xref: /dragonfly/sys/vm/vm_kern.c (revision 634ba020)
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	from: @(#)vm_kern.c	8.3 (Berkeley) 1/12/94
35  *
36  *
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  *
62  * $FreeBSD: src/sys/vm/vm_kern.c,v 1.61.2.2 2002/03/12 18:25:26 tegge Exp $
63  */
64 
65 /*
66  *	Kernel memory management.
67  */
68 
69 #include <sys/param.h>
70 #include <sys/systm.h>
71 #include <sys/proc.h>
72 #include <sys/malloc.h>
73 #include <sys/kernel.h>
74 #include <sys/sysctl.h>
75 
76 #include <vm/vm.h>
77 #include <vm/vm_param.h>
78 #include <sys/lock.h>
79 #include <vm/pmap.h>
80 #include <vm/vm_map.h>
81 #include <vm/vm_object.h>
82 #include <vm/vm_page.h>
83 #include <vm/vm_pageout.h>
84 #include <vm/vm_kern.h>
85 #include <vm/vm_extern.h>
86 
87 static struct vm_map kernel_map_store;
88 static struct vm_map clean_map_store;
89 static struct vm_map buffer_map_store;
90 
91 struct vm_map *kernel_map = &kernel_map_store;
92 struct vm_map *clean_map = &clean_map_store;
93 struct vm_map *buffer_map = &buffer_map_store;
94 
95 static __inline
96 int
97 KMVMCPU(int kmflags)
98 {
99 	if ((kmflags & KM_CPU_SPEC) == 0)
100 		return 0;
101 	return VM_ALLOC_CPU(KM_GETCPU(kmflags));
102 }
103 
104 /*
105  * Allocate pageable swap-backed anonymous memory
106  */
107 void *
108 kmem_alloc_swapbacked(kmem_anon_desc_t *kp, vm_size_t size, vm_subsys_t id)
109 {
110 	int error;
111 	vm_pindex_t npages;
112 
113 	size = round_page(size);
114 	npages = size / PAGE_SIZE;
115 
116 	if (kp->map == NULL)
117 		kp->map = kernel_map;
118 	kp->data = vm_map_min(kernel_map);
119 	kp->size = size;
120 	kp->object = vm_object_allocate(OBJT_DEFAULT, npages);
121 
122 	error = vm_map_find(kp->map, kp->object, NULL, 0,
123 			    &kp->data, size,
124 			    PAGE_SIZE, TRUE,
125 			    VM_MAPTYPE_NORMAL, id,
126 			    VM_PROT_ALL, VM_PROT_ALL, 0);
127 	if (error) {
128 		kprintf("kmem_alloc_swapbacked: %zd bytes failed %d\n",
129 			size, error);
130 		kp->data = (vm_offset_t)0;
131 		kmem_free_swapbacked(kp);
132 		return NULL;
133 	}
134 	return ((void *)(intptr_t)kp->data);
135 }
136 
137 void
138 kmem_free_swapbacked(kmem_anon_desc_t *kp)
139 {
140 	if (kp->data) {
141 		/*
142 		 * The object will be deallocated by kmem_free().
143 		 */
144 		kmem_free(kp->map, kp->data, kp->size);
145 		kp->data = (vm_offset_t)0;
146 	} else {
147 		/*
148 		 * Failure during allocation, object must be deallocated
149 		 * manually.
150 		 */
151 		vm_object_deallocate(kp->object);
152 	}
153 	kp->object = NULL;
154 }
155 
156 /*
157  * Allocate pageable memory to the kernel's address map.  "map" must
158  * be kernel_map or a submap of kernel_map.  Caller must adjust map or
159  * enter VM pages itself.
160  *
161  * No requirements.
162  */
163 vm_offset_t
164 kmem_alloc_pageable(vm_map_t map, vm_size_t size, vm_subsys_t id)
165 {
166 	vm_offset_t addr;
167 	int result;
168 
169 	size = round_page(size);
170 	addr = vm_map_min(map);
171 	result = vm_map_find(map, NULL, NULL,
172 			     (vm_offset_t) 0, &addr, size,
173 			     PAGE_SIZE, TRUE,
174 			     VM_MAPTYPE_NORMAL, id,
175 			     VM_PROT_ALL, VM_PROT_ALL, 0);
176 	if (result != KERN_SUCCESS)
177 		return (0);
178 	return (addr);
179 }
180 
181 /*
182  * Same as kmem_alloc_pageable, except that it create a nofault entry.
183  *
184  * No requirements.
