xref: /dragonfly/sys/vm/vm_glue.c (revision 77b0c609)
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	from: @(#)vm_glue.c	8.6 (Berkeley) 1/5/94
39  *
40  *
41  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
42  * All rights reserved.
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  *
64  * $FreeBSD: src/sys/vm/vm_glue.c,v 1.94.2.4 2003/01/13 22:51:17 dillon Exp $
65  */
66 
67 #include "opt_vm.h"
68 
69 #include <sys/param.h>
70 #include <sys/systm.h>
71 #include <sys/proc.h>
72 #include <sys/resourcevar.h>
73 #include <sys/buf.h>
74 #include <sys/shm.h>
75 #include <sys/vmmeter.h>
76 #include <sys/sysctl.h>
77 
78 #include <sys/kernel.h>
79 #include <sys/unistd.h>
80 
81 #include <machine/limits.h>
82 
83 #include <vm/vm.h>
84 #include <vm/vm_param.h>
85 #include <sys/lock.h>
86 #include <vm/pmap.h>
87 #include <vm/vm_map.h>
88 #include <vm/vm_page.h>
89 #include <vm/vm_pageout.h>
90 #include <vm/vm_kern.h>
91 #include <vm/vm_extern.h>
92 
93 #include <sys/user.h>
94 #include <vm/vm_page2.h>
95 #include <sys/thread2.h>
96 #include <sys/sysref2.h>
97 
98 /*
99  * THIS MUST BE THE LAST INITIALIZATION ITEM!!!
100  *
101  * Note: run scheduling should be divorced from the vm system.
102  */
103 static void scheduler (void *);
104 SYSINIT(scheduler, SI_SUB_RUN_SCHEDULER, SI_ORDER_FIRST, scheduler, NULL)
105 
106 #ifdef INVARIANTS
107 
108 static int swap_debug = 0;
109 SYSCTL_INT(_vm, OID_AUTO, swap_debug,
110 	CTLFLAG_RW, &swap_debug, 0, "");
111 
112 #endif
113 
114 static int scheduler_notify;
115 
116 static void swapout (struct proc *);
117 
118 /*
119  * No requirements.
120  */
121 int
122 kernacc(c_caddr_t addr, int len, int rw)
123 {
124 	boolean_t rv;
125 	vm_offset_t saddr, eaddr;
126 	vm_prot_t prot;
127 
128 	KASSERT((rw & (~VM_PROT_ALL)) == 0,
129 	    ("illegal ``rw'' argument to kernacc (%x)", rw));
130 
131 	/*
132 	 * The globaldata space is not part of the kernel_map proper,
133 	 * check access separately.
134 	 */
135 	if (is_globaldata_space((vm_offset_t)addr, (vm_offset_t)(addr + len)))
136 		return (TRUE);
137 
138 	/*
139 	 * Nominal kernel memory access - check access via kernel_map.
140 	 */
141 	if ((vm_offset_t)addr + len > kernel_map.max_offset ||
142 	    (vm_offset_t)addr + len < (vm_offset_t)addr) {
143 		return (FALSE);
144 	}
145 	prot = rw;
146 	saddr = trunc_page((vm_offset_t)addr);
147 	eaddr = round_page((vm_offset_t)addr + len);
148 	rv = vm_map_check_protection(&kernel_map, saddr, eaddr, prot, FALSE);
149 
150 	return (rv == TRUE);
151 }
152 
153 /*
154  * No requirements.
155  */
156 int
157 useracc(c_caddr_t addr, int len, int rw)
158 {
159 	boolean_t rv;
160 	vm_prot_t prot;
161 	vm_map_t map;
162 	vm_map_entry_t save_hint;
163 	vm_offset_t wrap;
164 
165 	KASSERT((rw & (~VM_PROT_ALL)) == 0,
166 	    ("illegal ``rw'' argument to useracc (%x)", rw));
167 	prot = rw;
168 	/*
169 	 * XXX - check separately to disallow access to user area and user
170 	 * page tables - they are in the map.
171 	 */
172 	wrap = (vm_offset_t)addr + len;
173 	if (wrap > VM_MAX_USER_ADDRESS || wrap < (vm_offset_t)addr) {
174 		return (FALSE);
175 	}
176 	map = &curproc->p_vmspace->vm_map;
177 	vm_map_lock_read(map);
178 	/*
179 	 * We save the map hint, and restore it.  Useracc appears to distort
180 	 * the map hint unnecessarily.
