490 			 * operation filling in any gaps whether there is
1491 			 * backing store or not.
1492 			 */
1493 			rv = vm_pager_get_page(fs->object, &fs->m, seqaccess);
1494 
1495 			if (rv == VM_PAGER_OK) {
1496 				/*
1497 				 * Relookup in case pager changed page. Pager
1498 				 * is responsible for disposition of old page
1499 				 * if moved.
1500 				 *
1501 				 * XXX other code segments do relookups too.
1502 				 * It's a bad abstraction that needs to be
1503 				 * fixed/removed.
1504 				 */
1505 				fs->m = vm_page_lookup(fs->object, pindex);
1506 				if (fs->m == NULL) {
1507 					vm_object_pip_wakeup(fs->first_object);
1508 					vm_object_chain_release_all(
1509 						fs->first_object, fs->object);
1510 					if (fs->object != fs->first_object)
1511 						vm_object_drop(fs->object);
1512 					unlock_and_deallocate(fs);
1513 					return (KERN_TRY_AGAIN);
1514 				}
1515 				++fs->hardfault;
1516 				break; /* break to PAGE HAS BEEN FOUND */
1517 			}
1518 
1519 			/*
1520 			 * Remove the bogus page (which does not exist at this
1521 			 * object/offset); before doing so, we must get back
1522 			 * our object lock to preserve our invariant.
1523 			 *
1524 			 * Also wake up any other process that may want to bring
1525 			 * in this page.
1526 			 *
1527 			 * If this is the top-level object, we must leave the
1528 			 * busy page to prevent another process from rushing
1529 			 * past us, and inserting the page in that object at
1530 			 * the same time that we are.
1531 			 */
1532 			if (rv == VM_PAGER_ERROR) {
1533 				if (curproc) {
1534 					kprintf("vm_fault: pager read error, "
1535 						"pid %d (%s)\n",
1536 						curproc->p_pid,
1537 						curproc->p_comm);
1538 				} else {
1539 					kprintf("vm_fault: pager read error, "
1540 						"thread %p (%s)\n",
1541 						curthread,
1542 						curproc->p_comm);
1543 				}
1544 			}
1545 
1546 			/*
1547 			 * Data outside the range of the pager or an I/O error
1548 			 *
1549 			 * The page may have been wired during the pagein,
1550 			 * e.g. by the buffer cache, and cannot simply be
1551 			 * freed.  Call vnode_pager_freepage() to deal with it.
1552 			 *
1553 			 * Also note that we cannot free the page if we are
1554 			 * holding the related object shared. XXX not sure
1555 			 * what to do in that case.
1556 			 */
1557 			if (fs->object != fs->first_object) {
1558 				vnode_pager_freepage(fs->m);
1559 				fs->m = NULL;
1560 				/*
1561 				 * XXX - we cannot just fall out at this
1562 				 * point, m has been freed and is invalid!
1563 				 */
1564 			}
1565 			/*
1566 			 * XXX - the check for kernel_map is a kludge to work
1567 			 * around having the machine panic on a kernel space
1568 			 * fault w/ I/O error.
1569 			 */
1570 			if (((fs->map != &kernel_map) &&
1571 			    (rv == VM_PAGER_ERROR)) || (rv == VM_PAGER_BAD)) {
1572 				if (fs->m) {
1573 					if (fs->first_shared) {
1574 						vm_page_deactivate(fs->m);
1575 						vm_page_wakeup(fs->m);
1576 					} else {
1577 						vnode_pager_freepage(fs->m);
1578 					}
1579 					fs->m = NULL;
1580 				}
1581 				vm_object_pip_wakeup(fs->first_object);
1582 				vm_object_chain_release_all(fs->first_object,
1583 							    fs->object);
1584 				if (fs->object != fs->first_object)
1585 					vm_object_drop(fs->object);
1586 				unlock_and_deallocate(fs);
1587 				if (rv == VM_PAGER_ERROR)
1588 					return (KERN_FAILURE);
1589 				else
1590 					return (KERN_PROTECTION_FAILURE);
1591 				/* NOT REACHED */
1592 			}
1593 		}
1594 
1595 		/*
1596 		 * We get here if the object has a default pager (or unwiring)
1597 		 * or the pager doesn't have the page.
1598 		 *
1599 		 * fs->first_m will be used for the COW unless we find a
1600 		 * deeper page to be mapped read-only, in which case the
1601 		 * unlock*(fs) will free first_m.
1602 		 */
1603 		if (fs->object == fs->first_object)
1604 			fs->first_m = fs->m;
1605 
1606 		/*
1607 		 * Move on to the next object.  The chain lock should prevent
1608 		 * the backing_object from getting ripped out from under us.
1609 		 *
1610 		 * The object lock for the next object is governed by
1611 		 * fs->shared.
1612 		 */
1613 		if ((next_object = fs->object->backing_object) != NULL) {
1614 			if (fs->shared)
1615 				vm_object_hold_shared(next_object);
1616 			else
1617 				vm_object_hold(next_object);
1618 			vm_object_chain_acquire(next_object, fs->shared);
1619 			KKASSERT(next_object == fs->object->backing_object);
1620 			pindex += OFF_TO_IDX(fs->object->backing_object_offset);
1621 		}
1622 
1623 		if (next_object == NULL) {
1624 			/*
1625 			 * If there's no object left, fill the page in the top
1626 			 * object with zeros.
1627 			 */
1628 			if (fs->object != fs->first_object) {
1629 #if 0
1630 				if (fs->first_object->backing_object !=
1631 				    fs->object) {
1632 					vm_object_hold(fs->first_object->backing_object);
1633 				}
1634 #endif
1635 				vm_object_chain_release_all(
1636 					fs->first_object->backing_object,
1637 					fs->object);
1638 #if 0
1639 				if (fs->first_object->backing_object !=
1640 				    fs->object) {
1641 					vm_object_drop(fs->first_object->backing_object);
1642 				}
1643 #endif
1644 				vm_object_pip_wakeup(fs->object);
1645 				vm_object_drop(fs->object);
1646 				fs->object = fs->first_object;
1647 				pindex = first_pindex;
1648 				fs->m = fs->first_m;
1649 			}
1650 			fs->first_m = NULL;
1651 
1652 			/*
1653 			 * Zero the page if necessary and mark it valid.
