xref: /dragonfly/sys/vm/vm_glue.c (revision 5a894b1b)
1 /*
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	from: @(#)vm_glue.c	8.6 (Berkeley) 1/5/94
37  *
38  *
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  *
62  * $FreeBSD: src/sys/vm/vm_glue.c,v 1.94.2.4 2003/01/13 22:51:17 dillon Exp $
63  * $DragonFly: src/sys/vm/vm_glue.c,v 1.42 2006/06/27 16:38:42 dillon Exp $
64  */
65 
66 #include "opt_vm.h"
67 
68 #include <sys/param.h>
69 #include <sys/systm.h>
70 #include <sys/proc.h>
71 #include <sys/resourcevar.h>
72 #include <sys/buf.h>
73 #include <sys/shm.h>
74 #include <sys/vmmeter.h>
75 #include <sys/sysctl.h>
76 
77 #include <sys/kernel.h>
78 #include <sys/unistd.h>
79 
80 #include <machine/limits.h>
81 
82 #include <vm/vm.h>
83 #include <vm/vm_param.h>
84 #include <sys/lock.h>
85 #include <vm/pmap.h>
86 #include <vm/vm_map.h>
87 #include <vm/vm_page.h>
88 #include <vm/vm_pageout.h>
89 #include <vm/vm_kern.h>
90 #include <vm/vm_extern.h>
91 
92 #include <sys/user.h>
93 #include <vm/vm_page2.h>
94 #include <sys/thread2.h>
95 
96 /*
97  * System initialization
98  *
99  * Note: proc0 from proc.h
100  */
101 
102 static void vm_init_limits (void *);
103 SYSINIT(vm_limits, SI_SUB_VM_CONF, SI_ORDER_FIRST, vm_init_limits, &proc0)
104 
105 /*
106  * THIS MUST BE THE LAST INITIALIZATION ITEM!!!
107  *
108  * Note: run scheduling should be divorced from the vm system.
109  */
110 static void scheduler (void *);
111 SYSINIT(scheduler, SI_SUB_RUN_SCHEDULER, SI_ORDER_FIRST, scheduler, NULL)
112 
113 #ifdef INVARIANTS
114 
115 static int swap_debug = 0;
116 SYSCTL_INT(_vm, OID_AUTO, swap_debug,
117 	CTLFLAG_RW, &swap_debug, 0, "");
118 
119 #endif
120 
121 static int scheduler_notify;
122 
123 static void swapout (struct proc *);
124 
125 int
126 kernacc(c_caddr_t addr, int len, int rw)
127 {
128 	boolean_t rv;
129 	vm_offset_t saddr, eaddr;
130 	vm_prot_t prot;
131 
132 	KASSERT((rw & (~VM_PROT_ALL)) == 0,
133 	    ("illegal ``rw'' argument to kernacc (%x)\n", rw));
134 
135 	/*
136 	 * The globaldata space is not part of the kernel_map proper,
137 	 * check access separately.
138 	 */
139 	if (is_globaldata_space((vm_offset_t)addr, (vm_offset_t)(addr + len)))
140 		return (TRUE);
141 
142 	/*
143 	 * Nominal kernel memory access - check access via kernel_map.
144 	 */
145 	if ((vm_offset_t)addr + len > kernel_map->max_offset ||
146 	    (vm_offset_t)addr + len < (vm_offset_t)addr) {
147 		return (FALSE);
148 	}
149 	prot = rw;
150 	saddr = trunc_page((vm_offset_t)addr);
151 	eaddr = round_page((vm_offset_t)addr + len);
152 	vm_map_lock_read(kernel_map);
153 	rv = vm_map_check_protection(kernel_map, saddr, eaddr, prot);
154 	vm_map_unlock_read(kernel_map);
155 	return (rv == TRUE);
156 }
157 
158 int
159 useracc(c_caddr_t addr, int len, int rw)
160 {
161 	boolean_t rv;
162 	vm_prot_t prot;
163 	vm_map_t map;
164 	vm_map_entry_t save_hint;
165 
166 	KASSERT((rw & (~VM_PROT_ALL)) == 0,
167 	    ("illegal ``rw'' argument to useracc (%x)\n", rw));
168 	prot = rw;
169 	/*
170 	 * XXX - check separately to disallow access to user area and user
171 	 * page tables - they are in the map.
172 	 *
173 	 * XXX - VM_MAXUSER_ADDRESS is an end address, not a max.  It was once
174 	 * only used (as an end address) in trap.c.  Use it as an end address
175 	 * here too.  This bogusness has spread.  I just fixed where it was
176 	 * used as a max in vm_mmap.c.