181 	 */
182 	save_hint = map->hint;
183 	rv = vm_map_check_protection(map, trunc_page((vm_offset_t)addr),
184 				     round_page(wrap), prot, TRUE);
185 	map->hint = save_hint;
186 	vm_map_unlock_read(map);
187 
188 	return (rv == TRUE);
189 }
190 
191 /*
192  * No requirements.
193  */
194 void
195 vslock(caddr_t addr, u_int len)
196 {
197 	if (len) {
198 		vm_map_wire(&curproc->p_vmspace->vm_map,
199 			    trunc_page((vm_offset_t)addr),
200 			    round_page((vm_offset_t)addr + len), 0);
201 	}
202 }
203 
204 /*
205  * No requirements.
206  */
207 void
208 vsunlock(caddr_t addr, u_int len)
209 {
210 	if (len) {
211 		vm_map_wire(&curproc->p_vmspace->vm_map,
212 			    trunc_page((vm_offset_t)addr),
213 			    round_page((vm_offset_t)addr + len),
214 			    KM_PAGEABLE);
215 	}
216 }
217 
218 /*
219  * Implement fork's actions on an address space.
220  * Here we arrange for the address space to be copied or referenced,
221  * allocate a user struct (pcb and kernel stack), then call the
222  * machine-dependent layer to fill those in and make the new process
223  * ready to run.  The new process is set up so that it returns directly
224  * to user mode to avoid stack copying and relocation problems.
225  *
226  * No requirements.
227  */
228 void
229 vm_fork(struct proc *p1, struct proc *p2, int flags)
230 {
231 	if ((flags & RFPROC) == 0) {
232 		/*
233 		 * Divorce the memory, if it is shared, essentially
234 		 * this changes shared memory amongst threads, into
235 		 * COW locally.
236 		 */
237 		if ((flags & RFMEM) == 0) {
238 			if (p1->p_vmspace->vm_sysref.refcnt > 1) {
239 				vmspace_unshare(p1);
240 			}
241 		}
242 		cpu_fork(ONLY_LWP_IN_PROC(p1), NULL, flags);
243 		return;
244 	}
245 
246 	if (flags & RFMEM) {
247 		vmspace_ref(p1->p_vmspace);
248 		p2->p_vmspace = p1->p_vmspace;
249 	}
250 
251 	while (vm_page_count_severe()) {
252 		vm_wait(0);
253 	}
254 
255 	if ((flags & RFMEM) == 0) {
256 		p2->p_vmspace = vmspace_fork(p1->p_vmspace);
257 
258 		pmap_pinit2(vmspace_pmap(p2->p_vmspace));
259 
260 		if (p1->p_vmspace->vm_shm)
261 			shmfork(p1, p2);
262 	}
263 
264 	pmap_init_proc(p2);
265 }
266 
267 /*
268  * Set default limits for VM system.  Call during proc0's initialization.
269  *
270  * Called from the low level boot code only.
271  */
272 void
273 vm_init_limits(struct proc *p)
274 {
275 	int rss_limit;
276 
277 	/*
278 	 * Set up the initial limits on process VM. Set the maximum resident
279 	 * set size to be half of (reasonably) available memory.  Since this
280 	 * is a soft limit, it comes into effect only when the system is out
281 	 * of memory - half of main memory helps to favor smaller processes,
282 	 * and reduces thrashing of the object cache.
283 	 */
284 	p->p_rlimit[RLIMIT_STACK].rlim_cur = dflssiz;
285 	p->p_rlimit[RLIMIT_STACK].rlim_max = maxssiz;
286 	p->p_rlimit[RLIMIT_DATA].rlim_cur = dfldsiz;
287 	p->p_rlimit[RLIMIT_DATA].rlim_max = maxdsiz;
288 	/* limit the limit to no less than 2MB */
289 	rss_limit = max(vmstats.v_free_count, 512);
290 	p->p_rlimit[RLIMIT_RSS].rlim_cur = ptoa(rss_limit);
291 	p->p_rlimit[RLIMIT_RSS].rlim_max = RLIM_INFINITY;
292 }
293 
294 /*
295  * Faultin the specified process.  Note that the process can be in any
296  * state.  Just clear P_SWAPPEDOUT and call wakeup in case the process is
297  * sleeping.
298  *
299  * No requirements.
300  */
301 void
302 faultin(struct proc *p)
303 {
304 	if (p->p_flags & P_SWAPPEDOUT) {
305 		/*
306 		 * The process is waiting in the kernel to return to user
307 		 * mode but cannot until P_SWAPPEDOUT gets cleared.
