xref: /dragonfly/sys/vm/vm_glue.c (revision a8ca8ac6)
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	from: @(#)vm_glue.c	8.6 (Berkeley) 1/5/94
39  *
40  *
41  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
42  * All rights reserved.
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  *
64  * $FreeBSD: src/sys/vm/vm_glue.c,v 1.94.2.4 2003/01/13 22:51:17 dillon Exp $
65  * $DragonFly: src/sys/vm/vm_glue.c,v 1.56 2008/07/01 02:02:56 dillon Exp $
66  */
67 
68 #include "opt_vm.h"
69 
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/proc.h>
73 #include <sys/resourcevar.h>
74 #include <sys/buf.h>
75 #include <sys/shm.h>
76 #include <sys/vmmeter.h>
77 #include <sys/sysctl.h>
78 
79 #include <sys/kernel.h>
80 #include <sys/unistd.h>
81 
82 #include <machine/limits.h>
83 
84 #include <vm/vm.h>
85 #include <vm/vm_param.h>
86 #include <sys/lock.h>
87 #include <vm/pmap.h>
88 #include <vm/vm_map.h>
89 #include <vm/vm_page.h>
90 #include <vm/vm_pageout.h>
91 #include <vm/vm_kern.h>
92 #include <vm/vm_extern.h>
93 
94 #include <sys/user.h>
95 #include <vm/vm_page2.h>
96 #include <sys/thread2.h>
97 #include <sys/sysref2.h>
98 
99 /*
100  * THIS MUST BE THE LAST INITIALIZATION ITEM!!!
101  *
102  * Note: run scheduling should be divorced from the vm system.
103  */
104 static void scheduler (void *);
105 SYSINIT(scheduler, SI_SUB_RUN_SCHEDULER, SI_ORDER_FIRST, scheduler, NULL)
106 
107 #ifdef INVARIANTS
108 
109 static int swap_debug = 0;
110 SYSCTL_INT(_vm, OID_AUTO, swap_debug,
111 	CTLFLAG_RW, &swap_debug, 0, "");
112 
113 #endif
114 
115 static int scheduler_notify;
116 
117 static void swapout (struct proc *);
118 
119 /*
120  * No requirements.
121  */
122 int
123 kernacc(c_caddr_t addr, int len, int rw)
124 {
125 	boolean_t rv;
126 	vm_offset_t saddr, eaddr;
127 	vm_prot_t prot;
128 
129 	KASSERT((rw & (~VM_PROT_ALL)) == 0,
130 	    ("illegal ``rw'' argument to kernacc (%x)\n", rw));
131 
132 	/*
133 	 * The globaldata space is not part of the kernel_map proper,
134 	 * check access separately.
135 	 */
136 	if (is_globaldata_space((vm_offset_t)addr, (vm_offset_t)(addr + len)))
137 		return (TRUE);
138 
139 	/*
140 	 * Nominal kernel memory access - check access via kernel_map.
141 	 */
142 	if ((vm_offset_t)addr + len > kernel_map.max_offset ||
143 	    (vm_offset_t)addr + len < (vm_offset_t)addr) {
144 		return (FALSE);
145 	}
146 	prot = rw;
147 	saddr = trunc_page((vm_offset_t)addr);
148 	eaddr = round_page((vm_offset_t)addr + len);
149 	rv = vm_map_check_protection(&kernel_map, saddr, eaddr, prot, FALSE);
150 
151 	return (rv == TRUE);
152 }
153 
154 /*
155  * No requirements.
156  */
157 int
158 useracc(c_caddr_t addr, int len, int rw)
159 {
160 	boolean_t rv;
161 	vm_prot_t prot;
162 	vm_map_t map;
163 	vm_map_entry_t save_hint;
164 
165 	KASSERT((rw & (~VM_PROT_ALL)) == 0,
166 	    ("illegal ``rw'' argument to useracc (%x)\n", rw));
167 	prot = rw;
168 	/*
169 	 * XXX - check separately to disallow access to user area and user
170 	 * page tables - they are in the map.
171 	 *
172 	 * XXX - VM_MAX_USER_ADDRESS is an end address, not a max.  It was once
173 	 * only used (as an end address) in trap.c.  Use it as an end address
174 	 * here too.  This bogusness has spread.  I just fixed where it was
175 	 * used as a max in vm_mmap.c.
176 	 */
177 	if ((vm_offset_t) addr + len > /* XXX */ VM_MAX_USER_ADDRESS
178 	    || (vm_offset_t) addr + len < (vm_offset_t) addr) {
179 		return (FALSE);
180 	}
181 	map = &curproc->p_vmspace->vm_map;
182 	vm_map_lock_read(map);
183 	/*
184 	 * We save the map hint, and restore it.  Useracc appears to distort
185 	 * the map hint unnecessarily.
