xref: /dragonfly/sys/vm/vm_glue.c (revision b960c7cf)
1 /*
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	from: @(#)vm_glue.c	8.6 (Berkeley) 1/5/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Permission to use, copy, modify and distribute this software and
39  * its documentation is hereby granted, provided that both the copyright
40  * notice and this permission notice appear in all copies of the
41  * software, derivative works or modified versions, and any portions
42  * thereof, and that both notices appear in supporting documentation.
43  *
44  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
45  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
46  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
47  *
48  * Carnegie Mellon requests users of this software to return to
49  *
50  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
51  *  School of Computer Science
52  *  Carnegie Mellon University
53  *  Pittsburgh PA 15213-3890
54  *
55  * any improvements or extensions that they make and grant Carnegie the
56  * rights to redistribute these changes.
57  *
58  * $FreeBSD: src/sys/vm/vm_glue.c,v 1.94.2.4 2003/01/13 22:51:17 dillon Exp $
59  */
60 
61 #include "opt_vm.h"
62 
63 #include <sys/param.h>
64 #include <sys/systm.h>
65 #include <sys/proc.h>
66 #include <sys/resourcevar.h>
67 #include <sys/buf.h>
68 #include <sys/shm.h>
69 #include <sys/vmmeter.h>
70 #include <sys/sysctl.h>
71 
72 #include <sys/kernel.h>
73 #include <sys/unistd.h>
74 
75 #include <machine/limits.h>
76 #include <machine/vmm.h>
77 
78 #include <vm/vm.h>
79 #include <vm/vm_param.h>
80 #include <sys/lock.h>
81 #include <vm/pmap.h>
82 #include <vm/vm_map.h>
83 #include <vm/vm_page.h>
84 #include <vm/vm_page2.h>
85 #include <vm/vm_pageout.h>
86 #include <vm/vm_kern.h>
87 #include <vm/vm_extern.h>
88 
89 /*
90  * THIS MUST BE THE LAST INITIALIZATION ITEM!!!
91  *
92  * Note: run scheduling should be divorced from the vm system.
93  */
94 static void scheduler (void *);
95 SYSINIT(scheduler, SI_SUB_RUN_SCHEDULER, SI_ORDER_FIRST, scheduler, NULL);
96 
97 #ifdef INVARIANTS
98 
99 static int swap_debug = 0;
100 SYSCTL_INT(_vm, OID_AUTO, swap_debug,
101 	CTLFLAG_RW, &swap_debug, 0, "");
102 
103 #endif
104 
105 static int scheduler_notify;
106 
107 static void swapout (struct proc *);
108 
109 /*
110  * No requirements.
111  */
112 int
113 kernacc(c_caddr_t addr, int len, int rw)
114 {
115 	boolean_t rv;
116 	vm_offset_t saddr, eaddr;
117 	vm_prot_t prot;
118 
119 	KASSERT((rw & (~VM_PROT_ALL)) == 0,
120 	    ("illegal ``rw'' argument to kernacc (%x)", rw));
121 
122 	/*
123 	 * The globaldata space is not part of the kernel_map proper,
124 	 * check access separately.
125 	 */
126 	if (is_globaldata_space((vm_offset_t)addr, (vm_offset_t)(addr + len)))
127 		return (TRUE);
128 
129 	/*
130 	 * Nominal kernel memory access - check access via kernel_map.
131 	 */
132 	if ((vm_offset_t)addr + len > vm_map_max(&kernel_map) ||
133 	    (vm_offset_t)addr + len < (vm_offset_t)addr) {
134 		return (FALSE);
135 	}
136 	prot = rw;
137 	saddr = trunc_page((vm_offset_t)addr);
138 	eaddr = round_page((vm_offset_t)addr + len);
139 	rv = vm_map_check_protection(&kernel_map, saddr, eaddr, prot, FALSE);
140 
141 	return (rv == TRUE);
142 }
143 
144 /*
145  * No requirements.
