xref: /dragonfly/sys/vm/vm_glue.c (revision 606a6e92)
1 /*
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	from: @(#)vm_glue.c	8.6 (Berkeley) 1/5/94
37  *
38  *
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  *
62  * $FreeBSD: src/sys/vm/vm_glue.c,v 1.94.2.4 2003/01/13 22:51:17 dillon Exp $
63  * $DragonFly: src/sys/vm/vm_glue.c,v 1.28 2004/09/05 21:25:53 dillon Exp $
64  */
65 
66 #include "opt_vm.h"
67 
68 #include <sys/param.h>
69 #include <sys/systm.h>
70 #include <sys/proc.h>
71 #include <sys/resourcevar.h>
72 #include <sys/buf.h>
73 #include <sys/shm.h>
74 #include <sys/vmmeter.h>
75 #include <sys/sysctl.h>
76 
77 #include <sys/kernel.h>
78 #include <sys/unistd.h>
79 
80 #include <machine/limits.h>
81 
82 #include <vm/vm.h>
83 #include <vm/vm_param.h>
84 #include <sys/lock.h>
85 #include <vm/pmap.h>
86 #include <vm/vm_map.h>
87 #include <vm/vm_page.h>
88 #include <vm/vm_pageout.h>
89 #include <vm/vm_kern.h>
90 #include <vm/vm_extern.h>
91 
92 #include <sys/user.h>
93 #include <vm/vm_page2.h>
94 
95 /*
96  * System initialization
97  *
98  * Note: proc0 from proc.h
99  */
100 
101 static void vm_init_limits (void *);
102 SYSINIT(vm_limits, SI_SUB_VM_CONF, SI_ORDER_FIRST, vm_init_limits, &proc0)
103 
104 /*
105  * THIS MUST BE THE LAST INITIALIZATION ITEM!!!
106  *
107  * Note: run scheduling should be divorced from the vm system.
108  */
109 static void scheduler (void *);
110 SYSINIT(scheduler, SI_SUB_RUN_SCHEDULER, SI_ORDER_FIRST, scheduler, NULL)
111 
112 
113 static void swapout (struct proc *);
114 
115 int
116 kernacc(c_caddr_t addr, int len, int rw)
117 {
118 	boolean_t rv;
119 	vm_offset_t saddr, eaddr;
120 	vm_prot_t prot;
121 
122 	KASSERT((rw & (~VM_PROT_ALL)) == 0,
123 	    ("illegal ``rw'' argument to kernacc (%x)\n", rw));
124 	prot = rw;
125 	saddr = trunc_page((vm_offset_t)addr);
126 	eaddr = round_page((vm_offset_t)addr + len);
127 	vm_map_lock_read(kernel_map);
128 	rv = vm_map_check_protection(kernel_map, saddr, eaddr, prot);
129 	vm_map_unlock_read(kernel_map);
130 	return (rv == TRUE);
131 }
132 
133 int
134 useracc(c_caddr_t addr, int len, int rw)
135 {
136 	boolean_t rv;
137 	vm_prot_t prot;
138 	vm_map_t map;
139 	vm_map_entry_t save_hint;
140 
141 	KASSERT((rw & (~VM_PROT_ALL)) == 0,
142 	    ("illegal ``rw'' argument to useracc (%x)\n", rw));
143 	prot = rw;
144 	/*
145 	 * XXX - check separately to disallow access to user area and user
146 	 * page tables - they are in the map.
147 	 *
148 	 * XXX - VM_MAXUSER_ADDRESS is an end address, not a max.  It was once
149 	 * only used (as an end address) in trap.c.  Use it as an end address
150 	 * here too.  This bogusness has spread.  I just fixed where it was
151 	 * used as a max in vm_mmap.c.
152 	 */
153 	if ((vm_offset_t) addr + len > /* XXX */ VM_MAXUSER_ADDRESS
154 	    || (vm_offset_t) addr + len < (vm_offset_t) addr) {
155 		return (FALSE);
156 	}
157 	map = &curproc->p_vmspace->vm_map;
158 	vm_map_lock_read(map);
159 	/*
160 	 * We save the map hint, and restore it.  Useracc appears to distort
161 	 * the map hint unnecessarily.