177 	 */
178 	if ((vm_offset_t) addr + len > /* XXX */ VM_MAXUSER_ADDRESS
179 	    || (vm_offset_t) addr + len < (vm_offset_t) addr) {
180 		return (FALSE);
181 	}
182 	map = &curproc->p_vmspace->vm_map;
183 	vm_map_lock_read(map);
184 	/*
185 	 * We save the map hint, and restore it.  Useracc appears to distort
186 	 * the map hint unnecessarily.
187 	 */
188 	save_hint = map->hint;
189 	rv = vm_map_check_protection(map,
190 	    trunc_page((vm_offset_t)addr), round_page((vm_offset_t)addr + len), prot);
191 	map->hint = save_hint;
192 	vm_map_unlock_read(map);
193 
194 	return (rv == TRUE);
195 }
196 
197 void
198 vslock(caddr_t addr, u_int len)
199 {
200 	vm_map_wire(&curproc->p_vmspace->vm_map, trunc_page((vm_offset_t)addr),
201 	    round_page((vm_offset_t)addr + len), 0);
202 }
203 
204 void
205 vsunlock(caddr_t addr, u_int len)
206 {
207 	vm_map_wire(&curproc->p_vmspace->vm_map, trunc_page((vm_offset_t)addr),
208 	    round_page((vm_offset_t)addr + len), KM_PAGEABLE);
209 }
210 
211 /*
212  * Implement fork's actions on an address space.
213  * Here we arrange for the address space to be copied or referenced,
214  * allocate a user struct (pcb and kernel stack), then call the
215  * machine-dependent layer to fill those in and make the new process
216  * ready to run.  The new process is set up so that it returns directly
217  * to user mode to avoid stack copying and relocation problems.
218  */
219 void
220 vm_fork(struct proc *p1, struct proc *p2, int flags)
221 {
222 	struct user *up;
223 	struct thread *td2;
224 
225 	if ((flags & RFPROC) == 0) {
226 		/*
227 		 * Divorce the memory, if it is shared, essentially
228 		 * this changes shared memory amongst threads, into
229 		 * COW locally.
230 		 */
231 		if ((flags & RFMEM) == 0) {
232 			if (p1->p_vmspace->vm_refcnt > 1) {
233 				vmspace_unshare(p1);
234 			}
235 		}
236 		cpu_fork(p1, p2, flags);
237 		return;
238 	}
239 
240 	if (flags & RFMEM) {
241 		p2->p_vmspace = p1->p_vmspace;
242 		p1->p_vmspace->vm_refcnt++;
243 	}
244 
245 	while (vm_page_count_severe()) {
246 		vm_wait();
247 	}
248 
249 	if ((flags & RFMEM) == 0) {
250 		p2->p_vmspace = vmspace_fork(p1->p_vmspace);
251 
252 		pmap_pinit2(vmspace_pmap(p2->p_vmspace));
253 
254 		if (p1->p_vmspace->vm_shm)
255 			shmfork(p1, p2);
256 	}
257 
258 	td2 = lwkt_alloc_thread(NULL, LWKT_THREAD_STACK, -1, 0);
259 	pmap_init_proc(p2, td2);
260 	lwkt_setpri(td2, TDPRI_KERN_USER);
261 	lwkt_set_comm(td2, "%s", p1->p_comm);
262 
263 	up = p2->p_addr;
264 
265 	/*
266 	 * p_stats currently points at fields in the user struct
267 	 * but not at &u, instead at p_addr. Copy parts of
268 	 * p_stats; zero the rest of p_stats (statistics).
269 	 *
270 	 * If procsig->ps_refcnt is 1 and p2->p_sigacts is NULL we dont' need
271 	 * to share sigacts, so we use the up->u_sigacts.
272 	 */
273 	p2->p_stats = &up->u_stats;
274 	if (p2->p_sigacts == NULL) {
275 		if (p2->p_procsig->ps_refcnt != 1)
276 			printf ("PID:%d NULL sigacts with refcnt not 1!\n",p2->p_pid);
277 		p2->p_sigacts = &up->u_sigacts;
278 		up->u_sigacts = *p1->p_sigacts;
279 	}
280 
281 	bzero(&up->u_stats, sizeof(struct pstats));
282 
283 	/*
284 	 * cpu_fork will copy and update the pcb, set up the kernel stack,
285 	 * and make the child ready to run.
286 	 */
287 	cpu_fork(p1, p2, flags);
288 }
289 
290 /*
291  * Called after process has been wait(2)'ed apon and is being reaped.
292  * The idea is to reclaim resources that we could not reclaim while
293  * the process was still executing.
294  */
295 void
296 vm_waitproc(struct proc *p)
297 {
298 	p->p_stats = NULL;
299 	cpu_proc_wait(p);
300 	vmspace_exitfree(p);	/* and clean-out the vmspace */
301 }
302 
303 /*
304  * Set default limits for VM system.
305  * Called for proc 0, and then inherited by all others.