146  */
147 int
148 useracc(c_caddr_t addr, int len, int rw)
149 {
150 	boolean_t rv;
151 	vm_prot_t prot;
152 	vm_map_t map;
153 	vm_offset_t wrap;
154 	vm_offset_t gpa;
155 
156 	KASSERT((rw & (~VM_PROT_ALL)) == 0,
157 	    ("illegal ``rw'' argument to useracc (%x)", rw));
158 	prot = rw;
159 
160 	if (curthread->td_vmm) {
161 		if (vmm_vm_get_gpa(curproc, (register_t *)&gpa, (register_t) addr))
162 			panic("%s: could not get GPA\n", __func__);
163 		addr = (c_caddr_t) gpa;
164 	}
165 
166 	/*
167 	 * XXX - check separately to disallow access to user area and user
168 	 * page tables - they are in the map.
169 	 */
170 	wrap = (vm_offset_t)addr + len;
171 	if (wrap > VM_MAX_USER_ADDRESS || wrap < (vm_offset_t)addr) {
172 		return (FALSE);
173 	}
174 	map = &curproc->p_vmspace->vm_map;
175 	vm_map_lock_read(map);
176 
177 	rv = vm_map_check_protection(map, trunc_page((vm_offset_t)addr),
178 				     round_page(wrap), prot, TRUE);
179 	vm_map_unlock_read(map);
180 
181 	return (rv == TRUE);
182 }
183 
184 /*
185  * No requirements.
186  */
187 void
188 vslock(caddr_t addr, u_int len)
189 {
190 	if (len) {
191 		vm_map_wire(&curproc->p_vmspace->vm_map,
192 			    trunc_page((vm_offset_t)addr),
193 			    round_page((vm_offset_t)addr + len), 0);
194 	}
195 }
196 
197 /*
198  * No requirements.
199  */
200 void
201 vsunlock(caddr_t addr, u_int len)
202 {
203 	if (len) {
204 		vm_map_wire(&curproc->p_vmspace->vm_map,
205 			    trunc_page((vm_offset_t)addr),
206 			    round_page((vm_offset_t)addr + len),
207 			    KM_PAGEABLE);
208 	}
209 }
210 
211 /*
212  * Implement fork's actions on an address space.
213  * Here we arrange for the address space to be copied or referenced,
214  * allocate a user struct (pcb and kernel stack), then call the
215  * machine-dependent layer to fill those in and make the new process
216  * ready to run.  The new process is set up so that it returns directly
217  * to user mode to avoid stack copying and relocation problems.
218  *
219  * No requirements.
220  */
221 void
222 vm_fork(struct proc *p1, struct proc *p2, int flags)
223 {
224 	if ((flags & RFPROC) == 0) {
225 		/*
226 		 * Divorce the memory, if it is shared, essentially
227 		 * this changes shared memory amongst threads, into
228 		 * COW locally.
229 		 */
230 		if ((flags & RFMEM) == 0) {
231 			if (vmspace_getrefs(p1->p_vmspace) > 1) {
232 				vmspace_unshare(p1);
233 			}
234 		}
235 		cpu_fork(ONLY_LWP_IN_PROC(p1), NULL, flags);
236 		return;
237 	}
238 
239 	if (flags & RFMEM) {
240 		vmspace_ref(p1->p_vmspace);
241 		p2->p_vmspace = p1->p_vmspace;
242 	}
243 
244 	while (vm_page_count_severe()) {
245 		vm_wait(0);
246 	}
247 
248 	if ((flags & RFMEM) == 0) {
249 		p2->p_vmspace = vmspace_fork(p1->p_vmspace);
250 
251 		pmap_pinit2(vmspace_pmap(p2->p_vmspace));
252 
253 		if (p1->p_vmspace->vm_shm)
254 			shmfork(p1, p2);
255 	}
256 
257 	pmap_init_proc(p2);
258 }
259 
260 /*
261  * Set default limits for VM system.  Call during proc0's initialization.