185  */
186 vm_offset_t
187 kmem_alloc_nofault(vm_map_t map, vm_size_t size, vm_subsys_t id,
188 		   vm_size_t align)
189 {
190 	vm_offset_t addr;
191 	int result;
192 
193 	size = round_page(size);
194 	addr = vm_map_min(map);
195 	result = vm_map_find(map, NULL, NULL,
196 			     (vm_offset_t) 0, &addr, size,
197 			     align, TRUE,
198 			     VM_MAPTYPE_NORMAL, id,
199 			     VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
200 	if (result != KERN_SUCCESS)
201 		return (0);
202 	return (addr);
203 }
204 
205 /*
206  * Allocate wired-down memory in the kernel's address map or a submap.
207  *
208  * No requirements.
209  */
210 vm_offset_t
211 kmem_alloc3(vm_map_t map, vm_size_t size, vm_subsys_t id, int kmflags)
212 {
213 	vm_offset_t addr;
214 	vm_offset_t gstart;
215 	vm_offset_t i;
216 	int count;
217 	int cow;
218 
219 	size = round_page(size);
220 
221 	if (kmflags & KM_KRESERVE)
222 		count = vm_map_entry_kreserve(MAP_RESERVE_COUNT);
223 	else
224 		count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
225 
226 	if (kmflags & KM_STACK) {
227 		cow = MAP_IS_KSTACK;
228 		gstart = PAGE_SIZE;
229 	} else {
230 		cow = 0;
231 		gstart = 0;
232 	}
233 
234 	/*
235 	 * Use the kernel object for wired-down kernel pages. Assume that no
236 	 * region of the kernel object is referenced more than once.
237 	 *
238 	 * Locate sufficient space in the map.  This will give us the final
239 	 * virtual address for the new memory, and thus will tell us the
240 	 * offset within the kernel map.
241 	 */
242 	vm_map_lock(map);
243 	if (vm_map_findspace(map, vm_map_min(map), size, PAGE_SIZE, 0, &addr)) {
244 		vm_map_unlock(map);
245 		if (kmflags & KM_KRESERVE)
246 			vm_map_entry_krelease(count);
247 		else
248 			vm_map_entry_release(count);
249 		return (0);
250 	}
251 	vm_object_hold(kernel_object);
252 	vm_object_reference_locked(kernel_object);
253 	vm_map_insert(map, &count,
254 		      kernel_object, NULL,
255 		      addr, NULL,
256 		      addr, addr + size,
257 		      VM_MAPTYPE_NORMAL, id,
258 		      VM_PROT_ALL, VM_PROT_ALL, cow);
259 	vm_object_drop(kernel_object);
260 
261 	vm_map_unlock(map);
262 	if (kmflags & KM_KRESERVE)
263 		vm_map_entry_krelease(count);
264 	else
265 		vm_map_entry_release(count);
266 
267 	/*
268 	 * Guarantee that there are pages already in this object before
269 	 * calling vm_map_wire.  This is to prevent the following
270 	 * scenario:
271 	 *
272 	 * 1) Threads have swapped out, so that there is a pager for the
273 	 * kernel_object. 2) The kmsg zone is empty, and so we are
274 	 * kmem_allocing a new page for it. 3) vm_map_wire calls vm_fault;
275 	 * there is no page, but there is a pager, so we call
276 	 * pager_data_request.  But the kmsg zone is empty, so we must
277 	 * kmem_alloc. 4) goto 1 5) Even if the kmsg zone is not empty: when
278 	 * we get the data back from the pager, it will be (very stale)
279 	 * non-zero data.  kmem_alloc is defined to return zero-filled memory.
280 	 *
281 	 * We're intentionally not activating the pages we allocate to prevent a
282 	 * race with page-out.  vm_map_wire will wire the pages.
283 	 */
284 	vm_object_hold(kernel_object);
285 	for (i = gstart; i < size; i += PAGE_SIZE) {
286 		vm_page_t mem;
287 
288 		mem = vm_page_grab(kernel_object, OFF_TO_IDX(addr + i),
289 				   VM_ALLOC_FORCE_ZERO | VM_ALLOC_NORMAL |
290 				   VM_ALLOC_RETRY | KMVMCPU(kmflags));
291 		vm_page_unqueue_nowakeup(mem);
292 		vm_page_wakeup(mem);
293 	}
294 	vm_object_drop(kernel_object);
295 
296 	/*
297 	 * And finally, mark the data as non-pageable.
298 	 *
299 	 * NOTE: vm_map_wire() handles any kstack guard.
300 	 */
301 	vm_map_wire(map, addr, addr + size, kmflags);
302 
303 	return (addr);
304 }
305 
306 /*
307  * Release a region of kernel virtual memory allocated with kmem_alloc,
308  * and return the physical pages associated with that region.
309  *
310  * WARNING!  If the caller entered pages into the region using pmap_kenter()
311  * it must remove the pages using pmap_kremove[_quick]() before freeing the
312  * underlying kmem, otherwise resident_count will be mistabulated.