186 	 */
187 	save_hint = map->hint;
188 	rv = vm_map_check_protection(map, trunc_page((vm_offset_t)addr),
189 				     round_page((vm_offset_t)addr + len),
190 				     prot, TRUE);
191 	map->hint = save_hint;
192 	vm_map_unlock_read(map);
193 
194 	return (rv == TRUE);
195 }
196 
197 /*
198  * No requirements.
199  */
200 void
201 vslock(caddr_t addr, u_int len)
202 {
203 	if (len) {
204 		vm_map_wire(&curproc->p_vmspace->vm_map,
205 			    trunc_page((vm_offset_t)addr),
206 			    round_page((vm_offset_t)addr + len), 0);
207 	}
208 }
209 
210 /*
211  * No requirements.
212  */
213 void
214 vsunlock(caddr_t addr, u_int len)
215 {
216 	if (len) {
217 		vm_map_wire(&curproc->p_vmspace->vm_map,
218 			    trunc_page((vm_offset_t)addr),
219 			    round_page((vm_offset_t)addr + len),
220 			    KM_PAGEABLE);
221 	}
222 }
223 
224 /*
225  * Implement fork's actions on an address space.
226  * Here we arrange for the address space to be copied or referenced,
227  * allocate a user struct (pcb and kernel stack), then call the
228  * machine-dependent layer to fill those in and make the new process
229  * ready to run.  The new process is set up so that it returns directly
230  * to user mode to avoid stack copying and relocation problems.
231  *
232  * No requirements.
233  */
234 void
235 vm_fork(struct proc *p1, struct proc *p2, int flags)
236 {
237 	if ((flags & RFPROC) == 0) {
238 		/*
239 		 * Divorce the memory, if it is shared, essentially
240 		 * this changes shared memory amongst threads, into
241 		 * COW locally.
242 		 */
243 		if ((flags & RFMEM) == 0) {
244 			if (p1->p_vmspace->vm_sysref.refcnt > 1) {
245 				vmspace_unshare(p1);
246 			}
247 		}
248 		cpu_fork(ONLY_LWP_IN_PROC(p1), NULL, flags);
249 		return;
250 	}
251 
252 	if (flags & RFMEM) {
253 		p2->p_vmspace = p1->p_vmspace;
254 		sysref_get(&p1->p_vmspace->vm_sysref);
255 	}
256 
257 	while (vm_page_count_severe()) {
258 		vm_wait(0);
259 	}
260 
261 	if ((flags & RFMEM) == 0) {
262 		p2->p_vmspace = vmspace_fork(p1->p_vmspace);
263 
264 		pmap_pinit2(vmspace_pmap(p2->p_vmspace));
265 
266 		if (p1->p_vmspace->vm_shm)
267 			shmfork(p1, p2);
268 	}
269 
270 	pmap_init_proc(p2);
271 }
272 
273 /*
274  * Called after process has been wait(2)'ed apon and is being reaped.
275  * The idea is to reclaim resources that we could not reclaim while
276  * the process was still executing.
277  *
278  * No requirements.
279  */
280 void
281 vm_waitproc(struct proc *p)
282 {
283 	cpu_proc_wait(p);
284 	vmspace_exitfree(p);	/* and clean-out the vmspace */
285 }
286 
287 /*
288  * Set default limits for VM system.  Call during proc0's initialization.
289  *
290  * Called from the low level boot code only.
291  */
292 void
293 vm_init_limits(struct proc *p)
294 {
295 	int rss_limit;
296 
297 	/*
298 	 * Set up the initial limits on process VM. Set the maximum resident
299 	 * set size to be half of (reasonably) available memory.  Since this
300 	 * is a soft limit, it comes into effect only when the system is out
301 	 * of memory - half of main memory helps to favor smaller processes,
302 	 * and reduces thrashing of the object cache.
303 	 */
304 	p->p_rlimit[RLIMIT_STACK].rlim_cur = dflssiz;
305 	p->p_rlimit[RLIMIT_STACK].rlim_max = maxssiz;
306 	p->p_rlimit[RLIMIT_DATA].rlim_cur = dfldsiz;
307 	p->p_rlimit[RLIMIT_DATA].rlim_max = maxdsiz;
308 	/* limit the limit to no less than 2MB */
309 	rss_limit = max(vmstats.v_free_count, 512);
310 	p->p_rlimit[RLIMIT_RSS].rlim_cur = ptoa(rss_limit);
311 	p->p_rlimit[RLIMIT_RSS].rlim_max = RLIM_INFINITY;
312 }
313 
314 /*
315  * Faultin the specified process.  Note that the process can be in any
316  * state.  Just clear P_SWAPPEDOUT and call wakeup in case the process is
317  * sleeping.