262  *
263  * Called from the low level boot code only.
264  */
265 void
266 vm_init_limits(struct proc *p)
267 {
268 	int rss_limit;
269 
270 	/*
271 	 * Set up the initial limits on process VM. Set the maximum resident
272 	 * set size to be half of (reasonably) available memory.  Since this
273 	 * is a soft limit, it comes into effect only when the system is out
274 	 * of memory - half of main memory helps to favor smaller processes,
275 	 * and reduces thrashing of the object cache.
276 	 */
277 	p->p_rlimit[RLIMIT_STACK].rlim_cur = dflssiz;
278 	p->p_rlimit[RLIMIT_STACK].rlim_max = maxssiz;
279 	p->p_rlimit[RLIMIT_DATA].rlim_cur = dfldsiz;
280 	p->p_rlimit[RLIMIT_DATA].rlim_max = maxdsiz;
281 	/* limit the limit to no less than 2MB */
282 	rss_limit = max(vmstats.v_free_count, 512);
283 	p->p_rlimit[RLIMIT_RSS].rlim_cur = ptoa(rss_limit);
284 	p->p_rlimit[RLIMIT_RSS].rlim_max = RLIM_INFINITY;
285 }
286 
287 /*
288  * Faultin the specified process.  Note that the process can be in any
289  * state.  Just clear P_SWAPPEDOUT and call wakeup in case the process is
290  * sleeping.
291  *
292  * No requirements.
293  */
294 void
295 faultin(struct proc *p)
296 {
297 	if (p->p_flags & P_SWAPPEDOUT) {
298 		/*
299 		 * The process is waiting in the kernel to return to user
300 		 * mode but cannot until P_SWAPPEDOUT gets cleared.
301 		 */
302 		lwkt_gettoken(&p->p_token);
303 		p->p_flags &= ~(P_SWAPPEDOUT | P_SWAPWAIT);
304 #ifdef INVARIANTS
305 		if (swap_debug)
306 			kprintf("swapping in %d (%s)\n", p->p_pid, p->p_comm);
307 #endif
308 		wakeup(p);
309 		lwkt_reltoken(&p->p_token);
310 	}
311 }
312 
313 /*
314  * Kernel initialization eventually falls through to this function,
315  * which is process 0.
316  *
317  * This swapin algorithm attempts to swap-in processes only if there
318  * is enough space for them.  Of course, if a process waits for a long
319  * time, it will be swapped in anyway.
320  */
321 struct scheduler_info {
322 	struct proc *pp;
323 	int ppri;
324 };
325 
326 static int scheduler_callback(struct proc *p, void *data);
327 
328 static void
329 scheduler(void *dummy)
330 {
331 	struct scheduler_info info;
332 	struct proc *p;
333 
334 	KKASSERT(!IN_CRITICAL_SECT(curthread));
335 loop:
336 	scheduler_notify = 0;
337 	/*
338 	 * Don't try to swap anything in if we are low on memory.
339 	 */
340 	if (vm_page_count_severe()) {
341 		vm_wait(0);
342 		goto loop;
343 	}
344 
345 	/*
346 	 * Look for a good candidate to wake up
347 	 *
348 	 * XXX we should make the schedule thread pcpu and then use a
349 	 * segmented allproc scan.
350 	 */
351 	info.pp = NULL;
352 	info.ppri = INT_MIN;
353 	allproc_scan(scheduler_callback, &info, 0);
354 
355 	/*
356 	 * Nothing to do, back to sleep for at least 1/10 of a second.  If
357 	 * we are woken up, immediately process the next request.  If
358 	 * multiple requests have built up the first is processed
359 	 * immediately and the rest are staggered.
360 	 */
361 	if ((p = info.pp) == NULL) {
362 		tsleep(&proc0, 0, "nowork", hz / 10);
363 		if (scheduler_notify == 0)
364 			tsleep(&scheduler_notify, 0, "nowork", 0);
365 		goto loop;
366 	}
367 
368 	/*
369 	 * Fault the selected process in, then wait for a short period of
370 	 * time and loop up.