313  *
314  * No requirements.
315  */
316 void
317 kmem_free(vm_map_t map, vm_offset_t addr, vm_size_t size)
318 {
319 	vm_map_remove(map, trunc_page(addr), round_page(addr + size));
320 }
321 
322 /*
323  * Used to break a system map into smaller maps, usually to reduce
324  * contention and to provide large KVA spaces for subsystems like the
325  * buffer cache.
326  *
327  *	parent		Map to take range from
328  *	result
329  *	size		Size of range to find
330  *	min, max	Returned endpoints of map
331  *	pageable	Can the region be paged
332  *
333  * No requirements.
334  */
335 void
336 kmem_suballoc(vm_map_t parent, vm_map_t result,
337 	      vm_offset_t *min, vm_offset_t *max, vm_size_t size)
338 {
339 	int ret;
340 
341 	size = round_page(size);
342 
343 	*min = (vm_offset_t) vm_map_min(parent);
344 	ret = vm_map_find(parent, NULL, NULL,
345 			  (vm_offset_t) 0, min, size,
346 			  PAGE_SIZE, TRUE,
347 			  VM_MAPTYPE_UNSPECIFIED, VM_SUBSYS_SYSMAP,
348 			  VM_PROT_ALL, VM_PROT_ALL, 0);
349 	if (ret != KERN_SUCCESS) {
350 		kprintf("kmem_suballoc: bad status return of %d.\n", ret);
351 		panic("kmem_suballoc");
352 	}
353 	*max = *min + size;
354 	pmap_reference(vm_map_pmap(parent));
355 	vm_map_init(result, *min, *max, vm_map_pmap(parent));
356 	if ((ret = vm_map_submap(parent, *min, *max, result)) != KERN_SUCCESS)
357 		panic("kmem_suballoc: unable to change range to submap");
358 }
359 
360 /*
361  * Allocates pageable memory from a sub-map of the kernel.  If the submap
362  * has no room, the caller sleeps waiting for more memory in the submap.
363  *
364  * No requirements.
365  */
366 vm_offset_t
367 kmem_alloc_wait(vm_map_t map, vm_size_t size, vm_subsys_t id)
368 {
369 	vm_offset_t addr;
370 	int count;
371 
372 	size = round_page(size);
373 
374 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
375 
376 	for (;;) {
377 		/*
378 		 * To make this work for more than one map, use the map's lock
379 		 * to lock out sleepers/wakers.
380 		 */
381 		vm_map_lock(map);
382 		if (vm_map_findspace(map, vm_map_min(map),
383 				     size, PAGE_SIZE, 0, &addr) == 0) {
384 			break;
385 		}
386 		/* no space now; see if we can ever get space */
387 		if (vm_map_max(map) - vm_map_min(map) < size) {
388 			vm_map_entry_release(count);
389 			vm_map_unlock(map);
390 			return (0);
391 		}
392 		vm_map_unlock(map);
393 		tsleep(map, 0, "kmaw", 0);
394 	}
395 	vm_map_insert(map, &count,
396 		      NULL, NULL,
397 		      (vm_offset_t)0, NULL,
398 		      addr, addr + size,
399 		      VM_MAPTYPE_NORMAL, id,
400 		      VM_PROT_ALL, VM_PROT_ALL, 0);
401 	vm_map_unlock(map);
402 	vm_map_entry_release(count);
403 
404 	return (addr);
405 }
406 
407 /*
408  *  Allocates a region from the kernel address map and physical pages
409  *  within the specified address range to the kernel object.  Creates a
410  *  wired mapping from this region to these pages, and returns the
411  *  region's starting virtual address.  The allocated pages are not
412  *  necessarily physically contiguous.  If M_ZERO is specified through the
413  *  given flags, then the pages are zeroed before they are mapped.