1654 			 */
1655 			if ((fs->m->flags & PG_ZERO) == 0) {
1656 				vm_page_zero_fill(fs->m);
1657 			} else {
1658 #ifdef PMAP_DEBUG
1659 				pmap_page_assertzero(VM_PAGE_TO_PHYS(fs->m));
1660 #endif
1661 				vm_page_flag_clear(fs->m, PG_ZERO);
1662 				mycpu->gd_cnt.v_ozfod++;
1663 			}
1664 			mycpu->gd_cnt.v_zfod++;
1665 			fs->m->valid = VM_PAGE_BITS_ALL;
1666 			break;	/* break to PAGE HAS BEEN FOUND */
1667 		}
1668 		if (fs->object != fs->first_object) {
1669 			vm_object_pip_wakeup(fs->object);
1670 			vm_object_lock_swap();
1671 			vm_object_drop(fs->object);
1672 		}
1673 		KASSERT(fs->object != next_object,
1674 			("object loop %p", next_object));
1675 		fs->object = next_object;
1676 		vm_object_pip_add(fs->object, 1);
1677 	}
1678 
1679 	/*
1680 	 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
1681 	 * is held.]
1682 	 *
1683 	 * object still held.
1684 	 *
1685 	 * local shared variable may be different from fs->shared.
1686 	 *
1687 	 * If the page is being written, but isn't already owned by the
1688 	 * top-level object, we have to copy it into a new page owned by the
1689 	 * top-level object.
1690 	 */
1691 	KASSERT((fs->m->flags & PG_BUSY) != 0,
1692 		("vm_fault: not busy after main loop"));
1693 
1694 	if (fs->object != fs->first_object) {
1695 		/*
1696 		 * We only really need to copy if we want to write it.
1697 		 */
1698 		if (fault_type & VM_PROT_WRITE) {
1699 			/*
1700 			 * This allows pages to be virtually copied from a
1701 			 * backing_object into the first_object, where the
1702 			 * backing object has no other refs to it, and cannot
1703 			 * gain any more refs.  Instead of a bcopy, we just
1704 			 * move the page from the backing object to the
1705 			 * first object.  Note that we must mark the page
1706 			 * dirty in the first object so that it will go out
1707 			 * to swap when needed.
1708 			 */
1709 			if (
1710 				/*
1711 				 * Must be holding exclusive locks
1712 				 */
1713 				fs->first_shared == 0 &&
1714 				fs->shared == 0 &&
1715 				/*
1716 				 * Map, if present, has not changed
1717 				 */
1718 				(fs->map == NULL ||
1719 				fs->map_generation == fs->map->timestamp) &&
1720 				/*
1721 				 * Only one shadow object
1722 				 */
1723 				(fs->object->shadow_count == 1) &&
1724 				/*
1725 				 * No COW refs, except us
1726 				 */
1727 				(fs->object->ref_count == 1) &&
1728 				/*
1729 				 * No one else can look this object up
1730 				 */
1731 				(fs->object->handle == NULL) &&
1732 				/*
1733 				 * No other ways to look the object up
1734 				 */
1735 				((fs->object->type == OBJT_DEFAULT) ||
1736 				 (fs->object->type == OBJT_SWAP)) &&
1737 				/*
1738 				 * We don't chase down the shadow chain
1739 				 */
1740 				(fs->object == fs->first_object->backing_object) &&
1741 
1742 				/*
1743 				 * grab the lock if we need to
1744 				 */
1745 				(fs->lookup_still_valid ||
1746 				 fs->map == NULL ||
1747 				 lockmgr(&fs->map->lock, LK_EXCLUSIVE|LK_NOWAIT) == 0)
1748 			    ) {
1749 				/*
1750 				 * (first_m) and (m) are both busied.  We have
1751 				 * move (m) into (first_m)'s object/pindex
1752 				 * in an atomic fashion, then free (first_m).
1753 				 *
1754 				 * first_object is held so second remove
1755 				 * followed by the rename should wind
1756 				 * up being atomic.  vm_page_free() might
1757 				 * block so we don't do it until after the
1758 				 * rename.
1759 				 */
1760 				fs->lookup_still_valid = 1;
1761 				vm_page_protect(fs->first_m, VM_PROT_NONE);
1762 				vm_page_remove(fs->first_m);
1763 				vm_page_rename(fs->m, fs->first_object,
1764 					       first_pindex);
1765 				vm_page_free(fs->first_m);
1766 				fs->first_m = fs->m;
1767 				fs->m = NULL;
1768 				mycpu->gd_cnt.v_cow_optim++;
1769 			} else {
1770 				/*
1771 				 * Oh, well, lets copy it.
1772 				 *
1773 				 * Why are we unmapping the original page
1774 				 * here?  Well, in short, not all accessors
1775 				 * of user memory go through the pmap.  The
1776 				 * procfs code doesn't have access user memory
1777 				 * via a local pmap, so vm_fault_page*()
1778 				 * can't call pmap_enter().  And the umtx*()
1779 				 * code may modify the COW'd page via a DMAP
1780 				 * or kernel mapping and not via the pmap,
1781 				 * leaving the original page still mapped
1782 				 * read-only into the pmap.
1783 				 *
1784 				 * So we have to remove the page from at
1785 				 * least the current pmap if it is in it.
1786 				 * Just remove it from all pmaps.
1787 				 */
1788 				KKASSERT(fs->first_shared == 0);
1789 				vm_page_copy(fs->m, fs->first_m);
1790 				vm_page_protect(fs->m, VM_PROT_NONE);
1791 				vm_page_event(fs->m, VMEVENT_COW);
1792 			}
1793 
1794 			/*
1795 			 * We no longer need the old page or object.
1796 			 */
1797 			if (fs->m)
1798 				release_page(fs);
1799 
1800 			/*
1801 			 * We intend to revert to first_object, undo the
1802 			 * chain lock through to that.
