xref: /dragonfly/sys/vm/vm_glue.c (revision 47ec0953)
1 /*
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	from: @(#)vm_glue.c	8.6 (Berkeley) 1/5/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Permission to use, copy, modify and distribute this software and
39  * its documentation is hereby granted, provided that both the copyright
40  * notice and this permission notice appear in all copies of the
41  * software, derivative works or modified versions, and any portions
42  * thereof, and that both notices appear in supporting documentation.
43  *
44  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
45  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
46  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
47  *
48  * Carnegie Mellon requests users of this software to return to
49  *
50  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
51  *  School of Computer Science
52  *  Carnegie Mellon University
53  *  Pittsburgh PA 15213-3890
54  *
55  * any improvements or extensions that they make and grant Carnegie the
56  * rights to redistribute these changes.
57  *
58  * $FreeBSD: src/sys/vm/vm_glue.c,v 1.94.2.4 2003/01/13 22:51:17 dillon Exp $
59  */
60 
61 #include "opt_vm.h"
62 
63 #include <sys/param.h>
64 #include <sys/systm.h>
65 #include <sys/proc.h>
66 #include <sys/resourcevar.h>
67 #include <sys/buf.h>
68 #include <sys/shm.h>
69 #include <sys/vmmeter.h>
70 #include <sys/sysctl.h>
71 
72 #include <sys/kernel.h>
73 #include <sys/unistd.h>
74 
75 #include <machine/limits.h>
76 #include <machine/vmm.h>
77 
78 #include <vm/vm.h>
79 #include <vm/vm_param.h>
80 #include <sys/lock.h>
81 #include <vm/pmap.h>
82 #include <vm/vm_map.h>
83 #include <vm/vm_page.h>
84 #include <vm/vm_pageout.h>
85 #include <vm/vm_kern.h>
86 #include <vm/vm_extern.h>
87 
88 #include <sys/user.h>
89 #include <vm/vm_page2.h>
90 
91 /*
92  * THIS MUST BE THE LAST INITIALIZATION ITEM!!!
93  *
94  * Note: run scheduling should be divorced from the vm system.
95  */
96 static void scheduler (void *);
97 SYSINIT(scheduler, SI_SUB_RUN_SCHEDULER, SI_ORDER_FIRST, scheduler, NULL);
98 
99 #ifdef INVARIANTS
100 
101 static int swap_debug = 0;
102 SYSCTL_INT(_vm, OID_AUTO, swap_debug,
103 	CTLFLAG_RW, &swap_debug, 0, "");
104 
105 #endif
106 
107 static int scheduler_notify;
108 
109 static void swapout (struct proc *);
110 
111 /*
112  * No requirements.
113  */
114 int
115 kernacc(c_caddr_t addr, int len, int rw)
116 {
117 	boolean_t rv;
118 	vm_offset_t saddr, eaddr;
119 	vm_prot_t prot;
120 
121 	KASSERT((rw & (~VM_PROT_ALL)) == 0,
122 	    ("illegal ``rw'' argument to kernacc (%x)", rw));
123 
124 	/*
125 	 * The globaldata space is not part of the kernel_map proper,
126 	 * check access separately.
127 	 */
128 	if (is_globaldata_space((vm_offset_t)addr, (vm_offset_t)(addr + len)))
129 		return (TRUE);
130 
131 	/*
132 	 * Nominal kernel memory access - check access via kernel_map.
133 	 */
134 	if ((vm_offset_t)addr + len > vm_map_max(&kernel_map) ||
135 	    (vm_offset_t)addr + len < (vm_offset_t)addr) {
136 		return (FALSE);
137 	}
138 	prot = rw;
139 	saddr = trunc_page((vm_offset_t)addr);
140 	eaddr = round_page((vm_offset_t)addr + len);
141 	rv = vm_map_check_protection(&kernel_map, saddr, eaddr, prot, FALSE);
142 
143 	return (rv == TRUE);
144 }
145 
146 /*
147  * No requirements.