371 	 *
372 	 * XXX we need a heuristic to get a measure of system stress and
373 	 * then adjust our stagger wakeup delay accordingly.
374 	 */
375 	lwkt_gettoken(&p->p_token);
376 	faultin(p);
377 	p->p_swtime = 0;
378 	lwkt_reltoken(&p->p_token);
379 	PRELE(p);
380 	tsleep(&proc0, 0, "swapin", hz / 10);
381 	goto loop;
382 }
383 
384 /*
385  * Process only has its hold count bumped, we need the token
386  * to safely scan the LWPs
387  */
388 static int
389 scheduler_callback(struct proc *p, void *data)
390 {
391 	struct scheduler_info *info = data;
392 	struct vmspace *vm;
393 	struct lwp *lp;
394 	segsz_t pgs;
395 	int pri;
396 
397 	/*
398 	 * We only care about processes in swap-wait.  Interlock test with
399 	 * token if the flag is found set.
400 	 */
401 	if ((p->p_flags & P_SWAPWAIT) == 0)
402 		return 0;
403 	lwkt_gettoken_shared(&p->p_token);
404 	if ((p->p_flags & P_SWAPWAIT) == 0) {
405 		lwkt_reltoken(&p->p_token);
406 		return 0;
407 	}
408 
409 	/*
410 	 * Calculate priority for swap-in
411 	 */
412 	pri = 0;
413 	FOREACH_LWP_IN_PROC(lp, p) {
414 		/* XXX lwp might need a different metric */
415 		pri += lp->lwp_slptime;
416 	}
417 	pri += p->p_swtime - p->p_nice * 8;
418 
419 	/*
420 	 * The more pages paged out while we were swapped,
421 	 * the more work we have to do to get up and running
422 	 * again and the lower our wakeup priority.
423 	 *
424 	 * Each second of sleep time is worth ~1MB
425 	 */
426 	if ((vm = p->p_vmspace) != NULL) {
427 		vmspace_hold(vm);
428 		pgs = vmspace_resident_count(vm);
429 		if (pgs < vm->vm_swrss) {
430 			pri -= (vm->vm_swrss - pgs) /
431 			       (1024 * 1024 / PAGE_SIZE);
432 		}
433 		vmspace_drop(vm);
434 	}
435 	lwkt_reltoken(&p->p_token);
436 
437 	/*
438 	 * If this process is higher priority and there is
439 	 * enough space, then select this process instead of
440 	 * the previous selection.
441 	 */
442 	if (pri > info->ppri) {
443 		if (info->pp)
444 			PRELE(info->pp);
445 		PHOLD(p);
446 		info->pp = p;
447 		info->ppri = pri;
448 	}
449 	return(0);
450 }
451 
452 /*
453  * SMP races ok.
454  * No requirements.
455  */
456 void
457 swapin_request(void)
458 {
459 	if (scheduler_notify == 0) {
460 		scheduler_notify = 1;
461 		wakeup(&scheduler_notify);
462 	}
463 }
464 
465 #ifndef NO_SWAPPING
466 
467 #define	swappable(p) \
468 	(((p)->p_lock == 0) && \
469 	((p)->p_flags & (P_TRACED|P_SYSTEM|P_SWAPPEDOUT|P_WEXIT)) == 0)
470 
471 
472 /*
473  * Swap_idle_threshold1 is the guaranteed swapped in time for a process
474  */
475 static int swap_idle_threshold1 = 15;
476 SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold1,
477 	CTLFLAG_RW, &swap_idle_threshold1, 0, "Guaranteed process resident time (sec)");
478 
479 /*
480  * Swap_idle_threshold2 is the time that a process can be idle before
481  * it will be swapped out, if idle swapping is enabled.  Default is
482  * one minute.