318  *
319  * No requirements.
320  */
321 void
322 faultin(struct proc *p)
323 {
324 	if (p->p_flag & P_SWAPPEDOUT) {
325 		/*
326 		 * The process is waiting in the kernel to return to user
327 		 * mode but cannot until P_SWAPPEDOUT gets cleared.
328 		 */
329 		crit_enter();
330 		lwkt_gettoken(&proc_token);
331 		p->p_flag &= ~(P_SWAPPEDOUT | P_SWAPWAIT);
332 #ifdef INVARIANTS
333 		if (swap_debug)
334 			kprintf("swapping in %d (%s)\n", p->p_pid, p->p_comm);
335 #endif
336 		wakeup(p);
337 		lwkt_reltoken(&proc_token);
338 		crit_exit();
339 	}
340 }
341 
342 /*
343  * Kernel initialization eventually falls through to this function,
344  * which is process 0.
345  *
346  * This swapin algorithm attempts to swap-in processes only if there
347  * is enough space for them.  Of course, if a process waits for a long
348  * time, it will be swapped in anyway.
349  */
350 struct scheduler_info {
351 	struct proc *pp;
352 	int ppri;
353 };
354 
355 static int scheduler_callback(struct proc *p, void *data);
356 
357 static void
358 scheduler(void *dummy)
359 {
360 	struct scheduler_info info;
361 	struct proc *p;
362 
363 	KKASSERT(!IN_CRITICAL_SECT(curthread));
364 loop:
365 	scheduler_notify = 0;
366 	/*
367 	 * Don't try to swap anything in if we are low on memory.
368 	 */
369 	if (vm_page_count_severe()) {
370 		vm_wait(0);
371 		goto loop;
372 	}
373 
374 	/*
375 	 * Look for a good candidate to wake up
376 	 */
377 	info.pp = NULL;
378 	info.ppri = INT_MIN;
379 	allproc_scan(scheduler_callback, &info);
380 
381 	/*
382 	 * Nothing to do, back to sleep for at least 1/10 of a second.  If
383 	 * we are woken up, immediately process the next request.  If
384 	 * multiple requests have built up the first is processed
385 	 * immediately and the rest are staggered.
386 	 */
387 	if ((p = info.pp) == NULL) {
388 		tsleep(&proc0, 0, "nowork", hz / 10);
389 		if (scheduler_notify == 0)
390 			tsleep(&scheduler_notify, 0, "nowork", 0);
391 		goto loop;
392 	}
393 
394 	/*
395 	 * Fault the selected process in, then wait for a short period of
396 	 * time and loop up.
397 	 *
398 	 * XXX we need a heuristic to get a measure of system stress and
399 	 * then adjust our stagger wakeup delay accordingly.
400 	 */
401 	lwkt_gettoken(&proc_token);
402 	faultin(p);
403 	p->p_swtime = 0;
404 	PRELE(p);
405 	lwkt_reltoken(&proc_token);
406 	tsleep(&proc0, 0, "swapin", hz / 10);
407 	goto loop;
408 }
409 
410 /*
411  * The caller must hold proc_token.
412  */
413 static int
414 scheduler_callback(struct proc *p, void *data)
415 {
416 	struct scheduler_info *info = data;
417 	struct lwp *lp;
418 	segsz_t pgs;
419 	int pri;
420 
421 	if (p->p_flag & P_SWAPWAIT) {
422 		pri = 0;
423 		FOREACH_LWP_IN_PROC(lp, p) {
424 			/* XXX lwp might need a different metric */
425 			pri += lp->lwp_slptime;
426 		}
427 		pri += p->p_swtime - p->p_nice * 8;
428 
429 		/*
430 		 * The more pages paged out while we were swapped,
431 		 * the more work we have to do to get up and running
432 		 * again and the lower our wakeup priority.
433 		 *
434 		 * Each second of sleep time is worth ~1MB
435 		 */
436 		pgs = vmspace_resident_count(p->p_vmspace);
437 		if (pgs < p->p_vmspace->vm_swrss) {
438 			pri -= (p->p_vmspace->vm_swrss - pgs) /
439 				(1024 * 1024 / PAGE_SIZE);
440 		}
441 
442 		/*
443 		 * If this process is higher priority and there is
444 		 * enough space, then select this process instead of
445 		 * the previous selection.
446 		 */
447 		if (pri > info->ppri) {
448 			if (info->pp)
449 				PRELE(info->pp);
450 			PHOLD(p);
451 			info->pp = p;
452 			info->ppri = pri;
453 		}
454 	}
455 	return(0);
456 }
457 
458 /*
459  * SMP races ok.
460  * No requirements.