308 		 */
309 		lwkt_gettoken(&p->p_token);
310 		p->p_flags &= ~(P_SWAPPEDOUT | P_SWAPWAIT);
311 #ifdef INVARIANTS
312 		if (swap_debug)
313 			kprintf("swapping in %d (%s)\n", p->p_pid, p->p_comm);
314 #endif
315 		wakeup(p);
316 		lwkt_reltoken(&p->p_token);
317 	}
318 }
319 
320 /*
321  * Kernel initialization eventually falls through to this function,
322  * which is process 0.
323  *
324  * This swapin algorithm attempts to swap-in processes only if there
325  * is enough space for them.  Of course, if a process waits for a long
326  * time, it will be swapped in anyway.
327  */
328 struct scheduler_info {
329 	struct proc *pp;
330 	int ppri;
331 };
332 
333 static int scheduler_callback(struct proc *p, void *data);
334 
335 static void
336 scheduler(void *dummy)
337 {
338 	struct scheduler_info info;
339 	struct proc *p;
340 
341 	KKASSERT(!IN_CRITICAL_SECT(curthread));
342 loop:
343 	scheduler_notify = 0;
344 	/*
345 	 * Don't try to swap anything in if we are low on memory.
346 	 */
347 	if (vm_page_count_severe()) {
348 		vm_wait(0);
349 		goto loop;
350 	}
351 
352 	/*
353 	 * Look for a good candidate to wake up
354 	 */
355 	info.pp = NULL;
356 	info.ppri = INT_MIN;
357 	allproc_scan(scheduler_callback, &info);
358 
359 	/*
360 	 * Nothing to do, back to sleep for at least 1/10 of a second.  If
361 	 * we are woken up, immediately process the next request.  If
362 	 * multiple requests have built up the first is processed
363 	 * immediately and the rest are staggered.
364 	 */
365 	if ((p = info.pp) == NULL) {
366 		tsleep(&proc0, 0, "nowork", hz / 10);
367 		if (scheduler_notify == 0)
368 			tsleep(&scheduler_notify, 0, "nowork", 0);
369 		goto loop;
370 	}
371 
372 	/*
373 	 * Fault the selected process in, then wait for a short period of
374 	 * time and loop up.
375 	 *
376 	 * XXX we need a heuristic to get a measure of system stress and
377 	 * then adjust our stagger wakeup delay accordingly.
378 	 */
379 	lwkt_gettoken(&proc_token);
380 	faultin(p);
381 	p->p_swtime = 0;
382 	PRELE(p);
383 	lwkt_reltoken(&proc_token);
384 	tsleep(&proc0, 0, "swapin", hz / 10);
385 	goto loop;
386 }
387 
388 /*
389  * The caller must hold proc_token.
390  */
391 static int
392 scheduler_callback(struct proc *p, void *data)
393 {
394 	struct scheduler_info *info = data;
395 	struct lwp *lp;
396 	segsz_t pgs;
397 	int pri;
398 
399 	if (p->p_flags & P_SWAPWAIT) {
400 		pri = 0;
401 		FOREACH_LWP_IN_PROC(lp, p) {
402 			/* XXX lwp might need a different metric */
403 			pri += lp->lwp_slptime;
404 		}
405 		pri += p->p_swtime - p->p_nice * 8;
406 
407 		/*
408 		 * The more pages paged out while we were swapped,
409 		 * the more work we have to do to get up and running
410 		 * again and the lower our wakeup priority.
411 		 *
412 		 * Each second of sleep time is worth ~1MB
413 		 */
414 		lwkt_gettoken(&p->p_vmspace->vm_map.token);
415 		pgs = vmspace_resident_count(p->p_vmspace);
416 		if (pgs < p->p_vmspace->vm_swrss) {
417 			pri -= (p->p_vmspace->vm_swrss - pgs) /
418 				(1024 * 1024 / PAGE_SIZE);
419 		}
420 		lwkt_reltoken(&p->p_vmspace->vm_map.token);
421 
422 		/*
423 		 * If this process is higher priority and there is
424 		 * enough space, then select this process instead of
425 		 * the previous selection.
426 		 */
427 		if (pri > info->ppri) {
428 			if (info->pp)
429 				PRELE(info->pp);
430 			PHOLD(p);
431 			info->pp = p;
432 			info->ppri = pri;
433 		}
434 	}
435 	return(0);
436 }
437 
438 /*
439  * SMP races ok.
440  * No requirements.
