xref: /dragonfly/sys/vm/vm_glue.c (revision 6a3cbbc2)
1 /*
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	from: @(#)vm_glue.c	8.6 (Berkeley) 1/5/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Permission to use, copy, modify and distribute this software and
39  * its documentation is hereby granted, provided that both the copyright
40  * notice and this permission notice appear in all copies of the
41  * software, derivative works or modified versions, and any portions
42  * thereof, and that both notices appear in supporting documentation.
43  *
44  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
45  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
46  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
47  *
48  * Carnegie Mellon requests users of this software to return to
49  *
50  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
51  *  School of Computer Science
52  *  Carnegie Mellon University
53  *  Pittsburgh PA 15213-3890
54  *
55  * any improvements or extensions that they make and grant Carnegie the
56  * rights to redistribute these changes.
57  *
58  * $FreeBSD: src/sys/vm/vm_glue.c,v 1.94.2.4 2003/01/13 22:51:17 dillon Exp $
59  */
60 
61 #include "opt_vm.h"
62 
63 #include <sys/param.h>
64 #include <sys/systm.h>
65 #include <sys/proc.h>
66 #include <sys/resourcevar.h>
67 #include <sys/buf.h>
68 #include <sys/shm.h>
69 #include <sys/vmmeter.h>
70 #include <sys/sysctl.h>
71 
72 #include <sys/kernel.h>
73 #include <sys/unistd.h>
74 
75 #include <machine/limits.h>
76 #include <machine/vmm.h>
77 
78 #include <vm/vm.h>
79 #include <vm/vm_param.h>
80 #include <sys/lock.h>
81 #include <vm/pmap.h>
82 #include <vm/vm_map.h>
83 #include <vm/vm_page.h>
84 #include <vm/vm_page2.h>
85 #include <vm/vm_pageout.h>
86 #include <vm/vm_kern.h>
87 #include <vm/vm_extern.h>
88 
89 /*
90  * THIS MUST BE THE LAST INITIALIZATION ITEM!!!
91  *
92  * Note: run scheduling should be divorced from the vm system.
93  */
94 static void scheduler (void *);
95 SYSINIT(scheduler, SI_SUB_RUN_SCHEDULER, SI_ORDER_FIRST, scheduler, NULL);
96 
97 #ifdef INVARIANTS
98 
99 static int swap_debug = 0;
100 SYSCTL_INT(_vm, OID_AUTO, swap_debug,
101 	CTLFLAG_RW, &swap_debug, 0, "");
102 
103 #endif
104 
105 static int scheduler_notify;
106 
107 static void swapout (struct proc *);
108 
109 /*
110  * No requirements.
111  */
112 int
113 kernacc(c_caddr_t addr, int len, int rw)
114 {
115 	boolean_t rv;
116 	vm_offset_t saddr, eaddr;
117 	vm_prot_t prot;
118 
119 	KASSERT((rw & (~VM_PROT_ALL)) == 0,
120 	    ("illegal ``rw'' argument to kernacc (%x)", rw));
121 
122 	/*
123 	 * The globaldata space is not part of the kernel_map proper,
124 	 * check access separately.
125 	 */
126 	if (is_globaldata_space((vm_offset_t)addr, (vm_offset_t)(addr + len)))
127 		return (TRUE);
128 
129 	/*
130 	 * Nominal kernel memory access - check access via kernel_map.
131 	 */
132 	if ((vm_offset_t)addr + len > vm_map_max(&kernel_map) ||
133 	    (vm_offset_t)addr + len < (vm_offset_t)addr) {
134 		return (FALSE);
135 	}
136 	prot = rw;
137 	saddr = trunc_page((vm_offset_t)addr);
138 	eaddr = round_page((vm_offset_t)addr + len);
139 	rv = vm_map_check_protection(&kernel_map, saddr, eaddr, prot, FALSE);
140 
141 	return (rv == TRUE);
142 }
143 
144 /*
145  * No requirements.