162 	 */
163 	save_hint = map->hint;
164 	rv = vm_map_check_protection(map,
165 	    trunc_page((vm_offset_t)addr), round_page((vm_offset_t)addr + len), prot);
166 	map->hint = save_hint;
167 	vm_map_unlock_read(map);
168 
169 	return (rv == TRUE);
170 }
171 
172 void
173 vslock(caddr_t addr, u_int len)
174 {
175 	vm_map_wire(&curproc->p_vmspace->vm_map, trunc_page((vm_offset_t)addr),
176 	    round_page((vm_offset_t)addr + len), 0);
177 }
178 
179 void
180 vsunlock(caddr_t addr, u_int len)
181 {
182 	vm_map_wire(&curproc->p_vmspace->vm_map, trunc_page((vm_offset_t)addr),
183 	    round_page((vm_offset_t)addr + len), KM_PAGEABLE);
184 }
185 
186 /*
187  * Implement fork's actions on an address space.
188  * Here we arrange for the address space to be copied or referenced,
189  * allocate a user struct (pcb and kernel stack), then call the
190  * machine-dependent layer to fill those in and make the new process
191  * ready to run.  The new process is set up so that it returns directly
192  * to user mode to avoid stack copying and relocation problems.
193  */
194 void
195 vm_fork(struct proc *p1, struct proc *p2, int flags)
196 {
197 	struct user *up;
198 	struct thread *td2;
199 
200 	if ((flags & RFPROC) == 0) {
201 		/*
202 		 * Divorce the memory, if it is shared, essentially
203 		 * this changes shared memory amongst threads, into
204 		 * COW locally.
205 		 */
206 		if ((flags & RFMEM) == 0) {
207 			if (p1->p_vmspace->vm_refcnt > 1) {
208 				vmspace_unshare(p1);
209 			}
210 		}
211 		cpu_fork(p1, p2, flags);
212 		return;
213 	}
214 
215 	if (flags & RFMEM) {
216 		p2->p_vmspace = p1->p_vmspace;
217 		p1->p_vmspace->vm_refcnt++;
218 	}
219 
220 	while (vm_page_count_severe()) {
221 		vm_wait();
222 	}
223 
224 	if ((flags & RFMEM) == 0) {
225 		p2->p_vmspace = vmspace_fork(p1->p_vmspace);
226 
227 		pmap_pinit2(vmspace_pmap(p2->p_vmspace));
228 
229 		if (p1->p_vmspace->vm_shm)
230 			shmfork(p1, p2);
231 	}
232 
233 	td2 = lwkt_alloc_thread(NULL, LWKT_THREAD_STACK, -1);
234 	pmap_init_proc(p2, td2);
235 	lwkt_setpri(td2, TDPRI_KERN_USER);
236 	lwkt_set_comm(td2, "%s", p1->p_comm);
237 
238 	up = p2->p_addr;
239 
240 	/*
241 	 * p_stats currently points at fields in the user struct
242 	 * but not at &u, instead at p_addr. Copy parts of
243 	 * p_stats; zero the rest of p_stats (statistics).
244 	 *
245 	 * If procsig->ps_refcnt is 1 and p2->p_sigacts is NULL we dont' need
246 	 * to share sigacts, so we use the up->u_sigacts.
247 	 */
248 	p2->p_stats = &up->u_stats;
249 	if (p2->p_sigacts == NULL) {
250 		if (p2->p_procsig->ps_refcnt != 1)
251 			printf ("PID:%d NULL sigacts with refcnt not 1!\n",p2->p_pid);
252 		p2->p_sigacts = &up->u_sigacts;
253 		up->u_sigacts = *p1->p_sigacts;
254 	}
255 
256 	bzero(&up->u_stats, sizeof(struct pstats));
257 	bcopy(&p1->p_stats->p_prof, &up->u_stats.p_prof,
258 		sizeof(struct uprof));
259 	bcopy(&p1->p_thread->td_start, &p2->p_thread->td_start,
260 		sizeof(struct timeval));
261 
262 
263 	/*
264 	 * cpu_fork will copy and update the pcb, set up the kernel stack,
265 	 * and make the child ready to run.
266 	 */
267 	cpu_fork(p1, p2, flags);
268 }
269 
270 /*
271  * Called after process has been wait(2)'ed apon and is being reaped.
272  * The idea is to reclaim resources that we could not reclaim while
273  * the process was still executing.
274  */
275 void
276 vm_waitproc(struct proc *p)
277 {
278 	p->p_stats = NULL;
279 	cpu_proc_wait(p);
280 	vmspace_exitfree(p);	/* and clean-out the vmspace */
281 }
282 
283 /*
284  * Set default limits for VM system.