1803 			 */
1804 #if 0
1805 			if (fs->first_object->backing_object != fs->object)
1806 				vm_object_hold(fs->first_object->backing_object);
1807 #endif
1808 			vm_object_chain_release_all(
1809 					fs->first_object->backing_object,
1810 					fs->object);
1811 #if 0
1812 			if (fs->first_object->backing_object != fs->object)
1813 				vm_object_drop(fs->first_object->backing_object);
1814 #endif
1815 
1816 			/*
1817 			 * fs->object != fs->first_object due to above
1818 			 * conditional
1819 			 */
1820 			vm_object_pip_wakeup(fs->object);
1821 			vm_object_drop(fs->object);
1822 
1823 			/*
1824 			 * Only use the new page below...
1825 			 */
1826 			mycpu->gd_cnt.v_cow_faults++;
1827 			fs->m = fs->first_m;
1828 			fs->object = fs->first_object;
1829 			pindex = first_pindex;
1830 		} else {
1831 			/*
1832 			 * If it wasn't a write fault avoid having to copy
1833 			 * the page by mapping it read-only.
1834 			 */
1835 			fs->prot &= ~VM_PROT_WRITE;
1836 		}
1837 	}
1838 
1839 	/*
1840 	 * Relock the map if necessary, then check the generation count.
1841 	 * relock_map() will update fs->timestamp to account for the
1842 	 * relocking if necessary.
1843 	 *
1844 	 * If the count has changed after relocking then all sorts of
1845 	 * crap may have happened and we have to retry.
1846 	 *
1847 	 * NOTE: The relock_map() can fail due to a deadlock against
1848 	 *	 the vm_page we are holding BUSY.
1849 	 */
1850 	if (fs->lookup_still_valid == FALSE && fs->map) {
1851 		if (relock_map(fs) ||
1852 		    fs->map->timestamp != fs->map_generation) {
1853 			release_page(fs);
1854 			vm_object_pip_wakeup(fs->first_object);
1855 			vm_object_chain_release_all(fs->first_object,
1856 						    fs->object);
1857 			if (fs->object != fs->first_object)
1858 				vm_object_drop(fs->object);
1859 			unlock_and_deallocate(fs);
1860 			return (KERN_TRY_AGAIN);
1861 		}
1862 	}
1863 
1864 	/*
1865 	 * If the fault is a write, we know that this page is being
1866 	 * written NOW so dirty it explicitly to save on pmap_is_modified()
1867 	 * calls later.
1868 	 *
1869 	 * If this is a NOSYNC mmap we do not want to set PG_NOSYNC
1870 	 * if the page is already dirty to prevent data written with
1871 	 * the expectation of being synced from not being synced.
1872 	 * Likewise if this entry does not request NOSYNC then make
1873 	 * sure the page isn't marked NOSYNC.  Applications sharing
1874 	 * data should use the same flags to avoid ping ponging.
1875 	 *
1876 	 * Also tell the backing pager, if any, that it should remove
1877 	 * any swap backing since the page is now dirty.
1878 	 */
1879 	vm_page_activate(fs->m);
1880 	if (fs->prot & VM_PROT_WRITE) {
1881 		vm_object_set_writeable_dirty(fs->m->object);
1882 		vm_set_nosync(fs->m, fs->entry);
1883 		if (fs->fault_flags & VM_FAULT_DIRTY) {
1884 			vm_page_dirty(fs->m);
1885 			swap_pager_unswapped(fs->m);
1886 		}
1887 	}
1888 
1889 	vm_object_pip_wakeup(fs->first_object);
1890 	vm_object_chain_release_all(fs->first_object, fs->object);
1891 	if (fs->object != fs->first_object)
1892 		vm_object_drop(fs->object);
1893 
1894 	/*
1895 	 * Page had better still be busy.  We are still locked up and
1896 	 * fs->object will have another PIP reference if it is not equal
1897 	 * to fs->first_object.
1898 	 */
1899 	KASSERT(fs->m->flags & PG_BUSY,
1900 		("vm_fault: page %p not busy!", fs->m));
1901 
1902 	/*
1903 	 * Sanity check: page must be completely valid or it is not fit to
1904 	 * map into user space.  vm_pager_get_pages() ensures this.
1905 	 */
1906 	if (fs->m->valid != VM_PAGE_BITS_ALL) {
1907 		vm_page_zero_invalid(fs->m, TRUE);
1908 		kprintf("Warning: page %p partially invalid on fault\n", fs->m);
1909 	}
1910 	vm_page_flag_clear(fs->m, PG_ZERO);
1911 
1912 	return (KERN_SUCCESS);
1913 }
1914 
1915 /*
1916  * Hold each of the physical pages that are mapped by the specified range of
1917  * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid
1918  * and allow the specified types of access, "prot".  If all of the implied
1919  * pages are successfully held, then the number of held pages is returned
1920  * together with pointers to those pages in the array "ma".  However, if any
1921  * of the pages cannot be held, -1 is returned.
1922  */
1923 int
1924 vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len,
1925     vm_prot_t prot, vm_page_t *ma, int max_count)
1926 {
1927 	vm_offset_t start, end;
1928 	int i, npages, error;
1929 
1930 	start = trunc_page(addr);
1931 	end = round_page(addr + len);
1932 
1933 	npages = howmany(end - start, PAGE_SIZE);
1934 
1935 	if (npages > max_count)
1936 		return -1;
1937 
1938 	for (i = 0; i < npages; i++) {
1939 		// XXX error handling
1940 		ma[i] = vm_fault_page_quick(start + (i * PAGE_SIZE),
1941 			prot,
1942 			&error);
1943 	}
1944 
1945 	return npages;
1946 }
1947 
1948 /*
1949  * Wire down a range of virtual addresses in a map.  The entry in question
1950  * should be marked in-transition and the map must be locked.  We must
1951  * release the map temporarily while faulting-in the page to avoid a
1952  * deadlock.  Note that the entry may be clipped while we are blocked but
1953  * will never be freed.
1954  *
1955  * No requirements.