148  */
149 int
150 useracc(c_caddr_t addr, int len, int rw)
151 {
152 	boolean_t rv;
153 	vm_prot_t prot;
154 	vm_map_t map;
155 	vm_offset_t wrap;
156 	vm_offset_t gpa;
157 
158 	KASSERT((rw & (~VM_PROT_ALL)) == 0,
159 	    ("illegal ``rw'' argument to useracc (%x)", rw));
160 	prot = rw;
161 
162 	if (curthread->td_vmm) {
163 		if (vmm_vm_get_gpa(curproc, (register_t *)&gpa, (register_t) addr))
164 			panic("%s: could not get GPA\n", __func__);
165 		addr = (c_caddr_t) gpa;
166 	}
167 
168 	/*
169 	 * XXX - check separately to disallow access to user area and user
170 	 * page tables - they are in the map.
171 	 */
172 	wrap = (vm_offset_t)addr + len;
173 	if (wrap > VM_MAX_USER_ADDRESS || wrap < (vm_offset_t)addr) {
174 		return (FALSE);
175 	}
176 	map = &curproc->p_vmspace->vm_map;
177 	vm_map_lock_read(map);
178 
179 	rv = vm_map_check_protection(map, trunc_page((vm_offset_t)addr),
180 				     round_page(wrap), prot, TRUE);
181 	vm_map_unlock_read(map);
182 
183 	return (rv == TRUE);
184 }
185 
186 /*
187  * No requirements.
188  */
189 void
190 vslock(caddr_t addr, u_int len)
191 {
192 	if (len) {
193 		vm_map_wire(&curproc->p_vmspace->vm_map,
194 			    trunc_page((vm_offset_t)addr),
195 			    round_page((vm_offset_t)addr + len), 0);
196 	}
197 }
198 
199 /*
200  * No requirements.
201  */
202 void
203 vsunlock(caddr_t addr, u_int len)
204 {
205 	if (len) {
206 		vm_map_wire(&curproc->p_vmspace->vm_map,
207 			    trunc_page((vm_offset_t)addr),
208 			    round_page((vm_offset_t)addr + len),
209 			    KM_PAGEABLE);
210 	}
211 }
212 
213 /*
214  * Implement fork's actions on an address space.
215  * Here we arrange for the address space to be copied or referenced,
216  * allocate a user struct (pcb and kernel stack), then call the
217  * machine-dependent layer to fill those in and make the new process
218  * ready to run.  The new process is set up so that it returns directly
219  * to user mode to avoid stack copying and relocation problems.
220  *
221  * No requirements.
222  */
223 void
224 vm_fork(struct proc *p1, struct proc *p2, int flags)
225 {
226 	if ((flags & RFPROC) == 0) {
227 		/*
228 		 * Divorce the memory, if it is shared, essentially
229 		 * this changes shared memory amongst threads, into
230 		 * COW locally.
231 		 */
232 		if ((flags & RFMEM) == 0) {
233 			if (vmspace_getrefs(p1->p_vmspace) > 1) {
234 				vmspace_unshare(p1);
235 			}
236 		}
237 		cpu_fork(ONLY_LWP_IN_PROC(p1), NULL, flags);
238 		return;
239 	}
240 
241 	if (flags & RFMEM) {
242 		vmspace_ref(p1->p_vmspace);
243 		p2->p_vmspace = p1->p_vmspace;
244 	}
245 
246 	while (vm_page_count_severe()) {
247 		vm_wait(0);
248 	}
249 
250 	if ((flags & RFMEM) == 0) {
251 		p2->p_vmspace = vmspace_fork(p1->p_vmspace);
252 
253 		pmap_pinit2(vmspace_pmap(p2->p_vmspace));
254 
255 		if (p1->p_vmspace->vm_shm)
256 			shmfork(p1, p2);
257 	}
258 
259 	pmap_init_proc(p2);
260 }
261 
262 /*
263  * Set default limits for VM system.  Call during proc0's initialization.
