xref: /dragonfly/sys/vm/vm_glue.c (revision fe76c4fb)
1 /*
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	from: @(#)vm_glue.c	8.6 (Berkeley) 1/5/94
37  *
38  *
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  *
62  * $FreeBSD: src/sys/vm/vm_glue.c,v 1.94.2.4 2003/01/13 22:51:17 dillon Exp $
63  * $DragonFly: src/sys/vm/vm_glue.c,v 1.41 2006/05/25 07:36:37 dillon Exp $
64  */
65 
66 #include "opt_vm.h"
67 
68 #include <sys/param.h>
69 #include <sys/systm.h>
70 #include <sys/proc.h>
71 #include <sys/resourcevar.h>
72 #include <sys/buf.h>
73 #include <sys/shm.h>
74 #include <sys/vmmeter.h>
75 #include <sys/sysctl.h>
76 
77 #include <sys/kernel.h>
78 #include <sys/unistd.h>
79 
80 #include <machine/limits.h>
81 
82 #include <vm/vm.h>
83 #include <vm/vm_param.h>
84 #include <sys/lock.h>
85 #include <vm/pmap.h>
86 #include <vm/vm_map.h>
87 #include <vm/vm_page.h>
88 #include <vm/vm_pageout.h>
89 #include <vm/vm_kern.h>
90 #include <vm/vm_extern.h>
91 
92 #include <sys/user.h>
93 #include <vm/vm_page2.h>
94 #include <sys/thread2.h>
95 
96 /*
97  * System initialization
98  *
99  * Note: proc0 from proc.h
100  */
101 
102 static void vm_init_limits (void *);
103 SYSINIT(vm_limits, SI_SUB_VM_CONF, SI_ORDER_FIRST, vm_init_limits, &proc0)
104 
105 /*
106  * THIS MUST BE THE LAST INITIALIZATION ITEM!!!
107  *
108  * Note: run scheduling should be divorced from the vm system.
109  */
110 static void scheduler (void *);
111 SYSINIT(scheduler, SI_SUB_RUN_SCHEDULER, SI_ORDER_FIRST, scheduler, NULL)
112 
113 #ifdef INVARIANTS
114 
115 static int swap_debug = 0;
116 SYSCTL_INT(_vm, OID_AUTO, swap_debug,
117 	CTLFLAG_RW, &swap_debug, 0, "");
118 
119 #endif
120 
121 static int scheduler_notify;
122 
123 static void swapout (struct proc *);
124 
125 int
126 kernacc(c_caddr_t addr, int len, int rw)
127 {
128 	boolean_t rv;
129 	vm_offset_t saddr, eaddr;
130 	vm_prot_t prot;
131 
132 	KASSERT((rw & (~VM_PROT_ALL)) == 0,
133 	    ("illegal ``rw'' argument to kernacc (%x)\n", rw));
134 
135 	if ((vm_offset_t)addr + len > kernel_map->max_offset ||
136 	    (vm_offset_t)addr + len < (vm_offset_t)addr) {
137 		return (FALSE);
138 	}
139 
140 	prot = rw;
141 	saddr = trunc_page((vm_offset_t)addr);
142 	eaddr = round_page((vm_offset_t)addr + len);
143 	vm_map_lock_read(kernel_map);
144 	rv = vm_map_check_protection(kernel_map, saddr, eaddr, prot);
145 	vm_map_unlock_read(kernel_map);
146 	if (rv == FALSE && is_globaldata_space(saddr, eaddr))
147 		rv = TRUE;
148 	return (rv == TRUE);
149 }
150 
151 int
152 useracc(c_caddr_t addr, int len, int rw)
153 {
154 	boolean_t rv;
155 	vm_prot_t prot;
156 	vm_map_t map;
157 	vm_map_entry_t save_hint;
158 
159 	KASSERT((rw & (~VM_PROT_ALL)) == 0,
160 	    ("illegal ``rw'' argument to useracc (%x)\n", rw));
161 	prot = rw;
162 	/*
163 	 * XXX - check separately to disallow access to user area and user
164 	 * page tables - they are in the map.
165 	 *
166 	 * XXX - VM_MAXUSER_ADDRESS is an end address, not a max.  It was once
167 	 * only used (as an end address) in trap.c.  Use it as an end address
168 	 * here too.  This bogusness has spread.  I just fixed where it was
169 	 * used as a max in vm_mmap.c.
170 	 */
171 	if ((vm_offset_t) addr + len > /* XXX */ VM_MAXUSER_ADDRESS
172 	    || (vm_offset_t) addr + len < (vm_offset_t) addr) {
173 		return (FALSE);
174 	}
175 	map = &curproc->p_vmspace->vm_map;
176 	vm_map_lock_read(map);
177 	/*
178 	 * We save the map hint, and restore it.  Useracc appears to distort
179 	 * the map hint unnecessarily.