414  */
415 vm_offset_t
416 kmem_alloc_attr(vm_map_t map, vm_size_t size, vm_subsys_t id,
417 		int flags, vm_paddr_t low,
418 		vm_paddr_t high, vm_memattr_t memattr)
419 {
420 	vm_offset_t addr, i, offset;
421 	vm_page_t m;
422 	int count;
423 
424 	size = round_page(size);
425 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
426 	vm_map_lock(map);
427 	if (vm_map_findspace(map, vm_map_min(map), size, PAGE_SIZE,
428 			     flags, &addr)) {
429 		vm_map_unlock(map);
430 		vm_map_entry_release(count);
431 		return (0);
432 	}
433 	offset = addr - vm_map_min(kernel_map);
434 	vm_object_hold(kernel_object);
435 	vm_object_reference_locked(kernel_object);
436 	vm_map_insert(map, &count,
437 		      kernel_object, NULL,
438 		      offset, NULL,
439 		      addr, addr + size,
440 		      VM_MAPTYPE_NORMAL, id,
441 		      VM_PROT_ALL, VM_PROT_ALL, 0);
442 	vm_map_unlock(map);
443 	vm_map_entry_release(count);
444 	vm_object_drop(kernel_object);
445 	for (i = 0; i < size; i += PAGE_SIZE) {
446 		m = vm_page_alloc_contig(low, high, PAGE_SIZE, 0,
447 					 PAGE_SIZE, memattr);
448 		if (!m) {
449 			return (0);
450 		}
451 		vm_object_hold(kernel_object);
452 		vm_page_insert(m, kernel_object, OFF_TO_IDX(offset + i));
453 		vm_object_drop(kernel_object);
454 		if (flags & M_ZERO)
455 			pmap_zero_page(VM_PAGE_TO_PHYS(m));
456 		m->valid = VM_PAGE_BITS_ALL;
457 	}
458 	vm_map_wire(map, addr, addr + size, 0);
459 	return (addr);
460 }
461 
462 
463 /*
464  * Returns memory to a submap of the kernel, and wakes up any processes
465  * waiting for memory in that map.
466  *
467  * No requirements.
468  */
469 void
470 kmem_free_wakeup(vm_map_t map, vm_offset_t addr, vm_size_t size)
471 {
472 	int count;
473 
474 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
475 	vm_map_lock(map);
476 	vm_map_delete(map, trunc_page(addr), round_page(addr + size), &count);
477 	wakeup(map);
478 	vm_map_unlock(map);
479 	vm_map_entry_release(count);
480 }
481 
482 /*
483  * Create the kernel_ma for (KvaStart,KvaEnd) and insert mappings to
484  * cover areas already allocated or reserved thus far.
485  *
486  * The areas (virtual_start, virtual_end) and (virtual2_start, virtual2_end)
487  * are available so the cutouts are the areas around these ranges between
488  * KvaStart and KvaEnd.
489  *
490  * Depend on the zalloc bootstrap cache to get our vm_map_entry_t.
491  * Called from the low level boot code only.
492  */
493 void
494 kmem_init(void)
495 {
496 	vm_offset_t addr;
497 	vm_map_t m;
498 	int count;
499 
500 	m = kernel_map;
501 	vm_map_init(m, KvaStart, KvaEnd, kernel_pmap);
502 	vm_map_lock(m);
503 	/* N.B.: cannot use kgdb to debug, starting with this assignment ... */
504 	m->system_map = 1;
505 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
506 	addr = KvaStart;
507 	if (virtual2_start) {
508 		if (addr < virtual2_start) {
509 			vm_map_insert(m, &count,
510 				      NULL, NULL,
511 				      (vm_offset_t) 0, NULL,
512 				      addr, virtual2_start,
513 				      VM_MAPTYPE_NORMAL, VM_SUBSYS_RESERVED,
514 				      VM_PROT_ALL, VM_PROT_ALL, 0);
515 		}
516 		addr = virtual2_end;
517 	}
518 	if (addr < virtual_start) {
519 		vm_map_insert(m, &count,
520 			      NULL, NULL,
521 			      (vm_offset_t) 0, NULL,
522 			      addr, virtual_start,
523 			      VM_MAPTYPE_NORMAL, VM_SUBSYS_RESERVED,
524 			      VM_PROT_ALL, VM_PROT_ALL, 0);
525 	}
526 	addr = virtual_end;
527 	if (addr < KvaEnd) {
528 		vm_map_insert(m, &count,
529 			      NULL, NULL,
530 			      (vm_offset_t) 0, NULL,
531 			      addr, KvaEnd,
532 			      VM_MAPTYPE_NORMAL, VM_SUBSYS_RESERVED,
533 			      VM_PROT_ALL, VM_PROT_ALL, 0);
534 	}
535 	/* ... and ending with the completion of the above `insert' */
536 	vm_map_unlock(m);
537 	vm_map_entry_release(count);
538 }
539 
540 /*
541  * No requirements.
542  */
543 static int
544 kvm_size(SYSCTL_HANDLER_ARGS)
545 {
546 	unsigned long ksize = KvaSize;
547 
548 	return sysctl_handle_long(oidp, &ksize, 0, req);
549 }
550 SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_ULONG|CTLFLAG_RD,
551     0, 0, kvm_size, "LU", "Size of KVM");
552 
553 /*
554  * No requirements.
555  */
556 static int
557 kvm_free(SYSCTL_HANDLER_ARGS)
558 {
559 	unsigned long kfree = virtual_end - kernel_vm_end;
560 
561 	return sysctl_handle_long(oidp, &kfree, 0, req);
562 }
563 SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_ULONG|CTLFLAG_RD,
564     0, 0, kvm_free, "LU", "Amount of KVM free");
565 
566