1956  */
1957 int
1958 vm_fault_wire(vm_map_t map, vm_map_entry_t entry,
1959 	      boolean_t user_wire, int kmflags)
1960 {
1961 	boolean_t fictitious;
1962 	vm_offset_t start;
1963 	vm_offset_t end;
1964 	vm_offset_t va;
1965 	vm_paddr_t pa;
1966 	vm_page_t m;
1967 	pmap_t pmap;
1968 	int rv;
1969 	int wire_prot;
1970 	int fault_flags;
1971 
1972 	lwkt_gettoken(&map->token);
1973 
1974 	if (user_wire) {
1975 		wire_prot = VM_PROT_READ;
1976 		fault_flags = VM_FAULT_USER_WIRE;
1977 	} else {
1978 		wire_prot = VM_PROT_READ | VM_PROT_WRITE;
1979 		fault_flags = VM_FAULT_CHANGE_WIRING;
1980 	}
1981 	if (kmflags & KM_NOTLBSYNC)
1982 		wire_prot |= VM_PROT_NOSYNC;
1983 
1984 	pmap = vm_map_pmap(map);
1985 	start = entry->start;
1986 	end = entry->end;
1987 	fictitious = entry->object.vm_object &&
1988 			((entry->object.vm_object->type == OBJT_DEVICE) ||
1989 			 (entry->object.vm_object->type == OBJT_MGTDEVICE));
1990 	if (entry->eflags & MAP_ENTRY_KSTACK)
1991 		start += PAGE_SIZE;
1992 	map->timestamp++;
1993 	vm_map_unlock(map);
1994 
1995 	/*
1996 	 * We simulate a fault to get the page and enter it in the physical
1997 	 * map.
1998 	 */
1999 	for (va = start; va < end; va += PAGE_SIZE) {
2000 		rv = vm_fault(map, va, wire_prot, fault_flags);
2001 		if (rv) {
2002 			while (va > start) {
2003 				va -= PAGE_SIZE;
2004 				if ((pa = pmap_extract(pmap, va)) == 0)
2005 					continue;
2006 				pmap_change_wiring(pmap, va, FALSE, entry);
2007 				if (!fictitious) {
2008 					m = PHYS_TO_VM_PAGE(pa);
2009 					vm_page_busy_wait(m, FALSE, "vmwrpg");
2010 					vm_page_unwire(m, 1);
2011 					vm_page_wakeup(m);
2012 				}
2013 			}
2014 			goto done;
2015 		}
2016 	}
2017 	rv = KERN_SUCCESS;
2018 done:
2019 	vm_map_lock(map);
2020 	lwkt_reltoken(&map->token);
2021 	return (rv);
2022 }
2023 
2024 /*
2025  * Unwire a range of virtual addresses in a map.  The map should be
2026  * locked.
2027  */
2028 void
2029 vm_fault_unwire(vm_map_t map, vm_map_entry_t entry)
2030 {
2031 	boolean_t fictitious;
2032 	vm_offset_t start;
2033 	vm_offset_t end;
2034 	vm_offset_t va;
2035 	vm_paddr_t pa;
2036 	vm_page_t m;
2037 	pmap_t pmap;
2038 
2039 	lwkt_gettoken(&map->token);
2040 
2041 	pmap = vm_map_pmap(map);
2042 	start = entry->start;
2043 	end = entry->end;
2044 	fictitious = entry->object.vm_object &&
2045 			((entry->object.vm_object->type == OBJT_DEVICE) ||
2046 			 (entry->object.vm_object->type == OBJT_MGTDEVICE));
2047 	if (entry->eflags & MAP_ENTRY_KSTACK)
2048 		start += PAGE_SIZE;
2049 
2050 	/*
2051 	 * Since the pages are wired down, we must be able to get their
2052 	 * mappings from the physical map system.
2053 	 */
2054 	for (va = start; va < end; va += PAGE_SIZE) {
2055 		pa = pmap_extract(pmap, va);
2056 		if (pa != 0) {
2057 			pmap_change_wiring(pmap, va, FALSE, entry);
2058 			if (!fictitious) {
2059 				m = PHYS_TO_VM_PAGE(pa);
2060 				vm_page_busy_wait(m, FALSE, "vmwupg");
2061 				vm_page_unwire(m, 1);
2062 				vm_page_wakeup(m);
2063 			}
2064 		}
2065 	}
2066 	lwkt_reltoken(&map->token);
2067 }
2068 
2069 /*
2070  * Copy all of the pages from a wired-down map entry to another.
2071  *
2072  * The source and destination maps must be locked for write.
2073  * The source and destination maps token must be held
2074  * The source map entry must be wired down (or be a sharing map
2075  * entry corresponding to a main map entry that is wired down).
2076  *
2077  * No other requirements.
2078  *
2079  * XXX do segment optimization
2080  */
2081 void
2082 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
2083 		    vm_map_entry_t dst_entry, vm_map_entry_t src_entry)
2084 {
2085 	vm_object_t dst_object;
2086 	vm_object_t src_object;
2087 	vm_ooffset_t dst_offset;
2088 	vm_ooffset_t src_offset;
2089 	vm_prot_t prot;
2090 	vm_offset_t vaddr;
2091 	vm_page_t dst_m;
2092 	vm_page_t src_m;
2093 
2094 	src_object = src_entry->object.vm_object;
2095 	src_offset = src_entry->offset;
2096 
2097 	/*
2098 	 * Create the top-level object for the destination entry. (Doesn't
2099 	 * actually shadow anything - we copy the pages directly.)
2100 	 */
2101 	vm_map_entry_allocate_object(dst_entry);
2102 	dst_object = dst_entry->object.vm_object;
2103 
2104 	prot = dst_entry->max_protection;
2105 
2106 	/*
2107 	 * Loop through all of the pages in the entry's range, copying each
2108 	 * one from the source object (it should be there) to the destination
2109 	 * object.
2110 	 */
2111 	vm_object_hold(src_object);
2112 	vm_object_hold(dst_object);
2113 	for (vaddr = dst_entry->start, dst_offset = 0;
2114 	    vaddr < dst_entry->end;
2115 	    vaddr += PAGE_SIZE, dst_offset += PAGE_SIZE) {
2116 
2117 		/*
2118 		 * Allocate a page in the destination object
2119 		 */
2120 		do {
2121 			dst_m = vm_page_alloc(dst_object,
2122 					      OFF_TO_IDX(dst_offset),
2123 					      VM_ALLOC_NORMAL);
2124 			if (dst_m == NULL) {
2125 				vm_wait(0);
2126 			}
2127 		} while (dst_m == NULL);
2128 
2129 		/*
2130 		 * Find the page in the source object, and copy it in.