285  * Called for proc 0, and then inherited by all others.
286  *
287  * XXX should probably act directly on proc0.
288  */
289 static void
290 vm_init_limits(void *udata)
291 {
292 	struct proc *p = udata;
293 	int rss_limit;
294 
295 	/*
296 	 * Set up the initial limits on process VM. Set the maximum resident
297 	 * set size to be half of (reasonably) available memory.  Since this
298 	 * is a soft limit, it comes into effect only when the system is out
299 	 * of memory - half of main memory helps to favor smaller processes,
300 	 * and reduces thrashing of the object cache.
301 	 */
302 	p->p_rlimit[RLIMIT_STACK].rlim_cur = dflssiz;
303 	p->p_rlimit[RLIMIT_STACK].rlim_max = maxssiz;
304 	p->p_rlimit[RLIMIT_DATA].rlim_cur = dfldsiz;
305 	p->p_rlimit[RLIMIT_DATA].rlim_max = maxdsiz;
306 	/* limit the limit to no less than 2MB */
307 	rss_limit = max(vmstats.v_free_count, 512);
308 	p->p_rlimit[RLIMIT_RSS].rlim_cur = ptoa(rss_limit);
309 	p->p_rlimit[RLIMIT_RSS].rlim_max = RLIM_INFINITY;
310 }
311 
312 void
313 faultin(struct proc *p)
314 {
315 	int s;
316 
317 	if ((p->p_flag & P_INMEM) == 0) {
318 
319 		++p->p_lock;
320 
321 		pmap_swapin_proc(p);
322 
323 		s = splhigh();
324 
325 		/*
326 		 * The process is in the kernel and controlled by LWKT,
327 		 * so we just schedule it rather then call setrunqueue().
328 		 */
329 		if (p->p_stat == SRUN)
330 			lwkt_schedule(p->p_thread);
331 
332 		p->p_flag |= P_INMEM;
333 
334 		/* undo the effect of setting SLOCK above */
335 		--p->p_lock;
336 		splx(s);
337 
338 	}
339 }
340 
341 /*
342  * Kernel initialization eventually falls through to this function,
343  * which is process 0.
344  *
345  * This swapin algorithm attempts to swap-in processes only if there
346  * is enough space for them.  Of course, if a process waits for a long
347  * time, it will be swapped in anyway.
348  */
349 /* ARGSUSED*/
350 static void
351 scheduler(void *dummy)
352 {
353 	struct proc *p;
354 	int pri;
355 	struct proc *pp;
356 	int ppri;
357 
358 	KKASSERT(!IN_CRITICAL_SECT(curthread));
359 loop:
360 	if (vm_page_count_min()) {
361 		vm_wait();
362 		goto loop;
363 	}
364 
365 	pp = NULL;
366 	ppri = INT_MIN;
367 	for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
368 		if (p->p_stat == SRUN &&
369 			(p->p_flag & (P_INMEM | P_SWAPPING)) == 0) {
370 
371 			pri = p->p_swtime + p->p_slptime;
372 			if ((p->p_flag & P_SWAPINREQ) == 0) {
373 				pri -= p->p_nice * 8;
374 			}
375 
376 			/*
377 			 * if this process is higher priority and there is
378 			 * enough space, then select this process instead of
379 			 * the previous selection.
380 			 */
381 			if (pri > ppri) {
382 				pp = p;
383 				ppri = pri;
384 			}
385 		}
386 	}
387 
388 	/*
389 	 * Nothing to do, back to sleep.
390 	 */
391 	if ((p = pp) == NULL) {
392 		tsleep(&proc0, 0, "sched", 0);
393 		goto loop;
394 	}
395 	p->p_flag &= ~P_SWAPINREQ;
396 
397 	/*
398 	 * We would like to bring someone in. (only if there is space).
399 	 */
400 	faultin(p);
401 	p->p_swtime = 0;
402 	goto loop;
403 }
404 
405 #ifndef NO_SWAPPING
406 
407 #define	swappable(p) \
408 	(((p)->p_lock == 0) && \
409 		((p)->p_flag & (P_TRACED|P_SYSTEM|P_INMEM|P_WEXIT|P_SWAPPING)) == P_INMEM)
410 
411 
412 /*
413  * Swap_idle_threshold1 is the guaranteed swapped in time for a process
414  */
415 static int swap_idle_threshold1 = 2;
416 SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold1,
417 	CTLFLAG_RW, &swap_idle_threshold1, 0, "");
418 
419 /*
420  * Swap_idle_threshold2 is the time that a process can be idle before
421  * it will be swapped out, if idle swapping is enabled.