264  *
265  * Called from the low level boot code only.
266  */
267 void
268 vm_init_limits(struct proc *p)
269 {
270 	int rss_limit;
271 
272 	/*
273 	 * Set up the initial limits on process VM. Set the maximum resident
274 	 * set size to be half of (reasonably) available memory.  Since this
275 	 * is a soft limit, it comes into effect only when the system is out
276 	 * of memory - half of main memory helps to favor smaller processes,
277 	 * and reduces thrashing of the object cache.
278 	 */
279 	p->p_rlimit[RLIMIT_STACK].rlim_cur = dflssiz;
280 	p->p_rlimit[RLIMIT_STACK].rlim_max = maxssiz;
281 	p->p_rlimit[RLIMIT_DATA].rlim_cur = dfldsiz;
282 	p->p_rlimit[RLIMIT_DATA].rlim_max = maxdsiz;
283 	/* limit the limit to no less than 2MB */
284 	rss_limit = max(vmstats.v_free_count, 512);
285 	p->p_rlimit[RLIMIT_RSS].rlim_cur = ptoa(rss_limit);
286 	p->p_rlimit[RLIMIT_RSS].rlim_max = RLIM_INFINITY;
287 }
288 
289 /*
290  * Faultin the specified process.  Note that the process can be in any
291  * state.  Just clear P_SWAPPEDOUT and call wakeup in case the process is
292  * sleeping.
293  *
294  * No requirements.
295  */
296 void
297 faultin(struct proc *p)
298 {
299 	if (p->p_flags & P_SWAPPEDOUT) {
300 		/*
301 		 * The process is waiting in the kernel to return to user
302 		 * mode but cannot until P_SWAPPEDOUT gets cleared.
303 		 */
304 		lwkt_gettoken(&p->p_token);
305 		p->p_flags &= ~(P_SWAPPEDOUT | P_SWAPWAIT);
306 #ifdef INVARIANTS
307 		if (swap_debug)
308 			kprintf("swapping in %d (%s)\n", p->p_pid, p->p_comm);
309 #endif
310 		wakeup(p);
311 		lwkt_reltoken(&p->p_token);
312 	}
313 }
314 
315 /*
316  * Kernel initialization eventually falls through to this function,
317  * which is process 0.
318  *
319  * This swapin algorithm attempts to swap-in processes only if there
320  * is enough space for them.  Of course, if a process waits for a long
321  * time, it will be swapped in anyway.
322  */
323 struct scheduler_info {
324 	struct proc *pp;
325 	int ppri;
326 };
327 
328 static int scheduler_callback(struct proc *p, void *data);
329 
330 static void
331 scheduler(void *dummy)
332 {
333 	struct scheduler_info info;
334 	struct proc *p;
335 
336 	KKASSERT(!IN_CRITICAL_SECT(curthread));
337 loop:
338 	scheduler_notify = 0;
339 	/*
340 	 * Don't try to swap anything in if we are low on memory.
341 	 */
342 	if (vm_page_count_severe()) {
343 		vm_wait(0);
344 		goto loop;
345 	}
346 
347 	/*
348 	 * Look for a good candidate to wake up
349 	 *
350 	 * XXX we should make the schedule thread pcpu and then use a
351 	 * segmented allproc scan.
352 	 */
353 	info.pp = NULL;
354 	info.ppri = INT_MIN;
355 	allproc_scan(scheduler_callback, &info, 0);
356 
357 	/*
358 	 * Nothing to do, back to sleep for at least 1/10 of a second.  If
359 	 * we are woken up, immediately process the next request.  If
360 	 * multiple requests have built up the first is processed
361 	 * immediately and the rest are staggered.
362 	 */
363 	if ((p = info.pp) == NULL) {
364 		tsleep(&proc0, 0, "nowork", hz / 10);
365 		if (scheduler_notify == 0)
366 			tsleep(&scheduler_notify, 0, "nowork", 0);
367 		goto loop;
368 	}
369 
370 	/*
371 	 * Fault the selected process in, then wait for a short period of
372 	 * time and loop up.