2131 		 * (Because the source is wired down, the page will be in
2132 		 * memory.)
2133 		 */
2134 		src_m = vm_page_lookup(src_object,
2135 				       OFF_TO_IDX(dst_offset + src_offset));
2136 		if (src_m == NULL)
2137 			panic("vm_fault_copy_wired: page missing");
2138 
2139 		vm_page_copy(src_m, dst_m);
2140 		vm_page_event(src_m, VMEVENT_COW);
2141 
2142 		/*
2143 		 * Enter it in the pmap...
2144 		 */
2145 
2146 		vm_page_flag_clear(dst_m, PG_ZERO);
2147 		pmap_enter(dst_map->pmap, vaddr, dst_m, prot, FALSE, dst_entry);
2148 
2149 		/*
2150 		 * Mark it no longer busy, and put it on the active list.
2151 		 */
2152 		vm_page_activate(dst_m);
2153 		vm_page_wakeup(dst_m);
2154 	}
2155 	vm_object_drop(dst_object);
2156 	vm_object_drop(src_object);
2157 }
2158 
2159 #if 0
2160 
2161 /*
2162  * This routine checks around the requested page for other pages that
2163  * might be able to be faulted in.  This routine brackets the viable
2164  * pages for the pages to be paged in.
2165  *
2166  * Inputs:
2167  *	m, rbehind, rahead
2168  *
2169  * Outputs:
2170  *  marray (array of vm_page_t), reqpage (index of requested page)
2171  *
2172  * Return value:
2173  *  number of pages in marray
2174  */
2175 static int
2176 vm_fault_additional_pages(vm_page_t m, int rbehind, int rahead,
2177 			  vm_page_t *marray, int *reqpage)
2178 {
2179 	int i,j;
2180 	vm_object_t object;
2181 	vm_pindex_t pindex, startpindex, endpindex, tpindex;
2182 	vm_page_t rtm;
2183 	int cbehind, cahead;
2184 
2185 	object = m->object;
2186 	pindex = m->pindex;
2187 
2188 	/*
2189 	 * we don't fault-ahead for device pager
2190 	 */
2191 	if ((object->type == OBJT_DEVICE) ||
2192 	    (object->type == OBJT_MGTDEVICE)) {
2193 		*reqpage = 0;
2194 		marray[0] = m;
2195 		return 1;
2196 	}
2197 
2198 	/*
2199 	 * if the requested page is not available, then give up now
2200 	 */
2201 	if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
2202 		*reqpage = 0;	/* not used by caller, fix compiler warn */
2203 		return 0;
2204 	}
2205 
2206 	if ((cbehind == 0) && (cahead == 0)) {
2207 		*reqpage = 0;
2208 		marray[0] = m;
2209 		return 1;
2210 	}
2211 
2212 	if (rahead > cahead) {
2213 		rahead = cahead;
2214 	}
2215 
2216 	if (rbehind > cbehind) {
2217 		rbehind = cbehind;
2218 	}
2219 
2220 	/*
2221 	 * Do not do any readahead if we have insufficient free memory.
2222 	 *
2223 	 * XXX code was broken disabled before and has instability
2224 	 * with this conditonal fixed, so shortcut for now.
2225 	 */
2226 	if (burst_fault == 0 || vm_page_count_severe()) {
2227 		marray[0] = m;
2228 		*reqpage = 0;
2229 		return 1;
2230 	}
2231 
2232 	/*
2233 	 * scan backward for the read behind pages -- in memory
2234 	 *
2235 	 * Assume that if the page is not found an interrupt will not
2236 	 * create it.  Theoretically interrupts can only remove (busy)
2237 	 * pages, not create new associations.
2238 	 */
2239 	if (pindex > 0) {
2240 		if (rbehind > pindex) {
2241 			rbehind = pindex;
2242 			startpindex = 0;
2243 		} else {
2244 			startpindex = pindex - rbehind;
2245 		}
2246 
2247 		vm_object_hold(object);
2248 		for (tpindex = pindex; tpindex > startpindex; --tpindex) {
2249 			if (vm_page_lookup(object, tpindex - 1))
2250 				break;
2251 		}
2252 
2253 		i = 0;
2254 		while (tpindex < pindex) {
2255 			rtm = vm_page_alloc(object, tpindex, VM_ALLOC_SYSTEM |
2256 							     VM_ALLOC_NULL_OK);
2257 			if (rtm == NULL) {
2258 				for (j = 0; j < i; j++) {
2259 					vm_page_free(marray[j]);
2260 				}
2261 				vm_object_drop(object);
2262 				marray[0] = m;
2263 				*reqpage = 0;
2264 				return 1;
2265 			}
2266 			marray[i] = rtm;
2267 			++i;
2268 			++tpindex;
2269 		}
2270 		vm_object_drop(object);
2271 	} else {
2272 		i = 0;
2273 	}
2274 
2275 	/*
2276 	 * Assign requested page
2277 	 */
2278 	marray[i] = m;
2279 	*reqpage = i;
2280 	++i;
2281 
2282 	/*
2283 	 * Scan forwards for read-ahead pages
2284 	 */
2285 	tpindex = pindex + 1;
2286 	endpindex = tpindex + rahead;
2287 	if (endpindex > object->size)
2288 		endpindex = object->size;
2289 
2290 	vm_object_hold(object);
2291 	while (tpindex < endpindex) {
2292 		if (vm_page_lookup(object, tpindex))
2293 			break;
2294 		rtm = vm_page_alloc(object, tpindex, VM_ALLOC_SYSTEM |
2295 						     VM_ALLOC_NULL_OK);
2296 		if (rtm == NULL)
2297 			break;
2298 		marray[i] = rtm;
2299 		++i;
2300 		++tpindex;
2301 	}
2302 	vm_object_drop(object);
2303 
2304 	return (i);
2305 }
2306 
2307 #endif
2308 
2309 /*
2310  * vm_prefault() provides a quick way of clustering pagefaults into a
2311  * processes address space.  It is a "cousin" of pmap_object_init_pt,
2312  * except it runs at page fault time instead of mmap time.