306  *
307  * XXX should probably act directly on proc0.
308  */
309 static void
310 vm_init_limits(void *udata)
311 {
312 	struct proc *p = udata;
313 	int rss_limit;
314 
315 	/*
316 	 * Set up the initial limits on process VM. Set the maximum resident
317 	 * set size to be half of (reasonably) available memory.  Since this
318 	 * is a soft limit, it comes into effect only when the system is out
319 	 * of memory - half of main memory helps to favor smaller processes,
320 	 * and reduces thrashing of the object cache.
321 	 */
322 	p->p_rlimit[RLIMIT_STACK].rlim_cur = dflssiz;
323 	p->p_rlimit[RLIMIT_STACK].rlim_max = maxssiz;
324 	p->p_rlimit[RLIMIT_DATA].rlim_cur = dfldsiz;
325 	p->p_rlimit[RLIMIT_DATA].rlim_max = maxdsiz;
326 	/* limit the limit to no less than 2MB */
327 	rss_limit = max(vmstats.v_free_count, 512);
328 	p->p_rlimit[RLIMIT_RSS].rlim_cur = ptoa(rss_limit);
329 	p->p_rlimit[RLIMIT_RSS].rlim_max = RLIM_INFINITY;
330 }
331 
332 /*
333  * Faultin the specified process.  Note that the process can be in any
334  * state.  Just clear P_SWAPPEDOUT and call wakeup in case the process is
335  * sleeping.
336  */
337 void
338 faultin(struct proc *p)
339 {
340 	if (p->p_flag & P_SWAPPEDOUT) {
341 		/*
342 		 * The process is waiting in the kernel to return to user
343 		 * mode but cannot until P_SWAPPEDOUT gets cleared.
344 		 */
345 		crit_enter();
346 		p->p_flag &= ~(P_SWAPPEDOUT | P_SWAPWAIT);
347 #ifdef INVARIANTS
348 		if (swap_debug)
349 			printf("swapping in %d (%s)\n", p->p_pid, p->p_comm);
350 #endif
351 		wakeup(p);
352 
353 		crit_exit();
354 	}
355 }
356 
357 /*
358  * Kernel initialization eventually falls through to this function,
359  * which is process 0.
360  *
361  * This swapin algorithm attempts to swap-in processes only if there
362  * is enough space for them.  Of course, if a process waits for a long
363  * time, it will be swapped in anyway.
364  */
365 
366 struct scheduler_info {
367 	struct proc *pp;
368 	int ppri;
369 };
370 
371 static int scheduler_callback(struct proc *p, void *data);
372 
373 static void
374 scheduler(void *dummy)
375 {
376 	struct scheduler_info info;
377 	struct proc *p;
378 
379 	KKASSERT(!IN_CRITICAL_SECT(curthread));
380 loop:
381 	scheduler_notify = 0;
382 	/*
383 	 * Don't try to swap anything in if we are low on memory.
384 	 */
385 	if (vm_page_count_min()) {
386 		vm_wait();
387 		goto loop;
388 	}
389 
390 	/*
391 	 * Look for a good candidate to wake up
392 	 */
393 	info.pp = NULL;
394 	info.ppri = INT_MIN;
395 	allproc_scan(scheduler_callback, &info);
396 
397 	/*
398 	 * Nothing to do, back to sleep for at least 1/10 of a second.  If
399 	 * we are woken up, immediately process the next request.  If
400 	 * multiple requests have built up the first is processed
401 	 * immediately and the rest are staggered.
402 	 */
403 	if ((p = info.pp) == NULL) {
404 		tsleep(&proc0, 0, "nowork", hz / 10);
405 		if (scheduler_notify == 0)
406 			tsleep(&scheduler_notify, 0, "nowork", 0);
407 		goto loop;
408 	}
409 
410 	/*
411 	 * Fault the selected process in, then wait for a short period of
412 	 * time and loop up.
413 	 *
414 	 * XXX we need a heuristic to get a measure of system stress and
415 	 * then adjust our stagger wakeup delay accordingly.
416 	 */
417 	faultin(p);
418 	p->p_swtime = 0;
419 	PRELE(p);
420 	tsleep(&proc0, 0, "swapin", hz / 10);
421 	goto loop;
422 }
423 
424 static int
425 scheduler_callback(struct proc *p, void *data)
426 {
427 	struct scheduler_info *info = data;
428 	segsz_t pgs;
429 	int pri;
430 
431 	if (p->p_flag & P_SWAPWAIT) {
432 		pri = p->p_swtime + p->p_slptime - p->p_nice * 8;
433 
434 		/*
435 		 * The more pages paged out while we were swapped,
436 		 * the more work we have to do to get up and running
437 		 * again and the lower our wakeup priority.
