xref: /dragonfly/sys/vm/vm_glue.c (revision 40f79625)
1 /*
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	from: @(#)vm_glue.c	8.6 (Berkeley) 1/5/94
37  *
38  *
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  *
62  * $FreeBSD: src/sys/vm/vm_glue.c,v 1.94.2.4 2003/01/13 22:51:17 dillon Exp $
63  * $DragonFly: src/sys/vm/vm_glue.c,v 1.39 2006/03/15 07:58:37 dillon Exp $
64  */
65 
66 #include "opt_vm.h"
67 
68 #include <sys/param.h>
69 #include <sys/systm.h>
70 #include <sys/proc.h>
71 #include <sys/resourcevar.h>
72 #include <sys/buf.h>
73 #include <sys/shm.h>
74 #include <sys/vmmeter.h>
75 #include <sys/sysctl.h>
76 
77 #include <sys/kernel.h>
78 #include <sys/unistd.h>
79 
80 #include <machine/limits.h>
81 
82 #include <vm/vm.h>
83 #include <vm/vm_param.h>
84 #include <sys/lock.h>
85 #include <vm/pmap.h>
86 #include <vm/vm_map.h>
87 #include <vm/vm_page.h>
88 #include <vm/vm_pageout.h>
89 #include <vm/vm_kern.h>
90 #include <vm/vm_extern.h>
91 
92 #include <sys/user.h>
93 #include <vm/vm_page2.h>
94 #include <sys/thread2.h>
95 
96 /*
97  * System initialization
98  *
99  * Note: proc0 from proc.h
100  */
101 
102 static void vm_init_limits (void *);
103 SYSINIT(vm_limits, SI_SUB_VM_CONF, SI_ORDER_FIRST, vm_init_limits, &proc0)
104 
105 /*
106  * THIS MUST BE THE LAST INITIALIZATION ITEM!!!
107  *
108  * Note: run scheduling should be divorced from the vm system.
109  */
110 static void scheduler (void *);
111 SYSINIT(scheduler, SI_SUB_RUN_SCHEDULER, SI_ORDER_FIRST, scheduler, NULL)
112 
113 #ifdef INVARIANTS
114 
115 static int swap_debug = 0;
116 SYSCTL_INT(_vm, OID_AUTO, swap_debug,
117 	CTLFLAG_RW, &swap_debug, 0, "");
118 
119 #endif
120 
121 static int scheduler_notify;
122 
123 static void swapout (struct proc *);
124 
125 int
126 kernacc(c_caddr_t addr, int len, int rw)
127 {
128 	boolean_t rv;
129 	vm_offset_t saddr, eaddr;
130 	vm_prot_t prot;
131 
132 	KASSERT((rw & (~VM_PROT_ALL)) == 0,
133 	    ("illegal ``rw'' argument to kernacc (%x)\n", rw));
134 	prot = rw;
135 	saddr = trunc_page((vm_offset_t)addr);
136 	eaddr = round_page((vm_offset_t)addr + len);
137 	vm_map_lock_read(kernel_map);
138 	rv = vm_map_check_protection(kernel_map, saddr, eaddr, prot);
139 	vm_map_unlock_read(kernel_map);
140 	if (rv == FALSE && is_globaldata_space(saddr, eaddr))
141 		rv = TRUE;
142 	return (rv == TRUE);
143 }
144 
145 int
146 useracc(c_caddr_t addr, int len, int rw)
147 {
148 	boolean_t rv;
149 	vm_prot_t prot;
150 	vm_map_t map;
151 	vm_map_entry_t save_hint;
152 
153 	KASSERT((rw & (~VM_PROT_ALL)) == 0,
154 	    ("illegal ``rw'' argument to useracc (%x)\n", rw));
155 	prot = rw;
156 	/*
157 	 * XXX - check separately to disallow access to user area and user
158 	 * page tables - they are in the map.
159 	 *
160 	 * XXX - VM_MAXUSER_ADDRESS is an end address, not a max.  It was once
161 	 * only used (as an end address) in trap.c.  Use it as an end address
162 	 * here too.  This bogusness has spread.  I just fixed where it was
163 	 * used as a max in vm_mmap.c.
164 	 */
165 	if ((vm_offset_t) addr + len > /* XXX */ VM_MAXUSER_ADDRESS
166 	    || (vm_offset_t) addr + len < (vm_offset_t) addr) {
167 		return (FALSE);
168 	}
169 	map = &curproc->p_vmspace->vm_map;
170 	vm_map_lock_read(map);
171 	/*
172 	 * We save the map hint, and restore it.  Useracc appears to distort
173 	 * the map hint unnecessarily.