146  */
147 int
148 useracc(c_caddr_t addr, int len, int rw)
149 {
150 	boolean_t rv;
151 	vm_prot_t prot;
152 	vm_map_t map;
153 	vm_offset_t wrap;
154 	vm_offset_t gpa;
155 
156 	KASSERT((rw & (~VM_PROT_ALL)) == 0,
157 	    ("illegal ``rw'' argument to useracc (%x)", rw));
158 	prot = rw;
159 
160 	if (curthread->td_vmm) {
161 		if (vmm_vm_get_gpa(curproc, (register_t *)&gpa, (register_t) addr))
162 			panic("%s: could not get GPA\n", __func__);
163 		addr = (c_caddr_t) gpa;
164 	}
165 
166 	/*
167 	 * XXX - check separately to disallow access to user area and user
168 	 * page tables - they are in the map.
169 	 */
170 	wrap = (vm_offset_t)addr + len;
171 	if (wrap > VM_MAX_USER_ADDRESS || wrap < (vm_offset_t)addr) {
172 		return (FALSE);
173 	}
174 	map = &curproc->p_vmspace->vm_map;
175 	vm_map_lock_read(map);
176 
177 	rv = vm_map_check_protection(map, trunc_page((vm_offset_t)addr),
178 				     round_page(wrap), prot, TRUE);
179 	vm_map_unlock_read(map);
180 
181 	return (rv == TRUE);
182 }
183 
184 /*
185  * No requirements.
186  */
187 void
188 vslock(caddr_t addr, u_int len)
189 {
190 	if (len) {
191 		vm_map_wire(&curproc->p_vmspace->vm_map,
192 			    trunc_page((vm_offset_t)addr),
193 			    round_page((vm_offset_t)addr + len), 0);
194 	}
195 }
196 
197 /*
198  * No requirements.
199  */
200 void
201 vsunlock(caddr_t addr, u_int len)
202 {
203 	if (len) {
204 		vm_map_wire(&curproc->p_vmspace->vm_map,
205 			    trunc_page((vm_offset_t)addr),
206 			    round_page((vm_offset_t)addr + len),
207 			    KM_PAGEABLE);
208 	}
209 }
210 
211 /*
212  * Implement fork's actions on an address space.  Here we arrange for the
213  * address space to be copied or referenced, allocate a user struct (pcb
214  * and kernel stack), then call the machine-dependent layer to fill those
215  * in and make the new process ready to run.  The new process is set up
216  * so that it returns directly to user mode to avoid stack copying and
217  * relocation problems.
218  *
219  * If p2 is NULL and RFPROC is 0 we are just divorcing parts of the process
220  * from itself.
221  *
222  * Otherwise if p2 is NULL the new vmspace is not to be associated with any
223  * process or thread (so things like /dev/upmap and /dev/lpmap are not
224  * retained).
225  *
226  * Otherwise if p2 is not NULL then process specific mappings will be forked.
227  * If lp2 is not NULL only the thread-specific mappings for lp2 are forked,
228  * otherwise no thread-specific mappings are forked.
229  *
230  * No requirements.
231  */
232 void
233 vm_fork(struct proc *p1, struct proc *p2, struct lwp *lp2, int flags)
234 {
235 	if ((flags & RFPROC) == 0) {
236 		/*
237 		 * Divorce the memory, if it is shared, essentially
238 		 * this changes shared memory amongst threads, into
239 		 * COW locally.
240 		 */
241 		if ((flags & RFMEM) == 0) {
242 			if (vmspace_getrefs(p1->p_vmspace) > 1) {
243 				vmspace_unshare(p1);
244 			}
245 		}
246 		cpu_fork(ONLY_LWP_IN_PROC(p1), NULL, flags);
247 		return;
248 	}
249 
250 	if (flags & RFMEM) {
251 		vmspace_ref(p1->p_vmspace);
252 		p2->p_vmspace = p1->p_vmspace;
253 	}
254 
255 	while (vm_page_count_severe()) {
256 		vm_wait(0);
257 	}
258 
259 	if ((flags & RFMEM) == 0) {
260 		p2->p_vmspace = vmspace_fork(p1->p_vmspace, p2, lp2);
261 
262 		pmap_pinit2(vmspace_pmap(p2->p_vmspace));
263 
264 		if (p1->p_vmspace->vm_shm)
265 			shmfork(p1, p2);
266 	}
267 
268 	pmap_init_proc(p2);
269 }
270 
271 /*
272  * Set default limits for VM system.  Call during proc0's initialization.
