xref: /dragonfly/sys/vm/vm_glue.c (revision fb151170)
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	from: @(#)vm_glue.c	8.6 (Berkeley) 1/5/94
39  *
40  *
41  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
42  * All rights reserved.
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  *
64  * $FreeBSD: src/sys/vm/vm_glue.c,v 1.94.2.4 2003/01/13 22:51:17 dillon Exp $
65  * $DragonFly: src/sys/vm/vm_glue.c,v 1.56 2008/07/01 02:02:56 dillon Exp $
66  */
67 
68 #include "opt_vm.h"
69 
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/proc.h>
73 #include <sys/resourcevar.h>
74 #include <sys/buf.h>
75 #include <sys/shm.h>
76 #include <sys/vmmeter.h>
77 #include <sys/sysctl.h>
78 
79 #include <sys/kernel.h>
80 #include <sys/unistd.h>
81 
82 #include <machine/limits.h>
83 
84 #include <vm/vm.h>
85 #include <vm/vm_param.h>
86 #include <sys/lock.h>
87 #include <vm/pmap.h>
88 #include <vm/vm_map.h>
89 #include <vm/vm_page.h>
90 #include <vm/vm_pageout.h>
91 #include <vm/vm_kern.h>
92 #include <vm/vm_extern.h>
93 
94 #include <sys/user.h>
95 #include <vm/vm_page2.h>
96 #include <sys/thread2.h>
97 #include <sys/sysref2.h>
98 
99 /*
100  * THIS MUST BE THE LAST INITIALIZATION ITEM!!!
101  *
102  * Note: run scheduling should be divorced from the vm system.
103  */
104 static void scheduler (void *);
105 SYSINIT(scheduler, SI_SUB_RUN_SCHEDULER, SI_ORDER_FIRST, scheduler, NULL)
106 
107 #ifdef INVARIANTS
108 
109 static int swap_debug = 0;
110 SYSCTL_INT(_vm, OID_AUTO, swap_debug,
111 	CTLFLAG_RW, &swap_debug, 0, "");
112 
113 #endif
114 
115 static int scheduler_notify;
116 
117 static void swapout (struct proc *);
118 
119 /*
120  * No requirements.
121  */
122 int
123 kernacc(c_caddr_t addr, int len, int rw)
124 {
125 	boolean_t rv;
126 	vm_offset_t saddr, eaddr;
127 	vm_prot_t prot;
128 
129 	KASSERT((rw & (~VM_PROT_ALL)) == 0,
130 	    ("illegal ``rw'' argument to kernacc (%x)\n", rw));
131 
132 	/*
133 	 * The globaldata space is not part of the kernel_map proper,
134 	 * check access separately.
135 	 */
136 	if (is_globaldata_space((vm_offset_t)addr, (vm_offset_t)(addr + len)))
137 		return (TRUE);
138 
139 	/*
140 	 * Nominal kernel memory access - check access via kernel_map.
141 	 */
142 	if ((vm_offset_t)addr + len > kernel_map.max_offset ||
143 	    (vm_offset_t)addr + len < (vm_offset_t)addr) {
144 		return (FALSE);
145 	}
146 	prot = rw;
147 	saddr = trunc_page((vm_offset_t)addr);
148 	eaddr = round_page((vm_offset_t)addr + len);
149 	rv = vm_map_check_protection(&kernel_map, saddr, eaddr, prot, FALSE);
150 
151 	return (rv == TRUE);
152 }
153 
154 /*
155  * No requirements.
156  */
157 int
158 useracc(c_caddr_t addr, int len, int rw)
159 {
160 	boolean_t rv;
161 	vm_prot_t prot;
162 	vm_map_t map;
163 	vm_map_entry_t save_hint;
164 	vm_offset_t wrap;
165 
166 	KASSERT((rw & (~VM_PROT_ALL)) == 0,
167 	    ("illegal ``rw'' argument to useracc (%x)\n", rw));
168 	prot = rw;
169 	/*
170 	 * XXX - check separately to disallow access to user area and user
171 	 * page tables - they are in the map.
172 	 */
173 	wrap = (vm_offset_t)addr + len;
174 	if (wrap > VM_MAX_USER_ADDRESS || wrap < (vm_offset_t)addr) {
175 		return (FALSE);
176 	}
177 	map = &curproc->p_vmspace->vm_map;
178 	vm_map_lock_read(map);
179 	/*
180 	 * We save the map hint, and restore it.  Useracc appears to distort
181 	 * the map hint unnecessarily.