180 	 */
181 	save_hint = map->hint;
182 	rv = vm_map_check_protection(map,
183 	    trunc_page((vm_offset_t)addr), round_page((vm_offset_t)addr + len), prot);
184 	map->hint = save_hint;
185 	vm_map_unlock_read(map);
186 
187 	return (rv == TRUE);
188 }
189 
190 void
191 vslock(caddr_t addr, u_int len)
192 {
193 	vm_map_wire(&curproc->p_vmspace->vm_map, trunc_page((vm_offset_t)addr),
194 	    round_page((vm_offset_t)addr + len), 0);
195 }
196 
197 void
198 vsunlock(caddr_t addr, u_int len)
199 {
200 	vm_map_wire(&curproc->p_vmspace->vm_map, trunc_page((vm_offset_t)addr),
201 	    round_page((vm_offset_t)addr + len), KM_PAGEABLE);
202 }
203 
204 /*
205  * Implement fork's actions on an address space.
206  * Here we arrange for the address space to be copied or referenced,
207  * allocate a user struct (pcb and kernel stack), then call the
208  * machine-dependent layer to fill those in and make the new process
209  * ready to run.  The new process is set up so that it returns directly
210  * to user mode to avoid stack copying and relocation problems.
211  */
212 void
213 vm_fork(struct proc *p1, struct proc *p2, int flags)
214 {
215 	struct user *up;
216 	struct thread *td2;
217 
218 	if ((flags & RFPROC) == 0) {
219 		/*
220 		 * Divorce the memory, if it is shared, essentially
221 		 * this changes shared memory amongst threads, into
222 		 * COW locally.
223 		 */
224 		if ((flags & RFMEM) == 0) {
225 			if (p1->p_vmspace->vm_refcnt > 1) {
226 				vmspace_unshare(p1);
227 			}
228 		}
229 		cpu_fork(p1, p2, flags);
230 		return;
231 	}
232 
233 	if (flags & RFMEM) {
234 		p2->p_vmspace = p1->p_vmspace;
235 		p1->p_vmspace->vm_refcnt++;
236 	}
237 
238 	while (vm_page_count_severe()) {
239 		vm_wait();
240 	}
241 
242 	if ((flags & RFMEM) == 0) {
243 		p2->p_vmspace = vmspace_fork(p1->p_vmspace);
244 
245 		pmap_pinit2(vmspace_pmap(p2->p_vmspace));
246 
247 		if (p1->p_vmspace->vm_shm)
248 			shmfork(p1, p2);
249 	}
250 
251 	td2 = lwkt_alloc_thread(NULL, LWKT_THREAD_STACK, -1, 0);
252 	pmap_init_proc(p2, td2);
253 	lwkt_setpri(td2, TDPRI_KERN_USER);
254 	lwkt_set_comm(td2, "%s", p1->p_comm);
255 
256 	up = p2->p_addr;
257 
258 	/*
259 	 * p_stats currently points at fields in the user struct
260 	 * but not at &u, instead at p_addr. Copy parts of
261 	 * p_stats; zero the rest of p_stats (statistics).
262 	 *
263 	 * If procsig->ps_refcnt is 1 and p2->p_sigacts is NULL we dont' need
264 	 * to share sigacts, so we use the up->u_sigacts.
265 	 */
266 	p2->p_stats = &up->u_stats;
267 	if (p2->p_sigacts == NULL) {
268 		if (p2->p_procsig->ps_refcnt != 1)
269 			printf ("PID:%d NULL sigacts with refcnt not 1!\n",p2->p_pid);
270 		p2->p_sigacts = &up->u_sigacts;
271 		up->u_sigacts = *p1->p_sigacts;
272 	}
273 
274 	bzero(&up->u_stats, sizeof(struct pstats));
275 
276 	/*
277 	 * cpu_fork will copy and update the pcb, set up the kernel stack,
278 	 * and make the child ready to run.
279 	 */
280 	cpu_fork(p1, p2, flags);
281 }
282 
283 /*
284  * Called after process has been wait(2)'ed apon and is being reaped.
285  * The idea is to reclaim resources that we could not reclaim while
286  * the process was still executing.
287  */
288 void
289 vm_waitproc(struct proc *p)
290 {
291 	p->p_stats = NULL;
292 	cpu_proc_wait(p);
293 	vmspace_exitfree(p);	/* and clean-out the vmspace */
294 }
295 
296 /*
297  * Set default limits for VM system.
298  * Called for proc 0, and then inherited by all others.
299  *
300  * XXX should probably act directly on proc0.