2313  *
2314  * vm.fast_fault	Enables pre-faulting zero-fill pages
2315  *
2316  * vm.prefault_pages	Number of pages (1/2 negative, 1/2 positive) to
2317  *			prefault.  Scan stops in either direction when
2318  *			a page is found to already exist.
2319  *
2320  * This code used to be per-platform pmap_prefault().  It is now
2321  * machine-independent and enhanced to also pre-fault zero-fill pages
2322  * (see vm.fast_fault) as well as make them writable, which greatly
2323  * reduces the number of page faults programs incur.
2324  *
2325  * Application performance when pre-faulting zero-fill pages is heavily
2326  * dependent on the application.  Very tiny applications like /bin/echo
2327  * lose a little performance while applications of any appreciable size
2328  * gain performance.  Prefaulting multiple pages also reduces SMP
2329  * congestion and can improve SMP performance significantly.
2330  *
2331  * NOTE!  prot may allow writing but this only applies to the top level
2332  *	  object.  If we wind up mapping a page extracted from a backing
2333  *	  object we have to make sure it is read-only.
2334  *
2335  * NOTE!  The caller has already handled any COW operations on the
2336  *	  vm_map_entry via the normal fault code.  Do NOT call this
2337  *	  shortcut unless the normal fault code has run on this entry.
2338  *
2339  * The related map must be locked.
2340  * No other requirements.
2341  */
2342 static int vm_prefault_pages = 8;
2343 SYSCTL_INT(_vm, OID_AUTO, prefault_pages, CTLFLAG_RW, &vm_prefault_pages, 0,
2344 	   "Maximum number of pages to pre-fault");
2345 static int vm_fast_fault = 1;
2346 SYSCTL_INT(_vm, OID_AUTO, fast_fault, CTLFLAG_RW, &vm_fast_fault, 0,
2347 	   "Burst fault zero-fill regions");
2348 
2349 /*
2350  * Set PG_NOSYNC if the map entry indicates so, but only if the page
2351  * is not already dirty by other means.  This will prevent passive
2352  * filesystem syncing as well as 'sync' from writing out the page.
2353  */
2354 static void
2355 vm_set_nosync(vm_page_t m, vm_map_entry_t entry)
2356 {
2357 	if (entry->eflags & MAP_ENTRY_NOSYNC) {
2358 		if (m->dirty == 0)
2359 			vm_page_flag_set(m, PG_NOSYNC);
2360 	} else {
2361 		vm_page_flag_clear(m, PG_NOSYNC);
2362 	}
2363 }
2364 
2365 static void
2366 vm_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry, int prot,
2367 	    int fault_flags)
2368 {
2369 	struct lwp *lp;
2370 	vm_page_t m;
2371 	vm_offset_t addr;
2372 	vm_pindex_t index;
2373 	vm_pindex_t pindex;
2374 	vm_object_t object;
2375 	int pprot;
2376 	int i;
2377 	int noneg;
2378 	int nopos;
2379 	int maxpages;
2380 
2381 	/*
2382 	 * Get stable max count value, disabled if set to 0
2383 	 */
2384 	maxpages = vm_prefault_pages;
2385 	cpu_ccfence();
2386 	if (maxpages <= 0)
2387 		return;
2388 
2389 	/*
2390 	 * We do not currently prefault mappings that use virtual page
2391 	 * tables.  We do not prefault foreign pmaps.
2392 	 */
2393 	if (entry->maptype == VM_MAPTYPE_VPAGETABLE)
2394 		return;
2395 	lp = curthread->td_lwp;
2396 	if (lp == NULL || (pmap != vmspace_pmap(lp->lwp_vmspace)))
2397 		return;
2398 
2399 	/*
2400 	 * Limit pre-fault count to 1024 pages.
2401 	 */
2402 	if (maxpages > 1024)
2403 		maxpages = 1024;
2404 
2405 	object = entry->object.vm_object;
2406 	KKASSERT(object != NULL);
2407 	KKASSERT(object == entry->object.vm_object);
2408 	vm_object_hold(object);
2409 	vm_object_chain_acquire(object, 0);
2410 
2411 	noneg = 0;
2412 	nopos = 0;
2413 	for (i = 0; i < maxpages; ++i) {
2414 		vm_object_t lobject;
2415 		vm_object_t nobject;
2416 		int allocated = 0;
2417 		int error;
2418 
2419 		/*
2420 		 * This can eat a lot of time on a heavily contended
2421 		 * machine so yield on the tick if needed.
2422 		 */
2423 		if ((i & 7) == 7)
2424 			lwkt_yield();
2425 
2426 		/*
2427 		 * Calculate the page to pre-fault, stopping the scan in
2428 		 * each direction separately if the limit is reached.
2429 		 */
2430 		if (i & 1) {
2431 			if (noneg)
2432 				continue;
2433 			addr = addra - ((i + 1) >> 1) * PAGE_SIZE;
2434 		} else {
2435 			if (nopos)
2436 				continue;
2437 			addr = addra + ((i + 2) >> 1) * PAGE_SIZE;
2438 		}
2439 		if (addr < entry->start) {
2440 			noneg = 1;
2441 			if (noneg && nopos)
2442 				break;
2443 			continue;
2444 		}
2445 		if (addr >= entry->end) {
2446 			nopos = 1;
2447 			if (noneg && nopos)
2448 				break;
2449 			continue;
2450 		}
2451 
2452 		/*
2453 		 * Skip pages already mapped, and stop scanning in that
2454 		 * direction.  When the scan terminates in both directions
2455 		 * we are done.
2456 		 */
2457 		if (pmap_prefault_ok(pmap, addr) == 0) {
2458 			if (i & 1)
2459 				noneg = 1;
2460 			else
2461 				nopos = 1;
2462 			if (noneg && nopos)
2463 				break;
2464 			continue;
2465 		}
2466 
2467 		/*
2468 		 * Follow the VM object chain to obtain the page to be mapped
2469 		 * into the pmap.
2470 		 *
2471 		 * If we reach the terminal object without finding a page
2472 		 * and we determine it would be advantageous, then allocate
2473 		 * a zero-fill page for the base object.  The base object
2474 		 * is guaranteed to be OBJT_DEFAULT for this case.