182 	 */
183 	save_hint = map->hint;
184 	rv = vm_map_check_protection(map, trunc_page((vm_offset_t)addr),
185 				     round_page(wrap), prot, TRUE);
186 	map->hint = save_hint;
187 	vm_map_unlock_read(map);
188 
189 	return (rv == TRUE);
190 }
191 
192 /*
193  * No requirements.
194  */
195 void
196 vslock(caddr_t addr, u_int len)
197 {
198 	if (len) {
199 		vm_map_wire(&curproc->p_vmspace->vm_map,
200 			    trunc_page((vm_offset_t)addr),
201 			    round_page((vm_offset_t)addr + len), 0);
202 	}
203 }
204 
205 /*
206  * No requirements.
207  */
208 void
209 vsunlock(caddr_t addr, u_int len)
210 {
211 	if (len) {
212 		vm_map_wire(&curproc->p_vmspace->vm_map,
213 			    trunc_page((vm_offset_t)addr),
214 			    round_page((vm_offset_t)addr + len),
215 			    KM_PAGEABLE);
216 	}
217 }
218 
219 /*
220  * Implement fork's actions on an address space.
221  * Here we arrange for the address space to be copied or referenced,
222  * allocate a user struct (pcb and kernel stack), then call the
223  * machine-dependent layer to fill those in and make the new process
224  * ready to run.  The new process is set up so that it returns directly
225  * to user mode to avoid stack copying and relocation problems.
226  *
227  * No requirements.
228  */
229 void
230 vm_fork(struct proc *p1, struct proc *p2, int flags)
231 {
232 	if ((flags & RFPROC) == 0) {
233 		/*
234 		 * Divorce the memory, if it is shared, essentially
235 		 * this changes shared memory amongst threads, into
236 		 * COW locally.
237 		 */
238 		if ((flags & RFMEM) == 0) {
239 			if (p1->p_vmspace->vm_sysref.refcnt > 1) {
240 				vmspace_unshare(p1);
241 			}
242 		}
243 		cpu_fork(ONLY_LWP_IN_PROC(p1), NULL, flags);
244 		return;
245 	}
246 
247 	if (flags & RFMEM) {
248 		vmspace_ref(p1->p_vmspace);
249 		p2->p_vmspace = p1->p_vmspace;
250 	}
251 
252 	while (vm_page_count_severe()) {
253 		vm_wait(0);
254 	}
255 
256 	if ((flags & RFMEM) == 0) {
257 		p2->p_vmspace = vmspace_fork(p1->p_vmspace);
258 
259 		pmap_pinit2(vmspace_pmap(p2->p_vmspace));
260 
261 		if (p1->p_vmspace->vm_shm)
262 			shmfork(p1, p2);
263 	}
264 
265 	pmap_init_proc(p2);
266 }
267 
268 /*
269  * Set default limits for VM system.  Call during proc0's initialization.
270  *
271  * Called from the low level boot code only.
272  */
273 void
274 vm_init_limits(struct proc *p)
275 {
276 	int rss_limit;
277 
278 	/*
279 	 * Set up the initial limits on process VM. Set the maximum resident
280 	 * set size to be half of (reasonably) available memory.  Since this
281 	 * is a soft limit, it comes into effect only when the system is out
282 	 * of memory - half of main memory helps to favor smaller processes,
283 	 * and reduces thrashing of the object cache.
284 	 */
285 	p->p_rlimit[RLIMIT_STACK].rlim_cur = dflssiz;
286 	p->p_rlimit[RLIMIT_STACK].rlim_max = maxssiz;
287 	p->p_rlimit[RLIMIT_DATA].rlim_cur = dfldsiz;
288 	p->p_rlimit[RLIMIT_DATA].rlim_max = maxdsiz;
289 	/* limit the limit to no less than 2MB */
290 	rss_limit = max(vmstats.v_free_count, 512);
291 	p->p_rlimit[RLIMIT_RSS].rlim_cur = ptoa(rss_limit);
292 	p->p_rlimit[RLIMIT_RSS].rlim_max = RLIM_INFINITY;
293 }
294 
295 /*
296  * Faultin the specified process.  Note that the process can be in any
297  * state.  Just clear P_SWAPPEDOUT and call wakeup in case the process is
298  * sleeping.
299  *
300  * No requirements.
301  */
302 void
303 faultin(struct proc *p)
304 {
305 	if (p->p_flags & P_SWAPPEDOUT) {
306 		/*
307 		 * The process is waiting in the kernel to return to user
308 		 * mode but cannot until P_SWAPPEDOUT gets cleared.