422  */
423 static int swap_idle_threshold2 = 10;
424 SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold2,
425 	CTLFLAG_RW, &swap_idle_threshold2, 0, "");
426 
427 /*
428  * Swapout is driven by the pageout daemon.  Very simple, we find eligible
429  * procs and unwire their u-areas.  We try to always "swap" at least one
430  * process in case we need the room for a swapin.
431  * If any procs have been sleeping/stopped for at least maxslp seconds,
432  * they are swapped.  Else, we swap the longest-sleeping or stopped process,
433  * if any, otherwise the longest-resident process.
434  */
435 void
436 swapout_procs(int action)
437 {
438 	struct proc *p;
439 	struct proc *outp, *outp2;
440 	int outpri, outpri2;
441 	int didswap = 0;
442 
443 	outp = outp2 = NULL;
444 	outpri = outpri2 = INT_MIN;
445 retry:
446 	for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
447 		struct vmspace *vm;
448 		if (!swappable(p))
449 			continue;
450 
451 		vm = p->p_vmspace;
452 
453 		switch (p->p_stat) {
454 		default:
455 			continue;
456 
457 		case SSLEEP:
458 		case SSTOP:
459 			/*
460 			 * do not swapout a realtime process
461 			 */
462 			if (RTP_PRIO_IS_REALTIME(p->p_rtprio.type))
463 				continue;
464 
465 			/*
466 			 * YYY do not swapout a proc waiting on a critical
467 			 * event.
468 			 *
469 			 * Guarentee swap_idle_threshold time in memory
470 			 */
471 			if (p->p_slptime < swap_idle_threshold1)
472 				continue;
473 
474 			/*
475 			 * If the system is under memory stress, or if we
476 			 * are swapping idle processes >= swap_idle_threshold2,
477 			 * then swap the process out.
478 			 */
479 			if (((action & VM_SWAP_NORMAL) == 0) &&
480 				(((action & VM_SWAP_IDLE) == 0) ||
481 				  (p->p_slptime < swap_idle_threshold2)))
482 				continue;
483 
484 			++vm->vm_refcnt;
485 			/*
486 			 * do not swapout a process that is waiting for VM
487 			 * data structures there is a possible deadlock.
488 			 */
489 			if (lockmgr(&vm->vm_map.lock,
490 					LK_EXCLUSIVE | LK_NOWAIT,
491 					NULL, curthread)) {
492 				vmspace_free(vm);
493 				continue;
494 			}
495 			vm_map_unlock(&vm->vm_map);
496 			/*
497 			 * If the process has been asleep for awhile and had
498 			 * most of its pages taken away already, swap it out.
499 			 */
500 			if ((action & VM_SWAP_NORMAL) ||
501 				((action & VM_SWAP_IDLE) &&
502 				 (p->p_slptime > swap_idle_threshold2))) {
503 				swapout(p);
504 				vmspace_free(vm);
505 				didswap++;
506 				goto retry;
507 			}
508 
509 			/*
510 			 * cleanup our reference
511 			 */
512 			vmspace_free(vm);
513 		}
514 	}
515 	/*
516 	 * If we swapped something out, and another process needed memory,
517 	 * then wakeup the sched process.
518 	 */
519 	if (didswap)
520 		wakeup(&proc0);
521 }
522 
523 static void
524 swapout(struct proc *p)
525 {
526 
527 #if defined(SWAP_DEBUG)
528 	printf("swapping out %d\n", p->p_pid);
529 #endif
530 	++p->p_stats->p_ru.ru_nswap;
531 	/*
532 	 * remember the process resident count
533 	 */
534 	p->p_vmspace->vm_swrss = vmspace_resident_count(p->p_vmspace);
535 
536 	(void) splhigh();
537 	p->p_flag &= ~P_INMEM;
538 	p->p_flag |= P_SWAPPING;
539 	if (p->p_flag & P_ONRUNQ)
540 		remrunqueue(p);
541 	(void) spl0();
542 
543 	pmap_swapout_proc(p);
544 
545 	p->p_flag &= ~P_SWAPPING;
546 	p->p_swtime = 0;
547 }
548 #endif /* !NO_SWAPPING */
549