301  */
302 static void
303 vm_init_limits(void *udata)
304 {
305 	struct proc *p = udata;
306 	int rss_limit;
307 
308 	/*
309 	 * Set up the initial limits on process VM. Set the maximum resident
310 	 * set size to be half of (reasonably) available memory.  Since this
311 	 * is a soft limit, it comes into effect only when the system is out
312 	 * of memory - half of main memory helps to favor smaller processes,
313 	 * and reduces thrashing of the object cache.
314 	 */
315 	p->p_rlimit[RLIMIT_STACK].rlim_cur = dflssiz;
316 	p->p_rlimit[RLIMIT_STACK].rlim_max = maxssiz;
317 	p->p_rlimit[RLIMIT_DATA].rlim_cur = dfldsiz;
318 	p->p_rlimit[RLIMIT_DATA].rlim_max = maxdsiz;
319 	/* limit the limit to no less than 2MB */
320 	rss_limit = max(vmstats.v_free_count, 512);
321 	p->p_rlimit[RLIMIT_RSS].rlim_cur = ptoa(rss_limit);
322 	p->p_rlimit[RLIMIT_RSS].rlim_max = RLIM_INFINITY;
323 }
324 
325 /*
326  * Faultin the specified process.  Note that the process can be in any
327  * state.  Just clear P_SWAPPEDOUT and call wakeup in case the process is
328  * sleeping.
329  */
330 void
331 faultin(struct proc *p)
332 {
333 	if (p->p_flag & P_SWAPPEDOUT) {
334 		/*
335 		 * The process is waiting in the kernel to return to user
336 		 * mode but cannot until P_SWAPPEDOUT gets cleared.
337 		 */
338 		crit_enter();
339 		p->p_flag &= ~(P_SWAPPEDOUT | P_SWAPWAIT);
340 #ifdef INVARIANTS
341 		if (swap_debug)
342 			printf("swapping in %d (%s)\n", p->p_pid, p->p_comm);
343 #endif
344 		wakeup(p);
345 
346 		crit_exit();
347 	}
348 }
349 
350 /*
351  * Kernel initialization eventually falls through to this function,
352  * which is process 0.
353  *
354  * This swapin algorithm attempts to swap-in processes only if there
355  * is enough space for them.  Of course, if a process waits for a long
356  * time, it will be swapped in anyway.
357  */
358 
359 struct scheduler_info {
360 	struct proc *pp;
361 	int ppri;
362 };
363 
364 static int scheduler_callback(struct proc *p, void *data);
365 
366 static void
367 scheduler(void *dummy)
368 {
369 	struct scheduler_info info;
370 	struct proc *p;
371 
372 	KKASSERT(!IN_CRITICAL_SECT(curthread));
373 loop:
374 	scheduler_notify = 0;
375 	/*
376 	 * Don't try to swap anything in if we are low on memory.
377 	 */
378 	if (vm_page_count_min()) {
379 		vm_wait();
380 		goto loop;
381 	}
382 
383 	/*
384 	 * Look for a good candidate to wake up
385 	 */
386 	info.pp = NULL;
387 	info.ppri = INT_MIN;
388 	allproc_scan(scheduler_callback, &info);
389 
390 	/*
391 	 * Nothing to do, back to sleep for at least 1/10 of a second.  If
392 	 * we are woken up, immediately process the next request.  If
393 	 * multiple requests have built up the first is processed
394 	 * immediately and the rest are staggered.
395 	 */
396 	if ((p = info.pp) == NULL) {
397 		tsleep(&proc0, 0, "nowork", hz / 10);
398 		if (scheduler_notify == 0)
399 			tsleep(&scheduler_notify, 0, "nowork", 0);
400 		goto loop;
401 	}
402 
403 	/*
404 	 * Fault the selected process in, then wait for a short period of
405 	 * time and loop up.
406 	 *
407 	 * XXX we need a heuristic to get a measure of system stress and
408 	 * then adjust our stagger wakeup delay accordingly.
409 	 */
410 	faultin(p);
411 	p->p_swtime = 0;
412 	PRELE(p);
413 	tsleep(&proc0, 0, "swapin", hz / 10);
414 	goto loop;
415 }
416 
417 static int
418 scheduler_callback(struct proc *p, void *data)
419 {
420 	struct scheduler_info *info = data;
421 	segsz_t pgs;
422 	int pri;
423 
424 	if (p->p_flag & P_SWAPWAIT) {
425 		pri = p->p_swtime + p->p_slptime - p->p_nice * 8;
426 
427 		/*
428 		 * The more pages paged out while we were swapped,
429 		 * the more work we have to do to get up and running
430 		 * again and the lower our wakeup priority.