373 	 *
374 	 * XXX we need a heuristic to get a measure of system stress and
375 	 * then adjust our stagger wakeup delay accordingly.
376 	 */
377 	lwkt_gettoken(&p->p_token);
378 	faultin(p);
379 	p->p_swtime = 0;
380 	lwkt_reltoken(&p->p_token);
381 	PRELE(p);
382 	tsleep(&proc0, 0, "swapin", hz / 10);
383 	goto loop;
384 }
385 
386 /*
387  * Process only has its hold count bumped, we need the token
388  * to safely scan the LWPs
389  */
390 static int
391 scheduler_callback(struct proc *p, void *data)
392 {
393 	struct scheduler_info *info = data;
394 	struct vmspace *vm;
395 	struct lwp *lp;
396 	segsz_t pgs;
397 	int pri;
398 
399 	/*
400 	 * We only care about processes in swap-wait.  Interlock test with
401 	 * token if the flag is found set.
402 	 */
403 	if ((p->p_flags & P_SWAPWAIT) == 0)
404 		return 0;
405 	lwkt_gettoken_shared(&p->p_token);
406 	if ((p->p_flags & P_SWAPWAIT) == 0) {
407 		lwkt_reltoken(&p->p_token);
408 		return 0;
409 	}
410 
411 	/*
412 	 * Calculate priority for swap-in
413 	 */
414 	pri = 0;
415 	FOREACH_LWP_IN_PROC(lp, p) {
416 		/* XXX lwp might need a different metric */
417 		pri += lp->lwp_slptime;
418 	}
419 	pri += p->p_swtime - p->p_nice * 8;
420 
421 	/*
422 	 * The more pages paged out while we were swapped,
423 	 * the more work we have to do to get up and running
424 	 * again and the lower our wakeup priority.
425 	 *
426 	 * Each second of sleep time is worth ~1MB
427 	 */
428 	if ((vm = p->p_vmspace) != NULL) {
429 		vmspace_hold(vm);
430 		pgs = vmspace_resident_count(vm);
431 		if (pgs < vm->vm_swrss) {
432 			pri -= (vm->vm_swrss - pgs) /
433 			       (1024 * 1024 / PAGE_SIZE);
434 		}
435 		vmspace_drop(vm);
436 	}
437 	lwkt_reltoken(&p->p_token);
438 
439 	/*
440 	 * If this process is higher priority and there is
441 	 * enough space, then select this process instead of
442 	 * the previous selection.
443 	 */
444 	if (pri > info->ppri) {
445 		if (info->pp)
446 			PRELE(info->pp);
447 		PHOLD(p);
448 		info->pp = p;
449 		info->ppri = pri;
450 	}
451 	return(0);
452 }
453 
454 /*
455  * SMP races ok.
456  * No requirements.
457  */
458 void
459 swapin_request(void)
460 {
461 	if (scheduler_notify == 0) {
462 		scheduler_notify = 1;
463 		wakeup(&scheduler_notify);
464 	}
465 }
466 
467 #ifndef NO_SWAPPING
468 
469 #define	swappable(p) \
470 	(((p)->p_lock == 0) && \
471 	((p)->p_flags & (P_TRACED|P_SYSTEM|P_SWAPPEDOUT|P_WEXIT)) == 0)
472 
473 
474 /*
475  * Swap_idle_threshold1 is the guaranteed swapped in time for a process
476  */
477 static int swap_idle_threshold1 = 15;
478 SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold1,
479 	CTLFLAG_RW, &swap_idle_threshold1, 0, "Guaranteed process resident time (sec)");
480 
481 /*
482  * Swap_idle_threshold2 is the time that a process can be idle before
483  * it will be swapped out, if idle swapping is enabled.  Default is
484  * one minute.