438 		 *
439 		 * Each second of sleep time is worth ~1MB
440 		 */
441 		pgs = vmspace_resident_count(p->p_vmspace);
442 		if (pgs < p->p_vmspace->vm_swrss) {
443 			pri -= (p->p_vmspace->vm_swrss - pgs) /
444 				(1024 * 1024 / PAGE_SIZE);
445 		}
446 
447 		/*
448 		 * If this process is higher priority and there is
449 		 * enough space, then select this process instead of
450 		 * the previous selection.
451 		 */
452 		if (pri > info->ppri) {
453 			if (info->pp)
454 				PRELE(info->pp);
455 			PHOLD(p);
456 			info->pp = p;
457 			info->ppri = pri;
458 		}
459 	}
460 	return(0);
461 }
462 
463 void
464 swapin_request(void)
465 {
466 	if (scheduler_notify == 0) {
467 		scheduler_notify = 1;
468 		wakeup(&scheduler_notify);
469 	}
470 }
471 
472 #ifndef NO_SWAPPING
473 
474 #define	swappable(p) \
475 	(((p)->p_lock == 0) && \
476 	((p)->p_flag & (P_TRACED|P_SYSTEM|P_SWAPPEDOUT|P_WEXIT)) == 0)
477 
478 
479 /*
480  * Swap_idle_threshold1 is the guaranteed swapped in time for a process
481  */
482 static int swap_idle_threshold1 = 15;
483 SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold1,
484 	CTLFLAG_RW, &swap_idle_threshold1, 0, "");
485 
486 /*
487  * Swap_idle_threshold2 is the time that a process can be idle before
488  * it will be swapped out, if idle swapping is enabled.  Default is
489  * one minute.
490  */
491 static int swap_idle_threshold2 = 60;
492 SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold2,
493 	CTLFLAG_RW, &swap_idle_threshold2, 0, "");
494 
495 /*
496  * Swapout is driven by the pageout daemon.  Very simple, we find eligible
497  * procs and mark them as being swapped out.  This will cause the kernel
498  * to prefer to pageout those proc's pages first and the procs in question
499  * will not return to user mode until the swapper tells them they can.
500  *
501  * If any procs have been sleeping/stopped for at least maxslp seconds,
502  * they are swapped.  Else, we swap the longest-sleeping or stopped process,
503  * if any, otherwise the longest-resident process.
504  */
505 
506 static int swapout_procs_callback(struct proc *p, void *data);
507 
508 void
509 swapout_procs(int action)
510 {
511 	allproc_scan(swapout_procs_callback, &action);
512 }
513 
514 static int
515 swapout_procs_callback(struct proc *p, void *data)
516 {
517 	struct vmspace *vm;
518 	int action = *(int *)data;
519 
520 	if (!swappable(p))
521 		return(0);
522 
523 	vm = p->p_vmspace;
524 
525 	if (p->p_stat == SSLEEP || p->p_stat == SRUN) {
526 		/*
527 		 * do not swap out a realtime process
528 		 */
529 		if (RTP_PRIO_IS_REALTIME(p->p_lwp.lwp_rtprio.type))
530 			return(0);
531 
532 		/*
533 		 * Guarentee swap_idle_threshold time in memory
534 		 */
535 		if (p->p_slptime < swap_idle_threshold1)
536 			return(0);
537 
538 		/*
539 		 * If the system is under memory stress, or if we
540 		 * are swapping idle processes >= swap_idle_threshold2,
541 		 * then swap the process out.
542 		 */
543 		if (((action & VM_SWAP_NORMAL) == 0) &&
544 		    (((action & VM_SWAP_IDLE) == 0) ||
545 		     (p->p_slptime < swap_idle_threshold2))) {
546 			return(0);
547 		}
548 
549 		++vm->vm_refcnt;
550 
551 		/*
552 		 * If the process has been asleep for awhile, swap
553 		 * it out.
554 		 */
555 		if ((action & VM_SWAP_NORMAL) ||
556 		    ((action & VM_SWAP_IDLE) &&
557 		     (p->p_slptime > swap_idle_threshold2))) {
558 			swapout(p);
559 		}
560 
561 		/*
562 		 * cleanup our reference
563 		 */
564 		vmspace_free(vm);
565 	}
566 	return(0);
567 }
568 
569 static void
570 swapout(struct proc *p)
571 {
572 #ifdef INVARIANTS
573 	if (swap_debug)
574 		printf("swapping out %d (%s)\n", p->p_pid, p->p_comm);
575 #endif
576 	++p->p_stats->p_ru.ru_nswap;
577 	/*
578 	 * remember the process resident count
579 	 */
580 	p->p_vmspace->vm_swrss = vmspace_resident_count(p->p_vmspace);
581 	p->p_flag |= P_SWAPPEDOUT;
582 	p->p_swtime = 0;
583 }
584 
585 #endif /* !NO_SWAPPING */
586 
587