431 		 *
432 		 * Each second of sleep time is worth ~1MB
433 		 */
434 		pgs = vmspace_resident_count(p->p_vmspace);
435 		if (pgs < p->p_vmspace->vm_swrss) {
436 			pri -= (p->p_vmspace->vm_swrss - pgs) /
437 				(1024 * 1024 / PAGE_SIZE);
438 		}
439 
440 		/*
441 		 * If this process is higher priority and there is
442 		 * enough space, then select this process instead of
443 		 * the previous selection.
444 		 */
445 		if (pri > info->ppri) {
446 			if (info->pp)
447 				PRELE(info->pp);
448 			PHOLD(p);
449 			info->pp = p;
450 			info->ppri = pri;
451 		}
452 	}
453 	return(0);
454 }
455 
456 void
457 swapin_request(void)
458 {
459 	if (scheduler_notify == 0) {
460 		scheduler_notify = 1;
461 		wakeup(&scheduler_notify);
462 	}
463 }
464 
465 #ifndef NO_SWAPPING
466 
467 #define	swappable(p) \
468 	(((p)->p_lock == 0) && \
469 	((p)->p_flag & (P_TRACED|P_SYSTEM|P_SWAPPEDOUT|P_WEXIT)) == 0)
470 
471 
472 /*
473  * Swap_idle_threshold1 is the guaranteed swapped in time for a process
474  */
475 static int swap_idle_threshold1 = 15;
476 SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold1,
477 	CTLFLAG_RW, &swap_idle_threshold1, 0, "");
478 
479 /*
480  * Swap_idle_threshold2 is the time that a process can be idle before
481  * it will be swapped out, if idle swapping is enabled.  Default is
482  * one minute.
483  */
484 static int swap_idle_threshold2 = 60;
485 SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold2,
486 	CTLFLAG_RW, &swap_idle_threshold2, 0, "");
487 
488 /*
489  * Swapout is driven by the pageout daemon.  Very simple, we find eligible
490  * procs and mark them as being swapped out.  This will cause the kernel
491  * to prefer to pageout those proc's pages first and the procs in question
492  * will not return to user mode until the swapper tells them they can.
493  *
494  * If any procs have been sleeping/stopped for at least maxslp seconds,
495  * they are swapped.  Else, we swap the longest-sleeping or stopped process,
496  * if any, otherwise the longest-resident process.
497  */
498 
499 static int swapout_procs_callback(struct proc *p, void *data);
500 
501 void
502 swapout_procs(int action)
503 {
504 	allproc_scan(swapout_procs_callback, &action);
505 }
506 
507 static int
508 swapout_procs_callback(struct proc *p, void *data)
509 {
510 	struct vmspace *vm;
511 	int action = *(int *)data;
512 
513 	if (!swappable(p))
514 		return(0);
515 
516 	vm = p->p_vmspace;
517 
518 	if (p->p_stat == SSLEEP || p->p_stat == SRUN) {
519 		/*
520 		 * do not swap out a realtime process
521 		 */
522 		if (RTP_PRIO_IS_REALTIME(p->p_lwp.lwp_rtprio.type))
523 			return(0);
524 
525 		/*
526 		 * Guarentee swap_idle_threshold time in memory
527 		 */
528 		if (p->p_slptime < swap_idle_threshold1)
529 			return(0);
530 
531 		/*
532 		 * If the system is under memory stress, or if we
533 		 * are swapping idle processes >= swap_idle_threshold2,
534 		 * then swap the process out.
535 		 */
536 		if (((action & VM_SWAP_NORMAL) == 0) &&
537 		    (((action & VM_SWAP_IDLE) == 0) ||
538 		     (p->p_slptime < swap_idle_threshold2))) {
539 			return(0);
540 		}
541 
542 		++vm->vm_refcnt;
543 
544 		/*
545 		 * If the process has been asleep for awhile, swap
546 		 * it out.
547 		 */
548 		if ((action & VM_SWAP_NORMAL) ||
549 		    ((action & VM_SWAP_IDLE) &&
550 		     (p->p_slptime > swap_idle_threshold2))) {
551 			swapout(p);
552 		}
553 
554 		/*
555 		 * cleanup our reference
556 		 */
557 		vmspace_free(vm);
558 	}
559 	return(0);
560 }
561 
562 static void
563 swapout(struct proc *p)
564 {
565 #ifdef INVARIANTS
566 	if (swap_debug)
567 		printf("swapping out %d (%s)\n", p->p_pid, p->p_comm);
568 #endif
569 	++p->p_stats->p_ru.ru_nswap;
570 	/*
571 	 * remember the process resident count
572 	 */
573 	p->p_vmspace->vm_swrss = vmspace_resident_count(p->p_vmspace);
574 	p->p_flag |= P_SWAPPEDOUT;
575 	p->p_swtime = 0;
576 }
577 
578 #endif /* !NO_SWAPPING */
579 
580