309 		 */
310 		lwkt_gettoken(&p->p_token);
311 		p->p_flags &= ~(P_SWAPPEDOUT | P_SWAPWAIT);
312 #ifdef INVARIANTS
313 		if (swap_debug)
314 			kprintf("swapping in %d (%s)\n", p->p_pid, p->p_comm);
315 #endif
316 		wakeup(p);
317 		lwkt_reltoken(&p->p_token);
318 	}
319 }
320 
321 /*
322  * Kernel initialization eventually falls through to this function,
323  * which is process 0.
324  *
325  * This swapin algorithm attempts to swap-in processes only if there
326  * is enough space for them.  Of course, if a process waits for a long
327  * time, it will be swapped in anyway.
328  */
329 struct scheduler_info {
330 	struct proc *pp;
331 	int ppri;
332 };
333 
334 static int scheduler_callback(struct proc *p, void *data);
335 
336 static void
337 scheduler(void *dummy)
338 {
339 	struct scheduler_info info;
340 	struct proc *p;
341 
342 	KKASSERT(!IN_CRITICAL_SECT(curthread));
343 loop:
344 	scheduler_notify = 0;
345 	/*
346 	 * Don't try to swap anything in if we are low on memory.
347 	 */
348 	if (vm_page_count_severe()) {
349 		vm_wait(0);
350 		goto loop;
351 	}
352 
353 	/*
354 	 * Look for a good candidate to wake up
355 	 */
356 	info.pp = NULL;
357 	info.ppri = INT_MIN;
358 	allproc_scan(scheduler_callback, &info);
359 
360 	/*
361 	 * Nothing to do, back to sleep for at least 1/10 of a second.  If
362 	 * we are woken up, immediately process the next request.  If
363 	 * multiple requests have built up the first is processed
364 	 * immediately and the rest are staggered.
365 	 */
366 	if ((p = info.pp) == NULL) {
367 		tsleep(&proc0, 0, "nowork", hz / 10);
368 		if (scheduler_notify == 0)
369 			tsleep(&scheduler_notify, 0, "nowork", 0);
370 		goto loop;
371 	}
372 
373 	/*
374 	 * Fault the selected process in, then wait for a short period of
375 	 * time and loop up.
376 	 *
377 	 * XXX we need a heuristic to get a measure of system stress and
378 	 * then adjust our stagger wakeup delay accordingly.
379 	 */
380 	lwkt_gettoken(&proc_token);
381 	faultin(p);
382 	p->p_swtime = 0;
383 	PRELE(p);
384 	lwkt_reltoken(&proc_token);
385 	tsleep(&proc0, 0, "swapin", hz / 10);
386 	goto loop;
387 }
388 
389 /*
390  * The caller must hold proc_token.
391  */
392 static int
393 scheduler_callback(struct proc *p, void *data)
394 {
395 	struct scheduler_info *info = data;
396 	struct lwp *lp;
397 	segsz_t pgs;
398 	int pri;
399 
400 	if (p->p_flags & P_SWAPWAIT) {
401 		pri = 0;
402 		FOREACH_LWP_IN_PROC(lp, p) {
403 			/* XXX lwp might need a different metric */
404 			pri += lp->lwp_slptime;
405 		}
406 		pri += p->p_swtime - p->p_nice * 8;
407 
408 		/*
409 		 * The more pages paged out while we were swapped,
410 		 * the more work we have to do to get up and running
411 		 * again and the lower our wakeup priority.
412 		 *
413 		 * Each second of sleep time is worth ~1MB
414 		 */
415 		lwkt_gettoken(&p->p_vmspace->vm_map.token);
416 		pgs = vmspace_resident_count(p->p_vmspace);
417 		if (pgs < p->p_vmspace->vm_swrss) {
418 			pri -= (p->p_vmspace->vm_swrss - pgs) /
419 				(1024 * 1024 / PAGE_SIZE);
420 		}
421 		lwkt_reltoken(&p->p_vmspace->vm_map.token);
422 
423 		/*
424 		 * If this process is higher priority and there is
425 		 * enough space, then select this process instead of
426 		 * the previous selection.
427 		 */
428 		if (pri > info->ppri) {
429 			if (info->pp)
430 				PRELE(info->pp);
431 			PHOLD(p);
432 			info->pp = p;
433 			info->ppri = pri;
434 		}
435 	}
436 	return(0);
437 }
438 
439 /*
440  * SMP races ok.
441  * No requirements.