273  *
274  * Called from the low level boot code only.
275  */
276 void
277 vm_init_limits(struct proc *p)
278 {
279 	int rss_limit;
280 
281 	/*
282 	 * Set up the initial limits on process VM. Set the maximum resident
283 	 * set size to be half of (reasonably) available memory.  Since this
284 	 * is a soft limit, it comes into effect only when the system is out
285 	 * of memory - half of main memory helps to favor smaller processes,
286 	 * and reduces thrashing of the object cache.
287 	 */
288 	p->p_rlimit[RLIMIT_STACK].rlim_cur = dflssiz;
289 	p->p_rlimit[RLIMIT_STACK].rlim_max = maxssiz;
290 	p->p_rlimit[RLIMIT_DATA].rlim_cur = dfldsiz;
291 	p->p_rlimit[RLIMIT_DATA].rlim_max = maxdsiz;
292 	/* limit the limit to no less than 2MB */
293 	rss_limit = max(vmstats.v_free_count, 512);
294 	p->p_rlimit[RLIMIT_RSS].rlim_cur = ptoa(rss_limit);
295 	p->p_rlimit[RLIMIT_RSS].rlim_max = RLIM_INFINITY;
296 }
297 
298 /*
299  * Faultin the specified process.  Note that the process can be in any
300  * state.  Just clear P_SWAPPEDOUT and call wakeup in case the process is
301  * sleeping.
302  *
303  * No requirements.
304  */
305 void
306 faultin(struct proc *p)
307 {
308 	if (p->p_flags & P_SWAPPEDOUT) {
309 		/*
310 		 * The process is waiting in the kernel to return to user
311 		 * mode but cannot until P_SWAPPEDOUT gets cleared.
312 		 */
313 		lwkt_gettoken(&p->p_token);
314 		p->p_flags &= ~(P_SWAPPEDOUT | P_SWAPWAIT);
315 #ifdef INVARIANTS
316 		if (swap_debug)
317 			kprintf("swapping in %d (%s)\n", p->p_pid, p->p_comm);
318 #endif
319 		wakeup(p);
320 		lwkt_reltoken(&p->p_token);
321 	}
322 }
323 
324 /*
325  * Kernel initialization eventually falls through to this function,
326  * which is process 0.
327  *
328  * This swapin algorithm attempts to swap-in processes only if there
329  * is enough space for them.  Of course, if a process waits for a long
330  * time, it will be swapped in anyway.
331  */
332 struct scheduler_info {
333 	struct proc *pp;
334 	int ppri;
335 };
336 
337 static int scheduler_callback(struct proc *p, void *data);
338 
339 static void
340 scheduler(void *dummy)
341 {
342 	struct scheduler_info info;
343 	struct proc *p;
344 
345 	KKASSERT(!IN_CRITICAL_SECT(curthread));
346 loop:
347 	scheduler_notify = 0;
348 	/*
349 	 * Don't try to swap anything in if we are low on memory.
350 	 */
351 	if (vm_page_count_severe()) {
352 		vm_wait(0);
353 		goto loop;
354 	}
355 
356 	/*
357 	 * Look for a good candidate to wake up
358 	 *
359 	 * XXX we should make the schedule thread pcpu and then use a
360 	 * segmented allproc scan.
361 	 */
362 	info.pp = NULL;
363 	info.ppri = INT_MIN;
364 	allproc_scan(scheduler_callback, &info, 0);
365 
366 	/*
367 	 * Nothing to do, back to sleep for at least 1/10 of a second.  If
368 	 * we are woken up, immediately process the next request.  If
369 	 * multiple requests have built up the first is processed
370 	 * immediately and the rest are staggered.