461  */
462 void
463 swapin_request(void)
464 {
465 	if (scheduler_notify == 0) {
466 		scheduler_notify = 1;
467 		wakeup(&scheduler_notify);
468 	}
469 }
470 
471 #ifndef NO_SWAPPING
472 
473 #define	swappable(p) \
474 	(((p)->p_lock == 0) && \
475 	((p)->p_flag & (P_TRACED|P_SYSTEM|P_SWAPPEDOUT|P_WEXIT)) == 0)
476 
477 
478 /*
479  * Swap_idle_threshold1 is the guaranteed swapped in time for a process
480  */
481 static int swap_idle_threshold1 = 15;
482 SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold1,
483 	CTLFLAG_RW, &swap_idle_threshold1, 0, "Guaranteed process resident time (sec)");
484 
485 /*
486  * Swap_idle_threshold2 is the time that a process can be idle before
487  * it will be swapped out, if idle swapping is enabled.  Default is
488  * one minute.
489  */
490 static int swap_idle_threshold2 = 60;
491 SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold2,
492 	CTLFLAG_RW, &swap_idle_threshold2, 0, "Time (sec) a process can idle before being swapped");
493 
494 /*
495  * Swapout is driven by the pageout daemon.  Very simple, we find eligible
496  * procs and mark them as being swapped out.  This will cause the kernel
497  * to prefer to pageout those proc's pages first and the procs in question
498  * will not return to user mode until the swapper tells them they can.
499  *
500  * If any procs have been sleeping/stopped for at least maxslp seconds,
501  * they are swapped.  Else, we swap the longest-sleeping or stopped process,
502  * if any, otherwise the longest-resident process.
503  */
504 
505 static int swapout_procs_callback(struct proc *p, void *data);
506 
507 /*
508  * No requirements.
509  */
510 void
511 swapout_procs(int action)
512 {
513 	lwkt_gettoken(&vmspace_token);
514 	allproc_scan(swapout_procs_callback, &action);
515 	lwkt_reltoken(&vmspace_token);
516 }
517 
518 /*
519  * The caller must hold proc_token and vmspace_token.
520  */
521 static int
522 swapout_procs_callback(struct proc *p, void *data)
523 {
524 	struct vmspace *vm;
525 	struct lwp *lp;
526 	int action = *(int *)data;
527 	int minslp = -1;
528 
529 	if (!swappable(p))
530 		return(0);
531 
532 	vm = p->p_vmspace;
533 
534 	/*
535 	 * We only consider active processes.
536 	 */
537 	if (p->p_stat != SACTIVE && p->p_stat != SSTOP)
538 		return(0);
539 
540 	FOREACH_LWP_IN_PROC(lp, p) {
541 		/*
542 		 * do not swap out a realtime process
543 		 */
544 		if (RTP_PRIO_IS_REALTIME(lp->lwp_rtprio.type))
545 			return(0);
546 
547 		/*
548 		 * Guarentee swap_idle_threshold time in memory
549 		 */
550 		if (lp->lwp_slptime < swap_idle_threshold1)
551 			return(0);
552 
553 		/*
554 		 * If the system is under memory stress, or if we
555 		 * are swapping idle processes >= swap_idle_threshold2,
556 		 * then swap the process out.
557 		 */
558 		if (((action & VM_SWAP_NORMAL) == 0) &&
559 		    (((action & VM_SWAP_IDLE) == 0) ||
560 		     (lp->lwp_slptime < swap_idle_threshold2))) {
561 			return(0);
562 		}
563 
564 		if (minslp == -1 || lp->lwp_slptime < minslp)
565 			minslp = lp->lwp_slptime;
566 	}
567 
568 	sysref_get(&vm->vm_sysref);
569 
570 	/*
571 	 * If the process has been asleep for awhile, swap
572 	 * it out.
573 	 */
574 	if ((action & VM_SWAP_NORMAL) ||
575 	    ((action & VM_SWAP_IDLE) &&
576 	     (minslp > swap_idle_threshold2))) {
577 		swapout(p);
578 	}
579 
580 	/*
581 	 * cleanup our reference
582 	 */
583 	sysref_put(&vm->vm_sysref);
584 
585 	return(0);
586 }
587 
588 /*
589  * The caller must hold proc_token and vmspace_token.
590  */
591 static void
592 swapout(struct proc *p)
593 {
594 #ifdef INVARIANTS
595 	if (swap_debug)
596 		kprintf("swapping out %d (%s)\n", p->p_pid, p->p_comm);
597 #endif
598 	++p->p_ru.ru_nswap;
599 	/*
600 	 * remember the process resident count
601 	 */
602 	p->p_vmspace->vm_swrss = vmspace_resident_count(p->p_vmspace);
603 	p->p_flag |= P_SWAPPEDOUT;
604 	p->p_swtime = 0;
605 }
606 
607 #endif /* !NO_SWAPPING */
608 
609