174 	 */
175 	save_hint = map->hint;
176 	rv = vm_map_check_protection(map,
177 	    trunc_page((vm_offset_t)addr), round_page((vm_offset_t)addr + len), prot);
178 	map->hint = save_hint;
179 	vm_map_unlock_read(map);
180 
181 	return (rv == TRUE);
182 }
183 
184 void
185 vslock(caddr_t addr, u_int len)
186 {
187 	vm_map_wire(&curproc->p_vmspace->vm_map, trunc_page((vm_offset_t)addr),
188 	    round_page((vm_offset_t)addr + len), 0);
189 }
190 
191 void
192 vsunlock(caddr_t addr, u_int len)
193 {
194 	vm_map_wire(&curproc->p_vmspace->vm_map, trunc_page((vm_offset_t)addr),
195 	    round_page((vm_offset_t)addr + len), KM_PAGEABLE);
196 }
197 
198 /*
199  * Implement fork's actions on an address space.
200  * Here we arrange for the address space to be copied or referenced,
201  * allocate a user struct (pcb and kernel stack), then call the
202  * machine-dependent layer to fill those in and make the new process
203  * ready to run.  The new process is set up so that it returns directly
204  * to user mode to avoid stack copying and relocation problems.
205  */
206 void
207 vm_fork(struct proc *p1, struct proc *p2, int flags)
208 {
209 	struct user *up;
210 	struct thread *td2;
211 
212 	if ((flags & RFPROC) == 0) {
213 		/*
214 		 * Divorce the memory, if it is shared, essentially
215 		 * this changes shared memory amongst threads, into
216 		 * COW locally.
217 		 */
218 		if ((flags & RFMEM) == 0) {
219 			if (p1->p_vmspace->vm_refcnt > 1) {
220 				vmspace_unshare(p1);
221 			}
222 		}
223 		cpu_fork(p1, p2, flags);
224 		return;
225 	}
226 
227 	if (flags & RFMEM) {
228 		p2->p_vmspace = p1->p_vmspace;
229 		p1->p_vmspace->vm_refcnt++;
230 	}
231 
232 	while (vm_page_count_severe()) {
233 		vm_wait();
234 	}
235 
236 	if ((flags & RFMEM) == 0) {
237 		p2->p_vmspace = vmspace_fork(p1->p_vmspace);
238 
239 		pmap_pinit2(vmspace_pmap(p2->p_vmspace));
240 
241 		if (p1->p_vmspace->vm_shm)
242 			shmfork(p1, p2);
243 	}
244 
245 	td2 = lwkt_alloc_thread(NULL, LWKT_THREAD_STACK, -1, 0);
246 	pmap_init_proc(p2, td2);
247 	lwkt_setpri(td2, TDPRI_KERN_USER);
248 	lwkt_set_comm(td2, "%s", p1->p_comm);
249 
250 	up = p2->p_addr;
251 
252 	/*
253 	 * p_stats currently points at fields in the user struct
254 	 * but not at &u, instead at p_addr. Copy parts of
255 	 * p_stats; zero the rest of p_stats (statistics).
256 	 *
257 	 * If procsig->ps_refcnt is 1 and p2->p_sigacts is NULL we dont' need
258 	 * to share sigacts, so we use the up->u_sigacts.
259 	 */
260 	p2->p_stats = &up->u_stats;
261 	if (p2->p_sigacts == NULL) {
262 		if (p2->p_procsig->ps_refcnt != 1)
263 			printf ("PID:%d NULL sigacts with refcnt not 1!\n",p2->p_pid);
264 		p2->p_sigacts = &up->u_sigacts;
265 		up->u_sigacts = *p1->p_sigacts;
266 	}
267 
268 	bzero(&up->u_stats, sizeof(struct pstats));
269 
270 	/*
271 	 * cpu_fork will copy and update the pcb, set up the kernel stack,
272 	 * and make the child ready to run.
273 	 */
274 	cpu_fork(p1, p2, flags);
275 }
276 
277 /*
278  * Called after process has been wait(2)'ed apon and is being reaped.
279  * The idea is to reclaim resources that we could not reclaim while
280  * the process was still executing.
281  */
282 void
283 vm_waitproc(struct proc *p)
284 {
285 	p->p_stats = NULL;
286 	cpu_proc_wait(p);
287 	vmspace_exitfree(p);	/* and clean-out the vmspace */
288 }
289 
290 /*
291  * Set default limits for VM system.
292  * Called for proc 0, and then inherited by all others.