442  */
443 void
444 swapin_request(void)
445 {
446 	if (scheduler_notify == 0) {
447 		scheduler_notify = 1;
448 		wakeup(&scheduler_notify);
449 	}
450 }
451 
452 #ifndef NO_SWAPPING
453 
454 #define	swappable(p) \
455 	(((p)->p_lock == 0) && \
456 	((p)->p_flags & (P_TRACED|P_SYSTEM|P_SWAPPEDOUT|P_WEXIT)) == 0)
457 
458 
459 /*
460  * Swap_idle_threshold1 is the guaranteed swapped in time for a process
461  */
462 static int swap_idle_threshold1 = 15;
463 SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold1,
464 	CTLFLAG_RW, &swap_idle_threshold1, 0, "Guaranteed process resident time (sec)");
465 
466 /*
467  * Swap_idle_threshold2 is the time that a process can be idle before
468  * it will be swapped out, if idle swapping is enabled.  Default is
469  * one minute.
470  */
471 static int swap_idle_threshold2 = 60;
472 SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold2,
473 	CTLFLAG_RW, &swap_idle_threshold2, 0, "Time (sec) a process can idle before being swapped");
474 
475 /*
476  * Swapout is driven by the pageout daemon.  Very simple, we find eligible
477  * procs and mark them as being swapped out.  This will cause the kernel
478  * to prefer to pageout those proc's pages first and the procs in question
479  * will not return to user mode until the swapper tells them they can.
480  *
481  * If any procs have been sleeping/stopped for at least maxslp seconds,
482  * they are swapped.  Else, we swap the longest-sleeping or stopped process,
483  * if any, otherwise the longest-resident process.
484  */
485 
486 static int swapout_procs_callback(struct proc *p, void *data);
487 
488 /*
489  * No requirements.
490  */
491 void
492 swapout_procs(int action)
493 {
494 	allproc_scan(swapout_procs_callback, &action);
495 }
496 
497 /*
498  * The caller must hold proc_token
499  */
500 static int
501 swapout_procs_callback(struct proc *p, void *data)
502 {
503 	struct vmspace *vm;
504 	struct lwp *lp;
505 	int action = *(int *)data;
506 	int minslp = -1;
507 
508 	if (!swappable(p))
509 		return(0);
510 
511 	lwkt_gettoken(&p->p_token);
512 	vm = p->p_vmspace;
513 
514 	/*
515 	 * We only consider active processes.
516 	 */
517 	if (p->p_stat != SACTIVE && p->p_stat != SSTOP) {
518 		lwkt_reltoken(&p->p_token);
519 		return(0);
520 	}
521 
522 	FOREACH_LWP_IN_PROC(lp, p) {
523 		/*
524 		 * do not swap out a realtime process
525 		 */
526 		if (RTP_PRIO_IS_REALTIME(lp->lwp_rtprio.type)) {
527 			lwkt_reltoken(&p->p_token);
528 			return(0);
529 		}
530 
531 		/*
532 		 * Guarentee swap_idle_threshold time in memory
533 		 */
534 		if (lp->lwp_slptime < swap_idle_threshold1) {
535 			lwkt_reltoken(&p->p_token);
536 			return(0);
537 		}
538 
539 		/*
540 		 * If the system is under memory stress, or if we
541 		 * are swapping idle processes >= swap_idle_threshold2,
542 		 * then swap the process out.
543 		 */
544 		if (((action & VM_SWAP_NORMAL) == 0) &&
545 		    (((action & VM_SWAP_IDLE) == 0) ||
546 		     (lp->lwp_slptime < swap_idle_threshold2))) {
547 			lwkt_reltoken(&p->p_token);
548 			return(0);
549 		}
550 
551 		if (minslp == -1 || lp->lwp_slptime < minslp)
552 			minslp = lp->lwp_slptime;
553 	}
554 
555 	/*
556 	 * If the process has been asleep for awhile, swap
557 	 * it out.
558 	 */
559 	if ((action & VM_SWAP_NORMAL) ||
560 	    ((action & VM_SWAP_IDLE) &&
561 	     (minslp > swap_idle_threshold2))) {
562 		swapout(p);
563 	}
564 
565 	/*
566 	 * cleanup our reference
567 	 */
568 	lwkt_reltoken(&p->p_token);
569 
570 	return(0);
571 }
572 
573 /*
574  * The caller must hold proc_token and p->p_token
575  */
576 static void
577 swapout(struct proc *p)
578 {
579 #ifdef INVARIANTS
580 	if (swap_debug)
581 		kprintf("swapping out %d (%s)\n", p->p_pid, p->p_comm);
582 #endif
583 	++p->p_ru.ru_nswap;
584 
585 	/*
586 	 * remember the process resident count
587 	 */
588 	p->p_vmspace->vm_swrss = vmspace_resident_count(p->p_vmspace);
589 	p->p_flags |= P_SWAPPEDOUT;
590 	p->p_swtime = 0;
591 }
592 
593 #endif /* !NO_SWAPPING */
594 
595