483  */
484 static int swap_idle_threshold2 = 60;
485 SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold2,
486 	CTLFLAG_RW, &swap_idle_threshold2, 0, "Time (sec) a process can idle before being swapped");
487 
488 /*
489  * Swapout is driven by the pageout daemon.  Very simple, we find eligible
490  * procs and mark them as being swapped out.  This will cause the kernel
491  * to prefer to pageout those proc's pages first and the procs in question
492  * will not return to user mode until the swapper tells them they can.
493  *
494  * If any procs have been sleeping/stopped for at least maxslp seconds,
495  * they are swapped.  Else, we swap the longest-sleeping or stopped process,
496  * if any, otherwise the longest-resident process.
497  */
498 
499 static int swapout_procs_callback(struct proc *p, void *data);
500 
501 /*
502  * No requirements.
503  */
504 void
505 swapout_procs(int action)
506 {
507 	allproc_scan(swapout_procs_callback, &action, 0);
508 }
509 
510 static int
511 swapout_procs_callback(struct proc *p, void *data)
512 {
513 	struct lwp *lp;
514 	int action = *(int *)data;
515 	int minslp = -1;
516 
517 	if (!swappable(p))
518 		return(0);
519 
520 	lwkt_gettoken(&p->p_token);
521 
522 	/*
523 	 * We only consider active processes.
524 	 */
525 	if (p->p_stat != SACTIVE && p->p_stat != SSTOP) {
526 		lwkt_reltoken(&p->p_token);
527 		return(0);
528 	}
529 
530 	FOREACH_LWP_IN_PROC(lp, p) {
531 		/*
532 		 * do not swap out a realtime process
533 		 */
534 		if (RTP_PRIO_IS_REALTIME(lp->lwp_rtprio.type)) {
535 			lwkt_reltoken(&p->p_token);
536 			return(0);
537 		}
538 
539 		/*
540 		 * Guarentee swap_idle_threshold time in memory
541 		 */
542 		if (lp->lwp_slptime < swap_idle_threshold1) {
543 			lwkt_reltoken(&p->p_token);
544 			return(0);
545 		}
546 
547 		/*
548 		 * If the system is under memory stress, or if we
549 		 * are swapping idle processes >= swap_idle_threshold2,
550 		 * then swap the process out.
551 		 */
552 		if (((action & VM_SWAP_NORMAL) == 0) &&
553 		    (((action & VM_SWAP_IDLE) == 0) ||
554 		     (lp->lwp_slptime < swap_idle_threshold2))) {
555 			lwkt_reltoken(&p->p_token);
556 			return(0);
557 		}
558 
559 		if (minslp == -1 || lp->lwp_slptime < minslp)
560 			minslp = lp->lwp_slptime;
561 	}
562 
563 	/*
564 	 * If the process has been asleep for awhile, swap
565 	 * it out.
566 	 */
567 	if ((action & VM_SWAP_NORMAL) ||
568 	    ((action & VM_SWAP_IDLE) &&
569 	     (minslp > swap_idle_threshold2))) {
570 		swapout(p);
571 	}
572 
573 	/*
574 	 * cleanup our reference
575 	 */
576 	lwkt_reltoken(&p->p_token);
577 
578 	return(0);
579 }
580 
581 /*
582  * The caller must hold p->p_token
583  */
584 static void
585 swapout(struct proc *p)
586 {
587 #ifdef INVARIANTS
588 	if (swap_debug)
589 		kprintf("swapping out %d (%s)\n", p->p_pid, p->p_comm);
590 #endif
591 	++p->p_ru.ru_nswap;
592 
593 	/*
594 	 * remember the process resident count
595 	 */
596 	p->p_vmspace->vm_swrss = vmspace_resident_count(p->p_vmspace);
597 	p->p_flags |= P_SWAPPEDOUT;
598 	p->p_swtime = 0;
599 }
600 
601 #endif /* !NO_SWAPPING */
602 
603