293  *
294  * XXX should probably act directly on proc0.
295  */
296 static void
297 vm_init_limits(void *udata)
298 {
299 	struct proc *p = udata;
300 	int rss_limit;
301 
302 	/*
303 	 * Set up the initial limits on process VM. Set the maximum resident
304 	 * set size to be half of (reasonably) available memory.  Since this
305 	 * is a soft limit, it comes into effect only when the system is out
306 	 * of memory - half of main memory helps to favor smaller processes,
307 	 * and reduces thrashing of the object cache.
308 	 */
309 	p->p_rlimit[RLIMIT_STACK].rlim_cur = dflssiz;
310 	p->p_rlimit[RLIMIT_STACK].rlim_max = maxssiz;
311 	p->p_rlimit[RLIMIT_DATA].rlim_cur = dfldsiz;
312 	p->p_rlimit[RLIMIT_DATA].rlim_max = maxdsiz;
313 	/* limit the limit to no less than 2MB */
314 	rss_limit = max(vmstats.v_free_count, 512);
315 	p->p_rlimit[RLIMIT_RSS].rlim_cur = ptoa(rss_limit);
316 	p->p_rlimit[RLIMIT_RSS].rlim_max = RLIM_INFINITY;
317 }
318 
319 /*
320  * Faultin the specified process.  Note that the process can be in any
321  * state.  Just clear P_SWAPPEDOUT and call wakeup in case the process is
322  * sleeping.
323  */
324 void
325 faultin(struct proc *p)
326 {
327 	if (p->p_flag & P_SWAPPEDOUT) {
328 		/*
329 		 * The process is waiting in the kernel to return to user
330 		 * mode but cannot until P_SWAPPEDOUT gets cleared.
331 		 */
332 		crit_enter();
333 		p->p_flag &= ~(P_SWAPPEDOUT | P_SWAPWAIT);
334 #ifdef INVARIANTS
335 		if (swap_debug)
336 			printf("swapping in %d (%s)\n", p->p_pid, p->p_comm);
337 #endif
338 		wakeup(p);
339 
340 		crit_exit();
341 	}
342 }
343 
344 /*
345  * Kernel initialization eventually falls through to this function,
346  * which is process 0.
347  *
348  * This swapin algorithm attempts to swap-in processes only if there
349  * is enough space for them.  Of course, if a process waits for a long
350  * time, it will be swapped in anyway.
351  */
352 
353 /* ARGSUSED*/
354 static void
355 scheduler(void *dummy)
356 {
357 	struct proc *p;
358 	struct proc *pp;
359 	int pri;
360 	int ppri;
361 	segsz_t pgs;
362 
363 	KKASSERT(!IN_CRITICAL_SECT(curthread));
364 loop:
365 	scheduler_notify = 0;
366 	/*
367 	 * Don't try to swap anything in if we are low on memory.
368 	 */
369 	if (vm_page_count_min()) {
370 		vm_wait();
371 		goto loop;
372 	}
373 
374 	/*
375 	 * Look for a good candidate to wake up
376 	 */
377 	pp = NULL;
378 	ppri = INT_MIN;
379 	for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
380 		if (p->p_flag & P_SWAPWAIT) {
381 			pri = p->p_swtime + p->p_slptime - p->p_nice * 8;
382 
383 			/*
384 			 * The more pages paged out while we were swapped,
385 			 * the more work we have to do to get up and running
386 			 * again and the lower our wakeup priority.
387 			 *
388 			 * Each second of sleep time is worth ~1MB
389 			 */
390 			pgs = vmspace_resident_count(p->p_vmspace);
391 			if (pgs < p->p_vmspace->vm_swrss) {
392 				pri -= (p->p_vmspace->vm_swrss - pgs) /
393 					(1024 * 1024 / PAGE_SIZE);
394 			}
395 
396 			/*
397 			 * if this process is higher priority and there is
398 			 * enough space, then select this process instead of
399 			 * the previous selection.
400 			 */
401 			if (pri > ppri) {
402 				pp = p;
403 				ppri = pri;
404 			}
405 		}
406 	}
407 
408 	/*
409 	 * Nothing to do, back to sleep for at least 1/10 of a second.  If
410 	 * we are woken up, immediately process the next request.  If
411 	 * multiple requests have built up the first is processed
412 	 * immediately and the rest are staggered.
413 	 */
414 	if ((p = pp) == NULL) {
415 		tsleep(&proc0, 0, "nowork", hz / 10);
416 		if (scheduler_notify == 0)
417 			tsleep(&scheduler_notify, 0, "nowork", 0);
418 		goto loop;
419 	}
420 
421 	/*
422 	 * Fault the selected process in, then wait for a short period of
423 	 * time and loop up.