485  */
486 static int swap_idle_threshold2 = 60;
487 SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold2,
488 	CTLFLAG_RW, &swap_idle_threshold2, 0, "Time (sec) a process can idle before being swapped");
489 
490 /*
491  * Swapout is driven by the pageout daemon.  Very simple, we find eligible
492  * procs and mark them as being swapped out.  This will cause the kernel
493  * to prefer to pageout those proc's pages first and the procs in question
494  * will not return to user mode until the swapper tells them they can.
495  *
496  * If any procs have been sleeping/stopped for at least maxslp seconds,
497  * they are swapped.  Else, we swap the longest-sleeping or stopped process,
498  * if any, otherwise the longest-resident process.
499  */
500 
501 static int swapout_procs_callback(struct proc *p, void *data);
502 
503 /*
504  * No requirements.
505  */
506 void
507 swapout_procs(int action)
508 {
509 	allproc_scan(swapout_procs_callback, &action, 0);
510 }
511 
512 static int
513 swapout_procs_callback(struct proc *p, void *data)
514 {
515 	struct lwp *lp;
516 	int action = *(int *)data;
517 	int minslp = -1;
518 
519 	if (!swappable(p))
520 		return(0);
521 
522 	lwkt_gettoken(&p->p_token);
523 
524 	/*
525 	 * We only consider active processes.
526 	 */
527 	if (p->p_stat != SACTIVE && p->p_stat != SSTOP) {
528 		lwkt_reltoken(&p->p_token);
529 		return(0);
530 	}
531 
532 	FOREACH_LWP_IN_PROC(lp, p) {
533 		/*
534 		 * do not swap out a realtime process
535 		 */
536 		if (RTP_PRIO_IS_REALTIME(lp->lwp_rtprio.type)) {
537 			lwkt_reltoken(&p->p_token);
538 			return(0);
539 		}
540 
541 		/*
542 		 * Guarentee swap_idle_threshold time in memory
543 		 */
544 		if (lp->lwp_slptime < swap_idle_threshold1) {
545 			lwkt_reltoken(&p->p_token);
546 			return(0);
547 		}
548 
549 		/*
550 		 * If the system is under memory stress, or if we
551 		 * are swapping idle processes >= swap_idle_threshold2,
552 		 * then swap the process out.
553 		 */
554 		if (((action & VM_SWAP_NORMAL) == 0) &&
555 		    (((action & VM_SWAP_IDLE) == 0) ||
556 		     (lp->lwp_slptime < swap_idle_threshold2))) {
557 			lwkt_reltoken(&p->p_token);
558 			return(0);
559 		}
560 
561 		if (minslp == -1 || lp->lwp_slptime < minslp)
562 			minslp = lp->lwp_slptime;
563 	}
564 
565 	/*
566 	 * If the process has been asleep for awhile, swap
567 	 * it out.
568 	 */
569 	if ((action & VM_SWAP_NORMAL) ||
570 	    ((action & VM_SWAP_IDLE) &&
571 	     (minslp > swap_idle_threshold2))) {
572 		swapout(p);
573 	}
574 
575 	/*
576 	 * cleanup our reference
577 	 */
578 	lwkt_reltoken(&p->p_token);
579 
580 	return(0);
581 }
582 
583 /*
584  * The caller must hold p->p_token
585  */
586 static void
587 swapout(struct proc *p)
588 {
589 #ifdef INVARIANTS
590 	if (swap_debug)
591 		kprintf("swapping out %d (%s)\n", p->p_pid, p->p_comm);
592 #endif
593 	++p->p_ru.ru_nswap;
594 
595 	/*
596 	 * remember the process resident count
597 	 */
598 	p->p_vmspace->vm_swrss = vmspace_resident_count(p->p_vmspace);
599 	p->p_flags |= P_SWAPPEDOUT;
600 	p->p_swtime = 0;
601 }
602 
603 #endif /* !NO_SWAPPING */
604 
605