2475 		 *
2476 		 * In order to not have to check the pager via *haspage*()
2477 		 * we stop if any non-default object is encountered.  e.g.
2478 		 * a vnode or swap object would stop the loop.
2479 		 */
2480 		index = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
2481 		lobject = object;
2482 		pindex = index;
2483 		pprot = prot;
2484 
2485 		KKASSERT(lobject == entry->object.vm_object);
2486 		/*vm_object_hold(lobject); implied */
2487 
2488 		while ((m = vm_page_lookup_busy_try(lobject, pindex,
2489 						    TRUE, &error)) == NULL) {
2490 			if (lobject->type != OBJT_DEFAULT)
2491 				break;
2492 			if (lobject->backing_object == NULL) {
2493 				if (vm_fast_fault == 0)
2494 					break;
2495 				if ((prot & VM_PROT_WRITE) == 0 ||
2496 				    vm_page_count_min(0)) {
2497 					break;
2498 				}
2499 
2500 				/*
2501 				 * NOTE: Allocated from base object
2502 				 */
2503 				m = vm_page_alloc(object, index,
2504 						  VM_ALLOC_NORMAL |
2505 						  VM_ALLOC_ZERO |
2506 						  VM_ALLOC_USE_GD |
2507 						  VM_ALLOC_NULL_OK);
2508 				if (m == NULL)
2509 					break;
2510 				allocated = 1;
2511 				pprot = prot;
2512 				/* lobject = object .. not needed */
2513 				break;
2514 			}
2515 			if (lobject->backing_object_offset & PAGE_MASK)
2516 				break;
2517 			nobject = lobject->backing_object;
2518 			vm_object_hold(nobject);
2519 			KKASSERT(nobject == lobject->backing_object);
2520 			pindex += lobject->backing_object_offset >> PAGE_SHIFT;
2521 			if (lobject != object) {
2522 				vm_object_lock_swap();
2523 				vm_object_drop(lobject);
2524 			}
2525 			lobject = nobject;
2526 			pprot &= ~VM_PROT_WRITE;
2527 			vm_object_chain_acquire(lobject, 0);
2528 		}
2529 
2530 		/*
2531 		 * NOTE: A non-NULL (m) will be associated with lobject if
2532 		 *	 it was found there, otherwise it is probably a
2533 		 *	 zero-fill page associated with the base object.
2534 		 *
2535 		 * Give-up if no page is available.
2536 		 */
2537 		if (m == NULL) {
2538 			if (lobject != object) {
2539 #if 0
2540 				if (object->backing_object != lobject)
2541 					vm_object_hold(object->backing_object);
2542 #endif
2543 				vm_object_chain_release_all(
2544 					object->backing_object, lobject);
2545 #if 0
2546 				if (object->backing_object != lobject)
2547 					vm_object_drop(object->backing_object);
2548 #endif
2549 				vm_object_drop(lobject);
2550 			}
2551 			break;
2552 		}
2553 
2554 		/*
2555 		 * The object must be marked dirty if we are mapping a
2556 		 * writable page.  m->object is either lobject or object,
2557 		 * both of which are still held.  Do this before we
2558 		 * potentially drop the object.
2559 		 */
2560 		if (pprot & VM_PROT_WRITE)
2561 			vm_object_set_writeable_dirty(m->object);
2562 
2563 		/*
2564 		 * Do not conditionalize on PG_RAM.  If pages are present in
2565 		 * the VM system we assume optimal caching.  If caching is
2566 		 * not optimal the I/O gravy train will be restarted when we
2567 		 * hit an unavailable page.  We do not want to try to restart
2568 		 * the gravy train now because we really don't know how much
2569 		 * of the object has been cached.  The cost for restarting
2570 		 * the gravy train should be low (since accesses will likely
2571 		 * be I/O bound anyway).
2572 		 */
2573 		if (lobject != object) {
2574 #if 0
2575 			if (object->backing_object != lobject)
2576 				vm_object_hold(object->backing_object);
2577 #endif
2578 			vm_object_chain_release_all(object->backing_object,
2579 						    lobject);
2580 #if 0
2581 			if (object->backing_object != lobject)
2582 				vm_object_drop(object->backing_object);
2583 #endif
2584 			vm_object_drop(lobject);
2585 		}
2586 
2587 		/*
2588 		 * Enter the page into the pmap if appropriate.  If we had
2589 		 * allocated the page we have to place it on a queue.  If not
2590 		 * we just have to make sure it isn't on the cache queue
2591 		 * (pages on the cache queue are not allowed to be mapped).
2592 		 */
2593 		if (allocated) {
2594 			/*
2595 			 * Page must be zerod.
2596 			 */
2597 			if ((m->flags & PG_ZERO) == 0) {
2598 				vm_page_zero_fill(m);
2599 			} else {
2600 #ifdef PMAP_DEBUG
2601 				pmap_page_assertzero(
2602 						VM_PAGE_TO_PHYS(m));
2603 #endif
2604 				vm_page_flag_clear(m, PG_ZERO);
2605 				mycpu->gd_cnt.v_ozfod++;
2606 			}
2607 			mycpu->gd_cnt.v_zfod++;
2608 			m->valid = VM_PAGE_BITS_ALL;
2609 
2610 			/*
2611 			 * Handle dirty page case
2612 			 */
2613 			if (pprot & VM_PROT_WRITE)
2614 				vm_set_nosync(m, entry);
2615 			pmap_enter(pmap, addr, m, pprot, 0, entry);
2616 			mycpu->gd_cnt.v_vm_faults++;
2617 			if (curthread->td_lwp)
2618 				++curthread->td_lwp->lwp_ru.ru_minflt;
2619 			vm_page_deactivate(m);
2620 			if (pprot & VM_PROT_WRITE) {
2621 				/*vm_object_set_writeable_dirty(m->object);*/
2622 				vm_set_nosync(m, entry);
2623 				if (fault_flags & VM_FAULT_DIRTY) {
2624 					vm_page_dirty(m);
2625 					/*XXX*/
2626 					swap_pager_unswapped(m);
2627 				}
2628 			}
2629 			vm_page_wakeup(m);
2630 		} else if (error) {
2631 			/* couldn't busy page, no wakeup */
2632 		} else if (
2633 		    ((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2634 		    (m->flags & PG_FICTITIOUS) == 0) {
2635 			/*
2636 			 * A fully valid page not undergoing soft I/O can
2637 			 * be immediately entered into the pmap.