371 	 */
372 	if ((p = info.pp) == NULL) {
373 		tsleep(&proc0, 0, "nowork", hz / 10);
374 		if (scheduler_notify == 0)
375 			tsleep(&scheduler_notify, 0, "nowork", 0);
376 		goto loop;
377 	}
378 
379 	/*
380 	 * Fault the selected process in, then wait for a short period of
381 	 * time and loop up.
382 	 *
383 	 * XXX we need a heuristic to get a measure of system stress and
384 	 * then adjust our stagger wakeup delay accordingly.
385 	 */
386 	lwkt_gettoken(&p->p_token);
387 	faultin(p);
388 	p->p_swtime = 0;
389 	lwkt_reltoken(&p->p_token);
390 	PRELE(p);
391 	tsleep(&proc0, 0, "swapin", hz / 10);
392 	goto loop;
393 }
394 
395 /*
396  * Process only has its hold count bumped, we need the token
397  * to safely scan the LWPs
398  */
399 static int
400 scheduler_callback(struct proc *p, void *data)
401 {
402 	struct scheduler_info *info = data;
403 	struct vmspace *vm;
404 	struct lwp *lp;
405 	segsz_t pgs;
406 	int pri;
407 
408 	/*
409 	 * We only care about processes in swap-wait.  Interlock test with
410 	 * token if the flag is found set.
411 	 */
412 	if ((p->p_flags & P_SWAPWAIT) == 0)
413 		return 0;
414 	lwkt_gettoken_shared(&p->p_token);
415 	if ((p->p_flags & P_SWAPWAIT) == 0) {
416 		lwkt_reltoken(&p->p_token);
417 		return 0;
418 	}
419 
420 	/*
421 	 * Calculate priority for swap-in
422 	 */
423 	pri = 0;
424 	FOREACH_LWP_IN_PROC(lp, p) {
425 		/* XXX lwp might need a different metric */
426 		pri += lp->lwp_slptime;
427 	}
428 	pri += p->p_swtime - p->p_nice * 8;
429 
430 	/*
431 	 * The more pages paged out while we were swapped,
432 	 * the more work we have to do to get up and running
433 	 * again and the lower our wakeup priority.
434 	 *
435 	 * Each second of sleep time is worth ~1MB
436 	 */
437 	if ((vm = p->p_vmspace) != NULL) {
438 		vmspace_hold(vm);
439 		pgs = vmspace_resident_count(vm);
440 		if (pgs < vm->vm_swrss) {
441 			pri -= (vm->vm_swrss - pgs) /
442 			       (1024 * 1024 / PAGE_SIZE);
443 		}
444 		vmspace_drop(vm);
445 	}
446 	lwkt_reltoken(&p->p_token);
447 
448 	/*
449 	 * If this process is higher priority and there is
450 	 * enough space, then select this process instead of
451 	 * the previous selection.
452 	 */
453 	if (pri > info->ppri) {
454 		if (info->pp)
455 			PRELE(info->pp);
456 		PHOLD(p);
457 		info->pp = p;
458 		info->ppri = pri;
459 	}
460 	return(0);
461 }
462 
463 /*
464  * SMP races ok.
465  * No requirements.
466  */
467 void
468 swapin_request(void)
469 {
470 	if (scheduler_notify == 0) {
471 		scheduler_notify = 1;
472 		wakeup(&scheduler_notify);
473 	}
474 }
475 
476 #ifndef NO_SWAPPING
477 
478 #define	swappable(p) \
479 	(((p)->p_lock == 0) && \
480 	((p)->p_flags & (P_TRACED|P_SYSTEM|P_SWAPPEDOUT|P_WEXIT)) == 0)
481 
482 
483 /*
484  * Swap_idle_threshold1 is the guaranteed swapped in time for a process
485  */
486 static int swap_idle_threshold1 = 15;
487 SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold1,
488 	CTLFLAG_RW, &swap_idle_threshold1, 0, "Guaranteed process resident time (sec)");
489 
490 /*
491  * Swap_idle_threshold2 is the time that a process can be idle before
492  * it will be swapped out, if idle swapping is enabled.  Default is
493  * one minute.