424 	 *
425 	 * XXX we need a heuristic to get a measure of system stress and
426 	 * then adjust our stagger wakeup delay accordingly.
427 	 */
428 	faultin(p);
429 	p->p_swtime = 0;
430 	tsleep(&proc0, 0, "swapin", hz / 10);
431 	goto loop;
432 }
433 
434 void
435 swapin_request(void)
436 {
437 	if (scheduler_notify == 0) {
438 		scheduler_notify = 1;
439 		wakeup(&scheduler_notify);
440 	}
441 }
442 
443 #ifndef NO_SWAPPING
444 
445 #define	swappable(p) \
446 	(((p)->p_lock == 0) && \
447 	((p)->p_flag & (P_TRACED|P_SYSTEM|P_SWAPPEDOUT|P_WEXIT)) == 0)
448 
449 
450 /*
451  * Swap_idle_threshold1 is the guaranteed swapped in time for a process
452  */
453 static int swap_idle_threshold1 = 15;
454 SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold1,
455 	CTLFLAG_RW, &swap_idle_threshold1, 0, "");
456 
457 /*
458  * Swap_idle_threshold2 is the time that a process can be idle before
459  * it will be swapped out, if idle swapping is enabled.  Default is
460  * one minute.
461  */
462 static int swap_idle_threshold2 = 60;
463 SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold2,
464 	CTLFLAG_RW, &swap_idle_threshold2, 0, "");
465 
466 /*
467  * Swapout is driven by the pageout daemon.  Very simple, we find eligible
468  * procs and mark them as being swapped out.  This will cause the kernel
469  * to prefer to pageout those proc's pages first and the procs in question
470  * will not return to user mode until the swapper tells them they can.
471  *
472  * If any procs have been sleeping/stopped for at least maxslp seconds,
473  * they are swapped.  Else, we swap the longest-sleeping or stopped process,
474  * if any, otherwise the longest-resident process.
475  */
476 void
477 swapout_procs(int action)
478 {
479 	struct proc *p;
480 	struct proc *outp, *outp2;
481 	int outpri, outpri2;
482 
483 	outp = outp2 = NULL;
484 	outpri = outpri2 = INT_MIN;
485 retry:
486 	for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
487 		struct vmspace *vm;
488 		if (!swappable(p))
489 			continue;
490 
491 		vm = p->p_vmspace;
492 
493 		if (p->p_stat == SSLEEP || p->p_stat == SRUN) {
494 			/*
495 			 * do not swap out a realtime process
496 			 */
497 			if (RTP_PRIO_IS_REALTIME(p->p_lwp.lwp_rtprio.type))
498 				continue;
499 
500 			/*
501 			 * Guarentee swap_idle_threshold time in memory
502 			 */
503 			if (p->p_slptime < swap_idle_threshold1)
504 				continue;
505 
506 			/*
507 			 * If the system is under memory stress, or if we
508 			 * are swapping idle processes >= swap_idle_threshold2,
509 			 * then swap the process out.
510 			 */
511 			if (((action & VM_SWAP_NORMAL) == 0) &&
512 			    (((action & VM_SWAP_IDLE) == 0) ||
513 			     (p->p_slptime < swap_idle_threshold2))) {
514 				continue;
515 			}
516 
517 			++vm->vm_refcnt;
518 
519 			/*
520 			 * If the process has been asleep for awhile, swap
521 			 * it out.
522 			 */
523 			if ((action & VM_SWAP_NORMAL) ||
524 			    ((action & VM_SWAP_IDLE) &&
525 			     (p->p_slptime > swap_idle_threshold2))) {
526 				swapout(p);
527 				vmspace_free(vm);
528 				goto retry;
529 			}
530 
531 			/*
532 			 * cleanup our reference
533 			 */
534 			vmspace_free(vm);
535 		}
536 	}
537 }
538 
539 static void
540 swapout(struct proc *p)
541 {
542 #ifdef INVARIANTS
543 	if (swap_debug)
544 		printf("swapping out %d (%s)\n", p->p_pid, p->p_comm);
545 #endif
546 	++p->p_stats->p_ru.ru_nswap;
547 	/*
548 	 * remember the process resident count
549 	 */
550 	p->p_vmspace->vm_swrss = vmspace_resident_count(p->p_vmspace);
551 	p->p_flag |= P_SWAPPEDOUT;
552 	p->p_swtime = 0;
553 }
554 
555 #endif /* !NO_SWAPPING */
556 
557