2638 			 */
2639 			if ((m->queue - m->pc) == PQ_CACHE)
2640 				vm_page_deactivate(m);
2641 			if (pprot & VM_PROT_WRITE) {
2642 				/*vm_object_set_writeable_dirty(m->object);*/
2643 				vm_set_nosync(m, entry);
2644 				if (fault_flags & VM_FAULT_DIRTY) {
2645 					vm_page_dirty(m);
2646 					/*XXX*/
2647 					swap_pager_unswapped(m);
2648 				}
2649 			}
2650 			if (pprot & VM_PROT_WRITE)
2651 				vm_set_nosync(m, entry);
2652 			pmap_enter(pmap, addr, m, pprot, 0, entry);
2653 			mycpu->gd_cnt.v_vm_faults++;
2654 			if (curthread->td_lwp)
2655 				++curthread->td_lwp->lwp_ru.ru_minflt;
2656 			vm_page_wakeup(m);
2657 		} else {
2658 			vm_page_wakeup(m);
2659 		}
2660 	}
2661 	vm_object_chain_release(object);
2662 	vm_object_drop(object);
2663 }
2664 
2665 /*
2666  * Object can be held shared
2667  */
2668 static void
2669 vm_prefault_quick(pmap_t pmap, vm_offset_t addra,
2670 		  vm_map_entry_t entry, int prot, int fault_flags)
2671 {
2672 	struct lwp *lp;
2673 	vm_page_t m;
2674 	vm_offset_t addr;
2675 	vm_pindex_t pindex;
2676 	vm_object_t object;
2677 	int i;
2678 	int noneg;
2679 	int nopos;
2680 	int maxpages;
2681 
2682 	/*
2683 	 * Get stable max count value, disabled if set to 0
2684 	 */
2685 	maxpages = vm_prefault_pages;
2686 	cpu_ccfence();
2687 	if (maxpages <= 0)
2688 		return;
2689 
2690 	/*
2691 	 * We do not currently prefault mappings that use virtual page
2692 	 * tables.  We do not prefault foreign pmaps.
2693 	 */
2694 	if (entry->maptype == VM_MAPTYPE_VPAGETABLE)
2695 		return;
2696 	lp = curthread->td_lwp;
2697 	if (lp == NULL || (pmap != vmspace_pmap(lp->lwp_vmspace)))
2698 		return;
2699 	object = entry->object.vm_object;
2700 	if (object->backing_object != NULL)
2701 		return;
2702 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2703 
2704 	/*
2705 	 * Limit pre-fault count to 1024 pages.
2706 	 */
2707 	if (maxpages > 1024)
2708 		maxpages = 1024;
2709 
2710 	noneg = 0;
2711 	nopos = 0;
2712 	for (i = 0; i < maxpages; ++i) {
2713 		int error;
2714 
2715 		/*
2716 		 * Calculate the page to pre-fault, stopping the scan in
2717 		 * each direction separately if the limit is reached.
2718 		 */
2719 		if (i & 1) {
2720 			if (noneg)
2721 				continue;
2722 			addr = addra - ((i + 1) >> 1) * PAGE_SIZE;
2723 		} else {
2724 			if (nopos)
2725 				continue;
2726 			addr = addra + ((i + 2) >> 1) * PAGE_SIZE;
2727 		}
2728 		if (addr < entry->start) {
2729 			noneg = 1;
2730 			if (noneg && nopos)
2731 				break;
2732 			continue;
2733 		}
2734 		if (addr >= entry->end) {
2735 			nopos = 1;
2736 			if (noneg && nopos)
2737 				break;
2738 			continue;
2739 		}
2740 
2741 		/*
2742 		 * Skip pages already mapped, and stop scanning in that
2743 		 * direction.  When the scan terminates in both directions
2744 		 * we are done.
2745 		 */
2746 		if (pmap_prefault_ok(pmap, addr) == 0) {
2747 			if (i & 1)
2748 				noneg = 1;
2749 			else
2750 				nopos = 1;
2751 			if (noneg && nopos)
2752 				break;
2753 			continue;
2754 		}
2755 
2756 		/*
2757 		 * Follow the VM object chain to obtain the page to be mapped
2758 		 * into the pmap.  This version of the prefault code only
2759 		 * works with terminal objects.
2760 		 *
2761 		 * WARNING!  We cannot call swap_pager_unswapped() with a
2762 		 *	     shared token.
2763 		 */
2764 		pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
2765 
2766 		m = vm_page_lookup_busy_try(object, pindex, TRUE, &error);
2767 		if (m == NULL || error)
2768 			continue;
2769 
2770 		if (((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2771 		    (m->flags & PG_FICTITIOUS) == 0 &&
2772 		    ((m->flags & PG_SWAPPED) == 0 ||
2773 		     (prot & VM_PROT_WRITE) == 0 ||
2774 		     (fault_flags & VM_FAULT_DIRTY) == 0)) {
2775 			/*
2776 			 * A fully valid page not undergoing soft I/O can
2777 			 * be immediately entered into the pmap.
2778 			 */
2779 			if ((m->queue - m->pc) == PQ_CACHE)
2780 				vm_page_deactivate(m);
2781 			if (prot & VM_PROT_WRITE) {
2782 				vm_object_set_writeable_dirty(m->object);
2783 				vm_set_nosync(m, entry);
2784 				if (fault_flags & VM_FAULT_DIRTY) {
2785 					vm_page_dirty(m);
2786 					/*XXX*/
2787 					swap_pager_unswapped(m);
2788 				}
2789 			}
2790 			pmap_enter(pmap, addr, m, prot, 0, entry);
2791 			mycpu->gd_cnt.v_vm_faults++;
2792 			if (curthread->td_lwp)
2793 				++curthread->td_lwp->lwp_ru.ru_minflt;
2794 		}
2795 		vm_page_wakeup(m);
2796 	}
2797 }
2798