494  */
495 static int swap_idle_threshold2 = 60;
496 SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold2,
497 	CTLFLAG_RW, &swap_idle_threshold2, 0, "Time (sec) a process can idle before being swapped");
498 
499 /*
500  * Swapout is driven by the pageout daemon.  Very simple, we find eligible
501  * procs and mark them as being swapped out.  This will cause the kernel
502  * to prefer to pageout those proc's pages first and the procs in question
503  * will not return to user mode until the swapper tells them they can.
504  *
505  * If any procs have been sleeping/stopped for at least maxslp seconds,
506  * they are swapped.  Else, we swap the longest-sleeping or stopped process,
507  * if any, otherwise the longest-resident process.
508  */
509 
510 static int swapout_procs_callback(struct proc *p, void *data);
511 
512 /*
513  * No requirements.
514  */
515 void
516 swapout_procs(int action)
517 {
518 	allproc_scan(swapout_procs_callback, &action, 0);
519 }
520 
521 static int
522 swapout_procs_callback(struct proc *p, void *data)
523 {
524 	struct lwp *lp;
525 	int action = *(int *)data;
526 	int minslp = -1;
527 
528 	if (!swappable(p))
529 		return(0);
530 
531 	lwkt_gettoken(&p->p_token);
532 
533 	/*
534 	 * We only consider active processes.
535 	 */
536 	if (p->p_stat != SACTIVE && p->p_stat != SSTOP) {
537 		lwkt_reltoken(&p->p_token);
538 		return(0);
539 	}
540 
541 	FOREACH_LWP_IN_PROC(lp, p) {
542 		/*
543 		 * do not swap out a realtime process
544 		 */
545 		if (RTP_PRIO_IS_REALTIME(lp->lwp_rtprio.type)) {
546 			lwkt_reltoken(&p->p_token);
547 			return(0);
548 		}
549 
550 		/*
551 		 * Guarentee swap_idle_threshold time in memory
552 		 */
553 		if (lp->lwp_slptime < swap_idle_threshold1) {
554 			lwkt_reltoken(&p->p_token);
555 			return(0);
556 		}
557 
558 		/*
559 		 * If the system is under memory stress, or if we
560 		 * are swapping idle processes >= swap_idle_threshold2,
561 		 * then swap the process out.
562 		 */
563 		if (((action & VM_SWAP_NORMAL) == 0) &&
564 		    (((action & VM_SWAP_IDLE) == 0) ||
565 		     (lp->lwp_slptime < swap_idle_threshold2))) {
566 			lwkt_reltoken(&p->p_token);
567 			return(0);
568 		}
569 
570 		if (minslp == -1 || lp->lwp_slptime < minslp)
571 			minslp = lp->lwp_slptime;
572 	}
573 
574 	/*
575 	 * If the process has been asleep for awhile, swap
576 	 * it out.
577 	 */
578 	if ((action & VM_SWAP_NORMAL) ||
579 	    ((action & VM_SWAP_IDLE) &&
580 	     (minslp > swap_idle_threshold2))) {
581 		swapout(p);
582 	}
583 
584 	/*
585 	 * cleanup our reference
586 	 */
587 	lwkt_reltoken(&p->p_token);
588 
589 	return(0);
590 }
591 
592 /*
593  * The caller must hold p->p_token
594  */
595 static void
596 swapout(struct proc *p)
597 {
598 #ifdef INVARIANTS
599 	if (swap_debug)
600 		kprintf("swapping out %d (%s)\n", p->p_pid, p->p_comm);
601 #endif
602 	++p->p_ru.ru_nswap;
603 
604 	/*
605 	 * remember the process resident count
606 	 */
607 	p->p_vmspace->vm_swrss = vmspace_resident_count(p->p_vmspace);
608 	p->p_flags |= P_SWAPPEDOUT;
609 	p->p_swtime = 0;
610 }
611 
612 #endif /* !NO_SWAPPING */
613 
614