441  */
442 void
443 swapin_request(void)
444 {
445 	if (scheduler_notify == 0) {
446 		scheduler_notify = 1;
447 		wakeup(&scheduler_notify);
448 	}
449 }
450 
451 #ifndef NO_SWAPPING
452 
453 #define	swappable(p) \
454 	(((p)->p_lock == 0) && \
455 	((p)->p_flags & (P_TRACED|P_SYSTEM|P_SWAPPEDOUT|P_WEXIT)) == 0)
456 
457 
458 /*
459  * Swap_idle_threshold1 is the guaranteed swapped in time for a process
460  */
461 static int swap_idle_threshold1 = 15;
462 SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold1,
463 	CTLFLAG_RW, &swap_idle_threshold1, 0, "Guaranteed process resident time (sec)");
464 
465 /*
466  * Swap_idle_threshold2 is the time that a process can be idle before
467  * it will be swapped out, if idle swapping is enabled.  Default is
468  * one minute.
469  */
470 static int swap_idle_threshold2 = 60;
471 SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold2,
472 	CTLFLAG_RW, &swap_idle_threshold2, 0, "Time (sec) a process can idle before being swapped");
473 
474 /*
475  * Swapout is driven by the pageout daemon.  Very simple, we find eligible
476  * procs and mark them as being swapped out.  This will cause the kernel
477  * to prefer to pageout those proc's pages first and the procs in question
478  * will not return to user mode until the swapper tells them they can.
479  *
480  * If any procs have been sleeping/stopped for at least maxslp seconds,
481  * they are swapped.  Else, we swap the longest-sleeping or stopped process,
482  * if any, otherwise the longest-resident process.
483  */
484 
485 static int swapout_procs_callback(struct proc *p, void *data);
486 
487 /*
488  * No requirements.
489  */
490 void
491 swapout_procs(int action)
492 {
493 	allproc_scan(swapout_procs_callback, &action);
494 }
495 
496 /*
497  * The caller must hold proc_token
498  */
499 static int
500 swapout_procs_callback(struct proc *p, void *data)
501 {
502 	struct lwp *lp;
503 	int action = *(int *)data;
504 	int minslp = -1;
505 
506 	if (!swappable(p))
507 		return(0);
508 
509 	lwkt_gettoken(&p->p_token);
510 
511 	/*
512 	 * We only consider active processes.
513 	 */
514 	if (p->p_stat != SACTIVE && p->p_stat != SSTOP) {
515 		lwkt_reltoken(&p->p_token);
516 		return(0);
517 	}
518 
519 	FOREACH_LWP_IN_PROC(lp, p) {
520 		/*
521 		 * do not swap out a realtime process
522 		 */
523 		if (RTP_PRIO_IS_REALTIME(lp->lwp_rtprio.type)) {
524 			lwkt_reltoken(&p->p_token);
525 			return(0);
526 		}
527 
528 		/*
529 		 * Guarentee swap_idle_threshold time in memory
530 		 */
531 		if (lp->lwp_slptime < swap_idle_threshold1) {
532 			lwkt_reltoken(&p->p_token);
533 			return(0);
534 		}
535 
536 		/*
537 		 * If the system is under memory stress, or if we
538 		 * are swapping idle processes >= swap_idle_threshold2,
539 		 * then swap the process out.
540 		 */
541 		if (((action & VM_SWAP_NORMAL) == 0) &&
542 		    (((action & VM_SWAP_IDLE) == 0) ||
543 		     (lp->lwp_slptime < swap_idle_threshold2))) {
544 			lwkt_reltoken(&p->p_token);
545 			return(0);
546 		}
547 
548 		if (minslp == -1 || lp->lwp_slptime < minslp)
549 			minslp = lp->lwp_slptime;
550 	}
551 
552 	/*
553 	 * If the process has been asleep for awhile, swap
554 	 * it out.
555 	 */
556 	if ((action & VM_SWAP_NORMAL) ||
557 	    ((action & VM_SWAP_IDLE) &&
558 	     (minslp > swap_idle_threshold2))) {
559 		swapout(p);
560 	}
561 
562 	/*
563 	 * cleanup our reference
564 	 */
565 	lwkt_reltoken(&p->p_token);
566 
567 	return(0);
568 }
569 
570 /*
571  * The caller must hold proc_token and p->p_token
572  */
573 static void
574 swapout(struct proc *p)
575 {
576 #ifdef INVARIANTS
577 	if (swap_debug)
578 		kprintf("swapping out %d (%s)\n", p->p_pid, p->p_comm);
579 #endif
580 	++p->p_ru.ru_nswap;
581 
582 	/*
583 	 * remember the process resident count
584 	 */
585 	p->p_vmspace->vm_swrss = vmspace_resident_count(p->p_vmspace);
586 	p->p_flags |= P_SWAPPEDOUT;
587 	p->p_swtime = 0;
588 }
589 
590 #endif /* !NO_SWAPPING */
591 
592